
Logical Methods in Computer Science
Vol. 9(1:16)2013, pp. 1–16
www.lmcs-online.org

Submitted Mar. 16, 2012
Published Mar. 31, 2013

POLYLOGARITHMIC CUTS IN MODELS OF V0

SEBASTIAN MÜLLER

Faculty of Mathematics and Physics, Charles University, Prague
e-mail address: muller@karlin.mff.cuni.cz

Abstract. We study initial cuts of models of weak two-sorted Bounded Arithmetics with
respect to the strength of their theories and show that these theories are stronger than
the original one. More explicitly we will see that polylogarithmic cuts of models of V0 are
models of VNC1 by formalizing a proof of Nepomnjascij’s Theorem in such cuts. This is
a strengthening of a result by Paris and Wilkie.

We can then exploit our result in Proof Complexity to observe that Frege proof systems
can be sub exponentially simulated by bounded depth Frege proof systems. This result
has recently been obtained by Filmus, Pitassi and Santhanam in a direct proof. As an
interesting observation we also obtain an average case separation of Resolution from AC

0-
Frege by applying a recent result with Tzameret.

1. Introduction

This article is on the one hand on models of weak arithmetics and on the other on proof
complexity, i.e. the question of how long formal proofs of tautologies have to be in given
proof systems. Therefore the introduction will consist of two parts, one for each subject.

Models of weak arithmetics, like I∆0, have been extensively studied for several reasons.
They are possibly the simplest objects whose theories bear enough strength to do a good part
of mathematics in, yet they are weak enough to allow for a certain kind of constructiveness.
The latter has been demonstrated over and over again by various results connecting weak
arithmetic theories with complexity classes and computability. We are interested in the
strength of the theory obtained by restricting our objects of reasoning to a small initial
part of a given model. Since a two-sorted theory, such as V0, is much stronger on its
number part than on its set part, it is likely that such a cut is a model of a supposedly
much stronger theory. Indeed we will see in Section 3 that certain cuts of models of V0

are models of the provably stronger theory VNC1. This strengthens a result by Paris and
Wilkie [18][17], who show that such cuts are models of VTC0. In fact they work in a
more general setting and, following our argumentation, their result readily implies the sub

2012 ACM CCS: [Theory of computation]: Logic—Proof theory.
2010 Mathematics Subject Classification: 03B30, 03B70, 03C62, 03D15.
Key words and phrases: Proof Complexity, Bounded Arithmetic, Cuts, Subexponential Simulation.
Supported by the Marie Curie Initial Training Network in Mathematical Logic - MALOA - From MAth-

ematical LOgic to Applications, PITN-GA-2009-238381.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:16)2013

c© S. Müller
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. MÜLLER

exponential simulation of TC0-Frege by AC0-Frege from Bonet, Domingo, Gavaldà, Maciel,
and Pitassi [3].

Proof Complexity, on the other hand, more or less began when Cook and Reckhow [8]
discovered the close connection between the lengths of formal proofs in propositional proof
systems and standard complexity classes. This connection yields a possibility of dealing
with the coNP/NP question by asking, whether there exists a propositional proof system
that is polynomially bounded. We will not directly address this question here, but rather
explore the relative strengths of two major proof systems, Frege and bounded depth Frege.
These proof systems have been extensively studied, due to their natural appearance as
classical calculi, such as Gentzen’s PK, and it is well known that Frege systems are stronger
than bounded depth Frege systems, as the former system has polynomial size proofs for the
Pigeonhole Principle (see [5]), while the latter does not (see [14] and [19]). Lately, Filmus,
Pitassi and Santhanam [10] have proved a sub exponential simulation of Frege by bounded
depth Frege using a combinatoric argument. In Section 4 we will obtain the same result
by an application of our result about cuts to the provability of the Reflection Principle for
Frege in bounded depth Frege. Currently Cook, Ghasemloo and Nguyen [6] are working on
a purely syntactical proof that gives a slightly better result with respect to the strength of
the simulated proof system.

The paper is built-up as follows. In section 2 we briefly recapture some basics about
Complexity Theory, Bounded Arithmetic, Proof Complexity and the various connections
between them. As this is only expository it might be helpful to consult some of the references
for a more detailed introduction (see [1], [7] and [12]). After that, in Section 3 we prove
a formalization of Nepomnjascij’s Theorem in the polylogarithmic cut of a model of V0.
Using a standard algorithm for evaluating circuits and then applying the formalized version
of Nepomnjascij’s Theorem we can conclude that this cut is indeed a model of VNC1.
Finally, in Section 4, we apply this result to prove that a version of the Bounded Reflection
Principle of Frege is provable in V0. This, together with a standard argument linking
the provability of Reflection Principles with simulation results, yields the sub exponential
simulation of Frege by bounded depth Frege.

2. Preliminaries

We assume familiarity with Turing machines, circuits and standard complexity classes such
as P, NP, TimeSpace(f, g), NCi, ACi and so on. See for example [1] for an introduction.
We will not work a lot within these classes, but rather apply known relations between such
classes and weak arithmetic theories.

We will work in a two-sorted arithmetic setting, having one sort of variables representing
numbers and the second sort representing bounded sets of numbers. We identify such
bounded subsets with strings. See [7] for a thorough introduction. The underlying language,
denoted L2A, consists of the following relation, function and constant symbols:

{+, ·,≤, 0, 1, |·| ,=1,=2,∈} .

An L2A-structure M consists of a first-sort universe UM
1 of numbers and a second-sort

universe UM
2 of bounded subsets of numbers. If M is a model of the two-sorted theory V0

(see 2.2), then the functions + and · are the addition and multiplication on the universe of
numbers. 0 and 1 are interpreted as the appropriate elements zero and one with respect to
addition and multiplication. The relation ≤ is an ordering relation on the first-sort universe.

POLYLOGARITHMIC CUTS IN MODELS OF V
0 3

The function |·| maps an element of the set sort to its largest element plus one (i.e. to an
element of the number sort). The relation =1 is interpreted as equality between numbers,
=2 is interpreted as equality between bounded sets of numbers. The relation ∈ holds for a
number n and a set of numbers N if and only if n is an element of N . The standard model
of two-sorted Peano Arithmetic will be denoted as N2. It consists of a first-sort universe
U1 = N and a second-sort universe U2 of all finite subsets of N. The symbols are interpreted
in the usual way.

We denote the first-sort (number) variables by lower-case letters x, y, z, . . . , α, β, γ, . . . ,
and the second-sort (set) variables by capital letters X,Y,Z, . . . , A,B,Γ, In case it helps
to describe the meaning of a variable we will use lower case words for first-sort and words
starting with a capital letter for second-sort variables. We can build formulas in the usual
way, using two sorts of quantifiers, number quantifiers and string quantifiers. A number
quantifier ∃x (∀x) is bounded if it is of the form ∃x(x ≤ f ∧ . . .) (∀x(x ≤ f → . . .)) for some
number term f . A string quantifier ∃X (∀X) is bounded if it is of the form ∃X(|X| ≤ f∧. . .)
(∀X(|X| ≤ f → . . .)) for some number term f . A formula is bounded iff all its quantifiers
are. All formulas in this paper will be bounded. A formula ϕ is in ΣB

0 (or ΠB
0) if it uses no

string quantifiers and all number quantifiers are bounded. A formula ϕ is a ΣB
i+1 (or ΠB

i+1)
if it is of the form ∃X1 ≤ p(n) . . . ∃Xm ≤ p(n)ψ (or ∀X1 ≤ p(n) . . . ∀Xm ≤ p(n)ψ), where
ψ ∈ ΠB

i (or ψ ∈ ΣB
i , respectively). If a relation or predicate can be defined by both a ΣB

i

and a ΠB
i formula, then we call it ∆B

i definable. The depth of a formula is the maximal
number of alternations of its logical connectives and quantifiers.

As mentioned before we will represent a bounded set of numbers N by a finite string

SN = S0
N . . . S

|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will abuse notation and
identify bounded sets and strings, i.e. N and SN .

Further, we will encode monotone propositional formulas inductively as binary trees
in the standard way, giving a node the value 1 if it corresponds to a conjunction and the
value 0, if it corresponds to a disjunction. Binary trees are encoded as strings as follows. If
position x contains the value of a node nx, then the value of its left successor is contained
in position 2x, while the value of its right successor is in 2x+ 1.

2.1. Elements of Proof Complexity. We restate some basic definitions introduced in
[8].

Definition 2.1. A propositional proof system (pps) is a surjective polynomial-time function
P : {0, 1}∗ −→ TAUT, where TAUT is the set of propositional tautologies (in some natural
encoding). A string π with P (π) = τ is called a P -proof of τ .

We can define a quasi ordering on the class of all pps as follows.

Definition 2.2. Let P,Q be propositional proof systems.

• P simulates Q (in symbols P ≥ Q), iff there is a polynomial p, such that for all τ ∈ TAUT

there is a πP with P (πP) = τ , such that for all πQ with Q(πQ) = τ , |πP | ≤ p(|πQ|).
• If there is a polynomial time machine that takes Q-proofs and produces P -proofs for the
same formula we say that P p-simulates Q (in symbols P ≥p Q).
• If P and Q mutually (p-)simulate each other, we say that they are (p-)equivalent (in
symbols P ≡ Q and P ≡p Q, respectively).

4 S. MÜLLER

In this article we will be mainly interested in bounded depth Frege systems and some of
their extensions. A Frege system is a typical textbook proof system, such as Gentzen’s
propositional calculus PK. We will only sketch a single rule of such a system as an example
and refer the interested reader to standard logic textbooks.

Γ −→ A,∆ Γ, A −→ ∆
(Cut)

Γ −→ ∆

Here, ∆ and Γ are sets of formulas while A is a formula. Γ −→ ∆ is read as ”The conjunction
of all formulas in Γ implies the disjunction of all formulas in ∆”. The Cut Rule therefore
says that, if Γ implies A or ∆, and Γ and A imply ∆, then Γ already implies ∆. The formula
A is called the Cut Formula.

In a bounded depth Frege system the depths of all formulas in a derivation are bounded
by some global constant. This is equivalent to being representable by an AC0 circuit. Thus
we also call bounded depth Frege AC0-Frege. If the formulas are unbounded, we speak of
NC1-Frege or simply of Frege. We readily get

Fact 2.1. AC0-Frege ≤p Frege.

A pps P is polynomially bounded iff there is a polynomial p such that every tautology
τ has a P -proof π with |π| ≤ p(|τ |).

We are interested in the existence of polynomially bounded pps. This is, at least in
part, due to the following theorem.

Fact 2.2 ([8]). NP = coNP⇔ There exists a polynomially bounded pps.

An easier task than searching for a polynomially bounded pps might be to find some
pps with sub exponential bounds to the lengths of proofs. This corresponds to the ques-
tion, whether sub exponential time nondeterministic Turing machines can compute coNP-
complete languages. To explore the existence of such systems we generalize Definition 2.2.

Definition 2.3. Let P,Q be propositional proof systems and F a family of increasing
functions on N.

• P F -simulates Q (in symbols P ≥F Q), iff there is a function f ∈ F , such that for
all τ ∈ TAUT there is a πP with P (πP) = τ , such that for all πQ with Q(πQ) = τ ,
|πP | ≤ f(|πQ|).
• If there is an Time(F)-machine that that takes Q-proofs and produces P -proofs for the
same formula we say that P F -computably simulates Q (in symbols P ≥F

p Q).
• If P and Q mutually F -(computably) simulate each other, we say that they are F -
(computably) equivalent (in symbols P ≡F Q and P ≡F

p Q, respectively).

We say a pps P sub exponentially simulates a pps Q iff the above F can be chosen as a class

of 2n
o(1)

functions.

2.2. The theory V0. The base theory we will be working with is V0. It consists of the
following axioms:

POLYLOGARITHMIC CUTS IN MODELS OF V
0 5

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1→ x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x)→ x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1 Basic 12. x 6= 0→ ∃y ≤ x(y + 1 = x)

L1. X(y)→ y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i)↔ Y (i)))→ X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y(X(z)↔ ϕ(z)) , for all ϕ ∈ ΣB

0 .

Here, the Axioms Basic 1 through Basic 12 are the usual axioms used to define Peano
Arithmetic without induction (PA−), which settle the basic properties of Addition, Mul-
tiplication, Ordering, and of the constants 0 and 1. The Axiom L1 says that the length
of a string coding a finite set is an upper bound to the size of its elements. L2 says that
|X| gives the largest element of X plus 1. SE is the extensionality axiom for strings which
states that two strings are equal if they code the same sets. Finally, ΣB

0 -COMP is the
comprehension axiom schema for ΣB

0 -formulas (it is an axiom for each such formula) and
implies the existence of all sets, which contain exactly the elements that fulfill any given
ΣB
0 property.

Fact 2.3. The theory V0 proves the Induction Axiom schema for ΣB
0 formulas Φ:

(Φ(0) ∧ ∀x(Φ(x)→ Φ(x+ 1)))→ ∀zΦ(z).

When speaking about theories we will always assume that the theories are two-sorted
theories as in [7].

The following is a basic notion:

Definition 2.4 (Two-sorted definability). Let T be a theory over the language L ⊇ L2A
and let Φ be a set of formulas in the language L. A number function f is Φ-definable in a
theory T iff there is a formula ϕ(~x, y, ~X) in Φ such that T proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that
y = f(~x, ~X)↔ ϕ(~x, y, ~X). (2.1)

A string function F is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y) in Φ such
that T proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y)

and it holds that
Y = F (~x, ~X)↔ ϕ(~x, ~X, Y). (2.2)

Finally, a relation R(~x, ~X) is Φ-definable iff there is a formula ϕ(~x, ~X) in Φ such that it
holds that

R(~x, ~X)↔ ϕ(~x, ~X). (2.3)

6 S. MÜLLER

Moreover we wish to talk about sequences coded by strings or numbers. For a string
X we let X[i] be the ith bit of X. Assuming a tupling function 〈·, . . . , ·〉 we can also talk
of k-ary relations for any constant k. We refer to X[〈i0, . . . , ik−1〉], to say that the objects
i0, . . . , ik−1 are in the relation X (which is equivalent to saying that the predicate X holds
for the number 〈i0, . . . , ik−1〉, i.e. that the X contains that number as an element). For the
sake of simplicity we also refer to X[〈i0, . . . , ik〉] by X[i0, . . . , ik].

Using k-ary relations we can also encode sequences of bounded numbers x0, . . . , xm by
xi = X[〈i, 0〉]X[〈i, 1〉] . . . X[〈i, k〉] in binary. Matrices and so on can obviously be formalized
in the same way.

Given a string X[〈x1, . . . , xk〉] representing a k-ary relation, we denote the k − ℓ-ary
substring with parameters ai1 , . . . , aiℓ by X[〈·, . . . , ·, ai1 , ·, . . . , aiℓ , ·, . . . , ·〉]. For example we
refer to the element aij of a given matrix A[〈x1, x2, x3〉] as A[〈i, j, ·〉], a string representing
aij in binary. Observe that this substring can be ΣB

0 defined in V0.
Given a number x we denote by 〈x〉j the jth number in the sequence encoded by x. To

do this we assume a fixed ΣB
0 definable encoding of numbers that is injective. The sequence

itself will be addressed as 〈x〉. As above, we can also talk about matrices, etc. in this way,
i.e. read such a sequence as a sequence of k-tuples.

We want to identify strings of short length with sequences of numbers. Thus, given
a string X of length O(n) we can ΣB

0 -define (in V0) a number x ≤ 2O(n) that codes a
sequence 〈x〉, such that X[i] = 〈x〉i for all i < |X| and vice versa. We will use 〈x〉 ≈ X and
〈x〉i ≈ X[i] to denote the above identification. Observe that n has to be very small in order
to be able to do the above in V0.

2.2.1. Computations in models of V0. Given a polynomially bounded Turing machine A in
a binary encoding, we can ΣB

1 define a predicate ACCA(X), that states that X is accepted
by A. This can readily be observed, since, provided some machine A, there is a constant
number of states σ1, . . . , σk and the whole computation can be written into a matrix W
of polynomial size. That W is indeed a correct computation can then be easily checked,
because the computations are only local.

More precisely let A = 〈σ1, . . . , σk; δ〉 be given, where the σi are different states, with σ1
being the initial state and σk being the accepting state and δ is the transition function with
domain {σ1, . . . , σk} × {0, 1} and range {σ1, . . . , σk} × {0, 1} × {←, ↓,→}, which describes
what the machine does. I.e. if δ(a, b) = (c, d, e), then if the machine is in state a and reads
b, it replaces b by d, goes into state c and moves one position on the tape in the direction e.
For our formalization we will assume a function δ : N2 → N and interpret it in the following
way, δ(σa, b) = (〈δ(σa, b)〉1, 〈δ(σa, b)〉2, 〈δ(σa, b)〉3), where we identify ↓= 0,←= 1,→= 2.

POLYLOGARITHMIC CUTS IN MODELS OF V
0 7

Let the polynomial p bound the running time of A, then we can formalize ACCA(X) as
follows

∃W ≤ (p(|X|)2 · log(k)2)∀i, i′ ≤ p(|X|)∀0 < α ≤ k(

i < |X| → (〈W [〈0, i, ·〉]〉1 = X[i] ∧ i > 0→ 〈W [〈0, i, ·〉]〉2 = 0 ∧ 〈W [〈0, 0, ·〉]〉2 = 1)∧

i ≥ |X| → (〈W [〈0, i, ·〉]〉1 = 0 ∧ 〈W [〈0, i, ·〉]〉2 = 0)∧

〈W [〈j, i, ·〉]〉2 = 0→ (〈W [〈j + 1, i, ·〉]〉1 = 〈W [〈j, i, ·〉]〉1)∧

〈W [〈j, i, ·〉]〉2 = α→ (〈W [〈j + 1, i, ·〉]〉1 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉2∧

(〈δ(α, 〈W [〈j, i, ·〉]〉1)〉3 = 0→ 〈W [〈j + 1, i, ·〉]〉2 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉1)∧

(〈δ(α, 〈W [〈j, i, ·〉]〉1)〉3 = 1→ 〈W [〈j + 1, i ·− 1, ·〉]〉2 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉1)∧

(〈δ(α, 〈W [〈j, i, ·〉]〉1)〉3 = 2→ 〈W [〈j + 1, i+ 1, ·〉]〉2 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉1))∧

(i 6= i′ → (〈W [〈j, i, ·〉]〉2 > 0→ 〈W [〈j, i′, ·〉]〉2 = 0)) ∧W [〈p(|X|), i, ·〉]〉2 = k).
(2.4)

Thus, in plain English, ACCA(X) says that there exists a matrix W of pairs of numbers
that witnesses an accepting computation of A. Here, 〈W [〈i, j, ·〉]〉 is supposed to code the
jth cell on the Turing machine’s tape after i steps of computations on input X. As noted
above, 〈W [〈i, j, ·〉]〉1 is a binary number, which is the value of the cell, 〈W [〈i, j, ·〉]〉2 is a
number coding the state the machine is in iff the pointer is on that cell.

The second and third line of the definition say that the tape in the initial step contains
X padded with zeroes in the end to get the proper length (p(|X|)) and that the read/write
head is in its starting state and position. The fourth line says that if the read/write head
is not on cell i, then nothing happens to the content of cell i. The fifth line says that the
content of the cell, where the read/write head is in step j, is changed according to δ. The
next three lines tell us where the read/write head moves. The last line says that there is at
most one position on the tape where the read/write head may be at any step and that the
state after the last step is accepting.

We also define a ΣB
1 -predicate REACHA(Y, Y

′) that says that A reaches configuration Y ′

from configuration Y in at most p(|Y |) many steps. This is essentially the same predicate as
ACC, with the constraints on the initial and accepting state lifted and instead a constraint
added that the first line of computation is Y and the last is Y ′. We omit the details as it
does not severely differ from the above definition of ACC.

2.3. Extensions of V0. The Theory V0 serves as our base theory to describe complexity
classes by arithmetical means.

The problem, whether a given monotone formula ϕ of size ℓ and depth ⌈log(ℓ)⌉ is
satisfiable under a given assignment I is AC0-complete for NC1. Therefore Cook and
Nguyen ([7]) define the class VNC1 as V0 augmented by the axiom MFV ≡ ∃Y ≤
2a+ 1.δMFV (a,G, I, Y), where

δMFV (a,G, I, Y) ≡ ∀x < a((Y (x+ a)↔ I(x)) ∧ Y (0)∧

0 < x→ (Y (x)↔ ((G(x) ∧ Y (2x) ∧ Y (2x+ 1))∨

(¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1)))))).

So, MFV states that there is an evaluation Y of the monotone formula represented by
G under the assignment given by I of length at most 2a + 1. More specifically, G is a

8 S. MÜLLER

tree-encoding of the formula, where G(x) is true, if node x is ∧ and false, if x is ∨. The
evaluation Y takes the value of the variables given by I and then evaluates the formula in
a bottom-up fashion using a standard tree encoding. Thus, the value of the formula can be
read at Y (1).

It is interesting to observe thatMFV does not hold in V0. This is, since an application
of the Witnessing Theorem for V0 to a proof of MFV would yield an AC0-definition of
satisfaction for monotone NC1 circuits. This implies that monotone NC1 ⊆ AC0, which is
known to be false.

2.4. Relation between Arithmetic Theories and Proof Systems. In this section we
will remind the reader of a connection between the Theory V0 and some of its extensions
and certain propositional proof systems (see also [7][12]).

Definition 2.5. The following predicates will be subsequently used. They are definable
with respect to V0 (see [12]).

• Fla(X) is a ΣB
0 formula that says that the the string X codes a formula.

• Z |= X is the ∆B
1 definable property that the truth assignment Z satisfies the formula

X.
• Taut(X) is the ΠB

1 formula Fla(X) ∧ ∀Z ≤ t(|X|)Z |= X, where t is an upper bound to
the number of variables in formulas coded by strings of length |X|.
• PrfFd

(Π, A) is a ΣB
0 definable predicate meaning Π is a depth d Frege proof for A.

• PrfF (Π, A) is a ΣB
0 definable predicate meaning Π is a Frege proof for A.

The following holds

Fact 2.4 (see [7]). The Theory V0 proves that AC0-Frege is sound, i.e. for every d

∀A∀ΠPrfFd
(Π, A)→ Taut(A).

Fact 2.5 (see [7]). The Theory VNC1 proves that Frege is sound, i.e.

∀A∀ΠPrfF (Π, A)→ Taut(A).

On the other hand, provability of the universal closure of ΣB
0 formulas in V0 and

VNC1 implies the existence of polynomial size proofs of their propositional translations in
AC0-Frege and Frege, respectively.

The propositional translation Jϕ(x̄, X̄)Km̄,n̄ of a ΣB
0 formula ϕ(x̄, X̄) is a family of

propositional formulas built up inductively (on the logical depth) as follows. If ϕ is atomic
and does not contain second sort variables, we evaluate ϕ in N2, if it contains second sort
variables, we have to introduce propositional variables. If ϕ is a boolean combination of
formulas ψi of lower depth, the translation is simply the same boolean combination of the
translations of the ψi. If ϕ is ∃ψ or ∀ψ we translate it to the disjunction or conjunction of
the translations, respectively. For a proper definition see [7].

Fact 2.6. There exists a polynomial p such that for all ΣB
0 formulas ϕ(x̄, X̄) the following

holds

• If V0 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist bounded depth Frege proofs of all JϕKm̄,n̄ of length
at most p(max(m̄, n̄)), for any m̄, n̄.
• If VNC1 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist Frege proofs of all JϕKm̄,n̄ of length at most
p(max(m̄, n̄)), for any m̄, n̄.

POLYLOGARITHMIC CUTS IN MODELS OF V
0 9

These proofs are effective in the sense that for any such ϕ there exists a polynomial-time
computable function Fϕ that maps any tuple (m̄, n̄) to the above proofs of JϕKm̄,n̄.

Facts 2.4 and 2.5 are examples of general principles, the so called Reflection Principles,
which are defined as follows.

Definition 2.6 (Reflection Principle). Let P be a pps. Then the Reflection Principle for
P , RefP , is the ∀∆

B
1 -formula (w.r.t. V0)

∀Π∀X∀Z((Fla(X) ∧ PrfP (Π,X))→ (Z � X)),

where PrfP is a ∆B
1 -predicate formalizing P -proofs.

Reflection Principles condense the strength of propositional proof systems. In what
follows we will summarize some such results for the proof systems and theories used here.
A detailed exposition can be found in [7], chapter X, or in [12], chapter 9.3.

Theorem 2.1. If V0 ⊢ RefF then bounded depth Frege p-simulates Frege.

We will only give a brief sketch of the proof here and leave out the technical details.

Sketch. Let ϕ be a formula and πϕ a Frege proof of ϕ which is witnessed by a Turing machine
TF (cf Def 2.1). Since V0 proves RefF , by Facts 2.4 and 2.6 we have polynomial size proofs
of its translations JRefF K in bounded depth Frege. Bounded depth Frege itself, however, is
strong enough to verify that a proper encoding of the computation of TF on input (πϕ, ϕ)
is correct. Thus it can verify that πϕ is a Frege-proof and, using the translation of the
Reflection Principle and the Cut rule, conclude JTaut(ϕ)K. From this ϕ follows, cf. [12]
Lemma 9.3.7.

Given a term t and a variable x, we can also introduce the t-bounded version of the
Reflection Principle for some given pps P , RefP (t(x)) that claims soundness only for t-
bounded proofs.

Definition 2.7 (Bounded Reflection). Let t be a L2A-term, x a first-sort variable and P a
pps. Then the Bounded Reflection Principle RefP (t(x)) is the formula

∀Π ≤ t(x)∀X ≤ t(x)∀Z ≤ t(x)((Fla(X) ∧ PrfP (Π,X))→ (Z � X)).

We can now generalize Theorem 2.1 in the following way.

Theorem 2.2. Let t be a L2A-term and x a number variable. If t(x) < x for x large enough
and if V0 ⊢ ∀xRefF (t(x)) then for every propositional formula ϕ with a Frege proof of

length t(x) there is a bounded depth Frege proof of ϕ of length xO(1). This proof can be
efficiently constructed.

Proof. The proof is the same as that of Theorem 2.1. Using the Bounded Reflection Principle
we can encode Frege proofs of length t(x) as bounded depth Frege proofs of length xO(1).

As a corollary we get

Corollary 2.3. If V0 ⊢ RefF (|x|
k) for all k ∈ N, then bounded depth Frege sub exponen-

tially simulates Frege: For all D > 1, δ > 0 exists d ≥ D, such that the existence of a Frege
proof of length m of a depth D formula implies the existence of a depth d Frege proof of

length at most 2m
δ

.

10 S. MÜLLER

3. Polylogarithmic Cuts of Models of V0 are Models of VNC1
.

We will first introduce the notion of a cut I of a given two-sorted arithmetic model M.
This model theoretic approach provides a very good insight on what actually happens
semantically with the small elements of arithmetical models.

Definition 3.1 (Cut). Let T be a two-sorted arithmetic theory and

N = {N1, N2,+
N , ·N ,≤N , 0N , 1N , |·|N ,=N

1 ,=
N
2 ,∈

N}

a model of T . A cut

M = {M1,M2,+
M , ·M ,≤M , 0M , 1M , |·|M ,=M

1 ,=
M
2 ,∈

M}

of N is any substructure such that

• M1 ⊆ N1, M2 ⊆ N2,
• 0M = 0N , 1M = 1N ,
• M1 is closed under +N , ·N and downwards with respect to ≤N ,
• M2 = {X ∈ N2 | X ⊆M1}, and
• ◦M is the restriction of ◦N to M1 and M2 for all relation and function symbols ◦ ∈ L2A.

We call this cut the Polylogarithmic Cut iff

x ∈M1 ⇔ ∃a ∈ N1, k ∈ N x ≤ |a|k .

To examine the strength of the theory of such cuts of models of V0, we will show that a
formal connection between efficient computability and ΣB

0 -definability holds. This stands in
contrast to general bounded subsets, where the connection is presumably only with respect
to ΣB

1 -definability via the predicate ACC (see (2.4) on page 7). The intended theorem is
a formalization of Nepomnjascij’s Theorem [16] (see also [12] pg.20). We will sketch the
original proof before starting the formalization.

Theorem 3.1 (Nepomnjascij [16]). Let c ∈ N and 0 < ǫ < 1 be constants. Then if the
language L ∈ TimeSpace(nc, nǫ), the relation x ∈ L is definable by a ΣB

0 -formula over N.

Proof. We will prove the theorem by induction on k for L ∈ TimeSpace(nk·(1−ǫ), nǫ).

Let k = 1 and L ∈ TimeSpace(nk·(1−ǫ), nǫ). For any x ≤ 2n the whole computation

can be coded by a number y of size 2O(n). The existence of such a computation gives the
desired ΣB

0 -definability.
For k > 1 we write a sequence y0, y1, . . . , yn1−ǫ of intermediate results coding the com-

putation, where y0 codes the starting configuration on input x, such that we can verify
that yi+1 is computable from yi in TimeSpace(n(k−1)·(1−ǫ), nǫ). By assumption there ex-

ists a ΣB
0 -formula reachk−1 such that reachk−1(yi, yi+1) holds iff yi+1 is computed from yi.

Additionally, the whole sequence has length O(n) and so we can write the sequence of in-
termediate results yi as a number y of length O(n). Now, the ΣB

0 -definition of x ∈ L is
simply

∃y ≤ 2O(n)∀i ≤ n1−ǫreachk−1(〈y〉i, 〈y〉i+1)

∧ 〈y〉0 encodes the starting configuration of A on input x

∧ 〈y〉n1−ǫ is in an accepting state.

We will now formalize this result in V0 as follows

POLYLOGARITHMIC CUTS IN MODELS OF V
0 11

Theorem 3.2. Let N � V0. Let m = |a| for some a ∈ N1 and let c, k ∈ N and ǫ < 1
k
. If

L ∈ TimeSpace(mc,mǫ) (for strings of length m) is computed by Turing machine A, then
there exists a ΣB

0 definition in N of the ΣB
1 -predicate ACCA on the interval [0,mk]. I.e. any

Y ∈ L, bounded by mk is ΣB
0 -definable in N and therefore exists in the polylogarithmic cut

of N .

The following version of the proof stems from a discussion with Stephen Cook and Neil
Thapen during the SAS programme in Cambridge. It is more explicit than the original one
and clarifies the argument.

Proof. We will inductively on d define a ΣB
0 relation reachdA(I, p1, p2, cell, comp) that states

that the p2th cell of the work tape of A, starting on configuration I and computing for

p1 ·m
d 1−kǫ

k steps via the computation comp is cell. We will bound the quantifiers in such
a way that we can conclude that both variables can be of the number sort. As d depends
only on A and k we will be doing this induction outside of the theory to construct d many
formulas. We will then prove the above mentioned properties of reachdA by ΣB

0 induction on
p1.

Keep in mind that a cell is given as a pair 〈bit, state〉, where bit is the actual value of
the cell and state is a number > 0 coding the state the Turing machine is in iff the pointer
is on that cell and 0 otherwise. As before the transition function is denoted by δ. We let
I be a string coding the input at the start of the computation. That is, I is a sequence of
length len(I) ≤ mk, such that I[1, 1] = 1, I[j, 1] = 0 for all j > 1 and I[j, 0] is the jth input
bit. We let 〈comp〉 be a sequence encoding the computation of A, such that 〈comp〉〈j,j′,1〉 is
the state, the machine is in after j steps (0 denotes that the read/write head is not on cell
j′, while a greater number gives the state and witnesses that the read/write head is on cell
j′). 〈comp〉〈j,j′,0〉 is the value of cell j′ after j steps of the computation. Observe that this
also implies that the computation can be encoded as a number, that is, it has to be very
short. This is straight forward from the quantifier bounds.

We can now define

reach0A(I, p1, p2, cell, comp)

≡ (∀j′ < ⌈len(I)ǫ⌉, 〈comp〉〈1,j′,0〉 ≈ I[j
′, 0] ∧ 〈comp〉〈1,j′,1〉 ≈ I[j

′, 1])∧

[∀j < ⌈len(I)
1−kǫ

k ⌉, j′ < ⌈len(I)ǫ⌉, α < |A|

(〈comp〉〈j,j′,1〉 = 0→ (〈comp〉〈j,j′,0〉 = 〈comp〉〈j+1,j′,0〉))∧

(〈comp〉〈j,j′,1〉 = α→ (

(〈δ(α, 〈comp〉〈j,j′,0〉)〉3 = 0→ (〈comp〉〈j+1,j′,1〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉1∧

〈comp〉〈j+1,j′,0〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉2))∧

(〈δ(α, 〈comp〉〈j,j′,0〉)〉3 = 1→ 〈comp〉〈j+1,j′ ·−1,1〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉1∧

〈comp〉〈j+1,j′,0〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉2))∧

(〈δ(α, 〈comp〉〈j,j′,0〉)〉3 = 2→ 〈comp〉〈j+1,j′+1,1〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉1∧

〈comp〉〈j+1,j′,0〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉2))))∧

∀ℓ 6= ℓ′ < ⌈len(I)ǫ⌉(〈comp〉〈j,ℓ,1〉 > 0→ 〈comp〉〈j,ℓ′,1〉 = 0)]∧

(〈cell〉1 = 〈comp〉〈p1,p2,0〉) ∧ (〈cell〉2 = 〈comp〉〈p1,p2,1〉).

12 S. MÜLLER

It is straightforward to prove by induction on the number of lines in comp that comp is
uniquely defined by reach0A. We let

Reach0A(I, p1, p2, cell) =def ∃comp < q(|I|) reach0A(I, p1, p2, cell, comp),

where q is some polynomial depending on the encoding. Here it is vital that q can be defined
such that q(|I|) is a number in N . This is possible due to the quantifier bounds we used
when defining reach0A. Thus, Reach

0
A is defined by a ΣB

0 formula.
Informally Reach0A formalizes that there is a computation

〈comp〉〈1,1,·〉 〈comp〉〈1,2,·〉 · · · 〈comp〉〈1,(mk)ǫ,·〉

〈comp〉〈2,1,·〉 〈comp〉〈2,2,·〉 · · · 〈comp〉〈2,(mk)ǫ,·〉
...

. . .
...

...
. . .

...
〈comp〉

〈(mk)
1−kǫ

k ,1,·〉
〈comp〉

〈(mk)
1−kǫ

k ,2,·〉
· · · 〈comp〉

〈(mk)
1−kǫ

k ,(mk)ǫ,·〉

that is correct in the sense that we can verify that we get from line to line via the transition
function of A and gives the appropriate values of the cell at (p1, p2). Observe that the size
of the whole computation as presented above is linear in m, i.e. that it can be coded as a
number in N .

We will now proceed by inductively defining reachdA and ReachdA. Assume that reachd
·−1

A

has already been defined by a ΣB
0 formula over N . We then let

reachdA(I, p1, p2, cell, comp)

≡ (∀j′ < ⌈len(I)ǫ⌉, 〈comp〉〈1,j′,0〉 ≈ I[j
′, 0] ∧ 〈comp〉〈1,j′,1〉 ≈ I[j

′, 1])∧

(∀j < ⌈len(I)
1−kǫ

k ⌉∃comp′ < q(len(I))∀j′ < ⌈len(I)ǫ⌉∃cell′ < |A| ∀j′′ < |A|

(〈comp〉〈j+1,j′,j′′〉 ↔ 〈cell
′〉j′′)∧

reachd
·−1

A (〈comp〉〈j,·,·〉,m
1−kǫ

k , j′, cell′, comp′))∧

(〈cell〉1 ↔ 〈comp〉〈p1,p2,0〉) ∧ (〈cell〉2 = 〈comp〉〈p1,p2,1〉).

Again, we can prove uniqueness of the computation by induction on the number of its lines
and let

ReachdA(i, p1, p2, cell) =def ∃comp < q(|I|) reachdA(i, p1, p2, cell, comp).

That this is a ΣB
0 definition follows by induction and the same argument as for Reach0A. Here,

the predicate Reachd−1
A (i, p1, p2, cell) takes the role of the transition function in witnessing

that each line follows from the preceding one. The total size again is linear in m.
We now can give a ΣB

0 definition of the predicate W [〈i, j, ·〉] coding the computation as
in ACCA on input X of length mk. We let W [〈i, j, ·〉] = cell ≡

∃r0, . . . , rd < |X|
1−kǫ

k , con1, . . . , cond < p(|X|ǫ)∀z1, . . . , zd < |X|
ǫ ∃cell1, . . . , celld < |A|

(i =

d∑

ℓ=0

rℓ · |X|
ℓ 1−kǫ

k ∧ ReachdA(X̃, rd, zd, celld) ∧ 〈cond〉zd = celld

∧ Reachd−1
A (cond, rd−1, zd−1, celld) ∧ 〈cond−1〉zd−1

= celld−1

...

∧ Reach0A(con1, r0, j, cell)),

POLYLOGARITHMIC CUTS IN MODELS OF V
0 13

where p is a polynomial depending on the encoding and X̃ is the starting configuration of
A on input X.

Informally the above formula says that we compute the configurations of A by using
the predicates ReachdA through Reach0A. That is, after the application of ReachdA (i.e. after

making the biggest steps) we have reached configuration cond, which we plug into Reachd−1
A

to get configuration cond−1 and so on. It remains to show that this definition of W [〈i, j, ·〉]
coincides with the real one, i.e. that W [〈i + 1, ·, ·〉] follows from an application of the
transition function of A from W [〈i, ·, ·〉].

We will prove this inductively, depending on i. Again let rℓ be such that i =
∑

ℓ rℓ ·

|X|ℓ
1−kǫ

k . If i < |X|
1−kǫ

k the assumption follows straightforwardly from the definition of
Reach0A. Now for bigger i. If the r0, given as above, is bigger then 0 then again the
assumption follows from the definition of reach0A. Now let ℓ > 0 be the first index with

rℓ > 0. We the have to argue that reachℓ
′−1
A has the desired property. This, however,

follows straightforward if we can verify this assertion for reachℓ
′−1
A . Observe that d is a

constant depending only on A and k, so we need to make this argument only a constant
number of steps to reach reach0A, where we know that the assertion holds.

Since we can code the whole computation as a ΣB
0 -formula (in N), we can easily deduce

a ΣB
0 -definition of the related set by simply stating that the computation accepts (i.e. that

in the last line of the computation the state is accepting). This concludes the proof.

We can now prove our main result.

Theorem 3.3. Let N � V0 and M ⊆ N be the polylogarithmic cut. Then M � VNC1.

Proof. We have to prove that for all strings Gϕ ∈ M2, representing a formula ϕ as a tree
and assignments I ∈ M2 to its variables (i.e. leafs in the tree representation) a string Y
exists in M2 that contains all values of ϕ’s subformulas as in the definition of MFV in
Section 2.3 and satisfies the inductive conditions of MFV .

However, by ΣB
0 -comprehension and the formalized Nepomnjascij’s Theorem it suffices

to describe an algorithm that computes, for given Gϕ and I, whether i belongs to Y in

TimeSpace(|Gϕ|
k , |Gϕ|

ǫ) for some k ∈ N and ǫ < 1.
The following is a recursive algorithm computing the value of Y [i], given G := Gϕ, I

and i.
NodeValue(G,I,i)

• boolean left; boolean right;

• If i>2·|G|
– Output (0); End;

• Else If i>|G|

– Output (I[i-|G|]); End;

• Else If G[i]=1

– left := NodeVal(G,I,2i);

– right := NodeVal(G,I,2i+1);

– Output (left AND right); End;

• Else If G[i]=0

– left := NodeVal(G,I,2i);

– right := NodeVal(G,I,2i+1);

– Output (left OR right); End;

• Else

– Output (0); End;

14 S. MÜLLER

Observe that the algorithm at any given point only stores a constant amount of data per level
of the tree G and therefore uses only O(log(|G|)) space. The number steps the algorithm
makes is clearly polynomial in the size of G. Therefore by Theorem 3.2, for every monotone
formula ϕ, representable as a tree in M , we get a ΣB

0 formula evalϕ, such that evalϕ(i, I) ≡
Y [i]. Observe that evalϕ depends on the size of ϕ and on its logical depth, as the first is
essentially the size of the input for the machine, that evalϕ codes, while the latter determines
the longest iterations in the recursive algorithm. Applying the Comprehension Schema in
V0, i.e. in N , this verifies the existence of a Y as in MFV for all formulas represented by
trees in M .Therefore MFV holds in M and so M � VNC1.

4. Implications for Proof Complexity

We now wish to apply the above results to propositional proof systems. More precisely
we wish to show that theories of small cuts of a model of a given theory T correspond to
stronger proof systems than T does. An elegant way of showing such a statement is via the
Reflection Principles of the given proof systems, i.e. the statement that the proof system is
correct, as explained in Section 2.4. With their help we can conclude the following recent
result of Filmus, Pitassi and Santhanam [10].

Theorem 4.1 ([10]). Every Frege system is sub exponentially simulated by AC0-Frege
systems.

Proof. By Theorem 2.2 we have to prove the polylogarithmically bounded Reflection Prin-
ciple for Frege in V0. This, by Theorem 3.3 however, corresponds to proving the Reflection
Principle for Frege in VNC1, which holds by Fact 2.5. It also follows from Theorem 2.2
that this proof can be efficiently computed from the Frege proof.

Another, related, application is in the separation of propositional proof systems. In [15]
we proved the following.

Proposition 4.2. For almost every random 3CNF A with n variables and m = c · n1,4

clauses, where c is a large constant, ¬A has polynomially bounded TC0-Frege proofs.

On the other hand it is well known (see for example [9]) that such formulas have
no subexponential refutation in Resolution. Thus, this yields an average case separation
between Resolution and TC0-Frege. We can now extend this result to an average case
separation between Resolution and AC0-Frege as follows.

Theorem 4.3. For almost every random 3CNF A with n variables and m = c ·n1,4 clauses,
where c is a large constant, ¬A has subexponentially bounded AC0-Frege proofs.

Proof. By Theorem 3.3 the polylogarithmic Cut of any V0-model is a model of VNC1,
therefore also of VTC0. This yields, as in our proof of Theorem 4.1, that AC0-Frege
subexponentially simulates TC0-Frege. The result now follows from Proposition 4.2.

POLYLOGARITHMIC CUTS IN MODELS OF V
0 15

5. Conclusion and Discussion

As we have seen cuts of models of weak arithmetics constitute an appropriate way for
reasoning about super-polynomial simulations between proof systems. An advantage in
comparison to syntactic arguments is the possible applicability of results in Model Theory
and a more uniform treatment. This can readily be observed as with our argument, e.g.
the work of Paris and Wilkie [17][18] immediately imply the simulation results from Bonet
et al. [3].

This leads to interesting possibilities for further research, especially towards the weak
automatizability of weak propositional proof systems such as Resolution. The underlying
theory, which was V0 in our argument, must be significantly weakened, however. If we could
take T 2

1 (α) as our base theory, we could reason about whether Res(log) has the feasible
interpolation property in the same way as Kraj́ıček and Pudlák [13], Bonet, Pitassi and Raz
[4] or Bonet, Domingo, Gavaldà, Maciel, and Pitassi [3]. Now, if Res(log) does not have
quasi-polynomial feasible interpolation we know by a result from Atserias and Bonet [2] that
Resolution is not weakly automatizable, so we would be finished. Whether we can actually
do it depends on the strength of the theory the polylogarithmic cut of T 2

1 (α) models and if
we can formalize some sort of iterated multiplication (such as in [11]) in that theory. Also,
the security of Diffie-Hellman seems to be a more appropriate assumption than that of RSA,
as the computational power needed to verify the correctness of Diffie-Hellman seems to be
lower.

6. Acknowledgements

I want to thank Steve Cook, Jan Kraj́ıček and Neil Thapen for helpful suggestions and
discussion, Emil Jeřábek for his comments and for answering my questions and the partic-
ipants of the MALOA Special Semester in Proof Complexity in Prague 2011 for enduring
a sloppy and sometimes faulty exposition of this proof and still coming up with helpful
comments. I also want to thank the anonymous referees for pointing out various mistakes
and for giving interesting suggestions. A similar construction can be extracted from [20]
and leads to similar results, if perceived in the way we did it here. I want to thank Leszek
Kolodziejczyk for pointing this out.

References

[1] S. Arora and B. Barak. Computational Complexity. Cambridge University Press, 2009.
[2] A. Atserias and M. L. Bonet. On the Automatizability of Resolution and Related Propositional Proof

Systems. Information and Computation, Vol. 189(2), 2004, pp. 182-201.
[3] M.L. Bonet, C. Domingo, R. Gavaldà, A. Maciel, and T. Pitassi. Non-Automatizability of Bounded-

Depth Frege Proofs. Computational Complexity, Vol. 13, 2004, pp.47-68.
[4] M.L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege systems. SIAM

Journal of Computing, Vol. 29 (6), 2000, pp. 1939-1967.
[5] S. Buss. Polynomial Size Proofs of the Propositional Pigeonhole Principle. Journal of Symbolic Logic,

Vol. 52, 1987, pp. 916-927.
[6] S. Cook, K. Ghasemloo and P. Nguyen. Subexponential Size Bounded Depth Frege Proofs and Subsys-

tems of TV0. Manuscript, 2012.
[7] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge University Press, 2010.
[8] S. Cook and R. Reckhow. The Relative Efficiency of Propositional Proof Systems. Journal of Symbolic

Logic, Vol. 44(1), 1979, pp.36-50.

16 S. MÜLLER

[9] V. Chvátal and E. Szemerédi. Many Hard Examples for Resolution. Journal of the Association for

Computing Machinery, Vol. 35(4), 1988, pp. 759-768.
[10] Y. Filmus, T. Pitassi, and R. Santhanam. Exponential Lower Bounds for AC-Frege Imply Superpoly-

nomial Frege Lower Bounds. Proceedings ICALP, Vol. 1, 2011, pp.618-629.
[11] W. Hesse, E. Allender and D. Barrington. Uniform Constant-Depth Threshold Circuits for Division and

Iterated Multiplication. Journal of Computer and System Sciences, Vol. 65, 2002, pp.695-716.
[12] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University

Press, 1995.
[13] J. Kraj́ıček and P. Pudlák. Some Consequences of Cryptographical Conjectures for S

1
2 and EF . Infor-

mation and Computation, Vol. 140 (1), 1998, pp.82-94.
[14] J. Kraj́ıček, P. Pudlák and A. Woods. Exponential lower bound to the size of bounded depth Frege

proofs of the Pigeon Hole Principle. Random Structures and Algorithms, Vol. 7(1), 1995, pp.15-39.
[15] S. Müller and I. Tzameret. Short Propositional Refutations for Dense Random 3CNF Formulas. Man-

uscript, 2011.
[16] V.A. Nepomnjascij. Rudimentary Predicates and Turing Calculations. Doklady AN SSSR, Vol. 195,

1970.
[17] J. Paris and A. Wilkie. Counting Problems in Bounded Arithmetic. Methods in Mathematical Logic,

LNM 1130, 1985, pp.317-340.
[18] J. Paris and A. Wilkie. Counting ∆0 Sets. Fundamenta Mathematica, Vol. 127, 1987, pp.67-76.
[19] T. Pitassi, P. Beame, R. Impagliazzo. Exponential Lower Bounds for the Pigeonhole Principle. Compu-

tational Complexity, Vol. 3, 1993, pp.97-140.
[20] D. Zambella. End extensions of models of linearly bounded arithmetic. Annals of Pure and Applied

Logic, Vol. 88, 1997, pp.263-277.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Elements of Proof Complexity
	2.2. The theory V0
	2.3. Extensions of V0
	2.4. Relation between Arithmetic Theories and Proof Systems

	3. Polylogarithmic Cuts of Models of V0 are Models of VNC1.
	4. Implications for Proof Complexity
	5. Conclusion and Discussion
	6. Acknowledgements
	References

