
Logical Methods in Computer Science
Volume 19, Issue 2, 2023, pp. 7:1–7:44
https://lmcs.episciences.org/

Submitted Oct. 12, 2022
Published Apr. 25, 2023

STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS

BRUNO DINIS a AND ÉTIENNE MIQUEY b

a Escola de Ciência e Tecnologia, Universidade de Évora
e-mail address: bruno.dinis@uevora.pt

b Aix-Marseille Université, CNRS, I2M, Marseille, France
e-mail address: etienne.miquey@univ-amu.fr

Abstract. In this paper we propose a new approach to realizability interpretations for
nonstandard arithmetic. We deal with nonstandard analysis in the context of (semi)
intuitionistic realizability, focusing on the Lightstone-Robinson construction of a model
for nonstandard analysis through an ultrapower. In particular, we consider an extension
of the λ-calculus with a memory cell, that contains an integer (the state), in order to
indicate in which slice of the ultrapower MN the computation is being done. We pay
attention to the nonstandard principles (and their computational content) obtainable in
this setting. In particular, we give non-trivial realizers to Idealization and a non-standard
version of the LLPO principle. We then discuss how to quotient this product to mimic the
Lightstone-Robinson construction.

1. Introduction

In this paper we propose a new approach to realizability interpretations for nonstandard
arithmetic. On the one hand, we deal with nonstandard analysis in the context of (semi)
intuitionistic realizability. On the other hand, we focus on Lightstone and Robinson’s
construction of a model for nonstandard analysis through an ultrapower [LR75]. This paper
is an extended version of [DM21]. The main novelties here are in Section 4.4, where we
establish a connection with evidenced frames [CMT21], and in Section 6, where we give a
realizer for a nonstandard version of the Lesser Limited Principle of Omniscience (LLPO).
We also now have a better understanding of why performing a quotient leads to some
counter-intuitive properties (cf. Section 7).

Throughout the history of mathematics, infinitesimals were crucial for the intuitive
development of mathematical knowledge by authors such as Archimedes, Stevin, Fermat,

Key words and phrases: realizabiliy, nonstandard arithmetic, stateful computations, ultrafilters, glueing.
The authors would like to thank Alexandre Miquel for suggesting several ideas at the root of this work and

Valentin Blot and Mikhail Katz, as well as the anonymous reviewers of [DM21], for their accurate remarks
and suggestions. The first author was supported by FCT - Fundação para a Ciência e a Tecnologia, and the
research centers CMAFcIO - Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
and CIMA - Centro de Investigação em Matemática e Aplicações – under the projects UIDB/04561/2020,
UIDP/04561/2020 and UIDP/04674/2020.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(2:7)2023
© B. Dinis and É. Miquey
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-2143-3289
https://orcid.org/0000-0002-5987-6547
http://creativecommons.org/about/licenses

7:2 B. Dinis and É. Miquey Vol. 19:2

Leibniz, Euler and Cauchy, to name but a few (see e.g. [KS13, BBE+18, BBG+20]). In
particular, in Leibniz’s Calculus one may recognize calculation rules – sometimes called the
Leibniz rules [Lut87, Cal92, DvdB19] – which correspond to heuristic intuitions for how the
infinitesimals should operate under calculations: the sum and product of infinitesimals is
infinitesimal, the product of a limited number (i.e. not infinitely large) with an infinitesimal
is infinitesimal,...

In [Rob61, Rob66] Robinson showed that, in the setting of model theory, it is possible
to extend usual mathematical sets (N, R, etc.) witnessing the existence of new elements,
the so-called nonstandard individuals. In this way, it is possible to deal consistently with
infinitesimal and infinitely large numbers via ultraproducts and ultrapowers, in a way that
is consistent with the Leibniz rules. Since the extended structures are nonstandard models
of the original structures, this new setting was dubbed nonstandard analysis.

These constructions are meant to simplify doing mathematics: notions like limits or
continuity can for instance be given a simpler form in nonstandard analysis. Later in
the 70s, Nelson developed a syntactical approach to nonstandard analysis, introducing in
particular three key principles: Idealization, Standardization and Transfer [Nel77]. The
validity of these principles for constructive mathematics has been studied in different
settings, in particular, following some pioneer work by Moerdijk, Palmgren and Avigad
[Moe95, MP97, Avi05] in nonstandard intuitionistic arithmetic, several recent works, inspired
by Nelson’s approach, lead to interpretations of nonstandard theories in intuitionistic
realizability models [BBS12, DF17, HvdB17, DG18].

The very first ideas of realizability are to be found in the Brouwer-Heyting-Kolmogorov
interpretation [Hey34, Kol32], which identifies evidences and computing proofs (the realizers).
Realizability was designed by Kleene to interpret the computational content of the proofs
of Heyting arithmetic [Kle45], and was later extended to more expressive frameworks
[Gö58, Kre51, Kri09]. While the Curry-Howard isomorphism focuses on a syntactical
correspondence between proofs and programs, realizability rather deals with the (operational)
semantics of programs: a realizer of a formula A is a program which computes adequately
with the specification that A provides. As such, realizability constitutes a technique to
develop new models of a wide class of theories (from Heyting arithmetic to Zermelo-Fraenkel
set theory), whose algebraic structures has been studied in [vO08, Kri16, Miq20].

With the development of his classical realizability, Krivine evidences the fact that
extending the λ-calculus with new programming instructions may result in getting new
reasoning principles: call/cc to get classical logic [Gri90, Kri09], quote for dependent choice
[Kri01], etc. In this paper, we follow this path to show how the addition of a monotonic
reference allows us to get a realizability interpretation for nonstandard analysis. The
realizability interpretation proposed here can be understood as a computational interpretation
of the ultraproduct construction in [LR75], where the value of the reference indicates the
slice of the product in which the computation takes place. In particular, we obtain a realizer
for the Idealization principle whose computational behaviour increases the reference in the
manner of a diagonalization process. Our setting turns out to be semi-intuitionistic since it
allows to deduce a rather non-trivial realizer for a nonstandard version of the nonconstructive
Lesser Limited Principle of Omniscience [BR87].

Outline. We start this paper by recalling the main ideas of the ultraproduct construction
(Section 2) and the definition of a standard realizability interpretation for second-order
Heyting arithmetic (Section 3). We then introduce stateful computations and our notion of

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:3

realizability with slices in Section 4. We also show that our stateful interpretation induces
an evidenced frame thus providing a connection with the usual algebraic tools to deal with
realizability interpretations. As shown in Section 5 and Section 6, this interpretation provides
us with realizers for several nonstandard reasoning principles. We discuss the possibility of
taking a quotient for this interpretation in Section 7. We conclude the paper in Section 8
with a comparison to related work and with some questions left for future work.

2. The ultrapower construction

The main contribution of this paper consists in defining a realizability interpretation to
give a computational content to the ultrapower construction of Robinson and Lightstone
in [LR75]. We shall begin by briefly explaining how this construction works in the realm of
model theory.

Let us start by recalling some definitions.

Definition 2.1. Let I be a set. We say that F ⊂ P(I) is a filter over I if:

(i) F is non empty and ∅ /∈ F (non triviality)
(ii) for all F1, F2 ∈ F , F1 ∩ F2 ∈ F (closure under intersection)

(iii) for any F,G ∈ P(I), if F ∈ F and F ⊂ G, then G ∈ F (upwards closure)

An ultrafilter is a filter U such that for any F ∈ P(I), either F or its complement F are in
U .

For instance, the set of cofinite subsets of N defines the so-called Fréchet filter, which is
not an ultrafilter since it contains neither the set of even natural numbers nor the set of odd
natural numbers. Nonetheless, it is well-known that any filter F over an infinite set I is
contained in an ultrafilter U over I: this is the so-called ultrafilter principle. An ultrafilter
that contains the Fréchet filter is called a free ultrafilter. The existence of free ultrafilters
was proved by Tarski in 1930 [Tar30] and is in fact a consequence of the Axiom of Choice.

Definition 2.2. Given two sets V and I and an ultrafilter U over I, we can define an
equivalence relation ∼=U over V I by u ∼=U v , {i ∈ I : ui = vi} ∈ U . We write V I/U for the
set obtained by performing a quotient on the set V I by this equivalence relation, which is
called an ultrapower.

Consider a theory T (say ZFC) and its language L, for which we assume the existence
of a modelM. The goal is to build a nonstandard modelM∗ of the theory T that validates
new principles. Let us denote by V the set which interprets individuals in M, and let us
fix a free ultrafilter U over N. Roughly speaking, the new model M∗ is defined as the
ultrapower MN/U . Individuals are interpreted by functions in VN while the validity of a
relation R(x1, ..., xk) (where the xi are interpreted by fi, for i ∈ {1, ..., k}) is defined by

M∗ � R(f1, ..., fk) iff {n ∈ N :M � R(f1(n), ..., fk(n))} ∈ U .
We can now extend the language with a new predicate st(x) to express that x is standard.
Standard elements are defined as the ones that, with respect to ∼=U , are equivalent to constant
functions, i.e. M∗ � st(f) if and only if there exists p ∈ N such that {n ∈ N : f(n) = p} ∈ U .

M∗ � st(f) iff ∃p ∈ N.{n ∈ N : f(n) = p} ∈ U .
Formulas that involve this new predicate are called external, while formulas of the original

language L are called internal.

7:4 B. Dinis and É. Miquey Vol. 19:2

Lightstone and Robinson’s construction relies on the well-known Loś ’ theorem [Lo60]
which states that if ϕ is an internal formula (with parameters in VN), then M∗ � ϕ if and
only {n ∈ N : M � ϕn} ∈ U , where ϕn refers to the formula ϕ whose parameters have
been replaced by their values in n. This construction indeed defines a model of T which
satisfies other relevant properties, namely Transfer, Idealization and Standardization. As a
consequence of Loś ’ theorem, to see that an internal formula ϕ(x) holds for all elements,
it is enough to see that it holds for all standard elements: this is the Transfer principle.
In our setting, Idealization amounts to a diagonalization process: it is for instance easy to
see that if one defines δ : n 7→ n (where we, with abuse of notation, write n for both the
natural number n and its interpretation in V), then M∗ � ∀x.(st(x) → x < δ). Finally,
Standardization is a sort of “comprehension scheme” which states that we can specify subsets
of standard sets by giving a membership criterion for standard elements (by means of an
internal formula).

3. Realizability in a nutshell

3.1. Heyting second-order arithmetic. We start by introducing the terms and formulas
of Heyting second-order arithmetic (HA2), for which we follow Miquel’s presentation [Miq11a].
Second-order formulas are build on top of first-order arithmetical expressions, by means
of logical connectives, first- and second-order quantifications and primitive predicates. We
use upper case letters for second-order variables and lower case letters for first-order ones.
We use a primitive predicate Nat(e) to denote that e is a natural number (0 then has type
Nat(0) and the term s t has type Nat(S(e)) provided that t has type Nat(e)). We consider
the usual λ-calculus terms extended with pairs, projections (written πi), natural numbers
and a recursion operator:

1st-order expressions e ::= x | 0 | S(e) | f(e1, . . . , en)
Formulas A,B ::= Nat(e) | X(e1, . . . , en) | A→ B | A ∧B

| ∀x.A | ∃x.A | ∀X.A | ∃X.A
Terms t, u ::= x | 0 | s | rec | λx.t | t u | (t, u) | π1(t) | π2(t)

where f : Nn → N is any arithmetical function. We write Λ for the set of all closed λ-terms.
Note that we did not include disjunctions as formulae. In fact, for most of our purposes,

disjunctions are not needed. The only exception is Section 6 where we interpret a nonstandard
version of the Lesser Limited Principle of Omniscience. It is however possible to include
disjunctions all the way but, since this would mostly only add some unnecessary technicalities
to all our proofs, we delay the introduction of disjunction until Section 6.

To simplify the use of existential quantifiers, as in [Miq11a], we introduce a congruence
relation on formulas defined by the following rules

(∃x.A)→ B ∼= ∀x.(A→ B) (∃X.A)→ B ∼= ∀X.(A→ B) (3.1)

This congruence relation allows us to, given any typed term, to (re)type it with any formula
congruent to the original one. In particular, this means that we do not need the elimination
rules for the existential quantifiers, which results in a simplified type system. This type
system, which is given in Figure 1, corresponds to the usual rules of natural deduction. The
reader may observe that we do not give computational content to quantifications.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:5

Natural numbers Γ ` 0 : Nat(0)
(0)

Γ ` s : ∀Nx.Nat(S(x))
(S)

Γ ` rec : ∀Z.Z(0)→ (∀Ny.(Z(y)→ Z(S(y))))→ ∀Nx.Z(x)
(rec)

Logical rules (x : A) ∈ Γ

Γ ` x : A
(Ax)

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

(→E)

Γ, x : A ` t : B

Γ ` λx . t : A→ B
(→I)

Γ ` t : A Γ ` u : B
Γ ` (t, u) : A ∧B

(∧I)
Γ ` t : A ∧B
Γ ` π1(t) : A

(∧1E)

Γ ` t : A ∧B
Γ ` π2(t) : B

(∧2E)
Γ ` t : A[x := n]

Γ ` t : ∃x.A
(∃1I)

Γ ` t : ∀x.A
Γ ` t : A[x := n]

(∀1E)

Γ ` t : A x /∈ FV (Γ)

Γ ` t : ∀x.A
(∀1I)

Γ ` t : A[X(x1, . . . , xn) := B]

Γ ` t : ∃X.A
(∃2I)

Γ ` t : ∀X.A
Γ ` t : A[X(x1, . . . , xn) := B]

(∀2E)
Γ ` t : A X /∈ FV (Γ)

Γ ` t : ∀X.A
(∀2I)

Γ ` t : A′ A ∼= A′

Γ ` t : A
(∼=)

Figure 1: Type system

In the sequel, we make use of the following usual abbreviations:

sn+10 , s (sn0)

n , sn0

> , ∃X.X
⊥ , ∀X.X
¬A , A→ ⊥

e = e′ , ∀Z.(Z(e)→ Z(e′))

∀Nx.A , ∀x.(Nat(x)→ A)

∃Nx.A , ∃x.(Nat(x) ∧A)

It is well-known that the above definition of equality (often called Leibniz law) enjoys
the usual expected properties (reflexivity, symmetry, transitivity) and allows to perform
substitution of equal terms. The quantifications ∀Nx.A and ∃Nx.A are often said to be
relativized to natural numbers.

The one-step (weak) reduction over terms is defined by the following rules:

(λx.t)u .β t[u/x] rec u0 u1 0 .β u0 rec u0 u1 (s t) .β u1 t (rec u0 u1 t)

π1(t, u) .β t π2(t, u) .β u

We write→β for the congruent reflexive-transitive closure of .β . The reduction→β is known
to be confluent, type-preserving and normalizing on typed terms [Bar92].

3.2. Realizability interpretation of HA2. In this subsection we define the realizability
interpretation of the type system defined in Figure 1, in which formulas are interpreted as
saturated sets of terms, i.e. as sets of closed terms S ⊆ Λ such that t→β t

′ and t′ ∈ S imply
that t ∈ S. We write SAT to denote the set of all saturated sets and, given a formula A, we
call truth value its realizability interpretation.

7:6 B. Dinis and É. Miquey Vol. 19:2

Definition 3.1 (Valuation). A valuation is a function ρ that associates a natural number
ρ(x) to every first-order variable x and a truth value function ρ(X), i.e. a function in
Nk → SAT to every second-order variable X of arity k.

(1) Given a valuation ρ, a first-order variable x and a natural number n, we denote by

ρ, x 7→ n the valuation defined by (ρ, x 7→ n) , ρ| dom(ρ)\{x} ∪ {x 7→ n} .
(2) Given a valuation ρ, a second-order variable X of arity k and a truth value function

F : Nk → SAT, the valuation defined by (ρ,X 7→ F) , ρ| dom(ρ)\{X} ∪ {X 7→ F} will
be denoted by ρ,X 7→ F .

We say that a valuation ρ is closing the formula A if FV (A) ⊆ dom(ρ).

Definition 3.2 (Realizability interpretation). We interpret closed arithmetical expressions
e in the standard model of first-order Peano arithmetic N. Given a valuation ρ and a
first-order expression e (whose variables are in the domain of ρ) we denote its interpretation
by JeKρ. The interpretation of a formula A together with a valuation ρ closing A is the set
|A|ρ defined inductively according to the following clauses:

|Nat(e)|ρ , {t ∈ Λ : t→β sn0, where n = JeKρ}

|X(e1, . . . , en)|ρ , ρ(X)(Je1Kρ, . . . , JenKρ)

|A→ B|ρ , {t ∈ Λ : ∀u ∈ |A|ρ.(t u ∈ |B|ρ)}

|A1 ∧A2|ρ , {t ∈ Λ : π1(t) ∈ |A1|ρ ∧ π2(t) ∈ |A2|ρ}

|∀x.A|ρ ,
⋂
n∈N |A|ρ,x 7→n

|∃x.A|ρ ,
⋃
n∈N |A|ρ,x 7→n

|∀X.A|ρ ,
⋂
F :Nk→SAT |A|ρ,X 7→F

|∃X.A|ρ ,
⋃
F :Nk→SAT |A|ρ,X 7→F

Observe that in the previous definition, the universal quantifications cannot be seen as
generalized conjunctions. Indeed, the conjunction is given computational content through
pairs, while the universal quantifications are defined as intersections of truth values.

It is easy to see that for any formula A and any valuation ρ closing A, one has |A|ρ ∈ SAT.
As it turns out, the congruences defined by Equation 3.1 are sound w.r.t. the interpretation.

Proposition 3.3 [Miq11a]. If A and A′ are two formulas of HA2 such that A ∼= A′, then
for all valuations ρ closing both A and A′ we have |A|ρ = |A′|ρ.

Proof. By induction on A ∼= A′. Congruence easily goes through by induction, we only prove
the first-order case (the second-order case is analogous):

|(∃x.A)→ B|ρ = {t ∈ Λ : ∀u ∈ |∃x.A|ρ, t u ∈ |B|ρ}
= {t ∈ Λ : ∀u ∈

⋃
n∈N |A|ρ,x 7→n, t u ∈ |B|ρ}

= {t ∈ Λ : ∀u, (∃n, u ∈ |A|ρ,x7→n)→ t u ∈ |B|ρ}
= {t ∈ Λ : ∀u,∀n, (u ∈ |A|ρ,x7→n → t u ∈ |B|ρ)}
=
⋂
n∈N{t : ∀u, u ∈ |A|ρ,x 7→n → t u ∈ |B|ρ}

= |∀x.(A→ B)|ρ
In order to show that the realizability interpretation is sound with respect to the type

system we need the following preliminary notions.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:7

Definition 3.4 (Substitution). A substitution is a finite function σ from λ-variables to
closed λ-terms. Given a substitution σ, a λ-variable x and a closed λ-term u, we denote by
(σ, x := u) the substitution defined by (σ, x := u) , σ| dom(σ)\{x} ∪ {x := u}.

Definition 3.5. Given a context Γ and a valuation ρ closing the formulas in Γ, we say that
a substitution σ realizes ρ(Γ) and write σ
 ρ(Γ) if dom(Γ) ⊆ dom(σ) and σ(x) ∈ |A|ρ for
every declaration (x : A) ∈ Γ.

Definition 3.6. A typing judgement Γ ` t : A is adequate if for all valuations ρ closing A
and Γ and for all substitutions σ
 ρ(Γ) we have σ(t) ∈ |A|ρ. More generally, we say that an

inference rule
J1 · · · Jn

J0 is adequate if the adequacy of all typing judgements J1, . . . , Jn
implies the adequacy of the typing judgement J0.

Theorem 3.7 (Adequacy [Miq11a]). The typing rules of Figure 1 are adequate.

Proof. The proof is standard, by case analysis. We draw the reader’s attention to the
particular case of the second-order elimination rule

Γ ` t : ∀X.A
Γ ` t : A[X(x1, . . . , xn) := B]

(∀2E)

which relies on the fact that the truth value of any formula (here B) is a saturated set. To
prove that this rule is indeed adequate, let us consider a valuation ρ closing ∀X.A, B and
Γ and a substitution σ
 ρ(Γ) such that σ(t) ∈ |∀X.A|ρ. By definition, this implies that

for any function F : Nk → SAT (where k is the arity of X), we have σ(t) ∈ |A|ρ,X 7→F . To
conclude, it suffices to see that the function n1, . . . , nn 7→ |B|ρ,x1 7→n1,...,xk 7→nk

is indeed in

Nk → SAT.

Corollary 3.8. If Γ ` t : A is derivable, then it is adequate.

The adequacy theorem is the key result when defining realizability interpretations in
that fundamental properties stem from it. For example, we have the following corollary.

Corollary 3.9 (Consistency). There is no proof term t such that ` t : ⊥.

Proof. The proof is by reductio ad absurdum. If ` t : ⊥, then by Theorem 3.7 one has
t ∈ |⊥| = |∀X.X| =

⋂
S∈SAT S = ∅. To see that this intersection is indeed empty, one can

take for example S0 = {t ∈ Λ : t →β 0} ∈ SAT and S1 = {t ∈ Λ : t →β s0} ∈ SAT, then
clearly S0 ∩ S1 = ∅.

We would like to point out that the proof of adequacy is very flexible. Indeed, if one
wants to add a new instruction to the language of terms via its typing rule, it is enough to
check that this typing rule is adequate while the remainder of the proof is exactly the same.

3.3. Introducing value restriction. The realizability interpretation of Definition 3.2 is
also flexible regarding the set of formulas that are interpreted. We illustrate this point here
by introducing a new construction extending formulas which we shall use in the sequel to
enforce value restriction in presence of stateful computations. This will allow us to get a
better handle on the operational semantics, which will be crucial afterwards since stateful
computations break the confluence of the reduction system (see Example 4.1). Such a
technique is reminiscent from ML value restriction that was introduced to circumvent the
incompatibility of Curry-style polymorphism and side-effects (see for instance [Zei09]).

7:8 B. Dinis and É. Miquey Vol. 19:2

We start by defining the subset V ⊆ Λ of values by the following grammar:

Values V ::= 0 | sV | λx.t | (V1, V2)

Observe that variables are not values, otherwise the system would not be stable by
substitution. In the remainder of this paper, we adopt the convention that λ-terms are
denoted by lowercase letters t, u, ... while uppercase letters V,W, ... refer to values.

Distinguishing the set of values allows for instance to restrict the β-reduction rule to
applications of functions to values:

(λx.t)V .v t[V/x]

t .v t
′

t u .v t
′ u

u .v u
′

V u .v V u
′

The reflexive transitive closure→v of the one-step reduction .v is known as the (left-to-right)
call-by-value evaluation strategy. While it is well-known that the reduction system of the
λ-calculus is confluent, so that the choice of a particular evaluation strategy does not have
any consequence in terms of expressiveness, this is no longer the case when side effects (such
as stateful computations in the next sections) come into play.

To enforce value restriction, let us now extend the language of formulas with a new
construction:

Formulas A,B ::= . . . | {A} 7→ B

and the realizability interpretation accordingly by

|{A} 7→ B|ρ , {t ∈ Λ : ∀V ∈ |A|ρ.(t V ∈ |B|ρ)}
In particular, we have

|{Nat(e)} 7→ B|ρ = {t ∈ Λ : t n ∈ |B|ρ where n = JeKρ}
|{A1 ∧A2} 7→ B|ρ = {t ∈ Λ : ∀V1 ∈ |A1|ρ, V2 ∈ |A2|ρ.t (V1, V2) ∈ |B|ρ where n = JeKρ}

It is easy to check that for any formulas A and B, |{A} 7→ B|ρ is a saturated set, and the
adequacy of the (∀2

E)-rule is thus preserved.
While there is currently no rule to type a term t with a formula of the shape {A} 7→ B,

we can nonetheless extend the type system with any rule as long as it is adequate with respect
to the realizability interpretation. Indeed, here the flexibility of the interpretation comes
again into play, in the sense that once the realizability interpretation of a new construct has
been defined, one could extend the type system with any rule related with that construct as
long as it is adequate. For instance, the rules (7→I) and (7→E) below are adequate.

Proposition 3.10. The following typing rules are adequate:

Γ ` t : A→ B
Γ ` t : {A} 7→ B

(7→I)
Γ ` t : {A} 7→ B Γ ` V : A

Γ ` t V : B
(7→E)

Proof. For the first rule it suffices to see that for any valuation ρ, we have

{t ∈ Λ : ∀u ∈ |A|ρ.(t u ∈ |B|ρ)} ⊆ {t ∈ Λ : ∀V ∈ |A|ρ.(t V ∈ |B|ρ)}
As for the second one, if ρ is a valuation and σ a substitution such that σ(V) ∈ |A|ρ,
σ
 ρ(Γ), and σ(t) ∈ |{A} 7→ B|ρ. Then, by the definition of |{A} 7→ B|ρ, we have that
σ(t)σ(V) = σ(t V) ∈ |B|ρ (because σ(V) is necessarily a value).

We can also extend, maintaining the adequacy of the interpretation of {A} 7→ B , the
congruence relation with the following rules:

{∃x.A} 7→ B ∼= ∀x.{A} 7→ B {∃X.A} 7→ B ∼= ∀X.{A} 7→ B

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:9

Proposition 3.11. For any formulas A and B, we have

(1) |{∃x.A} 7→ B|ρ = |∀x.{A} 7→ B|ρ
(2) |{∃X.A} 7→ B|ρ = |∀X.{A} 7→ B|ρ

Proof. The proof is analogous to the proof of Proposition 3.3, for instance for the first part,
we have:

|{∃x.A} 7→ B|ρ = {t ∈ Λ : ∀V ∈ |∃x.A|ρ, t V ∈ |B|ρ}
= {t ∈ Λ : ∀V ∈

⋃
n∈N |A|ρ,x7→n, t V ∈ |B|ρ}

= {t ∈ Λ : ∀V, (∃n, V ∈ |A|ρ,x 7→n)⇒ t V ∈ |B|ρ}
= {t ∈ Λ : ∀V,∀n, (V ∈ |A|ρ,x 7→n ⇒ t V ∈ |B|ρ)}
=
⋂
n∈N{t : ∀V,∈ |A|ρ,x 7→n ⇒ t V ∈ |B|ρ}

= |∀x.({A} 7→ B)|ρ

We will make use of the following abbreviations:

∀{N}x.A , ∀x.({Nat(x)} 7→ A) ∃{N}x.A , ∀X.(∀{N}x.(A→ X))→ X

While the first definition is natural, the second one may be a bit more puzzling at first
sight. As we saw, the truth value of any formula has to be a saturated set. However, given
a formula A(x), the set {(n, t) : t ∈ |A(n)|ρ} is not saturated, and so we cannot define a
formula ∃x.{Nat(x)} ∧A(x) whose realizers would be this set. Nonetheless, the definition of

∃{N}x.A is somehow doing the trick in continuation-passing style, in the sense that we have:

Proposition 3.12. For any formula A, any valuation ρ and any term t, if t ∈ |∃{N}x.A|ρ then
there exists a natural number n ∈ N and a term u ∈ |A[x := n]|ρ s.t.: t (λxy.(x, y))→β (n, u).

Proof. Let t be a term such that t ∈ |∃{N}x.A|ρ. By definition, for any X ∈ SAT and any

v ∈ |∀{N}x.(A→ X)|ρ,X 7→X, we have that t v ∈ X. Let us define the set

X = {w ∈ Λ : ∃n, u.w →β (n, u) ∧ u ∈ |A[x := n]|ρ},

which is obviously saturated. It is clear that λxy.(x, y) ∈ |∀{N}x.(A → X)|ρ,X 7→X since for
any n ∈ N and any u ∈ |A[x := n]|ρ one has (λxy.(x, y))nu →β (n, u) ∈ X. We conclude
that t (λxy.(x, y))→β (n, u).

Definition 3.13. We define T , λzx.(rec (λy.y 0) (λxyz.y (λx.z (sx)))x) z.

The next proposition relates these new quantifications with the relativized quantifications
∀Nx.A and ∃Nx.A using the term T .

Proposition 3.14. We have

(1) T
 ∀{N}x.A→ ∀Nx.A
(2) λx.x
 ∀Nx.A→ ∀{N}x.A
(3) λz.z λxy.(x, y)
 ∃{N}x.A→ ∃Nx.A
(4) λxy.T y π1(x)π2(x)
 ∃Nx.A→ ∃{N}x.A

7:10 B. Dinis and É. Miquey Vol. 19:2

Proof.

(1) Let t be a term in |∀{N}x.A|, n ∈ N a natural number and u a term in |Nat(n)|. To prove
the result, since |A[x := n]| is saturated, it suffices to prove that:

(rec (λy.y 0) (λxyz.z (sx))u) t
 A[x := n]

Let us define the formula B(z) , (∀{N}x.A)→ A[x := z]. It is straightforward to check
that:
• λy.y 0
 B(0)
• λxyz.y (λx.z (sx))
 ∀Nx.B(x)→ B(S(x))
Using the adequacy of the (rec)-rule, we deduce that

rec (λy.y 0) (λxyz.z (sx))u
 B(n)

and the result follows from the hypothesis that t ∈ |∀{N}x.A|.
(2) Follows directly from Proposition 3.10.
(3) Follows directly from Proposition 3.12.

(4) Let t be a term in |∃Nx.A|, X ∈ SAT be a predicate and u a term in |∀{N}x.(A→ X)|X 7→X.
By assumption, there exists a natural number n and two terms t1 and t2 such that
t1 ∈ |Nat(n)|, t2 ∈ |A[x := n]| and t→β (t1, t2). Then

(λxy.T y π1(x)π2(x)) t u →β T uπ1(t)π2(t) →β T u t1 t2

From part 1 we know that T u is in |∀Nx.(A → X)|X 7→X, hence T u t1 t2 ∈ X and the
result follows from the fact that X is saturated.

The term T , which forces the evaluation of an argument of type Nat(n) to get the

underlying value n to make it compatible with a function ∀{N}x.A, is somehow simulating
a call-by-value evaluation (for natural numbers). Such a term is usually called a storage
operator [Kri09].

While Proposition 3.14 indicates that the different ways of relativizing the quantifiers
are equivalent (in the sense that one admits a realizer if and only if the other does), it is
important to keep in mind that this result is peculiar to the current effect-free settings. In
particular, this result no longer holds once stateful computations are allowed.

4. Realizability with slices

In this section, we extend the realizability interpretation introduced in Section 3 by taking into
account stateful computations. The states will be the key ingredient to give computational
content to the Lightstone-Robinson construction described in Section 2. The advantage of
this extended setting will become clearer in Section 5, since it allows to realize some new
reasoning principles, after we investigate the status of natural numbers in Section 5.1.

4.1. Stateful computations. The first step in the Lightstone-Robinson construction aims
at getting a product MN of the (initial) model M. In order to achieve this goal in our
setting, we add a memory cell to our calculus that contains an integer, which we call the state.
The purpose of the state is to keep track of which “slice” of the product is the interpretation
being done. This product allows us to interpret first-order individuals as functions in NN, so
that the interpretation accounts for new elements – the so-called nonstandard elements – for
instance the diagonal function (see Proposition 5.5).

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:11

In our extended calculus, the first-order expressions are the same, while second-order
formulas now use a value restriction for natural numbers and include a predicate st(e), as
per usual in nonstandard analysis, denoting that the expression e is standard. This means
that in our framework we will also have two types of nonstandard quantifications: the usual
∀st, ∃st and the relativized ∀{st},∃{st}x. We say that a formula is internal if it does not contain
the predicate st(·), and external otherwise. Terms are extended with two new instructions
get and set. Similarly to what was remarked before concerning the {·} 7→ · construction on
formulas for value restriction, we do not need a specific rule for typing these terms since
any adequate rules would work. Instead, we will only pay attention to the computational
expressiveness brought by these new terms, by introducing appropriate reduction rules. The
get instruction allows to obtain the content of the current state while the set instruction
allows to increase its content. Formally, we extend the different grammars as follows:

Formulas A,B ::= st(e) | X(e1, . . . , en) | {Nat(e)} 7→ A | A→ B
| A ∧B | ∀x.A | ∃x.A | ∀X.A | ∃X.A

Terms t, u ::= ... | get | set
States S , N

Since the formulas no longer include an unrestricted constructor Nat(e), the typing rules
for 0, s and rec are no longer required1. Other than that, the type system is unchanged. In
particular, the get and set instructions are not given any typing rule.

We will make use of the following abbreviations:

∀stx.A , ∀x.(st(x)→ A)

∀{st}x.A , ∀x.(st(x)→ ({Nat(x)} 7→ A))

∃stx.A , ∃x.(st(x) ∧A)

∃{st}x.A , ∀X.((∀{st}x.(A→ X))→ X)

With the exception of the get / set instructions, the syntax of terms does not account
for states. In fact, only the reduction rule for the set instruction allows to change the
state. Nonetheless, states play a crucial role in the reduction system. In particular, one-step
reductions are now defined for terms together with a state. We write t .ss′ t

′ to denote that
the term t in state s reduces to the term t′ in state s′. The one-step reduction over terms is
defined by the following rules:

t .β t
′

t .ss t
′ get .ss s

s′′ = max(s, s′)

set s t .s
′
s′′ t

t .ss′ t
′

C[t] .ss′ C[t′]

where C[] ::= rec u0 u1 [] | []u | πi([]) | s [] | set []u.

We write t s↓s′ t′ for the reflexive-transitive closure of this relation.
Since we now consider effectful computations, we have to fix an evaluation strategy in

order to ensure the confluence of the reduction system. Observe that our definition for C[]
indeed ensures that our reduction system has no critical pair. Here we follow a call-by-name
evaluation strategy (we substitute unevaluated arguments), while for rec and set one of their
arguments must be reduced.

The following standard example illustrates the need for an evaluation strategy to ensure
confluence in the presence of states, highlighting the fact that the result of a stateful
computation might depend on the chosen strategy.

Example 4.1. Let us write x+ y for a term that computes the addition of x and y (such

term is easily definable via rec). Let us define incr0 , set (s get) 0 (which increases the

1In Proposition 5.3, we show how these terms define realizers for the value restricted natural numbers.

7:12 B. Dinis and É. Miquey Vol. 19:2

state and reduces to 0) and t , (λx.(get+x) + x) incr0. If we reduce the argument of the
functions first (call-by-value) we obtain t 0↓1 (λx.(get+x) + x)) 0 1↓1 (get+0) + 0 1↓1 1. In
turn, if we perform the β-reduction without reducing the argument (call-by-name), we get
t 0↓0 (get+ incr0) + incr0

0↓1 (get+ incr0) + 0 1↓2 get+0 2↓2 2. In the absence of an evaluation
strategy, the system would thus have admitted unsolvable critical pairs.

4.2. Stateful realizability interpretation. The fact that our syntax now includes states
allows us to interpret formulas as terms-with-states2. Truth values are then defined as
saturated sets in P(Λ×S). Individuals are now individuals with states, so elements of NS,
and similarly predicates of arity k are elements of the set of functions from Nk to P(Λ×S).
This creates a mismatch in the sense that predicates are no longer shaped to be applied
to individuals3. In order to define our interpretation, we need to deal with this mismatch
between the structure of individuals and the one of predicates, by defining a suitable notion
of application.

Definition 4.2. Let F : Nk → P(Λ×S) be a predicate. We define the application of F to

individuals f1, . . . , fk ∈ NS by F@(f1, . . . , fk) , {(t; s) : (t; s) ∈ F (f1(s), . . . , fk(s))}.

Definition 4.3. An individual f ∈ NS is said to be standard if it is a constant function, i.e.
if there exists n ∈ N such that ∀s ∈ S.(f(s) = n). We then write f = n∗.

Definition 4.4. We define saturated sets with respect to the stateful reduction to be sets
S ∈ Λ×S s.t. for any terms t, t′ ∈ Λ and any states s, s′ ∈ S, if (t′; s′) ∈ S and t s↓s′ t′ then
(t; s) ∈ S. With abuse of notation we denote the set of these saturated sets by SAT.

In the realizability interpretation with slices below, truth values are defined as saturated
sets. This allows us to reason by anti-reduction (sometimes also called expansion) in any
fixed state. By anti-reduction, we mean that to show that a term t together with a state
s belongs to such a saturated set S, it is enough to find s′ and t′ such that t s↓s′ t′ and
(t′; s′) ∈ S.

We now consider valuations which are functions that associate a function in NS to every
first-order variable x and a truth value function from Nk to SAT to every second-order
variable X of arity k. Again, with abuse of notation we denote such valuation by ρ.

We also extend the usual interpretation of first-order expressions to range over NS. To
that end, we simply define arithmetical functions pointwise on the domain. For instance, if
f ∈ NS, we write S∗(f) for the function s 7→ (S(f(s))). When it is clear from the context,
we abuse the notation (even more) by writing 0, S, J·Kρ, etc. instead of 0∗, S∗, J·K∗ρ.

2A realizability interpretation with a similar structure, although with a different notion of state, can be
found in [MH18]. The perspective of the latter is also different in that it aims at proving the normalization
of a classical call-by-need calculus.

3This phenomenon also occurs in the Lightstone-Robinson construction of an ultrapower [LR75].

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:13

Definition 4.5 (Realizability with slices). The interpretation of a formula A together with
a valuation ρ closing A is the set |A|Sρ defined inductively according to the following clauses:

|st(e)|Sρ ,

{
Λ×S if JeKρ is standard
∅ otherwise

|X(e1, . . . , en)|Sρ , ρ(X)@(Je1Kρ, . . . , JenKρ)

|{Nat(e)} 7→ A|Sρ , {(t; s) ∈ Λ×S : (t n; s) ∈ |A|Sρ , where n = JeKρ(s)}

|A→ B|Sρ , {(t; s) ∈ Λ×S : ∀u.
(
(u; s) ∈ |A|Sρ ⇒ (t u; s) ∈ |B|Sρ

)
}

|A1 ∧A2|Sρ , {(t; s) ∈ Λ×S : (π1(t); s) ∈ |A1|Sρ ∧ (π2(t); s) ∈ |A2|Sρ
)
}

|∀x.A|Sρ ,
⋂
f∈NS |A|Sρ,x 7→f

|∀X.A|Sρ ,
⋂
F :Nk→SAT |A|Sρ,X 7→F

|∃x.A|Sρ ,
⋃
f∈NS |A|Sρ,x 7→f

|∃X.A|Sρ ,
⋃
F :Nk→SAT |A|Sρ,X 7→F .

We write (t; s)
 A (resp. t � A) to denote that (t; s) ∈ |A|S (resp. ∀s ∈ S.(t; s) ∈ |A|S).
Realizers of the type t � A are called universal.

Observe that this stateful interpretation has the structure of a product of the interpre-
tation given by Definition 3.2. The interpretation corresponding to a given state can thus
be seen as a slice of this product. However, it is important to keep in mind that the set
instruction still allows terms to change the value of the state, therefore the slices are not
completely independent. We write |A|sρ to denote the truth value {(t; s) ∈ |A|Sρ } in the slice
induced by s.

We first verify that truth values are indeed saturated sets and that the interpretation
validates the congruence rules.

Proposition 4.6. Let A be a formula and ρ a valuation closing A. Then |A|Sρ ∈ SAT.

Proof. By a straighforward induction on the structure of A. Observe for instance that the
case st(f) follows from the definition and that the case X(e1, . . . , en) follows from the fact
that, by definition, ρ(X) takes values in SAT.

By induction on the structure of A. The case st(f) is clear from the definition and the
case X(e1, . . . , en) follows from the fact that, by definition, ρ(X) takes values in SAT.

A→ B. Let t, t′ be two terms such that (t′; s′) ∈ |A → B|Sρ and t .ss′ t
′ for some states

s, s′. Let (u; s′) ∈ |A|Sρ . We have that t u .ss′ t
′ u, which by definition belongs to |B|Sρ . We

conclude the result by the induction hypothesis for B. The same proof applies to the case
{Nat(e)} 7→ A.

A1 ∧A2. Let t, t′ be two terms such that (t′; s′) ∈ |A1 ∧A2|Sρ and t .ss′ t
′ for some states

s, s′. For any i ∈ {1, 2}, we have that πi(t) .
s
s′ πi(t

′), which by definition belongs to |A1|Sρ .
We conclude the result by the induction hypothesis for Ai. The proof for the case A1 ∨A2

is analogous.

7:14 B. Dinis and É. Miquey Vol. 19:2

∀x.A. Let t, t′ be two terms such that (t′; s′) ∈ |∀x.A|Sρ and t .ss′ t
′ for some state s, s′.

By definition, for any f ∈ NS, it holds that (t′; s′) ∈ |A|Sρ,x7→f . Hence by the induction

hypothesis for A, we get that (t; s) ∈ |A|Sρ,x 7→f . This being true for any f ∈ NS, we deduce

that (t; s) ∈ |∀x.A|Sρ . The cases for the other quantifiers are similar.

Proposition 4.7. If A and A′ are two formulas of HA2 such that A ∼= A′, then for all
valuations ρ closing both A and A′ we have |A|Sρ = |A′|Sρ .

Proof. The proof, by induction on A ∼= A′, is similar to the proof of Proposition 3.3.
Congruence easily goes through by induction, and again we have

|(∃x.A)→ B|Sρ = {(t; s) ∈ Λ×S : ∀u.(u; s) ∈ |∃x.A|Sρ ⇒ (t u; s) ∈ |B|Sρ }
= {(t; s) ∈ Λ×S : ∀u.(u; s) ∈

⋃
n∈N |A|ρ,x 7→n ⇒ (t u; s) ∈ |B|Sρ }

= {(t; s) ∈ Λ×S : ∀u.(∃n.(u; s) ∈ |A|ρ,x 7→n)⇒ (t u; s) ∈ |B|Sρ }
= {(t; s) ∈ Λ×S : ∀u, n.((u; s) ∈ |A|ρ,x 7→n ⇒ (t u; s) ∈ |B|Sρ)}
=
⋂
n∈N{(t; s) : ∀u.(u; s) ∈ |A|ρ,x 7→n ⇒ (t u; s) ∈ |B|Sρ }

= |∀x.(A→ B).|Sρ
The proofs for second-order quantifiers and value restrictions are analogous.

In order to prove the adequacy theorem in this setting we need to adapt a few definitions.

Definition 4.8. Given a context Γ, a state s and a valuation ρ closing the formulas in
Γ, we say that a substitution σ realizes ρ(Γ) in the state s and write (σ; s)
 ρ(Γ) if
dom(ρ(Γ)) ⊆ dom(σ) and (σ(x); s) ∈ |A|Sρ , for every declaration (x : A) ∈ Γ.

Definition 4.9. We say that a typing judgement Γ ` t : A is adequate w.r.t. a state s in the
stateful system if for any valuation ρ closing A and Γ and any substitution (σ; s)
 ρ(Γ) we
have (σ(t); s) ∈ |ρ(A)|. An inference rule is adequate w.r.t. a state s if the adequacy (w.r.t.
s) of all its premises implies the adequacy (w.r.t. s) of its conclusion.

We are now able to show that, with the exception of the (∀2
E)/(∃2

I)-rules, our logical
rules are adequate. The (∀2

E)/(∃2
I)-rules are shown to be adequate, for internal formulas

only, in Proposition 4.17. The status of natural numbers will be investigated in Section 5.1.

Theorem 4.10 (Adequacy). The logical rules of Figure 1, except the (∀2
E)/(∃2

I)-rules, are
adequate.

Proof. The proof, by case analysis, is essentially the same as the usual adequacy proof for
HA2, since none of the instructions involved in the typing rules allows to change the value
of the state.

In each case, we write Γ for the typing context, ρ for a valuation closing all the considered
formulas, s for the considered state and σ for a substitution such that (σ; s)
 ρ(Γ).

(Ax). Directly from the assumption that (σ; s)
 ρ(Γ).

(→I). By assumption, for any substitution σ′ such that (σ′; s)
 ρ(Γ), x : ρ(A), we have

that (σ(t); s) ∈ |B|Sρ . We have to prove that (λx.σ(t); s) ∈ |A → B|Sρ . Let then u be

a term such that (u; s) ∈ |A|Sρ . By definition, we have λx.σ(t)u s↓s σ(t)[u/x]. Since

σ(t)[u/x] = (σ, x := u)(t) and (σ, x := u; s)
 ρ(Γ, x : A), we obtain (σ(t)[u/x]; s) ∈ |B|Sρ .

We conclude that (λx.σ(t)u; s) ∈ |B|Sρ by anti-reduction.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:15

(→E). By assumption, we have that (σ(t); s) ∈ |A → B|Sρ and (σ(u); s) ∈ |A|Sρ . By the

definition of |A→ B|Sρ , we obtain that σ(t u) = σ(t)σ(u) ∈ |B|Sρ .

(∧I). By assumption, (σ(t1); s) ∈ |A1|Sρ and (σ(t2); s) ∈ |A2|Sρ . For any i ∈ {1, 2} we have

that πi(σ(t1, t2)) = πi(σ(t1), σ(t2)) s↓s σ(ti), where the latter belongs to |Ai|Sρ . Then, by

anti-reduction πi(σ(t1, t2)) ∈ |Ai|Sρ and hence σ(t1, t2) ∈ |A1 ∧A2|Sρ .

(∧1
E). By assumption, we have that (t; s) ∈ |A1 ∧ A2|Sρ , which entails by definition that

(π1(t); s) ∈ |A1|Sρ . The case (∧2
E) is similar.

(∃1
I). By assumption, there exists n ∈ N such that (t; s) ∈ |A[x := n]|Sρ = |A|ρ,x7→n∗ . The

result then follows from the fact that |A|ρ,x 7→n∗ ⊆
⋃
f∈NS |A|ρ,x 7→f = |∃x.A|Sρ .

(∀1
E). By assumption, (t; s) ∈

⋂
f∈NS |A|ρ,x 7→f . The result follows directly from the fact

that
⋂
f∈NS |A|ρ,x 7→f ⊆ |A|ρ,x7→n∗ .

(∀1
I). By assumption, (t; s) ∈ |A|ρ′ for any valuation ρ′ closing A which, since x does not

occur in Γ, can freely map x to any individual in NS. In other words, (t; s) ∈
⋂
f∈NS |A|ρ,x7→f .

The case for (∀2
I) is similar.

(∼=). Directly from Proposition 4.7.

Remark 4.11. Let us explain why the (∀2
E)-rule is not adequate in general (the same

argument applies to the (∃2
I)-rule). As emphasized at the beginning of this section, we

interpret predicates by functions from Nk to SAT, while the truth values of formulas
may vary in the set of functions from (NS)k to SAT. Theorem 4.16 will make this more
precise: internal formulas correspond to functions from Nk to SAT while external formulas
correspond to functions from (NS)k to SAT. Therefore, in general we cannot substitute
a second-order variable by any formula. Indeed, in the second-order elimination rule (for
universal quantifiers) variables can only be instantiated by internal formulas. Moreover,
if the formula B that we want to substitute is a proposition (i.e. if its arity k is equal to
0), then the substitution is valid since the interpretations of internal and external formulas
coincide. This means that we could have chosen to work with impredicative encodings of
the conjunction (or other connectives) as in the Russell-Prawitz translation [Pra65]. Indeed,
such an encoding relies on the use of propositions, which are thus compatible with the
elimination rule:

A ∧B , ∀X.(A→ B → X)→ X.

Remark 4.12. We would like to attract the reader’s attention to the fact that our realiz-
ability interpretation is grounded in the elimination rules for the connectives. While this
choice may not be so meaningful in a pure intuitionistic setting, here the fact that our
realizers may perform some effectful computations makes this choice relevant. Indeed, the
other possibility would have been to require from a realizer of A ∧B to be a term reducing
to a pair of realizers, forcing the effectful computations to be done “right away”, which
could in particular make the value of the state evolve. In turn, our definition delays such
computations further, which allows us to reason within the same state before eventually

7:16 B. Dinis and É. Miquey Vol. 19:2

reducing the term (and thus performing the effect). This technicality turns out to be crucial
in some proofs in the sequel, in particular for defining the realizer of LLPOst in Section 6.

We show that rec realizes a formula that emulates its former typing rule by using
quantifiers relativized with a value restriction.

Proposition 4.13. We have rec � ∀X.X(0)→ ∀{N}x.(X(x)→ X(S(x)))→ ∀{N}x.X(x).

Proof. Let X : N→ SAT be a predicate, s ∈ S be a state, f ∈ NS be a natural number, u0

and uS be terms and V be a value such that

- (u0; s) ∈ X(0),
- (uS ; s) ∈ |∀Ny.(X(y)→ X(S(y)))|SX 7→X
- (V ; s) ∈ |Nat(f)|S.

The latter implies that V = sn0 where n = f(s). Besides, recall that by definition we have
|X(f)|SX 7→X = X@(f) = {(t; s) ∈ X(f(s))} = X(n). Let us prove, by induction on n, that
rec u0 uS n ∈ X(n).

• If n = 0, then we have that rec u0 uS t
s↓s rec u0 uS 0 s↓s u0, the result follows by anti-

reduction from the hypothesis on u0.
• If n = S(m), then we have that rec u0 uS (sm) s ↓s uSm (rec u0 uSm). By induction

hypothesis, we have that (rec u0 uSm; s) ∈ X(m). The result thus follows (by anti-
reduction) from the hypothesis on uS .

Remark 4.14. Regarding the necessity of restricting the relativization of quantifiers to
values, the proof of Proposition 4.13 is enlightening. Indeed, if instead of a value V we were
only given a term in |Nat(f)|sρ, by definition this term may change the value of the state, say
to some s′, before reducing to the value of f(s′). This would break the proof since nothing
is assumed on the realizers u0 and uS in this new state s′.

4.3. Glueing. An important property of our interpretation (which also reflects a similar
property in the Lightstone-Robinson construction) is that the interpretation of internal
formulas can be decomposed as the product of its slices (Theorem 4.16). In other words,
internal formulas can only access information in the current state. In particular, and as
expected, this means that it is impossible to express standardness by means of internal
formulas. To state this formally, we first define the restriction of formulas and truth values
with respect to a slice.

Definition 4.15. Given an internal formula A, we define A
s

as the formula whose individuals
are all applied in s. Formally, it amounts to replacing each individual by the standard
individual with which it coincides in the state s:

X(e1, ..., ek)
s
, X((e1(s))∗, . . . , (ek(s))

∗)

A→ B
s
, A

s → B
s

{Nat(e)} 7→ B
s
, {Nat((e(s))∗)} 7→ B

s

A ∧Bs
, A

s ∧Bs

∀x.As
, ∀x.As

∃x.As
, ∃x.As

∀X.As
, ∀X.As

∃X.As
, ∃X.As

Theorem 4.16 (Glueing). For any internal formula A and valuation ρ closing A, we have

that (t; s) ∈ |A|Sρ ⇔ t ∈ |As|sρ.
Proof. The proof is by induction on the structure of A.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:17

X(e1, ..., ek). By Definition 4.2, we have

(t; s) ∈ |X(e1, ..., ek)|sρ ⇔ (t; s) ∈ ρ(X)@(Je1Kρ, ..., JekKρ)
⇔ t ∈ (ρ(X))s(Je1Kρ(s), . . . , JekKρ(s))

⇔ t ∈ |X((e1(s))∗, . . . , (ek(s))
∗)|sρ ⇔ t ∈ |X(e1, ..., ek)

s|sρ.

A→ B. We have

(t; s) ∈ |A→ B|Sρ ⇔ ∀(u; s) ∈ |A|Sρ .(t u; s) ∈ |B|Sρ
(HI)⇔ ∀u ∈ |As|sρ.t u ∈ |B

s|sρ ⇔ t ∈ |A→ B
s|sρ.

{Nat(e)} 7→ B. The proof is similar to the case A→ B.

(t; s) ∈ |{Nat(e)} 7→ B|Sρ ⇔ (t n; s) ∈ |B|Sρ where n = e(s)

(HI)⇔ (t n; s) ∈ |Bs|sρ where n = e(s) ⇔ t ∈ |{Nat(e)} 7→ B
s|sρ.

A1 ∧A2. We have

(t; s) ∈ |A1 ∧A2|Sρ ⇔ (π1(t); s) ∈ |A1|Sρ ∧ (π2(t); s) ∈ |A2|Sρ
(HI)⇔ (π1(t); s) ∈ |A1

s|Sρ ∧ (π2(t); s) ∈ |A2
s|Sρ

⇔ (t; s) ∈ |A1 ∧A2
s|Sρ .

∀x.A. We have

(t; s) ∈ |∀x.A|Sρ ⇔ ∀f ∈ NS.(t; s) ∈ |A|Sρ
(HI)⇔ ∀f ∈ NS.t ∈ |As|sρ ⇔ t ∈ |∀x.As|sρ.

∃x.A. We have

(t; s) ∈ |∃x.A|Sρ ⇔ ∃f ∈ NS.(t; s) ∈ |A|Sρ
(HI)⇔ ∃f ∈ NS.t ∈ |As|sρ ⇔ t ∈ |∃x.As|sρ.

The cases of the second-order quantifiers are similar to the corresponding first-order
quantifiers.

Let B(x) be a formula whose only free variable is x, and ρ a valuation closing B. In
general, the function FB that associates to any individual f the truth value |B(f)|Sρ is a

function from NS to SAT. If B is internal, by the glueing theorem, to determine FB it is
enough to know its value for standard individuals. This means that we only need to know a
function from N to SAT. As such, we can now formally state the intuition developed in
Remark 4.11.

Proposition 4.17. The elimination rule for the 2nd-order universal quantification and the
introduction rule for the 2nd-order existential quantification

Γ ` t : ∀X.A
Γ ` t : A[X(x1, ..., xk) := B]

(∀2E)
Γ ` t : A[X(x1, . . . , xn) := B]

Γ ` t : ∃X.A
(∃2I)

are adequate for any internal formula B whose only free variables are (x1, ..., xk).

7:18 B. Dinis and É. Miquey Vol. 19:2

Proof. This essentially follows from the glueing theorem and Definition 4.2. Indeed, recall
that by definition we have |∀X.A|Sρ =

⋂
F :Nk→SAT |A|Sρ,X 7→F . Let us define the following

function from Nk to SAT:

F : (n1, ..., nk) 7→ |B[x1 := n∗1, ..., xk := n∗k]|Sρ

We can prove by an easy induction on A that |A|Sρ,X 7→F = |A[X(x1, ..., xk) := B]|Sρ , from

which the proposition follows trivially. The only interesting case is when A ≡ X(x1, ..., xn).
Let us write f1, ..., fk for Jρ(x1)K, ..., Jρ(xk)K. We have:

|X(x1, ..., xn)|Sρ,X 7→F = F@(f1, . . . , fk)

= {(t; s) : t ∈ Fs(f1(s), . . . , fk(s))} (by Def. 4.2)

=
⋃
s∈S
Fs(f1(s), . . . , fk(s))× {s}

=
⋃
s∈S
|B[x1 := f1, ..., xk := fk

s|sρ × {s} (by def. of F)

= |B[x1 := f1, ..., xk := fk]|Sρ = |B|Sρ (by Prop. 4.16)

Remark 4.18. Observe that external formulas such as st(x) → ⊥ cannot be defined by
glueing. Consider for instance a nonstandard element τ . Then |st(τ)→ ⊥|S = Λ×S, while

for any state s ∈ S we have |st(τ)→ ⊥s|s = |st(τ(s)∗)→ ⊥|s = |> → ⊥|s = ∅.

It is well-known that the comprehension scheme CAB , ∃X.∀x.(X(x)⇔ B) is a logical

consequence of the elimination principle ElimB
A , (∀X.A) ⇒ A[X(x) := B] (by taking

A = ∃Y.∀x.(Y (x) ⇔ X(x))). Since we have the (∀2
E)-rule restricted to internal formulas

B, the comprehension scheme is also valid for these formulas. In particular, this implies
Standardization for internal formulas, i.e. for B an internal formula, the following holds

∀stX.∃stY.∀stz.(Y (z)⇔ X(z) ∧B(z)).

Of course, the comprehension scheme does not hold for external formulas, so the
relativization on the quantifiers in Standardization is in this sense necessary. We will come
back to Standardization in Section 7.1.

4.4. The induced evidenced frame. Before studying the properties of this interpretation,
we shall connect it with the usual algebraic tools to deal with realizability interpretation,
in order to better emphasize its structure and peculiarities. In recent work, Cohen et al.
have been introducing a new framework to capture the algebraic structure of realizability
interpretations, which they named evidenced frames [CMT21]. These have the benefit of
being generic enough to easily encompass effectful interpretation, while uniformly inducing
triposes (and thus toposes), hence a model of higher-order logic. We show here how
our interpretation fits the picture, hinting in particular at the possibility to extend our
interpretation to deal with higher-order logic (which is out of the scope of this paper, as
here we want to focus on the second-order fragment only).

We start by recalling the definition of evidenced frame.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:19

Definition 4.19 [CMT21]. An evidenced frame is a triple (Φ, E, · ·−→ ·), where Φ is a set of

propositions, E is a collection of evidence, and φ1
e−→ φ2 is a ternary evidence relation on

Φ× E × Φ, along with the following:

Reflexivity: There exists evidence eid ∈ E:

• ∀φ. φ eid−→ φ
Transitivity: There exists an operator · ; · ∈ E × E → E:

• ∀φ1, φ2, φ3, e, e
′. φ1

e−→ φ2 ∧ φ2
e′−→ φ3 =⇒ φ1

e ; e′−−→ φ3

Top: A proposition > ∈ Φ such that there exists evidence e> ∈ E:

• ∀φ. φ e>−→ >
Conjunction: An operator ∧ ∈ Φ× Φ→ Φ such that there exists evidence efst, esnd ∈ E

and an operator ⦉·,·⦊∈E×E→E:

• ∀φ1, φ2. φ1 ∧ φ2
efst−−→ φ1 • ∀φ, φ1, φ2, e1, e2. φ

e1−→ φ1 ∧ φ
e2−→ φ2 =⇒ φ

⦉e1,e2⦊−−−−→ φ1 ∧ φ2

• ∀φ1, φ2. φ1 ∧ φ2
esnd−−→ φ2

Universal Implication: An operator ⊃ ∈ Φ × P(Φ) → Φ such that there exists an opera-
tor λ ∈ E → E and evidence eeval ∈ E:

• ∀φ1, φ2, ~φ, e. (∀φ ∈ ~φ. φ1 ∧ φ2
e−→ φ) =⇒ φ1

λe−→ φ2⊃ ~φ
• ∀φ1, ~φ, φ ∈ ~φ. (φ1⊃ ~φ) ∧ φ1

eeval−−→ φ

The definition of the evidenced frame induced by our stateful interpretation better
highlights its core structure. First, as shown by the interpretation of second-order variables,
propositions are defined as truth values, that is as saturated sets of terms-with-states.
Evidences, in turn, are defined as universal realizers, i.e. λ-terms, with the corresponding
evidence relation

S1
t→ S2 , t � ∀(u; s) ∈ S1.(t u; s) ∈ S2 (S1, S2 ∈ SAT, t ∈ Λ)

Proposition 4.20. The tuple (SAT,Λ, · ·→ ·) defines an evidenced frame.

Proof. We give the evidence and constructors on propositions for each case. We mostly
follow the realizability interpretation given in Definition 4.5

Reflexivity: It is clear that eid , λx.x � S → S for any S ∈ SAT.
Transitivity: For any S1, S2, S3 ∈ SAT if t1 � S1 → S2 and t2 � S2 → S3, it is clear that
t1; t2 , λx.t2 (t1 x) � S1 → S3.

Top: Let > , Λ×S ∈ SAT. Then we have e> , λx.x � S → > for any S ∈ SAT.
Conjunction: Let S1 ∧ S2 , {(t; s) ∈ Λ×S : (π1(t); s) ∈ S1 ∧ (π2(t); s) ∈ S2

)
} for S1, S2 ∈

SAT. Then it is then straightforward to check that ⦉e1, e2⦊ , λx.(e1 x, e2 x), where

efst , π1, esnd , π2 define the expected evidences.

Universal Implication: For S1 ∈ SAT and ~S ∈ P(SAT), we define the implication of

propositions by S1⊃ ~S , {(t; s) ∈ Λ × S : ∀u.
(
(u; s) ∈ S1 ⇒ (t u; s) ∈

⋂
S∈~S S

)
}. Let

λe , λxy.e (x, y) and eeval , λx.(π1(x)) (π2(x)). Let S1, S2 ∈ SAT and ~S ∈ P(SAT) be

saturated sets. It is straightforward to show that eeval � (S1⊃ ~S)∧S1 → S for any S ∈ ~S.

We prove that if e ∈ Λ is such that (∀S ∈ ~S. e � S1 ∧ S2 → S) then λe � S1 → (S2⊃ ~S).
Let (t1; s) ∈ S1, then λe t1

s↓s λy.e (x, y). Clearly, if (t2; s) ∈ S2, λy.e (x, y) t2
s↓s e (t1, t2).

Since for any S ∈ ~S the last term belongs to S, we can conclude by anti-reduction that

λe � S1 → (S2⊃ ~S).

7:20 B. Dinis and É. Miquey Vol. 19:2

Proposition 4.20 implies, in particular, that our interpretation also induces a tripos and
a topos, by following the method described in [CMT21]. In the following sections, we pay
attention to nonstandard reasoning principles for which we can define universal realizers, as
these are the evidences for our interpretation (as shown by Proposition 4.20).

5. Nonstandard principles in realizability with slices

5.1. Natural numbers. In Section 4, we considered a setting with a value restricted variant
of the Nat(·) predicate. Nonetheless, we can still assert that an expression is a natural
number through the formula

Nat′(e) , ∀X.({Nat(e)} 7→ X)→ X.

As seen below, realizers of this formula will give access to the expected computations
for natural numbers.

Remark 5.1. Observe that the language of HA2 does not express the existence of specific
nonstandard elements, e.g. δ is not in the language. However, to refer to some nonstandard
element τ , we can always consider a valuation that maps a variable x to τ . With abuse
of notation, in the remainder of this paper, we will write nonstandard elements directly in
formulas as if they were in the language. Also, we will use the notation † to refer to an
arbitrary λ-term with no further assumption.

Using an argument similar to Proposition 3.12, one can show that for any individual
f ∈ NS, if t is a term such that (t; s) ∈ |Nat′(f)|S, then one can actually compute out
of t (without changing the value of the state) the value of f(s) ∈ N. In other words, t

is an effect-free term producing f(s). This is to be compared with Nat(f), for which the
requirement for its truth value to be saturated would have entailed its interpretation to
reduce to a natural number f(s′) in a possibly different state.

Proposition 5.2. Let f ∈ NS and s ∈ S. If t is a term such that (t; s) ∈ |Nat′(f)|S, then
t λx.x s↓s n, where n = f(s).

Proof. Let us define X , {(t; s′) : t s↓′ sn}. This set is clearly saturated, and it is easy
to see that (λx.x; s) ∈ |{Nat(f)} 7→ X|S (since λx.x n s ↓s n). Therefore, we have that
t ∈ |({Nat(f)} 7→ X)→ X|S and then (t λx.x; s) ∈ X, that is t λx.x s↓s n.

We now show that (by-value) natural numbers, i.e. Nat′, contain 0, and are closed under
the successor and recursion for internal formulas.

Proposition 5.3. Let A be an internal formula. We have

(1) λx.x 0 � Nat′(0)

(2) λxy.y (sx) � ∀{N}x.Nat′(S(x))

(3) rec � A(0)→
(
∀{N}y.(A(y)→ A(S y))

)
→ ∀{N}x.A(x))

Proof. Easy realizability proofs by anti-reduction.

(1) Follows from the definition of Nat′(0): if X ∈ SAT is a saturated set, s a state and t
a term such that (t; s) ∈ |{Nat(0)} 7→ X|S, we have (λx.x 0) t s↓s t 0 ∈ X. Since X is
saturated, we conclude by anti-reduction.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:21

(2) Let f ∈ NS, X be a saturated set, s be a state and t be a term such that (t; s) ∈
|{Nat(Sf)} 7→ X|Sρ . Let us write n , f(s). Then (λxy.y (sx))n t s ↓s t (sn). Since

sn = n+ 1 = S(f)(s), we get that t (sn) ∈ X and we conclude by anti-reduction.
(3) Directly from Propositions 4.13 and 4.17.

The interpretation now witnesses the existence of new elements. The canonical example
is the diagonal, i.e. the function δ : n 7→ n. Indeed, the diagonal is a nonstandard natural
number which is realized by the get instruction. We first show a lemma concerning the
storage operator T (from Definition 3.13) in this new context.

Lemma 5.4. Let s ∈ S and t, u be terms.

(1) For any n ∈ N, if u s↓s n, then T t u s↓s t n.

(2) For any f ∈ NS, if u s↓s f(s) and (t; s) ∈ |∀{N}x.A(x)|S, then T t u ∈ |A(f)|S.

Proof. The first part is an easy induction on n, and the second part follows from the first by
anti-reduction.

(1) By induction on n.
• If n = 0, we have

T t u s↓s rec (λy.y 0) (λxyz.y (λx.z (sx)))u t
s↓s rec (λy.y 0) (λxyz.y (λx.z (sx))) 0 t
s↓s (λy.y 0) t s↓s t 0.

• If s = S(n), we have

T t u s↓s rec (λy.y 0) (λxyz.y (λx.z (sx)))u t
s↓s rec (λy.y 0) (λxyz.y (λx.z (sx))) sn t
s↓s (λxyz.y (λx.z (sx)))n (rec (λy.y 0) (λxyz.y (λx.z (sx)))n) t
s↓s (rec (λy.y 0) (λxyz.y (λx.z (sx)))n) (λx.t (sx))
s↓s (λx.t (sx))n s↓s t sn,

where we used the induction hypothesis to obtain the penultimate reduction.
(2) By definition, it holds that (t; s) ∈ |{Nat(f)} 7→ A(f)|S. By part 1, we obtain that

T t u s↓s t f(s), hence the result follows by anti-reduction.

Proposition 5.5 (ENS0). We have that

(1) † � ¬st(δ)
(2) † � ∃x.¬st(x)
(3) λx.T x get � Nat′(δ)

(4) λx.T x get † � ∃{N}x.¬st(x)

Proof.

(1) By definition, |st(δ) 7→ ⊥|S = Λ×S, which entails the result.
(2) Obvious from part 1.
(3) Follows from the fact that δ(s) = s and that by part 1 of Lemma 5.4, for any t.

(λx.T x get) t s↓s T t get s↓s t s

(4) The proof is similar to the proof of Proposition 3.14. Let X ∈ SAT be a predicate and

u be a term such that (u; s) ∈ |∀{N}x.¬st(x)→ X|Sρ . In particular, the latter implies that

7:22 B. Dinis and É. Miquey Vol. 19:2

for any term t, it holds that (u s t; s) ∈ X. Since X is saturated, the result then follows
from the fact that T u get t s↓s u s t which is a consequence of part 1 of Lemma 5.4.

Part 2 in Proposition 5.5 is sometimes referred to as the ENS0 (existence of nonstandard
elements) principle (e.g. in [BBS12]). As a consequence of Proposition 4.17, Leibniz equality
is only compatible with the (∀2

E)-rule restricted to internal formulas. In our setting, this
encoding only reflects equality in the current state, i.e. a local knowledge of individuals
(slice by slice), while the usual notion of equality (for NS) requires a global knowledge (on
all the slices). If A(x) is an external formula, we cannot hope to have an internal definition
of equality such that its elimination principle x = y → A(x)→ A(y) is valid.

Example 5.6. Consider an individual f , equal to 1 everywhere except for some state s0

where it is equal to 0.
For any state s 6= s0, we have (λx.x; s)
 1∗ = f . However, if we consider the

formula A(x) , (st(x) → ⊥) → ⊥, then, for s 6= s0, we have (λx.x †; s) ∈ |A(1)| and
|A(f)|s = |(⊥ → >)→ ⊥|s. Thus, if (t; s) is a realizer of

∀Z.(Z(1∗)→ Z(f))→ A(1∗)→ A(f),

we immediately get that (t(λx.x)(λx.x)(λx.x †); s)
 ⊥.

Nonetheless, the elimination of Leibniz equality is realizable for standard individuals or
for internal formulas.

Proposition 5.7. Let f and g be individuals in NS and let A(x) be a formula. Then

(1) λxyz.z � st(f)→ st(g)→ (∀Z.(Z(f)→ Z(g)))→ A(f)→ A(g)
(2) If A(x) is internal, then λx.x � (∀Z.(Z(f)→ Z(g)))→ A(f)→ A(g)

Proof. (1) If either f or g is not standard, the result is trivial. Assume that f and g are
standard. The case f = g is trivial, and if f 6= g, we have |(∀Z.(Z(f) 7→ Z(g))|S =
|> 7→ ⊥|S.

(2) The result easily follows from Proposition 4.17.

5.2. Nonstandard reasoning principles. In this section, we prove some properties which
are usual in frameworks that use nonstandard analysis: Transfer, Overspill, External
Induction, Idealization, etc.

Theorem 5.8 below indicates that the Transfer property (for internal formulas) is devoid
of computational content. This is a somewhat reassuring fact: properties that are true for
standard individuals are automatically true for all individuals.

Theorem 5.8 (Transfer). For any internal formula A we have:
(1)

⋂
f∈NS |A|Sx7→f =

⋂
n∈N |A|Sx 7→n∗

(2) λxy.x � ∀x.A(x)→ ∀stx.A(x)
(3) λx.x † � ∀stx.A(x)→ ∀x.A(x)

(4)
⋃
f∈NS |A|Sx 7→f =

⋃
n∈N |A|Sx 7→n∗

(5) λx.(†, x) � ∃x.A(x)→ ∃stx.A(x)
(6) λx.π2(x) � ∃stx.A(x)→ ∃x.A(x)

Proof. Parts 1 and 4 follow from the glueing theorem. Indeed, we have:⋂
f∈NS |A|Sx 7→f =

⋂
f∈NS

⋃
s∈S |A

s|Sx 7→f × {s}
=

⋂
f∈NS

⋃
s∈S |A

s|Sx 7→(f(s))∗ × {s}
=

⋂
n∈N

⋃
s∈S |A

s|Sx 7→n∗ × {s}
=

⋂
n∈N |A|Sx 7→n∗

(by glueing)
(by def. of · s)

(by glueing)

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:23

The proof for part 4 is analogous.
Parts 2 and 3 (resp. 5, 6) are direct consequences of the first (resp. fourth) part.

For instance, for part 3, let s be a state and u be a term such that (u; s) ∈ |∀stx.A(x)|S.
Recalling that |st(n∗)|S = Λ×S for any n ∈ N, we have:

∀f ∈ NS, v ∈ Λ.(v; s) ∈ |st(f)|S ⇒ (u v; s) ∈ |A(x)|Sx 7→f
⇒ ∀n ∈ N, v ∈ Λ.(u v; s) ∈ |A(x)|Sx 7→n∗
⇒ ∀v ∈ Λ.(u v; s) ∈

⋂
n∈N |A(x)|Sx7→n∗

⇒ ∀v ∈ Λ.(u v; s) ∈
⋂
f∈NS |A(x)|Sx 7→f

where the last implication is obtained using part 1. In particular, (u t; s) belongs to |∀x.A(x)|S
and by anti-reduction, so does ((λx.x t)u; s).

As expected, Transfer does not hold for all formulas. A counter-example is given in the
next proposition by the external formula stating that all individuals are (not not) standard.

Proposition 5.9. Let A(x) denote the formula ¬st(x). Then, there is no realizer for the
formulas ∀stx.¬A(x)→ ∀x.¬A(x) and ∃x.A(x)→ ∃stx.A(x).

Proof. Both statements follow from the definitions. For instance, for the second formula,
observe that ⋃

f∈NS

{(t; s) : (π1(t); s) ∈ |st(f)|S ∧ (π2(t); s) ∈ |¬st(f)|S} = ∅

since for any f ∈ NS, either |st(f)|S or |¬st(f)|S is empty. Consequently, we have
|∃stx.A(x)|S = ∅ while |∃x.A(x)|S = |>|S = Λ×S.

The principle of External Induction [Nel87] allows to prove that a certain property
is valid for all standard natural numbers. For instance, the assertion stating that every
nonstandard element is larger than all standard natural numbers4. We show that in our
context, this principle can be realized using the rec instruction.

Proposition 5.10 (External induction). For any formula A(x) whose only free variable is
x

rec � A(0∗)→ ∀{st}x.(A(x)→ A(S(x)))→ ∀{st}x.A(x).

Proof. Let s be a state, n ∈ N be a natural number and u0, uS be terms and V be a value

such that (u0; s) ∈ |A(0∗)|S, (uS ; s) ∈ |∀sty.(A(y) → A(S(y))|S and (V ; s) ∈ |Nat(n∗)|S.
The latter implies that V = n. Let us prove, by induction on n, that

rec u0 uS n ∈ |A(n∗)|S

• If n = 0, then we have that rec u0 uS 0 s↓s u0, the result follows by anti-reduction from
the hypothesis on u0.
• If n = S(m), then we have that rec u0 uS (sm) s ↓s uSm (rec u0 uSm). By induction

hypothesis, we have that (rec u0 uSm; s) ∈ |A(m)|S. The result thus follows (by anti-
reduction) from the hypothesis on uS .

The next two propositions show that one cannot separate standard natural numbers
from nonstandard natural numbers using an internal formula [Rob66]. This fact is usually
formalized by the properties of Overspill and Underspill. We first show that, in our context,
Overspill can be realized by combining the realizers for ENS0 and for the Transfer principle.

4Actually, this requires to consider a quotiented definition of the standardness predicate, see Proposition 7.1.

7:24 B. Dinis and É. Miquey Vol. 19:2

Proposition 5.11 (Overspill). For any internal formula A, we have

λx.(†, x †) � ∀stx.A(x)→ ∃x.(¬st(x) ∧A(x)).

Proof. Let (u; s)
 ∀stx.A(x). Let us show that ((λx.(t, x t))u; s)
 ∃x.(¬st(x) ∧ A(x)).
Following the proof of part 3 in Theorem 5.8, we obtain (u t; s)
 ∀x.A(x) and therefore
(u t; s)
 A(δ). By ENS0 (Proposition 5.5), we have (t; s)
 ¬st(δ). Finally, we obtain that
((t, u t); s)
 ∃x.(¬st(x) ∧A(x)) and we can conclude by anti-reduction.

The usual proof of Underspill is by contradiction, hence using classical logic, which we do
not have here. Nevertheless, we can obtain the following version in which a double-negation
occurs.

Proposition 5.12 (Underspill). For any internal formula A, we have

λxy.(λz.y (†, z))(x †) � (∀x.¬st(x)→ A(x))→ ¬¬∃stx.A(x).

Proof. Let s be a state, and u, v be terms such that (u; s)
 ∀x.¬st(x) → A(x) and
(v; s)
 ¬∃stx.A(x). Using the adequacy of congruence rules (Proposition 4.7), observe that
(v; s)
 ∀x.((st(x) ∧A(x))→ ⊥), and by currying

(λwz.v (w, z); s)
 ∀stx.A(x)→ ⊥
Since A is internal, by Transfer, we get

(λz.v (t, z); s)
 ∀x.A(x)→ ⊥
By the hypothesis on u and ENS0, we have (u t; s)
 A(δ), hence

(λz.v (t, z))(u t); s)
 ⊥,
and we can conclude by anti-reduction.

5.3. Idealization. We first extend the realizability interpretation to take into account
relations R : N2 → N on the natural numbers:

|R(e1, e2)|Sρ , {(t; s) : R(Je1Kρ(s), Je2Kρ(s)) holds}.
This coincides with the interpretation of the relation R through a second-order variable and
the corresponding semantic relation from N2 to SAT in the interpretation.

Let us now briefly illustrate the main idea behind the proof of Idealization by showing
that there exists a (nonstandard) natural number greater than or equal to any standard
number. The usual proof relies on the fact that δ is such a number, since for any standard
number n, in any slice greater than or equal to n, the relation n ≤ δ holds. In our setting,
we use the set instruction to reach such a state.

Proposition 5.13 (Diagonalization). We have λz.T z get (λxy. set y †) � ∃{N}x.∀{st}y.y ≤ x.

Proof. Let s be an arbitrary state. Following the proof of part 2 of Lemma 5.4, it is clearly
enough to prove that (λxy. set y †; s)
 ∀{st}y.y ≤ δ (the rest of the proof is exactly the same

replacing ¬st(δ) with ∀{st}y.y ≤ δ). Let n ∈ N and t an arbitrary term. Then

(λxy. set y t) t n s↓s set n t s↓s′ t
where s′ = max(n, s). In particular, n ≤ δ(s′) holds, hence (t; s′) ∈ |n ≤ δ|S and we can
conclude by anti-reduction.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:25

Consider a term loop+ such that5 for any state s ∈ S it holds that loop+ s↓s incr loop+,
where incr , λx. set (s get)x. Then for any natural number n ∈ N and any state s ∈ S,

loop+ s↓s′ loop+ where s′ ≥ n. Since for any s′ ≥ n, (†; s′) ∈ |n < δ|S, by anti-reduction we
obtain the following Proposition.

Proposition 5.14. We have λw.loop+ � ∀stx.x < δ.

Observe that here the value of n is not required, so the quantifier does not need to
be relativized. Yet, the computation never terminates and we do not even know when the
computation reaches a correct state.

As mentioned above, the idea to prove the general case of Idealization is very similar.
If for any n ∈ N there exists τn ∈ N such that for any m ≤ n, R(τn,m) holds, we can

consider the nonstandard natural number τ , (τs)s∈S ∈ NS. Using a witness extraction
mechanism, as provided by the next proposition, we can compute τ from any realizer of
∀{st}n.∃{st}x.∀{st}y.(y ≤ n→ R(x, y)).

Proposition 5.15 (Witness extraction). For any formula A, any valuation ρ closing ∃x.A,

any state s and any term t such that (t; s) ∈ |∃{N}x.A|Sρ , there exists a natural number f ∈ NS

and a term u such that (u; s) ∈ |A|Sρ,x 7→f and t (λxy.(x, y)) s↓s (f(s), u).

Proof. Assume that (t; s) ∈ |∃{N}x.A|Sρ . By definition, for any X ∈ SAT and any (v; s) ∈
|∀{N}x.(A→ X)|ρ,X 7→X, we have that (t v; s) ∈ X. Let us define the set

X , {(w; s′) ∈ Λ×S : ∃f ∈ NS.∃u ∈ Λ. w s′↓s (f(s), u) ∧ (u; s) ∈ |A|Sρ,x7→f},

which is obviously saturated. Clearly (λxy.(x, y); s) ∈ |∀{N}x.(A→ X)|Sρ,X 7→X since for any

f ∈ NS and any (u; s) ∈ |A|Sρ,x 7→f , it holds that (λxy.(x, y)) f(s)u s↓s (f(s), u) ∈ X. We

conclude that (t (λxy.(x, y)); s) ∈ X, i.e. t (λxy.(x, y)) s↓s (f(s), u).

The term

ideal , λx.λy.T y (π1(T (x †) get (λxy.(x, y)))) (λyz. set z y)

is a realizer for the Idealization principle. Indeed, in any state s the first component of ideal
computes τ(s) (using Proposition 5.15), while the second component increases the state to
ensure the validity of the relation (as in Proposition 5.13).

Theorem 5.16 (Idealization). We have:

ideal � ∀{st}n.∃{N}x.∀{st}y.(y ≤ n→ R(x, y))→ ∃{N}x.∀{st}y.R(x, y).

Proof. Let s be any state and u a term such that

(u; s) ∈ |∀{st}n.∃{N}x.∀{st}y.(y ≤ n→ R(x, y))|S.
By part 2 of Lemma 5.4, this entails that

(T (u †) get; s) ∈ |∃{N}x.∀{st}y.(y ≤ s→ R(x, y))|Sρ .

By Proposition 5.15, we know that there exists a natural number fs ∈ NS and a
term vs ∈ Λ such that T (u †) get (λxy.(x, y)) s↓s (fs(s), vs) and (vs; s) ∈ |∀{st}y.(y ≤ s →
R(fs, y))|S. The latter implies that for any m ∈ N such that m ≤ s and any term t, it

5For instance, we can define loop+ , Y incr, where Y is the usual fixed-point combinator of the λ-calculus.

7:26 B. Dinis and É. Miquey Vol. 19:2

holds that (vs tm t; s) ∈ |R(fs,m)|S and hence R(fs(s),m) holds (since |R(fs,m)|s = {(t; s) :
R(fs(s),m) holds}).

Consider the (possibly nonstandard) individual τ ∈ NS defined by τ(s) = fs(s) .
We have

ideal u s↓s λy.T y (π1(T (u †) get (λxy.(x, y)))) (λyz. set z y)

hence, by part 2 of Lemma 5.4, to conclude by anti-reduction it suffices to prove that

(1) π1(T (u †) get (λxy.(x, y))) s↓s τ(s). Indeed, we know that this term reduces as follows:

π1(T (u †) get (λxy.(x, y))) s↓s π1(fs(s), vs)
s↓s fs(s)

and by definition τ(s) = fs(s).

(2) (λyz. set z y; s)
 ∀{st}y.R(τ, y). To prove this, it suffices to show that for any m ∈ N
and any t ∈ Λ, we have ((λyz. set z y) tm; s)
 R(τ,m∗). With s′ , max(s,m), we have

that (λyz. set z y) tm s↓s set mt s↓s′ t. By construction, since m ≤ s′, we know that
R(τ(s′),m) holds, hence (t; s′) ∈ |R(τ(s′),m)|Sρ and we conclude by anti-reduction.

6. LLPO

In this section we give a realizer for a nonstandard version of the Lesser Limited Principle
of Omniscience:

LLPO := ∀x.∀y.(A(x) ∨B(y))→ (∀x.A(x) ∨ ∀y.B(y))

This principle is a semi-intuitionistic principle, in the sense that it is seen as being noncon-
structive (it is indeed provably false in some intuitionistic theories, cf. [BR87, p. 4]) while
still being weaker than the full law of excluded middle.

6.1. LLPO in nonstandard arithmetic. We will consider a variant of the LLPO principle
in our setting, where the quantifiers are restricted to standard elements and the formulas A
and B are internal (where x (resp. y) does not occur in B (resp. in A)):

LLPOst := ∀{st}x.∀{st}y.(A(x) ∨B(y))→ (∀{st}x.A(x) ∨ ∀{st}y.B(y))

Let us give an overview of our computational interpretation for this principle, which will
rely on the several realizers introduced in Section 6.3 and described in Figure 2. Assume
that we are given, in a certain state, a realizer of the hypothesis

HA,B , ∀{st}x.∀{st}y.(A(x) ∨B(y)).

The main idea consists in turning this term into a realizer of

∀{st}z.(A≤z ∨B≤z),

where A≤z , ∀{N}x.x ≤ z → A(x).
Indeed, observing that the formula A≤z is internal, by Transfer and instantiation with δ

(or any other nonstandard element), the proposition x ≤ δ becomes trivially true for any
standard x and we get the expected conclusion

(∀{st}x.A(x)) ∨ (∀{st}y.B(y)).

In fact, this last step is the only step where we actually use nonstandard principles
(here Transfer and the existence of nonstandard elements). The rest of the proof, forgetting

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:27

all the relativizations to standard elements, would be valid in standard arithmetic. This is
reflected by the fact that we only use External Induction and properties of the disjunction.
In terms of realizers, this means that we will only use universal realizers that will never
manipulate the state.

To get a realizer of ∀{st}z.(A≤z ∨B≤z), we rely on External Induction (as the term taux

shows), the main difficulty lying in proving the induction step

∀{st}x.
(
A≤x ∨B≤x → A≤S(x) ∨B≤S(x)

)
.

To illustrate this step, let us consider the case where A≤x holds. To obtain the expected
conclusion, it is sufficient to show that A(S(x)) ∨B≤S(x) holds. This leads us to break the
symmetry between A and B by considering the formula

ΦA,B(x, y) , A(x) ∨B≤y.

But using our starting assumption, namely a realizer of ∀{st}x.∀{st}y.(A(x) ∨ B(y)),

for any standard x we can easily get ∀{st}y.ΦA,B(x, y) by external induction, and thus

∀{st}x.∀{st}y.ΦA,B(x, y) which is enough to conclude the whole proof. For the inductive

step ∀{st}y. (ΦA,B(x, y)→ ΦA,B(x, S(y))) of the latter induction, we reason by cases on the
induction hypothesis:

• if A(x) holds then the conclusion follows immediately,
• if B≤y holds, then we use the assumption to get either A(x) or B(S(y)), and again, in

both cases the conclusion follows.

This proof is a variation of [BBS12, Prop. 3.4], the main difference being that in our
context, we have access to concrete nonstandard elements (namely δ), and we can instantiate
a certain formula with δ instead of using the Idealization principle.

6.2. Disjunction. In order to define a realizer for LLPOst, we first need to extend our
language with disjunctions. We choose to rely on a primitive disjunction rather than on
a second-order impredicative encoding of disjunction as the latter would make the task of
finding realizers much more difficult without bringing additional strength to our setting.

We thus extend the languages of terms and formulas as follows:

Formulas A,B ::= ... | A ∨B
Terms t, u ::= ... | ι1(t) | ι2(t) | case t {ι1(x1) 7→ t1|ι2(x2) 7→ t2}

and the type system accordingly

Γ ` t : A1

Γ ` ι1(t) : A1 ∨A2
(∨1I)

Γ ` t : A2

Γ ` ι2(t) : A1 ∨A2
(∨2I)

Γ ` t : A1 ∨A2 Γ, xi : Ai ` ti : C

Γ ` case t {ι1(x1) 7→ t1|ι2(x2) 7→ t2} : C
(∨E)

We also extend the reduction system with one extra case to define contexts

C[] ::= ... | case [] {ι1(x1) 7→ t1|ι2(x2) 7→ t2}

and one additional reduction rule for this new operations

case ιi(t) {ι1(x1) 7→ t1|ι2(x2) 7→ t2} .β ti[t/xi]

7:28 B. Dinis and É. Miquey Vol. 19:2

Finally, we extend the realizability interpretation to include the case of disjunction. We
base the definition on the elimination rule of the disjunction (see Remark 4.12), as has been
done before for the other connectives:

|A1 ∨A2|Sρ , {(t; s) ∈ Λ×S : ∀t1, t2, S ∈ SAT.(
∀i ∈ {1, 2}.∀(ui; s) ∈ |Ai|Sρ .(ti[ui/xi]; s) ∈ S

)
⇒

(case t {ι1(x1) 7→ t1|ι2(x2) 7→ t2}; s) ∈ S}

Observe that glueing still holds by simply defining A ∨Bs
, A

s ∨Bs
.

Once more, we take advantage of the modularity of the realizability interpretation to get
the adequacy with respect with the type system extended with disjunction by only proving
the adequacy of the new typing rules (see Definition 4.8).

Proposition 6.1. The rules (∨1I), (∨2I) and (∨E) are adequate.

Proof. The adequacy of the rule (∨E) follows directly from the definition, by considering the
particular set S = |C|Sρ .

We now prove adequacy of the rule (∨1I). Assume that the typing judgment Γ ` t : A1

is adequate with respect to some state s ∈ S. To prove that the conclusion is adequate
with respect to the same state, let us consider ρ a valuation closing A1 ∨ B2 and Γ, σ a
substitution such that (σ; s)
 ρ(Γ) and let t1, t2 be two terms and S ∈ SAT be such that
for any (ui; s) ∈ |Ai|Sρ we have that (ti[ui/xi]; s) ∈ S. Since σ(ι1(t)) = ι1(σ(t)), we have

case (σ(ι1(t))) {ι1(x1) 7→ t1|ι2(x2) 7→ t2} s↓s t1[σ(t)/x1].

Using the hypotheses, we have that (σ(t); s) ∈ |A1|Sρ and therefore (t1[σ(t)/x1]; s) ∈ S. We
can conclude by anti-reduction.

As an illustration of the use of disjunction, we define below a term allowing us to
commute A and B in the premise of LLPOst. This term will be useful afterwards since
the proof mostly relies on two External Inductions in which the formulas A and B have
asymmetric roles.

Lemma 6.2. For any formulas A and B we have

t∨ �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x.∀{st}y.(B(x) ∨A(y))

where t∨ , λhzxwy. case (h z xw y) {ι1(h1) 7→ ι2(h1)|ι2(h2) 7→ ι1(h2)}.

Proof. Let s ∈ S be a state, (h; s)
 ∀{st}x∀{st}y.(A(x) ∨B(y)) and n,m ∈ N be two natural
numbers. We have

t∨ h † n̄ † m̄ s↓s case (h † n̄ † m̄) {ι1(h1) 7→ ι2(h1)|ι2(h2) 7→ ι1(h2)}

The assumption on h gives us that (h † n̄ † m̄; s) ∈ |A ∨ B|Sρ . Since it is clear that for any

(tA; s) ∈ |A|Sρ , (ι2(tA); s) ∈ |B ∨ A|Sρ (and vice-versa with (tB; s) ∈ |B|Sρ and ι1(tB)), by

definition of |A ∨B|Sρ we have that the right-hand side terms belongs to |B ∨A|Sρ and we
can conclude by anti-reduction.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:29

tLLPO � LLPOst ≡ ∀{st}x.∀{st}y.(A(x) ∨B(y))︸ ︷︷ ︸
HA,B

→ (∀{st}x.A(x) ∨ ∀{st}y.B(y)) (Thm. 6.13)

tδ � (∀{N}y.y ≤ δ → A(y))→ ∀{st}y.A(y) (Lem. 6.5)

taux � HA,B →∀{st}x.[(∀{N}z.z ≤ x→ A(z))︸ ︷︷ ︸
A≤x

∨ (∀{N}z.z ≤ x→ B(z)
)︸ ︷︷ ︸

B≤x

] (Cor. 6.12)

u0 � HA,B →A≤0 ∨B≤0 (Lem. 6.10)

us � HA,B →∀{st}x.
(
A≤x ∨B≤x → A≤S(x) ∨B≤S(x)

)
(Lem. 6.11)

t∆ � HA,B →∀{st}x.(A≤x → A≤S(x) ∨B≤S(x)) (Lem. 6.9)

tΦ � HA,B →∀{st}x∀{st}y.(A(x) ∨B≤y︸ ︷︷ ︸
ΦA,B(x,y)

) (Cor. 6.8)

t0 � HA,B →∀{st}x.ΦA,B(x, 0) (Lem. 6.6)

ts � HA,B →∀{st}x.∀{st}y. (ΦA,B(x, y)→ ΦA,B(x, S(y))) (Lem. 6.7)

t≤0 � A(0)→ A≤0 (Lem. 6.3)

t≤s � ∀x.
(
A≤x → A(S(x))→ A≤S(x)

)
(Lem. 6.4)

t∨ � HA,B → HB,A (Lem. 6.2)

where A and B are internal formulas.

Figure 2: Terms used to realize LLPOst

6.3. A realizer for LLPOst. We shall now detail the definition of a realizer for LLPOst.
Its definition follows the intuition of the proof sketched in Section 6.1. To that end, we
require several terms meant to be realizers corresponding to the different steps of the proof,
as described in Figure 2.

Recall that the ordering · < · and · ≤ · are interpreted as any relations R : N2 → N
following the definition given in Section 5.3:

|R(e1, e2)|Sρ , {(t; s) : R(Je1Kρ(s), Je2Kρ(s)) holds}.
We start by showing how a realizer of A≤n can be obtained from realizers of the different

A(m) for m ≤ n.

Lemma 6.3. For any internal formula A, we have

t≤0 � A(0)→ A≤0,

where t≤0 , λxny.x.

Proof. Recall that A≤0 , ∀{N}x.x ≤ 0→ A(x). Let s ∈ S be a state, f ∈ NS be an individual
and u, v be terms such that (u; s) ∈ |A(0)|Sρ , (v; s) ∈ |f ≤ 0|Sρ . In particular, the latter

entails that f(s) = 0. Therefore, since A is internal, we get that (u; s) ∈ |A(f)|Sρ by glueing.
By construction, we have that

t≤0 u 0̄ v s↓s u

and we can conclude by anti-reduction.

7:30 B. Dinis and É. Miquey Vol. 19:2

In the next lemma, we write if n̄ = m̄ then t else u (where n,m ∈ N and t, u ∈ Λ) for
a term that reduces to t if n = m and to u otherwise (defining such a term using the rec
operator is an easy programming exercise, which we would rather not bother the reader
with).

Lemma 6.4. For any internal formula A and any natural number n ∈ N, we have

t≤s n̄ � A≤n → A(S(n))→ A≤S(n),

where t≤s , λnxymz. if m = sn then y else (xmz).

Proof. Recall that A≤n , ∀{N}x.x ≤ n → A(x). Let s ∈ S be a state, n ∈ N be a natural
number, f ∈ NS be an individual, and u, v, w ∈ Λ be terms such that (u; s) ∈ |A≤n|Sρ ,

(v; s) ∈ |A(S(n)))|Sρ and (w; s) ∈ |f ≤ S(n)|Sρ . Putting m , f(s), the latter entails that
m ≤ S(n). By construction, we have

t≤s n̄ u v m̄w s↓s if m̄ = sn̄ then v else (u m̄w).

Let us reason by case analysis:

• if f(s) = m = S(n), then we have

if m̄ = sn̄ then v else (u m̄w) s↓s v,

and since A is internal, we get that (v; s) ∈ |A(f)|Sρ by glueing which allows us to conclude
by anti-reduction.
• if f(s) = m < S(n), then we have

if m̄ = sn̄ then v else (u m̄w) s↓s u m̄w.

By assumption on u, we have that (u m̄w; s) ∈ |A(m)|Sρ , and therefore (u m̄w; s) ∈ |A(f)|Sρ
using glueing. We can thus conclude by anti-reduction.

If something is true below a certain nonstandard element, such as δ, then it is true for
any standard element. This is connected with Proposition 5.14 that states that δ is greater
than any standard natural number, and is somewhat trivial in usual nonstandard settings
(which is reflected here by the fact that the realizer is making a blind loop).

Lemma 6.5. For any formula A, we have

tδ � A≤δ → ∀{st}y.A(y),

where tδ , λxy.x y ι2(loop+).

Proof. Let s be a state and u be a term such that (u; s)
 ∀{N}y.y ≤ δ → A(y). We need to

show that (tδ u; s)
 ∀{st}y.A(y). Letting n ∈ N be a standard natural number, we have

tδ u n̄
s↓s u n̄ ι2(loop+).

By Proposition 5.14, we know that (ι2(loop+); s)
 n < δ, hence u n̄ ι2(loop+)
 A(n) (using
the hypotheses on u) and we can conclude by anti-reduction.

We now show how to build the different terms necessary to the first External Induction,
allowing us to obtain a realizer for the formula ∀{st}x.∀{st}y.ΦA,B(x, y).

Lemma 6.6. For any internal formulas A and B, we have

t0 �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x.ΦA,B(x, 0),

where t0 , λhwx. case (h †x † 0) {ι1(a) 7→ ι1(a)|ι2(b) 7→ t≤0 b}.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:31

Proof. Recall that ΦA,B(x, y) = A(x) ∨ B≤y. Let s ∈ S be a state, n ∈ N be a natural

number and h ∈ Λ be a term such that (h; s) ∈ |∀{st}x.∀{st}y.(A(x) ∨B(y)|Sρ . We have

t0 h † n̄ s↓s case (h † n̄ † 0) {ι1(a) 7→ ι1(a)|ι2(b) 7→ t≤0 b}.
Using the assumption on h, we have ((h † n̄ † 0); s) ∈ |A(x) ∨B(0)|Sρ . We can thus conclude
by anti-reduction using the adequacy of the (∨E) rule and Lemma 6.3 for the ι2(·) case.

Lemma 6.7. For any internal formulas A and B, we have

ts �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x.∀{st}y.(ΦA,B(x, y)→ ΦA,B(x, sy)),

where

ts , λhwxzyp. case p {ι1(p1) 7→ ι1(p1)
ι1(p2) 7→ case (h †x † (sy)) {ι1(a) 7→ ι1(a)|ι2(b) 7→ ι2(t≤s p2 b)}.

Proof. Recall that ΦA,B(x, y) = A(x) ∨ B≤y. Let s ∈ S be a state, n,m ∈ N be natural

numbers and h, u ∈ Λ be terms such that (h; s) ∈ |∀{st}x.∀{st}y.(A(x) ∨ B(y)|Sρ and (u; s) ∈
|ΦA,B(n,m)|Sρ = |A(n) ∨B≤m|Sρ . By construction, we have

ts h † n̄ † m̄ u s↓s case u {ι1(p1) 7→ ι1(p1)
ι1(p2) 7→ case (h † n̄ † (sm̄)) {ι1(a) 7→ ι1(a)|ι2(b) 7→ ι2(t≤s p2 b)}.

To conclude by anti-reduction, we need to prove that the term on the right-hand side is in
|A(n) ∨B≤S(m)|Sρ , using the assumption on u and the adequacy of the (∨E) rule. The ι1(·)
case is immediate. For the ι2(·) case, let us consider a term u2 such that (u2; s) ∈ |B≤m|Sρ
and prove that case (h † n̄ † (sm̄)) {ι1(a) 7→ ι1(a)|ι2(b) 7→ ι2(t≤s u2 b)} ∈ |ΦA,B(n, S(m))|Sρ .

Again, we use the assumption on h and the adequacy of the (∨E) rule to conclude. Let
us consider a term b such that (b; s) ∈ |B(S(m))|Sρ . It then follows from the assumption

on u2 and Lemma 6.4 that (t≤s u2 b; s) ∈ |B≤S(m)|Sρ and hence (ι2(t≤s u2 b); s) ∈ |A(n) ∨
B≤S(m)|Sρ .

Corollary 6.8. Let A(x) and B(x) be any formulas whose only free variable is x. Then

tΦ �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x.∀{st}y.ΦA,B(x, y),

where tΦ , λhwx. rec (t0 hw x) (ts hw x).

Proof. Let s be a state, h be a term such that (h; s)
 ∀{st}x.∀{st}y. (A(x) ∨B(y)), and n ∈ N
be a natural number. We want to show that (tΦ h † p̄; s)
 ∀{st}y.ΦA,B(p, y). By definition of
tΦ, we have

tΦ h † n̄ s↓s rec (t0 h † n̄) (ts h † n̄).

Then, the result follows directly from External Induction (Proposition 5.10) and Lemmas
6.6 and 6.7.

We can now take advantage of these terms to define the terms necessary to realize the
formula A≤x ∨B≤x where the role of A and B is now made symmetric again, using a second
External Induction.

Lemma 6.9. For any internal formulas A and B, we have:

t∆ �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x.(A≤x → A≤S(x) ∨B≤S(x)),

where t∆ , λhwxv. case (tΦ h † (sx) † (sx)) {ι1(c1) 7→ ι1(t≤s v c1)|ι2(c2) 7→ ι2(c2)}.

7:32 B. Dinis and É. Miquey Vol. 19:2

Proof. Let s ∈ S be a state, n ∈ N be a natural number and h, v ∈ Λ two terms such that
(h; s) ∈ |∀{st}x.∀{st}y.(A(x) ∨B(y))|Sρ and (a; s) ∈ |A≤n|Sρ . By construction, we have

t∆ † n̄ a s↓s case (tΦ h † (sn) † (sn)) {ι1(c1) 7→ ι1(t≤s a c1)|ι2(c2) 7→ ι2(c2)}.
To conclude by anti-reduction, we need to show that the reduced term realizes A≤S(n)∨B≤S(n).
Using Corollary 6.8, we get that

(tΦ h † (sn) † (sn); s)
 A(S(n)) ∨B≤S(n).

Using the adequacy of the (∨E) rule (for which the ι2(·) case is immediate), we now have to
prove that for any term v such that (v; s)
 A(S(n)), t≤s a v; s
 A≤S(n). This follows from
Lemma 6.4 and the assumptions on a and v.

Lemma 6.10. For any internal formulas A and B, we have

u0 �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→
(
A≤0 ∨B≤0

)
,

where u0 , λh. case (h † 0 † 0) {ι1(a) 7→ ι1(t≤0 a)|ι2(b) 7→ ι1(t≤0 b)}.

Proof. Let s ∈ S be a state and h ∈ Λ a term such that (h; s)
 ∀{st}x∀{st}y.(A(x) ∨ B(y)).
By construction, we have

u0 h
s↓s case (h † 0 † 0) {ι1(a) 7→ ι1(t≤0 a)|ι2(b) 7→ ι1(t≤0 b)}.

The result easily follows by anti-reduction, using the adequacy of the (∨E) rule and Lemma 6.3.

Lemma 6.11. For any internal formulas A and B, we have

us �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x.

(
(A≤x ∨B≤x)→

(
A≤S(x) ∨B≤S(x)

))
,

where us , λhwxd. case d {ι1(d1) 7→ t∆ hw xd1|ι2(d2) 7→ t∆ (t∨ h)w xd2}.

Proof. Let s ∈ S be a state, n ∈ N a natural number and h, v ∈ Λ be two terms such that
(h; s)
 ∀{st}x.∀{st}y.(A(x) ∨B(y)) and (v; s)
 A≤n ∨B≤n. By construction, we have

us h † n̄ v s↓s case v {ι1(a) 7→ t∆ h † n̄ a|ι2(b) 7→ t∆ (t∨ h) † n̄ b}.
To conclude by anti-reduction, we use the adequacy of the (∨E) rule to prove that the
reduced term belongs to |A≤S(n) ∨ B≤S(n)|Sρ . For the ι1(·) case, if w is a term such that
(w; s)
 A≤S(n), then (t∆ h † n̄ w; s)
 A≤S(n) ∨B≤S(n) by Lemma 6.9 as expected. The ι2(·)
case is symmetric, using t∨ and Lemma 6.2.

Corollary 6.12. For any internal formulas A and B, we have

taux �
(
∀{st}x.∀{st}y.(A(x) ∨B(y))

)
→ ∀{st}x. (A≤x ∨B≤x)) ,

where taux , λh. rec (u0 h) (uS h).

Proof. Let s be a state, and (h; s)
 ∀{st}x∀{st}y(A(x) ∨B(y). We have that

taux h
s↓s rec (u0 h) (us h),

so the result easily follows from Proposition 5.10 and Lemmas 6.10 and 6.11.

We are now ready to prove the main theorem of this section, by combining all the terms
into a realizer of LLPOst.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:33

Theorem 6.13 (LLPOst). Let A and B be internal formulas, we have

tLLPO � ∀{st}x.∀{st}y.(A(x) ∨B(y))→ (∀{st}x.A(x) ∨ ∀{st}y.B(y)),

where tLLPO , λh. case (taux h † get) {ι1(x1) 7→ ι1(tδ x1)|ι2(x2) 7→ ι1(tδ x2)}.

Proof. For any natural number n ∈ N, if (u; s)
 ∀{st}x∀{st}y(A(x)∨B(y)) using Corollary 6.12
we get

(taux u; s)
 ∀{st}x.(∀{N}z.z ≤ x→ A(z)) ∨ (∀{N}z.z ≤ x→ B(z)
)
.

By Transfer (Theorem 5.8), we then obtain

(taux u †; s)
 ∀{N}x.(∀{N}z.z ≤ x→ A(z)) ∨ (∀{N}z.z ≤ x→ B(z)
)
,

and in particular,

(taux u †; s)
 {Nat(δ)} 7→ (∀{N}z.z ≤ δ → A(z)) ∨ (∀{N}z.z ≤ δ → B(z)
)
.

Using Proposition 5.5, we get

(taux u † get; s)
 (∀{N}z.z ≤ δ → A(z)) ∨ (∀{N}z.z ≤ δ → B(z)
)
.

Using Lemma 6.5 we indeed get a realizer of ∀{st}z.A(z) ∨ ∀{st}z.B(z).

7. A tainted quotient

In this section we explore the possibility of extending the work done above through a quotient,
and the limitations of such construction. In Section 7.1, we explain how this quotient can
be obtained in a way that maintains the analogy with the Lightstone-Robinson construction.
The resulting theory is indeed an extension in which universal realizers for closed formulas
are preserved and more principles are now realizable (e.g. Proposition 7.1). This makes it
an even more convincing approach to nonstandard analysis from the point of the captured
theory, but not in terms of realizability. Indeed, as we will see in Section 7.2, the terms
witnessing the validity of formulas in the quotient can no longer be composed. On the other
hand, as explained in Remark 7.6, if one tries to be more faithful to the spirit of realizability,
then the connection with nonstandard analysis is less convincing as one loses compatibility
with Loś ’ theorem. Furthermore, the limitations do not seem to depend on the particular
way one defines the quotient, as discussed in Section 7.3.

7.1. Realizability up to an ultrafilter. In order to fully mimic Lightstone and Robinson’s
construction, an extra step is required where one takes a quotient of the interpretation
with slices. This step allows us to consider a more flexible notion of realizability where
realizers are only required to be compatible with almost all states, in the sense that the set
of compatible states belongs to the ultrafilter.

In order to simplify the discussion, and similarly to what was done in most of the paper,
we don’t include disjunction as a primitive connective.

Let us fix a free ultrafilter U over the set of states. Given any set V , we denote by ∼=
the equivalence relation over V S defined by f ∼= g , {s ∈ S : f(s) = g(s)} ∈ U .

First, we can, within the realizability with slices, change the way st(f) is interpreted to
consider standardness up to the ultrafilter. In this way, f ∈ NS is said to be standard if and
only if there exists n ∈ N s.t. f ∼= n∗. This allows to show, for instance, that nonstandard
natural numbers are larger than standard ones.

7:34 B. Dinis and É. Miquey Vol. 19:2

Proposition 7.1. λxy.loop+ � ∀x, y.¬st(x)→ st(y)→ y < x

Proof. If f ∈ NS is a nonstandard individual and n ∈ N any natural number, one proves by
contradiction that S = {s ∈ S : n < f(s)} ∈ U . Indeed, otherwise one would have S̄ ∈ U .

For any k ∈ N, let us write Sk for the set {s ∈ S : f(s) = k}. Since the sets S0, ..., Sn
form a partition of S̄, it is easy to see that (exactly) one of these sets, say Sm, belongs to U .
Then f ∼= m∗, which contradicts the fact that f is nonstandard.

In particular, for any individuals f, g, any state s, and any terms t, u such that (t; s) ∈
|st(f)→ ⊥|S and (u; s) ∈ |st(g)|S, we have that f is necessarily nonstandard and that there
exists n ∈ N such that g ∼= n∗. By the claim above, we know that there exists s′ > s such that
s < f(s′). The result then follows by anti-reduction from the fact that loop+ s↓s′ loop+.

We then need to define a new notion of realizability in which realizers are also considered
up to the equivalence relations induced by U . To that end, a natural attempt consists in
considering Loś ’ theorem as a guideline. For the sake of clarity, let us denote by |A|∗ the
truth values in this interpretation, which we shall call realizability up to U .

Definition 7.2. We say that a formula A is Loś -reducible if for any valuation ρ closing A,
t ∈ |A|∗ if and only if {s ∈ S : (t; s) ∈ |A|Sρ } ∈ U .

We actually define the interpretation of connectives by this equivalence. For example,
the interpretation |A→ B|∗ρ for the implication is defined by

{t ∈ Λ : {s ∈ S : (t; s) ∈ |A→ B|Sρ } ∈ U},

while the interpretation of the quantifiers is still defined via intersections (resp. unions) over

the same domain as in the interpretation with slices (e.g., |∀x.A|∗ρ ,
⋂
f∈NS |A|∗ρ,x 7→f).

Definition 7.3 (Realizability up to U). The interpretation of a formula A together with a
valuation ρ closing A is the set |A|∗ρ defined inductively according to the following clauses:

|st(f)|∗ρ ,
{

Λ if f ∼= n∗, for some n ∈ N
∅ otherwise

|X(e1, . . . , en)|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ ρ(X)@(Je1Kρ, . . . , JenKρ)} ∈ U}

|{Nat(e)} 7→ A|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ |{Nat(e)} 7→ A|Sρ } ∈ U}}

|A→ B|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ |A→ B|Sρ } ∈ U}
|A1 ∧A2|∗ρ , {t ∈ Λ : {s ∈ S : (π1(t); s) ∈ |A1|Sρ ∧ (π2(t); s) ∈ |A2|Sρ } ∈ U}

|∀x.A|∗ρ ,
⋂
f∈NS |A|∗ρ,x 7→f

|∃x.A|∗ρ ,
⋃
f∈NS |A|∗ρ,x 7→f

|∀X.A|∗ρ ,
⋂
F :Nk→SAT |A|∗ρ,X 7→F

|∃X.A|∗ρ ,
⋃
F :Nk→SAT |A|∗ρ,X 7→F

We write t
* A if t ∈ |A|∗.

As shown in the following theorem, first-order quantifiers behave well w.r.t. the ultrafilter.

Theorem 7.4 (Loś ’ theorem). First-order internal formulas as well as arbitrary conjunctions
and implications are Loś -reducible.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:35

Proof. The proof goes by induction on the structure of A. In the cases {Nat(e)} 7→ A,
X(e1, . . . , en), A→ B and A ∧B, the result follows directly from the definitions. The proof
for the quantifiers is similar to the usual proof of Loś ’ theorem.

∃x.A. By the induction hypothesis, we have that for any f ∈ NS,

|A|∗ρ,x7→f = {t : {s ∈ S : t; s ∈ |A|Sρ,x 7→f} ∈ U}.

By glueing, we have that |A|Sρ,x 7→f = |As|sρ,x 7→f = |As|sρ,x7→(f(s))∗ . We want to prove that for

any t ∈ Λ

∃f ∈ NS.t ∈ |A|∗ρ,x 7→f iff {s ∈ S : t; s ∈ |∃x.A|Sρ } ∈ U .
Observe that, by glueing, the right-hand side is equivalent to

{s ∈ S : ∃n ∈ N.t ∈ |A|sρ,x 7→n∗} ∈ U .

⇒c Assume that there exists f ∈ NS such that t ∈ |A|∗ρ,x 7→f . Then it is easy to see that

{s ∈ S : t ∈ |A|sρ,x7→(f(s))∗} ⊆ {s ∈ S : ∃n ∈ N.t ∈ |A|sρ,x 7→n∗},

and hence the result follows from the upwards closure of the ultrafilter.
⇐c Assume now that E , {s ∈ S : ∃n ∈ N.t ∈ |A|sρ,x 7→n∗} ∈ U .

For any s ∈ E, using countable choice we can pick an integer ns such that t ∈ |A|sρ,x 7→n∗s .

We may then define the function g ∈ NS by:

g(s) ,

{
ns if s ∈ E
0 otherwise

By definition, E ⊆ {s ∈ S : t ∈ |A|sρ,x 7→(g(s))∗}, hence this set belongs to U by upwards

closure. By induction hypothesis we conclude that t ∈ |A|∗ρ,x 7→f .

∀x.A. By the induction hypothesis, for any f ∈ NS,

|A|∗ρ,x 7→f = {t : {s ∈ S : t; s ∈ |A|Sρ,x 7→f} ∈ U}.

By glueing, |A|Sρ,x 7→f = |As|sρ,x 7→f = |As|sρ,x 7→(f(s))∗ . We want to prove that for any t ∈ Λ

∀f ∈ NS.t ∈ |A|∗ρ,x7→f iff {s ∈ S : t; s ∈ |∀x.A|Sρ } ∈ U .
Observe that, by glueing, the right-hand side is equivalent to

S , {s ∈ S : ∀n ∈ N.t ∈ |A|sρ,x 7→n∗} ∈ U .

⇒c We easily see that for any f ∈ NS

S = {s ∈ S : ∀f ∈ NS.t|A|sρ,x 7→(f(s))∗} ⊆ {s ∈ S : t ∈ |A|sρ,x 7→(f(s))∗}

and by upwards closure we conclude that t ∈ |A|∗ρ,x 7→f .

⇐c By contraposition, assume that {s ∈ S : ∀n ∈ N.t ∈ |A|sρ,x 7→n∗} /∈ U and let us show that

there exists f ∈ NS such that t /∈ |A|sρ,x 7→f . Because U is an ultrafilter, the assumption is
equivalent to:

E = {s ∈ S : ∀n ∈ N.t ∈ |A|sρ,x7→n∗} = {s ∈ S : ∃n ∈ N.t /∈ |A|sρ,x 7→n∗} ∈ U .

We are essentially left with a situation similar to the existential case: for any s ∈ E, using
countable choice we can pick an integer ns such that t /∈ |A|sρ,x 7→n∗s . We can then define the

7:36 B. Dinis and É. Miquey Vol. 19:2

function g ∈ NS such that for any s ∈ E, g(s) = ns. Hence E ⊆ {s ∈ S : t /∈ |A|sρ,x 7→(g(s))∗},
and we conclude that t /∈ |A|∗ρ,x 7→f .

Theorem 7.4 implies that if a term t is a realizer of a first-order internal formula A
“often enough” in the interpretation with slices, then t is still a realizer in the interpretation
up to U . Since all the realizers in Section 5 were universal, they are still realizers in this new
setting, meaning that all the results from that section remain valid in the interpretation up
to U . In particular, Theorem 7.4 applies to Transfer, Idealization, Overspill or Underspill.

A simple example illustrating this new interpretation is the formula ∀stx.x < δ, which
was realized by loop+ in the interpretation with slices (see Proposition 5.14) and is now
realized by any term (because for any n ∈ N, the set of states such that n < δ is equal to
[n; +∞[which belongs to U). Similarly, loop+ can be replaced by † in Proposition 7.1. More
generally, such a quotient allows us to get realizers for principles that were inaccessible in
the interpretation with slices (e.g., ∀x, y.¬st(x)→ st(y)→ y < x) but are usually valid in
nonstandard interpretations.

A more involved example concerns the Standardization principle: prima facie this
principle does not seem to be realizable with the current definitions, but it is available for
 Loś -reducible formulas that are specified by the previous theorem. Technically, to internalize
this in our interpretation would require to go to higher-order logic in order to refer to
standard predicates in the syntax. In fact, this should not be a problem, as shown by the
fact that our interpretation induces an evidenced frame (see Section 4.4), which is known in
turn to induce triposes, hence a model of higher-order logic.

For the sake of simplicity, we will just consider standard predicates through their
semantical characterization, that is the ones induced by predicates in Definition 3.2, i.e.
whose value is identical in each slice. Assume that we are given a Loś -reducible formula
A(x), which we identify with the truth-value function it induces A : n ∈ N 7→ |A(n)|Sρ ,
together with a standard predicate X (which is then Loś -reducible as well). Restricted to
this setting, Standardization states that there exists a standard predicate Y such that for
any standard natural number n ∈ N, we have:

∃t.t
* Y(n∗) ⇔ ∃t.t
* X(n∗) ∧ A(n∗)

Since A, X and arbitrary conjunctions are Loś -reducible, it is enough to consider the
following standard predicate (seen via the function from N to Λ inducing its actual value in
the interpretation with slices):

Y(n) , {t ∈ Λ : {s ∈ S : t
 X(n∗) ∧ A(n∗)} ∈ U}

Before taking a quotient, the definitions in Section 4.2 gave us access to Standardization
for internal formulas. In the current setting, the restriction to Loś -reducible formulas is nec-
essary to make it work with the quotient. This is to be compared with Lightstone-Robinson’s
construction, where all internal formulas are Loś -reducible, an analogous definition gives
access to Standardization for these formulas. Nonetheless, to validate the unrestricted
principle of Standardization (that is, where A is any formula), one usually needs to use a
more involved construction of a model by means of an adequate ultralimit, and the proof
that Standardization holds relies on transfinite reasoning and the full Axiom of Choice.
None of these principles being computationally interpretable in our setting, it seems that
the restricted statement above is the best we can do here.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:37

7.2. Limitations of the construction. While the quotient from the previous subsection
allows to capture a theory which is even closer to “usual” nonstandard analysis, it has some
drawbacks with respect to its realizability facet. The main drawback, which is highlighted in
Remark 7.6, concerns the interpretation of implication. First, let us connect the interpretation
of implication through the quotient with the expected interpretation in usual realizability
settings.

Proposition 7.5. For any internal formulas A and B, and any valuation ρ closing both A
and B, we have |A→ B|∗ρ ⊆ {t : ∀u ∈ |A|∗ρ.t u ∈ |B|∗ρ}.

Proof. For any term t and any formula A, let us denote by SAt the set {s ∈ S : (t; s) ∈ |A|Sρ }.
Let t ∈ Λ be such that SA→Bt ∈ U and u ∈ |A|∗ρ. By hypothesis, SAu ∈ U . We need to show

that tu ∈ |B|∗ρ. Again, for any s ∈ SA→Bt ∩ SAu ∈ U , we have tu; s ∈ |B|Sρ . By upwards

closure, we deduce that {s : (tu; s) ∈ |B|Sρ } ∈ U , hence tu ∈ |B|∗ρ, and the result follows from
Theorem 7.4. By Theorem 7.4, we have

|A|∗ρ = {u ∈ Λ : {s ∈ S : (u; s) ∈ |A|Sρ } ∈ U } and

|B|∗ρ = {v ∈ Λ : {s ∈ S : (v; s) ∈ |B|Sρ } ∈ U }.
For any term t and any formula A, let us denote by SAt the set {s ∈ S : (t; s) ∈ |A|Sρ }.

Let t ∈ Λ be such that SA→Bt ∈ U and u ∈ |A|∗ρ. By hypothesis, SAu ∈ U . We need to

show that tu ∈ |B|∗ρ. Again, for any s ∈ SA→Bt ∩ SAu ∈ U , we have tu; s ∈ |B|Sρ . By upwards

closure, we deduce that {s : (tu; s) ∈ |B|Sρ } ∈ U , hence tu ∈ |B|∗ρ, and the result follows.

Remark 7.6. One could have been tempted to define the truth value |A→ B|∗ρ as the set of
terms t such that for any u ∈ |A|∗ρ, t u ∈ |B|∗ρ, as is usual in realizability. Unfortunately, such
a definition is incompatible with Theorem 7.4, as the other inclusion in Proposition 7.5 does
not hold. To see this, let A , Nat′(τ) and B , ⊥ where τ is a non-computable function6

τ : S→ N for which there is no term u such that ∀s.u s↓s τ(s). By construction, we have that
|A|∗ = ∅, so that obviously for any u ∈ |Nat′(τ)|∗, the function (λx.x)u ∈ |⊥|∗. Yet, for each
state s the truth value |Nat′(τ)|Sρ is not empty (it contains at least (n, s), for n = τ(s)) and

therefore (λx.x; s) /∈ |Nat′(τ)→ ⊥|Sρ (since for any (u; s) ∈ |Nat′(τ)|S, ((λx.x)u; s) /∈ |⊥|∗).

As it turns out, Definition 7.3 is not as compositional as one would expect in realizability.
Indeed, we can compose a realizer t ∈ |A→ B|∗ρ with a realizer in u ∈ |A|∗ρ to get t u ∈ |B|∗ρ,
but the (→I)-rule is not adequate when considering substitutions of variables by realizers
in the quotiented truth values. In particular, Remark 7.6 emphasizes that the structure of
this interpretation does not induce an evidenced frame, since it is not possible to define the
function λ : E → E necessary to interpret implication.

7.3. Stranger things. As mentioned above, Remark 7.6 highlights the existence of “counter-
intuitive” peculiarities of the interpretation up to U with respect to the quotient in the
Lightstone-Robinson construction. The latter indeed appears to be more regular, seemingly
for two main reasons.

6To that end, one can for instance consider the function τ which to each s ∈ S associates the smallest
natural number n ∈ N such that there is no term of size smaller than or equal to s that computes n the state
s: τ(s) , inf{n ∈ N : ¬∃t.|t| ≤ s ∧ t s↓s n} .

7:38 B. Dinis and É. Miquey Vol. 19:2

First, while the Lightstone-Robinson construction is based on Boolean-valued models,
realizability interpretations associate to each formula a set of realizers (instead of one unique
Boolean). Besides, the use of relativized quantifiers (for instance in the statement for
Idealization) forces us to use only computable functions7.

Second, as highlighted in Section 4, in the stateful interpretation the set instruction
allows terms to change the value of the states during computations, and thus of the slices.
This phenomenon does not occur in the Lightstone-Robinson construction where slices of
the product are completely separated between them. In fact, the ability of reading the value
of the slice already implies that propositional internal formulas do not induce standard truth
values, which is counter-intuitive.

Proposition 7.7. There exists an internal propositional formula A, a term t and two states
s0, s1 such that (t; s0) ∈ |A|S but (t; s1) /∈ |A|S.

Proof. Take for instance A , (A1 ∧ ¬A1)→ A1, t , rec (λx.π1(x)) (λxyz.π2(z)) get, s0 = 0
and s1 = 1. We have:

• (t; 0) ∈ |A|S: for any (u; 0) ∈ |A1 ∧ ¬A1|S, u 0↓s (u1, u2) with (u1; s) ∈ |A1|S, and

t 0↓0 (rec (λx.π1(x)) (λxyz.π2(z)) 0)u 0↓0 (λx.π1(x))u 0↓0 π1(u) 0↓s u1.

The result follows by anti-reduction.
• (t; 1) /∈ |A|S: for any (u; 1) ∈ |A1 ∧A2|S, u 1↓s (u1, u2) with (u2; s) ∈ |¬A1|S, and

t 1↓1 (rec (λx.π1(x))λxyz.π2(z) 1)u 1↓1 (λxyz.π2(z))0 (rec ...)u 1↓1 π2(u) 1↓s u2.

Since (u2; 1) ∈ |¬A1|S, it cannot be the case that (u2; 1) ∈ |A1|S.

As explained above, the interpretation briefly introduced in Section 7.1 is an attempt to
provide a quotient, guided by the rationale of Loś ’ theorem. Nonetheless, there might be
more refined ways to arrive at a satisfying definition of a quotient. In particular, Definition 7.3
does not take the computation into account when defining the quotient, which turns out
to be problematic as Remark 7.6 shows. Therefore, it could be tempting to contemplate a
notion of reduction up to U as follows

t ↓U u , {s ∈ S : ∃s′.t s↓s′ u} ∈ U
Nonetheless, such a definition leaves us even further form our goal since the induced
realizability interpretation would present a lot of counter-intuitive peculiarities. We illustrate
some of these peculiarities in the following propositions, for which we consider a free ultrafilter
U on S and, without loss of generality, assume that {s ∈ S : ∃n ∈ N.s = 2n} ∈ U . In
particular, this implies that {s ∈ S : ∃n ∈ N.s = 2n+ 1} /∈ U . We will say that a property
occurs often enough when the set of states for which it is valid belongs to U .

The next proposition shows the existence of a formula A and two terms t and u such
that u is often enough a realizer and t reduces often enough to u, but never to a slice in
which it is a realizer.

Proposition 7.8. There exist a formula A, a valuation ρ closing A and two terms t, u
such that

(1) {s ∈ S : (u; s) ∈ |A|Sρ } ∈ U
(2) {s ∈ S : ∃s′.t s↓s′ u} ∈ U

7This is the reason why, for instance, the premise of Idealization needs to be restricted to the existence of
a standard natural number x, instead of any natural number as is usually the case.

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:39

(3) ∀s, s′.t s↓s′ u⇒ (u; s′) /∈ |A|Sρ .

Proof. Consider the (nonstandard) individual τ defined by τ : n ∈ N 7→ n mod 2 (i.e
τ(2n) = 0 and τ(2n+ 1) = 1). By construction, we have

|τ = 0∗|S = {(t; s) ∈ Λ×S : ∃n ∈ N.s = 2n}.
Let us now define a function f which, given any integer n ∈ N, computes the lowest

odd number greater than or equal to n: f(0) = 1, f(1) = 1, f(2) = 3, etc. It is clear that
this function is primitive recursive, hence there is a term next odd that computes it. We let
u , λx.x and t , set (next odd get)u. For any state s ∈ S, we then have

t = set (next odd get)u s↓s set (next odd s) s↓s set f(s)u s↓f(s) u,

where f(s) is odd. Hence, if we define A , x = 0∗ and ρ = x 7→ τ , we have

(1) {s ∈ S : (u; s) ∈ |τ = 0∗|S} = {s ∈ S : ∃n ∈ N, s = 2n} ∈ U
(2) {s ∈ S : ∃s′.t s↓s′ u} = S ∈ U
(3) for any s, t s↓f(s) u and (u; f(s)) /∈ |A|S since f(s) is odd.

The next result shows that even if there are enough slices in which t reduces to u in a
slice that makes it a realizer of some formula A, u may not be a realizer of A often enough.

Proposition 7.9. There exist an atomic formula A, a valuation ρ closing A and two terms
t, u such that

(1) {s ∈ S : ∃s′.t s↓s′ u ∧ (u; s′) ∈ |A|Sρ } ∈ U
(2) {s ∈ S : (u; s) ∈ |A|Sρ } /∈ U .

Proof. Take again the (nonstandard) individual τ defined by τ : n ∈ N 7→ n mod 2, ρ , x 7→
τ and A , x = 1∗. Let us define u , λx.x, incr , λx. set (s get)x t , incr u. By construction,
we have that |τ = 1|S = {(v; s) : ∃n ∈ N, s = 2n+ 1} and t = set (get+1)u s↓s+1 u. Hence

(1) {s ∈ S : ∃s′.t s↓s′ u ∧ (u; s′) ∈ |A|Sρ } = {s ∈ S : ∃n.s = 2n} ∈ U
(2) {s ∈ S : (u; s) ∈ |A|Sρ } = {s ∈ S : ∃n.s = 2n+ 1} /∈ U .

8. Related and future work

8.1. Related work. Some related works concern notions of realizability for nonstandard
arithmetic which are variants of Kreisel’s modified realizability [BBS12, DG18]. These
notions of realizability are more inspired by Nelson’s syntactical approach to nonstandard
analysis. In particular, they rely on translations of formulas inducing conservative extensions
of Heyting arithmetic. To draw a comparison with Van den Berg et al.’s work, it should
be observed that they interpret standard elements as finite sequences that can be thought
of as a process of accumulating potential witnesses. In particular, their interpretation
crucially relies on a monotonicity property for these sequences (regarding sequence inclusion),
stating that realizers are provably upwards-closed [BBS12, Lemma 5.4]. This property
has no counterpart in our setting. On the other hand, our interpretation is able to give
computational content to nonstandard individuals, and even to give explicit nonstandard
elements (such as the diagonal) with their corresponding realizers. This is, for example, what
allows us to computationally interpret Idealization (see Theorem 5.16), whereas the functional
interpretation for Idealization in [BBS12] is trivial in the sense that the interpretations of

7:40 B. Dinis and É. Miquey Vol. 19:2

the premise and the conclusion of any instance of Idealization are identical. It could be
interesting to better understand the relation between this approach and the approaches
based on Kreisel’s realizability. In particular, we would like to know whether we can obtain a
preservation result for some class of formulas (e.g. internal, quantifier-free, ∃-free formulas).

Similar ideas have been addressed by Aschieri. In [Asc17] the author uses a notion
of state which allows to construct a forcing model. In particular, natural numbers are
interpreted as functions from states to N. Yet, his work does not pay attention to the
nonstandard principles that can be obtained in his setting but rather to forcing. It would be
natural to investigate whether our setting also allows for forcing techniques. This connection
with forcing is reinforced by the fact that in the realm of Krivine’s realizability, which
generalizes Cohen’s forcing, the latter is given a computational content via the addition
of a monotone memory cell to the abstract machine in order to store forcing conditions
[Kri11, Miq11b]. Also, recent work of Powell has been focusing on a variant of Gödel’s
functional interpretation to take into account stateful computations [Pow18]. In addition to
investigating the computational contents of the stateful programs obtained by extraction
through this interpretation, the author proposes some problems that the reader might find
interesting.

8.2. Weak Kőnig’s Lemma. As shown in [DF17], WKL0 (one of the Big Five systems
from Reverse Mathematics) is interpretable, over a nonstandard version of primitive recursive
arithmetic with extensionality, using a version of the Axiom of Choice and Idealization. It
relies on distinguishing two sorts: the number sort is interpreted by the standard numbers,
and the set sort is interpreted by bounded type 1 functionals (or by number codes, both
standard and nonstandard, of finite sets of numbers, again both standard and nonstandard).

Recall that Weak Kőnig’s Lemma states that every infinite binary tree has an infinite
branch. As it turns out, in that context to say that T is a tree is to say two things: (i)
every standard natural number which is in the tree is the code of a binary sequence and
(ii) if some standard σ is in the tree and the binary sequence coded by a standard element
τ is an initial segment of the binary sequence coded by σ, then τ is also on the tree. The
interpretation of being infinite is a formula saying that for every standard natural number σ
there exists a standard element with length w which is in the tree. The proof then relies on
showing that an element α, defined exactly as σ below and at w and 0 from there onwards
can be turned into an infinite branch with the use of Idealization.

So, the interpretation of Weak Kőnig’s Lemma crucially relies on the ability to manipulate
trees and on Idealization. Of course, in our setting, we have an explicit (nontrivial) realizer
for Idealization, so, in principle, it should be possible to give a realizer for Weak Kőnig’s
Lemma. However, that would require a whole reformulation of the framework in order to
have an explicit access to trees instead of a noncomputational second-order quantification.

8.3. Horizons. The work done in this paper raises some natural questions of which we
mention a few, as possible lines of investigation.

A first natural question comes from the fact that prior interpretations of nonstandard
arithmetic, such as [BBS12, DG18, FG15] (and also [FO05] and [FN06] in a context that does
not involve nonstandard arithmetic), restrict quantifiers by bounding the variables under
their scope. It is then pertinent to ask whether this could be given a more computational

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:41

interpretation as we do here, in order to see it as some kind of “computation up to (the
bound)”.

A second possible path would be to reformulate our interpretations in order to account
for classical logic by using control operators as is usual in Krivine’s realizability [Kri09].
Alas, our attempts in that direction have not been very fruitful, mostly because Krivine’s
interpretation crucially relies on an orthogonality relation between terms and evaluations
contexts (which is reminiscent of the duality of computation in classical logic [CH00]). In
terms of the ultrafilter, this would require some sort of perfect balance to make the quotient
compatible with this orthogonality relation which so far has eluded us. This is similar to
the limitations pointed out in Section 7.2.

Thirdly, there is a very active line of research in realizability concerning the interpretation
of various choice principles. In particular, the use of states or memoization has proven to be
useful for interpreting dependent choice (e.g. in [BBC98], [Her12] or [CFT19], to name but a
few) or Double Negation Shift (DNS) (in [Blo22], Blot uses an “update recursion” mechanism
to realize DNS). At the same time, DNS is also interesting in itself as a non-intuitionistic
principle. This is particularly relevant since our setting interprets (a version of) the LLPO
principle, which means that we are somewhere between intuitionistic and classical logic.
Furthermore, DNS is also known to be interpretable using bar recursion, which raises the
question of knowing whether our interpretation could be compatible with such an operator.

Finally, we would like to mention that Brede and Herbelin’s [BH21] establishes a
hierarchy of choice principles, relating in particular tree-based choices principles and their
dual bar induction-based principles. Many of the principles they study are not attached to
a precise computational content so far, and so it would be interesting to see if there exist
specific interpretations that could capture exactly each of these principles, and, in particular,
“lower” instances of their generalized dependent choice or generalized bar induction principles.

References

[Asc17] Federico Aschieri. Constructive forcing, CPS translations and witness extraction in interactive
realizability. Mathematical Structures in Computer Science, 27(6):993–1031, 2017. doi:10.1017/
S0960129515000468.

[Avi05] Jeremy Avigad. Weak theories of nonstandard arithmetic and analysis, page 19–46. Lecture Notes
in Logic. Cambridge University Press, 2005. doi:10.1017/9781316755846.003.

[Bar92] Henk Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gabbay, and S. E. Maibaum,
editors, Handbook of Logic in Computer Science (Vol. 2), pages 117–309. Oxford University Press,
Inc., New York, NY, USA, 1992. doi:10.1017/CBO9781139032636.

[BBC98] Stefano Berardi, Marc Bezem, and Thierry Coquand. On the computational content of the axiom
of choice. J. Symb. Log., 63(2):600–622, 1998. doi:10.2307/2586854.

[BBE+18] Jacques Bair, Piotr B laszczyk, Robert Ely, Peter Heinig, and Mikhail Katz. Leibniz’s well-
founded fictions and their interpetations. Mat. Stud., 49(2):186–224, 2018. doi:10.15330/ms.49.
2.186-224.

[BBG+20] Jacques Bair, Piotr B laszczyk, Eĺıas Guillén, Peter Heinig, Vladimir Kanovei, and Mikhail G.
Katz. Continuity between Cauchy and Bolzano: issues of antecedents and priority. British Journal
for the History of Mathematics, pages 1–18, 2020. doi:10.1080/26375451.2020.1770015.

[BBS12] Benno van den Berg, Eyvind Briseid, and Pavol Safarik. A functional interpretation for nonstandard
arithmetic. Ann. Pure Appl. Logic, 163(12):1962–1994, 2012. doi:10.1016/j.apal.2012.07.003.

[BH21] Nuria Brede and Hugo Herbelin. On the logical structure of choice and bar induction principles.
In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13,
2021. doi:10.1109/LICS52264.2021.9470523.

https://doi.org/10.1017/S0960129515000468
https://doi.org/10.1017/S0960129515000468
https://doi.org/10.1017/9781316755846.003
https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.2307/2586854
https://doi.org/10.15330/ms.49.2.186-224
https://doi.org/10.15330/ms.49.2.186-224
https://doi.org/10.1080/26375451.2020.1770015
https://doi.org/10.1016/j.apal.2012.07.003
https://doi.org/10.1109/LICS52264.2021.9470523

7:42 B. Dinis and É. Miquey Vol. 19:2

[Blo22] Valentin Blot. A direct computational interpretation of second-order arithmetic via update
recursion. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’22, New York, NY, USA, 2022. Association for Computing Machinery. doi:

10.1145/3531130.3532458.
[BR87] Douglas Bridges and Fred Richman. Varieties of constructive mathematics, volume 97 of London

Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987. doi:
10.1017/CBO9780511565663.

[Cal92] Jean-Louis Callot. Trois leçons d’analyse infinitésimale. In J.M. Salanskis and H. Sinaceur, editors,
Le labyrinthe du continu, pages 369–381. Springer-Verlag, Paris, 1992.

[CFT19] Liron Cohen, Sofia Abreu Faro, and Ross Tate. The effects of effects on constructivism. Electronic
Notes in Theoretical Computer Science, 347:87 – 120, 2019. Proceedings of the Thirty-Fifth
Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXV). doi:
10.1016/j.entcs.2019.09.006.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of ICFP
2000, SIGPLAN Notices 35(9), pages 233–243. ACM, 2000. doi:10.1145/351240.351262.

[CMT21] Liron Cohen, Étienne Miquey, and Ross Tate. Evidenced frames: A unifying framework broadening
realizability models. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–13, 2021. doi:10.1109/LICS52264.2021.9470514.

[DF17] Bruno Dinis and Fernando Ferreira. Interpreting weak Kőnig’s lemma in theories of nonstandard
arithmetic. Mathematical Logic Quarterly, 63(1-2):114–123, 2017. doi:10.1002/malq.201600066.

[DG18] Bruno Dinis and Jaime Gaspar. Intuitionistic nonstandard bounded modified realisability and
functional interpretation. Ann. Pure Appl. Logic, 169(5):392–412, 2018. doi:10.1016/j.apal.
2017.12.004.

[DM21] Bruno Dinis and Étienne Miquey. Realizability with stateful computations for nonstandard
analysis. In 29th EACSL Annual Conference on Computer Science Logic, volume 183 of LIPIcs.
Leibniz Int. Proc. Inform., pages Art. No. 19, 23. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2021. doi:10.4230/LIPIcs.CSL.2021.19.

[DvdB19] Bruno Dinis and Imme van den Berg. Neutrices and external numbers: A flexible number system.
Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2019. With a
foreword by Claude Lobry. doi:10.1201/9780429291456.

[FG15] Fernando Ferreira and Jaime Gaspar. Nonstandardness and the bounded functional interpretation.
Annals of Pure and Applied Logic, 166(6):701–712, June 2015. doi:10.1016/j.apal.2015.02.001.

[FN06] Fernando Ferreira and Ana Nunes. Bounded modified realizability. The Journal of Symbolic Logic,
71(1):329–346, March 2006. doi:10.2178/jsl/1140641178.

[FO05] Fernando Ferreira and Paulo Oliva. Bounded functional interpretation. Annals of Pure and Applied
Logic, 135(1–3):73–112, September 2005. doi:10.1016/j.apal.2004.11.001.

[Gri90] Timothy Griffin. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’90, pages 47–58, New
York, NY, USA, 1990. ACM. doi:10.1145/96709.96714.

[Gö58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica,
12(3-4):280–287, 1958. doi:10.1111/j.1746-8361.1958.tb01464.x.

[Her12] Hugo Herbelin. A constructive proof of dependent choice, compatible with classical logic.
In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, June 25-28, 2012, pages 365–374. IEEE Computer Society,
2012. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6275587, doi:
10.1109/LICS.2012.47.

[Hey34] Arend Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Springer-
Verlag, Berlin, 1934. doi:10.1007/978-3-642-65617-0.

[HvdB17] Amar Hadzihasanovic and Benno van den Berg. Nonstandard functional interpretations and
categorical models. ND Journal of Formal Logic, 58(3), 2017. doi:10.1215/00294527-3870348.

[Kle45] Stephen Kleene. On the interpretation of intuitionistic number theory. Journal of Symbolic Logic,
10:109–124, 1945. doi:10.2307/2269016.

[Kol32] Andrey Kolmogorov. Zur Deutung der intuitionistischen Logik. Mathematische Zeitschrift, 35(1):58–
65, 1932. doi:10.1007/BF01186549.

https://doi.org/10.1145/3531130.3532458
https://doi.org/10.1145/3531130.3532458
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1016/j.entcs.2019.09.006
https://doi.org/10.1016/j.entcs.2019.09.006
https://doi.org/10.1145/351240.351262
https://doi.org/10.1109/LICS52264.2021.9470514
https://doi.org/10.1002/malq.201600066
https://doi.org/10.1016/j.apal.2017.12.004
https://doi.org/10.1016/j.apal.2017.12.004
https://doi.org/10.4230/LIPIcs.CSL.2021.19
https://doi.org/10.1201/9780429291456
https://doi.org/10.1016/j.apal.2015.02.001
https://doi.org/10.2178/jsl/1140641178
https://doi.org/10.1016/j.apal.2004.11.001
https://doi.org/10.1145/96709.96714
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6275587
https://doi.org/10.1109/LICS.2012.47
https://doi.org/10.1109/LICS.2012.47
https://doi.org/10.1007/978-3-642-65617-0
https://doi.org/10.1215/00294527-3870348
https://doi.org/10.2307/2269016
https://doi.org/10.1007/BF01186549

Vol. 19:2 STATEFUL REALIZERS FOR NONSTANDARD ANALYSIS 7:43

[Kre51] Georg Kreisel. On the interpretation of non-finitist proofs, I. J. Symb. Log., 16:241–267, 1951.
doi:10.2307/2267908.

[Kri01] Jean-Louis Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch. Math.
Log., 40(3):189–205, 2001. doi:10.1007/s001530000057.

[Kri09] Jean-Louis Krivine. Realizability in classical logic. In Interactive models of computation and
program behaviour. Panoramas et synthèses, 27, 2009.

[Kri11] Jean-Louis Krivine. Realizability algebras: a program to well order R. Logical Methods in Computer
Science, 7(3), 2011. doi:10.2168/LMCS-7(3:2)2011.

[Kri16] Jean-Louis Krivine. Bar Recursion in Classical Realisability: Dependent Choice and Continuum
Hypothesis. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on
Computer Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 25:1–25:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2016.25.

[KS13] Mikhail Katz and David Sherry. Leibniz’s infinitesimals: their fictionality, their modern imple-
mentations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3):571–625, 2013.
doi:10.1007/s10670-012-9370-y.

[LR75] Albert Lightstone and Abraham Robinson. Nonarchimedean Fields and Asymptotic Expansions.
North-Holland mathematical library. North-Holland, 1975. doi:10.1016/0001-8708(76)90162-6.

[Lut87] Robert Lutz. Rêveries infinitésimales. Gazette des mathématiciens, 34:79–87, 1987.

[MH18] Étienne Miquey and Hugo Herbelin. Realizability interpretation and normalization of typed call-
by-need λ-calculus with control. In Foundations of software science and computation structures,
volume 10803 of Lecture Notes in Comput. Sci., pages 276–292. Springer, Cham, 2018. doi:

10.1007/978-3-319-89366-2_1.
[Miq11a] Alexandre Miquel. Existential witness extraction in classical realizability and via a negative

translation. Logical Methods in Computer Science, 7(2):188–202, 2011. doi:10.2168/LMCS-7(2:
2)2011.

[Miq11b] Alexandre Miquel. Forcing as a program transformation. In Proceedings of the 2011 IEEE 26th
Annual Symposium on Logic in Computer Science, LICS ’11, page 197–206, USA, 2011. IEEE
Computer Society. doi:10.1109/LICS.2011.47.

[Miq20] Alexandre Miquel. Implicative algebras: a new foundation for realizability and forcing. Mathemat-
ical Structures in Computer Science, 30(5):458–510, 2020. doi:10.1017/S0960129520000079.

[Moe95] Ieke Moerdijk. A model for intuitionistic non-standard arithmetic. Ann. Pure Appl. Logic, 73(1):37–
51, 1995. A tribute to Dirk van Dalen. doi:10.1016/0168-0072(93)E0071-U.

[MP97] Ieke Moerdijk and Erik Palmgren. Minimal models of Heyting arithmetic. J. Symbolic Logic,
62(4):1448–1460, 1997. doi:10.2307/2275651.

[Nel77] Edward Nelson. Internal set theory: A new approach to nonstandard analysis. Bull. Amer. Math.
Soc, 1977. doi:10.2307/2273684.

[Nel87] Edward Nelson. Radically Elementary Probability Theory. Annals of Mathematical Studies, vol.
117. Princeton University Press, Princeton, N. J., 1987.

[Pow18] Thomas Powell. A functional interpretation with state. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, page 839–848, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3209108.3209134.

[Pra65] Dag Prawitz. Natural deduction. A proof-theoretical study. Acta Universitatis Stockholmiensis.
Stockholm Studies in Philosophy, No. 3. Almqvist & Wiksell, Stockholm, 1965. doi:10.2307/
2271676.

[Rob61] Abraham Robinson. Non-standard analysis. Indagationes Mathematicae (Proceedings), 64:432–440,
1961. doi:10.1016/S1385-7258(61)50044-3.

[Rob66] Abraham Robinson. Non-standard analysis. North-Holland Publishing Co., Amsterdam, 1966.
[Tar30] Alfred Tarski. Une contribution à la théorie de la mesure. Fundamenta Mathematicae, 15(1):42–50,

1930. URL: http://eudml.org/doc/212372.
[vO08] Jaap van Oosten. Realizability: an introduction to its categorical side, volume 152 of Studies in

Logic and the Foundations of Mathematics. Elsevier B. V., Amsterdam, 2008.
[Zei09] Noam Zeilberger. Refinement types and computational duality. In Proceedings of the 3rd Workshop

on Programming Languages Meets Program Verification, PLPV ’09, page 15–26, New York, NY,
USA, 2009. Association for Computing Machinery. doi:10.1145/1481848.1481852.

https://doi.org/10.2307/2267908
https://doi.org/10.1007/s001530000057
https://doi.org/10.2168/LMCS-7(3:2)2011
https://doi.org/10.4230/LIPIcs.CSL.2016.25
https://doi.org/10.1007/s10670-012-9370-y
https://doi.org/10.1016/0001-8708(76)90162-6
https://doi.org/10.1007/978-3-319-89366-2_1
https://doi.org/10.1007/978-3-319-89366-2_1
https://doi.org/10.2168/LMCS-7(2:2)2011
https://doi.org/10.2168/LMCS-7(2:2)2011
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1017/S0960129520000079
https://doi.org/10.1016/0168-0072(93)E0071-U
https://doi.org/10.2307/2275651
https://doi.org/10.2307/2273684
https://doi.org/10.1145/3209108.3209134
https://doi.org/10.2307/2271676
https://doi.org/10.2307/2271676
https://doi.org/10.1016/S1385-7258(61)50044-3
http://eudml.org/doc/212372
https://doi.org/10.1145/1481848.1481852

7:44 B. Dinis and É. Miquey Vol. 19:2

[Lo60] Jerzy Loś. Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres.
Journal of Symbolic Logic, 25(2):168–168, 1960. doi:10.2307/2964232.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.2307/2964232

	1. Introduction
	2. The ultrapower construction
	3. Realizability in a nutshell
	3.1. Heyting second-order arithmetic
	3.2. Realizability interpretation of HA2
	3.3. Introducing value restriction

	4. Realizability with slices
	4.1. Stateful computations
	4.2. Stateful realizability interpretation
	4.3. Glueing
	4.4. The induced evidenced frame

	5. Nonstandard principles in realizability with slices
	5.1. Natural numbers
	5.2. Nonstandard reasoning principles
	5.3. Idealization

	6. LLPO
	6.1. LLPO in nonstandard arithmetic
	6.2. Disjunction
	6.3. A realizer for LLPOst

	7. A tainted quotient
	7.1. Realizability up to an ultrafilter
	7.2. Limitations of the construction
	7.3. Stranger things

	8. Related and future work
	8.1. Related work
	8.2. Weak Konig's Lemma
	8.3. Horizons

	References

