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1. Introduction

Recent work in theoretical computer science has established a link between computational
complexity classes and the languages efficiently reducible to sets of random strings. Intu-
itively, a random (finite, binary) string is one that does not have a shorter description than
itself. We use Kolmogorov complexity to formalize this intuition, but this leaves us with
choices: There are two common types of Kolmogorov complexity (plain and prefix-free),
and within each type, the set of random strings depends on the choice of universal machine.
See Section 1.1 for more detail. Irrespective of these choices, however, the set of random
strings can be shown to “speed up” computation.

Theorem 1.1 (Buhrman, Fortnow, Koucký and Loff [6]; Allender, Buhrman, Koucký, van
Melkebeek and Ronneburger [3]; Allender, Buhrman and Koucký [2]). Let R be the set of

all random strings for either plain or prefix-free complexity.

• BPP ⊆ PR
tt
.

• PSPACE ⊆ PR.

• NEXP ⊆ NPR.

So, for example, a language in PSPACE can be recognized by a polynomial-time machine
with access to R.

It is also possible to give upper bounds for what can be efficiently reducible to the set
of random strings.

Theorem 1.2 (Allender, Friedman and Gasarch [4]).

• ∆0
1 ∩

⋂
U P

RKU
tt

⊆ PSPACE.

• ∆0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE.

Here U ranges over universal prefix-free machines, KU is prefix-free complexity as deter-

mined by U , and RKU
is the corresponding set of random strings.

Taking the intersection over all universal prefix-free machines has the effect of “factoring
out” the choice of machine. Why is this necessary? First note that RKU

is not computable
(hence not in PSPACE) but it is efficiently reducible to itself. This example is unsatisfying,
of course, because we are already explicitly restricting to computable (i.e., ∆0

1) languages.
For a better example, note that is possible to build a universal prefix-free machine U for

which there is a computable set A ∈ P
RKU
tt that is not in EXPSPACE.1

There are two other ways that Theorem 1.2 is restricted. For one, it is only stated
for prefix-free complexity; Allender, Friedman and Gasarch [4] conjecture that it holds for
plain complexity as well. More important for our purposes is the explicit restriction to
computable languages. Allender et al. conjecture that this restriction is redundant.

Conjecture 1.3 (Allender, Friedman and Gasarch [4]). If A ∈
⋂

U NPRKU , then A is
computable. (Therefore, ∆0

1 ∩ can be removed from both parts of Theorem 1.2.)

We prove this conjecture and study related questions.
Our approach is purely computability-theoretic. Any set in NPR is truth-table reducible

to R, so we study tt-reduction to sets of random strings, i.e., sets of the form RKU
for

1For plain complexity, this follows from [2, Theorem 12]. The authors point out that the same proof
works in the case of prefix-free complexity. It remains open if for every universal prefix-free machine U ,

there is a computable set A ∈ P
RKU

tt r EXPSPACE, even though the corresponding fact holds for plain
complexity. See the discussion after [2, Theorem 16].
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different choices of the prefix-free universal machine U . We show in Theorem 2.6 that every
finite collection of sets of random strings can tt-compute some noncomputable computably
enumerable set. Note that sets of random strings are Turing complete (and co-c.e.), so it
is reasonable to ask if Theorem 2.6 is a special case of a more general restriction on the
tt-degrees of Turing complete c.e. sets. It is not; Theorem 3.1 shows that there is a minimal
pair of Turing complete c.e. sets within the tt-degrees. Finally, in Theorem 4.1 we prove
that there is no noncomputable set that is tt-reducible to every set of random strings. This
verifies Conjecture 1.3.

Putting Theorems 1.1 and 1.2 together with Conjecture 1.3, we obtain:

• BPP ⊆
⋂

U P
RKU
tt ⊆ PSPACE

• NEXP ⊆
⋂

U NPRKU ⊆ EXPSPACE

In each case, U ranges over universal prefix-free machines. Allender [1] conjectures that the

lower bounds are tight, i.e., that BPP =
⋂

U P
RKU
tt and NEXP =

⋂
U NPRKU , but this is

still very much an open question.

1.1. Definitions and background. The Kolmogorov complexity of a finite string σ ∈ 2<ω

is a measure of how difficult it is to describe σ. Let M : 2<ω → 2<ω be partial computable
function (we call such a function a machine). The plain complexity of σ with respect to M
is

CM (σ) = (µn)(∃τ)[U =M(τ) = σ & |τ | = n].

This depends on the choice of M , but it is straightforward to check that there is a universal

machine U such that CU is optimal for such machines, up to an additive constant. Plain
Kolmogorov complexity C is defined to be CU for a fixed universal machine U . Note that
for any two universal machines U and V , CU (σ) ≤ CV (σ)+c for some constant c depending
on U and V .

We define prefix-free Kolmogorov complexity in a similar manner. We say that a ma-
chine M : 2<ω → 2<ω is prefix-free if whenever σ and τ are two distinct strings contained in
the domain of M , then neither is a prefix of the other (i.e., σ | τ). A universal prefix-free
machine is one that can simulate all other prefix-free machines. Prefix-free complexity with
respect to a universal prefix-free machine U is written KU (σ), and is defined in the same
way as CU (σ). Similarly, K(σ) is KU (σ) for some fixed universal prefix-free machine U . As
before, the choice of U can make at most a finite difference.

As a notational convention, we use [s] after a term to mean the state of that term
after s stages. For instance, K(σ)[s] = KU (σ)[s] is the shortest length of any τ such that
Us(τ) = σ.

While plain complexity C at first seems like the most natural way to define complexity,
it lacks some properties that we would expect a complexity measure to have. For example,
it is not true that there is a constant c such that C(στ) ≤ C(σ)+C(τ)+c. Thus, to describe
the concatenation of σ and τ , we cannot simply provide descriptions of both strings along
with some finite code for concatenation, as we would expect that we could. Prefix-free
complexity K satisfies more properties that we would desire a complexity measure to satisfy.
For instance, there does exist a constant c such that K(στ) ≤ K(σ) +K(τ) + c. (For more
information, see [19, p. 83], or [9, p. 121].)

Intuitively, for a string to be random, it should have no description shorter than its own
length. This leads to the following definitions. Let U be a universal prefix-free machine.



4 M. CAI, R. G. DOWNEY, R. EPSTEIN, S. LEMPP, AND J. S. MILLER

We define the set of random strings with respect to U by

RKU
= {σ | KU (σ) ≥ |σ|}.

For a fixed prefix-free universal machine U , we let RK = RKU
. Similarly, we can define RCV

and RC using plain complexity and a standard universal machine V .
Note that while the choice of machine makes only a small difference in complexity, the

sets RKU1
and RKU2

could potentially be quite different. Thus, we cannot talk about a
given string σ being “random” without specifying a machine. In this paper, we look at how
different the sets of random strings with respect to different machines can be.

It is known that both RC and RK are Turing complete, regardless of the choices of
universal machines; see Li and Vitányi [16, Exercise 2.7.7] for details. (The exercise states
that the set {〈x, y〉 | C(x) ≤ y} is Turing complete, but the proof uses only RC . It is not
difficult to extend the proof to the prefix-free case, as the machine built to compress strings
in the exercise can easily be made to be prefix-free.) In fact, by the same argument, RC

and RK are always bounded Turing-complete (or, bT-complete, for short). That is, we can
computably find a bound for the use function in the computation that reduces the halting
set to RC or RK .2 Thus, comparing the Turing degrees or bounded Turing degrees of two
sets of random strings will not help to differentiate them. So we turn instead to truth-table
reducibility, the next finer reducibility.

Truth-table reducibility is a strengthening of Turing reducibility and bT-reducibility.
For an arbitrary Turing functional Φ, there is no computable way to know for which oracles A
and which input m ΦA(m) converges. There is also no way to know how much of the oracle
is needed to perform a given computation. For a truth-table reduction (tt-reduction), this
information can be computably known. There are two standard ways of defining a truth-
table reduction. One way is as a total Turing reduction. That is, a Turing functional Ψ is
a tt-reduction if for every oracle A ∈ 2ω, ΨA is a total function. The other way to define a
truth-table reduction is using truth tables. Each tt-reduction Ψ is given by two computable
functions, f and g. The value f(m) gives a number that can be thought of as a bound
for the use of the computation ΨA(m) for any oracle A. The value g(m) gives a code that

tells us, for each σ ∈ 2f(m), what the value of Ψσ(m) is. Thus, we can think of f and g as
defining a table whose rows consist of every string σ of length f(m) and the corresponding
output Ψσ(m). If A = ΨB for a tt-reduction Ψ, we write A ≤tt B.

We can effectively list the tt-reductions by also including some reductions that are not
total and are therefore not tt-reductions. We let {Ψi}i∈ω be a listing of the tt-reductions
in the following way. Let i = 〈if , ig〉, where (x, y) 7→ 〈x, y〉 is the standard Cantor pairing
function from ω × ω to ω. Let Ψi be the reduction given by the functions f and g as
above, where f = ϕif and g = ϕig (and where {ϕe}e∈ω is the standard listing of the partial
computable functions). We say that the truth table for Ψi(m) has been defined after s steps
if ϕif (m)[s] and ϕig (m)[s] both converge and ϕig (m) codes the values for the rows of the
table given by ϕif (m). If either function does not converge or if the functions cannot be
interpreted as giving a truth table, then the truth table is undefined.

It is not hard to show that A ≤tt B if and only if A ≤T B via a Turing reduction that
runs in a computably bounded time. Truth-table reductions are thus closely connected to
computer science.

2Note that bT-reducibility is also known as weak truth-table reducibility, or wtt-reducibility.
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In our work below, we build on ideas from two beautiful theorems on the tt-degrees of
sets of random strings. The first is about the set of strings random with respect to plain
complexity:

Theorem 1.4 (Kummer [14]). RC is truth-table complete.

Kummer’s theorem does not depend on the choice of universal machine used to define RC .
Thus, every c.e. set is contained in

⋂
U{A | A ≤tt RCU

}, where the intersection is taken over
every universal machine. This does not hold for the prefix-free case, by the second result:

Theorem 1.5 (Muchnik [18]). There exists a prefix-free universal machine U such that RKU

is not truth-table complete.

In fact, in Theorem 4.1 we show that
⋂

U{A | A ≤tt RKU
} = ∆0

1. That is, the only sets
tt-reducible to every RKU

are the computable sets. Our proof relies heavily on ideas that
were introduced in Muchnik’s proof, in particular, the idea of playing a game to force the
value of a truth-table reduction. It is worth noting that the proof of Theorem 1.2 was also
inspired by Muchnik’s proof.

Kummer’s proof served as the basis of our proof of Theorem 2.6, where we show that
for any finite collection of RKU

’s, there is a noncomputable c.e. set tt-reducible to each RKU
.

Essentially, we try to transfer Kummer’s coding method to the prefix-free case. While we
cannot code ∅′, we do find that we can code some noncomputable c.e. set.

2. There is no tt-minimal pair of RKU
’s

We first state and prove the following theorem for two RKU
’s and then generalize it in

Theorem 2.6 to the case of finitely many RKU
’s.

Theorem 2.1. For any prefix-free universal machines U1 and U2, there is a noncomputable

c.e. set A such that A ≤tt RKU1
and A ≤tt RKU2

.

For notational simplicity, let Kj = KUj
and Rj = RKUj

for j = 1, 2.

We use U1 as the universal prefix-free machine that gives us the prefix-free complex-
ity K(σ), so K(σ) = K1(σ). We use the usual correspondence between finite strings and
natural numbers to define Kj(n) for j = 1, 2. That is, σ is the string corresponding to n
if 1σ is the binary representation of n + 1. By Chaitin’s Counting Theorem [7], there is a

constant c such that |{σ ∈ 2n | Kj(σ) < |σ|}| < 2n−K(n)+c, for each j = 1, 2; that is, the

number of length n strings in Rj is bounded by 2n−K(n)+c.
Let g(n) be the computable function, defined by Solovay in [21], with the property that

K(n) ≤ g(n) for all n ∈ ω and such that g(n) = K(n) on an infinite set. There is, however,
no infinite c.e. set on which g(n) = K(n) ([21], see [11, p. 132]). We will construct an infinite
set A that is truth-table reducible to both R1 and R2, and such that if A is computable,
then there is an infinite c.e. set on which g(n) = K(n). Thus, A is not computable, showing
that R1 and R2 do not form a minimal pair. Also note that there is a constant b such that
K(n) ≤ b+ 2 log n, so we may assume that g(n) ≤ b+ 2 log n.

We will simultaneously construct two prefix-free machines M1 and M2. Using the
Recursion Theorem, we may assume that we know in advance that the coding constants
of machine Mj with respect to Uj are less than some value d for each j = 1, 2; that is,
KUj

(σ) < KMj
(σ) + d for all σ and each j = 1, 2. The purpose of the machines will be
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to compress strings, which will force U1 and U2 to compress strings, which will allow us to
code information into R1 and R2.

As we have said, our proof is inspired by Kummer’s proof of Theorem 1.4. The main
idea is that we know by Chaitin’s Counting Theorem that the number of nonrandom strings
of length n (with respect to either U1 or U2) is less than 2n−g(n)+c for all n such that

g(n) = K(n). We can divide the set of natural numbers less than 2n−g(n)+c into 2c+d many

regions of size 2n−g(n)−d, for all n. We know there is some maximal such region such that
the size of the set of nonrandom strings of length n lies in that region, for infinitely many n
with K(n) = g(n). We can code information into Uj by waiting until K(n)[s] = g(n) and

choosing 2n−g(n)−d strings that will be compressed if K(n) drops below g(n). For almost
all n in the maximal region, these strings will only be compressed if K(n) < g(n), because
otherwise we would contradict the maximality of the region. Thus, we are compressing
strings to code information about which elements n satisfy K(n) < g(n).

We construct our machines by enumerating KC (Kraft-Chaitin) sets. A KC set is a c.e.
set of pairs {〈di, σi〉}i∈ω from ω × 2<ω such that the weight

∑

i∈ω

2−di

of the set is at most 1. By the KC Theorem, also known as the Machine Existence Theorem,
a KC set determines a prefix-free machine M such that M(τi) = σi with |τi| = di for all
i ∈ ω. Thus, any universal prefix-free machine must also compress σi to length di plus a
coding constant. (The KC Theorem is due to Levin [15], Schnorr [20], and Chaitin [7]. See
also [9, p. 125].)

To build our KC sets, we first build sets Ej
n such that Ej

n contains strings of length n,

for j = 1, 2. We then enumerate 〈n − d, σ〉 into a KC set for each σ ∈
⋃

n∈ω E
j
n to define

machine Mj . We will construct Ej
n so that if g(n) = K(n), then Ej

n will be empty; and

otherwise (i.e., if g(n) > K(n)) we have |Ej
n| ≤ 2n−g(n)−d < 2n−K(n)−d. Thus the weight of

our KC sets will be no more than∑

n∈ω

2−(n−d)2n−K(n)−d =
∑

n∈ω

2−K(n) ≤ 1.

Therefore, M1 and M2 will indeed be prefix-free machines.
In our construction, in addition to buildingM1 andM2, we will also build finitely many

c.e. sets A〈e,i〉. One of these sets will be our desired set A, which will be noncomputable
and tt-reducible to R1 and R2. However, we do not know which of the sets will be the true
set A.

Let Oj
n[s] = {σ ∈ 2n | Kj(σ)[s] < n} for j = 1, 2. Note that these are the strings of

length n that have been shown to be outside of Rj by stage s.

2.1. Construction. Stage 0. Let l(e, i) = 0 for all e, i ≤ 2c+d.

Stage s + 1, Part 1. For each pair 〈e, i〉 with e, i ≤ 2c+d, in decreasing order (starting
from the largest 〈e, i〉), check whether there is an n ≤ s such that

(i) n is unused and n > b+ d+ 2 log n,
(ii) n 6= m〈e′,i′〉,x′ for any 〈e′, i′〉 ≥ 〈e, i〉 and any x′,

(iii) e2n−g(n)−d ≤ |O1
n[s]|,

(iv) i2n−g(n)−d ≤ |O2
n[s]|, and
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(v) g(n) = K(n)[s].

In other words, we check whether g(n) = K(n)[s], and if so we try to find the largest
pair 〈e, i〉 satisfying the above criteria.

If so, then take the least such n and apply the following steps:

• Let S1
〈e,i〉,l(e,i) be the least k elements in 2n −O1

n[s], where

k = min{2n − |O1
n[s]|, 2

n−g(n)−d},

and similarly for S2
〈e,i〉,l(e,i).

• Let m〈e,i〉,l(e,i) = n.
• Increment l(e, i) by 1.

Stage s + 1, Part 2. If m〈e,i〉,x = n for some x, we call n a candidate for 〈e, i〉. If n is
an unused candidate for any 〈e, i〉 and g(n) > K(n)[s] (i.e., K(n) decreased from (v) above
when n was made a candidate), we declare n to be used and let E1

n = S1
〈e,i〉,x where 〈e, i〉 is

the greatest such that n is a candidate for 〈e, i〉 and x is such that m〈e,i〉,x = n. Similarly,

we define E2
n = S2

〈e,i〉,x.

When n becomes used, for each 〈e, i〉 such that n is a candidate for 〈e, i〉, we enumerate
〈n, t〉 into A〈e,i〉, where t is the stage at which n became a candidate for 〈e, i〉.

End of construction.

LetMj be the machine that compresses each string in Ej
n to length n−d, for j = 1, 2. As

explained previously, these machines are guaranteed to be prefix-free by the KC Theorem.
To see how we can know d in advance, first note that by the Recursion Theorem, we can

know indices for the KC sets that we are building in order to define M1 and M2. Since we
can effectively go from an index for a KC set to an index for a machine, by the KC Theorem,
we can find indices for the machines M1 and M2. Since U1 and U2 are universal prefix-free
machines, given indices for M1 and M2, we can effectively find coding constants d1 and d2
such that KUj

(σ) ≤ KMj
(σ) + dj for each j = 1, 2 and σ ∈ 2<ω. Thus, we can know d1

and d2 in advance, so let d = d1 + d2 + 1.
Note that for almost all n, n > b+ d+ 2 log n. For such n,

n− g(n)− d > b+ d+ 2 log n− g(n)− d ≥ 0.

Thus, 2n−g(n)−d ≥ 1. Let I be the infinite set of n such that n > b + d + 2 log n and
g(n) = K(n). For each n ∈ I, there is some 〈e, i〉 such that conditions (i)-(v) will hold.
Now each n ∈ I can be a candidate for each 〈e, i〉 at most once, and n will eventually
become a candidate for some 〈e, i〉 since if n is not already a candidate for some 〈e, i〉, n will
eventually become a candidate for e = i = 0. Thus, there is some largest 〈e, i〉, which we
will call 〈e0, i0〉, such that there are infinitely many elements of I that become candidates
for 〈e, i〉. Note that neither coordinate of 〈e0, i0〉 can be equal to 2c+d, as we know that for
all n ∈ I, since g(n) = K(n), the set of compressible strings of length n is strictly less than
2n−g(n)+c.

Let A = A〈e0,i0〉. We will show that A is tt-reducible to both R1 and R2 and is not
computable. (We will not use the other sets A〈e,i〉.)
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2.2. Verification.

Lemma 2.2. A ≤tt Rj , for j = 1, 2.

The proof depends on the following two sublemmas.

Sublemma 2.3. For all n such that there exists x with m〈e0,i0〉,x = n, we have that g(n) >

K(n) implies Ej
n = Sj

〈e,i〉,y for some 〈e, i〉 ≥ 〈e0, i0〉 and some y ∈ ω, and that g(n) = K(n)

implies Ej
n = ∅ for j = 1, 2.

Proof. In the construction, if g(n) > K(n), n will become used, and Ej
n will be defined.

Since n is a candidate for 〈e0, i0〉, it must become a candidate when it is still unused, so by
the time it becomes used, the greatest 〈e, i〉 for which n is a candidate is at least 〈e0, i0〉.

Thus, Ej
n will be defined as Sj

〈e,i〉,y for some 〈e, i〉 ≥ 〈e0, i0〉. If g(n) = K(n), then n will

never become used, and Ej
n will never be nonempty.

Sublemma 2.4. For almost all x, for each j = 1, 2,

Sj

〈e0,i0〉,x
⊆ Rj ⇐⇒ 〈m〈e0,i0〉,x, s〉 ∈ A,

where s is the stage at which m〈e0,i0〉,x was defined.

Proof. (⇐) Since 〈n, s〉 = 〈m〈e0,i0〉,x, s〉 ∈ A, we have g(n) > K(n). By Sublemma 2.3, Ej
n =

Sj

〈e,i〉,y for some 〈e, i〉 ≥ 〈e0, i0〉. Since all strings in E
j
n are compressed byMj to length n−d,

they are compressed by Kj for j = 1, 2 to length less than n−d+d = n. Thus, Sj

〈e,i〉,y ⊆ Rj.

If 〈e, i〉 = 〈e0, i0〉, we are done, since in that case, x = y. Otherwise, 〈e, i〉 > 〈e0, i0〉, so

Sj

〈e,i〉,y must have been defined after Sj

〈e0,i0〉,x
was defined because otherwise condition (ii)

of the construction would not allow m〈e0,i0〉,x to be defined as n. Thus, Sj

〈e0,i0〉,x
⊆ Rj as

well, because anything in Sj

〈e0,i0〉,x
− Sj

〈e,i〉,y must have already been seen to be nonrandom

with respect to Rj by the time Sj

〈e,i〉,y was defined, since such strings are in Oj
n = Rj ∩ 2n.

(⇒) Let x0 be such that for all x ≥ x0, if m〈e0,i0〉,x = n for some n ∈ I, then n never

becomes a candidate for any 〈e, i〉 > 〈e0, i0〉. Let x ≥ x0 and n = m〈e0,i0〉,x. Let Sj

〈e0,i0〉,x

become defined at stage s. Suppose Sj

〈e0,i0〉,x
⊆ Rj for either j = 1 or 2. Without loss of

generality, assume j = 1. Then at some stage t > s, all strings in S1
〈e0,i0〉,x

are in O1
n[t]. This

means |O1
n[t]| ≥ |O1

n[s]| + k, where k is the number of strings in S1
〈e0,i0〉,x

, all of which still

appeared random at stage s. Recall that the number of elements in S1
〈e0,i0〉,x

was chosen to

be the minimum of 2n − |O1
n[s]| and 2n−g(n)−d. In the former case, all strings of length n

are non-random, which is impossible. So S1
〈e0,i0〉,x

has size 2n−g(n)−d, and by condition (iii),

|O1
n[s]| ≥ e02

n−g(n)−d, so |O1
n[t]| ≥ (e0+1)2n−g(n)−d. We also have that |O2

n[t]| ≥ i02
n−g(n)−d,

so condition (iii) and (iv) will hold for some 〈e, i〉 with 〈e, i〉 > 〈e0, i0〉. If n has not yet
become used when this happens, all of conditions (i)-(v) will hold for this 〈e, i〉 and n, so n
will eventually become a candidate for 〈e, i〉. Thus, n /∈ I. Therefore, g(n) > K(n), and
so at some stage in the construction, n will become used while it is a candidate for 〈e0, i0〉,
and at this point 〈n, s〉 = 〈m〈e0,i0〉,x, s〉 will be enumerated into A.
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Proof of Lemma 2.2. To determine if 〈n, s〉 is in A, run the construction to see if m〈e0,i0〉,x

is defined as n for some x at stage s. If not, then 〈n, s〉 /∈ A. If so, then 〈n, s〉 ∈ A ⇐⇒

Sj

〈e0,i0〉,x
∩Rj = ∅. This works for both j = 1 and 2 by Sublemma 2.4.

Lemma 2.5. A is not computable.

Proof. Suppose A is computable. Let

B = {〈n, s〉 | n becomes a candidate for 〈e0, i0〉 at stage s}.

Obviously B is computable, and so B −A is computable. B −A is the set of all candidate
pairs 〈n, s〉 such that n ∈ I. Let C = {n | (∃s)[〈n, s〉 ∈ B−A]}. Then C is an infinite c.e. set
such that C ⊆ I (here C is infinite by the choice of 〈e0, i0〉). However, Solovay [21] showed
that I contains no infinite c.e. set, so this is a contradiction. Thus A is not computable,
proving the theorem.

This proof can easily be modified to accommodate any finite set of universal machines
by replacing the pairs 〈e, i〉 with m-tuples. This gives the following:

Theorem 2.6. For any finite set of prefix-free universal machines {Uj}j=1,...,m there is a

noncomputable c.e. set A such that A ≤tt RKUj
for each j = 1, . . . ,m.

While sets of random strings cannot form a tt-minimal pair, there are Turing complete
sets that do form a tt-minimal pair, as we show in the following section.

3. A tt-minimal pair of Turing complete sets

In Theorem 2.1, we showed that there is no pair of sets of random strings RKU1
and RKU2

that form a minimal pair in the truth-table degrees, or even in the c.e. truth-table degrees.
We know that RKU

is always Turing complete. If no two Turing complete sets ever form
a minimal pair in the tt-degrees, Theorem 2.1 would be a trivial corollary. However, this
is not the case, as we show in this section. By a different method, Degtev [8] proved that
there are Turing complete c.e. sets that form a minimal pair in the c.e. truth-table degrees.
We produce a minimal pair in the full structure of the tt-degrees.

Theorem 3.1. There exist Turing complete c.e. sets A1 and A2 whose tt-degrees form a

minimal pair.

Proof. Let {Ψi}i∈ω be a computable listing of all partial truth-table reductions.
Let D be a Turing complete c.e. set with a computable enumeration {Ds}s∈ω such that

if n enters D at stage s, then m enters D at stage s for all m ∈ [n, s) not yet in D. Such a
set D can be constructed using a standard movable marker construction. We will build A1

and A2 as well as Turing functionals Γ1 and Γ2, such that ΓAi

i = D for i = 1, 2, satisfying
the following requirements for all e:

Re : Ψ
A1

e = ΨA2

e = f total =⇒ f computable.

By Posner’s trick, the requirements Re (and the fact that A1 6= A2) suffice to show that

the tt-degrees of A1 and A2 form a minimal pair, because if ΨA1

i = ΨA2

i′ , we could build a

single tt-reduction Ψe such that ΨA1

e = ΨA1

i and ΨA2

e = ΨA2

i′ .

We will build ΓAi

i in stages with uses γi(x, s), for i = 1, 2. In particular, we will treat
the use γi(x, s) as a movable marker. The marker γi(x, s) sits on an element not yet in Ai.
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We may change the value of ΓAi

i by enumerating γi(x, s) into Ai. The movement of the
markers is subject to the following rules:

(1) If n < n′, then γi(n, s) < γi(n
′, s).

(2) γi(n, s + 1) 6= γi(n, s) implies γ(n, s + 1) > s + 1, where by convention s exceeds all
numbers used in computations at stage s. We refer to this action as kicking. Moreover,
when γi(s, s) is first appointed at the end of stage s, it is chosen to be the least element
not yet in Ai that is greater than s and all other markers γi(n, s).

(3) If n enters D at s then we will enumerate γi(n, s) into Ai[s + 1]. Once n ∈ Ds we will
no longer define γi(n, s). The marker will be removed.

(4) If γi(n, s) enters Ai[s], so do all currently defined γi(k, s) for all k ∈ [n, s).
(5) Coding of D is not the only reason γi(n, s) can move. The marker γi(n, s) may be

moved by requirements Re in their attempts to seek satisfaction, but Re can only move
γi(n, s) if e ≤ n. As we will show, a single Re can only move a specific γi(n, s) a finite
number of times. If γi(n, s) enters Ai and n 6∈ Ds, it will be redefined, and as usual, we
will kick γi(n, s+ 1) to a fresh element past s+ 1.

(6) If γi(n, s) enters Ai then one of γj(n, s) or γj(m, s) must simultaneously enter Aj for
j 6= i, where m > n is the smallest γj(m, s) with m 6∈ Ds. That is, γj(m, s) is the least
marker still defined for m > n.

(7) If γi(n, s) moves or is enumerated, then Re is initialized for e > n, meaning that all
current values for f = fe are discarded, and the strategies for Re are restarted.

To achieve Re, we will force disagreements at stage s between ΨA1

e and ΨA2

e whenever
possible by enumerating γ1(n, s) into A1 and γ2(m, s) into A2, where n and m are at most
one defined marker apart, as specified in Rule 6. According to the rules that govern marker
movement, we also enumerate all larger markers.

Let ℓ(e, s) be the length of agreement function given by

ℓ(e, s) = max{n | ΨA1

e ↾ n[s] = ΨA2

e ↾ n[s]}.

If the limit of ℓ(e, s) is infinity, then we will try to fix the values of f = ΨAi
e so that f is

computable. Given values for f ↾ n, we will attempt to force a disagreement between ΨA1

e (n)
and ΨA2

e (n) while following the rules of marker movement. Any disagreement we force could
only be injured finitely often, and we will eventually either preserve a disagreement or reach
a believable computation for f(n).

We perform the construction on a tree of strategies. Each height e will correspond to
the strategy Re. Nodes of length e will be extended by the three possible outcomes for the
strategy Re: ∞, d (for disagreement), and w (for waiting), ordered by ∞ < d < w. The ∞
outcome will correspond to the situation where ΨA1

e = ΨA2

e . The d outcome will correspond
to the situation where we are preserving a disagreement between ΨA1

e and ΨA2

e . Otherwise,
the outcome will be w; this includes the case in which Ψe is not a total truth-table reduction
and our strategy is eventually stuck waiting for convergence.

We first discuss the basic module for R0. We will then modify this to the α-module by
giving a formal construction in Section 3.3.

3.1. Basic module for R0. The module works in order of k to give a definition of f(k).
For k = 0:
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• Wait till the first stage s when ℓ(0, s) > 0. Immediately enumerate γi(q, s) into Ai for all
0 < q < s. This causes γi(q, s+1) to be moved past the use of Ψ0(0), so that enumeration
into Ai will not affect the computations. We will say that the pair 〈0, k〉 = 〈0, 0〉 has been
prepared.

• Wait until the next stage t where ℓ(0, t) > 0. At this stage there are two possibilities.
(1) Putting γ1(0, t) into A1, or γ2(0, t) into A2 or both, will cause a disagreement at

argument 0.
(2) Otherwise. Then define f(0) = ΨA1

0 (0)[t].
• Suppose we invoke 1. If we put both of the markers into their targets A1 and A2, then
the strategy is successful by kicking because no markers will ever be defined below the
use of Ψ0(0) and thus our disagreement can never be injured. If we only changed one
side, say A1, then this will cause a disagreement that holds forever, unless at a later
stage t′, 0 enters D. At such a stage t′ we would enumerate γi(0, t

′) into Ai, and noting
that γ2(0, t

′) = γ2(0, t), this could potentially make the computation equal again. We

would wait until the next stage t′′ > t′ where ℓ(0, t′′) > 0, and define f(0) = ΨA1

0 (0)[t′′],
safe in the knowledge that this is now an immutable computation.

Given f(k), we act for k + 1:

• After defining f(k), we wait for the stage s where ℓ(0, s) > k+1. We then enumerate all
γi(q, s) into Ai for q > k + 1. As before, this causes γi(q, s + 1) to move past ψ0(k + 1),
the use of Ψ0(k + 1), and we call 〈0, k + 1〉 prepared.

• Wait until the next stage t where ℓ(0, t) > k+1. We examine the tt-reductions Ψ0(k+1)
and allowable enumerations of γi(n, t) into Ai for n ≤ k + 1 below the use, ψ0(k + 1), to
see if we can cause a disagreement for argument k+1. Again by kicking, everything else
is too big. If we can cause a disagreement, we will do so with the least possible elements.
To be more specific, given m ∈ ω, let m− be the greatest m′ < m such that γ0(m

′, t) is
defined and let m+ be the least m′′ > m such that γ0(m

′′, t) is defined. By the rules of
movement, m− is the greatest number less than m such that m− /∈ Dt and m

+ is the least
number greater than m such that m+ /∈ Dt. Let m be the least element such that we
can cause a disagreement by enumerating γ1(m, t) into A1 and either γ2(m

−, t), γ2(m, t),
or γ2(m

+, t) into A2, as well as all greater markers, according to the rules of movement.
We choose the least pairing that causes a disagreement and enumerate the appropriate
elements. Again, there are two possibilities:
(1) We make such an enumeration to cause a disagreement. When we implement the

tree of strategies, nodes guessing that there is a disagreement at R0 will preserve the
disagreement.

(2) No such m exists to cause a disagreement. Then define f(k + 1) = ΨA1

0 (k + 1)[t].

In case 1, the disagreement at k + 1 may be injured. R0 will not act when it sees a
disagreement, so injury can only occur by elements entering D. If such elements do enter D,
causing an agreement between ΨA1

0 (k+1) and ΨA2

0 (k+1), we will wait until we see ℓ(0, s) >
k+1 and will try again to cause a disagreement. When we cannot, we will define f(k+1) =

ΨA1

0 (k+1)[s]. In fact, we will not be able to find a new disagreement because we previously
chose the minimal possible disagreement.

3.2. Tree of strategies. As mentioned previously, each node on our tree of strategies will
be extended by three possible outcomes: ∞ < d < w, where the ordering is left to right. We
will build an approximation to the true path through the tree, which we call δs. We say s is
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an α-stage if α is a prefix of δs. Nodes α of length e can act for Re only at α-stages. During
such action, any attempt at defining the function given by ΨA1

e = ΨA2

e will be called fα.
Whenever δs moves to the left of α, α will be initialized, undefining all values of fα. For α
on the true path, which is lim infs δs, this will only happen finitely often.

We build an approximation δs to the true path recursively as follows: Given α = δs↾
(e + 1), we define δs(e + 1). If ℓ(e, s) is greater than it has been at any previous α-stage,
then δs(e+ 1) = ∞. If we have acted at some stage t ≤ s to cause a disagreement between
ΨA1

e (k) and ΨA2

e (k) and this disagreement has been preserved, then δs(e+1) = d. Otherwise
δs(e+1) = w, the waiting outcome. We define δs in this way until we have defined δs(s−1),
so that δs has length s.

We will not allow any disagreements to be injured by nodes extending or to the right
of the “d” outcome. To achieve this, we will only allow each node α = δs↾ e to enumerate
elements γi(n, s) for n greater than or equal to the last stage sα such that the approximation
to the true path was to the left of α. If, for e′ < e, δs(e

′) = d, preserving a disagreement
at k, then the last stage t such that δt(e

′) = ∞ must have been a stage where the truth-table
for Ψe′(k) had already been defined, since we will not act to cause a disagreement at k until
we first see ℓ(e′, s) > k. By convention, any stage at which the truth-table for Ψe′(k) has
been defined must be greater than the use ψe′(k), so sα > t > ψe′(k). Similarly, if δs(e

′) =
w, then the last stage such that the true path went through d or ∞ was larger than the use
ψe′(k), for k the last spot where we caused a disagreement.

3.3. Construction. Stage 0. Let A1[0] = ∅ and A2[0] = {0}. Let δ0 = λ, the empty string.
Define γi(0, 0) = 1 for i = 1, 2. Note that we have guaranteed that A1 6= A2.

Stage s+ 1.
Suppose n enters D at stage s + 1. Enumerate γi(n, s) into Ai[s + 1] for i = 1, 2. We

remove the marker γi(n, s), so we will not define γi(n, s + 1). Initialize all Re for e > n,
undefining any values of fα for |α| = e.

In increasing order of e, for every e ≤ s, do the following:
Let α = δs↾e, where outcomes are as described in Section 3.2. Let sα be the last stage t

such that δt was to the left of α, or 0 if the approximation to the true path has never been
to the left of α. Let k be the greatest such that fα(k) is defined, or −1 if there is no such k.

Step 1: Preparing 〈e, k + 1〉. If 〈e, k + 1〉 has never before been prepared, and ℓ(e, s) >
k+1 for the first time since defining fα(k), enumerate all γi(q, s) into Ai for all q satisfying
q ≥ max{e, k + 2, sα}. We say the we have now prepared the pair 〈e, k + 1〉. Move each
γi(q, s) (that is still defined), in increasing order of q, to the next fresh spot greater than
s+1 according to the rules of motion. This will prevent γi(q, s) from influencing ΨAi

e (k+1)
since it has been kicked past ψe(k+1). Initialize all Re′ , for e

′ > q, as in Rule 7. Note that
we will call these newly kicked markers γi(q, s) until the end of the stage, where all markers
will be renamed to γi(q, s + 1). If we prepared some pair in this step, begin the steps for
e+ 1. Otherwise, go to Step 2.

Step 2: Searching for a disagreement. If ℓ(e, s) > k + 1, we will attempt to cause a
disagreement at k + 1. Let m− and m+ be as defined in the basic module in Section 3.1.
Let m ≥ max{e, sα} be the least element such that we can cause a disagreement between
ΨA1

e (k+1) and ΨA2

e (k+1) by enumerating γ1(m, s) into A1 and either γ2(m
−, s), γ2(m, s), or

γ2(m
+, s) into A2, as well as all larger markers. (Of course, we do not consider enumerating

γ2(m
−, s) unless m− ≥ max{e, sα}.) We choose the least pairing that causes a disagreement

and enumerate the pair and all larger markers into the corresponding Ai. We move all
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enumerated markers to the next fresh spots greater than s+ 1. If we were unable to cause
a disagreement, we define fα(k + 1) = ΨA1

e (k + 1)[s].
Add a new marker γi(s+1, s+1) to the first fresh spot greater than s+1. Note that this

γi(s+ 1, s+ 1) will be greater than the current (and former) locations of all other markers.
For any node β to the right of δs, initialize β by undefining all values of fβ.

3.4. Verification. Let the true path of the construction be lim infs δs.

Lemma 3.2. Each marker moves finitely often. That is, for i = 1, 2 and k ∈ ω, there are

finitely many stages s such that γi(k, s) 6= γi(k, s + 1).

Proof. Induct on k. Suppose the lemma is true for all n ≤ k and i = 1, 2. We will show it
holds for k + 1 as well. If k + 1 ∈ D, then when k + 1 is enumerated into D, γi(k + 1, s) is
enumerated into Ai and the marker is not redefined. Thus γi(k + 1, s) moves finitely often.
So we will assume that k + 1 /∈ D.

According to Rule 5, Re can only move γi(k + 1, s) if e ≤ k + 1. Thus it is enough to
show that none of these Re moves γi(k + 1) infinitely often. Suppose for a contradiction
that Re moves γi(k + 1) infinitely often and that e is the least such that this happens for
either i. There are two ways Re could move γi(k+1, s). First, by preparing 〈e, n〉 for some
n ≤ k as in Step 1 of the Construction. Since each pair 〈e, n〉 can only be prepared once,
this can only happen finitely often.

The other way that Re can move γi(k+1, s) is by action of Step 2 in the Construction,
causing a disagreement. By induction, there is a stage t1 after which no markers γi(n, s)
ever move or are removed for n ≤ k. By the minimality of e, there is a stage t2 after which
no Re′ moves γi(k + 1, s) for any e′ < e. By the previous paragraph, there is a stage t3
such that Step 1 of Re has stopped moving γi(k + 1, s) by stage t3. Let α be the node of
length e on the true path. Let t4 be a stage by which δs never goes to the left of α after
stage t4. Finally, let t > t1, t2, t3, and t4.

Note that since Re acts infinitely often by moving γi(k+1, s), it must do so at infinitely
many α-stages, for α the length e node on the true path. This is because each α′ to the
right of α can only move elements greater than the last stage at which they were initialized,
and they will be initialized infinitely often since they are not on the true path.

Now suppose that at some α-stage s0 ≥ t, Re acts by enumerating γi(k+1, s0) to cause
a disagreement between ΨA1

e (n) and ΨA2

e (n) for some n. By assumption, Re will eventually
act again at an α-stage by enumerating γi(k+1, s) to cause a disagreement between ΨA1

e (n′)
and ΨA2

e (n′) for some n′ > n. This means that at some stage s > s0, ℓ(e, s) > n, so the
disagreement achieved at stage s0 will be injured.

We must examine how such an injury could happen. Since the disagreement was caused
by enumerating γi(k + 1, s0), we also must have enumerated γj((k + 1)+, s0), for j 6= i, by
Rule 6. If we also enumerated γj(k+1, s0) itself, then injury would be impossible since the
only markers still below the use of Ψe(k + 1) have stopped moving by stage t1. Thus, we
must not have enumerated γj(k + 1, s0) and instead enumerated the marker succeeding it.
The only way the computation can be injured is for γj(k + 1, s) to be enumerated. This
cannot be enumerated by any higher priority e′ or any α′ to the left of α, by the choice
of t2 and t4. It also cannot be enumerated by any node to the right of α because such a
node will not be able to move elements smaller than the last α-stage, which must have been
bigger than the use of Ψe(k + 1). Any node extending αˆd or αˆw must also preserve the
disagreement because α must have been extended by ∞ at some stage after the truth-table
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for Ψe(k + 1) was defined, and nodes cannot move elements smaller than the last stage at
which they were initialized. In addition, we may ignore any node extending αˆ∞ because
we would not go to that outcome unless the disagreement in question had already been
injured. Thus, there is no way for the disagreement to be injured, and Re will never act
again at an α-stage, contradicting our assumption that it would act infinitely often.

Since Re cannot move γi(k+1, s) infinitely often for any e, we can see that γi(k+1, s)
can only move finitely often. Thus, by induction, each marker only moves finitely often.

Lemma 3.3. D ≤T A1, A2.

Proof. For i = 1 or 2, to compute D(n), run the construction until the first stage s > n
such that either n ∈ Ds or Ai[s]↾ (γi(n, s) + 1) = Ai↾ (γi(n, s) + 1). Such a stage exists
because γi(n, s) can only move finitely often. Now n ∈ D if and only if n ∈ Ds. This is
because, when n enters D, γi(n, s) is enumerated into Ai before it is moved.

Lemma 3.4. Requirement Re is satisfied for each e ∈ ω. That is, if there is a total

function f such that ΨA1

e = ΨA2

e = f , then f is computable.

Proof. Suppose ΨA1

e = ΨA2

e = f total. Then lims ℓ(e, s) = ∞. Let α be the node of length e
on the true path. We will show that along the true path, for almost all k, fα(k) = ΨAi

e (k).
Let sα be the greatest stage such that δsα is to the left of α. Then by the construction,

after stage sα, Re will not be allowed to enumerate any γi(n, s) for n < sα. Let s′α > sα
be a stage such that γi(n, s) has stopped moving by stage s′α for all n < max{e, sα}. After
this stage, the fα that we are building will be the final fα. Let k0 be the greatest k such
that fα(k) was defined before stage s′α for the final fα. We will show that for k > k0,
fα(k) = ΨAi

e (k).
Suppose fα(k) 6= ΨAi

e (k) for some k > k0. Choose the least such k. Suppose fα(k) is
defined at stage s. After stage s, some element enters A1 or A2 below the use ψe(k). At
some prior stage s′, 〈e, k〉 was prepared as in Step 1 of the Construction, kicking all γi(n, s

′)
for n > k past s′, which is greater than ψe(k). Thus no γi(n, t) for n > k could enter
either Ai below ψe(k) for t ≥ s. Therefore, any injury to the current values of the ΨAi

e (k)[s]
must be caused by some γi(n, t) entering Ai at stage t ≥ s for either i, where n satisfies
max{e, sα} ≤ n ≤ k and γi(n, t) < ψe(k, s). Such γi(n, t) are the only markers that both
would be allowed to enter Ai and would be able to cause injury.

Claim 3.5. If we can cause a disagreement between ΨA1

e (k) and ΨA2

e (k) at stage t ≥ s,
then we could have caused a disagreement at stage s instead of defining fα(k).

Proof. Suppose enumerating γi(m, t) and γj(m
′, t) as well as all greater markers, causes a

disagreement between ΨA1

e (k) and ΨA2

e (k), where i 6= j and m′ ≤ m. Note that at least one
of γi(m, t) and γj(m

′, t) must be below the use of Ψe(k), hence less than s. Any marker
that is at a position less than s at stage t will have been at the same position at stage s,
because no markers are moved or added to numbers below s at or after stage s.

Case 1: m′ = m. If both markers γ1(m, t) and γ2(m, t) are in the same spots as γ1(m, s)
and γ2(m, s), then the same enumeration could have been made to cause a disagreement
instead of defining fα(k). Suppose γ2(m, t) 6= γ2(m, s). Then since one marker must be
below the use, γ1(m, s) = γ1(m, t). Between defining fα(k) and stage t, γ2(m, s) moved, but
since γ1(m, s) didn’t move, γ2(m

−, s) couldn’t have moved, by Rule 6. Thus, enumerating
γ1(m, s) and γ2(m, s) at stage s will give the same disagreement caused by enumerating
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γi(m, t) for both i = 1, 2, so we would have made this enumeration instead of defining fα(k)
at stage s.

Case 2: m′ = m− at both stage t and stage s. As in Case 1, if both markers are at the
same numbers at stage t as they were at stage s, then the same enumeration could have
been made instead of defining fα(k). It is not possible that γj(m

−, t) 6= γj(m
−, s), because

any movement would have forced γi(m, s) to move as well, by Rule 6, pushing it past the
use. Suppose γi(m, s) 6= γi(m, t) and γj(m

−, s) = γj(m
−, t). Then the least element that

was enumerated into Ai and moved after stage s was either γi(m, s) or γi(m
−, s). Thus,

at stage s, we could enumerate the appropriate one of γi(m, s) or γi(m
−, s) along with

γj(m
−, s) to cause the same disagreement instead of defining fα(k).

Case 3: m′ = m− at stage t, but not at stage s. Then between stage s and stage t,
some elements n, m′ < n < m entered D. For the least such n, m′ = n− at stage s, so
we could have enumerated γi(n, s) and γj(m

′, s) to cause the same disagreement at stage s
instead of defining fα(k).

Thus, any disagreement we could cause after defining fα(k) could have been caused
instead of defining fα(k).

According to Claim 3.5, in order to cause an injury to the agreement between fα(k),
ΨA1

e (k) and ΨA2

e (k), the enumeration must have caused a change in both ΨA1

e (k) and ΨA2

e (k)
to cause a new agreement between them that differs from fα(k). Consider the greatest
possible enumeration that would have caused such a change. Suppose that the least elements
of the greatest enumeration are γi(m, t) and γj(m

′, t) for j 6= i and m′ ≤ m. Then γi(m, t)
and γj(m

+, t) would also be an allowed enumeration. It could not be true that under such

an enumeration, ΨAi
e (k) = Ψ

Aj
e (k), as this would contradict that the pair 〈m,m′〉 gave the

greatest possible enumeration that changed both computations to cause agreement again.
Thus, under this new enumeration, a disagreement is caused between the two computations.
This is impossible, since the existence of such a disagreement would have led to us forcing
the disagreement instead of defining fα(k), as shown in Claim 3.5. Thus, there can be no
greatest enumeration to cause a change in values of ΨAi

e (k), so the values will not change,
and fα was correct. Since fα is a computable function, so is ΨA1

e = ΨA2

e .

This concludes the proof of Theorem 3.1.

Degtev [8] and Marchenkov [17] showed there is a c.e. tt-degree minimal among the tt-
degrees; that is, there is a c.e. set B such that for all A such that A <tt B, A is computable.
However, all such tt-degrees are low2, as shown by Downey and Shore [10]. Thus, there is
no Turing complete c.e. set of minimal tt-degree.

Our theorem cannot be extended to show the existence of a minimal pair of Turing
complete c.e. sets within the bT-degrees (also known as wtt-degrees) by the following

Theorem 3.6 (Ambos-Spies [5]). A c.e. set is half of a minimal pair in the Turing degrees

if and only if it is half of a minimal pair in the bounded-Turing degrees.

Thus, no c.e. Turing complete set is half of a minimal pair in the bT-degrees. In
contrast, our Theorem 3.1 shows that not only can a c.e. Turing complete set be half of a
minimal pair in the tt-degrees, but the other half of the minimal pair may also be a c.e.
Turing complete set.

Question 3.7. Is there a truth-table minimal pair of bT-complete c.e. sets?
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If this question has a negative solution, then Theorem 2.1 would follow, since sets of
random strings are always bT-complete.

Question 3.8. Which Turing degrees contain minimal pairs of (c.e.) tt-degrees?

Jockusch [12] showed that the hyperimmune-free degrees coincide with the Turing de-
grees that contain a single tt-degree; therefore, such degrees cannot contain a minimal pair
of tt-degrees. Jockusch also showed that if a Turing degree contains more than one tt-degree,
it contains an infinite chain of tt-degrees. It is not known which of the hyperimmune de-
grees, apart from 0′, contain a minimal pair of tt-degrees. Not all do: Kobzev [13] proved
that there is a noncomputable c.e. set A such that if B ≡T A, then A ≤tt B.3 In other
words, the tt-degree of A is least among all the tt-degrees in the Turing degree of A, so
the Turing degree of A does not contain a minimal pair of tt-degrees. The A that Kobzev
constructed actually has minimal tt-degree, hence must be low2 [10].

4. No noncomputable set is tt-reducible to every RKU

We have seen in Theorem 2.6 that given a finite collection of sets of random strings
{RKU1

, . . . RKUn
}, there is a noncomputable c.e. set tt-reducible to each RKUi

. It is nat-

ural to ask if there is in fact a noncomputable (and perhaps also c.e.) set tt-reducible to
every RKU

. We show that there is no such set.

Theorem 4.1. Given any noncomputable set X, there is a universal prefix-free machine U
such that X is not truth-table reducible to RKU

; that is, there is no common noncomputable

information tt-below every RKU
.

Note that this theorem is in contrast to the non-prefix-free case, since every RCU
is

tt-complete.

Proof. We begin by giving a sketch of the construction. We will construct three different
prefix-free universal machines U0, U1, U2, and guarantee that they cannot all tt-compute X.
For convenience of notation, we denote the corresponding RKU

’s by R0, R1, and R2. At
the moment, we do not know whether this non-uniformity is necessary in the proof.

Since every RKU
is ∆0

2, we need only consider ∆0
2-sets X. Let {Ψi}i∈ω be a listing of

partial tt-reductions. We will meet the following requirements for all i:

Ri : ¬(Ψ
R0

i = ΨR1

i = ΨR2

i = X)

By Posner’s trick, this is enough to show that X is not tt-reducible to all three sets, as if

it were, we could build a single tt-reduction Ψi such that Ψ
Rj

i = X for each j ≤ 2. To
satisfy requirement Ri, either Ψi will not be a total tt-reduction, or we will force one of the
following to hold:

(i) Ψ
Rj

i (x) 6= ΨRk

i (x) for some x ∈ ω and some j, k ≤ 2, or

(ii) Ψ
Rj

i 6= X for some j ≤ 2.

The way we will achieve this is to build the machines in such a way that if condition (i)

fails, then the set Ψ
Rj

i must be computable, so it cannot be X.
In order to make these machines universal, we fix a universal prefix-free machine V and

simply require that Uj(000∗σ) = V (σ) for each j ≤ 2. We consider this coding requirement

3In particular, Kobzev showed this for any noncomputable, semicomputable, η-maximal set A. We thank
one of the anonymous referees for pointing us to this result.
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as our opponent controlling 1/8 of the total measure, and the diagonalization requirement
as “we”, the other player controlling the remaining 7/8 of the game board (machines we
build). Here the number of 0’s is picked so that we have some amount of space bigger than
our opponent as needed in the verification process.

4.1. A single requirement R0. We first consider how to satisfy only one requirement R0.

4.1.1. One-bit game. We begin by considering only one bit, 0; that is, we are looking only
at the first bit of the first tt-reduction. We wait until the truth table of Ψ0(0) is defined.
Since Ψ0 may not be a total tt-reduction, this may never occur. Before this happens, we do
nothing for this requirement R0. Once we have the truth table for Ψ0(0), we can attempt
to satisfy this requirement.

We modify the games used in Muchnik’s proof that there is a universal prefix-free
machine U such that RKU

is not tt-complete. For the moment, we define the game “G(ǫ, δ)
on Rj” as follows. We imagine that the game board is the truth table of Ψ0(0) and that
our starting position on the game board is the current state of Rj. The game G(ǫ, δ) is the
game where the opponent (the coding requirement) has ǫ measure to use, and we have δ
measure to use to enumerate strings (to change Rj). We are building KC sets as defined in
Theorem 2.1 to construct the Uj ’s so that they will indeed be prefix-free machines, so we
must keep the weight of the sets below 1. Since Rj is the set of strings that are random with
respect to Uj, we change Rj by compressing strings. Each move consists of a player (the
opponent or us) compressing any number of strings, which may change bits of Rj from 1’s
to 0’s.

When ǫ = δ, i.e., when the game is symmetric, we always have a winning strategy for

forcing Ψ
Rj

0 (0) to be either 0 or 1 for each Rj. We call the value being forced the value of

game G(ǫ, ǫ) on Rj. Note that we can computably determine the value of the game since
the game is finite and has only finitely many sequences of play.

For now fix a small ǫ0 (we call this ǫ0 the starting measure of the requirement R0). If
for some j, k ≤ 2, the values of the games G(ǫ0, ǫ0) played on Rj and Rk are different, i.e.,

we have strategies that can force Ψ
Rj

0 (0) 6= ΨRk

0 (0), then for the least such pair j, k, we use
the strategies for both and play the games with the opponent.

There are two possible outcomes of this dual game. First, if the opponent never uses
more than ǫ0 measure (i.e., he does not cheat in the game), then we satisfy the require-

ment R0 in finitely many stages by forcing a disagreement between Ψ
Rj

0 and ΨRk

0 . If the
opponent uses more than ǫ0 measure in the play, then we simply reset the game. Note that
in this situation the opponent uses more measure than we do. In the end, he can only cheat
by using over ǫ0 measure finitely often, since his total measure is bounded by 1/8.

In the case where we cannot find such a pair j, k, we know that for the games G(ǫ0, ǫ0)
played on each set R0, R1, R2, the values have to be the same. Now reduce the measure and
consider the games G(ǫ0/2, ǫ0/2) on each set and compare the values to the values given in
the original games.

We first deal with the scenario when there exist j, k such that G(ǫ0, ǫ0) on Rj and
G(ǫ0/2, ǫ0/2) on Rk have different values. In this case, we play both games at the same
time, forcing the values to be different. If the opponent does not cheat, then we have a
permanent win. If the opponent cheats, we will do a modified game analysis (see § 4.1.2)
to resettle agreement on the games.
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The remaining case is that these two levels of games, ǫ0 and ǫ0/2, on all three sets, all
have the same value. In this case, we continue to look at the next level ǫ0/4, then ǫ0/8, and
so on. We call this sequence of games the stack of games for the first bit. If we find a game,
say G(ǫ0/2

n+1, ǫ0/2
n+1), on Rj that has a different value from all previous games, then we

play that game simultaneously with the game G(ǫ0/2
n, ǫ0/2

n) on Rk for the least k 6= j. It
will be important to always choose the second game from the previous level and not from
another earlier level, so that if the opponent cheats in the game G(ǫ0/2

n+1, ǫ0/2
n+1), we

will know that Rk has only used at most twice the measure that the opponent used.
The tt-reduction has been fixed, so eventually we reach a small enough measure so

that the game is actually the 0-game, i.e., no one can enumerate anything to change the tt-
reduction, or the “game board”. In this case, the game is already determined by the current

value of the tt-reduction, and in such a case, we check if the current Ψ
Rj

0 (0) = Xs(0). Note
that since we were unable to force a disagreement, this value will be the same for each j ≤ 2.

If Ψ
Rj

0 (0) 6= Xs(0), then we stop considering this requirement R0 since the requirement
seems to be satisfied. If X(0) changes value later we will continue the construction. If the
two values agree, then we move on to consider Ψ0↾2, i.e., the first two bits of Ψ0 (see § 4.1.3).
We will show that this process cannot continue forever, else X would be computable, so we
will eventually satisfy requirement R0.

4.1.2. “Knight and Bishop” strategy. Now we discuss how to handle the scenario when the
opponent cheats in an intermediate level game, e.g., G(δ, δ) on R0 and G(δ/2, δ/2) on R1

(other cases are analogous). Note that whenever his cheat amount is greater than ǫ0, we
can always reset the whole stack of games, as we know we will only have to do this finitely
often.

Now if the measure used by the opponent does not exceed ǫ0 but exceeds the amount
he is allowed to use in either game, i.e., he cheats, then we reset the games on R0 and R1,
and consider brand-new games G(ǫ0, ǫ0) on these two sets (with the current game boards).
On R2, note that the opponent has used the same amount of measure, as his actions on
these three game boards are identical, but we haven’t done anything. Consider the game
G(ǫ0 − λ, ǫ0) on R2, where λ is the amount the opponent has already used.

This modified game is not symmetric, but it is easy to see that we can force the same
value here as the value we could force for G(ǫ0, ǫ0) on R2 when we started playing G(δ, δ)
on R0 and G(δ/2, δ/2) on R1. The reason is that we have not yet made any move on R2

since, and so we may regard all of the opponent’s actions since as the first move of his
play, and we can simply use the same winning strategy to force the same value. Note that
our winning strategy did not depend on the turn order of the game, as each player is only
capable of changing 1’s to 0’s in R2, so turn order is not important and we may allow
that the opponent plays first. In the construction in §4.3, the opponent is always given the
opportunity to play first.

Now if the new games G(ǫ0, ǫ0) on R0 or R1 have different values from the modified
game on R2, then we can play the new game on R0 (or R1) and the modified game on R2 to
force a difference. If the opponent again cheats, then together with the amount he already
used before, he must have exceeded his allowed measure ǫ0, and so we can reset the whole
stack of games.

If these games all have the same value, we have reset the agreement on R0 and R1 for
the first bit, and the new value being forced is the same as the old value (before cheating).
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Now we consider the game G(ǫ0, ǫ0) on R2, which could have a new value as the game board
has changed since we previously considered this game. This goes back to the original set-up
of symmetric games at the ǫ0 level, and so we can continue the construction. Note that
the opponent can cheat only finitely often because the stack of games is finite, so there is
some minimal measure ǫ0/2

n that the opponent must have used in order to cheat, and the
opponent’s total measure is bounded by 1/8.

In the above discussion, we can think of R0 and R1 as knights who have gone off to fight
a battle. Their opponent has cheated and they return home. The bishop, R2, is waiting for
them and restores their faith when they return. If the three new games G(ǫ0, ǫ0) all force
the same value, it will be the same value as before. We will use this in the verification to
show that if there is no disagreement between the three tt-reductions, then the set they are
computing must be computable and so it cannot be X. The idea is that if by stage s1, the
opponent has stopped exceeding the ǫ0 limit, then any time after stage s1 that the values
of the games G(ǫ0, ǫ0) agree, this value will always be the same. To see this more clearly,
we first must discuss the multiple-bit game.

4.1.3. Multiple bits. For the one-bit game as above, once we have a stack of games from ǫ0
to 0 (remember that a sufficiently small game is already the 0-game, where neither player

can change the game board), then we check whether the value Ψ
Rj

0 (0) we have forced agrees
with the current Xs(0). If not, then we stop considering the requirement R0; if so, we
continue to look at the 2-bit game and similarly build such a stack of games. So now, by
induction, let us consider an n-bit game, i.e., we consider the first n many bits of Ψ0. An
n-bit game G(ǫ, δ) on Rj is defined similarly to the one-bit game. The game board is now
the set of all truth tables for the first n bits of Ψ0, which may be thought of as one large
truth table. The starting position is again the current state of Rj.

Again we wait until the truth tables for each of the n bits have been determined. Now
the situation is slightly more complicated. Consider the first game board R0. Given a set
S ⊆ 2n, when we play the game G(ǫ0, ǫ0) on R0, by symmetry we have a winning strategy
for either S or its complement S; that is, we can force the sequence of values of the first n
bits of ΨR0

0 to be in either S or its complement. If we have a winning strategy for S, then we
call S a winning set. The collection of all such winning sets gives us a collection of subsets
of 2n. If two games Rj and Rk do not have the same collection of winning sets, then there

is an S such that we have winning strategies for S on Rj and S on Rk, both for the game
G(ǫ0, ǫ0). Then we can simply start using the strategies to play the game with the opponent,
and the requirement is satisfied unless the opponent cheats by using more than ǫ0 amount
of measure, in which case we reset the whole game board. Thus, if we cannot start playing

a game to cause a disagreement between Ψ
Rj

0 and ΨRk

0 , then we may assume that all three
sets R0, R1, and R2 have the same collection of winning sets.

We may also assume that the collection of winning sets forms an ultrafilter. We have
already mentioned that for any S ⊂ 2n, either S or its complement is a winning set. It is
also easy to see that if S ⊂ T and S is a winning set, then so is T . It is left to show that
the intersection of two winning sets S and T is also a winning set. For a contradiction let
us assume that S and T are winning sets while S ∩T is not. Then we know that S ∩ T is a
winning set. But then we can simultaneously play three games using the winning strategies

of S on R0, T on R1 and S ∩ T on R2, causing a disagreement between Ψ
Rj

0 and ΨRk

0 for
some j and k as long as the opponent does not cheat, in which case we reset the whole game
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board. Thus, if we cannot start playing a game to force a difference in this way, then the
collection of winning sets must be closed under intersection.

In a finite Boolean algebra such as the collection of subsets of 2n, every ultrafilter is
principal, so the collection of winning sets is generated by a single σ ∈ 2n. Thus, this
singleton set {σ} is itself a winning set for the games G(ǫ0, ǫ0) on these three sets.

Note that this σ ∈ 2n is compatible with the τ ∈ 2n−1 we found at the last step when
we considered (n− 1)-bit games. This is because the set of both extensions of τ of length n
forms a winning set, so σ must be an extension of τ .

Now the construction proceeds in a similar way as in the one-bit game. We consider the
next level G(ǫ0/2, ǫ0/2). If any of the three games has the complement of {σ} as a winning
set, then we can play the corresponding games to force a difference; for example, G(ǫ0, ǫ0)

on R0 using the strategy for {σ} and G(ǫ0/2, ǫ0/2) on R1 using the strategy for {σ}. If
the opponent cheats, then we will handle it in the same way as in § 4.1.2, using the third
set to resettle agreement. We will see in the verification that if we have reached a stage s1
by which the opponent has stopped cheating by exceeding ǫ0, then if there is an agreement
between all three tt-reductions, the first n bits of the set they compute can be determined
by stage s1. Since this does not depend on n, they would compute X, which we assumed
to be noncomputable.

This finishes the induction step and the analysis of a single requirement R0.

4.2. Multiple requirements. To handle multiple Ri-requirements, we follow one simple
rule: Whenever a higher-priority game acts, then we reset all lower-priority games and reset
their starting measure ǫi to be a new small number so that any game playing with that
measure will not change the game board for higher-priority games. The possible actions
of the higher-priority game that will lead to resetting the lower-priority games include
convergence of a tt-reduction so that a new relevant truth table is defined, examining new
games, and making a move in a game (as defined formally in Remark 4.2).

4.3. Construction. Let {Xs}s∈ω be a computable approximation of the ∆0
2-set X.

We construct Uj by building KC sets Aj for each j ≤ 2. Given a universal prefix-free
machine V and its corresponding c.e. KC set AV , the opponent enumerates 〈d + 3, τ〉 into
each Aj whenever 〈d, τ〉 is enumerated into AV . In our construction, whenever we want to
enumerate additional elements into Aj for the purpose of our games, it will be to make a
particular string τ be nonrandom with respect to Uj; that is, the only move we can make
is to enumerate some 〈d, τ〉 into Aj with d < |τ | so that Rj(τ) changes from a 1 to a 0.
Therefore, whenever we (and not the opponent) enumerate elements into Aj , the element
may be assumed to be of the form 〈|τ | − 1, τ〉; so when we say that we are enumerating a
string τ into Aj , we are actually enumerating 〈|τ | − 1, τ〉.

Begin with Aj,0 = ∅ for all j ≤ 2, and with all ǫi undefined.
Stage s+ 1, s = 〈i, e〉. We will act for requirement Ri if able. We call all stages of the

form 〈i, e〉 + 1 i-stages.
First we allow the opponent to make any enumerations into Aj,s+1 for j ≤ 2 as elements

enter AV,s+1.

Case 1. Either e = 0 or for some m < i, Rm has acted since the last i-stage.
We must define a new ǫi. Reset any previous value of ǫi and define the new value of ǫi

to be the greatest number of the form 2−c where c ≥ i + 4 such that 2−c < ǫm/2 for all
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previously defined values of ǫm for any m ∈ ω, and such that no element in any currently
defined truth table for Ψm (for m < i) corresponds to a string of length greater than c. This
will ensure that we do not add too much measure to Aj and that games for lower-priority
requirements do not alter the game boards of games for higher-priority requirements. After
defining ǫi, go to the next stage.

Case 2. Rm has not acted for any m < i since the last i-stage, ǫi is currently defined,
and we are not currently playing any games for Ri.

Check if the truth table of Ψi(0) has converged after s steps. If not, go to the next
stage. If so, we examine the one-bit games. Make a stack of games as described in §4.1.1
and check if there are j, k ≤ 2 and corresponding games in the stack so that we can force
a disagreement. If so, we begin to play the appropriate game. We give the opponent the
opportunity to move first, which is to say that we will not make a move at this stage.

If all games throughout the one-bit stack agree, then we ask if they agree with Xs(0).
If not, then go to the next stage. If so, then we move on to two bits, and so on. When we
get to n bits, we check if the truth tables for Ψi↾n have been defined after s steps. If not,
go to the next stage. If so, we determine the winning sets for the games G(ǫi, ǫi) for Rj for
each j ≤ 2.

If the collections of winning sets differ on Rj and Rk for some j, k ≤ 2, then we choose

an S ⊂ 2n such that S is a winning set for Rj and S is a winning set for Rk and we begin
to play the games using these strategies. As before, we go to the next stage, allowing the
opponent to move first.

If the collections of winning sets are the same for all the Rj ’s, we then check if there
are any winning sets S and T such that their intersection is not a winning set. If so, we
begin to play three games, corresponding to the strategies for S, T , and S ∩ T . We go to
the next stage, as usual.

In the remaining situation, the collection of winning sets forms an ultrafilter generated
by some σ. We can examine the stack of games to see if any of the G(δ, δ) games have {σ}
as a winning set. If so, we begin to play the appropriate games to force a disagreement and
move to the next stage. Otherwise, all games in the stack have {σ} as a winning set, so
we ask if Xs↾n = σ. If not, the requirement is temporarily satisfied and we go to the next
stage. If Xs↾n = σ, we must consider the (n+ 1)-bit situation.

(Note that Case 2 also encompasses the situation where we are simply waiting for
either a truth table to be defined or for Xs to change so that it agrees with the current
tt-reduction. Thus, the steps of checking the stacks and finding σ, for example, may be
repeated unnecessarily in this construction.)

Case 3. Rm has not acted for any m < i since stage the last i-stage, ǫi is currently
defined, and we have already begun playing games. Check if the opponent has cheated by
enumerating more than his allowed value in a game.

Case 3a. The opponent has not cheated. For each j ≤ 2 such that we are playing
a game on Rj , we follow our designated strategy, which entails enumerating some set of
strings into Aj,s+1. We then go to the next stage, allowing the opponent to play.

Case 3b. The opponent has cheated by exceeding δ < ǫi in the game n-bit game
G(δ, δ) for n ≥ 1. If this happens, then we were playing two games, on, for example, R0

and R1. We apply the knight and bishop strategy of §4.1.2. We ask if either new n-bit game
G(ǫi, ǫi) on R0 and R1 has a winning strategy that could cause a disagreement with the
game G(ǫi − λ, ǫi) on R2, where λ is the amount used by the opponent since we started the
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game in which he cheated. If so, then we begin to play the appropriate games and move to
the next stage. If not, then we simply move to the next stage. (Note that in this situation,
if Case 1 does not apply, then Case 2 will apply and we will once again be considering the
games G(ǫi, ǫi). On R0 and R1, these games will have the same winning sets through n
bits as they previously had, because the “bishop” R2 has brought them back to their old
values.)

Case 3c. The opponent has cheated by exceeding ǫi or by exceeding ǫi − λ in an
unbalanced game, as described in Case 3b. Stop playing the games and proceed exactly as
in Case 2. The game boards will have changed since the last time we performed the steps
of Case 2.

Remark 4.2. We say the requirement Ri has “acted” at stage s, thus causing Case 1 to
apply at the next m-stages for m > i, if any of the following occur:

(i) Case 1 applies,
(ii) We examine games corresponding to a previously unexamined truth table (either by

a truth table becoming defined or by moving to an additional bit),
(iii) We begin a new game, or
(iv) Case 3 applies and either we or the opponent makes a nonempty move in a game.

4.4. Verification.

Lemma 4.3. Every requirement Ri eventually stops acting and is satisfied.

Proof. We follow a standard finite-injury argument. Induct on i. Assume that for all m < i,
Rm has stopped acting by stage s0. Thus, the starting measure ǫi also settles down. Since
the opponent cannot exceed measure 1/8, he will only cheat by exceeding ǫi finitely many
times. Let s1 > s0 be a stage after which the opponent never uses more than ǫi measure
that affects the Ri-games.

Starting from stage s1 and the one-bit game, we can always assume that the tt-reduction
converges to define a truth table, since otherwise we have an automatic satisfaction and the
requirement stops acting when it is waiting for the tt-reduction to converge.

In addition, we can assume that starting from stage s1, we never start playing any ǫi
measure games with the opponent for Ri, since otherwise we have a permanent win as
the opponent can no longer cheat, and the requirement Ri will eventually stop acting.
Furthermore, any other game started for Ri must end in the opponent cheating, else we
would get a permanent win.

Assume for a contradiction that requirement Ri is not satisfied. Then for each k ∈ ω,
we can establish the stacks of games from ǫi to the 0 game for every k-bit game. Note that
as described in §4.1.2, we may resettle agreement after intermediate level cheating. We can
see that the set X is going to be computable since the σ’s as in the construction have to be
initial segments of X in order for the game to continue forever. The purpose of the knight
and bishop argument in §4.1.2 was to ensure that intermediate level cheating could not alter
the agreed-upon value of σ, so we need only find the first such σ after stage s1 to know
that σ is an initial segment of X. However, we know that X is in fact not computable, so
there must be some k such that X(k) is going to be different from σ(k), where σ is agreed
upon, hence must be an initial segment of the tt-reductions from each set R0, R1 and R2.
When this X(k) settles down in its ∆0

2-approximation and we see that it differs from σ(k),
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the requirement Ri stops acting (possibly after playing several more games to establish the
current stack) and is permanently satisfied.

In any of the ways in which Ri can be satisfied, the requirement stops acting after some
finite stage. Thus, the induction can continue.

Lemma 4.4. In our construction of Rj for j ≤ 2, we do not exceed the measure we are

allowed to use, namely, 7/8. Thus, the Uj are each universal prefix-free machines.

Proof. There are three portions of the measure usage. The first is the measure we use
for diagonalization with which we actually have a permanent win in the end (the “useful”
measure). The second is the measure we waste when we reset games when higher-priority
requirements act (the “wasted” measure); the third is the measure we lose when the oppo-
nent cheats in the games (the “lost” measure). It is easy to see that, since each time we
reset the starting measure for a requirement, we pick a new starting measure ǫi which can
be arbitrarily small, the total amount of the first and the second portions is easily bounded
(by, for example, 1/4). In the construction, our choice of ǫi led to each i contributing no
more than 2−(i+3) to the measure, so the total amount contributed by all i is at most 1/4.

For the third portion, we can compare the amount of lost measure to the amount of
measure the opponent uses. When the opponent cheats, then we use less than twice the
measure the opponent uses. To see this, note that there are only two situations where we
can use more measure than the opponent uses in cheating. One is when there are two games
being played simultaneously, and one is a G(δ, δ) game while the other is a G(δ/2, δ/2) game.
The opponent can cheat by exceeding δ/2, while we may enumerate up to δ measure for Rj.
Thus, we enumerate less than twice what the opponent enumerates. The other situation is
when the opponent cheated previously by enumerating λ measure, which led to us playing
a G(ǫi, ǫi) game on Rj along with a G(ǫi − λ, ǫi) game on Rk. In the game on Rk, since we
enumerated nothing in the previous game, if the opponent cheats now, his total measure in
the two games will exceed ǫi, while ours for Rk will not. For Rj , we may have enumerated
strings into Aj in both this game and the previous game. However, our total for the two
games will not exceed 2ǫi, or twice the opponent’s measure. Thus, the lost measure is
bounded by 1/4, which is twice the opponent’s measure.

Note that we are not double-counting the opponent’s moves when accounting for lost
measure. In particular, if i < j, then no move in an Rj-game can affect an Ri-game (by
the choice of ǫj). On the other hand, any move in an Ri-game is counted as an Ri action,
so it resents any current Rj game. This means that an opponent’s move is only counted in
one game on Rk, for each k ≤ 2.

Finally, 1/4+1/4 = 1/2 bounds the total amount of measure we use in the construction,
which therefore does not exceed the amount we are allowed to use, namely, 7/8.

This concludes the proof of Theorem 4.1.
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[3] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger. Power
from random strings. SIAM Journal on Computing, 35 (2006) no. 6, pp. 1467–1493.

[4] Eric W. Allender, Luke B. Friedman, and William I. Gasarch. Limits on the computational power of
random strings. Information and Computation, 222 (2013), pp. 80–92.

[5] Klaus Ambos-Spies. Cupping and noncapping in the r.e. weak truth table and Turing degrees. Archiv
für mathematische Logik und Grundlagenforschung, 25 (1985) no. 3–4, pp. 109–126.
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