
Logical Methods in Computer Science
Vol. 11(1:12)2014, pp. 1–16
www.lmcs-online.org

Submitted Jan. 10, 2014
Published Mar. 25, 2014

THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL

CIRQUENT CALCULUS

MATTHEW S. BAUER

University of Illinois at Urbana-Champaign, U.S.A.
e-mail address: msbauer2@illinois.edu

Abstract. Introduced in 2006 by Japaridze, cirquent calculus is a refinement of sequent
calculus. The advent of cirquent calculus arose from the need for a deductive system with a
more explicit ability to reason about resources. Unlike the more traditional proof-theoretic
approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus
is based on circuit-style structures called cirquents, in which different peer (sibling, cousin,
etc.) substructures may share components. It is this resource sharing mechanism to which
cirquent calculus owes its novelty (and its virtues). From its inception, cirquent calculus
has been paired with an abstract resource semantics. This semantics allows for reasoning
about the interaction between a resource provider and a resource user, where resources are
understood in the their most general and intuitive sense. Interpreting resources in a more
restricted computational sense has made cirquent calculus instrumental in axiomatizing
various fundamental fragments of Computability Logic, a formal theory of (interactive)
computability. The so-called “classical” rules of cirquent calculus, in the absence of the
particularly troublesome contraction rule, produce a sound and complete system CL5
for Computability Logic. In this paper, we investigate the computational complexity of
CL5, showing it is Σp

2
-complete. We also show that CL5 without the duplication rule has

polynomial size proofs and is NP-complete.

1. Introduction

Introduced in 2006 by Japaridze [7], cirquent calculus is a refinement of classical sequent
calculus. The advent of cirquent calculus arose from the need for a deductive system with a
more explicit ability to reason about resources. Unlike the more traditional proof-theoretic
approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus
is based on circuit-style structures called cirquents, in which different peer (sibling, cousin,
etc.) substructures may share components. It is this resource sharing mechanism to which
cirquent calculus owes its novelty (and its virtues). Cirquents come in a variety of forms.
One way to characterize the sort of cirquents studied in this paper in familiar terms is to
say that a cirquent is a multiset of sequents (called groups) where each formula — more
precisely, each occurrence of a formula — may simultaneously belong to more than one

2012 ACM CCS: [Theory of computation]: Logic - Proof theory; Computational complexity and
cryptography - Problems, reductions and completeness.

Key words and phrases: cirquent calculus, computability logic, resource semantics, proof theory, substruc-
tural logics.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:12)2014

c© M. S. Bauer
CC© Creative Commons

http://creativecommons.org/about/licenses


2 M. S. BAUER

sequent. This explains the origin of the word cirquent, which is a hybrid of circuit and
sequent. From its inception, cirquent calculus has been paired with an abstract resource
semantics. This semantics allows for reasoning about the interaction between a resource
provider and a resource user, where resources are understood in the their most general and
intuitive sense.

Interpreting resources in a more restricted computational sense has made cirquent cal-
culus instrumental in axiomatizing various fundamental fragments of Computability Logic,
a formal theory of (interactive) computability. The so-called “classical” rules of cirquent
calculus, in the absence of the particularly troublesome contraction rule, produce a sound
and complete system CL5 for Computability Logic. Born in [2], Computability Logic (CoL)
is an ambitious research program aimed at developing a formal theory of interactive com-
putability. To this end, formulas of CoL represent computational problems modeled at
games. The notion of “truth” for such formulas becomes synonymous with the notion of
“computability” for the computational problems they represent.

While CL5 has shown to be sound and complete with respect Japridze’s abstract re-
source semantics, it has also shown to validate a strictly larger class of formulas than affine
logic (sequent calculus without the contraction rule), the latter being well studied and sound
as a logic of resources. However, due to no shortcomings in effort, a complete resource aware
semantics has not been found for affine logic. This had lead Japridze to conclude that “CL5
rather than affine logic adequately materializes the resource philosophy traditionally asso-
ciated with the latter”. Indeed, the “semantics before syntax” philosophy upon which CL5
was conceived, together with its completeness result provide compelling evidence in this
direction.

In parallel with the development of cirquent calculus, recent work [3–6, 10] has intro-
duced sound and complete axiomizations for several fragments of CoL, the most fundamental
of these being CL4, which contains the propositional connectives ¬ (negation), ∨ (parallel
disjunction), ∧ (parallel conjunction), ⊔ (choice disjunction) and ⊓ (choice conjunction) as
well as the “choice” quantifiers ⊔ and ⊓ and the “blind” quantifiers ∀ and ∃. For a full
discussion of these operators and the semantics of CoL, see [9]. While the semantics of CoL
differs drastically from that of classical logic, the set of valid formulas of CL4 is identical to
that of classical logic when restricted to its operators and the so-called “elementary” sort
of atoms. Thus, the presence of the quantifiers ∀ and ∃ within CL4’s language guarantees
its undecidability. In [6], however, the ∀,∃-free fragment of CL4 was shown to be decidable
in polynomial space. A PSPACE-completeness proof was later given in [1].

The deductive apparatus of CL4 is far removed from traditional Gentzen or Hilbert style
axiomizations. Further, the system does not extend very naturally to other fragments of
Computability Logic. A rectification to this shortcoming came with the advent of cirquent
calculus. As mentioned previously, the fragment of cirquent calculus not containing the
contraction rule, produces a sound and complete system for the fragment of Computability
Logic known as CL5. This system contains the operators ∨, ∧ and ¬ and in this paper we
show it to be Σp

2-complete.
We further investigate the complexity of the logical system described by the rules of

CL5, but with the absence of the duplication rule. We call this logic CL5− and show that
every theorem in CL5− has a polynomial size proof. This effectively places the problem of
deciding CL5− provability in NP . A reduction from the k vertex cover problem to CL5−

provability is then given, solidifying the logic as NP-complete. In some sense, CL5 is the
CoL “counterpart” to multiplicative linear logic, the former being a proper extension of



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 3

the latter. Here, CL5− lies strictly between multiplicative affine logic (linear logic with
weakening) and CL5. Among the virtues of multiplicative affine logic is that, unlike the
coNP-complete classical logic, it is in NP. CL5− thus presents a nice and natural extension
of multiplicative affine logic that gets “closer” to classical logic while still remaining in NP.

With the tight relationship between cirquent calculus and Computability Logic, one
should not overlook the potential impact of cirquent calculus on other areas of logic and
proof theory. In [19], Xu constructs a cirquent calculus based system for the propositional
fragment of independence friendly (IF) logic, allowing one to account for independence from
propositional connectives in the same vein that traditional IF logic accounts for indepen-
dence from quantifiers. In [8] a cirquent calculus based proof system was developed which,
among other benifits, yields polynomial size proofs for all instances of the pigeonhole prin-
ciple. To date, this is the first proof system to achieve such a result without leveraging cut,
extension or substitution.

This paper is organized as follows. In section 2, we provide an introduction to the rules
of cirquent calculus and describe the systems CL5 and CL5−. Section 3 studies the system
CL5− and proves its NP-completeness. In the final section, we show the full CL5 to be
Σp
2-complete by a reduction from the TQBF-Σ2 problem.

2. Core cirquent calculus

The present section provides the technical definitions and information necessary for under-
standing the results of this paper. For a full discussion of the concepts of cirquent calculus,
see [7, 9]. As noted previously, a formula of the language of cirquent calculus is syntac-
tically identical to that of classical propositional logic, where formulas are built from the
connectives ¬, ∧ and ∨ as well as non-logical atoms (also known as propositional letters).
The only difference between the two being that the language of cirquent calculus does not
contain logical atoms such as ⊤ or ⊥; the latter can simply be understood as abbreviations
of P ∧ ¬P and P ∨ ¬P , respectively, for some (whatever) atom P . Our language further
mandates that ¬ can only be applied to atoms. As always, a literal is an atom with or
without the prefix ¬.

A k-ary pool, for k ∈ N, is a sequence Pl = 〈F1, F2, ..., Fk〉 of formulas. The formulas
in a pool are not required to be unique. We refer to a particular occurrence of a formula as
an oformula. A k-ary structure, for k ∈ N, is a finite sequence St = 〈Γ1,Γ2, ...,Γm〉 for
m ≥ 0, where each Γi, called a group of St, is a subset of {1, 2, ..., k}. It is permitted that
Γi = Γj for i 6= j and hence we use the term ogroup to refer to a particular occurrence of
a group. We are now ready to give our definition for a cirquent.

Definition 2.1. [7] A k-ary (k ≥ 0) cirquent is a pair C = (StC , PlC), where StC , called
the structure of C, is a k-ary structure, and PLC , called the pool of C, is a k-ary pool.

For example, let PlC = 〈A,B,A,D〉 and StC = 〈{1, 2}, {2, 3}, {4}〉. Here, C has 4
oformulas and 3 ogroups and is typically represented by the diagram below.

A B A D

❏
❏

✜
✜

❭
❭

✜
✜

✜
✜

t t t



4 M. S. BAUER

Following [7], we will adopt the notion that a diagram simply “is” (rather than just
“represents”) a cirquent. When an ogroup Γ is connected with an arc to an oformula G, we
say that Γ contains G.

Before defining the rules for our inference system, let us first give some additional
terminology necessary for the definition of our rules. For a given cirquent, two oformulas F
and G are called adjacent if G is positioned immediately to the right of F . In such a case, it
is said that F immediately precedes G and G immediately follows F . Merging two
adjacent ogroups Γ and ∆ in a given cirquent C means replacing in C the two ogroups
Γ and ∆ by a single ogroup Γ ∪∆. The rightmost cirquent below represents the cirquent
that results from merging the first and second ogroups in the leftmost cirquent.

A B A D

❏
❏

✜
✜

❭
❭

✜
✜

✜
✜

t t t

A B A D

❝
❝❝

★
★★

✜
✜

t t

Merging two adjacent oformulas F and G into a new oformula H is the result of
replacing F an G by H and redirecting to it all of the arcs that were pointing to F or
G. The rightmost cirquent below represents the cirquent obtained from merging, in the
leftmost cirquent, (the first) A and B into a single oformula E.

A B A D

❏
❏

✜
✜

❭
❭

✜
✜

✜
✜

t t t

E A D

✡
✡

❭
❭

✜
✜

✜
✜

t t t

With these definitions in mind, we are now equipped to present the so-called “core”
cirquent calculus rules. The rules we give here are only those relevant to our language and
are by no means exhaustive. In its full generality, CoL encompasses numerous other logical
operators all accompanied by a deep and meaningful semantics. As predicted earlier in [7],
recent works have produced cirquent calculus axiomazations for logics containing some of
the more powerful operators of Computability Logic. See, for example, [10, 11].

2.1. Axioms (A). Axioms are rules with an empty set of premises. In cirquent calcus,
they come in two forms: the empty cirquent axiom and the identity axiom . Both
varieties of the axiom rule are illustrated below. It is important to note that the identity
axiom is actually a scheme of infinitely many axioms, as F stands for an arbitrary formula.

empty cirquent axiom

A

identity axiom

A

¬F F

❚
❚

✔
✔
t

As will be our convention throughout, the letter placed to the right of the horizontal
line represents the rule by which the conclusion was obtained.



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 5

2.2. Mix (M). The mix rule takes two premises. Its conclusion is obtained by placing each
of the two premise cirquents side by side in a single cirquent, as illustrated below.

E GF F

t❅
❅

t t t❅
❅

�
�

M

E GF F

t❅
❅

t t t❅
❅

�
�

The remaining rules described in subsections 2.3 to 2.8 all take a single premise cirquent.

2.3. Exchange (E). The exchange rule comes in two varieties, oformula exchange and
ogroup exchange . The conclusion of the oformula exchange rule is obtained by swapping
the positions of two adjacent oformulas in the premise cirquent. The ogroup exchange rule
is similar in that it allows two adjacent ogroups in a premise cirquent to exchange positions
in the conclusion. In both varieties of the rule, the arcs from each ogroup to its oformulas
should be preserved. Below is an example of oformula (resp. ogroup) exchange in which
the oformulas F and G (resp. ogroups #1 and #2) are swapped.

oformula exchange

E F G

★
★★

t t t

E

E G F

✦✦✦✦✦

t t t

ogroup exchange

H I J

★
★★

t t t

E

H I J

★
★★

t t❩
❩❩

t

2.4. Weakening (W). The weakening rule has two forms; ogroup weakening and pool

weakening . In the case of ogroup weakening, the conclusion is obtained from the premise
by adding a new arc between a pre-existing ogroup and oformula pair. In a application of
pool weakening, the conclusion is obtained by inserting a new oformula at any position in
the pool of the premise.

ogroup weakening

E F

t t❝
❝❝

W

E F

★
★★

t t❝
❝❝

pool weakening

E G

t❝
❝❝

★
★★

W

E F G

❝
❝❝

★
★★

t



6 M. S. BAUER

2.5. Duplication (D). The duplication rule can be applied in one of two ways, called
downward duplication and upward duplication . The conclusion of the downward du-
plication rule is obtained from its premise by replacing an ogroup with two adjacent ogroups
that each have arcs to exactly the same oformulas as the original ogroup. An application of
upward duplication works in the opposite direction in that the premise cirquent is obtained
by replacing an ogroup in the conclusion by two adjacent ogroups that are both identical
to the original ogroup.

downward duplication

E F G

★
★★

t t

D

E F G

★
★★

t t t❝
❝❝

upward duplication

E F G

★
★★

t t

D

E F G

★
★★

t t t❝
❝❝

2.6. Contraction (C). The contraction rule takes a premise cirquent which contains two
adjacent and identical oformulas. The conclusion of an application of this rule is obtained
from the premise by merging two adjacent and identical oformulas F and F into a single
oformula F .

E F F G

t❅
❅

�
�

t tt

C

E F G

t t❅
❅

�
�

✔
✔

❚
❚

t t

2.7. ∨-introduction (∨). The conclusion of this rule is obtained from the premise by
merging two adjacent oformulas F and G into a single oformula F ∨ G such that all arcs
pointing to either F or G now point to F ∨G. Two examples of an application of this rule
are given below.

E F G

t t t❅
❅

∨

E F ∨G

t t t✁
✁

❅
❅

❆
❆

E F G H

t t t❅
❅

�
�
❅

❅
�
�

t

∨

E F ∨G H

t t t✁
✁

❅
❅

❆
❆
�
�

t



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 7

2.8. ∧-introduction (∧). This rule takes a premise cirquent that contains two adjacent
oformulas F and G such that no ogroup contains both F and G and every ogroup that
contains F (resp. G) is immediately followed (resp. preceded) by an ogroup containing
G (resp. F ). The conclusion in an application of this rule is obtained from its premise
by merging each ogroup that contains F with the ogroup containing G that immediately
follows it. The oformulas F and G should then merge into F ∧ G. We again give two
examples below.

E F G

t t❅
❅

t

∧

E F ∧G

t t◗
◗

◗

E

E

F G H

HF ∧G

t t❅
❅

✟✟✟✟

❛❛❛❛❛

�
�

t t

∧

t t◗
◗

◗

✑
✑
✑

t

2.9. The systems CCC, CL5 and CL5−. The cirquent calculus system built from all
eight of the above rules has been aptly named “Classical Cirquent Calculus”, or CCC. By
removing the contraction rule from CCC, we get the system CL5. We further let CL5−

denote the system that results from additionally removing the duplication rule from CL5.
Let S be one of the cirquent calculus systems CCC, CL5 or CL5−. A proof of a

cirquent C in S is a tree of cirquents whose root is C where each node follows from its
children by one of the rules of S. When we say a formula F is provable in S, we mean
the cirquent containing a single oformula F with one ogroup and arc is provable in S. In
this paper, for simplicity, we are only interested in proving formulas, even though all of
our results almost straightforwardly extend from formulas (as special cases of cirquents) to
all cirquents. Correspondingly, we agree that, unless suggested otherwise by the context,
“provability” means “provability of formulas”. It was shown in [7] that the provable formulas
of CCC coincide exactly with those of classical propositional logic. Interestingly enough,
the provable formulas of CL5 can also be described in a very natural way. Because we will
rely on this result and its associated concepts in several of our later proofs, we shall give
the relevant details here.

A substitution for a formula C is a function σ that maps every atom P in C to some
formula σ(P ). If σ(P ) is an atom for every P in C, then we say that σ is an atomic-level
substitution. This notion can be extended to all formulas by requiring that σ(¬P ) =
¬σ(P ), σ(F ∨G) = σ(F )∨σ(G) and σ(F ∧G) = σ(F )∧σ(G). Let A and B be formulas. B
is said to be an instance of A iff there exists a substitution σ such that σ(B) = A. If σ is
an atomic level substitution, then B is an atomic-level instance of A. A formula is called
binary iff no atom has more than two occurrences in it. A binary formula is said to be
normal iff, whenever an atom occurs twice in the formula, one occurrence is positive and
the other is negative. The following theorem is a combination of Theorem 12 and Lemma
9 of [7].

Theorem 2.2. (Japaridze) A formula is provable in CL5 iff it is an instance of a binary
tautology iff it is an atomic-level instance of a normal binary tautology.



8 M. S. BAUER

At this point, a semantical characterization of the provable formulas of CL5− has yet
to be given. In light of the results of this paper, such a finding would perhaps be very
interesting.

3. CL5 without duplication is NP-complete

In this section, we show that deciding provability for a formula of the logic CL5− is NP-
complete. This result is achieved by a combination of two theorems, the first of which states
that every formula F provable in CL5− has a proof whose size is polynomial in the size of
F . Towards this goal, we begin by presenting a set of technical lemmas.

Lemma 3.1. Every formula provable in CL5− is an atomic-level instance of a normal
binary tautology.

Proof. This follows immediately from the “⇒” direction of Theorem 2.2, given that the
theorems of CL5− form a subset of the theorems of CL5.

Lemma 3.2. Let F be a formula provable in CL5− with n positive occurrences of atoms.
No CL5− proof of F can contain a cirquent with more than n ogroups.

Proof. Let F and n be as in the condition of the lemma and let ∆ be a proof tree for F .
Assume for a contradiction that ∆ has a cirquent D that contains more than n ogroups.
Now let ∆′ be the subtree of ∆ rooted at D. A careful examination of the rules of CL5−

will show that, no matter which series of rules are applied in ∆′, the total number of
ogroups in all the leaves of ∆′ must be greater than or equal to the number of ogroups
in D. This is because the premise cirquent(s) in the application of a CL5− rule must,
together, contain at least as many ogroups as the conclusion. Every leaf in ∆′ must be
derived by either the identity axiom or the empty cirquent axiom and thus cannot contain
more than 1 ogroup. This means ∆′ has at least n + 1 leaves with a single ogroup, each
of which must follow by the identity axiom. To be a consequence of the identity axiom, a
cirquent must contain exactly two oformulas K and ¬K. But the total number of positive
occurrences of atoms in oformulas in the leaves of ∆ cannot exceed n. This is because,
by our assumption, the conclusion of ∆ contains a single oformula with n positive literals.
Further, the oformulas of the premise cirquent(s) in the application of a CL5− rule cannot
contain more positive occurrences of atoms than the oformulas of the conclusion. This
means at most n applications of the identity axiom are possible, contradiction.

The length of a formula F is defined as the total number of occurrences of literals
and connectives in F . The size of a group is the total number of oformulas it contains.
The size of a cirquent is then the sum of the lengths of the oformulas in its pool plus the
sum of the sizes of each ogroup in its structure. Naturally, the size of a proof is the sum
of the sizes of the cirquents it contains.

Lemma 3.3. Let F be a formula provable in CL5− and let k be the length of F . There
exists a CL5− proof of F using O(k6) applications of rules.

Proof. Let F be a formula and let ∆ be a CL5− proof tree for F . Given ∆, we show that
a new proof ∆′ can be obtained from ∆ such that ∆′ proves F using O(k6) applications of
rules.



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 9

We begin by noting that any proof containing applications of the empty cirquent axiom
can be transformed into one in which no applications of the rule are made1. Indeed, observe
that the empty cirquent can only be a (“dummy”) premise of mix. In such a case, the
conclusion of mix is simply the same as its other premise. Therefore, the empty cirquent
can be deleted and the application of mix can be skipped. This can be done for all empty
cirquents contained in the proof until none remain. Let ∆1 be the proof that results from
removing all applications of the empty cirquent axiom in the preceding manner.

Observe now that ∆1 must contain exactly one application of conjunction introduction
or disjunction introduction for each occurrence of ∧ or ∨ in F , respectively. This is because
every application of either rule introduces, in its conclusion, a single ∧ or ∨ connective
that cannot be later removed by the application of any CL5− rule. The number of positive
occurrences of atoms in F also bounds the number of applications of the identity axiom.
This is because, in a bottom up view of a proof, no CL5− rule allows formulas to be re-
moved or merged. With the number of applications of conjunction introduction, disjunction
introduction and the identity axiom all bounded by O(k) in ∆1, we can also bound the
number of applications of the mix rule. To see this, first note that because ∆1 contains no
applications of the empty cirquent axiom, every leaf node must be derived by the identity
axiom. That is, there are O(k) paths from root to leaf in ∆1. Viewing the proof tree in
a top down fashion, mix is the only CL5− rule which allows the proof tree to “branch”,
given it is the only rule with more than one premise. Thus, each application of mix, which
must take two premises, increases the number of paths from root to leaf by 1. Because the
number of such paths is bounded by O(k), so too must be the number of applications of
the mix rule.

Each application of pool weakening introduces, in its conclusion, an oformula that must
be present (perhaps only as a proper subformula of some oformula) in the conclusion of
∆1. This is because no CL5− rule can remove, in its conclusion, an oformula contained
in its premise cirquent. Thus we have an immediate bound of O(k) for the number of
applications of pool weakening in ∆1. Observe that this also implies a bound of O(k)
on the number of oformulas contained in any cirquent. To bound the number of possible
applications of ogroup weakening in ∆1, notice that no cirquent in ∆1 can contain more than
k2 arcs. This is because, by Lemma 3.2, k bounds the maximum number of ogroups in any
cirquent and, as noted previously, O(k) bounds the number of oformulas in any cirquent.
Further, conjunction introduction and disjunction introduction are the only CL5− rules
whose conclusion can contain fewer arcs than its premise. The number of applications of
these rules in ∆1 does not exceed O(k) and each application can remove no more than
the maximum k2 arcs contained in any premise cirquent. Thus, no more than O(k3) total
arcs can be removed from premise to conclusion for all applications of conjunction and
disjunction introduction in ∆1. Each application of ogroup weakening creates a single arc
in its conclusion that was not present in its premise. As the conclusion of ∆1 contains a
single arc, no more than O(k3) arcs can be created from premise to conclusion in ∆1 by
applications of ogroup weakening.

Every leaf of ∆1 must be derived by the identity axiom, which is applied at most
O(k) times in ∆1. That is, there are at most O(k) paths from root to leaf in ∆1. Each
such path ∆i

1 for 1 ≤ i ≤ O(k) contains at most O(k3) applications of CL5− rules other
than oformula or ogroup exchange. Thus, any ∆i

1 can contain at most O(k3) sequences

1The only purpose of this axiom in [7] is to ensure the provability of the empty cirquent itself; everything
else is provable without using the empty cirquent axiom.



10 M. S. BAUER

Φw for 0 ≤ w ≤ O(k3) where each Φw := Cw
1 , C

w
2 , ..., C

w
n (for n ∈ N) is a sequence of

cirquents such that every cirquent Cw
i follows from Cw

i+1 by exchange (of either sort) for
all 0 ≤ i < n. In ∆1, each Φw can be of arbitrary length. We show, however, that a new
proof ∆′ can be obtained from ∆1 such that each Φw uses no more than O(k2) applications
of oformula and ogroup exchange. This is because, the last cirquent Cw

n in any Φw can
always be obtained from Cw

1 using no more than O(k2) applications of oformula and ogroup
exchange. By lemma 3.2, the first cirquent Cw

1 can contain at most k ogroups. Moving all of
these ogroups to an arbitrary position in Cw

n can be done with O(k2) applications of ogroup
exchange. Additionally, moving each of O(k) possible oformulas in Cw

1 to an arbitrary
position in Cw

n also requires no more than O(k2) applications of oformula exchange. This
means that every sequence Φw in ∆1 can be replaced with a new sequence Φ′

w such that Φ′
w

uses no more than O(k2) applications of oformula or ogroup exchange. Let ∆′ be the CL5−

proof tree that results from replacing each Φw in ∆1 by Φ′
w. ∆′ must again contain O(k)

paths from root to leaf. Each such path now has a bound of O(k3)×O(k2) applications of
oformula or ogroup exchange, resulting in a total bound of O(k6) applications of exchange
in all branches of ∆′.

It should be clear that if ∆ proves F , then ∆′ will also prove F . The number of
applications of non-exchange rules does not change from ∆1 to ∆′ and remains O(k3).
Further, ∆′ uses no more than O(k6) applications of exchange. Totaling the number of
applications of every rule in ∆′, we obtain a bound of O(k3) +O(k6).

Theorem 3.4. Let F be a formula provable in CL5− and let k be the size of F . There
exists a CL5− proof of F whose size is polynomial in k.

Proof. By lemma 3.3, there exists a CL5− proof ∆ of F that uses a polynomial number of
rule applications. Further, by lemma 3.2, the size of any cirquent in ∆ must be polynomial
in k. Thus, the maximum size of each cirquent multiplied by the maximum number of
cirquents in ∆ yields a polynomial bound on the size of ∆.

The result of Theorem 3.4 effectively places the provability problem for CL5− formulas
in NP. We further this result by additionally showing that the problem is NP-complete.
Before giving the proof, we solidify some standard concepts that will be used within it. A
graph G = (V,E) is an ordered pair made up of a set of vertices (V ) and edges (E), with
each edge being an unordered pair of vertices. The degree of a vertex v in G, denoted
deg(v), is defined as the number of edges incident to v. Given a graph G, a vertex cover
is U ⊆ V such that every edge of E is incident to at least one vertex in V . In complexity
theory, the vertex cover problem can be stated as a decision problems as follows. Given
a graph G and number k, does G have a k vertex cover, i.e. a vertex cover using at most k
vertices? It is well known that this problem is NP-complete.

Theorem 3.5. Deciding provability for the logic CL5− is NP-complete.

Proof. It follows from Theorem 3.4 that CL5− provability is in NP. To see it is NP-hard, we
give a polynomial time reduction f to it from the vertex cover problem. Fix some arbitrary
graph G = (V,E) and some k ∈ N. The reduction, borrowed from [12], follows.

f(V,E, k) := (Ψ(k)) ∨ (Θ(V,E)) ∨ (Ω(E))

Ψ(k) := q ∨ q ∨ ... ∨ q
︸ ︷︷ ︸

total of k literals



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 11

Θ(V,E) := (¬q ∧ (¬v1 ∨ ¬v1 ∨ ... ∨ ¬v1)
︸ ︷︷ ︸

deg(v1)

) ∨ ... ∨ (¬q ∧ (¬vn ∨ ¬vn ∨ ... ∨ ¬vn)
︸ ︷︷ ︸

deg(vn)

)

︸ ︷︷ ︸

for each vetex v1, v2, ..., vn ∈ V

Ω(E) := (e11 ∨ e
2
1) ∧ (e12 ∨ e

2
2) ∧ ... ∧ (e1m ∨ e2m)

︸ ︷︷ ︸

for each edge e1, e2, ..., em ∈ E,

Above, q is a new atom that differs from all other atoms in the formula. In Ω(E), e1i
and e2i are the vertices on the endpoints of edge ei for 1 ≤ i ≤ m. It is also important to
note that each vj for 1 ≤ j ≤ n represents both an atom in f(V,E, k) as well as the label
of a vertex in G.

Obviously the mapping f is computable in polynomial time. It now remains to show
that a graph (V,E) has a k vertex cover if and only if the formula f(V,E, k) is provable in
CL5−.

“⇒” Our reduction is identical to that of [12] (Section 5.2) for multiplicative affine
(direct) logic. As a direct consequence of Theorem 3 from [7], CL5− proves every formula
provable in multiplicative affine logic2, so the result follows immediately.

“⇐” Assume f(V,E, k) is provable in CL5−. We need to show that there exists a k
vertex cover of G = (V,E). By Theorem 2.2, there exists a normal binary tautology β and
an atomic-level substitution σ such that σ(β) = f(V,E, k). Let Ψ′ be the subformula of β
such that σ(Ψ′) = Ψ(k). Let Π be the set of the k atoms of Ψ′, and let Σ ⊆ Π be the set of
those members of Π that have (not only positive but also) negative occurrences of β. For
each l ∈ Σ, let Θl be the conjunct in the Θ(V,E) component of f(V,E, k) that contains
¬σ(l). By our construction, each Θl takes the form

(¬q ∧ (¬vj ∨ ¬vj ∨ ... ∨ ¬vj))

for 1 ≤ j ≤ n. Define a vertex cover V ′ ⊂ V for G as the set of all vertices in G labeled vj
where vj is contained in Θl for some l ∈ Σ.

To see that V ′ is indeed a k vertex cover for G, note first that σ is an atomic-level
substitution, and hence each positive literal l ∈ Σ must be mapped to a unique positive
occurrence of q in f(V,E, k). By the definition of Ψ(k), however, there are exactly k

positive occurrences of q in f(V,E, k). This means Σ contains no more than k atoms and
subsequently the vertex cover derived from Σ contains no more than k vertices.

Because f(V,E, k) is an atomic-level instance of β, both formulas take exactly the same
form, the only difference being in the atoms they are built from. Let us now define a model
∗ for β. For each l ∈ Π let l∗ = ⊥. For any atom l 6∈ Π with the property that σ(l) = q,
let l∗ = ⊤. Further, for each atom l of β where σ(l) = a for some a ∈ V ′, let l∗ = ⊤. All
remaining atoms l of β should be interpreted as l∗ = ⊥.

Note that every atom l of the earlier defined Φ′ is interpreted as l∗ =⊥, meaning that
(Φ′)∗ =⊥. Next let Θ′ be the subformula of β such that σ(Θ′) = Θ(V,E). Each disjunct of
Θ′ takes the form ¬l1 ∧ (¬l2 ∨ ¬l3 ∨ ... ∨ ¬ln) for some positive integer n. If l1 6∈ Σ then

2From Theorem 3 of [7], we have affine logic = CL5∗, where CL5∗ is the system CL5 with the limitation
that cirquents contained in proofs do not have groups that share oformulas. Because upward (resp. down-

ward) duplication is only applicable when the premise (resp. conclusion) of the rule is a cirquent in which
groups share oformulas, all cirquents provable in CL5∗ are also provable in CL5−.



12 M. S. BAUER

l∗1 = ⊤ and ¬(l∗1) = ⊥, making the entire subformula evaluate to ⊥ under ∗. If l1 ∈ Σ then
l∗1 = ⊥ and ¬(l∗1) = ⊤. Note, however, that when l1 ∈ Σ then σ(lm) = a where a ∈ V ′ and
m ∈ {2, 3, . . .}. This means l∗m = ⊤ and ¬(l∗m) = ⊥, again making the subformula evaluate
to ⊥ under ∗. Because each disjunct of Θ′ evaluates to ⊥ under ∗, we have (Θ′)∗ = ⊥.

Finally, let Ω′ be the subformula of β such that σ(Ω′) = Ω(E). Because β = (Ψ′) ∨
(Θ′) ∨ (Ω′) is a tautology where (Ψ′)∗ = ⊥ and (Θ′)∗ = ⊥, we have (Ω′)∗ = ⊤. Each
conjunct of Ω′ takes the form l1 ∨ l2 such that σ(l1) and σ(l2) are the endpoints of an edge
in E. Further, by our construction, every edge in E is represented by such a conjunct in
Ω′. Observer that, by our definition of ∗, we have l∗ = ⊤ for an atom l of Ω′ only when
σ(l) ∈ V ′. Thus, Ω′ is true only when every edge in E has an endpoint in V ′. That is, V ′

is a vertex cover of G.

4. CL5 is Σp
2-complete

This section contains our main result, namely, the Σp
2-completeness of the decision problem

for provability of formulas in CL5.

Lemma 4.1. Deciding provability for CL5 is in Σp
2.

Proof. The following is a Σp
2 algorithm that, if view of Theorem 2.2, decides provability of

a formula G in CL5. On input G, existentially guess a binary formula F such that G is an
instance of F . Then, universally guess a truth assignment ∗ for F . If F is true under ∗,
accept. Otherwise, reject.

Let TQBF-Σ2 be the problem of deciding truth for a quantified Boolean formula of the
form ∃X∀YΘ, where X and Y are sequences of variables and Θ is a quantifier-free Boolean
formula all of whose variables are among X or Y . As shown in Theorem 4.1 of [15], this
problem is Σp

2-complete. We say an atom z is isolated in a formula φ if there is only a
single (positive or negative) occurrence of z in φ. Otherwise it is non-isolated.

Theorem 4.2. Deciding provability for the logic CL5 is Σp
2-complete.

Proof. By lemma 4.1, the problem of deciding provability for CL5 is in Σp
2. To show it

is Σp
2-hard, we construct a polynomial time mapping reduction f from TQBF-Σ2 to CL5-

provability. We can safely restrict our attention to instances of TQBF-Σ2 where the Boolean
portion of the formula is in disjunctive normal form, as the complexity of the problem is
not reduced with these limitations. Our reduction follows.

Let φ be a formula that takes the form ∃X∀YΘ with X and Y being sets of variables
and Θ being a boolean formula in disjunctive normal form all of whose variables are among
X ∪ Y . The following steps are used to construct the corresponding CL5 formula f(φ).

(1) For each z ∈ X, let kz and tz be the number of positive occurrences of the literals z
and ¬z in Θ, respectively. Define

g(z) = Zz ∧ (Zz → uz1 ∧ u
z
2 ∧ ... ∧ u

z
kz

︸ ︷︷ ︸

kz literals

) ∧ (Zz → ¬vz1 ∧ ¬vz2 ∧ ... ∧ ¬vztz
︸ ︷︷ ︸

tz literals

)

where Zz, uz1, u
z
2, ..., u

z
kz and v

z
1 , v

z
2 , ..., v

z
tz are all fresh

3 pairwise distinct variables, unique-
ly chosen for z. Here, if kz (resp. tz) is 0, the second (resp. third) conjunct should be

3Here, fresh variables are those not occurring elsewhere in φ.



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 13

omitted. Now let z1, z2, ..., zl = X and let φ0 be the formula (g(z1)∧g(z2)∧ ...∧g(zl)) →
Θ1. Here Θ1 is a formula derived from Θ such that, for each z ∈ X, every positive oc-
currence of z in Θ is replaced by a unique literal from uz1, u

z
2, ..., u

z
k and every occurrence

of ¬z in Θ is replaced by a unique literal from ¬vz1 ,¬v
z
2 , ...,¬v

z
t .

(2) Consider any y ∈ Y . Let ry be the number of positive occurrences of y in φ0, and sy be
the number of negative occurrences. For each pair i, j with 1 ≤ i ≤ ry and 1 ≤ j ≤ sy,
we choose a fresh and unique variable P y

i,j . Now, define f(φ) to be the result of replacing

in φ0, for each y ∈ Y , every positive occurrence of the literal y by (P y
i,1∨P

y
i,2∨ ...∨P

y
i,sy

)

and every (positive) occurrence of the literal ¬y by (¬P y
1,j ∨ ¬P y

2,j ∨ ... ∨ ¬P y
ry ,j

) where

1 ≤ i ≤ ry (resp. 1 ≤ j ≤ sy) is unique for each replacement of an occurrence of y (resp.
¬y).

“⇒” Assume φ is true. Then there exists some truth assignment ◦ : X → {⊤,⊥} such that
Θ∗ is true under any truth assignment ∗ that extends ◦ to X ∪ Y . By our assumption, Θ is
in disjunctive normal form and hence takes the form

(ψ1 ∧ ψ2 ∧ ... ∧ ψn) ∨ ... ∨ (ψm+1 ∧ ψm+2 ∧ ... ∧ ψm+l)

where each ψw is either a positive or negative literal. Now let Ω and Σ represent the
antecedent and consequent of the outermost implication in f(φ) such that f(φ) = Ω → Σ.
Our construction guarantees that Σ takes the form

(Ψ1 ∧Ψ2 ∧ ... ∧Ψn) ∨ ... ∨ (Ψm+1 ∧Ψm+2 ∧ ... ∧Ψm+l)

where each Ψw is a disjunction of literals (such a “disjunction” may have only a single
“disjunct”). That is, Σ is obtained from Θ by replacing each oliteral ψw by Ψw, where Ψw

is a disjunction of literals. We will henceforth use ψw to represent a unique position in Θ
and Ψw to represent the corresponding position in Σ.

We want to show that f(φ) is provable in CL5. By Theorem 2.2, it suffices to show that
f(φ) is an instance of a binary tautology. We construct a binary tautology Φ of which f(φ)
is an instance. Namely, we let Φ be the formula obtained from f(φ) as follows. For each
z ∈ X, if z◦ = ⊤ (resp. ⊥) replace the third (resp. second) occurrence of Zz by an atom
Qz such that Qz does not occur elsewhere in Φ and is unique for each z ∈ X. It should be
easy to see that Φ is a quantifier free binary formula and f(φ) is an instance of Φ. We need
only show that Φ is a tautology. Again notice that Φ takes form Φ = Π → Σ where Σ is
the same as in f(φ).

Given X = z1, z2, ..., zl, we have Π = g(z1)
′∧g(z2)

′∧ ...∧g(zl)
′ where each g(z)′ matches

one of the following forms4.

(1) Zz ∧ (Zz → uz1 ∧ u
z
2 ∧ ... ∧ u

z
kz) ∧ (Qz → ¬vz1 ∧ ¬vz2 ∧ ... ∧ ¬vztz)

(2) Zz ∧ (Qz → uz1 ∧ u
z
2 ∧ ... ∧ u

z
kz) ∧ (Zz → ¬vz1 ∧ ¬vz2 ∧ ... ∧ ¬vztz)

For any g(z)′ in Π where z ∈ X, if (Zz)⋆ = ⊥ then Π⋆ = ⊥, and hence Φ⋆ = ⊤.
If (Zz)⋆ = ⊤, then all of the literals in the consequent of the implication in g(z)′ with
antecedent literal Zz must be true under ⋆, otherwise we will have Π⋆ = ⊥ and again Φ⋆ =
⊤. Thus, we need only guarantee Σ⋆ = ⊤ under truth assignments such that, for each
conjunct g(z)′ in Π, Zz and every literal in the consequent of the implication containing
antecedent literal Zz are true under ⋆.

Let Θ′ be the formula that results from replacing in Θ every positive occurrence of z
or ¬z, where z ∈ X, by its truth value under ◦. For example, if z◦ = ⊥, replace ¬z by

4It is possible that the third (resp. second) conjunct in formula 1 (resp. 2) is absent.



14 M. S. BAUER

⊤ and z by ⊥. It should be easy to see that Θ′ is a tautology. For any position ψw that
contains z (resp. ¬z) in Θ and ⊤ in Θ′, the position Ψw in Σ must contain a single literal
uzi (resp. ¬vzi ) such that (uzi )

⋆ = ⊤ (resp. (¬vzi )
⋆ = ⊤) if Π⋆ = ⊤. This is because, by our

construction, if z◦ = ⊤ (resp. (¬z)◦ = ⊤), every uzi for 1 ≤ i ≤ kz (resp. ¬vzi for 1 ≤ i ≤ tz)
must occur in the consequent of the implication in Π with non-isolated antecedent Zz. For
reasons already discussed, such a literal must be true under any truth assignment ⋆ where
Π⋆ = ⊤. Define Σ′ as the formula such that, for each occurrence of ⊤ or ⊥ in position ψw

of Θ′, the literal in position Ψw of Σ is replaced by the same value (⊤ or ⊥) as ψw. Note
that Σ′ only substitutes the logical atom in position Ψw of Σ when Ψw contains a positive
or negative occurrence of an atom in X. Since our goal is to show that Σ is true under
truth assignments that make Π true, we need only show that Σ′ is a tautology.

For a contradiction, assume Σ′ is not a tautology. Then there exists some truth as-
signment † defined on the variables of Σ′ such that (Σ′)† = ⊥. We define a truth assign-
ment ‡ for Θ′ as follows. If a variable y ∈ Y is such that, for some i with 1 ≤ i ≤ ry,

(P y
i,1 ∨ . . . ∨ P

y
i,sy

)† = ⊥, we let y‡ = ⊥; otherwise we let y‡ = ⊤. It is not hard to see that,

if a subformula of Σ′ in a position Ψw is false under †, then the subformula of Θ′ in the
corresponding position ψw is false under ‡ (but not necessarily vice versa). This, in view of
the monotonicity of ∨ and ∧, obviously implies that (Θ′)‡ = ⊥, because Σ′ and Θ′ have the
same (∨,∧)-structures. Now we are dealing with a contradiction, because the tautological
Θ′ cannot be false.

“⇐” Assume f(φ) is provable in CL5. By Theorem 2.2, for some normal binary tautology
Φ there exists an atomic level substitution σ such that σ(Φ) = f(φ). Let Φ = Π → Σ,
where Π and Σ represent the antecedent and consequent of the outermost implication in
Φ. We want to define a truth assignment ◦ : X → {⊤,⊥} such that Θ∗ is true for any
truth assignment ∗ that extends ◦ to X ∪Y . In what follows, we define such a partial truth
assignment ◦ for Θ while concurrently defining a partial truth assignment • for Φ.

Procedure 1 - Consider a z ∈ X and let A be the atom of Φ such that the first occurrence
of Zz in f(φ) originates from A (i.e., A gets replaced by σ(A) = Zz) when transitioning
from Φ to σ(Φ) = f(φ).

Case 1 : The second and third occurrences of Zz in f(φ) originate from A and B,
respectively (for some B 6= A in Φ). Define z◦ = ⊤, A• = ⊤ and B• =⊥. The consequent5

of the second occurrence of A in Φ should take the form a1 ∧ a2 ∧ ...∧ akz for some positive
literals a1, a2, ..., akz in Φ and the consequent of B should take the form ¬b1∧¬b2∧ ...∧¬btz
for some negative literals ¬b1,¬b2, ...,¬btz . Let all of a1, a2, ..., akz and b1, b2, ..., btz be true
under •.

Case 2 : The second and third occurrences of Zz in f(φ) originate from B and A,
respectively (for some B 6= A in Φ). Define z◦ =⊥, A• = ⊤ and B• =⊥. The consequent of
the second occurrence of A in Φ should take the form ¬b1∧¬b2∧ ...∧¬btz for some negative
literals ¬b1,¬b2, ...,¬btz and the consequent of B should take the form a1 ∧ a2 ∧ ...∧ akz for
some positive literals a1, a2, ..., akz . Let all of a1, a2, ..., akz and b1, b2, ..., btz be false under
•.

Case 3 : There are only two occurrences of Zz in f(φ), both of which originate from
A. If the consequent of the second occurrence of A in Φ takes the form a1 ∧ a2 ∧ ... ∧ akz
for some positive literals a1, a2, ..., akz then define z◦ = ⊤ and A• = ⊤. Further, let all of

5Here and later in similar contexts, the “consequent of W” should be understood as the consequent of
the implication whose antecedent is W. Similarly for “antecedent of W”.



THE COMPUTATIONAL COMPLEXITY OF PROPOSITIONAL CIRQUENT CALCULUS 15

a1, a2, ..., akz be true under •. If the consequent of the second occurrence of A in Φ takes
the form ¬b1 ∧¬b2 ∧ ...∧¬btz for some negative literals ¬b1,¬b2, ...,¬btz then define z◦ =⊥
and A• = ⊤. Further, let all of b1, b2, ..., btz be false under •.

Case 4 : If none of the cases 1− 3 are satisfied, then the second and third occurrences
of Zz in f(φ) must originate from B and C, respectively (where A 6= B and A 6= C). Define
z◦ = ⊥, A• = ⊤ and B• = C• = ⊥. Further, let every atom in the consequent of B evaluate
to ⊥ under • and every atom in the consequent of C evaluate to ⊤ under •.

As we remember, Θ in disjunctive normal form, taking the form

(ψ1 ∧ ψ2 ∧ ... ∧ ψn) ∨ ... ∨ (ψm+1 ∧ ψm+2 ∧ ... ∧ ψm+l)

where each ψw is a literal. It is also the case that Σ takes the form

(Ψ1 ∧Ψ2 ∧ ... ∧Ψn) ∨ ... ∨ (Ψm+1 ∧Ψm+2 ∧ ... ∧Ψm+l)

where each Ψw is a disjunction of literals (possibly with just a single “disjunct”). Thus,
we will use our previous convention in which ψw represents a unique position in Θ and Ψw

represents the corresponding position in Σ.
Our construction guarantees that for each position ψw in Θ containing some positive

(resp. negative) literal z (resp. ¬z) such that z ∈ X, Ψw contains a positive (resp. negative)
literal a (resp. ¬a). By procedure 1 we have z◦ = a•. As in the previous direction, let Θ′

be the formula that results from replacing, in Θ, for every z ∈ X, all positive occurrences
of the literals z and ¬z by their truth values under ◦. Let Σ′ be the formula such that, for
each position ψw in Θ′ containing a logical atom d ∈ {⊤,⊥}, the literal in the corresponding
position Ψw of Σ is replaced by d. The interpretation • defined as part of procedure 1 is such
that Π• = ⊤. Because Φ is a tautology, any extension of • defined on all atoms of Σ must
make Σ true. We also know that for each position Ψw in Σ′ that contains a logical atom ⊤
(resp. ⊥), the literal in position Ψw of Σ evaluates to ⊤ (resp. ⊥) under •. This means that
Σ′ is true regardless of how its non-logical atoms are interpreted and is a tautology. Our
goal is to show that Θ′ is a tautology as well.

Pick some arbitrary truth assignment ∗ for Θ′. We show (Θ′)∗ = ⊤. For each position
ψw in Θ′ containing a positive literal y, the corresponding position Ψw in Σ′ contains a
disjunction of positive literals (qyi,1 ∨ q

y
i,2 ∨ ... ∨ q

y
i,sy

) such that σ(qyi,1) = P
y
i,1, σ(q

y
i,2) = P

y
i,2

..., σ(qyi,sy) = P
y
i,sy

for some 1 ≤ i ≤ ry. Similarly, for each position ψw in Θ′ containing a

negative literal ¬y, the corresponding position Ψw in Σ′ contains a disjunction of negative
literals (¬ty1,j ∨ ¬ty2,j ∨ ... ∨ ¬tyry,j) such that σ(ty1,j) = P

y
1,j , σ(t

y
2,j) = P

y
2,j, ..., σ(t

y
ry) = P

y
ry ,j

for some 1 ≤ j ≤ sy. We now define a truth assignment † for Σ′. If y∗ = ⊤, let † be such
that all of the corresponding literals ¬ty1,j,¬t

y
2,j, ...,¬t

y
ry ,j

, for every 1 ≤ j ≤ sy evaluate to

false under †. If y∗ =⊥, let † be such that all corresponding literals qyi,1, q
y
i,2, ..., q

y
i,sy

, for

every 1 ≤ i ≤ ry evaluate to false under †. With some thought, one can see that whenever

Θ′ has a false (under ∗) literal in a position ψw, Σ
′ has a false (under †) disjunction of literals

in the corresponding position Ψw. So, if (Θ′)∗ = ⊥, then (Σ′)† = ⊥. That is, (Σ′)† = ⊤
(which is the case due to the tautologicity of Σ′) implies (Θ∗) = ⊤.



16 M. S. BAUER

References

[1] M. Bauer. A PSPACE-complete first order fragment of computability logic. ACM Transactions on

Computational Logic 15 (2014), Article 1.
[2] G. Japaridze. Introduction to computability logic. Annals of Pure and Applied Logic 123 (2003), pp.

1-99.
[3] G. Japaridze. Propositional computability logic I. ACM Transactions on Computational Logic 7

(2006), pp. 302-330.
[4] G. Japaridze. Propositional computability logic II. ACM Transactions on Computational Logic 7

(2006), pp. 331-362.
[5] G. Japaridze. From truth to computability I. Theoretical Computer Science 357 (2006), pp. 100-135.
[6] G. Japaridze. From truth to computability II. Theoretical Computer Science 379 (2007), pp. 20-52.
[7] G. Japaridze. Introduction to cirquent calculus and abstract resource semantics. Journal of Logic and

Computation 16 (2006), pp. 489-532.
[8] G. Japaridze. Cirquent calculus deepened. Journal of Logic and Computation 16 (2008), pp. 983-

1028.
[9] G. Japaridze. In the beginning was game semantics. In: Games: Unifying Logic, Language and

Philosophy. O. Majer, A.-V. Pietarinen and T. Tulenheimo, eds. Springer 2009, pp. 249-350.
[10] G. Japaridze. The taming of recurrences in computability logic through cirquent calculus, Part I.

Archive for Mathematical Logic 52 (2013), pp. 173-212.
[11] G. Japaridze. The taming of recurrences in computability logic through cirquent calculus, Part II.

Archive for Mathematical Logic 52 (2013), pp. 213-259.
[12] P. Lincoln, J. Mitchell, A. Scedrov and N. Shankar. Decision problems for propositional linear logic.

Annals of Pure and Applied Logic 56 (1992), pp. 239-311.
[13] I. Mezhirov and N. Vereshchagin. On abstract resource semantics and computability logic. Journal of

Computer and System Sciences 76 (2010), pp. 356-372.
[14] M. Qu, J. Luan, D. Zhu and M. Du. On the toggling-branching recurrence of computability logic. Journal

of Computer Science and Technology 28 (2013), pp. 278-284.
[15] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science 3 (1977), pp. 1-22.
[16] W. Xu and S. Liu. Deduction theorem for symmetric cirquent calculus. Advances in Intelligent and

Soft Computing 82 (2010), pp. 121-126.
[17] W. Xu and S. Liu. Soundness and completeness of the cirquent calculus system CL6 for computability

logic. Logic Journal of the IGPL 20 (2012), pp. 317-330.
[18] W. Xu and S. Liu. The parallel versus branching recurrences in computability logic. Notre Dame

Journal of Formal Logic 54 (2013), pp. 61-78.
[19] W. Xu. A propositional system induced by Japaridze’s approach to IF logic. Logic Journal of the

IGPL first published online June 30, 2014 doi:10.1093/jigpal/jzu020.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	2. Core cirquent calculus
	2.1. Axioms (A)
	2.2. Mix (M)
	2.3. Exchange (E)
	2.4. Weakening (W)
	2.5. Duplication (D)
	2.6. Contraction (C)
	2.7. -introduction ()
	2.8. -introduction ()
	2.9. The systems CCC, CL5 and CL5-

	3. CL5 without duplication is NP-complete
	4. CL5 is 2p-complete
	References

