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Abstract. We generalize several propositional preprocessing techniques to higher-order
logic, building on existing first-order generalizations. These techniques eliminate literals,
clauses, or predicate symbols from the problem, with the aim of making it more amenable
to automatic proof search. We also introduce a new technique, which we call quasipure
literal elimination, that strictly subsumes pure literal elimination. The new techniques
are implemented in the Zipperposition theorem prover. Our evaluation shows that they
sometimes help prove problems originating from Isabelle formalizations and the TPTP
library.

1. Introduction

Processing techniques are an important optimization in SAT (Boolean satisfiability) solving.
Following up on early work in the 1990s [GO92, Ohl96], there has recently been renewed
interest in adapting propositional techniques to first-order logic [KK16,KSS+17,VBH23],
resulting in a noticeable increase of the success rate of automatic theorem provers based on
superposition [BG94].

In this article, we consider the extension of four main classes of SAT preprocessing
techniques to classical higher-order logic. These extensions are called hidden-literal-based
elimination (Section 3), predicate elimination (Section 4), blocked clause elimination (Sec-
tion 5), and quasipure literal elimination (Section 6). Elimination techniques make the
problem simpler and hence possibly more amenable to automatic proof search. The tech-
niques can be used either to preprocess the problem or to transform the prover’s current
clause set during proof search, a use that is sometimes called inprocessing.

An advantage of preprocessing is its greater generality: Preprocessing techniques can be
used in tandem with any higher-order proof calculus, as long as the calculus is built around
a notion of clause. We assume that a clausifier is run as a preprocessor and introduces some
clausal structure. The more clausal structure it produces, the more effective the elimination
techniques can be. Examples of provers compatible with the techniques are λE [VBS23],
Leo-III [SB18], Vampire [BR20], and Zipperposition [BBTV21].
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Our setting is a clausal version of classical rank-1 polymorphic higher-order logic
(Section 2). Since previous work focused on an untyped or monomorphic logic, our work also
generalizes this aspect. Higher-order logic also distinguishes between standard and general
(Henkin) semantics. Since calculi are proved complete with respect to general semantics,
this is the semantics we adopt. Our techniques preserve the unsatisfiability of problems, and
therefore their provability by a complete prover. In addition, they preserve the satisfiability
of problems, and therefore their unprovability by a sound prover.

The main difficulty we face in higher-order logic concerns predicate elimination and
blocked clause elimination, which are both based on resolution. In first-order logic, a literal
¬ p( #—s ) can only be resolved against a literal p(

#—
t ), with the same predicate symbol p. By

contrast, in higher-order logic, ¬ p #—s can be resolved against any variable-headed literal
y

#—
t , for example by taking y := λ #—x . p #—s , where the bound variables #—x are fresh. We will

see that this issue can be circumvented: A key finding of this article is that we can ignore
variable-headed resolvents and focus on the p-literals.

Another potential issue is that higher-order logic can have infinitely many resolvents.
For example, resolving ¬ p (f (y a)) and p (y (f a)) produces infinitely many conclusions of
the form p (f (. . . (f a) . . .)). Again, the issue is not as severe as it looks, because the variant
of resolution we use—flat resolution—does not unify terms.

Example 1.1. To give a flavor of our elimination techniques, let us review an example
involving blocked clause elimination. Let a : ι, p : ι → o, and choice : (ι → o) → ι be
symbols, where o is the type of Booleans and ι is a base type. Consider the clause set

N = {¬ y z ∨ y (choice y), q a, ¬ q (choice q), p a, ¬ p z ∨ z ≈ a}

The set is clearly inconsistent because the {y 7→ q, z 7→ a} instance of the first clause is
inconsistent with the second and third clauses.

Under some basic conditions, a clause C containing a literal L is said to be “blocked”
if all of its so-called binary flat L-resolvents with clauses from N \ {C} are tautologies.
(We will see in Section 5 what this means exactly.) The fourth clause is blocked by its
literal p a because its only binary flat (p a)-resolvent, with the fifth clause, is the tautology
a 6≈ z ∨ z ≈ a. Similarly, the fifth clause is blocked by its literal ¬ p z because its only binary
flat (¬ p z)-resolvent, with the fourth clause, is the same tautology. Either or both clauses
can be removed without from N losing unsatisfiability.

All the techniques are implemented in the higher-order prover Zipperposition (Section 7),
allowing us to measure their effectiveness on benchmarks originating from Isabelle [NPW02]
formalizations and the TPTP library [Sut17] (Section 8). The raw experimental data are
available online.1

We will mention closely related research in the relevant sections. We point to Vukmirović
et al. [VBH23, Section 8] for a more detailed discussion of related work.

2. Clausal Higher-Order Logic

The logic we use as a basis of our work is a rank-1 polymorphic higher-order logic with
general semantics and both functional and Boolean extensionality. It corresponds essentially
to the logic embodied by the TPTP TH1 format [KSR16], including Hilbert choice. Our

1https://zenodo.org/record/7448169

https://zenodo.org/record/7448169
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conventions largely follow those used by Bentkamp, Blanchette, Tourret, and Vukmirović to
define λ-superposition [BBTV21]. Our presentation is based on theirs.

In higher-order logic, formulas are simply terms of Boolean type. Briefly, our version of
the logic also has a clausal outer structure, as found in several higher-order provers. Clauses
are then built around terms as an extra layer of structure. We write formula-level Boolean
operators in bold (e.g., ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀) to distinguish them from clause-level operators.

2.1. Syntax. Let us define the syntax of our logic more precisely, starting with types.
Throughout this article, we use the notation #—an, or simply #—a , to denote an n-tuple
(a1, . . . , an). Sometimes we might also write #—ai, meaning (ai1, . . . , ain), to be distinguished
from #—ai = (a1, . . . , ai).

We start by fixing an infinite set Vty of type variables. A set Σty of type constructors with
associated arities is a type signature. We require the presence of a nullary type constructor
o, for Booleans, and a binary type constructor → for functions. We let α range over type
variables and κ over type constructors. A type, ranged over by τ and υ, is defined inductively
to be either a variable α ∈ Vty or an expression κ( #—τn), where κ is an n-ary type constructor
and #—τ in an n-tuple of types. If n = 0, we write κ instead of κ(). In addition, expressions
with κ =→ are written in infix notation, as τ1 → τ2. A type declaration is an expression
Π #—αm. τ , where #—α consists of distinct type variables and all the type variables occurring in τ
belong to #—α . If m = 0, we write τ instead of Π. τ .

Next, we fix a type signature Σty and a set V of term variables with associated types.
We require that there are infinitely many variables of each type. A term signature is a set Σ
of symbols a, b, c, f, p, q, . . . , each associated with a type declaration. (Often, symbols are
called “constants” in the higher-order logic literature.) We write f : Π #—α. τ to indicate that
symbol f has type signature Π #—α. τ . We require the presence in Σ of the logical symbols
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,>>>>>>>>>>>>>>>>>>>>>>>>>,¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬,∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ with their usual type declarations (e.g., Πα. α → α → o for ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈).
We also assume the presence of the Hilbert choice operator εεεεεεεεεεεεεεεεεεεεεεεεε : Πα. (α→ o)→ α. We will
generally leave the signature implicit, assuming some fixed signature Σ.

Polymorphic higher-order logic does not distinguish between function and predicate
symbols. Nonetheless, it will be convenient to refer to symbols that can yield Boolean values
as predicate symbols. Specifically, we will call a symbol with type declaration p : Π #—α. τ that
admits an instance of the form p〈 #—τ 〉 : υ1 → · · · → υn → o a predicate symbol.

We now introduce three notions of terms: raw λ-terms, λ-terms, and actual terms. The
λ-terms are α-equivalence classes of raw λ-terms, and the actual terms are βη-equivalence
classes of λ-terms.

More precisely, the raw λ-terms are defined inductively as follows:

– Every variable x of type τ is a raw λ-term of type τ .

– If f has type declaration Π #—αm. τ in Σ and #—υm is a tuple of types, called type arguments,
then f〈 #—υm〉 is a raw λ-term of type τ{ #—αm 7→ #—υm}. If m = 0, we simply write f instead of
f〈〉.

– If x is a variable of type τ and t is a term of type υ, then the λ-abstraction λx. t is a raw
λ-term of type τ → υ.

– If s is a term of type τ → υ and t is a term of type τ , then the application s t is a raw
λ-term of type υ.

We abbreviate λx1. . . . λxn. t to λx1 . . . xn. t or λ #—xn. t, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ (λx. t) to ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀x. t, and similarly
for ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃. Abusing notation, we also write t #—un for t u1 . . . un. We assume standard notions of
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free and bound variables as well as subterms. To indicate that a term t has a type τ , we
write t : τ .

The α-renaming rule of the λ-calculus relates two raw λ-terms if the two are equal up to
(capture-avoiding) renaming of their bound variables. For example, λx. f xx and λy. f y y are
α-renamings of each other. Two raw λ-terms are α-equivalent if they can be made equal by
α-renaming their subterms. The λ-terms consist of the equivalence classes of raw λ-terms
modulo α-equivalence of subterms. We assume the standard notion of (capture-avoiding)
substitution on λ-terms. We also define a notion of replacement: t[f 7→ u] denotes the term
obtained by replacing all occurrences of f in t with a term u of the same type.

The β-reduction rule relates two λ-terms if the first one has the form (λx. s) t and the
second one has the form s{x 7→ t}, where bound variables in s are implicitly renamed to
avoid capture. The η-reduction rule relates two λ-terms if the first one has the form λx. t x
and the second one has the form t, where t contains no free occurrences of x. For example,
(λx. f x x) b β-reduces to f b b, and λx. f x η-reduces to f. Two λ-terms are βη-equivalent
if they can be made equal by β- and η-reducing their subterms. The terms consist of the
equivalence classes of λ-terms modulo βη-equivalence of subterms. The formulas are the
terms of type o. We let ϕ,ψ range over formulas.

Convention 2.1. When inspecting the structure of a term, we will consider a representative
in η-short β-normal form, obtained by exhaustively applying β- and η-reduction on subterms.
Such a representative is unique up to α-equivalence.

An alternative to the η-short β-normal form is the η-long β-normal form, in which
unapplied functions are η-expanded rather than η-reduced (i.e., η-reduction is applied in
reverse on these). The techniques presented in this article work unchanged in such a setting.

Two terms t, u are unifiable if there exists a substitution σ such that tσ = uσ. For
example, a and y a are unifiable by taking y := λx. x. (This works because terms are equal
up to β-reduction.) Unification of higher-order terms is undecidable. Types, however, are
isomorphic to first-order terms, and hence their unification problem is decidable. Moreover,
if a unifier exists, then a most general unifier exists (up to the naming of variables). For
example, the most general unifier for the unification problem pair(α, nat)

?
= pair(int, β) is

{α 7→ int, β 7→ nat}.
Finally, we define literals and clauses on top of terms. An atom is an equation s ≈ t

corresponding to an unordered pair {s, t}. (We reserve = for syntactic equality of terms.) A
literal is an equation s≈ t or a disequation s 6≈ t. Given a predicate symbol p, the literal
p〈 #—α〉 #—s ≈ >>>>>>>>>>>>>>>>>>>>>>>>> is abbreviated to p〈 #—α〉 #—s , and its complement p〈 #—α〉 #—s 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> is abbreviated to
¬ p〈 #—α〉 #—s . Moreover, a p-literal is a literal of the form (¬) p〈 #—τ 〉 #—

t . Note that it is possible in
higher-order logic for a non-p-literal to contain p, or even for the arguments

#—
t of a p-literal

to contain p. Given a literal L, we write ¬ L to denote its complement, with ¬ ¬ L = L.
A clause C is a finite multiset of literals, written as L1 ∨ · · · ∨ Ln and interpreted

disjunctively. Clauses are often defined as sets of literals, but multisets are better behaved
with respect to substitution: If C has n literals, so has Cσ regardless of whether σ unifies
some of C’s literals. The type and term variables contained in a clause are implicitly
quantified universally. (Within terms, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ can be used to quantify over term variables.)

A type, term, or clause is monomorphic if it contains no type variables. A term or
clause is closed if it contains no free term variables.

It is sometimes useful to encode a clause C as a formula. The formula [C] representing the
clause C is defined by replacing the nonbold symbols ≈, 6≈, and ∨ by their bold counterparts
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≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈, and ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨. This formula is uniquely defined up to the orientation of the equations and
the order of the literals, neither of which affects the semantics.

2.2. Semantics. A type interpretation Ity = (U, Jty) consists of two components. The
universe U is a collection of nonempty sets, the domains. We require U to contain the domain
{0, 1}, where 0 represents falsehood and 1 represents truth. The function Jty associates
with each n-ary type constructor κ a function Jty(κ) : Un → U, with the requirements that
Jty(o) = {0, 1} and that the set Jty(→)(D1,D2) is a subset of the (total) function space from
D1 to D2 for all domains D1,D2 ∈ U. The semantics is standard if Jty(→)(D1,D2) is the
entire function space for all D1,D2 ∈ U. A type valuation ξ is a function that maps every
type variable to a domain.

The denotation of a type in a type interpretation Ity under a type valuation ξ is defined by
the recursive equations JαKIty,ξ = ξ(α) and Jκ( #—τ )KIty,ξ = Jty(κ)(J #—τ KIty,ξ). For monomorphic
types τ , the denotation does not depend on the valuation ξ, allowing us to write JτKIty
instead of JτKIty,ξ.

A type valuation ξ can be extended to be a valuation by additionally assigning an element
ξ(x) ∈ JτKIty,ξ to each variable x : τ . We will sometimes use partial functions as valuations if
the values outside the function’s domain are irrelevant. An interpretation function J for a

type interpretation Ity associates with each symbol f : Π #—αm. τ and domain tuple
#—

D ∈ Um a

value J(f,
#—

D) ∈ JτKIty,[ #—α 7→ #—

D], We require that the logical symbols are interpreted in the usual
way in terms of 0 and 1. For example, J(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0 and J(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(v, w) = max {v, w}. Note that in
the presence of εεεεεεεεεεεεεεεεεεεεεεεεε in the signature, every type τ must be interpreted by a nonempty set, for
J(εεεεεεεεεεεεεεεεεεεεεεεεε〈τ〉 (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)) to be defined.

We require the comprehension principle to hold: Every function designated by a
λ-abstraction is contained in the domain associated with its type. We initially allow λ-
abstractions to designate arbitrary elements of the domain. This enables us to define the
denotation of a term. Then we impose restrictions to rule out undesirable λ-abstraction
designations.

A λ-designation function L for a type interpretation Ity is a function that maps a
valuation ξ and a λ-abstraction of type τ to an element of JτKIty,ξ. An interpretation
I = (Ity, J,L) combines a type interpretation, an interpretation function, and a λ-designation
function.

For an interpretation I and a valuation ξ, the denotation of a term is defined recursively
as JxKI,ξ = ξ(x), Jf〈 #—τ 〉KI,ξ = J(f, J #—τ KIty,ξ), Js tKI,ξ = JsKI,ξ(JtKI,ξ), and Jλx. tKI,ξ = L(ξ, λx. t).
For monomorphic closed terms t, the denotation does not depend on the valuation ξ, allowing
us to write JtKI instead of JtKI,ξ.

An interpretation I is proper if Jλx : υ. tKI,ξ(v) = JtKI,ξ[x 7→v] for every λ-abstraction
λx : υ. t, every valuation ξ, and every value v ∈ JυKIty,ξ. We will assume throughout that
all interpretations are proper and will construct only proper interpretations. If a type
interpretation Ity and an interpretation function J can be extended by a λ-designation
function L to an interpretation (Ity, J,L), then this L is unique [Fit02, Proposition 2.18].

Given an interpretation I and a valuation ξ, an equation s≈ t is true if JsKI,ξ and JtKI,ξ
are equal and it is false otherwise. A disequation s 6≈ t is true if s≈ t is false. A clause is
true if at least one of its literals is true. A clause set is true if all the clauses it contains are
true. An interpretation I is a model of a clause set N , written I |= N , if N is true in I for
every valuation ξ.
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A clause C is a tautology if I |= {C} for every interpretation I. It is satisfiable if there
exists an interpretation I such that I |= {C}; otherwise, it is unsatisfiable. Notice that these
concepts are defined with respect to general, and not necessarily standard, interpretations.

It is sometimes convenient to assume that the interpretation of monomorphic types is
injective on types—that is, for all monomorphic τ, υ, if JτKIty = JυKIty , then τ = υ. This
assumption is reasonable because the elements of Jty(κ), where κ /∈ {o,→}, are immaterial
and can be renamed if desired and because the set-theoretic representation of functions, as
nonempty sets of pairs, preserves this property. (The sets of pairs are nonempty thanks
to the presence of εεεεεεεεεεεεεεεεεεεεεεεεε in the signature, as noted above.) We call this principle the distinct
domain assumption.

3. Hidden-Literal-Based Elimination

In propositional logic [HJB11] and clausal first-order logic [VBH23], a hidden literal for
a literal L and a clause set N is a literal that can be added or removed from any clause
containing L without affecting its truth value in models of N . Several elimination techniques
are based on hidden literals; in particular, hidden literal elimination removes hidden literals
from clauses in which they occur.

Example 3.1. Consider the literal c and the clause set N = {¬ a ∨ b, ¬ b ∨ c}. Then b is a
hidden literal: Since b implies c according to N , we have that b ∨ c and c have the same
truth value in models of N . Similarly, since a implies c (by transitivity), a is also a hidden
literal. Thus, hidden literal elimination would reduce the clause a ∨ b ∨ c to c.

The first-order definitions of hidden literals, hidden tautologies, hidden literal elimination,
hidden tautology elimination, failed literal elimination, hidden tautology reduction, and failed
literal reduction [VBH23] work verbatim in clausal higher-order logic, for both preprocessing
and inprocessing. All the techniques preserve satisfiability and unsatisfiability. We call them
collectively hidden-literal-based elimination (HLBE).

4. Predicate Elimination

Predicate elimination (PE) [GO92, KK16, VBH23] is a set of techniques that remove all
occurrences of some predicate symbol in a first-order problem by resolving clauses that contain
it. Predicate elimination generalizes variable elimination in propositional logic [SP04,CS00].
In this section, we generalize two specific techniques to higher-order logic.

4.1. Singular Predicate Elimination. The first technique is called singular (or “non-
self-referential”) predicate elimination. Definitions 4.1 to 4.5 below are adapted from
monomorphic first-order logic.

Definition 4.1. A predicate symbol p occurs deep in a clause C if it occurs in a position
other than as the head of the atom of a p-literal somewhere in C. The symbol p occurs deep
in a clause set N if it occurs deep in one of its clauses C ∈ N .

Definition 4.2. A predicate symbol p is called singular for a clause C if these conditions
are met:

(1) C contains at most one p-literal;
(2) p does not occur deep in C.
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The symbol p is singular for a clause set N if p is singular for every clause contained in N .

Definition 4.3. The clause C = (¬) p〈 #—τ 〉 #—
t ∨ C ′ is polymorphism-safe for its literal

(¬) p〈 #—τ 〉 #—
t if all type variables occurring in C occur in #—τ . A clause C is polymorphism-safe

for p if it is polymorphism-safe for all its p-literals. A clause set N is polymorphism-safe for
p if all the clauses it contains are polymorphism-safe for p.

Definition 4.4. Let C = p〈 #—τ 〉 #—sn ∨ C ′ and D = ¬ p〈 #—υ 〉 #—
tn ∨D′. The flat resolvent of C

and D on p〈 #—τ 〉 #—sn and ¬ p〈 #—υ 〉 #—
tn is the clause (s1 6≈ t1 ∨ · · · ∨ sn 6≈ tn ∨ C ′ ∨ D′)σ, where

σ is the most general unifier of #—τ
?
= #—υ . The flat resolvent is not defined if #—τ and #—υ are not

unifiable.

Flat resolvents were already present in the first-order setting [GO92, KK16, VBH23].
They are reminiscent of Huet’s approach to unification in higher-order resolution [Hue73],
which is also used by Benzmüller and colleagues [BK98,SB21].

Definition 4.5. Let M,N be clause sets and p be a singular predicate for M . Let  be
the following relation on clause set pairs and clause sets:

(1) (M, {(¬) p〈 #—τ 〉 #—s ∨ C ′} ]N) (M, N ′ ∪N) if N ′ is the set that consists of all clauses,
up to variable renaming, that are flat resolvents on (¬) p〈 #—τ 〉 #—s and (¬) ¬ p〈 #—υ 〉 #—

t of
(¬) p〈 #—τ 〉 #—s ∨ C ′ and a clause (¬) ¬ p〈 #—υ 〉 #—

t ∨ D′ from M as premises. The premises’
variables are renamed apart.

(2) (M,N) N if N contains no p-literals.

The resolved set Mop N is the (Σ \ {p})-clause set N ′ such that (M,N) ∗ N ′.

For finite sets M,N , the resolved set N ′ is reached in a finite number of steps, and it is
unique up to variable renaming. The argument is as for first-order logic [VBH23, Lemma 4.4].
Note that the result may contain deep occurrences of p if the initial set N contains such
occurrences.

Definition 4.6. Let N be a clause set and p be a singular predicate symbol for N. Let
N+

p consist of all clauses belonging to N that contain a positive p-literal, let N−p consist

of all clauses belonging to N that contain a negative p-literal, let Np = N+
p ∪N−p , and let

Np = N \Np.

Definition 4.7. Let N be a finite clause set that is polymorphism-safe for p and p be a
singular predicate for N. Singular predicate elimination (SPE) of p in N replaces N by the
(Σ \ {p})-clause set Np ∪ (N+

p op N
−
p ).

SPE preserves satisfiability: The only clauses added are flat resolvents, and flat resolution
is clearly sound. In first-order logic, SPE also preserves unsatisfiability [KK16, Theorem 1].
With a small restriction on polymorphism, this result extends to polymorphic higher-order
logic. Also note that deep occurrences of p are not possible in the result, because of the
requirement that p be a singular predicate for the input N.

Example 4.8. Thanks to the use of flat resolvents, the unification work is left to the proof
calculus. This is convenient, because higher-order unification is undecidable and hence, in
general, could not be done exhaustively in a preprocessing technique.

Consider the clause set N = {p z z ∨ q z, ¬ p (f (y a)) (y (f a)), ¬ q b}. Applying SPE to
p transforms N into N ′ = {f (y a) 6≈ z ∨ y (f a) 6≈ z ∨ q z, ¬ q b}. It is then the calculus’s
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task to enumerate values for z that solve the unification problem z
?
= f (y a)

?
= y (f a). These

values are

f a, f (f a), f (f (f a)), . . .

In λ-superposition [BBTV21], this enumeration would be the responsibility of the ERes
inference rule. The first clause in N ′ could be simplified to y (f a) 6≈ f (y a) ∨ q (f (y a)),
by eliminating z. Then ERes would unify the two sides of the first literal, producing one
conclusion per unifier. Since there are infinitely many unifiers, this would lead to infinitely
many conclusions:

q (f a), q (f (f a)), q (f (f (f a))), . . .

Using dovetailing, this infinite enumeration can be interwoven with other inferences and
other activities of the prover [VBB+22, Section 6].

Example 4.9. Consider the satisfiable clause set N = {p (f z) ∨ q z, ¬ p (f a)}. SPE of p
transforms N into the equally satisfiable set N ′ = {f a 6≈ f z ∨ q z}.

Note that although p is absent from N ′, a predicate that meets its specification can
be created based on the first clause of N , in which the p-literal is positive. This predicate
is λx. ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃y. x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ f y ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ q y. In general, we would use all the clauses in which the p-literal is
positive and ignore the other clauses. (Dually, we could have defined the predicate in terms
of the clauses in which the p-literal is negative.) This predicate makes p true only when it
must be true to satisfy the first clause—namely, when the clause’s non-p-literal is false.

If we replace p with this λ-abstraction in N and β-reduce, we obtain the satisfiable set
N ′′ = {(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃y. f z ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ f y ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ q y) ∨ q z, ¬ (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃y. f a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ f y ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ q y)}. Nothing essential is lost by
eliminating p—if we need p, we can use the λ-abstraction. This idea is the key to the proof
of Theorem 4.11 below.

Example 4.10. Consider the clause set N = {¬ y a, p a}. It is easy to see that the set is
unsatisfiable, by taking y := p. SPE of p transforms N into the set N ′ = {¬ y a}. Although
y a is unifiable with the literal p a, the first clause is left unchanged by SPE. Like N , N ′ is
unsatisfiable. We cannot witness unsatisfiability by taking y := p. We can take y := λx. x≈a,
simulating p on the input a. Alternatively, we can take y := λx. >>>>>>>>>>>>>>>>>>>>>>>>>. Indeed, we could have
taken either instantiation for y to show that N is unsatisfiable, without exploiting the
presence of p a.

Example 4.10 corroborates our choice of ignoring literals headed by a variable in the
definition of SPE, focusing instead on p-literals. The intuition is that often p is unnecessary
to have unsatisfiability, and when it is necessary it can be simulated by a λ-abstraction that
does not contain it.

Theorem 4.11. Let N be a finite clause set that is polymorphism-safe for p and p be a
singular predicate symbol for N . Let N ′ be the result of applying SPE of p to N . Then N ′

is satisfiable if and only if N is satisfiable.

Proof. The “if” direction follows immediately from the soundness of flat resolution. For the
other direction, our strategy is inspired by Khasidashvili and Korovin [KK16, Theorem 1].

Let I = (Ity, J,L) be a model of N ′ = Np ∪ (N+
p op N

−
p ), with Ity = (U, Jty). We

assume without loss of generality that this model satisfies the distinct domain assumption
(Section 2). We will define a new interpretation I′ that extends I with a semantics for p and
show that I′ is a model of N = Np ∪N+

p ∪N−p . To achieve this, we will separately show
that (1) I′ |= Np; (2) I′ |= N+

p ; and (3) I′ |= N−p .
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The interpretation I′ = (Ity, J
′,L′) we construct is identical to I except that J′ is extended

so that J′(p,
#—

D) and L′ are defined as follows, by mutual recursion.

We start with J′(p,
#—

D). We construct a suitable interpretation for p as a curried n-ary

predicate. Let
#—

τ ′ be monomorphic types such that J
#—

τ ′KIty =
#—

D. By the distinct domain

assumption, these types are unique if they exists. If no such types exists, let J′(p,
#—

D) be the
predicate Jλ #—x . ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KI. This predicate is guaranteed to exist in the interpretation of the type of

p〈
#—

τ ′〉 thanks to the comprehension principle (Section 2). The predicate plays the role of a
placeholder for impossible interpretations of p; its value is irrelevant.

In the case where the types
#—

τ ′ exist, we will construct a right-hand side for J′(p,
#—

D)
using the same idea as in Example 4.9. To cope with polymorphism, we will filter out any

clauses whose p’s type arguments cannot be instantiated to
#—

τ ′ and instantiate the remaining
clauses.

More precisely, let M be the smallest set such that for each clause C = p〈 #—υ 〉 #—
tn ∨ C ′

contained in Np, if there exists a substitution σ such that #—υσ =
#—

τ ′, then have M contain
Cσ. Notice that the polymorphism-safety hypothesis ensures that Cσ is monomorphic and
uniquely specified. This is desirable because we want to assign a unique right-hand side to

J′(p,
#—

D).
We now define a term u whose interpretation JuKI = JuKI′ will give us the right-hand

side. Let #—xn be a tuple of fresh variables. With each clause p〈
#—

τ ′〉 #—
tn ∨ C ′ contained in M

and whose free variables are #—y , associate the formula

∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ #—y . x1 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t1 ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ · · · ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ xn ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ tn ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ [C ′]

(Recall from Section 2 that [C ′] denotes a formula representing the clause C ′.) Let ϕ1, . . . , ϕk
be all such formulas, and let ϕ = ϕ1 ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ · · · ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ϕk. Then we take u = λ #—x . ϕ. This choice of u
will ensure that I′ satisfies every clause in N+

p , and thanks to the comprehension principle,
the predicate denoted by u is guaranteed to exist in the interpretation of p〈

#—

τ ′〉’s type.
To finish the definition of I′, we must specify L′. Given a term t, let t[u/p] denote the

variant of the term t in which all occurrences of p are replaced by the term u as defined

above (for suitable types
#—

τ ′). For all valuations ξ and λ-abstractions λx : υ. t, we define
L′(ξ, λx. t) as the function that maps each v ∈ JυKIty,ξ to Jt[u/p]KI,ξ[x 7→v]. This function exists
in the domain associated with the λ-abstraction’s type because I obeys the comprehension
principle. Moreover, because t[u/p] replaces p by a term with the same semantics according
to I′, the interpretation I′ is proper.

We are now ready to tackle the three conditions we need to prove. To prove (1), we
start from I |= Np and show I′ |= Np. More precisely, we must show that JNpKI′,ξ is true for
every valuation ξ. This is obvious because I and I′ only differ on p, which does not occur in
Np.

To prove (2), we show that I′ |= N+
p holds by construction of I′. More precisely, we

must show that JN+
p KI′,ξ is true for every valuation ξ. Let C = p〈 #—υ 〉 #—

t ∨ C ′ be a clause in

N+
p . By definition,

J′(p, J #—υ KIty,ξ) = Jλ #—x . · · · ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ #—y . x1 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t1 ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ · · · ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ xn ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ tn ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ [C ′])︸ ︷︷ ︸
ψ

∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ · · ·KI,ξ

If JC ′KI′,ξ is true, then clearly JCKI′,ξ is true. Otherwise, the literal p〈 #—υ 〉 #—
t is true, because

the disjunct ψ is true. This can be seen by taking the values of #—y under ξ as the existential
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witnesses. The arguments
#—
t in p〈 #—υ 〉 #—

t passed for #—x match those expected by the equalities
xi ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ ti, and since JC ′KI′,ξ is false, J¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ [C ′]KI′,ξ is true.

For the proof of (3), the argument is similar to Khasidashvili and Korovin’s [KK16,
Theorem 1]. It relies on the presence of the flat resolvents N+

p op N
−
p in the result set.

Let D = ¬ p〈 #—υ 〉 #—u ∨D′ be a clause in N−p . If JD′KI,ξ is true, then clearly JD′KI′,ξ is true.
Otherwise, JD′KI′,ξ is false, and J¬ p〈 #—υ 〉 #—u KI′,ξ is either true or false. In the true case, JDKI′,ξ
is true, as desired. As for the remaining case, it is impossible for the following reason. If
J¬ p〈 #—υ 〉 #—u KI′,ξ were false, this would mean Jp〈 #—υ 〉 #—u KI′,ξ is true. By definition of I′, this would
then mean J· · · ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ #—y . u1 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t1 ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ · · · ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ un ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ tn ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ [C ′]) ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ · · ·KI,ξ is true.

Suppose the displayed disjunct is one of those that makes the whole big disjunction true.
This means that there exists a clause C = p〈 #—τ 〉 #—

t ∨ C ′ in N+
p such that J #—

t KI′,ξ = J #—u KI′,ξ,
and JC ′KI′,ξ is false, where #—τ is unifiable with #—υ . Let σ be the most general unifier of #—τ

?
= #—υ .

If C exists, the flat resolvent (t1 6≈ u1 ∨ · · · ∨ tn 6≈ un ∨ C ′ ∨ D′)σ of C and D must be
false in I′ under ξ, and since it does not contain p, it would be false in I under ξ as well,
contradicting the hypothesis that I satisfies it.

As Khasidashvili and Korovin observed, eliminating all singular predicates indiscrim-
inately can dramatically increase the number of clauses in the problem. To prevent this
explosion, Vukmirović et al. proposed the following criterion. Let Ktol ∈ N be a tolerance
parameter. The application of SPE from N to N ′ is allowed if λ(N ′) < λ(N) + Ktol or
µ(N ′) < µ(N) or |N ′| < |N |+Ktol, where λ(N) is the number of literals in N and µ(N) is
the sum, for all clauses C ∈ N , of the square of the number of unique variables in C.

4.2. Defined Predicate Elimination. The next technique we generalize from first-order
logic to higher-order logic is called defined predicate elimination. It generalizes, in turn, the
propositional technique of elimination by substitution [EB05].

Given a clause set N , the basic idea is that the set Np of clauses containing p is partitioned
between a definition set (or “gate”) G and the remaining clauses R. The definition set fully
characterizes p for all input in a unique way and can be seen as constituting a definition
of the form p #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ, where the variables #—x are distinct, p does not occur in ϕ, and the
variables in ϕ are all among #—x . Because of clausification, G will usually consist of multiple
clauses that together are equivalent to p #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ for some ϕ.

We define definition sets largely as in monomorphic first-order logic, but with additional
requirements on the type arguments and type variables.

Definition 4.12. Let G be a clause set and p be a predicate symbol. The set G is a
definition set for p if

(1) p is singular for G;
(2) G consists of clauses of the form (¬) p〈 #—α〉 #—x ∨ C ′ up to variable renaming, where #—α are

distinct type variables and #—x are distinct term variables;
(3) the type variables in C ′ are all among #—α ;
(4) the term variables in C ′ are all among #—x ;
(5) all clauses in G+

p op G
−
p are tautologies; and

(6) E( #—ι , #—c ) is unsatisfiable, where the environment E( #—α, #—x ) consists of all subclauses C ′ of
any (¬) p〈 #—α〉 #—x ∨ C ′ ∈ G, #—ι is a tuple of distinct nullary type constructors substituted
in for #—α , and #—c is a tuple of distinct fresh symbols substituted in for #—x .
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Intuitively, conditions 1 and 2 check that the definition set looks like the clausification of
a definition; conditions 3, 4, and 5 check that the definition is not overconstrained (e.g., pa is
not required to be both true and false); and condition 6 checks that it is not underconstrained
(e.g., p a is not unspecified).

Definition 4.13. Given a definition set G for p, its associated definition is the formula
p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ, up to variable renaming, where ϕ is the disjunction ϕ1∨· · ·∨ϕn of all formulas
ϕj of the form ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ [C ′] such that p〈 #—α〉 #—x ∨ C ′ is contained in G up to variable renaming.

Note that our notion of definition set ensures that in Definition 4.13 the type variables
#—α are distinct, the term variables #—x are distinct, p does not occur in ϕ, the type variables
in ϕ are all among #—α , and the variables in ϕ are all among #—x .

Example 4.14. For the formula p x y ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ q x ∨ r y, clausification would produce the clause
set {¬ p x y ∨ q x ∨ r y, p x y ∨ ¬ q x, p x y ∨ ¬ r y}, which qualifies as a definition set for p.
The associated definition is p x y ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ q x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ r y.

Lemma 4.15. Let G be a definition set for p. Then G is equivalent to the definition
p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ associated with G.

Proof. We will show that under every valuation ξ, any model of G is a model of p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ
and vice versa.

Let I |= G. We will show that Jp〈 #—α〉 #—x KI,ξ = JϕKI,ξ. If Jp〈 #—α〉 #—x KI,ξ is false, then for each
clause p〈 #—α〉 #—x ∨ C ′ ∈ G, we have that JC ′KI,ξ must be true. This in turn makes the right-
hand side ϕ false. Otherwise, Jp〈 #—α〉 #—x KI,ξ is true. Then for each clause ¬ p〈 #—α〉 #—x ∨ C ′ ∈ G,
we have that JC ′KI,ξ must be true. By condition 6, there must exist a clause p〈 #—α〉 #—x ∨ D′ ∈ G
such that JD′KI,ξ is false. This means that J¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬D′KI,ξ is true and hence the entire disjunction
ϕ is true, as desired.

Now let I |= p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ. We need to show that I |= G. We will first prove the case
of clauses in G where the p-literal is positive; then we will consider the negative case. Let
C = p〈 #—α〉 #—x ∨ C ′ ∈ G. If p〈 #—α〉 #—x is true, then C is true, as desired. Otherwise, from
I |= p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ we have that ϕ is false. This means that all of its disjuncts are false and hence
that C ′ is true, meaning that C is true. For the remaining case, let C = ¬ p〈 #—α〉 #—x ∨ C ′ ∈ G.
If p〈 #—α〉 #—x is false, then C is true, as desired. Otherwise, from I |= p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ we have that
ϕ is true. This means that there exists a clause D = p〈 #—α〉 #—x ∨ D′ ∈ G such that JD′KI,ξ is
false. By condition 5, the resolvent C ′ ∨ D′ of C and D must be a tautology. Hence C ′ is
true and thus C is true, as desired.

Once a definition is identified, it is expanded in the remaining clauses R. For p-literals
in R, this is achieved as in first-order logic using flat resolution. For deeper occurrences of
p〈 #—τ 〉 in R, which may arise in higher-order logic, this is achieved by replacing them by the
λ-abstraction λ #—x . ϕ{ #—α 7→ #—τ }. An alternative would be to replace all occurrences of p〈 #—τ 〉
and not only deep occurrences, but this would leave more work for the clausifier.

Definition 4.16. Let N be a clause set and p be a predicate symbol. Let G ⊆ N be a
definition set for p with associated definition p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ. Let R = Np \G. Defined predicate

elimination (DPE) of p in N replaces N by Np ∪ (Gop R)[p〈 #—τ 〉 7→ λ #—x . ϕ{ #—α 7→ #—τ }].

The key result is that DPE preserves satisfiability and unsatisfiability. The proof builds
on three lemmas.
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Lemma 4.17. Let G be a definition set for p and R be an arbitrary clause set. If (G,R) 
(G,R′), then G ∪R and G ∪R′ are equivalent.

Proof. The proof is essentially as in the first-order case [VBH23, Lemma 4.11].

Lemma 4.18. Let G be a definition set for p with associated definition p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ, and
let R be a clause set. Then G ∪R and G ∪R[p〈 #—τ 〉 7→ λ #—x . ϕ{ #—α 7→ #—τ }] are equivalent.

Proof. By Lemma 4.15, G entails the characterization p〈 #—α〉 #—x ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ϕ. Hence, by functional
extensionality, G entails p〈 #—α〉 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ λ #—x . ϕ. Thus, in any model of G, p〈 #—α〉 has the same
interpretation as λ #—x . ϕ. In particular, this applies to their instances: p〈 #—τ 〉 has the same
interpretation as λ #—x . ϕ{ #—α 7→ #—τ }.

Lemma 4.19. Let G be a definition set for p and R be a clause set with no occurrences of
p. Then G ∪R is satisfiable if and only if R is satisfiable.

Proof. The proof is essentially as in the first-order case [VBH23, Lemma 4.12].

Theorem 4.20. The result of applying DPE to a finite clause set N is satisfiable if and
only if N is satisfiable.

Proof. Let p be a predicate symbol and G ⊆ N be the definition set used by DPE. Let R =
Np\G. The core of DPE is the computation of GopR, via a derivation (G,R) n(G,R′) R′.
Applying Lemma 4.17 n times, we get that G ∪ R is equivalent to G ∪ R′. Moreover, by
Lemma 4.18, G ∪R′ is equivalent to G ∪R′[p〈 #—τ 〉 7→ λ #—x . ϕ{ #—α 7→ #—τ }]. Finally, by Lemma
4.19, G ∪R′[p〈 #—τ 〉 7→ λ #—x . ϕ{ #—α 7→ #—τ }] is equivalent to R′[p〈 #—τ 〉 7→ λ #—x . ϕ{ #—α 7→ #—τ }].

4.3. Portfolio Predicate Elimination. A reasonable strategy for applying predicate
elimination is to use a portfolio of DPE and SPE, first trying to apply DPE and, if this fails,
trying SPE as a fallback.

Definition 4.21. Let N be a clause set and p be a predicate symbol. If there exists a
definition set G ⊆ N for p, portfolio predicate elimination (PPE) on p applies DPE on p.
Otherwise, if p is singular in N , PPE applies SPE on p. In all other cases, PPE is not
applicable.

Like SPE and DPE (Theorems 4.11 and 4.20), PPE can be used as a preprocessor without
affecting satisfiability. As for inprocessing, Vukmirović et al. [VBH23] explained that under
a reasonable condition, the first-order version of PPE can be used at any point during proof
search in a superposition prover without compromising refutational completeness. Inspection
of the proofs reveals that the same applies to higher-order PPE and λ-superposition.

5. Blocked Clause Elimination

In propositional logic, a powerful technique for simplifying a clause set is to identify and
remove so-called blocked clauses. These are clauses whose resolvents with other clauses in
the set are all tautologies. Removing such clauses preserves unsatisfiability. Blocked clause
elimination has been extended to first-order logic with equality by Kiesl et al. [KSS+17].
They call their key notion “equality-blocked clauses,” but since we consider only a logic with
equality, we simply call these clauses “blocked.”
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Blocked clause elimination has been shown by Vukmirović et al. [VBH23, Section 5]
to be incompatible with the saturation loop of a superposition prover. Nevertheless, the
technique can still be used effectively as a preprocessor, or even as an inprocessing technique
within the prover’s saturation loop at the cost of potential divergence on some unsatisfiable
problems.

Our extension to polymorphic higher-order logic is based on a slightly weaker definition
of blocked clause than Kiesl et al. We were unsuccessful at showing that a generalization of
blocked clause elimination based on their concept preserves unsatisfiability with respect to
general interpretations. The notion we propose allows the generalization.

Definition 5.1. Let C = L ∨ C ′ and D = L′ ∨ D′ be clauses such that

(1) the atom of L is p〈 #—τ 〉 #—sn;
(2) the atom of L′ is p〈 #—υ 〉 #—

tn;
(3) the literal L′ is of opposite polarity to L;
(4) C and D have no (type or term) variables in common; and
(5) σ is the most general unifier of #—τ

?
= #—υ .

The clause
((∨n

j=1 sj 6≈ tj
)
∨ C ′ ∨ D′

)
σ is a binary flat L-resolvent of C and D.

We already see a first key difference with Keisl et al.: They consider n-ary flat resol-
vents, whereas we need to consider only binary resolvents, for reasons illustrated below
(Example 5.4). Another, more superficial difference is that our definition is generalized to
polymorphic higher-order logic.

Definition 5.2. Let L = (¬) p〈 #—τ 〉 #—s be a predicate literal, C = L ∨ C ′ be a clause, and
N be a clause set. Let N ′ consist of all clauses from N \ {C} with their type and term
variables renamed so that N ′ shares no variables with C. The clause C is blocked by L in
the set N if the following conditions are met:

(1) C is polymorphism-safe for L;
(2) N contains no deep occurrences of p;
(3) C ′ contains no p-literals with the same polarity as L; and
(4) all binary flat L-resolvents between C and clauses in N ′ are tautologies.

We now see another key difference with Keisl et al.: They have no restriction correspond-
ing to condition 3 of Definition 5.2. In this respect, our notion is less powerful than theirs.
(They also have no restriction corresponding to conditions 1 and 2, but these conditions are
trivially satisfied in a monomorphic first-order setting.) As a result, their notion and our
notion of blocked clause are incomparable in strength.

Example 5.3. This example is based on Keisl et al. [KSS+17, Example 1]. Let C = ¬p ∨ q,
and take N = {C, p ∨ ¬ q, ¬ q ∨ r} as the clause set. The clause C is blocked by ¬ p in N
according to Definition 5.2 because the only resolvent of C on ¬ p is the tautology q ∨ ¬ q
resulting from resolution against p ∨ ¬ q. The clause C is also blocked according to the
definition in Kiesl et al.

Example 5.4. The next example is also based on Keisl et al. [KSS+17, Example 4]:
C = p x y ∨ p y x, D = ¬ p x y ∨ ¬ p y x, and N = {C,D}. The set N is unsatisfiable,
because C entails p x x and D entails ¬ p x x. On the other hand, D alone is satisfiable.
Hence, removing C from N does not preserve unsatisfiability, and therefore C should not
be considered blocked. With Definition 5.2, C correctly cannot be blocked on a p-literal
by condition 3, because of the presence of another p-literal in the clause. With Kiesl et al.,
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this condition is missing, but since they consider all n-ary resolvents, the nontautological
resolvent p x x is computed. In both cases, C is correctly considered not blocked.

Example 5.5. Let C = pa ∨ pb ∨ ¬q, D = ¬px ∨ q, and N = {C,D}. With Definition 5.2,
condition 3 prevents C from being considered blocked. In contrast, the clause is considered
blocked by Kiesl et al.

We will now show that removing a blocked clause from a clause set preserves the set’s
unsatisfiability. Our strategy is loosely inspired by Kiesl et al. [KSS+17, Section 4].

Definition 5.6. Let I = (Ity, J,L) be an interpretation and L ∨ C ′ be a clause that is
polymorphism-safe for L and where L = (¬) p〈 #—τ 〉 #—sn. Let #—y be the tuple of all free variables
in L ∨C ′ and #—xn be a tuple of fresh variables. The interpretation I? = (Ity, J

?,L?) obtained
by flipping the truth value of L in L ∨ C ′ is defined as follows by mutual recursion. We let
J? be the function defined as follows:

J?(f,
#—

D) =

{
Jλ #—xn. ϕKI,ξ if f = p and J #—τ KIty,ξ =

#—

D for some type valuation ξ

J(f,
#—

D) otherwise

where ϕ is defined by

ϕ =

{
p〈 #—τ 〉 #—x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ #—y . x1 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s1 ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ · · · ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ xn ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ sn ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ [C ′]) if L is positive

p〈 #—τ 〉 #—x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ #—y . x1 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s1 ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ · · · ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ xn ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ sn →→→→→→→→→→→→→→→→→→→→→→→→→ [C ′]) if L is negative

Moreover, for all valuations ξ and λ-abstractions λx : υ. t, we let L?(ξ, λx. t) be the function
that maps each v ∈ JυKIty,ξ to JtKI?,ξ[x 7→v].

This definition introduces a well-formed interpretation. Because L∨C ′ is polymorphism-

safe for L, the right-hand side Jλ #—xn. ϕKI,ξ of J?(f,
#—

D) is uniquely defined. Moreover, the
comprehension principle guarantees that the corresponding predicate exists in the interpreta-
tion of p’s type. Similarly, the function that provides the interpretation for a λ-abstraction
λx. t exists in the domain associated with the λ-abstraction’s type. This is because the
semantics in I? of any occurrences of p in t corresponds to the semantics in I of λ #—xn. ϕ, and
I is a well-formed interpretation.

The intuition behind I? is that whenever the clause L∨C ′ is blocked and I |= N \{L∨C ′},
we have I? |= N . Since adding the blocked clause preserves satisfiability, removing it preserves
unsatisfiability.

Example 5.7. We will try to justify the definition of ϕ above with an example. Consider
the clause set {p a, ¬ p z ∨ z ≈ a ∨ z ≈ b} and an interpretation I that maps p to the
uniformly false predicate. Clearly, I is not a model of the first clause, p a. The interpretation
I? obtained by flipping the truth value of the literal p a in the first clause interprets p in the
same way as I interprets

λx. p x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

In other words, I? makes p true for arguments interpreted as equal to a and false otherwise.
Intuitively, the interpretation I is flipped to satisfy the clause p a.

Next, assume instead that I interprets p as the uniformly true predicate, and consider
the interpretation I? obtained by flipping the truth value of ¬ p z in the second clause,
¬ p z ∨ z ≈ a ∨ z ≈ b. Then I? interprets p in the same way as I interprets

λx. p x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀z. x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ z →→→→→→→→→→→→→→→→→→→→→→→→→ z ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ z ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ b)
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This means that I? makes p true for arguments interpreted as equal to a or b and false
otherwise. Intuitively, the interpretation I is flipped to satisfy the clause ¬pz ∨ z≈a ∨ z≈b;
whenever z 6≈ a and z 6≈ b, we have ¬ p z.

Lemma 5.8. Let N be a clause set and C be a clause contained in N such that C has no
variables in common with N \{C}. Assume C is blocked by L in N . Let I be an interpretation
and I? be the interpretation obtained by flipping the truth value of L. For every D ∈ N \{C},
if I |= D, then I? |= D.

Proof. Let C = L ∨ C ′ where L = (¬) p〈 #—τ 〉 #—sn (as per condition 1 of Definition 5.1).
Assuming that I |= D, we will show that JDKI?,ξ is true for every valuation ξ.

Let L′ be a literal of D of opposite polarity to L, whose atom is p〈 #—υ 〉 #—
t , and such that,

for each j, JL′KI,ξ is true and JL′KI?,ξ is false. Intuitively, L′ is a literal whose truth value
goes from true in I to false in I?. We distinguish two cases: The case where such a literal L′

exists and the case where it does not.

Case where L′ does not exist: If D contains literals L′ of opposite polarity to L, then
either JL′KI,ξ is false and then the truth value of JL′KI?,ξ is irrelevant or JL′KI,ξ is true and
then JL′KI?,ξ is true. As for the occurrences of p in D that have the same polarity as L, if
these were true in I, they are by construction also true in I?. Finally, D contains no deep
occurrences of p (by condition 2 of Definition 5.2). Since all the literals either keep their
truth value or go from false to true when taking the step from I to I?, we have that JDKI?,ξ
is true.

Case where L′ exists: We will show that JDKI?,ξ = JDKI,ξ even if L′ has gone from true
in I to false in I? under ξ. Since I |= D, JDKI?,ξ will then be true.

Since I? flips the truth value of L′, by construction of I?, this flipping must be triggered
by C. Hence, there must exist a valuation ξ′ such that JτiKI,ξ′ = JυiKI,ξ and JsjKI,ξ′ = JtjKI,ξ
for every i, j. Let ξ′′ be the valuation that coincides with ξ′ on C’s free variables and with ξ
on D’s free variables. Let D = L′ ∨D′.

Since C is blocked by L in N , all binary flat L-resolvents of C with clauses from N
are tautologies (by condition 4 of Definition 5.2). In particular, consider the binary flat
L-resolvent of C and D of the form

((∨n
j=1 sj 6≈ tj

)
∨ C ′ ∨ D′

)
σ, where σ is the most general

unifier of #—τ
?
= #—υ . This binary flat L-resolvent, which must exist by the five conditions of

Definition 5.1, is a tautology, and it must be satisfied by I? under ξ.
By definition of ξ′′, Jsj 6≈ tjKI,ξ′′ must be false, and since the terms #—s ,

#—
t do not contain

p (by condition 2 of Definition 5.2), Jsj 6≈ tijKI?,ξ′′ must be false as well. Moreover, by
construction of I?, the only way for the interpretation of p〈 #—τ 〉 #—sn in I? under ξ′′ to differ
from that in I under ξ′′ is if JC ′KI,ξ′′ is false, and since C ′ contains only occurrences of p of
opposite polarity to L (by conditions 2 and 3 of Definition 5.2), JC ′KI?,ξ′′ must still be false
after we flipped L to make it true.

Finally, since both Jsj 6≈ tjKI,ξ′′ and JC ′KI?,ξ′′ are false and the binary flat L-resolvent
of C and D is a tautology, D′σ must be true in I? under every valuation. Since σ is a
most general unifier and ξ′′ assigns the same semantics to #—τ and #—υ , effectively “unifying”
them, we also have that JD′KI?,ξ′′ is true and hence JD′KI?,ξ is true. Thus JDKI?,ξ is true, as
desired.

Lemma 5.9. Let N be a clause set and C be a clause contained in N . If C is blocked by a
literal in N , then N \ {C} is satisfiable if and only if N is satisfiable.
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Proof. The “if” direction is trivial. For the other direction, let N ′ consist of all clauses from
N \ {C} with their type and term variables renamed so that they share no variables with C.
Let I be a model of N ′. By Lemma 5.8, I? is a model of each D ∈ N ′.

We also need to show that I? is a model of C. Specifically, we must show that JCKI?,ξ is
true for any valuation ξ. Let C = L ∨ C ′. If JC ′KI?,ξ is true, we are done. Otherwise, first
suppose L is positive. Then ξ provides the necessary witnesses for the ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ quantifier in the
definition of ϕ in Definition 5.6, making the interpretation of p by I? true in that case, as in
the first part of Example 5.7. Hence JLKI?,ξ is true, and thus JCKI?,ξ is true. Next, suppose
L is negative. Then ξ provides a counterexample to the ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ quantifier in the definition of ϕ,
making the interpretation of p by I? false in that case, as in the second part of Example 5.7.
Hence JLKI?,ξ is true, and thus JCKI?,ξ is true.

Since I? |= N ′ ∪ {C}, we have that N is satisfiable.

Definition 5.10. Given a finite clause set, blocked clause elimination (BCE) repeatedly
removes blocked clauses until no such clauses remain.

The procedure is confluent and hence yields a unique result. This is easy to see because
removing a blocked clause will only make more clauses blocked; it can never “unblock” a
clause.

Theorem 5.11. The result of applying BCE to a clause set N is satisfiable if and only if
N is satisfiable.

Proof. This follows by iteration of Lemma 5.9.

6. Quasipure Literal Elimination

Pure literal elimination (PLE) is one of the simplest optimizations implemented in SAT
solvers. It is a special case of variable elimination [SP04,CS00]: If a given variable always
occurs with the same polarity in a problem, the solver can assign it that polarity without loss
of generality, making all the clauses that contain it tautologies. PLE consists of recursively
deleting all such clauses. PLE’s generalization to first-order logic considers literals (¬) p( #—s ),
where the arguments #—s are ignored by the analysis; only the polarity is considered. The
same idea carries over to higher-order logic.

Example 6.1. Consider the clause set N = {px ∨ qax, p (f x), ¬ q a a}. Since p occurs only
positively in N , PLE removes the two first clauses. At that point, q occurs only negatively
in the remaining singleton clause set and can be removed as well. The result is the empty
set, which is obviously satisfiable, indicating that N is satisfiable. As model of N , we can
take an interpretation I that makes all p-literals true and all q-literals false.

Example 6.2. Consider the clause set N ′ = {p a, ¬ p x ∨ p (f x)}. PLE does not apply
because p occurs with both polarities. Yet we notice that p occurs positively in both clauses,
and hence that the same reasoning as in Example 6.1 applies: We can satisfy both clauses
by making p-literals true. Using I from Example 6.1, we have I |= N ′.

Example 6.3. Consider the clause set N ′′ = {pa, qx∨p(fx), ¬ q (f a), ¬ p x∨¬ q (h p (p b))}.
PLE does not apply because p and q occur with both polarities. In addition, p also occurs
unapplied and deep within a term. Yet each clause contains either a positive p-literal or a
negative q-literal. Thus I |= N ′′, where I is as in Example 6.1. The additional literals are
harmless.



Vol. 19:2 SAT-INSPIRED HIGHER-ORDER ELIMINATIONS 9:17

Examples 6.2 and 6.3 suggest that pure literals are a needlessly restrictive criterion in
first- and higher-order logic. We propose a generalization to “quasipure literals.” Although
we present the criterion in a higher-order setting, it is equally applicable for first-order logic.
(In contrast, it is uninteresting for propositional logic, because the only clauses with the
same predicates, or rather variables, with opposite polarities are tautologies, and these would
be deleted before pure literal elimination is attempted.)

Definition 6.4. A polarity map is a function that maps each predicate symbol in Σ to
a polarity (+ or −). A set P of predicate symbols is quasipure in a clause set N with
a polarity map m if for every clause in N that contains an element of P , there exists a
predicate symbol p ∈ P such that the clause contains a p-literal with polarity mp. The set
P is quasipure in N if there exists a polarity map m such that P is quasipure in N with m.

In Example 6.1, {p, q} is quasipure in N with mp = + and mq = −. In Example 6.2,
{p} is quasipure in N ′ with mp = +. In Example 6.3, {p, q} is quasipure in N ′′ with mp = +
and mq = −. For this last example, it is crucial to consider p and q together; neither of the
singletons {p} and {q} is quasipure in N ′′.

Definition 6.5. A predicate symbol p is quasipure in a clause set N with polarity s ∈ {+,−}
if there exists a set P of predicate symbols with p ∈ P and a polarity map m such that
mp = s and P is quasipure in N with m. The symbol p is quasipure in N if there exists
a polarity mp ∈ {+,−} such that p is quasipure in N with mp. A literal L = (¬) p . . . is
quasipure in N if p is quasipure in N with L’s polarity.

Notice that a predicate symbol that does not occur in a clause set is trivially quasipure
in that clause set.

Deleting a clause containing a quasipure literal might create new opportunities for
quasipure literal elimination, but it never ruins existing ones. Therefore, the following
nondeterministic procedure is confluent and hence yields a unique result:

Definition 6.6. Given a finite clause set, quasipure literal elimination (QLE) repeatedly
removes clauses containing quasipure literals until no such literals remain.

Although QLE is defined by iteration, it is always possible to remove all clauses at the
same time:

Lemma 6.7. Let N be a finite clause set and let N ′ be the result of QLE. Then there exists
a predicate symbol set P and a polarity map m such that P is quasipure in N and for every
clause in N \N ′ there exists a predicate symbol q ∈ P such that the clause contains a q-literal
with polarity mq.

Proof. The iterative process defining QLE gives rise to a finite sequence (P1,m1), . . . ,
(Pn,mn) of predicate symbol sets and polarity maps. Without loss of generality, we assume
that each Pj does not contain predicate symbols that do not occur in the clause set at
iteration j. Then the sets Pj are clearly mutually disjoint and we can take P = P1 ∪ · · · ∪Pn
as the desired witness. As for the polarity map m, we associate each p ∈ Pj with mj(p).

The key property of QLE is that it preserves unsatisfiability:

Lemma 6.8. Let C ∈ N be a clause containing a quasipure literal. If N \ {C} is satisfiable,
then N is satisfiable.
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Proof. Let I be a model of N \ {C}. Let P be the set of predicate symbols and m the
polarity map whose existence is guaranteed by Lemma 6.7. Let N0 ⊆ N \{C} be the result of
applying QLE on N . Clearly, N0 contains no occurrences of the symbols in P . Define I′ based
on I by redefining the semantics of each monomorphic instance p〈 #—τ 〉 : υ1 → · · · → υn → o
of symbol p such that mp = + or mp = −: If mp = +, interpret p〈 #—τ 〉 as the predicate
that is uniformly true; otherwise, interpret p〈 #—τ 〉 as the predicate that is uniformly false.
By the comprehension principle, both of these predicates are guaranteed to exist in the
interpretation of the type υ1 → · · · → υn → o. Now I′ coincides with I, since N0 contains
no P symbols, and thus I′ is a model of N0. In addition, I′ is a model of N , because each
clause in N \N0 contains a quasipure literal, which is satisfied by I′.

Definition 6.6 suggests a naive, nondeterministic procedure for discovering and elim-
inating quasipure predicate symbols: Choose a predicate symbol p and a polarity mp,
and take P = {p}. If the predicate symbol occurs with the wrong polarity in a clause
(¬) p . . . ∨ (¬) q1 . . . ∨ · · · ∨ (¬) qn . . . ∨ C, try to extend the set P with one of the (¬) qi’s
and the polarity map m accordingly, and continue recursively with qi. In Section 7, we will
see a more efficient approach based on a SAT encoding.

7. Implementation

We implemented the elimination techniques described in Sections 3 to 6 in the Zipperposition
prover. For HLBE, PE, and BCE, which had been studied by Vukmirović et al., we could
directly adapt their code [VBH23, Section 6]. The data structure and algorithms they
described and implemented could be generalized to handle polymorphic higher-order logic.
For QLE, we developed our own code.

Zipperposition is a higher-order prover that implements the λ-superposition calculus
[BBTV21], a generalization of standard superposition to classical rank-1 polymorphic higher-
order logic—the logic described in Section 2. The prover is highly competitive: It won in
the higher-order theorem division of the CADE ATP Systems Competition (CASC) [SD22]
in 2020, 2021, and 2022.

By default, Zipperposition immediately clausifies the initial problem as much as possible;
then it optionally invokes preprocessing elimination techniques. If inprocessing is enabled,
the prover also invokes the elimination techniques at regular intervals from within the
saturation loop. Immediate clausification performs well in practice, but an even more
successful strategy is to delay clausification, interleaving clausification with superposition-
style calculus rules [VBB+22, Section 4]. Then it makes little sense to apply preprocessing
elimination techniques; inprocessing seems more appropriate.

7.1. Hidden-Literal-Based Elimination. HLBE relies on matching. In our setting, it
needs to consider type variables and higher-order terms. Our implementation uses an efficient
approximation of higher-order matching, which recognizes λy. y a as an instance of λy. y x,
but not a as an instance of ya (with y := λx.x). The same approximated matching algorithm
is used in Zipperposition to efficiently recognize subsumed clauses. This weaker matching
reduces the applicability of HLBE, but it does not compromise its soundness.
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7.2. Predicate Elimination. Compared with HLBE, more work was needed to make
predicate elimination cope with polymorphism and higher-order logic. For polymorphism,
the previous code simply did not consider polymorphic predicates as predicates. Predicates
needed to have a type declaration of the form τ1× · · ·× τn → o. Now, predicate symbols can
have type declarations of the form Π #—α.τ1 → · · · → τn → o as well as Π #—α.τ1 → · · · → τn → αi;
via instantiation, αi can become o or · · · → o.

For SPE, the type arguments of eliminated predicate symbols must be unified, as per
Definition 4.4. For DPE, the type arguments must be distinct type variables. In addition,
for DPE, we must check that the predicate is polymorphism-safe.

Adding support for higher-order logic required changing the definition of singular
predicates, which is used by both SPE and DPE, to check that the predicate symbol to
eliminate does not occur deep in the clauses that define the symbol. In addition, for DPE, we
need to synthesize a λ-abstraction to replace any deep occurrences of the predicate outside
the definition set.

7.3. Blocked Clause Elimination. Adding support for polymorphism to BCE was straight-
forward: We simply ensured that type arguments are unified when computing flat resolvents
and added a polymorphism-safety check.

To support higher-order logic, we added a check that the p-literal on which the clause is
resolved in the only p-literal of that polarity (corresponding to condition 3 of Definition 5.2).
We also disabled the code that computed n-ary resolvents for n > 2. Finally, we added
code to compute the list of all deep predicate symbols q and made sure clauses are never
blocked on a q-literal. These mechanisms come into play only if some higher-order construct
is detected in the input problem; otherwise, the first-order formulation of BCE is used.

In the presence of equality in the logic, BCE relies on a congruence closure algorithm to
detect valid clauses [KSS+17, Section 6.1]. In our implementation, we rely on a first-order
congruence closure algorithm, which can handle higher-order constructs but does not take
advantage of them. For example, resolving p a ∨ ¬ q a against ¬ p b ∨ q b on the p-literal
yields the clause a 6≈b ∨ ¬qa ∨ qb. Our congruence closure algorithm can detect the validity
of such a clause. On the other hand, because the algorithm views λ-abstractions as black
boxes, it fails to recognize a 6≈ b ∨ ¬ q (λx. x a) ∨ q (λx. x b) as valid.

7.4. Quasipure Literal Elimination. A simple and efficient implementation of quasipure
literal elimination uses a SAT solver. Let N be a finite clause set. Without loss of generality,
we can assume that Σ is finite. The signature of the generated SAT problem consists of the
variables p+, p− for each predicate symbol p in Σ, where ps means “p (possibly together
with other predicate symbols) is quasipure with polarity s.” The SAT problem consists of
the following clauses:

(1) For each clause in N containing n predicate literals, headed by q1, . . . , qn and with
respective polarities s1, . . . , sn, generate n clauses of the form

qs11 ∨ · · · ∨ q
sj−1

j−1 ∨ ¬ q
−sj
i ∨ q

sj+1

j+1 ∨ · · · ∨ qsnn

where −s flips the polarity s. Such clauses ensure that whenever a literal (¬) qi . . .
has the wrong polarity according to the current variable assignment, one of the other
predicate literals must be quasipure.
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(2) For each clause in N containing n predicate literals, headed by q1, . . . , qn and with
respective polarities s1, . . . , sn and containing a deep occurrence of p (in an argument to
a qj or in a functional literal), generate the two clauses

¬ p+ ∨ qs11 ∨ · · · ∨ qsnn ¬ p− ∨ qs11 ∨ · · · ∨ qsnn

These clauses ensures that whenever p occurs deep and is nonetheless considered
quasipure, one of the predicate literals must be quasipure.

(3) For each predicate symbol p in Σ, generate the clause ¬ p+ ∨ ¬ p−. It ensures that a
single polarity is assigned to a quasipure predicate symbol.

(4) Generate the clause p+1 ∨p
−
1 ∨· · ·∨p+n ∨p−n , where {p1, . . . , pn} are the predicate symbols

in Σ. It tells the SAT solver to look for a nontrivial solution, in which at least one
predicate symbol is quasipure.

From a satisfying assignment, we can easily read off a predicate symbol set and a polarity
map. The process can be iterated until we reach a maximal solution, at which point the
SAT solver returns a verdict of “unsatisfiable.”

It is unclear whether this problem is NP-complete. Given the nondeterministic nature
of the naive procedure, we suspect that it is, but we have not found a reduction from 3-SAT.
Thus, it is unclear whether our use of a SAT solver is fully satisfactory from a theoretical
point of view, even though it works well in practice.

8. Evaluation

We evaluate the techniques presented above by running Zipperposition [BBTV21] on various
benchmarks in various configurations. We consider seven benchmark sets:

– S0 : a randomly selected subset of 1000 higher-order monomorphic (TH0) problems from the
Sledgehammer-generated Seventeen benchmark suite [DVBW22] in the base configuration,
in the language fragment called TH0− in the Seventeen paper;

– S1 : a randomly selected subset of 1000 higher-order polymorphic (TH1) problems from
the Seventeen benchmark suite in the base configuration, in the language fragment called
TH1− in the Seventeen paper;

– TH0 : a randomly selected subset of 1000 higher-order monomorphic (TH0) problems from
the TPTP [Sut17] version 8.0.0;

– TH1 : a randomly selected subset of 1000 higher-order polymorphic (TH1) problems from
the TPTP version 8.0.0;

– CF : a predefined set of 1000 first-order untyped (CNF and FOF) problems from the
TPTP;

– TF0 : all 389 first-order monomorphic (TF0) problems without arithmetic from the TPTP;

– TF1 : all 678 first-order polymorphic (TF1) problems without arithmetic from the TPTP.

The first four benchmark sets are used to determine how much our techniques can help
on higher-order problems. Among these, S1 and TH1 exercise polymorphism. As for the
remaining three, they are included for comparison; they show how well the techniques work
on first-order problems. The benchmark sets contain some problems known to be unprovable,
which we use to check soundness of the techniques.

We consider 12 Zipperposition configurations, all derived from the portfolio of time
slices that was used at the 2022 edition of CASC. This portfolio does not use any of our
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techniques. Even on first-order problem, it applies the higher-order λ-superposition calculus.
The 12 configurations are as follows:

– None: the baseline, corresponding to the portfolio used at CASC;

– X-pre: the baseline modified to use techniqueX ∈ {PE,BCE,PLE,QLE} as a preprocessor
in all the time slices;

– X-in: the baseline modified to use technique X ∈ {HLBE,PE,BCE,PLE,QLE} as an
inprocessor in all the time slices;

– All-pre: the baseline modified to use all of PE, BCE, and QLE as preprocessors in all the
time slices;

– All-in: the baseline modified to use all of HLBE, PE, BCE, and QLE as inprocessors in
all the time slices.

In addition, we define the virtual configuration Union, consisting of the virtual portfolio of all
other 12 configurations. All problems that are solved in at least one of the 12 configurations
are considered solved by Union, and only those.

The experiments were carried out on StarExec Miami [SST14] servers equipped with
Intel Xeon E5-2620 v4 CPUs clocked at 2.10 GHz. We used CPU and wallclock time limits
of 120 s. The raw results are available online.2

Figure 1 reports how many problems were solved for each combination of benchmark
set and configuration. The last row of the table presents the total of the seven rows above it.
Bold singles out the best configuration (other than Union) for each benchmark set.

The results are sobering. We see substantial gains on the untyped first-order benchmarks,
but the gains are much more modest, if actually present, on the typed first-order and the
higher-order benchmarks. A possible explanation is that there is less clausal structure in
a higher-order problem. Most of Zipperposition’s time slices clausify the problem lazily,
meaning that little information is visible to our techniques, especially when used as prepro-
cessors. Another possible explanation might be that the higher-order Seventeen and TPTP
benchmarks look quite different from the untyped first-order TPTP benchmarks, and our
techniques are less applicable. For example, the higher-order TPTP problems tend to be
much smaller than their first-order counterparts. Moreover, we selected only subsets of the
TPTP benchmarks—an evaluation on entire benchmark suites might yield different results.

The picture is more positive if we look at the Union column of the table. Clearly, in a
portfolio setting, with enough time, the new techniques can make a useful contribution.

We also notice that inprocessing often performs worse than preprocessing. This corrobo-
rates the findings of Vukmirović et al. [VBH23]. An explanation might be the heavy cost of
running the techniques multiple time, during proof search. In addition, PE, BCE, PLE, and
QLE rely on a global analysis of the clause set and tend to become less applicable as the
clause set grows.

Finally, we see that PLE and QLE help, especially on first-order problems. Unexpectedly,
PLE generally outperforms the more general QLE.

9. Conclusion

We presented four SAT-inspired techniques for transforming higher-order problems with the
aim of making them more amenable to automatic proof search. Three of the techniques

2https://zenodo.org/record/6997515

https://zenodo.org/record/6997515
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None HLBE PE BCE PLE QLE All Union
in pre in pre in pre in pre in pre in

S0 575 574 574 572 575 574 574 575 575 574 572 575 589
S1 349 343 351 350 347 348 352 352 352 353 354 344 366
TH0 711 713 713 709 713 714 710 713 711 705 711 706 722
TH1 338 334 339 340 341 339 337 341 337 336 338 336 354
CF 504 513 512 510 509 507 513 505 508 505 517 519 545
TF0 138 142 138 137 142 139 141 141 139 141 139 137 148
TF1 227 227 229 231 228 230 229 230 229 230 228 224 234

Total 2842 2846 2856 2849 2855 2851 2856 2857 2851 2844 2859 2841 2958

Figure 1: Number of solved problems per benchmark set and configuration

(HLBE, PE, and BCE) had been previously generalized to first-order logic; we now generalized
them further to higher-order logic. The fourth technique (QLE) is new.

On the theoretical side, we showed that the techniques preserve satisfiability and
unsatisfiability of problems with respect to Henkin semantics. On the practical side, we
implemented the techniques in the higher-order prover Zipperposition. Regrettably, the
techniques did not perform as well on higher-order problems as they do on first-order
problems. This could be due to the nature of the benchmark sets.
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