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CARTESIAN CLOSED 2-CATEGORIES AND PERMUTATION

EQUIVALENCE IN HIGHER-ORDER REWRITING
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CNRS, Université de Savoie
e-mail address: tom.hirschowitz@univ-savoie.fr

Abstract. We propose a semantics for permutation equivalence in higher-order rewrit-
ing. This semantics takes place in cartesian closed 2-categories, and is proved sound and
complete.

1. Introduction

Cartesian closed categories provide semantics for equational theories with variable bind-
ing [12, 4]. On the other hand, 2-categories with finite products provide semantics for term
rewriting [3]. The present paper shows that cartesian closed 2-categories provide semantics
for term rewriting with variable binding, as embodied by Brugginks’s generalisation [1] of
permutation equivalence [16, Chapter 8] to higher-order rewriting [11, 19, 15, 17].

We first define cartesian closed 2-signatures, which generalise higher-order rewrite sys-
tems, and organise them into a category Sig. We then construct an adjunction

Sig � 2CCCat,

H

W

(1.1)

where 2CCCat is the category of small cartesian closed 2-categories. From a given cartesian
closed 2-signature S, the functor H constructs a cartesian closed 2-category, whose 2-cells
are Bruggink’s proof terms modulo permutation equivalence, which we prove is the free
cartesian closed 2-category generated by S.

We review a number of examples and non-examples, and sketch an extension to deal
with the latter.
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Related work. Our cartesian closed 2-signatures may be seen as a 2-dimensional refine-
ment of cartesian closed sketches [18, 5, 10]. Bruggink’s calculus of permutation equivalence
is close in spirit to Hilken’s 2-categorical semantics of the simply-typed λ-calculus [8], but
technically different and generalised to arbitrary higher-order rewrite systems. Capriotti [2]
proposes a semantics of so-called flat permutation equivalence in sesquicategories. More
related work is discussed in Section 4.2.

2. Cartesian closed signatures and categories

We start by recalling the well-known adjunction [12, 4] between what we here call (cartesian
closed) 1-signatures and cartesian closed categories.

For any set X, define types over X by the grammar:

A,B, . . . ∈ L0(X) ∶∶= x ∣ 1 ∣ A ×B ∣ BA,

with x ∈ X.

Proposition 2.1. L0 defines a monad on Set.

Let the set of sequents over a set X be S0(X) = L0(X)
∗ × L0(X), i.e., sequents are

pairs of a list of types and a type. The assignment X ↦ S0(X) extends to an endofunctor
on Set.

Definition 2.2. A 1-signature consists of a set X0 of sorts, and an
S0(X0)-indexed set X1 of operations, or equivalently a map X1 → S0(X0).

A morphism of 1-signatures (X0,X1)→ (Y0, Y1) is a pair (f0, f1) where fi∶Xi → Yi such
that

X1 Y1

S0(X0) S0(Y0)

f1

S0(f0)

commutes. Morphisms compose in the obvious way, and we have:

Proposition 2.3. Composition of morphisms is associative and unital, and hence 1-signatures
and their morphisms form a category Sig1.

There is a well-known adjunction

Sig1 � CCCat

H1

W1

between 1-signatures and the category CCCat of small cartesian closed categories (with
chosen structure) and (strict) cartesian closed functors, i.e., functors F ∶C → D preserving
binary products, projections, and the terminal object on the nose, and such that, for all
objects A,B ∈ C, currying

F (BA) ×F (A) = F (BA ×A)
F (evA,B)
ÐÐÐÐÐ→ F (B)

yields an identity.
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The functor W1 maps any cartesian closed category C to the signature with sorts C0,
its set of objects, and with operations A1, . . . ,An → A the set C(JA1 × . . .×AnK, JAK), where
J−K denotes the function L0(C0)→ C0 defined by induction:

JcK = c c ∈ C0
J1K = 1

JA ×BK = JAK × JBK

JBAK = JBKJAK.

(2.1)

Conversely, given a 1-signature X, consider the simply-typed λ-calculus with base types
in X0 and constants in X1. I.e., for any c ∈ X1(G,A) and terms Γ ⊢Mi∶Ai, for all 1 ≤ i ≤ n,
where G = (A1, . . . ,An), we have a term Γ ⊢ cLM1, . . . ,MnM∶A, representing the application
of the constant c to M1, . . . ,Mn. We use special parentheses to avoid ambiguity with term
application. Terms modulo βη form a cartesian closed category H1(X) with objects all
types over X0 and morphisms A→ B all terms of type B with one free variable of type A.

A less often formulated observation, which is useful to us, is that the adjunctionH1 ⊣ W1

decomposes into two adjunctions

Sig1 � L1-Alg � CCCat,

K1

U1

F1

V1

as follows.
Consider first the endofunctor L1 on Sig1 defined on objects by mapping any 1-signature

X to the 1-signature with

● as sorts the set X0, and
● as operations Γ ⊢ A the λ-terms Γ ⊢M ∶A, with base types in X0 and constants in X1, as
sketched above, modulo βη.

On morphisms of 1-signatures X
f
Ð→ Y , let L1(f) substitute constants c ∈ X1 with f1(c).

We obtain

Proposition 2.4. L1 is a monad on Sig1, with unit and multiplication, say η and µ.

Let now L1-Alg be the category of algebras for the monad L1 and K1 be the ‘free
algebra’ functor X ↦ (L1(X), µX).

The functor V1 maps any cartesian closed category C to the L1-algebra with base 1-
signature (C0,C1), defined as follows. First, C0 is the set of objects of C. It has a canonical
L0-algebra structure, say h0∶L0(C0)→ C0, obtained by interpreting type constructors in C as
in (2.1). Extending this to contexts G by h0(G) =∏i h0(Gi), let the operations in C1(G,A)
be the morphisms in C(h0(G), h0(A)). Beware: the domain and codomain of such an
operation are really G and A, not h0(G) and h0(A). Similarly, interpreting the λ-calculus in
C, the 1-signature (C0,C1) has a canonical L1-algebra structure, say h1∶L1(C0,C1)→ (C0,C1):

h1(G ⊢ xi∶Gi) = πi
h1(G ⊢ ()∶1) = !

h1(G ⊢ cLM1, . . . ,MnM∶A) = c ○ ⟨h1(M1), . . . , h1(Mn)⟩
h1(G ⊢ λx∶A.M ∶B

A) = ϕ(h1(G,x∶A ⊢M ∶B))
h1(G ⊢MN ∶B) = ev ○ ⟨h1(M), h1(N)⟩

h1(G ⊢ (M,N)∶A ×B) = ⟨h1(M), h1(N)⟩
h1(G ⊢ πM ∶A) = π ○ h1(M)
h1(G ⊢ π

′M ∶A) = π′ ○ h1(M),
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where ! is the unique morphism h0(G) → 1, ϕ is the bijection C(h0(G,A), h0(B)) ≅
C(h0(G), h0(B

A)), and ev is the structure morphism h0(B
A ×A)→ h0(B).

L1-algebras are much like cartesian closed categories whose objects are freely generated
by their set of sorts. A perhaps useful analogy here is with multicategoriesM, seen as being
close to monoidal categories whose objects are freely generated by those of M by tensor
and unit. Here, the functor F1 sends any L1-algebra (X,h) to the cartesian closed category
with

● objects the types over X0, i.e., L0(X0),
● morphisms A→ B the set of operations in X1(A,B).

This canonically forms a cartesian closed category, with structure induced by the L1-algebra
structure. We define it in more detail in dimension 2 in Section 7.2.

3. Cartesian closed 2-signatures

Given a 1-signature X, let X∣∣ denote the set of pairs of parallel operations, i.e., pairs of
operations M,N over the same sequent. Otherwise said, X∣∣ is the pullback

X∣∣ X1

X1 S0(X0).

Any morphism f ∶X → Y of 1-signatures yields a map f∣∣∶X∣∣ → Y∣∣, via the dashed arrow
(obtained by universal property of pullback) in

X∣∣ X1

Y∣∣ Y1

X1 S0(X0)

Y1 S0(Y0).

f1

S0(f0)f1

Definition 3.1. A 2-signature consists of a 1-signature X, plus a set X2 of reduction rules
with a map X2 → L1(X)∣∣.

A morphism of 2-signatures (X,X2) → (Y,Y2) is a pair (f, f2) where f ∶X → Y is a
morphism of 1-signatures and f2∶X2 → Y2 makes the diagram

X2 Y2

L1(X)∣∣ L1(Y )∣∣

f2

L1(f1)∣∣

commute. We obtain:

Proposition 3.2. Composition of morphisms is associative and unital, and hence 2-signatures
and their morphisms form a category Sig.
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4. Examples

4.1. Higher-order rewrite systems. The prime example of a 2-signature is that for the
pure λ-calculus: it has a sort t and operations

a∶ (t, t ⊢ t) ℓ∶ (tt ⊢ t),

with a reduction rule β over the pair x∶ tt, y∶ t ⊢ aLℓLxM, yM, x(y)∶ t in L1({t},{ℓ, a})∣∣. Cate-
gorically, this will yield a 2-cell

t × t

tt × t t.

ℓ×t a

ev

β

This is an example of a higher-order rewrite system in the sense of Nipkow [15]. Nip-
kow’s definition is formally different, but his higher-order rewrite systems are in bijection
with 2-signatures h∶X2 → L1(X)∣∣ such that for all rules r ∈ X2, letting (Γ ⊢M,N ∶A) = h(r):

● M is not a variable,
● A is a sort,
● each variable occurring in Γ occurs free in M .

These restrictions help dealing with decidability problems on higher-order rewrite systems,
whose extension to our setting we leave open.

Let us now anticipate over Adjunction (1.1) and our main results below and state
our soundness and completeness theorem. Given a higher-order rewrite system X, i.e., a
2-signature satisfying the above conditions, let R(X) be the following locally-preordered
2-category. It has:

● objects are types in L0(X0);
● morphisms A→ B are λ-terms in L1(X)(A ⊢ B), modulo βη;
● given two parallel morphisms M and N , there is one 2-cell M → N exactly when there is
a sequence of reductions M →∗ N in the usual sense [15].

Proposition 4.1. R(X) is 2-cartesian closed.

R(X) and H(X) have the same objects and morphisms. But because our inference
rules for forming reductions are the same as deduction rules for proving the existence of a
reduction in the usual sense, we may map any reduction P ∶M → N to the unique reduction
M → N in R(X). Conversely, any standard reduction step has a proof, which provides a
reduction P . We have proved:

Theorem 4.2 (Soundness and completeness). There exists an identity-on-objects, identity-

on-morphisms, locally full cartesian closed 2-functor H(X)
!
Ð→R(X).

4.2. Theories with binding. Understanding reduction rules as equations, it is easy to
define the free cartesian closed category generated by a 2-signature. This yields the adjunc-
tion

Sig � CCCat

H′

W ′

(4.1)

recalled above.
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This adjunction provides a categorical semantics for theories with binding, which is
more general than other approaches by Fiore and Hur [7], Hirschowitz and Maggesi [9], and
Zsidó [20].

If I understand correctly, the motivation for Fiore and Hur’s subtle approach is the will
to explain the λ-calculus by strictly less than itself. The present framework does not obey
this specification, and instead tends to view the λ-calculus as a universal (parameterised)
theory with binding.

We end this section by giving a formal construction of Adjunction (4.1). Cartesian
closed categories form a full, reflective subcategory of 2CCCat, via the functor J ∶2CCCat →
CCCat mapping any cartesian closed 2-category C to the cartesian closed category with:

● objects those of C,
● morphisms those of C, modulo the congruence generated by f ∼ g iff there exists a 2-cell
f → g.

Here, J (C) is thought of as the free locally discrete cartesian closed 2-category. Adjunc-
tion (4.1) is obtained by composing the adjunctions

Sig � 2CCCat � CCCat.

H

W

J

4.3. Non-examples. Non-examples are given by calculi whose reduction semantics is de-
fined on terms modulo a so-called structural congruence, e.g., CCS [13], or the π-calculus [6,
14].

For example, consider the CCS term (a ∣ 0) ∣ a. In CCS, it is structurally equivalent to
(a ∣ a) ∣ 0, which then reduces to 0 ∣ 0.

In order to account for this, we would have to consider a 2-signature with reduction
rules for structural congruence, here (M1 ∣M2) ∣M3 →M1 ∣ (M2 ∣M3) for associativity, and
M ∣ N → N ∣M for commutativity. But then, these reductions count as proper reductions,
which departs from the desired computational behaviour. For example, the term a ∣ a has
an infinite reduction sequence, using commutativity.

Anticipating the development in the next sections, a potential solution is to extend 2-
signatures to 2-theories. For any 2-signature X, let X∣∣ denote the set of pairs of reduction
rules r, s with a common type G ⊢ M → N ∶A. A 2-theory is a 2-signature X, together
with a set of equations between parallel reductions, i.e., a subset X3 of L(X)∣∣ (where L is
defined in Section 5).

Another possibility would be to define 2-theories to constist of a pair of sets over L1(X)∣∣,
one for structural equations, and the other for proper reduction rules.

The main adjunction announced above (1.1) extends to an adjunction between 2-
theories and cartesian closed 2-categories. Using equations, we may specify that any re-
duction M → M using only structural rules be the identity on M , and consider the com-
putational behaviour of a 2-category to consist of its non-invertible 2-cells, as proposed by
Hilken [8]. A question is whether for a given calculus this can be done with finitely many
equations.
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5. A 2-lambda-calculus

We now begin the construction of Adjunction (1.1). We start in this section by defining a
monad L on Sig, which we will use to factor Adjunction (1.1) as

Sig � L-Alg � 2CCCat,

K

U

F

V

where:

● L-Alg is the category of L-algebras,

● K∶Sig → L-Alg maps any X to the free L-algebra (L2X
µ
Ð→ LX),

● U(LX
h
Ð→X) =X,

● 2CCCat is the category of cartesian closed 2-categories, which we define in Section 6.

The left-hand adjunction holds by L being a monad, thus we concentrate in Section 7
on establishing the right-hand one.

But for now, let us define the monad L.

5.1. Syntax. Given a 2-signature X = ((X0,X1), a∶X2 → L1(X)∣∣) (actually L1(X) is
L1(X0,X1)), we construct a new 2-signature L(X), whose reduction rules represent re-
duction sequences in the “higher-order rewrite system” defined by X, modulo permutation
equivalence. The 2-signature L(X) has the same base 1-signature (X0,X1), and as re-
duction rules the terms of a 2λ-calculus (in the sense of Hilken [8]) modulo permutation
equivalence, which we now define.

First, terms, called reductions, are defined by induction in Figure 1. The typing judge-
ment has the shape Γ ⊢ P ∶M → N ∶A, where A is a type in L0(X0), Γ is a list of pairs of
a variable and a type, with no variable appearing more than once, M and N are terms of
type Γ ⊢ A modulo βη, and P is a reduction. In the sequel, we often forget the variables in
such pairs (Γ ⊢ A), and identify them with sequents in S0(X0).

Remark 5.1. For any Γ ⊢M ∶A, we have a reduction Γ ⊢M ∶M →M ∶A.

When clear from context, we abbreviate substitutions [M1/x1, . . . ,Mn/xn] of terms by
[M1, . . . ,Mn]. For a context G, Gi denotes its ith type. Also, for (M,N) ∈ L1(X)∣∣, we
let X(M,N) be the set of all reduction rules r ∈ X2 such that a(r) = (M,N). We write
X(Γ ⊢ M,N ∶A) to indicate the common type of M and N . Similarly, X(G ⊢ A) denotes
the set of operations in X1 above G ⊢ A.

5.2. Substitution. Next, we define substitution, which has “type”

Γ ⊢ Q ∶ N → N ′∶∆ ∆ ⊢ P ∶M →M ′∶A

Γ ⊢ P [Q] ∶M[N]→M ′[N ′]∶A,
(5.1)

i.e., given a reduction P and a tuple of reductions Q, it produces a reduction of the indicated
type, which we denote by P [Q]. Here, we denote by Γ ⊢ Q ∶ N → N ′∶∆ a tuple of reductions
Γ ⊢ Qi ∶ Ni → N ′i ∶∆i, for 1 ≤ i ≤ ∣∆∣.

First, observe that we have a form of weakening: for any reduction Γ ⊢ P ∶M → N ∶A
and x ∉ Γ, we also have Γ, x∶B ⊢ P ∶M → N ∶A. We use this implicitly in the following.

The definition of substitution is a bit tricky:
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. . . Γ ⊢ Pi ∶Mi → Ni∶Gi . . .

Γ ⊢ r⟪P1, . . . , Pn⟫ ∶M[M1, . . . ,Mn]→ N[N1, . . . ,Nn]∶A
(r ∈ X(G ⊢M,N ∶A))

Γ ⊢ P ∶M1 →M2∶A Γ ⊢ Q ∶M2 →M3∶A

Γ ⊢ P ;M2
Q ∶M1 →M3∶A

Γ, x∶A,∆ ⊢ x ∶ x → x∶A Γ ⊢ () ∶ ()→ ()∶1

Γ ⊢ P1 ∶M1 → N1∶G1 . . . Γ ⊢ Pn ∶Mn → Nn∶Gn

Γ ⊢ cLP1, . . . , PnM ∶ cLM1, . . . ,MnM→ cLN1, . . . ,NnM∶A
(c ∈ X1(G ⊢ A))

Γ, x∶A ⊢ P ∶M → N ∶B

Γ ⊢ λx∶A.P ∶ λx∶A.M → λx∶A.N ∶BA

Γ ⊢ P ∶M →M ′∶BA Γ ⊢ Q ∶ N → N ′∶A

Γ ⊢ PQ ∶MN →M ′N ′∶B

Γ ⊢ P ∶M →M ′∶A Γ ⊢ Q ∶ N → N ′∶B

Γ ⊢ (P,Q) ∶ (M,N) → (M ′,N ′)∶A ×B

Γ ⊢ P ∶M → N ∶A ×B

Γ ⊢ πA,BP ∶ πA,BM → πA,BN ∶A

Γ ⊢ P ∶M → N ∶A ×B

Γ ⊢ π′A,BP ∶ π
′
A,BM → π′A,BN ∶B

Figure 1: Reductions

● first we define left whiskering, which has “type”

Γ ⊢ Q ∶ N → N ′∶∆ ∆ ⊢M ∶A

Γ ⊢M[Q] ∶M[N]→M ′[N ′]∶A;

● then we define right whiskering, which has “type”

Γ ⊢ N ∶∆ ∆ ⊢ P ∶M →M ′∶A

Γ ⊢ P [N] ∶M[N]→M ′[N]∶A,

(where N denotes a tuple);
● then we define substitution by P [Q] = (P [N] ;M ′[N]M

′[Q]).

There is of course another legitimate definition, namely M[Q] ;M[N ′] P [N
′]. The two will

be equated by permutation equivalence in the next section.
Left whiskering is defined inductively, with ∆ = (x1∶A1, . . . , xn∶An) andQ = (Q1, . . . ,Qn),

by:
()[Q] = ()
xi[Q] = Qi

cLM1, . . . ,MpM[Q] = cLM1[Q], . . . ,Mp[Q]M
(λx∶B.M)[Q] = λx∶B.(M[Q,x]) (for x ∉ dom(∆))
(MN)[Q] = (M[Q]N[Q])
(M,N)[Q] = (M[Q],N[Q])
(πA,BM)[Q] = πA,B(M[Q])
(π′A,BM)[Q] = π′A,B(M[Q])
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Right whiskering is defined inductively, with ∆ = (x1∶A1, . . . , xn∶An) and N = (N1, . . . ,Nn),
by:

(r⟪P1, . . . , Pp⟫)[N] = r⟪P1[N], . . . , Pp[N]⟫
(P1 ;M ′′ P2)[N] = (P1[N] ;M ′′[N] P2[N])

()[N] = ()
xi[N] = Ni

cLP1, . . . , PpM[N] = cLP1[N], . . . , Pp[N]M
(λx∶B.P ′)[N] = λx∶B.(P ′[N,x]) (for x ∉ dom(∆))
(P1P2)[N] = (P1[N]P2[N])
(P1, P2)[N] = (P1[N], P2[N])
(πA,BP

′)[N] = πA,B(P ′[N])
(π′A,BP

′)[N] = π′A,B(P
′[N]).

Definition 5.2. Let P [Q] = (P [N] ;M ′[N]M
′[Q]).

Proposition 5.3. Given reductions P and Q as above, P [Q] is a well-typed reduction
Γ ⊢ P [Q] ∶M[N]→M ′[N ′]∶A.

5.3. Permutation equivalence. We now define permutation equivalence on reductions,
by the equations in Figures 3, 4 and 5, in Appendix A. The congruence rules in Figure 3
are bureaucratic: they just say that permutation equivalence is a congruence. The category
rules make reductions of a given type Γ ⊢ A into a category. In Figure 4, the beta and eta
rules mirror the term-level beta and eta rules. Finally, the lifting rules lift composition of
reductions towards toplevel.

So, L(X) has sorts X0, operations X1, and as reduction rules in L(X)(G ⊢ M,N ∶A)
all reductions G ⊢ P ∶M → N ∶A, modulo the equations.

This easily extends to:

Proposition 5.4. L is a functor Sig → Sig.

Now, consider LL(X). We define a mapping µX ∶LL(X) → L(X), by induction on
reductions. The typing rule for reduction rules in LL(X) specialises to:

(R ∈ L(X)(G ⊢M,N ∶A)) Γ ⊢ P1 ∶M1 → N1∶G1 . . . Γ ⊢ Pn ∶Mn → Nn∶Gn

Γ ⊢ R⟪P1, . . . , Pn⟫ ∶M[M1, . . . ,Mn]→ N[N1, . . . ,Nn]∶A
⋅

We set µ(R⟪P1, . . . , Pn⟫) = R[µ(P1), . . . , µ(Pn)]. The other cases just propagate the substi-
tution:

P ; Q ↦ µ(P ) ; µ(Q)
x ↦ x

() ↦ ()
cLP1, . . . , PnM ↦ cLµ(P1), . . . , µ(Pn)M

λx∶A.P ↦ λx∶A.µ(P )
PQ ↦ µ(P )µ(Q)

(P,Q) ↦ (µ(P ), µ(Q))
πP ↦ π(µ(P ))
π′P ↦ π′(µ(P )).

Lemma 5.5. This defines a natural transformation µ∶L2 → L, which makes the diagram
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L3 L2

L2 L

Lµ

µL µ

µ

commute.

Similarly, there is a natural transformation η∶ id → L, mapping each r ∈X(G ⊢M,N ∶A)
to the reduction G ⊢ r⟪x1, . . . , xn⟫ ∶M → N ∶A, and we have:

Lemma 5.6. The diagram

L L2 L

L

ηL Lη

µ

commutes.

Corollary 5.7. (L, µ, η) is a monad on Sig.

A crucial result is:

Proposition 5.8. For all Γ ⊢ Q ∶ N → N ′∶∆ and ∆ ⊢ P ∶M →M ′
∶A, we have:

Γ ⊢ P [Q] ≡ (M[Q] ;M[N ′] P [N
′]) ∶M[N]→M ′[N ′]∶A.

Proof. We proceed by induction on P . Most cases are bureaucratic. Consider for instance
P = cLP1, . . . , PpM. Then, by definition:

P [Q] = (cLP1[N], . . . , Pp[N]M ;cLM ′
1
[N],...,M ′

p[N]M
cLM ′

1[Q], . . . ,M
′
p[Q]M.

By the third lifting rule, this is permutation equivalent to

cLP1[N] ;M ′
1
[N]M

′
1[Q], . . . , Pp[N] ;M ′

p[N]
M ′

p[Q]M.

By p applications of the induction hypothesis, we obtain

cLM1[Q] ;M1[N ′] P1[N
′], . . . ,Mp[Q] ;Mp[N ′] Pp[N

′]M,

which by lifting again yields the desired result:

cLM1[Q], . . . ,Mp[Q]M ;cLM1[N ′],...,Mp[N ′]M cLP1[N ′], . . . , Pp[N ′]M.

The case where something actually happens is P = r⟪P1, . . . , Pp⟫, with r ∈ X(G ⊢
M0,M

′
0∶A) and each ∆ ⊢ Pi ∶Mi →M ′

i ∶Gi. Then, the left-hand side is

r⟪P1[N], . . . , Pp[N]⟫ ;M ′
0
[M ′

1
,...,M ′

n][N]
M ′

0[M
′
1, . . . ,M

′
p][Q].

By lifting, omitting indices of vertical compositions and implicitly using the category rules,
we have

r⟪P1[N], . . . , Pp[N]⟫ ≡ r⟪M1[N], . . . ,Mp[N]⟫ ;M ′
0[P1[N], . . . , Pp[N]].

Observing that M ′
0[M

′
1, . . . ,M

′
p][Q] = M ′

0[M
′
1[Q], . . . ,M

′
p[Q]], the whole is permutation

equivalent to
r⟪M1[N], . . . ,Mp[N]⟫;
M ′

0[P1[N], . . . , Pp[N]];
M ′

0[M
′
1[Q], . . . ,M

′
p[Q]],
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i.e., by lifting (inductively):

r⟪M1[N], . . . ,Mp[N]⟫;
M ′

0[(P1[N] ; M ′
1[Q]), . . . , (Pp[N] ;M ′

p[Q])].

By induction hypothesis, this is permutation equivalent to

r⟪M1[N], . . . ,Mp[N]⟫;
M ′

0[(M1[Q] ; P1[N ′]), . . . , (Mp[Q] ; Pp[N ′])],

i.e., by lifting again to
r⟪M1[N], . . . ,Mp[N]⟫;
M ′

0[M1[Q], . . . ,Mp[Q]];
M ′

0[P1[N ′], . . . , Pp[N ′]].
The second lifting rule then yields

r⟪M1[Q], . . . ,Mp[Q]⟫;
M ′

0[P1[N ′], . . . , Pp[N ′]],

and hence
M0[M1[Q], . . . ,Mp[Q]];
r⟪M1[N ′], . . . ,Mp[N ′]⟫;
M ′

0[P1[N ′], . . . , Pp[N ′]],
so, by the second lifting rule again:

M0[M1[Q], . . . ,Mp[Q]];
r⟪P1[N ′], . . . , Pp[N ′]⟫,

i.e., the right-hand side.

6. Cartesian closed 2-categories

6.1. Definition. In a 2-category C, a diagram A
p
←Ð C

q
Ð→ B is a product diagram iff for all

object D, the induced functor

C(D,C)
⟨C(D,p),C(D,q)⟩
ÐÐÐÐÐÐÐÐÐ→ C(D,A) × C(D,B)

is an isomorphism of categories. Because this family of functors is 2-natural in D, the
inverse functors will also be 2-natural.

Similarly, an object 1 of C is terminal iff for all D the unique functor

C(D,1)
!
Ð→ 1

is an isomorphism (where the right-hand 1 is the terminal category).

Definition 6.1. A 2-category with finite products, or fp 2-category, is a 2-category C,
equipped with a terminal object and a 2-functor

C × C
×
Ð→ C,

plus, for all A and B, a product diagram

A
p
←Ð A ×B

q
Ð→ B.

In such an fp 2-category C, given objects A and B, an exponential for them is a pair of
an object BA and a morphism ev ∶A ×BA → B, such that for all D, the functor
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C(A,A) × C(D,BA) C(A ×D,A ×BA)

C(D,BA) C(A ×D,B)

(idA!,id)

×

C(A×D,ev)

is an isomorphism. As above, because this family of functors is 2-natural in D, the inverse
functors will also be 2-natural.

Definition 6.2. A cartesian closed 2-category, or cartesian closed 2-category, is an fp
2-category, equipped with a choice of exponentials for all pairs of objects. The category
2CCCat has cartesian closed 2-categories as objects, and stricly structure-preserving functors
between them as morphisms.

We observe in particular that this implies preservation of projections and evaluation
morphisms.

7. Main adjunction

7.1. Right adjoint. Given a cartesian closed 2-category C, define V(C) = (C0,C1,
C2) as follows. First, let as in Section 2 (C0,C1) = V1(C), and recall the canonical L0
and L1-algebra structures h0 and h1. Let then the reduction rules in C2(G ⊢M,N ∶A) be
the 2-cells in C(h0(G), h0(A))(h1(M), h1(N)), abbreviated to C(G,A)(M,N) in the sequel.

This signature VC has a canonical L-algebra structure h2∶L(VC) → VC, which we de-
fine by induction over reductions in Figure 2. In the case for λ, ϕ denotes the structure
isomorphism C((∏Γ) ×A,B) ≅ C(∏Γ,BA).

In order for the definition to make sense as a morphism L(VC)→ VC, we have to check
its compatibility with the equations. We have first:

Lemma 7.1. For all ∆ ⊢ Q ∶ N → N ′∶Γ and Γ ⊢ P ∶M →M ′
∶A in L(VC),

∆ A

M[N]

M ′[N ′]

h2(P [Q]) = ∆ Γ A.

N

N ′

M

M ′

h2(Q) h2(P )

Proof. By induction on P and the axioms for cartesian closed 2-categories.

Lemma 7.2. Any two equated reductions are mapped to the same 2-cell in C.

Proof. We proceed by induction on the proof of the considered equation. The congruence
and category rules of Figures 3 and 4 hold because, in C, vertical composition is associative
and unital, and equality is a congruence. The beta rule is less easy, so we spell it out.

The left-hand reduction is interpreted in C as

∏Γ BA
×A B

⟨ϕM,N⟩

⟨ϕM ′,N ′⟩

ev
⟨ϕP,Q⟩

which is equal to
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(G ⊢ xi ∶ xi → xi∶Gi)↦ (idπi
∶πi → πi∶∏G→ Gi)

(G ⊢ () ∶ ()→ ()∶1) ↦ (id !∶ ! →!∶∏G→ 1)

(Γ ⊢ cLP1, . . . , PnM ∶ cLM1, . . . ,MnM→ cLN1, . . . ,NnM∶A) ↦

∏Γ ∏G A

⟨M1,...,Mn⟩

⟨N1,...,Nn⟩

c
P (c ∈ C1(G,A), P = ⟨P1, . . . , Pn⟩)

(Γ ⊢ r⟪P1, . . . , Pn⟫ ∶M[M1, . . . ,Mn]→ N[N1, . . . ,Nn]∶A)↦

∏Γ ∏G A

⟨M1,...,Mn⟩

⟨N1,...,Nn⟩

M

N

rP (P = ⟨P1, . . . , Pn⟩)

(G ⊢ P ;M2
Q ∶M1 →M3∶A)↦ ∏G A

M1

M3

P

Q

(Γ ⊢ λx∶A.P ∶ λx∶A.M → λx∶A.N ∶BA)↦ ϕ(P ∶M → N ∶ (∏Γ) ×A→ B)

(Γ ⊢ PQ ∶MN →M ′N ′∶B)↦ ∏Γ BA
×A B

⟨M,N⟩

⟨M ′,N ′⟩

ev
⟨P,Q⟩

(Γ ⊢ (P,Q) ∶ (M,N) → (M ′,N ′)∶A ×B)↦ ∏Γ A ×B

⟨M,N⟩

⟨M ′,N ′⟩

⟨P,Q⟩

(Γ ⊢ πA,BP ∶ πA,BM → πA,BN ∶A) ↦ ∏Γ A ×B A

M

N

π
P

(Γ ⊢ π′A,BP ∶ π
′
A,BM → π′A,BN ∶B)↦ ∏Γ A ×B B

M

N

π′
P

Figure 2: The L-algebra structure on V(C)
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∏Γ ∏Γ ×A BA
×A B

⟨id ,N⟩

⟨id ,N ′⟩

⟨id ,Q⟩

ϕM×A

ϕM ′×A

ev
ϕP×A

which is in turn equal (by cartesian closedness of C) to:

∏Γ ∏Γ ×A B

⟨id ,N⟩

⟨id ,N ′⟩

⟨id ,Q⟩

M

M ′

P

and hence to the right-hand side of the equation by Lemma 7.1. The other beta and eta
rules similarly hold by the properties of products, internal homs, and terminal object in C.

The lifting rules hold by (particular cases of) the interchange law in C and functoriality
of the structural isomorphisms

C(A ×B,C) ≅ C(B,CA) and C(C,A ×B) ≅ C(C,A) × C(C,B),

which concludes the proof.

This assignment extends to cartesian closed functors and we have:

Proposition 7.3. V is a functor 2CCCat→ Sig.

7.2. Left adjoint. Given an L-algebra h∶L(X) → X, we now construct a cartesian closed
2-category F(X,h). It has:
● objects the types in L0(X0);
● 1-cells A → B the terms in L1(X0,X1)(A,B);
● 2-cells M → N ∶A → B the reduction rules in X2(M,N).
We then must define the cartesian closed 2-category structure, and we start with the 2-

category structure. Composition of 1-cells A
M
Ð→ B

N
Ð→ C is defined to be A

N[M]
ÐÐÐ→ C.

Identities are given by variables, as usual. Vertical composition of 2-cells

A B

M1

M2

M3

α

β

is given by h(η(α) ;M2
η(β)).

Horizontal composition of 2-cells

A B C

M

M ′

N

N ′

α β (7.1)

is obtained as h(β⟪η(α)⟫).

The identity at A
M
Ð→ B is h(M).
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To show that this yields a 2-category structure, the only non obvious point is the
interchange law. We deal with it using the following series of results. First, consider the
left whiskering

A B C

M

M ′

N
α

of a 2-cell α by a 1-cell N , i.e., the composition idN ○ α = h((h(N))⟪η(α)⟫).

Lemma 7.4. We have: h((h(N))⟪η(α)⟫) = h(N[η(α)]).

Proof. Indeed, consider the term N⟪η(η(α))⟫ in L(L(X)). Its images by h○L(h) and h○µ

coincide, and are respectively h((h(N))⟪η(α)⟫), i.e., idN ○ α, and h(N[η(α)]).

Similarly, consider the right whiskering

A B C

N

N ′

M γ

of a 2-cell γ by a 1-cell M , i.e., the composition γ ○ idN = h(γ⟪η(h(M))⟫).

Lemma 7.5. We have: h(γ⟪η(h(M))⟫) = h(γ⟪M⟫).

Proof. Consider (ηγ)⟪ηM⟫ in L(L(X)). Its images by h ○L(h) and h ○µ coincide, and are
respectively h(γ⟪η(h(M))⟫) and h(γ⟪M⟫).

Now, we prove that the two sensible ways of mimicking horizontal composition using
whiskering coincide with actual horizontal composition:

Lemma 7.6. For any cells as in (7.1),

(β ○ idM) ; (idN ′ ○ α) = β ○ α = (idN ○ α) ; (β ○ idM ′).

Proof. Consider first the reduction η(β⟪M⟫) ; η(N ′[η(α)]) in L(L(X)). Taking h ○ L(h)
and h ○ µ as above respectively yields

● h(η(h(β⟪M⟫)) ; η(h(N ′[η(α)]))), and
● h(β⟪M⟫ ;N ′[η(α)]) = h(β⟪η(α)⟫),
hence the left-hand equality. Then consider η(N[η(α)]) ; η(β(M ′)). Evaluating as before
yields the right-hand equality.

Furthermore, consider any configuration like:

A B C.

M

M ′

M ′′

N
α

β

Lemma 7.7. We have (idN ○ α) ; (idN ○ β) = idN ○ (α ; β).

Proof. Consider η(N[η(α)]) ; η(N[η(β)]). Evaluating yields equality of

● h(η(h(N[η(α)])) ; η(h(N[η(β)]))), i.e., the left-hand side, and
● h(N[η(α)] ;N[η(β)]), i.e., h(N[η(α) ; η(β)]) by lifting.
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But now consider N[η(η(α) ; η(β))]. Evaluating yields equality of

● h(N[η(α) ; η(β)]), as above, and
● h(N[η(h(η(α) ; η(β)))]), i.e., h(N[η(α ; β)]) (where α ; β denotes vertical composition
in our candidate 2-category), i.e., the right-hand side.

Finally, by a similar argument, we have:

Lemma 7.8. For any

A B C,

N

N ′

N ′′

M
α

β

we have (α ○ idM) ; (β ○ idM) = (α ; β) ○ idM .

Lemma 7.9. The interchange law holds, i.e., for all reduction rules as in

A B C,

M1

M2

M3

N1

N2

N3

α

β

γ

θ

we have
(γ ; θ) ○ (α ; β) = (γ ○ α) ; (θ ○ β).

Proof. By the previous results, we have

(γ ; θ) ○ (α ; β)
= ((γ ; θ) ○M1) ; (N3 ○ (α ; β))
= (γ ○M1) ; (θ ○M1) ; (N3 ○ α) ; (N3 ○ β)
= (γ ○M1) ; (N2 ○ α) ; (θ ○M2) ; (N3 ○ β)
= (γ ○ α) ; (θ ○ β).

Now, let us show cartesian closedness. We have a bijection of hom-sets L1(X)(C ⊢
A ×B) ≅ L1(X)(C ⊢ A) ×L1(X)(C ⊢ B), given by

L1(X)(C ⊢ A ×B) → L1(X)(C ⊢ A) ×L1(X)(C ⊢ B)
M ↦ πM,π′M

and
L1(X)(C ⊢ A) ×L1(X)(C ⊢ B) → L1(X)(C ⊢ A ×B)

M,N ↦ (M,N).
These are mutually inverse thanks to the beta and eta rules for products in the simply-typed
λ-calculus.

On 2-hom-sets, we have

L(X)(C ⊢M,N ∶A ×B) → L(X)(C ⊢ πM,πN ∶A) ×L(X)(C ⊢ π′M,π′N ∶B)
P ↦ πP,π′P

and (omitting C)

L(X)(M1,N1∶A) ×L(X)(M2,N2∶B) → L(X)((M1,M2), (N1,N2)∶A ×B)
P1, P2 ↦ (P1, P2),
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which are mutually inverse thanks to the beta and eta rules for products in Figure 4. We
use these to define the desired isomorphism (u, v)

X2(C ⊢M,N ∶A ×B) ≅X2(C ⊢ πM,πN ∶A) ×X2(C ⊢ π
′M,π′N ∶B),

as in the diagrams

X2(M,N) X2(πM,πN) ×X2(π′M,π′N)

L(X)(M,N) L(X)(πM,πN) ×L(X)(π′M,π′N)

u

η

≅

h×h

and

X2(πM,πN) ×X2(π′M,π′N) X2(M,N)

L(X)(πM,πN) ×L(X)(π′M,π′N) L(X)(M,N).

v

η×η

≅

h

Starting from r ∈X2(M,N), we obtain

v(u(r)) = h(η(h(π(η(r)))), η(h(π′(η(r))))).

But consider (η(πη(r)), η(π′η(r))) in L(LX); its images by h○Lh and h○µ are respectively:

● h(η(h(π(ηr))), η(h(π′(ηr)))), and
● h(πη(r), π′η(r)), i.e., h(η(r)), i.e., r,
which must be equal because h is an L-algebra, hence v ○ u = id .

Conversely, starting from (r, s) ∈ X2(M1,M2) ×X2(N1,N2), we obtain the pair with
components

h(π(η(h(η(r), η(s))))) and h(π′(η(h(η(r), η(s))))).

Considering π(η(η(r), η(s))) ∈ L(L(X)), its images by h ○L(h) and h ○ µ are respectively:

● h(π(η(h(η(r), η(s))))), and
● h(π(η(r), η(s))) = h(η(r)) = r.
As above, they must be equal, and by symmetry the second component is s, and we have
proved u ○ v = id . Similar reasoning for the terminal object and internal homs leads to:

Proposition 7.10. This yields a cartesian closed 2-category structure on C.

This extends to morphisms of L-algebras, so we have constructed a functor F ∶L-Alg →
2CCCat.

7.3. Adjunction. Consider any L-algebra (X,h). What does (Y,k) = V(F(X,h)) look
like? Sorts in Y0 are types in L0(X0). Operations Y1(G ⊢ A) are terms in L1(X0,X1)(µ(∏G) ⊢
µ(A)), where µ denotes the monad multiplication for L0. Reduction rules in Y2(G ⊢
M,N ∶B) are reduction rules inX2(µ(∏G) ⊢M ′,N ′∶µ(B)), whereM ′ =M[π1x/x1, . . . , πnx/xn]
(and similarly for N ′).

Let ηLX map:

● each sort ι ∈X0 to the type ι ∈ L0(X0) (this is the monad unit for L0),
● each operation c ∈ X(G ⊢ A) to the term cLπ1x, . . . , πnxM, and
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● each reduction rule r ∈X2(G ⊢M,N ∶A) to the reduction rule

h(r⟪π1x, . . . , πnx⟫) ∈ X2(∏G ⊢M ′,N ′∶A).

(Thanks to the fact that µ(L0(η)(A)) = A.)

Theorem 7.11. This ηL is a natural transformation which is the unit of an adjunction

L-Alg � 2CCCat.

F

V

Proof. Consider any morphism f ∶ (X,h) → V(C), and let X = F(X,h), (Y,k) = V(X ), and
V(C) = (C0,C1, h2∶C2 → C1). We now define a uniquely determined cartesian closed functor
f ′∶X → C making the triangle

X V(X )

V(C)

ηLX

f
V(f ′)

commute.
On objects, it is determined by induction: on sorts by f0, and on type constructors

by the requirement that f ′ be cartesian closed. On morphisms, it is similarly determined
by f1 and f ′ being cartesian closed. On 2-cells, define f ′ to be f2∶X2(A ⊢ M,N ∶B) →
C(f ′(A), f ′(B))(f ′(M), f ′(N)), which is also the only possible choice from f .

This indeed makes the above triangle commute, because any r ∈ X2(G ⊢ M,N ∶A) is
first mapped to h(r⟪π1x, . . . , πnx⟫) ∈ X2(∏G ⊢M ′,N ′∶A), and then to

h(r⟪π1x, . . . , πnx⟫)

in C, which, because f is a morphism of L-algebras, is equal to

h2((f2(r))⟪π1x, . . . , πnx⟫),

i.e., to f2(r).
It thus remains to show that f ′ is cartesian closed, which follows by f being a morphism

of L-algebras. For example, to show that binary pairings of reductions are preserved, con-
sider r ∈X2(C ⊢M1,M2∶A) and s ∈ X2(C ⊢ N1,N2∶B). Their product in F(X) is obtained
by considering the atomic reductions x∶C ⊢ r⟪x⟫ ∶M1 →M2∶A and x∶C ⊢ s⟪x⟫ ∶ N1 → N2∶B

and taking h(r⟪x⟫, s⟪x⟫), which is mapped by f2 to f2(h(r⟪x⟫, s⟪x⟫)). But, because f

is a morphism of L-algebras, this is the same as h2((f2(r))⟪x⟫, (f2(s))⟪x⟫), which is by
definition (i.e., Figure 2) the pairing (f2(r), f2(s)) in C.

Acknowledgements. Thanks to Nicolas Tabareau for useful feedback, and to Aurore Al-
colei for reviving the subect after a few years.
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Appendix A. Equations on reductions

Congruence

Γ ⊢ P ∶M → N ∶A

Γ ⊢ P ≡ P ∶M → N ∶A

Γ ⊢ P ≡ Q ∶M → N ∶A

Γ ⊢Q ≡ P ∶M → N ∶A

Γ ⊢ P1 ≡ P2 ∶M → N ∶A Γ ⊢ P2 ≡ P3 ∶M → N ∶A

Γ ⊢ P1 ≡ P3 ∶M → N ∶A

Γ ⊢ P ≡ P ′ ∶M1 →M2∶A Γ ⊢ Q ≡ Q′ ∶M2 →M3∶A

Γ ⊢ (P ;M2
Q) ≡ (P ′ ;M2

Q′) ∶M1 →M3∶A

(r ∈ X(G ⊢M,N ∶A))
Γ ⊢ P1 ≡ Q1 ∶M1 → N1∶G1 . . . Γ ⊢ Pn ≡ Qn ∶Mn → Nn∶Gn

Γ ⊢ r⟪P1, . . . , Pn⟫ ≡ r⟪Q1, . . . ,Qn⟫ ∶M[M1, . . . ,Mn]→ N[N1, . . . ,Nn]∶A

(c ∈X(G ⊢ A))
Γ ⊢ P1 ≡ Q1 ∶M1 → N1∶G1 . . . Γ ⊢ Pn ≡ Qn ∶Mn → Nn∶Gn

Γ ⊢ cLP1, . . . , PnM ≡ cLQ1, . . . ,QnM ∶ cLM1, . . . ,MnM→ cLN1, . . . ,NnM∶A

Γ, x∶A ⊢ P ≡ Q ∶M → N ∶B

Γ ⊢ (λx∶A.P ) ≡ (λx∶A.Q) ∶ λx∶A.M → λx∶A.N ∶BA

Γ ⊢ P ≡ P ′ ∶M →M ′
∶BA Γ ⊢ Q ≡ Q′ ∶ N → N ′∶A

Γ ⊢ (PQ) ≡ (P ′Q′) ∶MN →M ′N ′∶B

Γ ⊢ P ≡ P ′ ∶M →M ′
∶A Γ ⊢ Q ≡ Q′ ∶ N → N ′∶B

Γ ⊢ (P,Q) ≡ (P ′,Q′) ∶ (M,N) → (M ′,N ′)∶A ×B

Γ ⊢ P ≡ Q ∶M → N ∶A ×B

Γ ⊢ (πA,BP ) ≡ (πA,BQ) ∶ πA,BM → πA,BN ∶A

Γ ⊢ P ≡ Q ∶M → N ∶A ×B

Γ ⊢ (π′A,BP ) ≡ (π
′
A,BQ) ∶ π

′
A,BM → π′A,BN ∶A

Figure 3: Equations on reductions (Congruence)
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Category

Γ ⊢ P1 ∶M1 →M2∶A Γ ⊢ P2 ∶M2 →M3∶A Γ ⊢ P3 ∶M3 →M4∶A

Γ ⊢ (P1 ;M2
(P2 ;M3

P3)) ≡ ((P1 ;M2
P2) ;M3

P3) ∶M1 →M4∶A

Γ ⊢ P ∶M → N ∶A

Γ ⊢ (P ;N N) ≡ P ∶M → N ∶A

Γ ⊢ P ∶M → N ∶A

Γ ⊢ (M ;M P ) ≡ P ∶M → N ∶A

Beta and Eta

Γ, x∶A ⊢ P ∶M →M ′
∶B Γ ⊢ Q ∶ N → N ′∶A

Γ ⊢ ((λx∶A.P )Q) ≡ P [Q/x] ∶ (λx∶A.M)N →M ′[N ′/x]∶B

Γ ⊢ P ∶M → N ∶BA

Γ ⊢ P ≡ λx∶A.(Px) ∶M → N ∶BA
(x ∉ Γ)

Γ ⊢ P ∶M1 →M2∶A Γ ⊢ Q ∶ N1 → N2∶B

Γ ⊢ π(P,Q) ≡ P ∶ π(M1,N1)→M2∶A

Γ ⊢ P ∶M1 →M2∶A Γ ⊢ Q ∶ N1 → N2∶B

Γ ⊢ π′(P,Q) ≡ Q ∶ π′(M1,N1)→ N2∶A

Γ ⊢ P ∶ (M1,N1)→ (M2,N2)∶A ×B

Γ ⊢ P ≡ (πP,π′P ) ∶ (M1,N1)→ (M2,N2)∶A ×B

Γ ⊢ P ∶M → N ∶1

Γ ⊢ P ≡ () ∶M → N ∶1

Figure 4: Equations on reductions (Category and Beta-Eta)
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Lifting

(r ∈ X(Γ ⊢M1,M2∶A)) ∆ ⊢ P ∶ N1 → N2∶Γ ∆ ⊢ Q ∶ N2 → N3∶Γ

Γ ⊢ r⟪P ;N2
Q⟫ ≡M1[P ] ;M1[N2] r⟪Q⟫ ∶M1[N1]→M2[N3]∶A

(r ∈ X(Γ ⊢M1,M2∶A)) ∆ ⊢ P ∶ N1 → N2∶Γ ∆ ⊢ Q ∶ N2 → N3∶Γ

Γ ⊢ r⟪P ;N2
Q⟫ ≡ r⟪P⟫ ;M2[N2]M2[Q] ∶M1[N1]→M2[N3]∶A

Γ ⊢ P ∶M1 →M2∶G Γ ⊢ Q ∶M2 →M3∶G

Γ ⊢ (c(P ;M2
Q)) ≡ (c(P ) ;c(M2) c(Q)) ∶M1 →M3∶A

(c ∈ X(G ⊢ A))

Γ, x∶A ⊢ P ∶M1 →M2∶B Γ, x∶A ⊢ Q ∶M2 →M3∶B

Γ ⊢ (λx∶A.(P ;M2
Q)) ≡ ((λx∶A.P ) ;λx∶A.M2

(λx∶A.Q))
∶ λx∶A.M1 → λx∶A.M3∶B

A

Γ ⊢ P ∶M1 →M2∶B
A

Γ ⊢ P ′ ∶M2 →M3∶B
A Γ ⊢ Q ∶ N1 → N2∶A Γ ⊢ Q′ ∶ N2 → N3∶A

Γ ⊢ ((P ;M2
P ′)(Q ;N2

Q′)) ≡ ((PQ) ;M2N2
(P ′Q′)) ∶M1N1 →M3N3∶B

Γ ⊢ P ∶M1 →M2∶A

Γ ⊢ P ′ ∶M2 →M3∶A Γ ⊢ Q ∶ N1 → N2∶B Γ ⊢ Q′ ∶ N2 → N3∶B

Γ ⊢ ((P ;M2
P ′), (Q ;N2

Q′)) ≡ ((P,Q) ;(M2,N2) (P
′,Q′))

∶ (M1,N1)→ (M3,N3)∶A ×B

Γ ⊢ P ∶M1 →M2∶A ×B Γ ⊢ Q ∶M2 →M3∶A ×B

Γ ⊢ (πA,B(P ;M2
Q)) ≡ (πA,BP ;πA,BM2

πA,BQ) ∶M1 →M3∶A

Γ ⊢ P ∶M1 →M2∶A ×B Γ ⊢ Q ∶M2 →M3∶A ×B

Γ ⊢ (π′A,B(P ;M2
Q)) ≡ (π′A,BP ;π′

A,B
M2

π′A,BQ) ∶M1 →M3∶B

Figure 5: Equations on reductions (Lifting)
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