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Abstract. Adding rewriting to a proof assistant based on the Curry-Howard isomor-
phism, such as Coq, may greatly improve usability of the tool. Unfortunately adding an
arbitrary set of rewrite rules may render the underlying formal system undecidable and
inconsistent. While ways to ensure termination and confluence, and hence decidability of
type-checking, have already been studied to some extent, logical consistency has got little
attention so far.
In this paper we show that consistency is a consequence of canonicity, which in turn

follows from the assumption that all functions defined by rewrite rules are complete. We
provide a sound and terminating, but necessarily incomplete algorithm to verify this prop-
erty. The algorithm accepts all definitions that follow dependent pattern matching schemes
presented by Coquand and studied by McBride in his PhD thesis. It also accepts many
definitions by rewriting including rules which depart from standard pattern matching.

1. Introduction

Equality is ubiquitous in mathematics. Yet it turns out that proof assistants based on
the Curry-Howard isomorphism, such as Coq [11], are not very good at handling equality.
While proving an equality is not a problem in itself, using already established equalities is
quite problematic. Apart from equalities resulting from internal reductions (namely, beta
and iota reductions), which can be used via the conversion rule of the calculus of inductive
constructions without being recorded in the proof term, any other use of an equality requires
giving all details about the context explicitly in the proof. As a result, proof terms may
become extremely large, taking up memory and making type-checking time consuming:
working with equations in Coq is not very convenient.
A straightforward idea for reducing the size of proof terms is to allow other equalities in

the conversion, making their use transparent. This can be done by using user-defined rewrite
rules. However, adding arbitrary rules may easily lead to logical inconsistency, making the
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proof environment useless. It is of course possible to put the responsibility on the user, but
it is contrary to the current Coq policy to guarantee consistency of developments without
axioms. Therefore it is desirable to retain this guarantee when rewriting is added to Coq.
Since consistency is undecidable in the presence of rewriting in general, one has to find some
decidable criteria satisfied only by rewriting systems which do not violate consistency.
The syntactical proof of consistency of the calculus of constructions, which is the basis

of the formalism implemented in Coq, requires every term to have a normal form [2]. The
same proof is also valid for the calculus of inductive constructions [24], which is even closer
to the formalism implemented in Coq.
There exist several techniques to prove (strong) normalization of the calculus of con-

structions with rewriting [1, 7, 6, 21, 22], following numerous works about rewriting in the
simply-typed lambda calculus. Practical criteria for ensuring other fundamental properties,
like confluence, subject reduction and decidability of type-checking are addressed e.g. in [6].
Logical consistency is also studied in [6]. It is shown under the assumption that for

every symbol f defined by rewriting, f(t1, . . . , tn) is reducible if t1 . . . tn are terms in normal
form in the environment consisting of one type variable. Apart from a proof sketch that
this is the case for the two rules defining the induction predicate for natural numbers and
a remark that this property resembles the completeness of definitions, practical ways to
satisfy the assumption of the consistency lemma are not discussed.
Techniques for checking completeness of definitions are known for almost 30 years for

the first-order algebraic setting [14, 20, 15]. More recently, their adaptations to type theory
appeared in [12, 16] and [18]. In this paper we show how the latter algorithm can be tailored
to the calculus of constructions extended with rewriting. We study a system where the set
of available function symbols and rewrite rules are not known from the beginning but may
grow as the proof development advances, as it is the case with concrete implementations of
modern proof assistants.
We show that logical consistency is an easy consequence of canonicity, which in turn

can be proved from completeness of definitions by rewriting, provided that termination
and confluence are proved first. Our completeness checking algorithm closes the list of
necessary procedures needed to guarantee logical consistency of developments in a proof
assistant based on the calculus of constructions with rewriting.
In fact, in this paper we work in a framework which is slightly more general than

the calculus of constructions, namely that of pure type systems, of which the calculus of
constructions is an instance. However, since termination and confluence are used both in
our algorithm and in the proof of its correctness, our results are useful only if a termination
and confluence criteria exist for a given pure type system extended with rewriting. Some
work in this direction has been done, e.g., in [4].

2. Rewriting in the Calculus of Constructions

Let us briefly discuss how we imagine introducing rewriting in Coq and what problems
we encounter on the way to a usable system.
From the user’s perspective definitions by rewriting could be entered just as all other

definitions:1

1The syntax of the definition by rewriting is inspired by the experimental “recriture” branch of Coq
developed by Blanqui. For the sake of clarity we omit certain details, like environments of rule variables and
allow the infix + in the definition.
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Inductive nat : Set := O : nat | S : nat → nat.
Symbol + : nat → nat → nat
Rules

O + y −→ y

x + O −→ x

(S x) + y −→ S (x + y)
x + (S y) −→ S (x + y)
x + (y + z) −→ (x + y) + z.
Parameter n : nat.

The above fragment can be interpreted as an environment consisting of the inductive defini-
tion of natural numbers, symmetric definition by rewriting of addition and the declaration of
a variable n of type nat . In this environment all rules for + contribute to conversion. For in-
stance both ∀x :nat. x+ 0 = x and ∀x :nat. 0 + x = x can be proved by λx :nat. refl nat x,
where refl is the only constructor of the Leibniz equality inductive predicate. Note that the
definition of + is terminating and confluent. The latter can be checked by an (automatic)
examination of its critical pairs.
Rewrite rules can also be used to define higher-order and polymorphic functions, like

the map function on polymorphic lists. In this example, the first two rules correspond to
the usual definition of map by pattern matching and structural recursion and the third rule
can be used to quickly get rid of the map function in case one knows that f is the identity
function.

Symbol map : forall (A:Set), (A → A) → list A → list A
Rules

map A f (nil A) −→ nil A
map A f (cons A a l) −→ cons A (f a) (map A f l)
map A (fun x ⇒ x) l −→ l

Even though we consider higher-order rewriting, we choose the simple matching modulo
α-conversion. Higher-order matching is useful for example to encode logical languages by
higher-order abstract syntax, but it is seldom used in Coq where modeling relies rather on
inductive types. Instead of higher-order matching, one needs a possibility not to specify
certain arguments in left-hand sides, and hence to work with rewrite rules built from terms
that may be not typable. Consider, for example the type tree of trees with size, holding
some Boolean values in the nodes, and the function rotr performing a right rotation in the
root of the tree.

Inductive tree : nat → Set :=
Leaf : tree O

| Node : forall n1:nat, tree n1 → bool → forall n2:nat, tree n2
→ tree (S(n1+n2)).

Symbol rotr : forall n:nat, (tree n) → (tree n)
Rules

rotr 0 t −→ t

rotr ? (Node O t1 a n2 t2) −→ Node O t1 a n2 t2

rotr ?1 (Node ?2 (Node ?3 A b ?4 C) d ?5 E)

−→ Node ?3 A b (S (?4 + ?5))(Node ?4 C d ?5 E)
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The first argument of rotr is the size of the tree and the second is the tree itself. The first
two rules cover the trees which cannot be rotated and the third one performs the rotation.
The ? marks above should be treated as different variables. The information they hide

is redundant for typable terms: if we take the third rule for example, the values of ?3, ?4
and ?5 must correspond to the sizes of the trees A, C and E respectively, ?2 must be equal
to S(?3+?4) and ?1 to S(?2+?5). Note that by not writing these subterms we make the rule
left-linear (and therefore easier to match) and avoid critical pairs with +, hereby helping
the confluence proof.
This way of writing left-hand sides of rules was already used by Werner in [24] to define

elimination rules for inductive types, making them orthogonal (the left-hand sides are of

the form Ielim P ~f ~w (c ~x), where P , ~f , ~w, ~x are distinct variables and c is a constructor
of I). In [6], Blanqui gives a precise account of these omissions using them to make more
rewriting rules left-linear. Later, the authors of [8] show that these redundant subterms can
be completely removed from terms (in a calculus without rewriting however). In [3], a new
optimized convertibility test algorithm is presented for Coq, which ignores testing equality
of these redundant arguments.
In our paper we do not explicitly specify which arguments should/could be replaced

by ? and do not restrict left-hand sides to be left-linear. Instead, we rely on an acceptance
condition to suitably restrict the form of acceptable definitions by rewriting to guarantee
the needed metatheoretical properties listed in the next section.
It is also interesting to note that when the first argument of rotr is ?1 then we may

understand it as S(?2+?5) matched to terms modulo the convertibility relation and not just
syntactically (i.e., modulo α-conversion).

3. Pure Type Systems with Generative Definitions

Even though most papers motivated by the development of Coq concentrate on the
calculus of constructions, we present here a slightly more general formalization of a pure
type system with inductive definitions and definitions by rewriting. The presentation, taken
from [9, 10], is quite close to the way these elements could be implemented in Coq. The
formalism is built upon a set of PTS sorts S, a binary relation A and a ternary relation R
over S governing the typing rules (Term/Ax) and (Term/Prod) respectively (Figure 1).
The syntactic class of pseudoterms is defined as follows:

t ::= v | s | t1 t2 | λv :t1.t2 | (v :t1)t2
A pseudoterm can be a variable v ∈ Var , a sort s ∈ S, an application, an abstraction
or a product. We write |t| to denote the size of the pseudoterm t, with |v| = |s| = 1.
We use Greek letters γ, δ to denote substitutions which are finite partial maps from vari-
ables to pseudoterms. The postfix notation is used for the application of substitutions to
pseudoterms.
Inductive definitions and definitions by rewriting are generative, i.e. they are stored in

the environment and are used in terms only through names they “generate”. An environ-
ment is a sequence of declarations, each of them is a variable declaration v : t, an inductive
definition Ind(ΓI := ΓC), where ΓI and ΓC are environments providing names and types
of (possibly mutually defined) inductive types and their constructors, or a definition by
rewriting Rew(Γ, R), where Γ is an environment providing names and types of (possibly
mutually defined) function symbols and R is a set of rewrite rules defining them. Types of
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inductive types, constructors and function symbols determine their arity: given v : t in an
inductive definition or a definition by rewriting, if t is of the form (x1 :t1) . . . (xn :tn)t̂ where
t̂ is not a product, then n is the arity of v.
A rewrite rule is a triple denoted by ∆ ⊢ l −→ r, where l and r are pseudoterms and

∆ is an environment, providing names and types of variables occurring in the left- and
right-hand sides l and r.
Given an environment E, inductive types, constructors and function symbols declared

in E are called constants (even though syntactically they are variables). We often write
h(e1, . . . , en) to denote the application of a constant h to pseudoterms e1, . . . , en, when n is
the arity of h. General environments are denoted by E and environments containing only
variable declarations are denoted by Γ, ∆, G, D. We assume that names of all declarations
in environments are pairwise disjoint. A pair consisting of an environment E and a term e
is called a sequent and denoted by E ⊢ e. A sequent is well-typed if E ⊢ e : t for some t.

Definition 3.1. A pure type system with generative definitions is defined by the typing
rules in Figure 1, where:

• POS is a positivity condition for inductive definitions (see assumptions below).
• ACC is an acceptance condition for definitions by rewriting (idem).
• The relation ≈ used in the rule (Term/Conv) is the smallest congruence on well typed
terms, generated by −→ which is the sum of beta and rewrite reductions, denoted by
−→β and −→R respectively (for exact definition see [10], Section 2.8).

• The notation δ : Γ → E means that δ is a well-typed substitution, i.e. E ⊢ vδ : tδ for all
v : t ∈ Γ.

As in [22, 6], recursors and their reduction rules have no special status and they are supposed
to be expressed by rewriting.

Assumptions. We assume that we are given a positivity condition POS for inductive def-
initions and an acceptance condition ACC for definitions by rewriting. Together with the
right choice of the PTS they must imply the following properties:

P1 subject reduction, i.e. E ⊢ e : t, E ⊢ e −→ e′ implies E ⊢ e′ : t
P2 uniqueness of types, i.e. E ⊢ e : t, E ⊢ e : t′ implies E ⊢ t ≈ t′.
P3 strong normalization, i.e. E ⊢ ok implies that reductions of all well-typed terms in E
are finite

P4 confluence, i.e. E ⊢ e : t, E ⊢ e −→∗ e′, E ⊢ e −→∗ e′′ implies E ⊢ e′ −→∗ ê and
E ⊢ e′′ −→∗ ê for some ê.

These properties are usually true in all well-behaved type theories. They are for example
all proved for the calculus of algebraic constructions [6], an extension of the calculus of con-
structions with inductive types and rewriting, where POS is the strict positivity condition
as defined in [17], and ACC is the General Schema.
From now on, we use the notation t↓ for the unique normal form of t.

4. Consistency and Completeness

Consistency of the calculus of constructions (resp. calculus of inductive constructions)
can be shown by rejecting all cases of a hypothetical normalized proof e of (x : ∗)x in a
closed environment, i.e. empty environment (resp. an environment containing only inductive
definitions and no axioms). Our goal is to extend the definition of closed environments to the
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Let ΓI = I1 : t
I
1 . . . In : tIn and ΓC = c1 : t

C
1 . . . cm : tCm

E ⊢ tIj : sj tIj =
−−−−→
(z : Zj) s

′

j for j = 1 . . . n

E; ΓI ⊢ tCi : ŝi tCi =
−−−−→
(z : Z ′

i) Iji ~w for i = 1 . . . m

E ⊢ Ind(ΓI := ΓC) : correct
if POSE(Γ

I := ΓC)

Let Γ = f1 : t1 . . . fn : tn and R = {Γi : li −→ ri}i=1...m, where Γi = xi1 : t
i
1; . . . ;x

i
ni

: tini

E ⊢ tk : sk for k = 1 . . . n
E; Γi ⊢ ok FV (li, ri) ⊆ Γi for i = 1 . . . m

E ⊢ Rew(Γ, R) : correct
if ACCE(Γ, R)

ǫ ⊢ ok

E ⊢ ok E ⊢ t : s

E; v : t ⊢ ok

E ⊢ ok E ⊢ Ind(ΓI := ΓC) : correct

E; Ind(ΓI := ΓC) ⊢ ok

E ⊢ ok E ⊢ Rew(Γ, R) : correct

E;Rew(Γ, R) ⊢ ok

E1; v : t;E2 ⊢ ok

E1; v : t;E2 ⊢ v : t

E ⊢ ok

E ⊢ Ii : tIi

E ⊢ ok

E ⊢ ci : tCi
where







E = E1; Ind(Γ
I := ΓC);E2

ΓI = I1 : t
I
1 . . . In : tIn

ΓC = c1 : t
C
1 . . . cm : tCm

E ⊢ ok

E ⊢ fi : ti

E ⊢ ok δ : Γi → E

E ⊢ liδ −→R riδ
where







E = E1;Rew(Γ, R);E2

Γ = f1 : t1 . . . fn : tn
R = {Γi : li −→ ri}i=1...m

(Term/Prod)
E ⊢ t1 : s1 E; v : t1 ⊢ t2 : s2

E ⊢ (v :t1)t2 : s3
where s1, s2, s3 ∈ S

(Term/Abs)
E; v : t1 ⊢ e : t2 E ⊢ (v :t1)t2 : s

E ⊢ λv :t1.e : (v :t1)t2

(Term/Ax)
E ⊢ ok

E ⊢ s1 : s2
where (s1, s2) ∈ A

(Term/App)
E ⊢ e : (v :t1)t2 E ⊢ e′ : t1

E ⊢ e e′ : t2{v 7→ e′}

(Term/Conv)
E ⊢ e : t E ⊢ t′ : s E ⊢ t ≈ t′

E ⊢ e : t′

Figure 1: Definition correctness, environment correctness and lookup, PTS rules

calculus of constructions with rewriting, allowing it to include a certain class of definitions
by rewriting.
Let us try to identify that class. If we reanalyze e in the new setting, the only new

possible normal form of e is an application f(~e) of a function symbol f , coming from a
rewrite definition Rew(Γ, R), to some arguments in normal form. There is no obvious
argument why such terms cannot be proofs of (x : ∗)x. On the other hand if we knew
that such terms were always reducible, we could complete the consistency proof. Let us
call COMP(Γ, R) the condition on rewrite definitions we are looking for (i.e. f(~e) is always
reducible), which can also be read as: the function symbols from Γ are completely defined
by the set of rules R.
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Note that the completeness of f has to be checked much earlier than it is used: we
use it in a given closed environment E = E1;Rew(Γ, R);E2 but it has to be checked when
f is added to the environment, i.e. in the environment E1. It implies that completeness
checking has to account for environment extension and can be performed only with respect
to arguments of such types, of which the set of normal forms could not change in the future.
This is the case for arguments of inductive types.
The requirement that functions defined by rewriting are completely defined could very

well be included in the condition ACC. On the other hand, the separation between ACC
and COMP is motivated by the idea of working with abstract function symbols, equipped
with some rewrite rules not defining them completely. For example if + from Section 2
were declared using only the third rewrite rule, one could develop a theory of an associative
function over natural numbers.
The intuition behind the definitions given below is the following. A rewrite definition

Rew(Γ, R) is complete (satisfies COMP(Γ, R)) if for all f in Γ, the goal f(x1, . . . , xn) is
covered by R. A goal is covered if all its instances are immediately covered, i.e. head-
reducible by R. Following the discussion above we limit ourselves to normalized canonical
instances, i.e. built from constructors wherever possible.

Definition 4.1 (Canonical form and canonical substitution). Given a judgment E ⊢ e : t
we say that the term e is in canonical form if and only if:

• if t↓ is an inductive type then e = c(e1, . . . , en) for some constructor c and terms e1, . . . , en
in canonical form

• otherwise e is arbitrary

Let ∆ be a variable environment and E a correct environment. We call δ : ∆ → E canonical
if for every variable x ∈ ∆, the term xδ is canonical.

From now on, let E be a global environment and let Rew(Γ, R) be a rewrite definition
such that E ⊢ Rew(Γ, R) : correct. Let f : (x1 : t1) . . . (xn : tn) t ∈ Γ be a function symbol
of arity n.

Definition 4.2. A goal is a well-typed sequent E; Γ;∆ ⊢ f(e1, . . . , en).
A normalized canonical instance of the goal E; Γ;∆ ⊢ f(e1, . . . , en) is a well-typed

sequent E;Rew(Γ, R);E′ ⊢ f(e1δ↓, . . . , enδ↓) for any canonical substitution δ : ∆ →
E;Rew(Γ, R);E′.
A term e is immediately covered by R if there is a rule G ⊢ l −→ r in R and a

substitution γ such that lγ = e. By obvious extension we can also write that a goal or a
normalized canonical instance is immediately covered by R.
A goal is covered by R if all its normalized canonical instances are immediately covered

by R.

Note that, formally, a normalized canonical instance is not a goal. The difference is
that the conversion corresponding to the environment of an instance contains reductions
defined by R, while the one of a goal does not.

Definition 4.3 (Complete definition). A rewrite definition Rew(Γ;R) is complete in the
environment E, which is denoted by COMPE(Γ;R), if and only if for all function symbols
f : (x1 : t1) . . . (xn : tn) t ∈ Γ the goal E; Γ;x1 : t1; . . . ;xn : tn ⊢ f(x1, . . . , xn) is covered
by R.
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Example 4.4. The terms (S O), λx:nat.x and (Node O Leaf true O Leaf) are canoni-
cal, while (O + O) and (Node nA A b O Leaf) are not. Given the definition of rotr from
Section 2 consider the following terms:

t1 = rotr (S (nA + nC)) (Node nA A b nC C)
t2 = rotr (S O) (Node O Leaf true O Leaf)

Both (with their respective environments) are goals for rotr, and t2 (with a slightly different
environment) is also a normalized canonical instance of t1. The goal t1 is not immediately
covered, but its instance t2 is, as it is head-reducible by the second rule defining rotr. Since
other instances of t1 are also immediately covered, the goal is covered (see Example 5.20).

It follows that completeness of definitions by rewriting guarantees canonicity and logical
consistency.

Definition 4.5. An environment E is closed if and only if it contains only inductive defini-
tions and complete definitions by rewriting, i.e. for each partition of E into E1;Rew(Γ, R);E2

the condition COMPE1
(Γ, R) is satisfied.

Lemma 4.6 (Canonicity). Let E be a closed environment. If E ⊢ e : t and e is in normal
form then e is canonical.

Proof. By induction on the size of e. If t↓ is not an inductive type then any e is canonical.
Otherwise, let us analyze the structure of e. It cannot be a product, an abstraction or a
sort because t↓ is an inductive type. Since E is closed, it is not a variable either. Hence
e is of the form e′e1 . . . em (with m possibly equal 0), where e′ is not an application. The
term e′ can be neither a product, nor a sort (they cannot be applied), nor a variable (E is
closed). It is not an abstraction, since e is in normal form. The only possibility left is that
e′ is a constant h of arity n ≤ m, and we get e = h(e1, . . . , en) en+1 . . . em.
Since t↓ is an inductive type, h cannot be an inductive type. If it is a construc-

tor then n = m and by induction hypothesis e1, . . . , en are in canonical form and so
is h(e1, . . . , en). If h is a function symbol then E = E1;Rew(Γ, R);E2 for some E1, E2

and h : (x1 : t1) . . . (xn : tn) t̂ ∈ Γ of arity n ≤ m. Since E is closed, Rew(Γ, R) is com-
plete. Let us show that E ⊢ h(e1, . . . , en) is a normalized canonical instance of E1; Γ;∆ ⊢
h(x1, . . . , xn), where ∆ = x1 : t1; . . . ;xn : tn. By induction hypothesis, terms e1, . . . en
are canonical and consequently δ : ∆ → E defined by δ(xi) = ei is canonical. Moreover,
h(e1, . . . , en) = h(x1δ↓, . . . , xnδ↓) since e1, . . . en are in normal form. But every normalized
canonical instance of a complete definition is reducible, which contradicts the assumption
that e = h(e1, . . . , en) en+1 . . . em is in normal form.

Theorem 4.7. Every closed environment is consistent.

Proof. Let E be a closed environment. Suppose that E ⊢ e : (x : ⋆)x. Since E ⊢ ok and
E ⊢ Ind(False : ⋆ :=) : correct we have E′ ⊢ ok where E′ = E; Ind(False : ⋆ :=). Moreover
E′ is a closed environment.
Hence, we have E′ ⊢ e False : False. By Lemma 4.6, the normal form of e False is

canonical. Since False has no constructors, this is impossible.
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5. Checking Completeness

The objective of this section is to provide an algorithm for checking completeness of
definitions by rewriting. The algorithm presented in Subsection 5.2 checks that a goal is
covered using successive splitting (Definition 5.3), i.e., replacement of variables of inductive
types by constructor patterns. In order to know which constructor terms can replace a
given variable, one has to compare types and hence an algorithm for unification modulo
conversion is needed (Definition 5.2). Consider for example the first rule of the definition of
rotr. It is clear that only Leaf can replace t in rotr O t because other trees have types
that do not unify with tree O.
Correctness of the completeness checking algorithm is proved in Lemma 5.19. It is done

using an additional assumption on rewrite systems called preservation of reducibility which
is discussed in Subsection 5.1.

Definition 5.1 (Unification problem). A quadruple E,∆ ⊢ t
.
= s, where E is an environ-

ment, ∆ a variable environment and s, t are terms, is a unification equation in E. A uni-
fication problem in E is a finite set of unification equations. Without loss of generality we
may assume that the variable environments ∆ in all equations are the same.
A unifier or a solution of the unification problem U is a substitution γ : ∆ → E;E′

such that E;E′ ⊢ tγ ≈ sγ for every E,∆ ⊢ t
.
= s in U . We say that E′ is the co-domain

of γ, which is denoted by Ran(γ).
A unifier γ is the most general unifier if Ran(γ) is a variable environment ∆′ and

for every unifier δ : ∆ → E;E′′ there exist a substitution δ′ : ∆′ → E;E′′, such that
E;E′′ ⊢ δ ≈ γ; δ′.

Definition 5.2 (Correct unification algorithm). A unification algorithm is a procedure
which for every unification problem U = {E,∆ ⊢ ti

.
= si} returns a substitution γ, a

bottom ⊥, or a question mark ?. The algorithm is correct if and only if: if it answers γ, it
is the most general unifier γ : ∆ → E;∆′ such that ∆′ ⊆ ∆ and for all x ∈ ∆′, γ(x) = x; if
it answers ⊥, U has no unifier.

Since unification modulo conversion is undecidable, every correct unification algorithm
must return ? in some cases, which may be seen as too difficult for the algorithm. An
example of such a partial unification algorithm is constructor unification, that is first-order
unification with constructors and type constructors as rigid symbols, answering ? whenever
one compares a non-trivial pair of terms involving non-rigid symbols.
From now on we assume the existence of a correct (partial) unification algorithm Alg.

Definition 5.3 (Splitting). Let E; Γ;∆ ⊢ f(~e) be a goal. A variable x is a splitting variable
if x : t ∈ ∆ and t↓ = I~u for some inductive type I ∈ E.
A splitting operation considers all constructors c of the inductive type I and for each

of them constructs the following unification problem Uc:

E; Γ, ∆;∆c ⊢ x
.
= c(z1, . . . zk) E; Γ, ∆;∆c ⊢ I~u

.
= I ~w

where c : (z1 : Z1) . . . (zk : Zk).I ~w and ∆c = z1 : Z1, . . . , zk : Zk.
If for all constructors c, Alg(Uc) 6= ?, the splitting is successful. In that case, let

Sp(x) = {σc | σc = Alg(Uc) ∧ Alg(Uc) 6= ⊥}. The result of splitting is the set of goals
{E; Γ;Ran(σc) ⊢ f(~e)σc}σc∈Sp(x).
If Alg(Uc) = ? for some c, the splitting fails.
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Example 5.4. If one splits the goal rotr n t along n, one gets two goals: rotr O t and
rotr (S m) t. The first one is immediately covered by the first rule for rotr and if we
split the second one along t, the Leaf case is impossible, because tree O does not unify
with tree (S m) and the Node case gives rotr (S (nA + nC)) (Node nA A b nC C).

The following lemma states the correctness of splitting, i.e. that splitting does not
decrease the set of normalized canonical instances. Note that the lemma would also hold
if we had a unification algorithm returning an arbitrary set of most general solutions, but
in order for the coverage checking algorithm to terminate the set of goals resulting from
splitting must be finite.

Lemma 5.5. Let E; Γ;∆ ⊢ f(~e) be a coverage goal and let {E; Γ;Ran(σc) ⊢ f(~e)σc}σc∈Sp(x)

be the result of successful splitting along x : I~u ∈ ∆. Then every normalized canonical
instance of E; Γ;∆ ⊢ f(~e) is a normalized canonical instance of E; Γ;Ran(σc) ⊢ f(~e)σc for
some σc ∈ Sp(x).

Proof. Let E;Rew(Γ, R);E′ ⊢ f(e1δ↓, . . . , enδ↓) be a normalized canonical instance ac-
cording to a substitution δ : ∆ → E;Rew(Γ, R);E′. Since δ is canonical, xδ is a con-
structor term c(s1, . . . sk) for some constructor c : (z1 : Z1) . . . (zk : Zk).I ~w of I. Let
us show that E;Rew(Γ, R);E′ ⊢ f(e1δ↓, . . . , enδ↓) is a normalized canonical instance of
E; Γ;Ran(σc) ⊢ f(e1σc, . . . , enσc). Let ∆c = z1 : Z1, . . . , zk : Zk.
First note that δ ∪ [~s/~z] : ∆;∆c → E;Rew(Γ, R);E′ is a solution of the unification

problem E; Γ, ∆;∆c ⊢ x
.
= c(z1, . . . zk) and E; Γ, ∆;∆c ⊢ I~u

.
= I ~w, from the definition

of splitting. Indeed, xδ = c(s1, . . . sk) = c(z1, . . . zk)[~s/~z] and E;Rew(Γ, R);E′ ⊢ (I~u)δ ≈
(I ~w)[~s/~z] since they are both types of c(s1, . . . sk) in E;Rew(Γ, R);E′.
By definition of σc, which is the most general unifier computed by a correct unification

algorithm, E; Γ;Ran(σc) ⊢ δ ∪ [~s/~z] ≈ σc; δ
′ for some δ′ : Ran(σc) → E;Rew(Γ, R);E′,

where Ran(σc) ⊆ ∆;∆c. Consequently, E; Γ;Ran(σc) ⊢ δ′(zm) ≈ sm for zm ∈ ∆c and
E; Γ;Ran(σc) ⊢ δ′(y) ≈ δ(y) for y ∈ ∆. Since ~s are canonical terms δ′↓ is a canonical
substitution.
Let us look closely at E;Rew(Γ, R);E′ ⊢ f((e1σc)(δ

′↓)↓, . . . , (enσc)(δ
′↓)↓) which is

a normalized δ′↓-instance of E; Γ;Ran(σc) ⊢ f(e1σc, . . . , enσc). Since E; Γ;Ran(σc) ⊢
δ ∪ [~s/~z] ≈ σc; δ

′, we have (emσc)(δ
′↓)↓ = (emσcδ

′)↓ = (emδ)↓ for every m. Consequently,
E;Rew(Γ, R);E′ ⊢ f(e1δ↓, . . . , enδ↓) is a normalized canonical instance of E; Γ;Ran(σc) ⊢
f(e1σc, . . . , enσc).

5.1. Preservation of Reducibility. Although one would expect that an immediately
covered goal is also covered, it is not always true, even for confluent systems. It turns
out that we need a property of critical pairs that is stronger than just joinability. Let us
suppose that or : bool → bool → bool is defined by four rules by cases over true and
false and that if : bool → bool → bool → bool is defined by two rules by cases on
the first argument.

Inductive I : bool → Set := C : forall b:bool, I (or b b).
Symbol f: forall b:bool, I b → bool
Rules

f (or b b) (C b) −→ if b (f true (C true)) (f false (C false))
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In the example presented above all expressions used in types and rules are in normal form,
all critical pairs are joinable, the system is terminating, and splitting of f b i along i
results in the only reducible goal f (or b b) (C b). In spite of that f is not completely
defined, as f true (C true) is a normalized canonical instance of f (or b b) (C b) and
it is not reducible. In order to know that an immediately covered goal is always covered we
need one more condition on rewrite rules, called preservation of reducibility.

Definition 5.6. Definition by rewriting Rew(Γ, R) preserves reducibility in an environment
E if for every critical pair 〈f(~u), rδ〉 of a rule G1 ⊢ f(~e) −→ r in R with a rule G2 ⊢ g −→ d
coming from R or from some other rewrite definition in E, the term f(~u↓) is head-reducible
by R.

Note that by using ? variables in rewrite rules one can get rid of (some) critical pairs and
hence make a definition by rewriting satisfy this property. In the example above one could
write f ? (C b) as the left-hand side. This would also make the system non-terminating,
and show that f is not really well-defined.
Of course all orthogonal rewrite systems, in particular inductive elimination schemes,

as defined in [24], preserve reducibility.

Lemma 5.7. Let E ⊢ e : t and e = f(e1, . . . en), where f of arity n comes from Rew(Γ, R)
which preserves reducibility. If e is head-reducible by R then f(e1↓, . . . en↓) is also head-
reducible by R.

Proof. By induction on −→. If e1, . . . en are in normal forms then the conclusion is obvious.
Otherwise, let G1 ⊢ f(~l) −→ r be a rule from R and γ a substitution such that f(~e) = f(~l)γ
and let us make one reduction step ei −→ e′i, using the rule G2 ⊢ g −→ d.
There are two possibilities: the reduction in ei happens either in substitution γ, i.e.

in the term γ(x), where x is a free variable of f(~l), or it happens on a position p that

belongs to f(~l). In the former case, let us do identical reduction in all other instances of x.
Obviously, we get a term f(e′1, . . . e

′

n) that is smaller than e in −→ and is still an instance

of f(~l). Hence by induction hypothesis we get the desired conclusion.

Otherwise, f(~l) and g superpose at some nonvariable position and we have f(~l)|pγ = gξ

for some position p and substitution ξ. Since we may suppose that free variables of f(~l)

and g are different, we get f(~l)|p(γ ∪ ξ) = g(γ ∪ ξ). Let δ be the most general unifier of

f(~l)|p and g and let 〈f(~u), rδ〉 be the corresponding critical pair. Since δ is the most general

unifier, there exists σ such that (γ ∪ ξ) = δ;σ and f(~e) = f(~l)γ = f(~l)(γ ∪ ξ) = f(~l)δσ

with f(~l)δσ →R f(~u)σ = f(e1, . . . e
′

i . . . en). By preservation of reducibility f(~u↓) is head-
reducible by R. Hence f(~u↓)σ is also head-reducible by R. Like above we can apply
induction hypothesis and deduce that f(~e↓) is head-reducible by R.

Lemma 5.8. Let Rew(Γ, R) preserve reducibility in an environment E, let f ∈ Γ and let
E; Γ;∆ ⊢ f(~e) be a goal. If it is immediately covered then it is covered.

Proof. Let E; Γ;∆ ⊢ f(~e) be a goal immediately covered by R and δ : ∆ → E;Rew(Γ, R);E′

be a canonical substitution. Obviously, E;Rew(Γ, R);E′ ⊢ f(~eδ) is immediately covered
by R. Hence, by Lemma 5.7 E;Rew(Γ, R);E′ ⊢ f(~eδ↓) is also immediately covered by R,
i.e. E; Γ;∆ ⊢ f(~e) is covered.
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t1 <p·1 t
′

1 ⇒ S1 t2 <p·2 t
′

2 ⇒ S2

(x :t1)t2 <p (x :t′1)t
′

2 ⇒ S1 ∪ S2

t1 <p·1 t
′

1 ⇒ S1 t2 <p·2 t
′

2 ⇒ S2

λx :t1.t2 <p λx :t′1.t
′

2 ⇒ S1 ∪ S2

t1 <p·1 t
′

1 ⇒ S1 t2 <p·2 t
′

2 ⇒ S2

t1 t2 <p t′1 t
′

2 ⇒ S1 ∪ S2

t1 <p·1 t
′

1 ⇒ S1 . . . tn <p·n t′n ⇒ Sn

h(t1, . . . , tn) <p h(t′1, . . . , t
′
n) ⇒ S1 ∪ · · · ∪ Sn

h is a constant

t1, t2 6∈ Var head(t1) 6= head(t2)

t1 <p t2 ⇒ {⊥}

t1 ∈ ∆1 t2 6∈ (Var \∆2)

t1 <p t2 ⇒ {p}

(t1 ∈ (Var \∆1) ∧ t1 = t2)∨
(t1 6∈ Var ∧ t2 ∈ ∆2)

t1 <p t2 ⇒ ∅

(t1 ∈ (Var \∆1) ∧ t1 6= t2)∨
(t2 ∈ (Var \∆2) ∧ t1 6= t2)

t1 <p t2 ⇒ {⊥}

Figure 2: Splitting matching rules, parametrized by ∆1, ∆2

5.2. Coverage Checking Algorithm. In this section we present an algorithm checking
whether a set of goals is covered by the given set of rewrite rules. The algorithm is correct
only for definitions that preserve reducibility. The algorithm, in a loop, picks a goal, checks
whether it is immediately covered, and if not, splits the goal replacing it by the subgoals
resulting from splitting. In order to ensure termination, splitting is limited to safe splitting
variables. Intuitively, a splitting variable is safe if it lies within the contour of the left-hand
side of some rule when we superpose the tree representation of the left-hand side with the
tree representation of the goal. The number of nodes that have to be added to the goal in
order to fill the tree of the left-hand side is called a distance, and a sum of distances over
all rules is called a measure. Since the measures of goals resulting from splitting are smaller
than the measure of the original goal, the coverage checking algorithm terminates.
This subsection is organized as follows. We start by defining the splitting matching

algorithm which is used to define safe splitting variables. Next, we provide definitions and
lemmas needed to prove termination of the coverage checking algorithm and then we give
the algorithm itself and the proof of its correctness. We conclude this subsection with some
positive and negative examples leading to an extension of the algorithm allowing us to
accept definitions by case analysis even if the unification algorithm is not strong enough.
Let us start with the splitting matching algorithm which finds variables in t1 that lie

within the contour of t2.

Definition 5.9 (Splitting matching). The splitting matching algorithm is defined in Fig-
ure 2. Given two sequents ∆1 ⊢ t1 and ∆2 ⊢ t2, it returns the unique set S, such that
t1 <Λ t2 ⇒ S is derivable. The set S is a subset of {⊥} ∪ {p ∈ Pos(t1) | t1|p ∈ ∆1}.

Definition 5.10 (Safe splitting variable). Let ∆1 ⊢ t1 and ∆2 ⊢ t2 be sequents such that
t2 is a left-hand side of a rule from R and let S be a set such that t1 <Λ t2 ⇒ S and ⊥ 6∈ S.
A variable x ∈ ∆1 is a safe splitting variable for ∆1 ⊢ t1 along ∆2 ⊢ t2 if it is a splitting
variable and there exists p ∈ S such that t1|p = x and either t2|p is a variable declared in
∆2 or t2|p = c(~e) for some constructor c and some terms ~e.
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The set of safe splitting variables for the sequent ∆1 ⊢ t1 along ∆2 ⊢ t2 is denoted by
SV (∆1 ⊢ t1,∆2 ⊢ t2) or SV (t1, t2) for short. SV (t, R) is the set of safe splitting variables
for t along left-hand sides of rules from R.

Example 5.11. In the goal rotr (S (S nC)) (Node O Leaf b (S nC) C) there are two
safe splitting variables b and C along the left-hand sides of the rules defining rotr.

Definition 5.12 (Distance). Let ∆1 ⊢ t1 and ∆2 ⊢ t2 be sequents and S be a set such
that t1 <Λ t2 ⇒ S. If ⊥ 6∈ S then the distance of ∆1 ⊢ t1 from ∆2 ⊢ t2, denoted by
dist(∆1 ⊢ t1,∆2 ⊢ t2) or dist(t1, t2), equals

∑

p∈S |t2|p|; otherwise it is equal to 0.

The following two lemmas state that the distance of a term decreases when we apply a
substitution, and it decreases strictly if it is a substitution resulting from splitting.

Lemma 5.13 (Distance of a substituted sequent). Let ∆1 ⊢ t1 and ∆2 ⊢ t2 be sequents and
let S be a set such that t1 <Λ t2 ⇒ S. Then for every substitution γ : ∆1 → ∆′ we have

dist(∆′ ⊢ t1γ,∆2 ⊢ t2) ≤ dist(∆1 ⊢ t1,∆2 ⊢ t2).
Moreover, if ⊥ ∈ S then dist(∆′ ⊢ t1γ,∆2 ⊢ t2) = dist(∆1 ⊢ t1,∆2 ⊢ t2) = 0.

Proof. Let Sγ be a set such that t1γ <Λ t2 ⇒ Sγ and let us denote dist(∆1 ⊢ t1,∆2 ⊢ t2)
by d and dist(∆′ ⊢ t1γ,∆2 ⊢ t2) by dγ .
If ⊥ ∈ S then d = 0. Note that ⊥ ∈ S if and only if there is a position p such that

subterms occurring at p in t1 and t2 either have different head symbols, or t2|p (resp. t1|p)
is a bound variable in t2 (resp. t1) and t1|p 6= t2|p. Of course, if we compare t1γ|p and t2|p
then either they still have different head-symbols or t2|p (resp. t1|p) is a bound variable and
t1γ|p 6= t2|p. Hence dγ = 0.
If ⊥ 6∈ S then d =

∑

p∈S |t2|p| ≥ 0. If ⊥ ∈ Sγ then obviously 0 = dγ ≤ d. Otherwise, let

us take p ∈ S and the set Qp = {q ∈ Sγ | p � q}, where � is the prefix ordering. Since all
positions from Qp are independent (as t1γ|q ∈ Var for every q ∈ Sγ) we have

∑

q∈Qp
|t2|q| ≤

|t2|p| and the equality holds only if Qp = {p}. Let us show that ∀q ∈ Sγ ∃p ∈ S p � q.
Indeed, assuming that ⊥ 6∈ Sγ , q ∈ Sγ either because q ∈ S and (t1|q)γ ∈ ∆′ or because
there is a position p ∈ S such that q = p · q′ for some q′ and (t1|pγ)|q′ ∈ ∆′. Of course, since
positions in S are independent, the sets Qp are disjoint for different p.
Hence Sγ =

⋃

p∈S Qp and dγ =
∑

q∈Sγ
|t2|q| =

∑

p∈S

∑

q∈Qp
|t2|q| ≤

∑

p∈S |t2|p| = d.

Lemma 5.14 (Distance after splitting strictly decreases). Let E; Γ;∆ ⊢ f(e1, . . . , en) be a
goal, t = f(e1, . . . , en), let G ⊢ l −→ r be one of the rewrite rules for f in R and let S be
a set such that t <Λ l ⇒ S and ⊥ 6∈ S. If x : I~u ∈ SV (t, l) is a safe splitting variable and
splitting t along x is successful then dist(Ran(σc) ⊢ tσc, G ⊢ l) < dist(∆ ⊢ t,G ⊢ l) for
every σc ∈ Sp(x).

Proof. Let σc ∈ Sp(x) and let Sc be a set such that tσc <Λ l ⇒ Sc. By Lemma 5.13 we
have dist(tσc, l) ≤ dist(t, l). Let us analyze the proof of that lemma and show that in case
of a substitution resulting from splitting there is a strict inequality between dist(tσc, l) and
dist(t, l). In the proof it was noticed that for every p ∈ S,

∑

q∈Qp
|l|q| ≤ |l|p|, where Qp =

{q ∈ Sc | p � q} and that
∑

q∈Qp
|l|q| = |l|p| only if Qp = {p}. Consequently, if we show

that there exists a position p such that p 6∈ Qp, we immediately get dist(tσc, l) < dist(t, l).
Since x : I~u is a safe splitting variable for t along l, there exists a position p ∈ S

such that t|p = x and l|p ∈ G or l|p = c′(~a) for some constructor c′. Since σc results from

successful splitting, xσc = c(~b) for some ~b. Now, there are three cases. If l|p ∈ G then
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tσc <Λ l ⇒ ∅, Qp = ∅ (and hence p 6∈ Qp). Otherwise, if c
′ 6= c then we fall into an

easy case when ⊥ ∈ Sc and dist(tσc, l) = 0 < |c′(~a)| ≤ dist(t, l). Finally, if c′ = c, the

computation of Sc passes through the step c(~b) <p c(~a) ⇒ . This means that all positions

in Qp come from ~b and that they are longer than p or that Qp = ∅. Thus p 6∈ Qp and
dist(tσc, l) < dist(t, l).

Definition 5.15 (Measure of a goal). Let E; Γ;∆ ⊢ f(e1, . . . , en) be a goal and let Rf =
{Gi ⊢ li −→ ri}i=1...m be the set of rules for f . The measure of E; Γ;∆ ⊢ f(e1, . . . , en)
equals

∑

i=1...m dist(∆ ⊢ f(e1, . . . , en), Gi ⊢ li).

It follows directly from Lemmas 5.13 and 5.14 that the measure of a goal strictly
decreases after applying a substitution resulting from splitting.

Lemma 5.16 (Measure after splitting strictly decreases). Let E; Γ;∆ ⊢ f(e1, . . . , en) be a
goal, t = f(e1, ..., en), Rf = {Gi ⊢ li −→ ri}i=1...m be the set of rules for f and S be a set
such that t <Λ lj ⇒ S for some j ∈ {1, . . . ,m} and ⊥ 6∈ S. If x : I~u ∈ SV (t, R) is a safe
splitting variable and {φ1, . . . , φn} is the result of successful splitting of t along x then the
measure of every φi is strictly smaller than the measure of t.

Proof. For every σc ∈ Sp(x), we have to show that
∑

i=1..m dist(tσc, li) <
∑

i=1..m dist(t, li).
This follows from dist(tσc, lj) < dist(t, lj), which is the consequence of Lemma 5.14 and
dist(tσc, li) ≤ dist(t, li) for all i = 1 . . . m, i 6= j, which follows from Lemma 5.13.

Definition 5.17 (Coverage checking algorithm). Let W be a set of pairs consisting of a
goal and a set of safe variables of that goal along left-hand sides of rules from R and let
CE be a set of goals. The coverage checking algorithm works as follows:

Initialize
W = {(E; Γ;x1 : t1; . . . ;xn : tn ⊢ f(x1, . . . , xn), SV (f(x1, . . . , xn), R))}
CE = ∅

Repeat
(1) choose a pair (φ,X) from W ,
(2) if φ is immediately covered by one of the rules from R then

W := W \ {(φ,X)}
(3) otherwise
(a) if X = ∅ then W := W \ {(φ,X)}, CE := CE ∪ {φ}
(b) otherwise choose x ∈ X; split φ along x

(i) if splitting is successful and returns {φ1, . . . , φn} then
W := W \ {(φ,X)} ∪ {(φi, SV (φi, R))}i=1...n,

(ii) otherwise W := W \ {(φ,X)} ∪ {(φ,X \ {x})}

until W = ∅

Lemma 5.18. The cover checking algorithm terminates.

Proof. Let us consider the following measure M(W ): the multiset of lexicographically or-
dered pairs consisting of the measure of φ and the size of X, for all (φ,X) ∈ W . We will
show that every loop of the algorithm strictly decreases M(W ). Consider (φ,X) ∈ W . If φ
is immediately covered then obviously the measure of W \ {(φ,X)} is strictly smaller than
the measure of W . Otherwise, we split φ along some x ∈ X. If splitting fails then (φ,X) is
replaced by (φ,X \{x}) and the size of the second component strictly decreases. If splitting
is successful and returns {φ1, . . . , φn} then (φ,X) is replaced by {(φi, SV (φi, R))}i=1...n. By
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Lemma 5.16 the measures of goals from {φ1, . . . , φn} are strictly smaller than the measure
of φ and consequently M(W ) strictly decreases.

Lemma 5.19. If Rew(Γ, R) preserves reducibility and the algorithm stops with CE = ∅
then the initial goal is covered.

Proof. Let us consider a successful run of the algorithm, performing a finite number of times
the body of the Repeat loop and resulting in CE = ∅. By induction on n, the number of
Repeat steps until the end of the algorithm, we prove that the goals appearing in W are
covered.
The base case, for n = 0, is trivial since W0 is empty.
Now suppose that n steps before the end of the algorithm all goals in Wn are covered

and let us check that this was true n+1 steps before the end, i.e. one step of the algorithm
earlier.
In case 2,Wn+1 contains all goals fromWn and one goal φ which is immediately covered

by a rule in R. By preservation of reducibility (Lemma 5.8) every normalized canonical
instance of φ is also immediately covered and consequently all goals of Wn+1 are covered.
Case 3(a) is impossible since it makes the set CE non-empty.
In case 3(b)i, Wn+1 contains some of the goals from Wn and one goal φ whose subgoals

resulting from successful splitting are already in Wn. By Lemma 5.5 the set of normalized
canonical instances of these subgoals contains the set of normalized canonical instances of φ.
Hence Wn+1 is covered.
In case 3(b)ii the set of goals in Wn+1 and Wn are equal.
Hence the initial goal in W is also covered.

Example 5.20. The beginning of a possible run of the algorithm for the function rotr is
presented already in Example 5.4. Both splitting operations are performed on safe vari-
ables, as required. We are left with the goal rotr (S (nA + nC)) (Node nA A b nC C).
Splitting along A results in:

rotr (S (O + nC)) (Node O Leaf b nC C)

rotr (S((S(nX+nZ))+nC)) (Node (S(nX+xZ)) (Node nX X y nZ Z) b nC C)

immediately covered by the second and the third rule respectively.
Since we started with the initial goal rotr n t and since the definition of rotr preserves

reducibility, it is complete.

When the coverage checking algorithm stops with CE 6= ∅, we cannot deduce that R is
complete. The set CE contains potential counterexamples. They can be true counterexam-
ples, false counterexamples, or goals for which splitting failed along all safe variables, due to
incompleteness of the unification algorithm. In some cases further splitting of a false coun-
terexample may result in reducible goals or in the elimination of the goal as uninhabited,
but it may also loop. Some solutions preventing looping (finitary splitting) can be found
in [18].
Unfortunately splitting failure due to incompleteness of the unification may happen

while checking coverage of a definition by case analysis over complex dependent inductive
types (for example trees of size 2), even if rules for all constructors are given. Therefore, it
is advisable to add a second phase to our algorithm, which would treat undefined output
of unification as success. Using this second phase of the algorithm, one can accept all
definitions by case analysis that can be written in Coq.
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Example 5.21. Let g be a function defined by case analysis and let g’ be its version
defined by rewriting (without the impossible Leaf case):

Definition g (t : tree (S (S O))) : bool := match t with

Leaf ⇒ false
| Node _ Leaf _ _ _ ⇒ true
| Node _ (Node _ _ _ _ _) _ _ _ ⇒ false
end.

Symbol g’ : tree (S (S O)) → bool
Rules

g’ (Node ?1 Leaf b ?2 t’) −→ true
g’ (Node ?1 (Node ?2 t b ?3 t’) b’ ?4 t’’) −→ false

Our algorithm starts with the goal g’ x, splits it along x, easily detects that Leaf
case is not possible but is stuck on Node n t b m t’, because this requires deciding that
S (n+m) is unifiable with S (S O), which may be too hard for a unification algorithm2. In
that case the initial goal g’ x becomes a potential counterexample.

Accepting all definitions by case analysis. The second phase of our algorithm would
start only for the goals with safe splitting variables, i.e. where regular splitting failed because
the unification was too weak. In this phase, the splitting would become lax by treating ?
unification result as successful and returning simple substitutions σc = {x 7→ c(~z)} for
such cases (see Definition 5.3). As a result the goals would not be well-typed sequents
anymore, which has to be taken into account by the unification algorithm. On the other
hand typability is not required for splitting matching and the rest of the algorithm which
would work just like described in Definition 5.17. Both arguments of termination and
correctness of the algorithm would hold.
Going back to our example. Redoing the lax splitting on x in the goal g’ x, one gets

again that Leaf is impossible, but Node is now accepted and leads to an (untyped) goal
g’ (Node n t b m t’). Splitting on t is now successful for both constructors and both
resulting goals get reduced.

6. More examples

6.1. Heterogeneous equality. Consider the inductive predicate JMeq of heterogeneous
equality with its non-standard elimination rule:

Inductive JMeq (A:Set)(a:A): forall B:Set, B → Set := JMrefl: JMeq A a A a.

Symbol JMelim : forall (A:Set)(a:A)(P: forall b:A, JMeq A a A b -> Set),

P a (JMrefl A a) → forall (b: A) (e: JMeq A a A b), (P b e)
Rules

JMelim A a P h a (JMrefl A a) −→ h

2Note that a better unification algorithm could find the two most general solutions n=O, m=(S O) and
n=(S O), m=O. Then splitting would result in two goals immediately covered by rules for g’.
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One splitting of JMelim A a P h b c over c results in JMelim A a P h a (JMrefl A a)
which is equal to the left-hand side of the rule. Hence this rule completely defines JMelim.

6.2. Uniqueness of Identity Proofs and Streicher’s axiom K. Consider the type eq
and the definition of function UIP, proving that identity proofs are unique:

Inductive eq (A:Set)(a:A): A → Set := refl: eq A a a.

Symbol UIP : forall (A:Set)(a b:A)(p q: eq A a b), (eq (eq A a b) p q)

Rules

UIP A a a (refl A a) (refl A a) −→ refl (eq A a a) (refl A a).

The function UIP is completely defined since two subsequent splittings of UIP A a b p q,
along p and along q, result in UIP A a a (refl A a) (refl A a) which is exactly the
left-hand side of the only rule for UIP.
The rule for Streicher’s axiom K can also easily be proved complete:

Symbol K : forall (A:Set) (a:A) (P:eq A a a → Set),
P (refl A a) → forall p: eq A a a, P p

Rules

K A a P h (refl A a) −→ h

Note that both rules for UIP and K can also be written in a left-linear form:

UIP A a ?1 (refl ?2 ?3) (refl ?4 ?5) −→ refl (eq A a a) (refl A a)

K A a P h (refl ?1 ?2) −→ h

6.3. Non pattern matching rules. These are two examples of complete definitions which
do not follow the pattern matching schemes as defined in [12] and [16].

Symbol or’ : bool → bool → bool
Rules

or’ x x −→ x
or’ true y −→ true
or’ x true −→ true

Symbol lt, diff : nat → nat → bool
Rules

lt O y −→ diff O y
lt x O −→ false
lt (S x) (S y) −→ lt x y

diff x x −→ false
diff O (S y) −→ true
diff (S x) O −→ true
diff (S x) (S y) −→ diff x y
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7. Conclusions and Related Work

In this paper we study consistency of the calculus of constructions with rewriting. More
precisely, we propose a formal system extending an arbitrary PTS with inductive definitions
and definitions by rewriting. Assuming that suitable positivity and acceptance conditions
guarantee termination and confluence, we formalize the notion of a complete definition by
rewriting. We show that in every environment consisting only of inductive definitions and
complete definitions by rewriting there is no proof of (x : ∗)x. Moreover, we present a
sound and terminating algorithm for checking completeness of definitions. It is necessarily
incomplete, since in presence of dependent types emptiness of types trivially reduces to
completeness and the former is undecidable.
Our coverage checking algorithm resembles the one proposed by Coquand in [12] for

Martin-Löf type theory and used by McBride for his OLEG calculus [16]. In these works
the procedure consisting in successive case-splittings is used to interactively built pattern
matching equations, or to check that a given set of equations can be built this way. Unlike in
our paper, Coquand and McBride do not have to worry whether all instances of a reducible
subgoal are reducible. Indeed, in [12] pattern matching equations are meant to be applied
to terms modulo conversion, and in [16] equations (or rather the order of splittings in the
successful run of the coverage checking procedure) serve as a guideline to construct an
OLEG term verifying the equations. Equations themselves are never used for reduction
and the constructed term reduces according to existing rules.
In our paper rewrite rules are matched against terms modulo α-conversion. Rewriting

has to be confluent, strongly normalizing and has to preserve reducibility. Under these
assumptions we can prove completeness for all examples from [12] and for the class of
pattern matching equations considered in [16]. In particular we can deal with elimination
rules for inductive types and with Streicher’s axiom K. Moreover, we can accept definitions
which depart from standard pattern matching, like rotr and +.
The formal presentation of our algorithm is directly inspired by the work of Pfenning

and Schürmann [18]. A motivation for that paper was to verify that a logic program in
the Twelf prover covers all possible cases. In LF, the base calculus of Twelf, there is
no polymorphism, no rewriting and conversion is modulo βη-conversion. The authors use
higher-order matching modulo βη-conversion, which is decidable for patterns a la Miller and
strict patterns. Moreover, since all types and function symbols are known in advance, the
coverage is checked with respect to all available function symbols. In our paper, conversion
contains rewriting and it cannot be used for matching; instead we use matching modulo
α. This simplifies the algorithm searching for safe splitting variables, but on the other
hand it does not fit well with instantiation and normalization. To overcome this problem
we introduce the notions of normalized canonical instance and preservation of reducibility
which were not present in previously mentioned papers. Finally, since the sets of function
symbols and rewrite rules grow as the environment extends, coverage is checked with respect
to constructors only.
Even though the worst-case complexity of the coverage checking is clearly exponential,

for practical examples the algorithm should be quite efficient. It is very similar in spirit
to the algorithms checking exhaustiveness of definitions by pattern matching in functional
programming languages and these are known to work effectively in practice.
An important issue which is not addressed in this paper is to know how much we

extend conversion. Of course it depends on the choice of conditions ACC and POS and on
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the unification algorithm used for coverage checking. In particular, some of the definitions
by pattern matching can be encoded by recursors [13], so if ACC is strict, we may have no
extension at all. In general there seems to be at least two kinds of extensions. The first
are non-standard elimination rules for inductive types, but the work of McBride shows that
the axiom K is sufficient to encode all other definitions by pattern matching considered by
Coquand. The second are additional rules which extend a definition by pattern matching
(like associativity for +). It is known that for first-order rewriting, these rules are inductive
consequences of the pattern matching ones, i.e. all their canonical instances are satisfied as
equations (see e.g. Theorem 7.6.5 in [19]). Unfortunately, this is no longer true for higher-
order rules over inductive types with functional arguments. Nevertheless it seems that such
rules are inductive consequences of the pattern matching rules if the corresponding equality
is extensional.
Finally, our completeness condition COMP verifies closure properties defined in [9, 10].

Hence, it is adequate for a smooth integration of rewriting with the module system present
in Coq since its version 7.4.
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