
Logical Methods in Computer Science
Vol. 5 (1:7) 2009, pp. 1–19
www.lmcs-online.org

Submitted Mar. 13, 2008
Published Mar. 31, 2009

ON TIERED SMALL JUMP OPERATORS

JEAN-YVES MARION

Nancy Université, Loria, INPL-ENSMN, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France,
France.
e-mail address: Jean-Yves.Marion@loria.fr

Abstract. Predicative analysis of recursion schema is a method to characterize complex-
ity classes like the class FPTIME of polynomial time computable functions. This analysis
comes from the works of Bellantoni and Cook, and Leivant by data tiering. Here, we refine
predicative analysis by using a ramified Ackermann’s construction of a non-primitive re-
cursive function. We obtain a hierarchy of functions which characterizes exactly functions,
which are computed in O(nk) time over register machine model of computation. For this,
we introduce a strict ramification principle. Then, we show how to diagonalize in order to
obtain an exponential function and to jump outside deterministic polynomial time. Lastly,
we suggest a dependent typed lambda-calculus to represent this construction.

1. Introduction

Predicative analysis of recursion comes from the works of Bellantoni and Cook [3] and
Leivant [11]. This analysis is based on a ramification principle on data which is appealing
because its concept is simple and purely syntactic and does not involve parts of its models.
Each element of a computation has a tier, which determines its ability to run a recursion.
The ramification principle states that a definition by recursion is ramified only if the tier
of the recurrence parameter is strictly higher than the tier of the output. This analysis
takes its root in the paper of Simmons [17] and Leivant [10]. The results mentioned above
characterize the class of polynomial time computable functions using essentially two tiers of
data ramification: one for recursion arguments and one for recursion outputs. In this work,
we revisit the ramification principle by introducing a strict ramification principle which
allows getting a characterization of a polynomial time hierarchy of functions. Functions
which are defined with k tiers are exactly functions which are computable in O(nk) steps.
The hierarchy is not robust in the sense that it depends on the model of computation
which is a register machine model here. So, the result that we suggest is really about
intrinsic complexity of functions in the tradition of the recursion Theory. We have tried to
understand the mechanism that underpins the suggested classification. Our analysis shows
how functions are defined and how we can jump from one class of functions to another one
by strict ramified recursion. This leads us to introduce a double recursion operator, which
captures each level of the polynomial time hierarchy DTIME(nk) and escapes them. For

1998 ACM Subject Classification: F.2.0.
Key words and phrases: Implicit Computational Complexity, Tiering, Diagonalization, Polynomial time.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (1:7) 2009

c© J.-Y. Marion
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J.-Y. MARION

this, we define an exponential function by a diagonalization method, which reveals some
analogies with Ackermann [1] construction as it is explained in Chapter 7 of Simmons book
[18]. The construction that we propose is a kind of double recursion whose main ideas can
be explained by considering the following example.

f : N(1),N(0)→ N(0)
f(0, y) = y + 1

f(x+ 1, y) = f(x, f(x, y))

The function f is defined by nested recursion and satisfies the ramification principle. Indeed,
the first argument may be of tier 1 and the second of tier 0. So, the output of f is of tier
0 and f is well typed. However f computes the exponential function : f(n,m) = 2n +m

for all n and m. In f(x, f(x, y)), the leftmost occurrence of f calls itself which violates the
essence of the ramification principle. Now, we ramify f by assigning to each occurrence of
f a tier, and so we obtain the following function sequence.

f0(x, y) = y + 1

fk+1(0, y) = y

fk+1(x+ 1, y) = fk(x, fk+1(x, y))

where f1 computes the addition, and f2 iterates the addition, and so on. We also see that
the domain, or the type, of each fk can be N(k),N(0)→ N(0). If we transform the (fk)k∈N
sequence of functions into a three place function φ(k, x, y), we are able to produce by a
diagonalization argument a function which eventually dominates each fk. The type of φ
depends on its first argument and so would be ∀k : N(k),N(0)→ N(0).

This example is just here to illustrate quickly the ideas that we develop in this pa-
per, which is organized as follows. Section 2 presents the computational models and de-
fines DTIME(nk). Section 3 focuses on tiered recursion and Leivant’s characterization of
FPTIME. This Section contains well-known material, and so the paper is self-contained.
Section 4 gives the characterization of the polynomial time hierarchy. Section 5 describes
how to jump from DTIME(nk) to DTIME(nk+1) and how to diagonalize in order to es-
cape FPTIME. In the last section, an applied typed lambda-calculus, like in Simmons
survey [16], with dependent types is proposed to represent the jump operator presented in
the previous Section.

2. Computations and a polynomial time hierarchy

2.1. Register Machines. The set of binary words over the alphabet {a, b} is W. A register
machine, abbreviated RM, works over words of W. A RM consists in

(1) an alphabet {a, b}.
(2) a finite set S = {s0, s1, . . . , sk} of states, including a distinct state begin.
(3) a finite list R = {R1, . . . , Rm} of registers. Registers store words of W.

ON TIERED SMALL JUMP OPERATORS 3

(4) a finite function label mapping states to commands which are

R = a(R) add the letter a to R

R = b(R) add the letter b to R

R = R′ assign the value of R′ to R

R = pred(R) remove the first letter of R

branch(R, sǫ, sa, sb) switch to the label si following the first letter of R

A configuration of a RM M is given by a pair (s, σ) where s is a state and σ : R→W

is an environment which stores register values. We guess that the above informal semantics
should be enough to understand how register machines work. In particular, after executing
one of the four first kinds of instruction, if the state is si and i < k, then the next state
is si+1. Otherwise, if the state is sk, then M halts. Lastly, the next step of a branching
instruction depends on the value of the register R.

Throughout, we deal with functions which have a co-arity, that is function whose range
is W

q for some q. A function φ : Wp → W
q is computed by a register machine M if for

all u1, . . . , up, p ≤ m we have φ(u1, . . . , up) = (v1, . . . , vq) then the execution of M starting
from the initial configuration (begin, σ0) ends to a configuration (s, σf) such that: for i ≤ p,
σ0(Ri) = ui, otherwise σ0(Ri) = ǫ and for j ≤ q, σf (Rm+1−j) = vj .

2.2. A polynomial time hierarchy. The time measure corresponds to the number of
steps to perform a computation on a register machine. We say that a function φ : Wp →W

q

is computable in O(nk) if the runtime is bounded by c.(nk
1 + . . . + nk

p) + d for some c and

d and where for each i, ni is the size of the ith argument. The class DTIME(nk) is the
set of all functions which are computable in O(nk). The class FPTIME of polynomial time
functions is ∪kDTIME(nk).

In this work, we study the classes DTIME(nk) which delineates a polynomial time
hierarchy. It is well known that the class FPTIME is robust, which is not the case for
polynomial time hierarchies. Indeed, the definition of DTIME(nk) is not invariant with
respect to another class of computational models. The reason lies on the fact that the
simulation of a computational model by another may have a quadratic cost. For example,
the runtime of simulations of a two-tape Turing machine by a one-tape Turing machine is
quadratic. Such lower bound may be nicely obtained using Kolmogorov complexity. The
reader may consult Jones’ book [9] for further informations. However, one may use k-tape
Turing machines instead of register machines.

3. Ramified Primitive recursion

3.1. Functions on tiered domains. We are interested in computational complexity, that
is why we focus immediately on words. The domain of reference is the set W of words over
the alphabet {a, b}. It is generated from the empty word function 0 and two successors A
and B. As usual A(B(0)) is the word ab.

This domain is tiered by duplicating W into W(0),W(1), . . . ,W(i), . . . where each W(i)
is an identical copy of W at tier i. Each domain W(i) is a set of words over the alphabet
{ai, bi}. As previously, there are an empty word function 0i and two successors Ai and Bi.

4 J.-Y. MARION

In practice, we define functions by specifying their values with respect to tiered domain
generators.

There are erasing bijections κk : W(k) → W for each k which just erase the tier of
words. For example, we may represent a function φ : W → W by f : W(k) → W(0) for
some tier k if for each u ∈ W(k), κ0(f(u)) = φ(κk(u)). In this case, we shall just write
f(u) = φ(u).

We always reason with respect to an implicit downcasting principle, which yields that
if u ∈ W(k + 1) then u ∈ W(k). Hence, we shall write that f : W(k + 1) → W(0) is
defined from h : W(k + 1),W(k) → W(0) by f(x) = h(x, x) without mentioning that both
occurrences of x are not of the same tier. Throughout, we shall reason with respect to erasing
bijections and implicit downcasting without explicitly mentioning them.

We consider functions with co-arity. For this, we construct Cartesian product of do-
mains of same tier. We abbreviate W(i)× . . .×W(i) by W(i)p. We have a pairing function
〈 , 〉i and both projections π1

i and π2
i , for each tier i.

We often leave out some brackets using familiar conventions and hence we abbreviate
τ1 → (. . . (τn → τ)) by τ1, . . . , τn → τ . It is also convenient to have a normal presentation
of functions, that we shall always use. We shall write f : W(i1)

p1 , . . . ,W(in)
pn →W(r)q for

an n-placed function in such a way that i1 ≥ . . . ≥ in ≥ r. We say that the tier of the jth
argument of f is ij , and the output tier is r. We write ~y to mean y1, . . . , yn where yi is an
element of W(ij)

pj . The size |u| is the number of letters of the word u. In particular the
size of the empty word ǫ is 0. The size of pair of words is inductively defined as follows:
|〈u, v〉i| = |u|+ |v| at any tier i.

Conventions that we have described here will be extended to the typed lambda calculus
that we suggest at the end in a natural manner.

3.2. Ramified primitive recursion.

A function f : W(k + 1),W(i1)
p1 , . . . ,W(in)

pn → W(r)q is obtained by ramified primitive
recursion from the functions
hǫ : W(i1)

p1 , . . . ,W(in)
pn →W(r)q and

ha, hb : W(i1)
p1 , . . . ,W(in)

pn ,W(r)q →W(r)q if

f(0k+1, ~y) = hǫ(~y) (3.1)

f(Ak+1(x), ~y) = ha(~y, f(x, ~y)) (3.2)

f(Bk+1(x), ~y) = hb(~y, f(x, ~y)) (3.3)

where conditions k+1 ≥ ij for any j ≤ n and k ≥ r hold. We call these last conditions the
ramification principle based on Leivant’s [11]. The first argument is named the recursion
argument and its tier is k+1. The ramification principle says that the recurrence tier k+1
is strictly greater than the output tier r.

3.3. Ramified arithmetic. In order to compare function growth rate and to illustrate
key notions, it is convenient to have an encoding of natural numbers. This encoding will be
used in Sections 4.1 and 5.1.

We represent natural numbers by considering both successors Ai and Bi as the same.
Hence, we have a single successor that we write Si, for each tier i. It should be clear that
this encoding is non-injective, which is sufficient because we are just interested in the size of
the handling values. So in this representation, a word represents a natural number, which

ON TIERED SMALL JUMP OPERATORS 5

corresponds to its size. Hence, 0i will refer to zero at tier i, and Si(x) intuitively increases
the size of x by one, which corresponds exactly to the successor operation in unary notation.

We represent in ramified arithmetic an arithmetical function φ : Np → N by a function
f : W(i1), . . . ,W(ip)→W(r) if

φ(n1, . . . , np) = |f(u1, . . . , up)| for each ui such that |ui| = ni and i = 1, p

Now, we can define below the addition addk and the multiplication mulk at tier k.

addk : W(k + 1),W(k) →W(k) and |addk(u, v)| = |u|+ |v|, for all u and v.

addk(0k+1, y) = y

addk(Sk+1(x), y) = Sk(addk(x, y)) where Si = Ai, Bi

mulk : W(k + 1),W(k + 1)→W(k) and |mulk(u, v)| = |u|.|v|, for all u and v

mulk(0k+1, y) = 0k

mulk(Sk+1(x), y) = addk(y,mulk(x, y))

Observe that both arguments of mulk have the same tier k+1. We may define polyno-
mials by composition from tiered addition and multiplication, as it is illustrated below.

cubek : W(k + 2)→W(k)

cubek(x) = mulk(x,mulk+1(x, x))

We see that we compute the arithmetical function x3 by composing two multiplications.
However, two copies of the multiplication mulk and mulk+1 at different tiers are necessary.
Notice also that the tier of the first argument, on the right handside, is lower, which is
possible because of the use of a downcasting bijection. Actually, we may define coercek
by a simple ramified recursion. We may then use it instead of the implicit downcasting,
coercek : W(k + 1)→W(k)

coercek(0k+1) = 0k

coercek(Sk+1(x)) = Sk(coercek(x))

On the other hand, the ramified principle allows also to define a cubic function cube’k :
W(k + 1)3 →W(k) using only two tiers as follows:

mul’k(0k+1, z, t) = t

mul’k(Sk+1(y), z, t) = addk(z,mul’k(y, z, t))

cube’k(0k+1, y, z) = 0k+1

cube’k(Sk+1(x), y, z) = mul’k(y, z, cube’k(x, y, z))

3.4. Characterization of FPTIME. In 1994, Leivant published an elegant characteri-
zation [11] of FPTIME, which provides a general framework to study complexity classes.
We follow here the main line of his work. So, we begin by introducing a particular kind of
recursion, named flat recursion.

A function f : W(r),W(i1)
p1 , . . . ,W(in)

pn → W(r) is obtained by flat recursion from
the functions

6 J.-Y. MARION

hǫ : W(i1)
p1 , . . . ,W(in)

pn →W(r) and
ha, hb : W(r),W(i1)

p1 , . . . ,W(in)
pn →W(r) if

f(0,~y) = hǫ(~y) (3.4)

f(Ar(x), ~y) = ha(x, ~y) (3.5)

f(Br(x), ~y) = hb(x, ~y) (3.6)

This kind of recursion should be viewed as a mere action on the pattern of the recursive
argument. Hence and unlike the ramified principle, the tier of a recurrence argument is
not strictly higher that the output tier. The use of flat recursion is essential to define a
predecessor over W and conditional functions.

Definition 3.1. A function f is in Lω(W) if it is obtained by a finite number of applica-
tions of composition, flat recursion and ramified primitive recursion beginning with basic
functions 0k, Ak, Bk, 〈 , 〉k, π

1
k and π2

k for each tier k.

Leivant demonstrated in [11] the following result:

Theorem 3.2. The class of functions Lω(W) is exactly the class FPTIME of the functions
which are polynomial time computable.

In this presentation we use functions with co-arity, unlike Leivant which introduces
simultaneous ramified recursion.

Actually, Leivant also showed that only two tiers are sufficient. More generally,

Corollary 3.3. Let Lk(W) be the class of functions restricted over W(0), . . . ,W(k). For
each k, the class of functions Lk+1(W) is exactly the class FPTIME of the functions which
are polynomial time computable.

In the same paper, Leivant shows how to capture DTIME(nk) by counting the degree
of nested recursions.

3.5. Other approaches. The work of Bellantoni and Cook [3] is similar to the Leivant’s
one. They characterize FPTIME by defining a function algebra in which functions have
two kind of arguments: the normal ones which can be used as recursion parameters and the
safe ones which cannot be used as recursion parameters.

As we have seen, only two tiers are necessary to characterize FPTIME. Actually, this is
also the essence of the characterization by simply typed lambda calculus of [13]. The tier 1
arguments are represented by Church-numerals, and the tier 0 are represented by constant
terms of atomic type on which no recursion can be made.

4. Strict ramified primitive recursion

We present the notion strict ramified primitive recursion which is central in this study.
A function f : W(k),W(i1)

p1 , . . . ,W(in)
pn → W(0)q is obtained by k-ramified recursion

from the functions

ON TIERED SMALL JUMP OPERATORS 7

hǫ : W(i1)
p1 , . . . ,W(in)

pn →W(0)q and
ha, hb : W(i1)

p1 , . . . ,W(in)
pn ,W(0)q →W(0)q if

f(0k, ~y) = hǫ(~y) (4.1)

f(Ak(x), ~y) = ha(~y, f(x, ~y)) (4.2)

f(Bk(x), ~y) = hb(~y, f(x, ~y)) (4.3)

where the inequalities between tiers k > ij for each j ≤ n and k > 0 hold. We call this last
condition the strict ramification principle.

Definition 4.1. A function f is in Ik(W) if it is obtained by a finite number of applications
of composition, flat recursion and i-ramified recursion, beginning with basic functions 0i,
Ai, Bi, 〈 , 〉i, π

1
i and π2

i for each tier i ≤ k.

In particular, a function I0(W) is not defined by recursion. The notion of 1-ramified
recursion was underlying in [14], and the notion of k-ramification is used in order to char-
acterize the NCk hierarchy in [5].

The difference between the ramification principle and the strict ramification principle
is the following:

(1) The recursion argument is strictly greater than the other argument tiers,
(2) and the output tier is 0.

Otherwise, we could define the function x5 with 0, . . . , 4 tiers, that is by 4-ramified
recursion and composition as follows:
mk : W(k + 2),W(k + 1)→W(k)

mk(0k+2, y) = 0k

mk(Sk+2(x), y) = addk(y,mk(x, y))

five : W(4)→W(0) and |five(x)| = |x|5

five(x) = m0(m2(x, x),m1(x,m2(x, x)))

The fact that the output tier of an recursion is 0 implies that we cannot defined
coercek functions. That is why we need to reason modulo downcasting bijections.

4.1. Strict ramified arithmetic. We use the same encoding of natural numbers that the
one we present in Section 3.3 on ramified arithmetic. However, we slightly modify the way
that we represent arithmetical functions to take into account the fact that outputs are of
tier 0.

An arithmetical function φ : Np → N is represented in strict ramified arithmetic by a
function f : W(i1), . . . ,W(ip)→W(0) if

φ(n1, . . . , np) = |f(u1, . . . , up)| for each ui such that |ui| = ni, i = 1, p

The addition function defined in Section 3.3 is defined by 1-ramified recursion, setting
k = 0. On the other hand, the definition of the multiplication proposed in 3.3 does not
satisfy the strict ramification principle because both arguments are of the same tier.

Nevertheless, we can define any polynomial. For this, we present first a sequence
(Fk)k∈N of 3-placed monotonic functions from an initial 1-placed function g : W(0)p →
W(0)p. Intuitively, the function g is iterated a number of steps bounded by a polynomial
of degree k. This sequence will play a crucial role all along the paper.

8 J.-Y. MARION

F0 : W(0),W(0),W(0)p →W(0)p

F0(t, x, y) = g(y)

Fk+1 : W(k + 1),W(k),W(0)p →W(0)p

Fk+1(0k+1, x, y) = y

Fk+1(Sk+1(t), x, y) = Fk(x, x, Fk+1(t, x, y))

It is worth noticing that (Fk)k∈N is parameterized by the function g. Notice that we
use implicitly a downcasting to lower the tier of the second argument on the right hand side
of the last equation.

Lemma 4.2. For any k,u,v and w, we have

Fk+1(u, v, w) = gm.nk

(w) where m = |u| and n = |v|

Proof. The proof is by induction on k.
For k = 0, we have by recurrence on the size of the first argument :

F1(01, v, w) = w

F1(S1(t), v, w) = F0(v, v, F1(t, v, w))

= g(g|t|(w)) = g|t|+1(w)

For k > 0, we have again by recurrence on the size of the first argument :

Fk+1(0k+1, v, w) = w

Fk+1(Sk+1(t), v, w) = Fk(v, v, Fk+1(t, v, w))

= gn
k

(Fk+1(t, v, w)) by recurrence on k

= gn
k

(g|t|×nk

(w)) by recurrence on t

= g(|t|+1)nk

(w)

The sequence of functions (Fk)k allows us to define polynomial length iterators over
W(0).

Lemma 4.3. Let P [X] be a polynomial of degree k with natural coefficients and g : W(0)p →

W(0)p. There is a function P̃ : W(k),W(0)p → W(0)p in Ik(W) such that for each x and
y,

P̃ (x, y) = gP (|x|)(y) (4.4)

Proof. The proof is done by induction on the degree of the polynomial. The base case is
trivial. Suppose that the degree of P is k + 1. Hence, P (x) = c.xk+1 + Q(x) where the

degree of Q is less or equal to k. Suppose that Q̃ satisfies the induction hypothesis wrt Q.
We define T c

k+1 by composition as follows

T 0
k+1(x, y) = Q̃(x, y)

T d+1
k+1 (x, y) = Fk+1(x, x, T

d
k+1(x, y)) d < c

We set P̃ (x, y) = T c
k+1(x, y). Here T c

k+1(x, y) is defined by c compositions of Fk+1 where c

is given and fixed.

ON TIERED SMALL JUMP OPERATORS 9

We show by an induction on c that P̃ (x, y) satisfies 4.4. We just show the inductive
step below.

P̃ (x, y) = T d+1
k+1 (x, y) = Fk(x, x, T

d
k+1(x, y)) by dfn

= Fk(x, x, g
d.nk+1+Q(n)(y)) where n = |x|

= gn.n
k

(gd.n
k+1+Q(n)(y)) by Lemma 4.2 = g(d+1).nk+1+Q(n)(y)

Lemma 4.4. Any polynomial P [X] with natural coefficients is represented in strict ramified
arithmetics.

Proof. We set P (x) = P̃ (x, 00) in which we replace g by the successor A0. So, we have

P (x) = A
P (x)
0 (00).

We say that a multivariate polynomial P [X1, . . . ,Xn] with n distinct variables is simple
if each monomial of P is of the form c.Xd

i for some natural constants c and d. For example
2x2 + 3.y2 + 4y is simple, but 2yx2 + y is not. The degree of a simple polynomial is the
greatest exponent of P ’s variables.

Lemma 4.5. Let P [X1, . . . ,Xn] be a simple polynomial of degree k and let g : W(0)p →

W(0)p. There is a function P̃ : W(k)n,W(0)p → W(0)p in Ik(W) such that for each
x1, . . . , xn and y,

P̃ (x1, . . . , xn, y) = gP (|x1|,...,|xn|)(y) (4.5)

Proof. The proof is done by induction on the number n of variables. The base case is
a consequence of Lemma 4.3. Suppose that the simple polynomial P has n + 1 vari-
ables X1, . . . ,Xn,Xn+1. Since P is simple, we write it as the sum P (X1, . . . ,Xn,Xn+1) =

P ′(X1, . . . ,Xn) + P ′′(Xn+1). Suppose that P̃ ′ (P̃ ′′) satisfies the induction hypothesis wrt

P ′ (resp. P ′′). We define P̃ by

P̃ (x1, . . . , xn+1, y) = P̃ ′(x1, . . . , xn, P̃ ′′(xn+1, y))

Indeed, we have

P̃ (x1, . . . , xn+1, y) = P̃ ′(x1, . . . , xn, g
P ′′(|xn+1|)(y)) = gP

′(|x1|,...,|xn|)(gP
′′(|xn+1|)(y))

= gP
′(|x1|,...,|xn|)+P ′′(|xn+1|)(y) = gP (|x1|,...,|xn+1|)(y)

4.2. Characterizing a polynomial time hierarchy.

Theorem 4.6. The set of functions Ik(W) is exactly DTIME(nk).
That is Ik(W) = DTIME(nk).

The demonstration of Theorem 4.6 is a consequence of Lemma 4.7 and 4.8 below.

Lemma 4.7. Let φ : Wp → W
q be a function which is computable by a register machine

M in time (c.
∑

i=1,p n
k
i) + d for some constants c,d and k, where ni is the size of the ith

argument. Then, there is a function f : W(k)p → W(0)q of Ik(W) such that for each u,
f(u) = φ(u).

10 J.-Y. MARION

Proof. A configuration of M is encoded by a m + 1-uplet of W(0) which represents the
state and the value of the m registers of M . Then, it is not difficult to design a function
next : W(0)m+1 → W(0)m+1, which given a configuration, produces the next configuration
wrt M . The function next is based on nested flat recursions over W(0). To illustrate the
construction of next, consider that the register machine M has just two registers R1 and
R2. We define the function next for each state of M by using flat recursion in order to
match a state and to switch to the right transition. The next configuration depends on
the finite function label of M . For example if in state si, the value of R2 is replaced
by the value of R1, and the next state is sj, we define next by flat recursion such that
next(si, R1, R2) = (sj, R1, R1).

Now, we have to iterate next within the polynomial time bound. For this we use
Lemma 4.5 since it is a simple polynomial.

Therefore, there is a function loop : W(k)p,W(0)m+1 →W(0)m+1 such that

loop(x1, . . . , xp, ~y) = next(c.
P

i=1,p |xi|
k)+d(~y) .

We conclude by taking f(x1, . . . , xp) = θ(loop(x1, . . . , xp, init)), where θ is a composition of
projections and init is the initial configuration, that is init = (begin, x1, . . . , xp, 00, . . . , 00).

Lemma 4.8. Assume that f : W(k1)
p1 , . . . ,W(kn)

pn → W(r)q is in Ik(W). Then there
is a polynomial P of degree k, or less, such that for any u1, . . . , un, the computation of
f(u1, . . . , un), on register machines, is performed in time bounded by

P (max{|ui| |where the tier of ui is greater than 0, that is ki > 0}i=1,n)

Proof. The proof goes by induction on k. Suppose that f ∈ I0(W). In this case, the
definition of I0(W) claims that f is not defined by strict ramified recursion. Hence, it is
not hard to compute f in constant time.

Now, suppose that f ∈ Ik+1(W). There are two main cases that we are considering
below.

First, f is obtained by k + 1-ramified recursion. We compute a loop whose length is
bounded by the length of the first argument u1. We begin by evaluating v0 = hǫ(u2, . . . , un).
Next we compute hα(u2, . . . , un, v0) where α is the last letter of u1. And, we repeat this
process till we have consumed all letters of the recursion argument u1. As usual with
tiering system, the key point is that the runtime of the auxiliary functions ha and hb does
not depend on tier 0 values. Hence we associate three polynomials Pǫ, Pa and Pb satisfying
the induction hypothesis. The runtime of f is bounded by Pǫ(max{|ui| |where ki > 0})) +
|u1|×maxα=a,b(Pα(max{|ui| |where ki > 0})). Since hǫ,ha, and hb have domains which have
strictly lower tiers than k+1, it follows that degrees of the corresponding polynomials, Pǫ,
Pa and Pb are at most k by induction hypothesis. As a consequence, there is a polynomial
which bounds Pǫ(X) +X.maxα=a,b(Pα(X)) of degree at most k+1. This polynomial is an
upper bound on f ’s runtime.

Second, f is defined by composition. Say that f(~x) = h(~x, g(~x)). There are two cases
to consider. The first is when the output tier of g is 0. In this case, the runtime of f is
bounded by the sum of the runtime of g and h. The second is when the output tier of g is
strictly greater than 0. Then, the runtime of g is constant because g cannot be defined by
recursion. It follows that the runtime of f is bounded by the runtime of h plus an additive
constant (due to g).

ON TIERED SMALL JUMP OPERATORS 11

5. Diagonalization with dependent tiers

In this section, we consider again the sequence (Fk)k parameterized by a strictly in-
creasing function g. Recall that, Fk iterates nk times a function g and is in Ik(W). Each
function of Ik(W) is eventually dominated by composition of Fk at tier 0. But, Fk is not in
Ik+1(W). This leads us to ask two questions: How to jump from Ik(W) to Ik+1(W)? And
how to jump outside ∪kIk(W) ? In other words, this leads us to investigate jump operators,
which allows to define (Fk)k sequence of functions by iteration and to diagonalize it in order
to compute a function, which is not in ∪kIk(W).

5.1. Jumping from Ik(W) to Ik+1(W). In order to answer to the first question, we
introduce an operator ∆[] such that for each k, ∆[Fk] : W(k+1),W(k),W(0) →W(0) and

∆[Fk](0k+1, x, y) = y

∆[Fk](Sk+1(r), x, y) = Fk(x, x,∆[Fk](r, x, y))

From definitions, it is clear that ∆[Fk](r, x, y) = Fk+1(r, x, y). Observe also, that the
operator ∆[] respects the strict ramification principle.

Definition 5.1. Let h : W(k1)
p1 , . . . ,W(kn)

pn →W(r)q be an n-placed function and let f :
W(k)→W(0) be a 1-placed function. We say that h is dominated by f if |h(x1, . . . , xn)| ≤
|f(x)| holds for all x1, . . . , xn and x with x1 ≤ x, . . . , xn ≤ x.

Proposition 5.2. Each function h of Ik(W) is dominated by fk(x) = ∆[Fk](a, x, b) for
some a ∈W(k + 1) and b ∈W(0).

Proof. Since Ik(W) = DTIME(nk), there is a′ and b′ such that for all x1, . . . , xn,

|h(x1, . . . , xn)| ≤ a′(
∑
|xi|

k) + b′

Let a = Aa′

k+1(0k+1) and b = Ab′

0 (00) be two words such that |a| = a′ and |b| = b′. It
follows that for all x1, . . . , xn and x with x1 ≤ x, . . . , xn ≤ x, we have |h(x1, . . . , xn)| ≤
∆[Fk](a, x, b). Indeed,

|h(x1, . . . , xn)| ≤ |g
|a|.|x|k(b)| since g is assumed strictly monotonic

≤ |Fk+1(a, x, b)| by Lemma 4.2

= |∆[Fk](a, x, b)| by dfn

But, the important point here is that an operator like ∆[] allows to escape Ik(W)
because ∆[Fk] = Fk+1 is not in Ik(W). We now iterate ∆[] starting from F0 in order to
produce the chain of monotonic Fk functions, as follows :

∆0[F0](r, x, y) = F0(r, x, y)

∆k+1[F0](r, x, y) = ∆[∆k[F0]](r, x, y)

We say that the kth iterate of F0 is ∆k[F0].

Proposition 5.3. For all k ∈ N, r ∈W(k), x ∈W(k) and y ∈W(0), we have

∆k[F0](r, x, y) = Fk(r, x, y)

12 J.-Y. MARION

Proof. The proof goes by induction on k. The base case is immediate. Next,

∆k+1[F0](r, x, y) = ∆[∆k[F0]](r, x, y) by dfn

= ∆[Fk](r, x, y) Ind. Hyp.

= Fk+1(r, x, y) by dfn

Therefore, the k + 1th iterate of F0 is in Ik+1(W) but not in Ik(W).

Remark 5.4. The jump operator ∆[] can be applied to any function of type

W(k),W(max(k − 1, 0)),W(0) →W(0) .

5.2. Jumping outside ∪kIk(W).
We define next a 4-placed operator ∆ω based on a double recursion. It is a nested recursion
based on lexicographic ordering.

∆ω[g](0, r, x, y) = g(y) g : W(0)→W(0)

∆ω[g](k + 1, 0k+1, x, y) = y

∆ω[g](k + 1, Sk+1(r), x, y) = ∆ω[g](k, x, x,∆ω [g](k + 1, r, x, y))

Here, ∆ω is parameterized by g.

Proposition 5.5. For all k,r,x and y, we have

∆ω[g](k, r, x, y) = ∆k[F0](r, x, y)

Proof. By induction on k and r.

If we fix the first argument k, we iterate on the second argument r of tier k and we
compute Fk. Now, if we fix the second argument r, we jump from tier to tier which allows
to get outside each function set Ik(W), computing the successive iterate of F0. So, ∆ω

allows us to jump outside each Ik(W) for any k.

Proposition 5.6. The 4 placed function ∆ω[A0] is not in ∪k∈NIk(W).

Proof. We set φ(x) = ∆ω[A0](|x|, x, x, x) for all x. We have

φ(x) = ∆ω[A0](|x|, x, x, x)

= ∆|x|[F0](x, x, x) by Prop. 5.5 where g = A0

= F|x|(x, x, x) by Prop. 5.3

= A
|x||x|

0 (x) by Prop. 4.2 when |x| > 0

We see that |φ(x)| = |x||x|+1 + |x| which is clearly not in ∪k∈NIk(W) in which each
function is polynomially bounded as it has been established in Theorem 4.6.

ON TIERED SMALL JUMP OPERATORS 13

The operator ∆ω produces a function, which is not in ∪k∈NIk(W). That is, ∆ω[g]
is not a ramified function in ∪k∈NIk(W) if g is increasing. However, we may see that
intuitively the “domain” depends on the first argument, and so we should write ∆ω[g] :
∀k ∈ N.W(k),W(k),W(0) → W(0). To formalize this idea, we now introduce a typed
lambda-calculus with very restricted dependent types and arithmetical gadgets.

6. An applied lambda-calculus with dependent types

6.1. Types, terms, and rules. We propose a typed λ-calculus λDω in which types depend
on tiers. For this, we have a base type ω to denote tiers and a unary predicate W of kind
ω ⇒ ∗, which is intended to name words at each tier.

Raw expressions, Kinds, types and terms, are defined following the grammar rules :

(Type constructors) α ::= ω |W
(Kinds) κ ::= ∗ | τ ⇒ κ

(Types) τ ::= α | τ × τ | ∀x.τ | τ M

(Term constructors) c ::= ⋄ | S | 0 | A | B | 〈 , 〉 | π1 | π2 | flat | diag
(Terms) M ::= c | x | (MM) | λx.M

where x is a variable.
The types assigned to type and term constructors are given in Figure 1. We may omit

some brackets of a type or of a term using familiar Currying conventions.
A term M is of type τ , that we write M : τ , if there is a derivation of ⊢M : τ following

the typing rules of Figure 2. We note dom(Γ) the set of (term) variables declared in Γ.
The one step (contextual) reduction ⊲ is defined in Figure 3. The transitive closure of

⊲ is ⊲∗. Here M [x← N] means the usual substitution of all free occurrences of x in M by
N .

Remark 6.1.

(1) As usual, τ ⇒ κ and τ → τ ′ are short cuts for Πx : τ.κ and ∀x : τ.τ ′, when x is not
occurring in κ or τ ′.

(2) There is no type variable (except type constructors).
(3) In fact, we just consider two kinds ∗ and ω ⇒ ∗, because we have no introduction rules

for kinds.
(4) The two previous points imply that in a judgment of the form Γ ⊢ M : σ, if (x : τ) is

in M , then τ is either ω or W(t) for some term t of type ω.

The system λDω can be translated in the system T of Gödel and so it has the Church-
Rosser and strong normalization properties.

6.2. Function representation at a given tier.

A natural number k is represented by k thus:

0 = ⋄ x+ 1 = (S x)

And a word u of W is represented by uk at tier k thus

ǫk = (0 k) a(x)
k
= (A k xk) b(x)

k
= (B k xk)

14 J.-Y. MARION

Type constructors

⊢ ω : ∗

⊢W : ω ⇒ ∗

Terms of type ω

⊢ ⋄ : ω

⊢ S : ω → ω

Tiered words

⊢ 0 : ∀k.W(k)

⊢ A : ∀k.W(k)→W(k)

⊢ B : ∀k.W(k)→W(k)

Pairing and projections

⊢ 〈 , 〉 : ∀k.W(k)→W(k)→W(k) ×W(k)

⊢ π
1 : ∀k.W(k)×W(k)→W(k)

⊢ π
2 : ∀k.W(k)×W(k)→W(k)

Flat recursion

⊢ flatτ : ∀k.τ → (W(k)→ τ)2 →W(k)→ τ

Double tiered recursion

⊢ diagp : (W(⋄)p →W(⋄)p)→ ∀k.W(k)→W(k)→W(⋄)p →W(⋄)p

Figure 1: Types of type and term constructors

Definition 6.2. Let φ : Wp+p′ →W
q. The function φ is represented at tier k if there is a

term M : W(k)p →W(0)p
′
→W(0)q such that for all u1 . . . up of Wp and for all v1 . . . vp′

of Wp′

M u1k . . . upk
v10 . . . vp′0

⊲
∗ φ(u1, . . . , up, v1, . . . , vp′)

0

We define CIk(W) as the set of functions which are represented at tier k.

Lemma 6.3. Each function g : W(0)p → W(0)q in I0(W) is represented at tier 0, and so
is in CI0(W).

Proof. The proof is done by induction on the definition of g.

The construction of a polynomial length iterator in λDω follows closely the lines of the
demonstration of Lemma 4.5. It is obtained by composition from Fk functions, which are
representable at tier k following the Lemma below.

Lemma 6.4. For each k, the function Fk parameterized by a function g : W(0)p →W(0)p,
is represented at tier k, and so is in CIk(W).

ON TIERED SMALL JUMP OPERATORS 15

Kinding rules

Γ ⊢ φ : τ ⇒ κ Γ ⊢ t : τ
⇒ elim

Γ ⊢ φt : κ

Typing rules

Γ ⊢ τ : ∗
Variable, x 6∈ dom(Γ)

Γ, x : τ ⊢ x : τ

where c is a type or a term constructor of type τ
Γ ⊢ c : τ

Γ, x : τ ⊢M : σ
→ intro

Γ ⊢ λx.M : τ → σ

Γ ⊢M : τ → σ Γ ⊢ N : τ
→ elim

Γ ⊢MN : σ

Γ, x : ω ⊢M : τ
∀ intro, and x 6∈ dom(Γ)

Γ ⊢ λx.M : ∀x.τ

Γ ⊢M : ∀x.τ Γ ⊢ k : ω
∀ elim

Γ ⊢Mk : τ [x← k]

Weakening rule

⊢ τ : ∗ Γ ⊢M : σ
Weakening, x 6∈ dom(Γ) and M is a term or a type

Γ, x : τ ⊢M : σ

Downcasting rule

Γ ⊢M : W(S(t))
Downcasting

Γ ⊢M : W(t)

Figure 2: Typing rules.

Proof. The previous lemma 6.3 gives a term N : W(⋄)p → W(⋄)p, which represents g.
Now, for each k, we define a sequence of terms (Mk)k parameterized by N by

Mk = λxλyλz.(diagp N k x y z) of type W(k)→W(k)→W(⋄)p →W(⋄)p

We can check that Fk is represented at tier k by Mk by induction on k and the first
parameter of Mk:

16 J.-Y. MARION

β-reduction

(λx.M)N ⊲M [x← N]

projections

(π1k 〈M,N〉k)⊲M

(π2k 〈M,N〉k)⊲N

flat recursion

(flat k hǫ ha hb (0 k))⊲ hǫ

(flat k hǫ ha hb (A k x))⊲ (ha x)

(flat k hǫ ha hb (B k x))⊲ (hb x)

double recursion where J = A,B

(diagp g ⋄ z x y)⊲ (g y)

(diagp g (S k) 0 x y)⊲ y

(diagp g (S k) (J k r) x y)⊲ (diagp g k x x (diagp g (S k) r x y))

Figure 3: Rules of computation

For k = 0 and for all u,v and w, we have

(M0 u0 v0 w0) = (diagp N 0 u0 v0 w0)

⊲ (N w0)

= g(w)
0
= F0(u, v, w)0

For k+1, we proceed by induction on the first argument u of Mk+1. First, for all v and w,
we have

Mk+1 ǫk+1 vk+1 w0 = diagp N k + 1 ǫk+1 vk+1 w0

⊲ w0 = Fk+1(ǫ, v, w)0

Mk+1 i(u)
k+1

vk+1 w0 = diagp N k + 1 i(u)
k+1

vk+1 w0 i = a, b

⊲ (diagp N k vk vk (diagp N k + 1 uk+1 vk+1 w0))

= Fk(v, v, Fk+1(u, v, w))0 = Fk+1(i(u), v, w)0
In conclusion, for all k, u, v and w, we have

Mk uk vk w0 = Fk(u, v, w)0
It is also worth to see that by Lemma 4.2:

Mk uk vk w0 = g|u|.|v|
k

(w)
0

The following Lemma corresponds to Lemma 4.2

ON TIERED SMALL JUMP OPERATORS 17

Lemma 6.5. Any polynomial P [X] of degree k with natural coefficients is represented at
tier k in CIk(W). More precisely, assume that N : W(0)p →W(0)p.
Then, there is a term Pk : W(k),W(0)p →W(0)p in CIk(W) such that for each u and v,

Pk uk v0 ⊲
∗ (NP (|uk |) v0) (6.1)

Proof. The proof goes by induction. Suppose that the degree of P is k+ 1. Hence, P (x) =
c.xk+1 + Q(x) where the degree of Q is less or equal to k. Suppose that M ′ satisfies the
induction hypothesis wrt Q. We define M c

k+1 by composition as follows

M0
k+1 x y = (M ′x y)

Md+1
k+1 x y = (Mk+1 x x (Md

k+1 x y)) d < c

where (Mk)k is the sequence of terms defined in the demonstration of the previous Lemma,
and computes (Fk)k. The type of Md

k+1 is W(k+1)→W(0)p →W(0)p for any d. We set
Pk+1 = M c

k+1.

As a direct consequence of the above Lemma, we have a result which is analogous to
Lemma 4.5:

Corollary 6.6. Let P [X1, . . . ,Xn] be a simple polynomial of degree k.
There is a term P : W(k)n,W(0)p →W(0)p such that for each u1, . . . , un, and v,

(P u1k . . . unk v0)⊲
∗ (NP (|u1|,...,|un|) v0)

where N : W(0)p →W(0)p.

Proof. The proof is done by induction on the number of variables. The base case is a
consequence of Lemma 6.5. Suppose that the simple polynomial P has n + 1 variables
X1, . . . ,Xn,Xn+1. Since P is simple, we write it as the sum P (X1, . . . ,Xn,Xn+1) =
P ′(X1, . . . ,Xn) + P ′′(Xn+1). Suppose that P′ (P′′) satisfies the induction hypothesis wrt
P ′ (resp. P ′′). We define P by

(P x1 . . . xn+1) = (P′ x1 . . . xn(P
′′ xn+1 y))

Theorem 6.7. The set of functions Ik(W) is exactly the set CIk(W), that is the class
DTIME(nk).

Proof. First, we establish that DTIME(nk) ⊆ CIk(W). For this, observe that the transition
function next, which is defined in the proof of Lemma 4.7, is represented at tier 0, by a term
of type W(0)m+1 →W(0)m+1. We iterate next by using Corollary 6.6.

Conversely, we show that CIk(W) ⊆ Ik(W). For this, let f be a function represented
at tier k by a term M . In other words, there is a normal derivation

`
such that ⊢ M :

W(k)p → W(0)q. Observe that if x is a variable of M , the type of x is W(k′)p
′
, k′ ≤ k

and p′ ≤ p. So, a subterm t of M of type ω does not contain a variable (of type ω) and
so represents a natural number, that is t = r for some r. Therefore, the term M denotes a
function of Ik(W). The proof is complete by Theorem 4.6.

18 J.-Y. MARION

6.3. Jumping outside. Let φ : W → W. The function φ is represented at tier ω if there
is a term M : ∀k.W(k)p →W(⋄)q such that for all u,

M k uk ⊲
∗ φ(u)

0
where k = |u|

We define CIω(W) as the set of functions which are represented at tier ω.

Proposition 6.8. There is a function represented at tier ω which is not representable at
tier k, for any k. In other words, this function is not ∪kIk(W).

Proof. The function ∆ω[A0] is representable at tier ω. As the consequence, we can define
the exponential as follows: E = λkλx.(diag1(A ⋄) k x x x) of type ∀k.W(k)→W(0). We

have E |u| uk ⊲
∗ e and |e| ≥ |u||u|+1 + |u|, for all u.

6.4. Other ways to jump. We have presented a manner of constructing an exponential
function by diagonalizing functions defined by strict ramified recursion. There are other
approaches. In [12], Leivant ramifies the system T of Gödel [8] by introducing an atomic
type constructor Ω(τ) which allows to perform recursion over type τ terms. Thus, he obtains
a characterization of FPTIME and of the elementary functions.

Bellantoni and Niggl [4] characterized the Grzegorczyk hierarchy starting from the class
FPTIME. For this, they define a rank function which, roughly speaking, is a bound on the
number of nested recursions. The work of Caporaso, Covino and Pani seems also related to
the research presented in this paper, see [6]. We are also aware of other related works like
the one of Oitavem [15] or the one of Beckmann and Weiermann [2]. Finally, Danner [7]
proposed a ramified Gödel system T with a dependant typing system to study primitive
recursive functions.

References

[1] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Math. annalen, 99:118–133, 1928.
[2] A. Beckmann and A. Weiermann. Characterizing the elementary recursive functions by a fragment of

Gödel’s T. Archive for Mathematical Logic, 1996. to appear.
[3] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functions. Com-

putational Complexity, 2:97–110, 1992.
[4] S. Bellantoni and K-H Niggl. Ranking primitive recursions: The low Grzegorczyk classes revisited.

SIAM Journal on Computing, 29(2):401–415, 1999.
[5] Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, and Isabel Oitavem. Recursion schemata for

nck. In Michael Kaminski and Simone Martini, editors, 22nd International Workshop, CSL 2008, 17th
Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, volume 5213,
pages 49–63, Italie Bertinoro, 2008. Springer.

[6] S. Caporaso, E. Covino, and G. Pani. A predicative approach to the classification problem. J. Funct.
Program., 11(1):95–116, 2001.

[7] N. Danner Ramified Recurrence with dependent types. In S. Abramsky, editor, Typed-Lambda calculi
and applications, volume 2044, pages 91–105, 2001. Springer.

[8] K. Gödel. Über eine bisher noch nicht benüte Erweiterung des finiten Standpunktes. Dialectica, 12:280–
287, 1958. Republished with English translation and explanatory notes by A. S. Troelstra in Kurt Gödel:
Collected Works, Vol. II. S. Feferman, ed. Oxford University Press, 1990.

[9] N. Jones. Computability and complexity, from a programming perspective. MIT press, 1997.
[10] D. Leivant. A foundational delineation of computational feasiblity. In Proceedings of the Sixth IEEE

Symposium on Logic in Computer Science (LICS’91), 1991.
[11] D. Leivant. Predicative recurrence and computational complexity I: Word recurrence and poly-time. In

P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 320–343. Birkhäuser, 1994.

ON TIERED SMALL JUMP OPERATORS 19

[12] D. Leivant. Ramified recurrence and computational complexity III: Higher type recurrence and elemen-
tary complexity. Annals of Pure and Applied Logic, 96(1-3):209–229, 1999.

[13] D. Leivant and J-Y Marion. Lambda calculus characterizations of poly-time. Fundamenta Informaticae,
19(1,2):167,184, September 1993.

[14] D. Leivant and J-Y Marion. A characterization of alternating log time by ramified recurrence. Theoretical
Computer Science, 236(1-2):192–208, Apr 2000.

[15] I. Oitavem. New reursive characterization of the elementary functions and the functions computable in
polynomial space. Revista Matemática de la universidad complutense de Madrid, 10(1), 1997.

[16] H. Simmon. Tiering as a recursion technique. Bulletin of Symbolic Logic, 11(3):321–350, 2005.
[17] H. Simmons. The realm of primitive recursion. Archive for Mathematical Logic, 27:177–188, 1988.
[18] H. Simmons. Derivation and Computation, volume 51 of Tracts in theoretical computer science. Cam-

bridge, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Computations and a polynomial time hierarchy
	2.1. Register Machines
	2.2. A polynomial time hierarchy

	3. Ramified Primitive recursion
	3.1. Functions on tiered domains
	3.2. Ramified primitive recursion
	3.3. Ramified arithmetic
	3.4. Characterization of FPTIME
	3.5. Other approaches

	4. Strict ramified primitive recursion
	4.1. Strict ramified arithmetic
	4.2. Characterizing a polynomial time hierarchy

	5. Diagonalization with dependent tiers
	5.1. Jumping from Ik(W) to Ik+1(W)
	5.2. Jumping outside k Ik(W)

	6. An applied lambda-calculus with dependent types
	6.1. Types, terms, and rules
	6.2. Function representation at a given tier
	6.3. Jumping outside
	6.4. Other ways to jump

	References

