
Logical Methods in Computer Science
Volume 19, Issue 3, 2023, pp. 1:1–1:62
https://lmcs.episciences.org/

Submitted Jun. 01, 2021
Published Jul. 06, 2023

COMPUTING WITH INFINITE OBJECTS: THE GRAY CODE CASE

DIETER SPREEN a AND ULRICH BERGER b

a Department of Mathematics, University of Siegen, 57068 Siegen, Germany
e-mail address: spreen@math.uni-siegen.de

b Department of Computer Science, Swansea University, The Computational Foundry, Swansea
University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
e-mail address: u.berger@swansea.ac.uk

Abstract. Infinite Gray code has been introduced by Tsuiki [Ts02] as a redundancy-
free representation of the reals. In applications the signed digit representation is mostly
used which has maximal redundancy. Tsuiki presented a functional program converting
signed digit code into infinite Gray code. Moreover, he showed that infinite Gray code
can effectively be converted into signed digit code, but the program needs to have some
non-deterministic features (see also [TS05]). Berger and Tsuiki [BT21a, BT21b] reproved
the result in a system of formal first-order intuitionistic logic extended by inductive and
co-inductive definitions, as well as some new logical connectives capturing concurrent
behaviour. The programs extracted from the proofs are exactly the ones given by Tsuiki.
In order to do so, co-inductive predicates S and G are defined and the inclusion S ⊆ G
is derived. For the converse inclusion the new logical connectives are used to introduce a
concurrent version S2 of S and G ⊆ S2 is shown. What one is looking for, however, is an
equivalence proof of the involved concepts. One of the main aims of the present paper is to
close the gap. A concurrent version G∗ of G and a modification S∗ of S2 are presented
such that S∗ = G∗. A crucial tool in [BT21a] is a formulation of the Archimedean property
of the real numbers as an induction principle. We introduce a concurrent version of this
principle which allows us to prove that S∗ and G∗ coincide. A further central contribution
is the extension of the above results to the hyperspace of non-empty compact subsets of
the reals.

Contents

1. Introduction 2
2. Digit Spaces 7
3. Inductive and co-inductive definitions 12
4. Extracting algorithmic content from co-inductive proofs 15

2012 ACM CCS: D.2.4.; F.4.1; I.2.2; I.2.3; I.2.4.
Key words and phrases: Computing, real numbers, compact sets, signed-digit representation, Gray code

representation, iterative function systems, program extraction, logic, inductive definition, co-inductive
definition, constructive mathematics.

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 731143.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(3:1)2023
© D. Spreen and U. Berger
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-2773-7323
https://orcid.org/0000-0002-7677-3582
http://creativecommons.org/about/licenses

1:2 D. Spreen and U. Berger Vol. 19:3

5. Computationally motivated logical connectives 25
6. Concurrent Archimedean induction 37
7. Concurrent signed digit and Gray codes 38
8. The compact sets case 44
9. Archimedean induction for compact sets 46
10. Signed digit and Gray code for non-empty compact sets 51
11. Concurrent Gray code for non-empty compact sets 56
12. Conclusion 60
Acknowledgement 61
References 61

1. Introduction

In investigations on exact computations with continuous objects such as the real numbers,
objects are usually represented by streams of finite data. This is true for theoretical studies
in the Type-Two Theory of Effectivity approach (cf. e.g. [We00]) as for practical research,
where prevalently the signed digit representation is used (cf. [CG06, ME07, BH08]), but also
others [ES98, EH02, Ts02]. In [Be11] it is shown how to use the method of program extraction
from proofs to extract certified algorithms working with the signed digit representation
in a semi-constructive logic allowing inductive and co-inductive definitions. In addition
to producing correct algorithms, this approach allows reasoning in a representation-free
way, as in usual mathematical practice. Concrete representations of the objects needed
in computations are generated automatically by the extraction procedure. A detailed
description of the logic (i.e. Intuitionistic Fixed Point Logic (IFP)) and the realisability
approach used for extracting programs can be found in [BT21a].

In order to generalise from the different finite objects used in the various stream
representations, the present authors [BS16] used the abstract framework of what was coined
digit space, i.e. a bounded complete non-empty metric space X enriched with a finite set D
of contractions on X, called digits, that cover the space, that is

X =
⋃

{ d[X] | d ∈ D },

where d[X] = { d(x) | x ∈ X }.
Digit spaces are compact and weakly hyperbolic, where the latter property means that

for every infinite sequence d0, d1, . . . of digits the intersection
⋂

n∈N d0 ◦· · ·◦dn[X] contains at
most one point [Ed96]. Compactness on the other hand, implies that each such intersection
contains at least a point. By this way every stream of digits denotes a uniquely determined
point in X. Because of the covering property it follows conversely that each point in X has
such a code.

The framework has been generalised in [Sp21]. In both papers the proof of the main
results required a strengthening of the covering condition in such way that

X =
⋃

{ int(d[X]) | d ∈ D },

where for a subset A of X, int(A) is the topological interior of A. Spaces with this property
were called well-covering. The usual spaces occurring in applications are of this kind,

Vol. 19:3 THE GRAY CODE CASE 1:3

in particular the space (I,SD) consisting of the real interval I Def
= [−1, 1] and the set

SD
Def
= {λx. (x+ d)/2 | (d = −1 ∨ d = 1) ∨ d = 0 } whose streams of digits are used in the

signed digit representation.
An important example of a non-well-covering digit space is the space (I,GC) with

GC
Def
= {λx. − d · (x− 1)/2 | d = −1∨ d = 1 } leading to an extension of finite Gray code to

infinite words over the alphabet {−1, 1 }, by which each real number in I except the dyadic
rationals in (−1, 1) is represented by exactly one word. Dyadic rationals are represented by
two words that differ in only one place. It follows that the corresponding cell contains no
information. Tsuiki [Ts02] suggested to identify both codes and to fill the cell in which they
differ with the symbol ⊥ for ‘unknown’. Note that the symbol ⊥ is of a different kind than
-1 or 1. It is like the symbol for ‘blank ’ on a Turing tape which can also be re-written in the
course of the computation. By this way a redundancy-free representation of the interval [-1,
1] is obtained, also called infinite Gray code.

There is, however, a price to be paid for getting rid of redundancy. Tsuiki [Ts02]
proved that the computability notion for real numbers that is obtained with respect to
the new representation is equivalent to the widely accepted computability notion based
on the Type-Two Theory of Effectivity approach. To this end he showed that there are
computable translations from streams of digits of a real number with respect to the signed
digit representation into a stream representing the same number in infinite Gray code, and
vice versa. As turned out, the translation of infinite Gray code into signed digit representation
cannot be computed purely sequentially: one must have access not only to the head of the
input stream, but also to the entry next to it, similarly when writing. To this end, the
algorithm has to work non-deterministically.

The representation of elements of a digit space (X,D) by streams of digits can be
characterised co-inductively. Let CX ⊆ X be co-inductively defined by

x ∈ CX
ν
= (∃d ∈ D)(∃y ∈ CX)x = d(y),

that is, CX is the largest subset of X satisfying the equation (see Section 3 for the theory
of inductive and co-inductive definitions). Then from a constructive proof that x ∈ CX

one can extract a stream of digits representing x. Note that from the covering property
of digit spaces it follows (by co-induction) that X ⊆ CX . However, in general this is only
true in classical logic since for an arbitrary element x ∈ X one can usually not determine
constructively a digit d ∈ D whose image contains x. Hence, constructively, CX is normally
a proper subset of X. However, if the digit space has an effective basis and is well-covering,
then CX yields a representation of X that is constructively equivalent to the standard
Cauchy representation. Since this is the case for the digit space (I,SD), we let S = C(I,SD),
and obtain S as the largest set of real numbers in [−1, 1] that (constructively) has a signed
digit representation.

The same approach does not work for infinite Gray code since, as pointed out earlier,
its digit space, (I,GC), is non-well covering. Nevertheless, Berger and Tsuiki presented in
[BT21a], the following co-inductive characterisation G of the interval I that does allow for
the extraction of infinite Gray code:

G(x)
ν
= (−1 ≤ x ≤ 1) ∧D(x) ∧G(t(x)).

Here, D(x)
Def
= x ̸= 0 → (x ≤ 0 ∨ x ≥ 0), and t is the tent function t(x)

Def
= 1− 2|x| which is

the continuous join of the inverses of the digits in GC. Note that, if x ≠ 0, then a realiser

1:4 D. Spreen and U. Berger Vol. 19:3

of D(x) is a digit deciding the disjunction x ≤ 0 ∨ x ≥ 0. However, in the case x = 0 the
realiser may be undefined. This provides a logical explanation why an infinite Gray code
may contain an undefined digit. In [BT21a] it is shown that that S ⊆ G is provable in IFP
and that the extracted algorithm is exactly the translation from signed digit representation
into infinite Gray code given in [Ts02].

When trying to extract Tsuiki’s translation in the opposite direction from a proof of
G ⊆ S, one faces the obstacle that IFP, being based on traditional realisability, can only
extract algorithms that are deterministic and sequential, while, as discussed above, an
effective translation from infinite Gray code to the signed digit representation is necessarily
non-deterministic and concurrent. To overcome this limitation of IFP, in [BT21b] an
extension of IFP, Concurrent Fixed Point Logic (CFP), is developed. Its main novelty
is a concurrency modality ⇊(A) indicating that realisers of A may be computed by two
concurrent threads, where the result of the thread terminating first is taken as realiser and
the other thread is discarded. More precisely, realisability of ⇊(A) is defined using a version
of McCarthy’s Amb [MC63]:

c r⇊(A)
Def
= c = Amb(a, b) ∧

(a ̸= ⊥ ∨ b ̸= ⊥) ∧
(a ̸= ⊥ → a rA) ∧ (b ̸= ⊥ → b rA).

Besides solving the above translation problem, the motivation for introducing this modality
is the wish to provide a constructive interpretation of the law of excluded middle

B → A ¬B → A

A
(lem)

where B is a formula without computational content. The idea is that (lem) should be
realised by Amb, since a realiser of the conclusion should be computable by running the
given realisers of the two premises in parallel. In turns out that, to make this work, it is
not enough to add the concurrency modality to the conclusion: one must also modify the
premises to avoid false positives. This results in the rule

A↾B A↾¬B
⇊(A)

(⇊-lem)

where A↾B is a strengthening of the implication B → A, called restriction1, that guarantees
that all its defined realisers are in fact realisers of A, independently of the truth value of B.
More precisely, realisability for restriction is defined as

a rA↾B
Def
= (B → a ̸= ⊥) ∧ (a ̸= ⊥ → a rA).

whereas a r (B → A)
Def
= B → a rA. The definitions of realisability for the concurrency

modality and restriction shown above are slightly simplified; for full definitions, see Section 5.
In [BT21b] the definition of S is modified by making use of the new modality for

concurrency:

S2(x)
ν
= ⇊((∃d ∈ SD) II(d, x) ∧ S2(2x− d)),

where II(d, x)
Def
= |2x − d| ≤ 1. In terms of realisability, S2(x) means that a signed digit

representation of x is obtained through the concurrent computation of two threads. Now,

1In[BT21b] the notation A|B is used instead of A↾B .

Vol. 19:3 THE GRAY CODE CASE 1:5

the inclusion G ⊆ S2 can be derived ([BT21b], see also Theorem 7.1), and it turns out that
the extracted algorithm is the one given in [Ts02].

So far, we reviewed the results in [BT21a] and [BT21b] which our work builds on. In
the following we give an overview of the main new result of the present paper.

As we have seen, from the results in [BT21a] and [BT21b] it follows that S ⊆ G ⊆ S2.
What one is looking for, however, is a proof of the equivalence of the involved concepts.
In this paper we present a concurrent version G∗ of G and a modification S∗ of S2 so
that S∗ = G∗. S∗ and G∗ are defined with the following iterated form of the concurrency
operator (cf. Section 5.3):

∗
⇊(A)

µ
= ⇊(A ∨

∗
⇊(A)).

where
µ
= indicates that

∗
⇊(A) is the least (i.e. logically strongest) proposition satisfying the

equation. A realiser of
∗
⇊(A) consists of two concurrent threads of computations, Amb(a, b),

where each thread, if terminating, either provides a realiser of A, or else a new concurrent
computation. Since the least fixed point is taken, the first alternative is guaranteed to
happen, eventually.

S∗ is now defined like S2, but with
∗
⇊ instead of ⇊ (see Section 7):

S∗(x)
ν
=

∗
⇊((∃d ∈ SD) II(d, x) ∧ S∗(2x− d))

The modification of the predicate for infinite Gray code is even simpler since only the decision

x ≤ 0 ∨ x ≥ 0 is subject to the operator
∗
⇊:

G∗(x)
ν
= (−1 ≤ x ≤ 1) ∧ (x ̸= 0 →

∗
⇊(x ≤ 0 ∨ x ≥ 0)) ∧G∗(t(x))

This means that extracted realisers are ordinary streams, however with concurrently com-
puted digits.

Another central objective of the present paper is to do a similar thing for the hyperspace
of non-empty compact subsets of I. That is, we give a co-inductive characterisation of this
space from which a Gray code-like representation of the non-empty compact subsets of I
can be extracted and compare it with the characterisation of the hyperspace of non-empty
compact subsets of digit spaces investigated in [BS16, Sp21], now applied to the digit space
(I, SD).

The analogue of the signed digit representation for compact sets is

SK(K)
ν
= K(K) ∧ (∃E ∈ Pfin(SD))K ⊆ IIE ∧ (∀d ε E)(Kd ̸= ∅ ∧ SK(av−1

d [Kd]))

where K is an atomic predicate characterising (axiomatically) the non-empty compact
subsets of I, Pfin(SD) is the set of non-empty subsets of the signed digit set SD, IIE is the
set of all points that are 1/2 close to the half of some digit in E, and Kd is the set of points
in K that are 1/2 close to d/2 (e.g. K1 = K ∩ [0, 1]); finally, av−1

d is the inverse of the digit
function λx.(x+ d)/2 (see Definition 9.4).

The generalisation of infinite Gray code of compact sets is trickier. Here, we compute
the Gray codes of the minimum and maximum of K and then, recursively, narrow down the
set (Definition 10.1):

GK(K)
ν
= K(K) ∧G(minK) ∧G(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → GK(t[Kd])).

It is not hard to see that both definitions are generalisations of the point case, that is,
S(x) exactly if SK({x}), and G(x) exactly if GK({x}). We give a constructive proof that

1:6 D. Spreen and U. Berger Vol. 19:3

SK ⊆ GK from which a translation between the respective representations of compact sets
can be extracted, thus lifting the corresponding result in [BT21a] from points to the compact
sets.

Finally, we also lift the equation S∗ = G∗ from points to compact sets. The definitions of
the concurrent versions of SK(K) and GK(K) are obtained by putting stars at appropriate
places (see Definition 9.9 and the beginning of Section 11):

S∗
K(K)

ν
= K(K) ∧

∗
⇊((∃E ∈ Pfin(SD))K ⊆ IIE ∧ (∀d ε E)(Kd ̸= ∅ ∧ S∗

K(av−1
d [Kd])))

G∗
K(K)

ν
= K(K) ∧G∗(minK) ∧G∗(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → G∗

K(t[Kd]))

Our final result is the equation S∗
K = G∗

K which provides an equivalence of the concurrent
signed digit and Gray code representations of non-empty compact sets.

An important proof tool in this work is Archimedean Induction (AI), a formulation of
the Archimedean property for real numbers as an induction principle introduced in [BT21b].
In the present paper we introduce different version of this principle which are vital for all
our main results. Let us briefly discuss the main ideas.

Common formulations of the Archimedean property are either not realisable (e.g.
(∀x)(∃n ∈ N) |x| ≤ n), or don’t have computational content (e.g. (∀x) ((∀n ∈ N) |x| <
2−n) → x = 0). In contrast, the classically equivalent principle of Archimedean Induction
(cf. Section 6))

(∀x ̸= 0) (|x| ≤ 1/2 → P (2x)) → P (x)

(∀x ̸= 0) P (x)
(AI)

inherits computational content from the (arbitrary) predicate P and is realised by general
recursion. It is crucial that the variable x is not relativised to a predicate such as S
that would yield a representation of x. A simple example of an application of (AI) is
(∀x, y ∈ S) (x+ y ̸= 0 → (∃n ∈ N) (|x| > 2−n ∨ |y| > 2−n)), which one would normally prove
using the Archimedean property (in the form without computational content), countable
choice (ACω) and Markov’s principle (MP). Using (AI) one needs neither (ACω) nor (MP).
Roughly speaking, (AI) can be viewed as a combination of all those three principles that
avoids speaking about infinite sequences.

In this paper, we will use variants of (AI) and of the following classically equivalent but
constructively slightly weaker form of (AI) which has another predicate B as parameter:

(∀x ∈ B \ {0})P (x) ∨ (|x| ≤ 1/2 ∧B(2x) ∧ (P (2x) → P (x)))

(∀x ∈ B \ {0})P (x)
(AIB)

An example is a variant where both premise and conclusion are made concurrent (cf.
Definition 6.1):

(∀x ∈ B \ {0})
∗
⇊(P (x) ∨ (|x| ≤ 1/2 ∧B(2x) ∧ (P (2x) → P (x))))

(∀x ∈ B \ {0})
∗
⇊(P (x))

(CAIB∗)

We also introduce versions of (AI) or (AIB) for compact sets (cf. Definition 9.1), signed digit
represented compact sets (cf. Definition 9.5), and the restriction operator ↾ (cf. Definition 9.7).

The paper is organised as follows: In Section 2 the definition of a digit space is recalled
and extended Gray code introduced. Section 3 contains a short introduction to inductive and
co-inductive definitions and the proof methods they come equipped with. The application
to digit spaces is discussed as well.

Vol. 19:3 THE GRAY CODE CASE 1:7

The next two sections give brief introductions to the logical systems used for program
extraction. Section 4 deals with Intuitionistic Fixed Point Logic (IFP) and the kind of
realisability used to generate programs. We follow [BT21a] except that in the case-construct
of the programming language we permit clauses with overlapping patterns (see Section 4.2).
In Section 5, the extension of IFP to Concurrent Fixed Point Logic (CFP) is discussed. The
logic contains two new connectives from [BT21b] and corresponding proof rules. The rules
are all realisable. We will derive further rules.

In Section 6 and 7, respectively, concurrent versions of Archimedean induction and the
predicates S and G are introduced. These predicates are such that the realisers of their
elements are signed digit and/or Gray code representations of the elements. The concurrent
versions of both predicates are shown to coincide. From the proofs computable translations
between the two representations can be extracted.

The remaining sections deal with non-empty compact subsets of the interval I. In
Section 8 some facts presented in [BS16] about the representation of the non-empty compact
subsets of a digit space by digit trees are recalled. These are finitely branching infinite trees.
Their nodes are labelled with digits. The words along the infinite paths are codes of the
elements of the represented compact set. In the special case of the non-empty compact
subsets of I, the representation is one-to-one, if the elements of I are represented by infinite
Gray code. Archimedean induction for the non-empty compact subsets of I is discussed in
Section 9.

In Section 10 a predicate GK is co-inductively defined the realisers of which are Gray
code representations of the non-empty compact subsets of I. A similar predicate SK was
defined in the previous section with respect to the signed digit representation. It is shown
that SK ⊆ GK. Just as in the point case, for the converse inclusion a concurrent version S∗

K
of the predicate SK has to be considered. In Section 11, finally, a concurrent version G∗

K of
the predicate GK is introduced and the equality S∗

K = G∗
K is derived. Again computable

translations between the digital trees based on signed digit representation and Gray code
representation, respectively, can be extracted from the proof.

Realisers are an important ingredient of the approach delineated so far: Results are
derived by applying the logical rules of Concurrent Fixed Point logic as well as new rules
provided in the paper. But the algorithms used in applications are obtained by following
the proof rules and combining their realisers accordingly. For each of the results derived
in the real number case, that is in Section 7, we will present the realisers obtained in this
way. In the compact sets case we leave this to the reader as the proofs follow a pattern very
similar to the point case.

A further crucial aspect of this work is abstraction: The logical language and proof
calculus do not refer to the operational semantics of programs. Instead, operational soundness
is guaranteed through a general computational adequacy theorem that applies to any
concurrent operational semantics satisfying certain fairness requirements2 [BT21b]. This
means that extracted programs can be executed in any efficient concurrent execution model.

2. Digit Spaces

We review the concept of a digit space [BS16, Sp21] as a general model of computation with
infinite streams of digits.

2Committing to a fixed operational semantics would make concurrent logical rules and programming
constructs reduncant since they could be sequentialised by familiar scheduling/dove-tailing techniques.

1:8 D. Spreen and U. Berger Vol. 19:3

Definition 2.1. Let (X,µ) be a non-empty compact metric space and E be a finite collection
of contracting self-maps e : X → X. Then (X,E) is a digit space, if

X =
⋃

{ e[X] | e ∈ E }. (2.1)

Here, e[X] = { e(x) | x ∈ X }. The maps e will be called digits in this context.
Note that, being a continuous map on a compact set, the metric µ is bounded.
We identify a finite sequence of digits e⃗ = [e0, . . . , en−1] ∈ En with the composition

e0 ◦ · · · ◦ en−1 and a digit e with the singleton sequence [e] ∈ E1. The set of all finite
sequences of digits will be denoted by E<ω. Moreover, we let Eω be the set of all infinite
sequences of elements of E and set for α ∈ Eω,

α<n Def
= [α0, . . . , αn−1].

Lemma 2.2 [BS16, Lemma 2.3]. Let (X,E) be a digit space. Then
⋂

n∈N α<n[X] contains
exactly one point which we denote by [[α]], for every α ∈ Eω.

The mapping [[·]] : Eω → X is called the coding map.
As is well known, Eω is a compact bounded metric space with metric

δ(α, β) =

{
0 if α = β,

2−min{n|αn ̸=βn } otherwise.

Proposition 2.3 [BS16, Proposition 2.7].

(1) The coding map [[·]] is onto and uniformly continuous.
(2) The metric topology in X is equivalent to the quotient topology induced by the coding

map.

Set
α ∼ β ⇐⇒ [[α]] = [[β]],

for α, β ∈ Eω. Then ∼ is an equivalence relation. The equivalence class associated with
α ∈ Eω will be denoted by [α]∼. Furnish the quotient Eω/∼ with the quotient topology and

let q∼ : Eω → Eω/∼ be the quotient map. Moreover let [̂[·]] : Eω/∼ → X be the uniquely

determined continuous map with [̂[·]] ◦ q∼ = [[·]].

Proposition 2.4. The map [̂[·]] is a homeomorphism between the quotient Eω/∼ and the
metric space X.

Proof. By construction [̂[·]] is a bijection. It remains to show that its inverse [̂[·]]
−1

is continuous
as well. Let A be a closed set in Eω/∼. Since X is compact and q∼ continuous, it follows
that Eω/∼ is compact as well. Therefore, A is also compact and so is its continuous image

[̂[A]]. As X is Hausdorff, we obtain that [̂[A]] is closed, i.e., (([̂[·]])−1)−1[A] is closed.

In what follows we will be interested in two sets of digits on the interval I Def
= [−1,+1] ⊆ R

furnished with the usual Euclidean metric.

Let AV
Def
= { avi | i ∈ SD } with SD

Def
= {−1, 0,+1} and

avi(x) = (x+ i)/2.

Then (I,AV) is a digit space. Note that for [i0, . . . , ir−1] ∈ SDr,

range(avi0 ◦ · · · ◦ avir−1) = [
∑
ν<r

iν · 2−(ν+1) − 1,
∑
ν<r

iν · 2−(ν+1) + 1].

Vol. 19:3 THE GRAY CODE CASE 1:9

Hence, for w ∈ SDω and αw ∈ AVω with αw(ν)
Def
= avwν ,

[[αw]] =
∑
ν≥0

wν · 2−(ν+1),

that is w is a signed digit representation of [[αw]]. Therefore, we call (I,AV) signed digit space.
It satisfies a stronger covering condition than (2.1), which is needed in the development of
most of the theory presented in [BS16, Sp21]: (I,AV) is well-covering.

Definition 2.5. A digit space (X,E) is well-covering if

X =
⋃

{ int(e[X]) | e ∈ E },

where int(e[X]) denotes the interior of e[X].

The other digit set we are going to consider leads to an important example of a digit
space that is not well-covering.

Let GF
Def
= { gi | i ∈ GC } with GC

Def
= {−1, 1} and

gi(x)
Def
= −i · (x− 1)/2.

Then g−1 and g1 are contractions with g−1[I] = [−1, 0] and g1[I] = [0,+1]. However,
0 ̸∈ [−1, 0) ∪ (0,+1]. Therefore,

Lemma 2.6. (I,GF) is a digit space that is not well-covering.

Note that GCω is an extension of finite Gray code to infinite words.
By Proposition 2.3(2) we know that the metric topology on I is equivalent to the quotient

topology induced by the coding map [[·]]G associated with (I,GF). Set

α ∼G β ⇐⇒ [[α]]G = [[β]]G,

for α, β ∈ GFω.

Lemma 2.7. For α, β ∈ GFω, α ∼G β if, and only if, either α = β, or the following
Properties (1-3) hold for some i ≥ 0:

(1) For all j < i, αj = βj.
(2) αi = g−1 and βi = g1, or conversely, αi = g1 and βi = g−1.
(3) αi+1 = βi+1 = g1 and αj = βj = g−1, for all j > i+ 1.

Proof. Without restriction assume that α ≠ β and let i ≥ 0 be such that α<i = β<i, αi = g−1

and βi = g1. Moreover, let αi+1 = g1 = βi+1 as well as αj = g−1 = βj , for all j > i + 1.
Then we have for n > 0 that

gn−1[I] = [−1, 2−(n−1) − 1], (g1 ◦ gn−1)[I] = [1− 2−n, 1],

(g−1 ◦ g1 ◦ gn−1)[I] = [−2−(n+1), 0], and (g1 ◦ g1 ◦ gn−1)[I] = [0, 2−(n+1)].

Therefore,

{[[α]]G} =
⋂
j≥0

α<j [I] =
⋂
n≥i

α<i[−2−(n+1), 0] ⊇ α<i[
⋂
n≥i

[−2−(n+1), 0]] = {α<i(0)},

from which it follows that [[α]]G = α<i(0). In the same way we obtain that [[β]]G = β<i(0).
Hence, [[α]]G = [[β]]G.

1:10 D. Spreen and U. Berger Vol. 19:3

For the verification of the converse implication assume that α ̸= β. Then there is a
smallest i ≥ 0 so that αi ≠ βi. It follows that either αi = g−1 and βi = g1, or conversely,
αi = g1 and βi = g−1. Without restriction we only consider the first case.

Assume that αi+1 = g−1. Then

[[α]]G ∈
⋂
n>i

α<n[I] ⊆ α<i[g−1[g−1[I]]] = α<i[[−1,−1/2]].

If βi+1 = g−1, we similarly obtain that

[[β]]G ∈ β<i[g1[g−1[I]]] = β<i[[1/2, 1]].

Since [[α]]G = [[β]]G, α
<i = β<i, and the functions g−1 and g1 are both one-to-one, it follows

that

[[α]]G ∈ α<i[[−1,−1/2] ∩ [1/2, 1]],

which is impossible.
On the other hand, if βi+1 = g1, we have that [[β]]G ∈ β<i[g1[g1[I]]] = β<i[[0, 1/2]], and

hence that [[α]]G ∈ α<i[[−1,−1/2] ∩ [0, 1/2]], which is impossible as well.
It follows that αi+1 = g1, which means that [[α]]G ∈ α<i[g−1[g1[I]]] = α<i[[−1/2, 0]].

Thus, βi+1 = g1 as well.
Finally, suppose that there is a minimal j > i+ 1 such that αj = g1 and βi+2 = · · · =

βj−1 = g−1, or βj = g1 and αi+2 = · · · = αj−1 = g−1. Again, we only consider the first case.
Then

α = α0 . . . αi−1g−1g1g−1 . . . g−1g1αj+1 . . . and β = β0 . . . βi−1g1g1g−1 . . . g−1βjβj+1 . . . ,

with α<i = β<i. It follows that

[[α]]G ∈ α<i[g−1[g1[g
j−(i+2)
−1 [g1[I]]]]] = α<i[g−1[g1[g

j−(i+2)
−1 [[0, 1]]]]]

= α<i[g−1[g1[[−1 + 2i+2−j ,−1 + 2i+3−j]]]]

= α<i[g−1[[1− 2i+2−j , 1− 2i+1−j]]]

= α<i[[−2i+1−j ,−2i−j]]

and [[β]]G ∈ α<i[g1[g1[g
j−(i+2)
−1 [βj [I]]]]].

Let us first consider the case that βj = g1. Then we have that

[[β]]G ∈ α<i[g1[[1− 2i+2−j , 1− 2i+1−j]]] = α<i[[2i−j , 2i+1−j]].

Hence, [[α]]G ∈ α<i[[−2i+1−j ,−2i−j] ∩ [2i−j , 2i+1−j]], which is impossible.
If βj = g−1, we obtain that

[[β]]G ∈ α<i[g1[g1[g
j−(i+2)
−1 [g1[I]]]]] = α<i[g1[g1[g

j−(i+2)
−1 [[−1, 0]]]]]

= α<i[g1[g1[[−1, 2i+2−j − 1]]]]

= α<i[g1[[1− 2i+1−j , 1]]]

= α<i[[0, 2i−j]].

Thus, [[α]]G ∈ α<i[[−2i+1−j ,−2i−j] ∩ [0, 2i−j]], which is impossible again.
By symmetry we obtain similar contradictions in the other cases.

Vol. 19:3 THE GRAY CODE CASE 1:11

It follows that each equivalence class [α]∼G contains at most two elements, and if so,
then the two differ in exactly one place, which means that the information coming with this
entry is not used in the computation of the coding map.

If [α]∼G = {α}, then ̂[[[α]∼G]] = [[α]]G. In the other case [α]∼G = {α, β} and there is
some uniquely determined index i ≥ 0 (also denoted by i(α)) so that α = α<ig−1g1g

ω
−1 and

β = α<ig1g1g
ω
−1, or vice versa. Then ̂[[[α]∼G]]G = [[α]]G = [[β]]G and hence

{ ̂[[[α]∼G]]G} = {[[α]]G} ∪ {[[β]]G}

=
⋂
n≥0

α<i[g−1[g1[g
n
−1[I]]]] ∪

⋂
n≥0

α<i[g1[g1[g
n
−1[I]]]]

= α<i[g−1[
⋂
n≥0

g1[g
n
−1[I]]] ∪ g1[

⋂
n≥0

g1[g
n
−1[I]]]]

= α<i[(g−1 ∪ g1)[
⋂
n≥0

g1[g
n
−1[I]]]],

where the multi-valued function g−1∪g1 is defined by (g−1∪g1)(x)
Def
= {g−1(x), g1(x)}. Note

that in this case for Y ⊆ I,

(g−1∪g1)[Y] =
⋃

{ (g−1∪g1)(x) | x ∈ Y } =
⋃

{ {g−1(x), g1(x)} | x ∈ Y } = g−1[Y]∪g1[Y].

Let ⊥ ̸∈ GC be a new symbol (⊥ for unspecified) and g⊥
Def
= g−1 ∪ g1. It follows that

̂[[[α]∼G]]G =
⋂
n≥0

α<i[g⊥[g1[g
n
−1[I]]]].

Set GF = {g⊥, g−1, g1} and define Φ: GFω → GF
ω
by

Φ(α) =

{
α<i(α)g⊥g1g

ω
−1 if ||[α]∼|| = 2,

α otherwise.

Then
Φ(α) = Φ(β) ⇐⇒ α ∼G β.

The elements of Ĝ
Def
= range(Φ) are called modified Gray code expansions of the real numbers

in I, or just Gray code [Ts02]3. Topologise Ĝ with the topology co-induced by Φ. As we
have seen earlier in this section, GF

ω
also possesses a canonical metric. Its restriction to

Ĝ will be denoted by δ̂, whereas δ denotes the corresponding metric on GFω. For n ≥ 0,

α̂ ∈ Ĝ and α ∈ GFω, let B
δ̂
(α̂, 2−n) and Bδ(α, 2

−n) be the balls in Ĝ and GFω, respectively,

of radius 2−n around α̂ and α.

Lemma 2.8. Φ−1[B
δ̂
(α̂, 2−n)] =

⋃
{Bδ(β, 2

−n) | β ∈ Φ−1[{α̂}] }.

Proof. Three cases are to be considered.
Case α̂m = g⊥, for some m > n. Then α̂0, . . . , α̂n ∈ GF and hence, for any β ∈

Φ−1[{α̂}], βi = α̂i, for i ≤ n. Therefore, if γ ∈ Φ−1[B
δ̂
(α̂, 2−n)], i.e., if Φ(γ)<n+1 = α̂<n+1,

then γ<n+1 = β<n+1, for any β ∈ Φ−1[{α̂}], which means that γ ∈ Bδ(β, 2
−n), for any such

β.

3Note that in recent research also words α ∈ GFω with ||[α]∼|| = 2 are considered as valid Gray code
[BMST, BT21a].

1:12 D. Spreen and U. Berger Vol. 19:3

Conversely, if γ<n+1 = β<n+1, for some β ∈ Φ−1[{α̂}], then Φ(γ)<n+1 = Φ(β)<n+1 =
α̂<n+1, i.e., Φ(γ) ∈ B

δ̂
(α̂, 2−n).

Case α̂m = g⊥, for some m ≤ n. It follows that α̂0, . . . , α̂m−1 ∈ GF. Moreover,
if γ ∈ Φ−1[B

δ̂
(α̂, 2−n)], then γ<m = α̂<m, γm+1 = g1 = α̂m+1, γj = g−1 = α̂j , for

m+ 1 < j ≤ n, and γm = g−1 or γm = g1. Set β = α̂<mγmg1g
ω
−1. Then γ ∈ Bδ(β, 2

−n) and

β ∈ Φ−1[{α̂}].
Conversely, if γ<n+1 = β<n+1, for some β ∈ Φ−1[{α̂}], then Φ(γ)<n+1 = Φ(β)<n+1 =

α̂<n+1, which means that γ ∈ Φ−1[B
δ̂
(α̂, 2−n)].

Case α̂i ∈ GF, for all i ≥ 0. In this case we have for γ ∈ GFω that Φ(γ)<n+1 = α̂<n+1,
exactly if γ<n+1 = α̂<n+1, i.e., Φ−1[B

δ̂
(α̂, 2−n)] = Bδ(α̂, 2

−n).

This shows that the topology on Ĝ co-induced by Φ is finer than the metric topology.
We will now derive the converse.

Let U ⊆ Ĝ be open in the topology co-induced by Φ and α̂ ∈ U . Then Φ−1[U] is open
in the metric topology on GFω and β ∈ Φ−1[U], for all β ∈ Φ−1[{α̂}]. Note that the latter
set is finite. Hence, there is some n ≥ 0 so that for all β ∈ Φ−1[{α̂}], Bδ(β, 2

−n) ⊆ Φ−1[U].

Lemma 2.9. B
δ̂
(α̂, 2−n) ⊆ U .

Proof. Similarly to the preceding proof we consider the following cases.
Case α̂i ∈ GF, for all i ≥ 0. Let β ∈ Φ−1[{α̂}], then α̂ = Φ(β) = β in this case, and

hence B
δ̂
(α̂, 2−n) ⊆ Φ[Bδ(β, 2

−n)] ⊆ U .

Case α̂m = g⊥, for some m ≥ 0. Let β, β̃ ∈ GFω such that βj = β̃j = α̂j , for

all j ≥ 0 with j ̸= m, βm = g−1, and β̃j = g1. Then {β, β̃} = Φ−1[{α̂}]. Hence,

Bδ(β, 2
−n) ∪ Bδ(β̃, 2

−n) ⊆ Φ−1[U]. Now, let γ̂ ∈ B
δ̂
(α̂, 2−n) and γ ∈ Φ−1[{γ̂}]. Then

γ<n+1 = β<n+1 or γ<n+1 = β̃<n+1, i.e, γ ∈ Bδ(β, 2
−n) ∪ Bδ(β̃, 2

−n), from which we obtain
that γ̂ ∈ U . Thus, B

δ̂
(α̂, 2−n) ⊆ U .

Proposition 2.10. The metric topology on Ĝ is equivalent to the topology co-induced by Φ.

3. Inductive and co-inductive definitions

Let X be a set and P(X) its powerset. An operator Φ: P(X) → P(X) is monotone if for
all Y, Z ⊆ X,

if Y ⊆ Z, then Φ(Y) ⊆ Φ(Z);

and a set Y ⊆ X is Φ-closed (or a pre-fixed point of Φ) if Φ(Y) ⊆ Y . Since P(X) is a
complete lattice, every monotone operator Φ has a least fixed point µΦ ∈ P(X) by the
Knaster-Tarski Theorem. We often write

P (x)
µ
= Φ(P)(x),

instead of P = µΦ. µΦ can be defined to be the least Φ-closed subset of X. Thus, we have
the induction principle stating that for every Y ⊆ X,

If Φ(Y) ⊆ Y then µΦ ⊆ Y .

Dual to inductive definitions are co-inductive definitions. A subset Y of X is called
Φ-co-closed (or a post-fixed point of Φ) if Y ⊆ Φ(Y). By duality, every monotone Φ has a

Vol. 19:3 THE GRAY CODE CASE 1:13

largest fixed point νΦ which can be defined as the largest Φ-co-closed subset of Φ. So, we
have the co-induction principle stating that for all Y ⊆ X,

If Y ⊆ Φ(Y) then Y ⊆ νΦ.

Note that for P ⊆ X we also write

P (x)
ν
= Φ(P)(x)

instead of P = νΦ.
For monotone operators Φ,Ψ: P(X) → P(X) define

Φ ⊆ Ψ
Def
= (∀Y ⊆ X) Φ(Y) ⊆ Ψ(Y).

It is easy to see that the operation ν is monotone, i.e., if Φ ⊆ Ψ, then νΦ ⊆ νΨ. This allows
to derive the following strengthening of the co-induction principle.

Lemma 3.1 (Strong Co-induction Principle [BT21a]). Let Φ: P(X) → P(X) be a
monotone operator. Then:

If Y ⊆ Φ(Y ∪ νΦ) then Y ⊆ νΦ.

The proof is dual to the proof of the strong induction principle in [BT21a, Sp21].

Lemma 3.2 (Generalised Half-strong Co-induction Principle). Let Φ′,Φ: P(X) →
P(X) be monotone operators such that Φ′ is absorbed by Φ, that is, Φ′(Φ(Y)) ⊆ Φ(Y) for
all Y ⊆ X. Then:

If Y ⊆ Φ′(Φ(Y) ∪ νΦ) then Y ⊆ νΦ.

Note: If Φ′ is the identity, then this is the half-strong co-induction principle from [BT21a].
For a proof of that special case see [Sp21]. We will specialise generalised half-strong co-
induction to a concurrent setting in Section 5 and use it in Section 7.

Proof. Assume Y ⊆ Φ′(Φ(Y) ∪ νΦ). Since Φ(Y) ∪ νΦ ⊆ Φ(Y ∪ νΦ) (by the monotonicity of
Φ), we have Y ⊆ Φ′(Φ(Y ∪ νΦ)) (by the monotonicity of Φ′), and therefore Y ⊆ Φ(Y ∪ νΦ)
since Φ′ is absorbed by Φ. With strong co-induction, it follows Y ⊆ νΦ.

The following example is taken from [Be17].

Example 3.3 (Natural numbers). Define Φ: P(R) → P(R) by

Φ(Y) := {0} ∪ { y + 1 | y ∈ Y }.

Then µΦ = N = { 0, 1, . . . }. The induction principle is logically equivalent to the usual zero-
successor-induction on N; if 0 ∈ Y and (∀y ∈ Y)(y ∈ Y → y + 1 ∈ Y), then (∀y ∈ N) y ∈ Y .

Example 3.4 (The set of non-empty finite subsets of a set). Let Y be a subset of a
set X. Define ΦY : P(P(X)) → P(P(X)) by

ΦY (Z)
Def
= {u ∈ P(X) | (∃x ∈ Y)u = {x} ∨ (∃v ∈ Z)(∃y ∈ Y)u = v ∪ {y} }

and let Pfin(Y)
Def
= µΦY . Then Pfin(Y) is the set of all non-empty finite subsets of Y .

Example 3.5 (Digit Spaces). Digit spaces can be characterised co-inductively. Define
CX ⊆ X by

CX(x)
ν
= (∃e ∈ E)(∃y ∈ X)x = e(y) ∧ CX(y),

1:14 D. Spreen and U. Berger Vol. 19:3

i.e. CX = νΦX , where for Z ⊆ X,

ΦX(Z)
Def
= {x ∈ X | (∃e ∈ E)(∃y ∈ X)x = e(y) ∧ Z(y) }.

Note here that we may consider subsets A ⊆ X as unary predicates and write A(x) instead
of x ∈ A.

Lemma 3.6 [Sp21]. Let (X,E) be a digit space. Then X = CX .

If all digits e ∈ E are invertible, a slightly more comfortable characterisation can be
given. Define C′

X ⊆ X by

C′
X(x)

ν
= (∃e ∈ E)x ∈ range(e) ∧ C′

X(e−1(x)).

Lemma 3.7. Let (X,E) be a digit space with only invertible digits. Then C′
X = CX .

Proof. Both inclusions follow by co-induction. Let x ∈ C′
X . Then there exists e ∈ E so that

x ∈ range(e) and C′
X(e−1(x)). It follows for y = e−1(x) that x = e(y) and C′

X(y), which
shows that C′

X ⊆ ΦX(C′
X). Hence, C′

X ⊆ CX .
Conversely, let x ∈ CX . Then there are e ∈ E and y ∈ X with x = e(y) and CX(y). It

follows that x ∈ range(e) and CX(e−1(x)). Thus, CX ⊆ C′
X .

Classically the set CX is rather uninteresting, but constructively it is significant, since
from a constructive proof that x ∈ CX one can extract a stream α of digits such that
x = [[α]].

For what follows let S
Def
= C(I,AV) and G

Def
= C(I,GF). Then

S(x)
ν
= (∃i ∈ SD) I(i, x) ∧ S(2x− i), (3.1)

where for i ∈ SD and x ∈ I, I(i, x) Def
= |2x− i| ≤ 1, and

G(x)
ν
= (∃j ∈ GC)x ∈ range(gj) ∧G(1− j · 2x). (3.2)

Note that range(g−1) = [−1, 0] and range(g1) = [0, 1]. Moreover, the functions 1−2(−x) and

1− 2x, respectively, form the left and the right branch of the tent function t(x)
Def
= 1− 2|x|.

Hence the right-hand side in (3.2) is equivalent to

((x < 0 ∧ j = −1) ∨ (x > 0 ∧ j = 1) ∨ x = 0) ∧G(t(x)).

However, the last disjunction is not decidable as the test for 0 is not computable. Since
we want to work in a logic that allows extracting computable content from disjunctions, a
(classically) equivalent formula of what we have just obtained is preferable

G(x)
ν
= (x ̸= 0 → x ≤ 0 ∨ x ≥ 0) ∧G(t(x)). (3.3)

Example 3.8 (Well-founded induction). The principle of well-founded induction is an
induction principle for elements in the accessible or well-founded part of a binary relation ≺.
As shown in [BT21a], it is an instance of strictly positive induction. The accessible part of
≺ is inductively defined by

Acc≺(x)
µ
= (∀y ≺ x)Acc≺(y),

Vol. 19:3 THE GRAY CODE CASE 1:15

that is, Acc≺ = µΦ where Φ(X)
Def
= {x | (∀y ≺ x)X(y) }. A predicate P is called progressive

if Φ(P) ⊆ P , that is, Prog≺(P) holds where

Prog≺(P)
Def
= (∀x)((∀y ≺ x)P (y) → P (x)).

Therefore, the principle of well-founded induction, which states that a progressive predicate
holds on the accessible part of ≺, is a direct instance of the rule of strictly positive induction:

Prog≺(P)

Acc≺ ⊆ P
(WFI≺(P)).

In most applications P is of the form A → Q. The progressivity of P → Q can equivalently
be written as progressivity of P relativised to A,

Prog≺,A(P)
Def
= (∀x ∈ A)((∀y ∈ A) (y ≺ x → P (y)) → P (x)).

and the conclusion becomes Acc≺ ∩A ⊆ P

Prog≺,A(P)

Acc≺ ∩A ⊆ P
(WFI≺,A(P)).

Dually to the accessibility predicate one can define for a binary relation a path predicate

Path≺(x)
ν
= (∃y ≺ x)Path≺(y),

that is, Path≺ = νΨ where Ψ(X)
Def
= {x | (∃y ≺ x)X(y) }. Intuitively, Path≺(x) states

that there is an infinite descending path . . . x2 ≺ x1 ≺ x.
With the axiom of choice and classical logic it can be shown that ¬Path≺(x) implies

Acc≺(x).

4. Extracting algorithmic content from co-inductive proofs

In this section we recast the theory of digit spaces in a constructive setting with the aim to
extract programs that provide effective representations of certain objects or transformations
between different representations. As the main results on this basis we will obtain effective
transformations between the signed digit and the Gray code representations of I and
the hyperspace of non-empty compact subsets of I, respectively, showing that the two
representations are effectively equivalent. The method of program extraction is based on
a version of realisability, and the main constructive definition and proof principles will be
induction and co-induction. The advantage of the constructive approach lies in the fact that
proofs can be carried out in a representation-free way. Constructive logic and the Soundness
Theorem automatically guarantee that proofs are witnessed by effective and provably correct
transformations on the level of representations.

4.1. The formal system IFP. As basis for program extraction from proofs we use
Intuitionistic Fixed Point Logic (IFP) [BT21a], which is an extension of many-sorted first-
order logic by inductive and co-inductive definitions, i.e., predicates defined as least and
greatest fixed points of strictly positive operators. Here, an occurrence of an expression E
is strictly positive (s.p.) in an expression F if that occurrence is not within the premise
of an implication, and a predicate P is strictly positive in a predicate variable X if every
occurrence of X in P is strictly positive. Strict positivity is a simple and sufficiently general

1:16 D. Spreen and U. Berger Vol. 19:3

syntactic condition that ensures monotonicity and hence the existence of these fixed points,
as discussed in Section 3.

Relative to the language specified the following kinds of expression are defined:

Formulas A,B: Equations s = t (s, t terms of the same sort), P (⃗t) (P a predicate which
is not an abstraction, t⃗ a tuple of terms whose sorts fit the arity of P), conjunction
A∧B, disjunction A∨B, implication A → B, universal and existential quantification
(∀x)A, (∃x)A.

Predicates P,Q: Predicate variables X,Y, . . . (each of fixed arity), predicate constants, ab-
straction λx⃗. A (arity given by the variable tuple x⃗), µΦ, νΦ (arities = arity of Φ).

Operators Φ: λX.P where P must be strictly positive in X and the arities of X and P
must coincide. The arity of λX.P is this common arity.

Falsity is defined as False
Def
= µ(λX.X)() where X is a predicate variable of arity ().

Program extraction is performed via a ‘uniform’ realisability interpretation (Section 4.4).
Uniformity concerns the interpretation of quantifiers: A formula (∀x)A(x) is realised
uniformly by one object a that realises A(x) for all x, so a may not depend on x. Dually, a
formula (∃x)A(x) is realised uniformly by one object a that realises A(x) for some x, so a
does not contain a witness for x. Expressions (formulas, predicates, operators) that contain
no disjunction and no free predicate variables are identical to their realisability interpretations
and are called non-computational (nc). A slightly bigger class of expressions are Harrop
expressions. These may contain disjunctions and free predicate variables but not at strictly
positive positions. A Harrop formula may not be identical to its realisability interpretation,
however they have at most one realiser which is trivial and which is represented by the
program constant Nil (see Sections 4.2 and 4.4).

We highlight some feature that distinguish IFP from other approaches to program
extraction.

Classical logic: Although IFP is based on intuitionistic logic a fair amount of classical logic
is available. Soundness of realisability holds in the presence of any non-computational
axioms that are classically true. This can be extended to Harrop axioms whose
realisability interpretations (see 4.4) are classically true.

Sets: We add for every sort s a powersort P(s) and a (non-computational) element-hood
relation constant ε of arity (s,P(s)). In addition, for every Harrop formula A(x) the
comprehension axiom

(∃u)(∀x)(x ε u ↔ A(x))

is added. (A(x) may contain free variables other than x.) The realisability interpreta-
tion of such a comprehension axiom is again a comprehension axiom and can hence
be accepted as true. We will use the notation {x | A(x) } for the element u of sort
P(s) whose existence is postulated in the comprehension axiom above. Hence, we can

define the empty set ∅ Def
= {x | False }, singletons {x} Def

= { y | y = x }, the classical

union of two sets u∪ v
Def
= {x | ¬(x ̸ε u∧ x ̸ε v) }, the union of all members of a set of

sets
⋃
u

Def
= {x | (∃y ε u)x ε y }, and the intersection of a class of sets defined by a

predicate P of arity (P(s)),
⋂
P

Def
= {x | (∀y ∈ P)x ε y }.

Note that the informal notion of ‘set’ used in Section 3 is represented in the formal
system IFP in three different ways:
(1) Sorts are names for abstract ‘ground’ sets. For example, s is a name for the

abstract set of real numbers.

Vol. 19:3 THE GRAY CODE CASE 1:17

(2) Terms of sort P(s) denote subsets of the ground set denoted by s. Elements of
sort P(s) can be defined by comprehension, {x | A(x)}, which is restricted to nc
formulas A(x).

(3) Predicates are expressions denoting subsets of the ground sets. Predicates can
be constructed by λ-abstraction, λx .A(x) (also written {x | A(x) }), where A(x)
can be any formula.

By ‘set’ we will mean in the following always (2), that is ‘element of sort P(s)’. The
three concepts form an increasing hierachy since the sort s corresponds to the set
{x | True} and every set u corresponds to the predicate λx . x ε u. Note that x ε u is
an nc formula while x ∈ P (which is synonym for P (x)) has computational content if
the predicate P has.

To clarify the distinction we formally recast the definition of ‘the set of finite subsets
of a set’ (Example 3.4), which should now rather be called ‘the predicate of finite subsets
of a predicate’: Let P be a predicate of arity (s) (s and P correspond toX and Y in 3.4).
We define the predicate Pfin(P) of arity (P(s)) as µΦP where the operator ΦP of arity
(P(s)) is defined as ΦP = λZ . λu . (∃x ∈ P)u = {x} ∨ (∃v ∈ Z)(∃y ∈ P)u = v ∪ {y}.

Abstract real numbers: In formalising the theory of real numbers, e.g., the set R of real
numbers is regarded as a sort ι. A predicate N with N(x) if the real number x is a
natural number, is introduced by induction as in Example 3.3. All arithmetic constants
and functions we wish to talk about are admitted as constant or function symbols.
The predicates =, < and ≤ are considered as non-computational. As axioms, any
true disjunction-free formulas about real numbers can be chosen. As such, the axiom
system AR consists of a discunction-free formulation of the axioms of real-closed fields,
equations for exponentiation, the defining axiom for max, stability of =,≤, <, as well
as the Archimedean property AP about the non-existence of real numbers greater
than all natural numbers, and Brouwer’s Thesis for nc predicates

(BTnc) (∀x) (¬Path≺(x) → Acc≺(x)).

Compact sets: In order to be able to deal with the hyperspace of non-empty compact subsets
of the compact real interval [−1, 1], we also add a predicate constant K of arity
(P(ι)) to denote the elements of that hyperspace. We also add an axiom for the finite
intersection property stating that the intersection of the members of a descending
sequence in K is not empty.

Partial computation: Like the majority of programming languages, IFP’s language of ex-
tracted programs admits general recursion and therefore partial, i.e., non-terminating
computation.

Infinite computation: Infinite data, as they naturally occur in exact real number computa-
tion, can be represented by infinite computations. This is achieved by an operational
semantics where computations may continue forever outputting arbitrarily close ap-
proximations to the complete (infinite) result at their finite stages.

The proof rules of IFP include the usual natural deduction rules for intuitionistic
first-order logic with equality. In addition there are the following rules for strictly positive
induction and co-induction: the closure and co-closure of the least and greatest fixed point,
respectively, stated as assumption-free rules, and the induction as well as the co-induction
principle.

1:18 D. Spreen and U. Berger Vol. 19:3

4.2. Programs and their semantics. Extracted programs, i.e. realisers, are interpreted
as elements of a Scott domain D defined by the recursive domain equation

D = (Nil+ Left(D) +Right(D) +Pair(D ×D) + Fun(D → D))⊥,

where D → D is the domain of continuous functions from D to D, + denotes the disjoint
sum of partial orders, and (·)⊥ adds a new bottom element. Nil, Left, Right, Pair and
Fun denote the injections of the various components of the sum into D. Nil, Left, Right,
Pair (but not Fun) are called constructors.

D carries a natural partial order ⊑ with respect to which it is a countably based Scott
domain (domain for short), that is a bounded-complete algebraic directed-complete partial
order with least element ⊥ and a basis of countably many compact elements [GHKLMS03].
An element of D is called defined if it is different from ⊥. Hence, each defined element is of
one of the forms Nil, Left(), Right(),Pair(,), Fun().

Since domains are closed under suprema of increasing chains D contains not only finite
but also infinite combinations of the constructors. For example, writing a : b for Pair(a, b),
an infinite sequence of domain elements (di)i∈N is represented in D as the stream

d0 : d1 : . . .
Def
= sup

n∈N
Pair(d0,Pair(d1, . . . ,Pair(dn,⊥) . . .)).

Because Scott domains and continuous functions form a Cartesian closed category, D can
be equipped with the structure of a partial combinatory algebra (PCA, [GHKLMS03]) by

defining a continuous application operation a b such that a b
Def
= f(b), if a = Fun(f), and

a b
Def
= ⊥, otherwise, as well as combinators K and S satisfying K ab = b and S a b c =

a c (b c) (where application associates to the left). In particular D has a continuous least
fixed point operator which can be defined by Curry’s Y -combinator or as the mapping
(D → D) ∋ f 7→ supn f

n(⊥) ∈ D.
Besides the PCA structure the algebraicity of D will be used, that is, the fact that every

element of D is the directed supremum of compact elements. Compact elements have a
strongly finite character. The finiteness of compact element is captured by their defining
property, saying that d ∈ D is compact if for every directed set A ⊆ D, if d ⊑

⊔
A, then

d ⊑ a for some a ∈ A, and the existence of a function assigning to every compact element a
a rank, rk(a) ∈ N, satisfying
rk1: If a has the form C(a1, . . . , ak) for a data constructor C, then a1, . . . , ak are compact

and rk(a) > rk(ai), for 1 ≤ i ≤ k.
rk2: If a has the form Fun(f), then for every b ∈ D, f(b) is compact with rk(a) > rk(f(b))

and there exists a compact b0 ⊑ b such that rk(a) > rk(b0) and f(b0) = f(b).
Moreover, there are finitely many compact elements b1, . . . , bn with rk(bi) < rk(a)
such that f(b) =

⊔
{ f(bi) | 1 ≤ i ≤ n ∧ bi ⊑ b }.

Elements of D are denoted by programs which are defined as in [BT21a] except that
the case construct is more general since it allows overlapping patterns. For example,
it is now possible to define the function parallel-or [Pl77]. Setting True = Left(Nil),
False = Right(Nil) parallel-or can be defined as

λc. case cof {Pair(True,) → True;

Pair(,True) → True;

Pair(False,False) → False }

Vol. 19:3 THE GRAY CODE CASE 1:19

which is not possible in the programming language defined in [BT21a]. We will need this
greater expressivity in Section 5.

Formally, Programs are terms M,N, . . . of a new sort δ built up as follows:

Programs ∋ M,N,L,R ::= a, b (program variables)

| Nil |Left(M) |Right(M) |Pair(M,N)

| caseM of {Cl1; . . . ;Cln}
| λa.M

| MN

| recM

| ⊥
where in the case-construct the Cli are pairwise compatible clauses (see Definition 4.1 below).
A clause is an expression of the form P → N where P is a pattern and N is a program. A
pattern is either a constructor pattern or a function pattern. A constructor pattern is a
program built from constructors and variables such that each variable occurs at most once.
Function patterns are of the form fun(a) where a is a program variable.

Definition 4.1. Two clauses, P1 → N1 and P2 → N2, are compatible if for any substitutions
θ1, θ2, if P1θ1 =α P2θ2, then N1θ1 =α N2θ2 where =α means α-equality, that is, equality up
to renaming of bound variables.

Compatibility of clauses can be decided efficiently since it is enough to consider most
general unifiers θ1 and θ2.

The variables in P are considered as binders. Hence, the free variables of a clause
P → N are the free variables of N that do not occur in P .

In [BT21a] only simple patterns containing one occurrence of one constructor are
considered and two clauses are required to have different constructors. This is equivalent to
allowing arbitrary pattern but requiring different clauses to have non-unifiable pattern.

Programs that are α-equal will be identified. Moreover, we will write a
rec
= M for

a
Def
= rec(λa.M), and a b

rec
= M for a

rec
= λb.M .

Definition 4.2.

(1) A program M matches a constructor pattern P if there is a substitution θ, called the
matching substitution, such that dom(θ) = FV(P) and Pθ = M .

(2) A program M matches a function pattern fun(a) if M is a λ-abstraction and in this
case the matching substitution is [a 7→ M].

(3) A program matches a clause P → N if it matches P .

Except for the case-construct, the denotational semantics of programs in D is defined as

in [BT21a]. To define the denotation caseM of {C⃗l} we first define when a domain element
d matches a pattern P and, if it does, the matching environment which has as domain the
variables of the pattern.

• In the case of a constructor pattern P this is obvious and the matching environment η (if
it exists) will satisfy [[P]]η = d.

• The matches of a function pattern fun(a) are the domain elements of the form Fun(f)
and the matching environment is [a 7→ Fun(f)].

The denotation of a case program in an environment η, [[caseM of {C⃗l}]]η, is defined as
follows:

1:20 D. Spreen and U. Berger Vol. 19:3

Definition 4.3.

(1) If P → N is a clause in C⃗l such that [[M]]η matches P with matching environment η′,

then [[caseM of {C⃗l}]]η = [[N]](η + η′) where η + η′ is the environment obtained by
overriding η with η′.

(2) If no such matching is possible, then [[caseM of {C⃗l}]]η = ⊥.

Due to the compatibility condition the denotation is independent of the choice of the
matching clause. This follows from the fact that two patterns P1, P2 are unifiable if and only
if they have a common match and the most general unifiers are in a one-to-one correspondence
with the matching environments of the common match.

Definition 4.4. A program is called a value if it is an abstraction or begins with a
constructor.

Note that a closed program is a value exactly if it is a weak head normal form (whnf).
Clearly, if M is a value, then [[M]]η ̸= ⊥ for every environment η.

The following small-step operational semantics of closed programs is similar to the one
in [BT21a]. The difference is due to the more general case expressions.

i. caseM of {. . . ;P → N ; . . .}⇝ Nθ if M matches P with matching substitution θ.
ii. (λx.M) N ⇝M [N/x].
iii. rec M ⇝M (rec M).

iv.
M ⇝M ′

caseM of {C⃗l}⇝ caseM ′ of {C⃗l}
if M doesn’t match any clause in C⃗l.

v. M ⇝M ′

M N ⇝M ′N
if M is not an abstraction.

vi.
Mi ⇝M ′

i (i = 1, . . . , k)

C(M1, . . . ,Mk)⇝ C(M ′
1, . . . , ,M

′
k)

.

vii. λx.M ⇝ λx.M .

Lemma 4.5 [BT21a]. Let M be a closed program.

1. M ⇝M ′ for exactly one M ′.
2. If M ⇝M ′, then [[M]] = [[M ′]].
3. [[M]] ̸= ⊥ exactly if there is a hnf V such that M ⇝∗ V .

Proof. (1) holds by the compatibility condition for case-constructs. (2) is easy. The proof of
(3) is as the proof of [BT21a, Lemma 33] for the case that M begins with a constructor, and
an easy consequence of [BT21a, Lemma 32] for the case that M is a λ-abstraction.

4.3. Types. A type τ(E) is assigned to every IFP-formula and predicate E, where types
are expressions defined by the grammar

Types ∋ ρ, σ ::= α (type variables) |1 | ρ× σ | ρ+ σ | ρ ⇒ σ |fixα. ρ

where in fixα. ρ the type ρ must be strictly positive in α. Types are interpreted by
subdomains of D in an obvious way.

The idea is that for a formula A, τ(A) is the type of potential realisers. Expressions
without computational content will receive type 1.

Intuitively, by saying that a program a is a realiser of a formula A, one means that a
is a computational content of formula A. In intuitionistic logic, a proof of A ∨B gives us

Vol. 19:3 THE GRAY CODE CASE 1:21

the evidence that A is true or B is true. The notion of realiser used in the present paper
is designed by treating this as the primitive source of computational content. Therefore,
we defined an expression non-computational (nc) if it contains neither disjunctions nor free
predicate variables. A more general notion of an expression with trivial computational
content is provided by the Harrop property. A formula is Harrop if it contains neither
disjunctions nor free predicate variables at strictly positive positions. A predicate P is
X-Harrop, if P is strictly positive in X and P [X̂/X] is Harrop for X̂ a predicate constant
associated with X.

τ(P (⃗t)) = τ(P)

τ(A ∧B) = τ(A)× τ(B) (A,B non-Harrop)
= τ(A) (B Harrop)
= τ(B) (otherwise)

τ(A ∨B) = τ(A) + τ(B)

τ(A → B) = τ(A) ⇒ τ(B) (A,B non-Harrop)
= τ(B) (A Harrop)

τ(3xA) = τ(A) (3 ∈ {∀, ∃})
τ(X) = αX (X a predicate variable)

τ(P) = 1 (P a predicate constant)

τ(λx⃗. A) = τ(A)

τ(2(λX.P)) = fixαX . τ(P) (2 ∈ {µ, ν}, P not X-Harrop)
= 1 (2 ∈ {µ, ν}, P X-Harrop)

For example, τ(N) = nat
Def
= fixα.1+ α, the type of unary natural numbers.

4.4. Realisability. Next, we define the notion that a program a : τ(A) is a realiser of a
formula A. In order to formalise this notion and to provide a formal proof of its soundness,
Berger and Tsuiki [BT21a] introduced an extension RIFP of IFP which in addition to the
sorts of IFP contains the sort δ, denoting the domain D. For each IFP formula A they
define an RIFP predicate R(A) of arity (δ) that specifies the set of domain elements that
realise A. Similarly, for every non-Harrop predicate P of arity (σ⃗) a predicate R(P) of arity
(σ⃗, δ), and every non-Harrop operator Φ of arity (σ⃗) an operator R(Φ) of arity (σ⃗, δ) is
defined. Note that instead of R(A)(a) we also write a rA. Moreover, we write rA to mean
(∃a) a rA.

Simultaneously, H(B) is defined, for Harrop formulas B, which expresses that B is
realisable, however with trivial computational content Nil. More precisely, we define a
formula H(A) for every Harrop formula A, a predicate H(P) for every Harrop predicate P ,
and an operator H(Φ) for every Harrop operator Φ. H(P) and H(Φ), respectively, will be
of the same arity as P and Φ.

a rA = (a = Nil ∧H(A)) (A Harrop)

a rP (⃗t) = R(P)(⃗t, a) (P non-H.)

c r (A ∧B) = (∃a, b) (c = Pair(a, b) ∧ a rA ∧ b rB) (A,B non-H.)

a r (A ∧B) = a rA ∧H(B) (B Harrop, A non-H.)

1:22 D. Spreen and U. Berger Vol. 19:3

b r (A ∧B) = H(A) ∧ b rB (A Harrop, B non-H.)

c r (A ∨B) = (∃a) (c = Left(a) ∧ a rA) ∨ (∃b) (c = Right(b) ∧ b rB)

c r (A → B) = c : τ(A) ⇒ τ(B) ∧ (∀a) (a rA → (c a) rB) (A,B non-H.)

b r (A → B) = b : τ(B) ∧ (H(A) → b rB) (A Harrop, B non-H.)

a r3xA = 3x (a rA) (3 ∈ {∀,∃}, A non-H.)

R(X) = X̃

R(λx⃗. A) = λ(x⃗, a) (a rA) (A non-H.)

R(2(Φ)) = 2(R(Φ)) (2 ∈ {µ, ν}, Φ non-H.)

R(λX.P) = λX̃. R(P) (P non-H.)

H(P (⃗t)) = H(P)(⃗t) (P Harrop)

H(A ∧B) = H(A) ∧H(B) (A,B Harrop)

H(A → B) = rA → H(B) (B Harrop)

H(3xA) = 3xH(A) (3 ∈ {∀,∃}, A Harrop)

H(P) = P (P a predicate constant)

H(λx⃗. A) = λx⃗.H(A) (A Harrop)

H(2(Φ)) = 2(H(Φ)) (2 ∈ {µ, ν}, Φ Harrop)

H(λX.P) = λX.HX(P) (P X-Harrop)

For the last line recall that a predicate P is X-Harrop, if P is strictly positive in X and
P [X̂/X] is Harrop for X̂ a predicate constant associated with X. In this situation HX(P)

stands for H(P [X̂/X])[X/X̂]. The idea is that HX(P) is the same as H(P) but considering
X as a (non-computational) predicate constant.

Lemma 4.6 [BT21a].

1. If A is Harrop, then H(A) ↔ rA.
2. If E is an nc expression, then H(E) = E, in particular H(False) = False.

Example 4.7 (Realiser of induction and co-induction). Set

f ◦ g Def
= λa . f(g a),

[f + g]
Def
= λc . case cof {Left(a) → f a;Right(b) → g b}.

Note that if f : ρ → σ and g : σ → σ′, then g ◦ f : ρ → σ′, and if f1 : ρ1 → σ and
f2 : ρ2 → σ, then [f1 + f2] : (ρ1 + ρ2) → σ.

Note also that for a s.p. non-Harrop operator Φ, and a non-Harrop predicate P .

τ(µ(Φ)) = τ(ν(Φ)) = fix τ(Φ)
Def
= fix α . τ(Φ)(α)

For every s.p. type operator φ let monφ : (α → β) → φ(α) → φ(β) be the canonical
program such that for every s.p. operator Φ and all predicates P,Q (of fitting arity), monτ(Φ)

realizes (P ⊆ Q) → Φ(P) ⊆ Φ(Q). Then monφ is a polymorphic program whose type
depends on the type variables α, β. These type variables may be substituted by any types
ρ, σ. We sometimes write monρ,σ

φ to indicate that we are interested in the typing obtained
by this substitution, that is, monρ,σ

φ : (ρ → σ) → φ(ρ) → φ(σ). A similar convention
applies to the polymorphic programs defined below, such as itφ, coitφ, etc., as well as to the

Vol. 19:3 THE GRAY CODE CASE 1:23

polymorphic constructors Leftα,β : α → (α+ β), Rightα,β : β → (α+ β), and the identity
function idα : α → α. Of course these programs do not depend on the superscripts but only
on the subscript (if any).

To improve readability we will in the following omit the ‘τ ’ from τ(A), τ(P) and τ(Φ)
and we write νΦ instead of ν(Φ), etc. Hence for example, instead of writing

mon
τ(P),τ(ν(Φ))
τ(Φ) : (τ(P) → τ(ν(Φ))) → τ(Φ)(τ(P)) → τ(Φ)(τ(ν(Φ)))

we write

monP,νΦ
Φ : (P → νΦ) → Φ(P) → Φ(νΦ)

or even

monP,νΦ
Φ : (P → νΦ) → Φ(P) → νΦ

since τ(Φ)(τ(νΦ)) ≡ τ(νΦ).

Induction. If s : Φ(P) → P realises Φ(P) ⊆ P , then itPΦ s realizes µΦ ⊆ P where

itφ : (φ(α) → α) → fix (φ) → α,

itφ s
Def
= rec λf. s ◦monfix (φ),α

φ f.

Co-induction. If s : P → Φ(P) realises P ⊆ Φ(P), then coitPΦ s realises P ⊆ νΦ where

coitφ : (α → φ(α)) → α → fixφ,

coitφ s
Def
= rec λf.monα,fixφ

φ f ◦ s.

Half-strong co-induction. If s : P → (Φ(P)+νΦ) realises P ⊆ Φ(P)∪νΦ, then hscoitPΦ s
realises P ⊆ νΦ where

hscoitφ : (α → (φ(α) + fixφ)) → α → fixφ

hscoitφ s
Def
= rec λf. [monα,fixφ

φ f + idfixφ] ◦ s

Strong co-induction. If s : P → (Φ(P) + νΦ) realises P ⊆ Φ(P ∪ ν(Φ)), then scoitPΦ s
realises P ⊆ νΦ where

scoitφ : (α → φ(α+ fixφ)) → α → fixφ,

scoitφ s
Def
= rec λf.monα+fixφ,fixφ

φ [f + idfixφ] ◦ s.

1:24 D. Spreen and U. Berger Vol. 19:3

Generalised half-strong co-induction. Assume Φ′ is monotone.
Let absorbα

Φ′,Φ : Φ′(Φ(α)) → Φ(α) realise Φ′(Φ(Y)) ⊆ Φ(Y) for all Y .

If s : P → Φ′(Φ(P) + νΦ) realises P ⊆ Φ′(Φ(P) ∪ ν(Φ)), then

hscoitΦ (absorbΦ′,Φ ◦monΦ′ [monΦ Left+monΦRight] ◦ s)

realises P ⊆ νΦ. This means that the realiser is a function f : P → νΦ defined recursively
by

f
rec
= monP+νΦ,νΦ

Φ [f + idνΦ]

◦ absorbP+νΦ
Φ′,Φ

◦ mon
Φ(P)+νΦ,Φ(P+νΦ)
Φ′ [monP,P+νΦ

Φ LeftP,νΦ +monνΦ,P+νΦ
Φ RightP,νΦ]

◦ s.

Example 4.8 (Realiser of well-founded induction). The schema of well-founded
induction, WFI≺,A(P), is realised as follows: If s realises Prog≺,A where P is non-Harrop,
then Acc≺ ∩A ⊆ P is realised by

• f̃
rec
= λa. (s a (λa′. λb. f̃ a′)) if ≺ and A are both non-Harrop,

• f̃
rec
= λa. (s a f̃) if ≺ is Harrop and A is non-Harrop,

• c̃
rec
= s (λb. c̃) if ≺ is non-Harrop and A is Harrop,

• rec s if ≺ and A are both Harrop.

See [BT21a, Lemma 21] for a proof.

4.5. Soundness. The Soundness Theorem [BT21a] stating that provable formulas are
realisable is the theoretical foundation for program extraction.

Theorem 4.9 (Soundness). Let A be a set of nc axioms. From an IFP(A) proof of formula
A one can extract a program M : τ(A) such that M rA is provable in RIFP(A).

More generally, let Γ be a set of Harrop formulas and ∆ a set of non-Harrop formulas.
Then, from an IFP(A) proof of a formula A from the assumptions Γ,∆ one can extract
a program M with FV(M) ⊆ u⃗ such that u⃗ : τ(∆) ⊢ M : τ(A) and M rA are provable in
RIFP(A) from the assumptions H(Γ) and u⃗ r∆.

If one wants to apply this theorem to obtain a program realising formula A one must
provide terms K1, . . . ,Kn realising the assumptions in ∆. Then it follows that the term
M(K1, . . . ,Kn) realises A, provably in RIFP. Because the program axioms of RIFP given
in [BT21a] are correct with respect to the denotational semantics, a further consequence is
that M(K1, . . . ,Kn) is a correct realiser of A.

That realisers do actually compute witnesses is shown in [BT21a] by two Computational
Adequacy Theorems that relate the denotational definition of realisability with a lazy
operational semantics.

Vol. 19:3 THE GRAY CODE CASE 1:25

5. Computationally motivated logical connectives

Non-termination is a natural and fundamental phenomenon in computation. It is denota-
tionally modelled in domain theory [GHKLMS03] and a logical account of it is Scott’s logic
with an existence predicate [Sc79]. The Minlog system [Min11] supports the extraction of
programs that may or may not terminate and keeps control of potential partiality through a
logic with totality degrees. A limitation of programs extracted from proofs in Minlog, or other
systems such as Coq [Let02], is that they are sequential. Having the possibility of running
computations concurrently, on the other hand, can be very useful to get around partiality.
If, e.g., M and N are two programs known to realise formula A under the assumption that
condition B or ¬B holds, respectively, then at least one of them is guaranteed to terminate.
So running them concurrently and picking the result obtained first, will lead to a result
realising A, provided that if M or N terminates then it realises A.

To capture realisability restricted to a condition as described above, we follow the
approach in [BT21b] and extend in Section 5.1 IFP by a propositional connective

A↾B (“A restricted to B”)

which, for nc-formulas B, has a similar meaning as the formula B → A but behaves slightly
differently (and better) with respect to realisability: While a realiser of B → A is a program
that realises A if B holds but otherwise provides no guarantees, a realiser of A↾B is a
program p that terminates and realises A if B holds, but even if B does not hold, p will
realise A provided p terminates. In order to behave well, the formation of A↾B is restricted
to formulas A satisfying a syntactic condition called productivity (defined in Section 5.1)
that guarantees that only terminating programs can realise A.

In Section 5.2 we introduce the concurrency modality ⇊(A) from [BT21b] with the
crucial rule

A↾B A↾¬B
⇊(A)

(⇊-lem)

that makes precise the above intuition. We also prove the realisability of a couple of further
rules that say how ⇊ interacts with other logical connectives.

Finally, in Section 5.3, we introduce a new concurrency modality,
∗
⇊(A), which inherits

most of the properties of ⇊(A) but in addition has realisable rules corresponding to a monad.
This new modality will be used in Section 7 to define concurrent versions of the signed digit
representation and infinite Gray code which are constructively equivalent.

5.1. Restriction A↾B. Following [BT21b], we introduce restriction, A↾B, where A is re-
quired to be productive4, that is, every implication and restriction in A has to be part of a
Harrop formula or a disjunction. In particular, Harrop formulas and disjunctions are always
productive. The reason why A is required to be productive is that this ensures that A has
only defined realisers, that is ⊥ does not realise A.

The definition of the Harrop property is extended by demanding that Harrop formulas
must not contain a restriction at a strictly positive position. In particular, restrictions are
not Harrop. Realisability for restrictions is defined as

a rA↾B
Def
= a : τ(A) ∧ (rB → a ̸= ⊥) ∧ (a ̸= ⊥ → a rA).

4Observe that in [BT21b] the notion “strict” is used instead of “productive”.

1:26 D. Spreen and U. Berger Vol. 19:3

Note that if A is a Harrop formula, then a rA↾B is equivalent to the formula

(rB ∨ a ̸= ⊥) → (a = Nil ∧H(A)).

The type of restriction is τ(A↾B)
Def
= τ(A).

To gain some intuition suppose that a closed program M realises A↾B. Since closed
programs denote a value different from ⊥ exactly if they reduce to whnf, one has: (i) If B
is realisable, then M reduces to whnf. (ii) If M reduces to whnf, then M realises A (even
if B is not realisable). In this sense, one has partial correctness of M with respect to the
specification A. The distinction between A↾B and B → A regarding realisability is carefully
discussed in [BT21b].

Sometimes, we need to get rid of the productivity requirement. This can be achieved by
considering formulas of kind A ∨False instead of just A. By definition, A ∨False is always
productive. Moreover, a rA, exactly if Left(a) rA ∨ False. Note here that False has no
realiser. This leads us to the following unrestricted version of the restriction connective

A↾uB
Def
= (A ∨ False)↾B.

Since the realisers of such formulas are more complicated than those in the productive
case, we keep both versions of the restriction connective. It should be clear from the definition
that all statements in this paper about the realisability of rules for the restriction connective
↾ also hold for the unrestricted version ↾u.

The following derivation rules concerning restriction are added to IFP:

B → A0 ∨A1 ¬B → A0 ∧A1

(A0 ∨A1)↾B
(↾-intro (A0, A1, B Harrop))

A

A↾B
(↾-return)

A↾B A → (A′↾B)
A′↾B

(↾-bind)

A↾B B′ → B

A↾B′
(↾-antimon)

A↾B B

A
(↾-mp)

A↾False
(↾-efq)

A↾B
A↾¬¬B

(↾-stab)

(A↾B)↾uC
A↾B∧C

(↾-absorb)
A↾B C↾B
(A ∧ C)↾B

(↾-∧).

Lemma 5.1 [BT21b]. The rules for restriction are realisable, provably in extended RIFP.
Hence, Soundness Theorem 4.9 remains valid for the extension of IFP by restriction, however,
classical logic is needed to derive the correctness of realisers.

Note that the last two rules have not been considered in [BT21b]. As is easily verified,
Rule (↾-absorb) is realised by λa. case aof {Left(a′) → a′} and Rule (↾-∧) by (Pair↓)↓,
where f↓a denotes strict application:

f↓a Def
= case aof {C() → f a | C ∈ {Nil,Left,Right,Pair, fun}}.

Observe that f↓a = f a if a ̸= ⊥ and f↓⊥ = ⊥.

Vol. 19:3 THE GRAY CODE CASE 1:27

Lemma 5.2 [BT21b]. The following rule is derivable from the rules for restriction:

A↾B A → A′

A′↾B
(↾-mon).

The rule is realised by λf. λa. f↓a. To see this assume that a rA↾B and f r (A → A′).
We have to show that f↓a rA′↾B. Suppose first that rB. Then a ̸= ⊥ and hence by
definition of f↓, f↓a = f a. We need that f a ̸= ⊥. Here, the productivity requirement for
the restriction connective comes into play: A′ needs to be productive and since f a rA′, we
have that f a ̸= ⊥, as was to be shown. Next, suppose that f↓a ≠ ⊥. Then a ̸= ⊥ as well,
by definition of f↓. Therefore, a rA. It follows that f a rA′. Since a ̸= ⊥, we moreover have
that f↓a = f a. Thus, f↓a rA′.

5.2. McCarthy’s Amb and the concurrency modality ⇊(A). To deal with concurrency,
[BT21b] introduced a further constructor Amb(a, b) indicating that its arguments a, b need
be evaluated concurrently in order to obtain one of the results even if the other one is not
terminating. The domain D now has to satisfy the domain equation

D = (Nil+ Left(D) +Right(D) +Pair(D ×D) + Fun(D → D) +Amb(D ×D))⊥.

The programming language is extended by a constructor Amb which denotes the constructor
Amb in the domain D. Hence, denotationally, the constructor Amb is an exact copy of
Pair, that is, it acts like a lazy pairing operator. Only the operational semantics interprets a
program Amb(M,N) as a concurrent computation of M and N until one of them is reduced

to whnf. This is formalised by the following (non-deterministic) relation
c
⇝ (‘c’ for ‘choice’):

ci.
M ⇝M ′

M
c
⇝M ′ ,

cii. Amb(M1,M2)
c
⇝Mi if Mi is a whnf (i = 1, 2),

ciii.
Mi

c
⇝M ′

i (i = 1, . . . , k)

C(M1, . . . ,Mk)
c
⇝ C(M ′

1, . . . , ,M
′
k)

if C ̸= Amb.

The deterministic relation ⇝ which
c
⇝ extends is now to be understood with respect to all

constructors, including Amb. The intuition of
c
⇝ is that a program is first deterministically

evaluated using ⇝. If a program of the form Amb(M1,M2) is obtained, deterministic
computation continuous in parallel with M1 and M2. As soon as one of the two programs
reach a whnf, the other may be discarded using Rule (cii). Rule (ciii) says that the
computation can be carried out inside (nested) data constructors. Note that rule (cii) cannot
be applied to proper subterms of a term Amb(M1,M2) since the only way of reducing
Amb(M1,M2) with a rule other than (cii) is by Rule (ci) and Rule (vi) of ⇝. This ensures
that at any point only two concurrent threads are needed to carry out the computation.
For the reductions to yield the desired result (see [BT21b], Theorems 1 and 2), fairness
conditions must be imposed. For example, if in Amb(M1,M2) at least one of the Mi is
hnf, then Rule (cii) will eventually be applied. In [BT21b] slighty more general (and more
complicated) but essentially equivalent rules are given which facilitate the formalisation of
the fairness condition and allow parallel threads to be evaluated at differend ‘speeds’.

To indicate at the logical level that a realiser of a formula A may be computed con-
currently, a new modality ⇊(A) was introduced in [BT21b] where, again, the formula A is

1:28 D. Spreen and U. Berger Vol. 19:3

required to be productive. For a non-Harrop formula A realisability is defined as

c r⇊(A)
Def
= c = Amb(a, b) ∧ a, b : τ(A) ∧

(a ̸= ⊥ ∨ b ̸= ⊥) ∧
(a ̸= ⊥ → a rA) ∧ (b ̸= ⊥ → b rA).

Thus, a realiser of ⇊(A) is a pair of candidate realisers a and b at least one of which denotes
a defined value and all of a and b which are defined values are correct realisers. In particular,
if a and b are both defined, then they are both correct realisers. Therefore, by running the
two programs for the candidates a and b concurrently and taking the one which becomes
defined (i.e. a whnf) first, it is guaranteed that we obtain a correct result. Hence, we can
safely stop the other process.

The occurrence of A in ⇊(A) is regarded strictly positive. The definition of the Harrop
property is further extended by demanding that Harrop formulas must not contain the
concurrency operator at a strictly positive position. In particular, ⇊(A) is always non-Harrop
(even if A is Harrop). The type of the concurrency modality is τ(⇊(A)) = A(τ(A)) where
A is a new type operator.

IFP is once more extended by adding the following derivation rules. The logical system
thus obtained is called Concurrent Fixed Point Logic (CFP).

A↾C A↾¬C
⇊(A)

(⇊-lem)
A

⇊(A)
(⇊-return)

⇊(A) A → B

⇊(B)
(⇊-mon)

⇊(A)
A

(⇊-H (A Harrop))

⇊(A↾B)
⇊(A)

(⇊-↾-absorb)
A↾B C↾D
⇊(A ∨ C)↾B∨D

(⇊-↾-∨)

B → ⇊(A0 ∨A1) ¬B → A0 ∧A1

⇊(A0 ∨A1)↾B
(⇊-↾-intro (A0, A1, B Harrop))

Note that the last three rules have not been considered in [BT21b].

Lemma 5.3. The rules for the concurrency modality are realisable.

Proof. The realisability of the first four rules has been shown in [BT21b]. It remains to
consider the last three rules.

It is easy to see that (⇊-↾-absorb) is realised by the identity function: Assume c r⇊(A↾B).
Then c = Amb(a, b). Furthermore, a ̸= ⊥ or b ≠ ⊥, and in the first case a rA↾B while in
the second case b rA↾B. We show that c r⇊(A). By the facts we know about c, it suffices
to show that if a ̸= ⊥ then a rA (and similarly for b). But if a ̸= ⊥, then a rA↾B and hence
a rA.

Next, we show that Rule (⇊-↾-∨) is realised by

g
Def
= λa. λb.AmbLR(Left↓a,Right↓b).

where AmbLR(u, v)
Def
= Amb(u, v) if u = Left() or v = Right() and

Def
= ⊥ otherwise.

AmbLR can be easily defined using the case construct.
Suppose that a rA↾B and b rC↾D. We have to verify that

Vol. 19:3 THE GRAY CODE CASE 1:29

1. r (B ∨D) → g a b ̸= ⊥.
2. g a b ̸= ⊥ → (g a b) r⇊(A ∨ C).

(1) Assume B ∨D is realisable. Then B or D is realisable. Without restriction assume
rB. Then a ̸= ⊥ and hence Left↓a = Left(a) and g a b = Amb(Left(a),Right↓b) ̸= ⊥.

(2) If g a b ̸= ⊥, then g a b = Amb(u, v) where u = Left↓a and v = Right↓b, and u ̸= ⊥
or v ̸= ⊥. Furthermore, if u ̸= ⊥, then u = Left(a) where a ̸= ⊥. Hence a rA and therefore
u r (A ∨ C). With a similar argument one sees that if v ̸= ⊥, then v r (A ∨ C).

Rule (⇊-↾-intro), finally, is realised by

h
Def
= λc. case cof {Amb(C(),) → c;Amb(, C()) → c | C ∈ {Left,Right}}.

Observe the overlapping clauses. First we note that for c : A(τ(A0 ∨A1)):

(*) : If c is of the form Amb(a, b), where a ̸= ⊥ or b ̸= ⊥, then h c = c. This is the case, in
particular, if c realises ⇊(A0 ∨A1).

(**): If h c ̸= ⊥, then h c = c and c is of the form Amb(a, b) where a ̸= ⊥ or b ̸= ⊥.

Now, assume c realises B → ⇊(A0∨A1), that is, c : A(τ(A0∨A1)) and H(B) → c r (⇊(A0∨
A1)), and that H(¬B → A0 ∧A1) holds, that is, ¬H(B) → H(A0) ∧H(A1). We show that
h c realises ⇊(A0 ∨A1)↾B:

First, assume H(B). Then c realises ⇊(A0 ∨A1). Hence, by (*), h c = c ̸= ⊥.
Next, suppose h c ≠ ⊥. Then, by (**), h c = c and c is of the form Amb(a, b) where

a ̸= ⊥ or b ̸= ⊥. Therefore, it suffices to show that c realises ⇊(A0 ∨A1). We do a classical
case analysis on H(B). If H(B) holds, then c realises ⇊(A0 ∨A1). If H(B) does not hold,
then H(A0) and H(A1) hold. To prove that c realises ⇊(A0 ∨A1) it suffices to show that
whenever a or b are defined, then they realise A0 ∨ A1. Since c : A(τ(A0 ∨ A1)), we have
a, b ∈ τ(A0 ∨A1). But, since H(A0) and H(A1) hold, every defined element in τ(A0 ∨A1)
realises A0 ∨A1.

We summarise the realisers obtained by displaying the rules above with their realisers.
We restrict Rule (⇊-mon) to the most interesting cases where A and B are both non-Harrop.
In this case we need for the rule the program

mapamb
Def
= λf. λc. case cof {Amb(a, b) → Amb(f↓a, f↓b)}.

a rA↾C b rA↾¬C
Amb(a, b) r⇊(A)

(⇊-lem)
a rA

Amb(a,⊥) r⇊(A)
(⇊-return)

c r⇊(A) f r (A → B)

(mapamb f c) r⇊(B)
(⇊-mon, A,B non-Harrop)

H(⇊(A))

H(A)
(⇊-H (A Harrop))

a rA↾B b rC↾D
(g a b) r⇊(A ∨ C)↾B∨D

(⇊-↾-∨) c r⇊(A↾B)
c r⇊(A)

(⇊-↾-absorb)

H(B) → c r⇊(A0 ∨A1) ¬H(B) → H(A0) ∧H(A1)

(h c) r⇊(A0 ∨A1)↾B
(⇊-↾-intro (A0, A1, B Harrop))

where g, h are as defined in the proof.

1:30 D. Spreen and U. Berger Vol. 19:3

Lemma 5.4. The following rules are derivable in CFP:

¬¬(A ∨B) C↾A C↾B
⇊(C)

(⇊-∨-elim)
¬¬(A ∨B) C↾A D↾B

⇊(C ∨D)
(⇊-∨-elim-or)

⇊(A ∨B)

⇊(⇊(A) ∨⇊(B))
(⇊-∨-dist) ⇊(A ∧B)

⇊(A) ∧⇊(B)
(⇊-∧-dist).

Proof. Rules (⇊-∨-elim) and (⇊-∨-elim-or) have already been considered in [BT21b]. The
Rules (⇊-∨-dist) and (⇊-∧-dist) are easy consequences of the Rules (⇊-return) and (⇊-
mon).

Let us again display the rules with their realisers.

¬H(¬(A ∨B)) a rC↾A b rC↾B
Amb(a, b) r⇊(C)

(⇊-∨-elim)

¬H(¬(A ∨B)) a rC↾A b rD↾B
Amb(Left↓a,Right↓b) r⇊(C ∨D)

(⇊-∨-elim-or)

c r⇊(A ∨B)

(mapamb g c) r⇊(⇊(A) ∨⇊(B))
(⇊-∨-dist)

where g d
Def
= case dof {Left(a) → Left(Amb(a,⊥));Right(b) → Right(Amb(b,⊥))}

c r⇊(A ∧B)

Pair(mapamb g1 c,mapamb g2 c) r (⇊(A) ∧⇊(B))
(⇊-∧-dist)

where gi d
Def
= case dof {Pair(a1, a2) → Amb(ai,⊥)}.

5.3. The monadic concurrency modality
∗
⇊(A). It is easy to see that the concurrency

modality ⇊ is not a monad. The monadic lifting law (A → ⇊(B)) → (⇊(A) → ⇊(B)) is in
general not realisable. In order to turn it into a monad we use its finite iterative closure

∗
⇊(A)

µ
= ⇊(A ∨

∗
⇊(A)).

Note that
∗
⇊(A) is defined for arbitrary formulas A (not only productive ones) since in its

definition ⇊ is applied to a disjunction. As follows from the definition, we have for c : δ,

c r
∗
⇊(A)

µ
= c = Amb(a, b) ∧ a, b : τ(A ∨

∗
⇊(A)) ∧ (a ̸= ⊥ ∨ b ̸= ⊥) ∧

(a ̸= ⊥ → (a = Left(a′) ∧ a′ rA) ∨ (a = Right(a′′) ∧ a′′ r
∗
⇊(A))) ∧

(b ̸= ⊥ → (b = Left(b′) ∧ b′ rA) ∨ (b = Right(b′′) ∧ b′′ r
∗
⇊(A))).

As we will see next, in case of the iterated concurrency modality the following analogue
of Rule (⇊–↾-intro) modality is realisable. Again A0, A1, B are required to be Harrop:

B →
∗
⇊(A0 ∨A1) ¬B → A0 ∧A1

∗
⇊(A0 ∨A1)↾B

(
∗
⇊-↾-intro).

Vol. 19:3 THE GRAY CODE CASE 1:31

We need the following functions ⊔Nil, ▷ : D ×D → D and f∗, h+, g : D → D:

a ⊔Nil b
Def
= casePair(a, b)of {Pair(Nil,) → Nil;Pair(,Nil) → Nil},

d ▷ a
Def
= case dof {Nil → a},

f∗d
rec
= case dof {Left(Left(Nil)) → Nil;

Left(Right(Nil)) → Nil;

Right(Amb(u, v)) → f∗u ⊔Nil f
∗v},

h+c
rec
= case cof {Amb(a, b) →

case f∗a ⊔Nil f
∗bof {Nil →

Amb(f∗a ▷ g a, f∗b ▷ g b)}
},

g d
Def
= case dof {Left() → d;Right(e) → Right(h+e)}.

Lemma 5.5. Assume A = A0 ∨A1 where A0 and A1 are Harrop formulas.

1. (∀a, b) (Amb(a, b) r
∗
⇊(A) → f∗a = Nil ∨ f∗b = Nil).

2. (∀c) (c r
∗
⇊(A) → (h+c) r

∗
⇊(A)).

3. If H(A0) and H(A1), then (h+c) r
∗
⇊(A0 ∨ A1), for all c such that h+c is of the form

Amb(,).

Proof. (1) We use s.p. induction. If Amb(a, b) r
∗
⇊(A), then a r (A∨

∗
⇊(A)), or b r (A∨

∗
⇊(A)).

Without restriction assume the former. If a = Left(d) where d rA, then f∗a = Nil.

If a = Right(Amb(u, v)) where Amb(u, v) r
∗
⇊(A), then, by the induction hypothesis,

f∗u = Nil or f∗v = Nil. Hence f∗a = Nil.

(2) Again, we use s.p. induction. Assume c r
∗
⇊(A). Then, by (1), c = Amb(a, b)

with f∗a ⊔Nil f
∗b = Nil and h+c = Amb(a′, b′) with a′ = f∗a ▷ g a and b′ = f∗b ▷ g b.

Since f∗a ⊔Nil f
∗b = Nil, a′ = g a ̸= ⊥ or b′ = g b ̸= ⊥, as required. It remains to

show that every defined element of {a′, b′} realises A ∨
∗
⇊(A). Without restriction let a′

be defined. Hence a′ = g a and either (i) g a = a = Left(p) and thus a′ = Left(p) with
p ∈ {Left(Nil),Right(Nil)}; or (ii) a = Right(q) and g a = Right(h+q), which means

that a′ = Right(h+q). Since c r
∗
⇊(A) it follows that a r (A∨

∗
⇊(A)). In Case (i), a = a′ and

we are done since a is defined and hence realises A∨
∗
⇊(A). In Case (ii), q r

∗
⇊(A). Therefore,

by the induction hypothesis, (h+q) r
∗
⇊(A) and hence a′ r (A ∨

∗
⇊(A)).

(3) Assume H(A0) and H(A1). We prove the required formula first for compact c only
and will later show that this is enough. Hence we show first

(∀ compact c) (h+c = Amb(,) → (h+c) r
∗
⇊(A)).

We prove this by induction on the rank of c. The proof is in large parts similar to the
proof of (2). Let c be compact and assume h+c = Amb(a′, b′). Then c = Amb(a, b)
with f∗a ⊔Nil f

∗b = Nil, a′ = f∗a ▷ g a and b′ = f∗b ▷ g b. Since f∗a ⊔Nil f
∗b = Nil, it

1:32 D. Spreen and U. Berger Vol. 19:3

follows as in the proof of Statement (2) that a′ = g a ̸= ⊥, or b′ = g b ̸= ⊥. In either
case, one of a′, b′ is defined, as required. It remains to show that every defined element

of {a′, b′} realises A ∨
∗
⇊(A). Without restriction let a′ be defined. Hence a′ = g a and

either (i) g a = a = Left(p), and thus a′ = Left(p) with p ∈ {Left(Nil),Right(Nil)}; or
(ii) a = Right(q) and g a = Right(h+q), which means that a′ = Right(h+q). Since H(A0)

and H(A1), Left(Nil) and Right(Nil) both realise A. Hence, in Case (i), a′ r (A ∨
∗
⇊(A)).

In Case (ii), since f∗a′ = Nil, q must be of the form Amb(,). Therefore, since q has

smaller rank than c, by the induction hypothesis, (h+q) r
∗
⇊(A) and hence a′ r (A ∨

∗
⇊(A)).

To remove the restriction to compact c, it suffices to show that for every c there is a
compact c0 ⊑ c such that h+c0 = h+c. If h+c = ⊥, then we can choose c0 = ⊥. Otherwise,
c = Amb(a, b). Since f∗ is continuous and its range contains only compact elements (namely
⊥ and Nil), there are compact a0 ⊑ a and b0 ⊑ b such that f∗a0 = f∗a and f∗b0 = f∗b.
Therefore, it suffices to show

(∀ compact a0, b0) (∀a, b) (a0 ⊑ a ∧ b0 ⊑ b ∧ f∗(a0) = f∗a ∧ f∗b0 = f∗b

→ h+Amb(a0, b0) = h+Amb(a, b).

This can be easily shown by induction on the maximum of the ranks of a0 and b0.

Now, we are able to derive the result on Rule (
∗
⇊-↾-intro) we are aiming for.

Lemma 5.6. Rule (
∗
⇊-↾-intro) is realised by h+.

Proof. Set A
Def
= A0 ∨ A1, and assume that c realises B →

∗
⇊(A) and H(¬B → A) holds.

The former means that H(B) → c r
∗
⇊(A) and the latter that ¬H(B) → H(A0) ∧H(A1).

We have to show that h+c realises
∗
⇊(A)↾B.

First, assume H(B). Then c r
∗
⇊(A) and, by Lemma 5.5(1), h+c realises

∗
⇊(A) and is

therefore defined.
Next, suppose h∗c is defined. Hence c = Amb(a, b) and h+c = Amb(a′, b′) with

a′ = f∗a ▷ g a and b′ = f∗b ▷ g(b). We have to show (h+c) r
∗
⇊(A). Since

∗
⇊(A) has the same

realisers as ⇊(A ∨
∗
⇊(A)), it is sufficient to derive that (h+c) r⇊(A ∨

∗
⇊(A)). That is, it

suffices to verify that every defined element of {a′, b′} realises A∨
∗
⇊(A). Without restriction

assume that a′ is defined. We do a classical case analysis on H(B). If H(B), then c r
∗
⇊(A).

Therefore, by Lemma 5.5(2), (h+c) r
∗
⇊(A) and hence a′ rA ∨

∗
⇊(A). If ¬H(B), then H(A0)

and H(A1). By Lemma 5.5(3) we thus have that, (h+c) r
∗
⇊(A) and with the same argument

as above we obtain a′ rA ∨
∗
⇊(A).

Similarly, an analogue of the well known introduction rule for the connective ∧ is
realisable:

∗
⇊(A)

∗
⇊(B)

∗
⇊(A ∧B)

(
∗
⇊-∧-intro).

Vol. 19:3 THE GRAY CODE CASE 1:33

Define

f∗d
rec
= case dof {Left() → Nil;Right(Amb(u, v)) → f∗u ⊔Nil f

∗v},

g d e
Def
= case dof {Left(d′) → case eof {Left(e′) → Left(Pair(d′, e′));

Right(e′′) → Right(h2 d e
′′)};

Right(d′′) → Right(h1 d
′′e)},

h1 u v
rec
= caseuof {Amb(a, b) →

case f∗a ⊔Nil f
∗bof {Nil → Amb(f∗a ▷ g a v, f∗b ▷ g b v)}},

h2 u v
rec
= case v of {Amb(ā, b̄) →

case f∗ā ⊔Nil f
∗b̄of {Nil → Amb(f∗ā ▷ g u ā, f∗ ▷ g u b̄)}}.

Lemma 5.7.

1. d rA ∧ c r
∗
⇊(B) → (h2 Left(d) c) r

∗
⇊(A ∧B).

2. c1 r
∗
⇊(A) ∧ c2 r

∗
⇊(B) → (h1 c1 c2) r

∗
⇊(A ∧B).

Proof. Both statements are shown by s.p. induction.

(1) Assume that d rA and c r
∗
⇊(B). Then c = Amb(ā, b̄) with f∗ā⊔Nilf

∗b̄ = Nil. Hence,
h2 Left(d) c = Amb(a′, b′) with a′ = f∗ā▷g d ā and b′ = f∗b̄▷g d b̄. Since f∗ā⊔Nilf

∗b̄ = Nil,
we have that a′ ̸= ⊥ or b′ ̸= ⊥ as required. It remains to show that all defined elements of

{a′, b′} realise (A∧B)∨
∗
⇊(A∧B). Without restriction suppose that a′ is defined. Recall that

d rA. So, we have that (i) ā = Left(p) with p rB and gLeft(d)Left(p) = Left(Pair(d, p)),
or (ii) ā = Right(q) and gLeft(d) ā = Right(h2 Left(d) q). Thus, a

′ = Right(h2 Left(d) q).

Because p rB, it follows in Case (i) that ā r (B ∨
∗
⇊(B)). Therefore, (gLeft(d) ā) r ((A ∧

B) ∨
∗
⇊(A ∧B)), i.e., (h2 Left(d) c) r

∗
⇊(A ∧B).

In Case (ii) we have q r
∗
⇊(B). By the induction hypothesis we therefore obtain that

(h2 Left(d) q) r
∗
⇊(A ∧B). Thus, a′ r ((A ∧B) ∨

∗
⇊(A ∧B)) which implies that

(h2 Left(d) c) r
∗
⇊(A ∧B).

(2) Now, suppose that c1 rA and c2 rB. Then c1 = Amb(u, v) with f∗u⊔Nil f
∗v = Nil

and h1 c1 c2 = Amb(a′, b′) with a′ = f∗u ▷ g u c2 and b′ = f∗v ▷ g v c2. Since f∗u⊔Nil f
∗v =

Nil, we have that a′ = g u c2 ≠ ⊥ or b′ = g v c2 ̸= ⊥, as required. Again, it remains to show

that each defined element of {a′, b′} realises (A∧B)∨
∗
⇊(A∧B). Without restriction assume

that a′ is defined. Then a′ = g u c2 and (i) u = Left(d) with

g u c2 = case c2 of {Left(e) → Left(Pair(d, e));Right(e′) → Right(h2 u e
′)},

or (ii) u = Right(d′) and g u c2 = Right(h1 d
′ c2), i.e., a

′ = Right(h1 d
′ c2).

In Case (i) it follows that either a′ = Left(Pair(d, e)) and thus a′ r ((A∧B)∨
∗
⇊((A∧B)),

or a′ = Right(h2 d e
′), from which we obtain with the first statement that again a′ r ((A ∧

B) ∨
∗
⇊(A ∧B)).

1:34 D. Spreen and U. Berger Vol. 19:3

In Case (ii) we have that d′ r
∗
⇊(A) and hence by the induction hypothesis that

(h1 d
′ c2) r

∗
⇊(A ∧B). Thus, a′ r ((A ∧B) ∨

∗
⇊(A ∧B)), that is (h1 c1 c2) r

∗
⇊(A ∧B).

Corollary 5.8. Rule (
∗
⇊-∧-intro) is realised by h1.

We extend CFP by the Rules (
∗
⇊-↾-intro) and (

∗
⇊-∧-intro).

Lemma 5.9. The following rules for the iterated concurrency modality are derivable:

∗
⇊(A)

A
(
∗
⇊-H (A Harrop))

⇊(A)
∗
⇊(A)

(
∗
⇊-emb)

⇊(
∗
⇊(A))
∗
⇊(A)

(⇊-
∗
⇊-absorb)

A
∗
⇊(A)

(
∗
⇊-return)

∗
⇊(A) A →

∗
⇊(A′)

∗
⇊(A′)

(
∗
⇊-bind)

∗
⇊(A↾B)
∗
⇊(A)↾B

(
∗
⇊-↾-dist)

∗
⇊(A ∨B)

∗
⇊(

∗
⇊(A) ∨

∗
⇊(B))

(
∗
⇊-∨-dist)

∗
⇊(A) A → B

∗
⇊(B)

(
∗
⇊-mon)

∗
⇊(A ∧B)

∗
⇊(A) ∧

∗
⇊(B)

(
∗
⇊-∧-dist)

∗
⇊(A → B)

∗
⇊(A) →

∗
⇊(B)

(
∗
⇊-→-dist)

∗
⇊(

∗
⇊(A))
∗
⇊(A)

(
∗
⇊-idem).

A↾B1 . . . A↾Bn

∗
⇊(A)↾B1∨···∨Bn

(
∗
⇊-↾-∨)

Proof. Rule (
∗
⇊-H) follows by induction. From A ∨A → A we obtain with Rules (⇊-mon)

and (⇊-H) that ⇊(A ∨A) → ⇊(A) and ⇊(A) → A, hence ⇊(A ∨A) → A.

The Rules (
∗
⇊-emb) and (⇊-

∗
⇊-absorb) follow directly from the definition of

∗
⇊ and

Rule (⇊-mon).

Rule (
∗
⇊-return) follows directly from the definition of

∗
⇊ and the Rule (⇊-return).

For Rule (
∗
⇊-bind) assume that A →

∗
⇊(A′). We prove by induction that also

∗
⇊(A) →

∗
⇊(A′), that is, we have to show that ⇊(A ∨

∗
⇊(A′)) →

∗
⇊(A′), which means that we must

demonstrate that ⇊(A ∨
∗
⇊(A′)) → ⇊(A′ ∨

∗
⇊(A′)). Because of the monotonicity of ⇊ it

suffices to prove that A ∨
∗
⇊(A′) → A′ ∨

∗
⇊(A′), which is an immediate consequence of our

assumption.

In case of Rule (
∗
⇊-↾-dist) we apply the induction principle again. It suffices to show

⇊(A↾B ∨
∗
⇊(A)↾B) →

∗
⇊(A)↾B. With (

∗
⇊-return) we have A →

∗
⇊(A) and hence, because

Vol. 19:3 THE GRAY CODE CASE 1:35

of (↾-mon), A↾B →
∗
⇊(A)↾B. Therefore, (A↾B ∨

∗
⇊(A)↾B) →

∗
⇊(A)↾B, from which it follows

with Rule (⇊–mon) that ⇊(A↾B ∨
∗
⇊(A)↾B) → ⇊(

∗
⇊(A)↾B). With Rules (⇊-↾-absorb)

and (⇊-
∗
⇊-absorb) we get ⇊(A↾B ∨

∗
⇊(A)↾B) →

∗
⇊(A)↾B.

The Rules (
∗
⇊-∨-dist), (

∗
⇊-mon), (

∗
⇊-∧-dist), (

∗
⇊-→-dist), and (

∗
⇊-idem) follow from the

monadic laws (
∗
⇊-return) and (

∗
⇊-bind) in the usual way.

Rule (
∗
⇊-↾-∨) is obtained, roughly speaking, by iterating Rule (⇊-↾-∨). The proof is by

induction on n. For n = 1, the rule follows immediately with Rules (
∗
⇊-return) and (↾-mon).

For the step assume A↾B1 , A↾B2 , . . . , A↾Bn+1 . By the induction hypothesis,
∗
⇊(A)↾B2∨···∨Bn+1 .

With Rule (⇊-↾-∨) it therefore follows ⇊(A ∨
∗
⇊(A))↾B1∨B2∨···∨Bn+1 . Since ⇊(A ∨

∗
⇊(A)) is

equivalent to
∗
⇊(A), we obtain

∗
⇊(A)↾B1∨B2∨···∨Bn+1 by applying Rule (↾-mon).

The subsequent list contains realisers for the rules in the above lemma extracted from
their proofs.

c r⇊(A)

(mapamb Left c) r
∗
⇊(A)

(
∗
⇊-emb)

c r⇊(
∗
⇊(A))

(mapamb Right c) r
∗
⇊(A)

(⇊-
∗
⇊-absorb)

a rA

(fret a) r
∗
⇊(A)

(
∗
⇊-return, fret below)

c r
∗
⇊(A) g r (A →

∗
⇊(A′))

(fbind g c) r
∗
⇊(A′)

(
∗
⇊-bind, fbind below)

c r
∗
⇊(A↾B)

(f↾−dist c) r
∗
⇊(A)↾B

(
∗
⇊-↾-dist, f↾−dist below)

c r
∗
⇊(A) g r (A → B)

(fmon g c) r
∗
⇊(B)

(
∗
⇊-mon, fmon below)

c r
∗
⇊(A ∨B)

(fmon (mapLR fret) c) r
∗
⇊(

∗
⇊(A) ∨

∗
⇊(B))

(
∗
⇊-∨-dist)

c r
∗
⇊(A ∧B)

Pair(fmon (πL c), fmon (πR c)) r (
∗
⇊(A) ∧

∗
⇊(B))

(
∗
⇊-∧-dist)

c r
∗
⇊(A → B)

(fbind (λa. fbind (λf. f a) c)) r (
∗
⇊(A) →

∗
⇊(B))

(
∗
⇊-→-dist)

1:36 D. Spreen and U. Berger Vol. 19:3

c r
∗
⇊(

∗
⇊(A))

(fbind (λa. a) c) r
∗
⇊(A)

(
∗
⇊-idem)

b1 rA↾B1 . . . bn rA↾Bn

(fn b1 . . . bn) r
∗
⇊(A)↾B1∨···∨Bn

(
∗
⇊-↾-∨)

where

fret a
Def
= Amb(Left(a),⊥)

fbind g
rec
= mapamb (λd. case dof {Left(a) → Right(g a);Right(c′) → fbind g c

′}),

f↾−dist
rec
= mapamb (λd. case dof {Left(a) → d;Right(c′) → f↾−dist c

′}),

fmon g
rec
= mapamb (λd. case dof {Left(a) → Left(g a);Right(c′) → fmon g c

′}),

mapLR g
Def
= λc. case cof {Left(a) → Left(g a);Right(b) → Right(g b)},

πL
Def
= λp. case pof {Pair(a,) → a},

πR
Def
= λp. case pof {Pair(, b) → b},

f1 b1
Def
= fret↓b1,

fn+1 b1 . . . bn+1
Def
= ḡ b1 (fn b2 . . . bn+1),

ḡ a c
Def
= AmbLR(Left↓a,Right↓c).

A further useful rule that we will use in the sequel is a concurrent version of half-strong
co-induction.

Lemma 5.10 (Concurrent Half-strong Co-induction Principle). Let Φ0 : P(X) →
P(X) be a monotone operator and Φ(Y)

Def
=

∗
⇊(Φ0(Y)). Then:

If Y ⊆
∗
⇊(Φ(Y) ∪ νΦ) then Y ⊆ νΦ.

The principle is an immediate consequence of the generalised half-strong co-induction

principle (Lemma 3.2): Because of Rule (
∗
⇊-mon) Φ is monotone and with Rule (

∗
⇊-

idem) we have that Φ absorbes
∗
⇊. Note that τ(Φ)(α) is of the form A∗(ρ(α)). So,

if s : P → A∗(Φ(P) + νΦ) realises P ⊆
∗
⇊(Φ(P) ∪ νΦ), then P ⊆ νΦ is realised by

chscoitΦ s : P → νΦ with

chscoitΦ s
Def
= f,

where f is defined as in the case of the realisability of generalised half-strong co-induction
(Example 4.7). Moreover,

absorbα
∗
⇊,Φ

Def
= fbind (λa. a) : A

∗(Φ(α)) → Φ(α),

mon ∗
⇊

Def
= fmon.

Vol. 19:3 THE GRAY CODE CASE 1:37

6. Concurrent Archimedean induction

A powerful tool in the investigation in [BT21a, BT21b] of the relationship between the
signed digit representation and infinite Gray code is Archimedean induction, which is the
Archimedean principle formulated as an induction rule:

(∀x ̸= 0) (|x| ≤ 1/2 → P (2x)) → P (x)

(∀x ̸= 0) P (x)
(AI)

In IFP Rule(AI) is deduced as a special case of well-founded induction (cf. [BT21a]). A
useful variant is:

(∀x ∈ B \ {0})P (x) ∨ (|x| ≤ 1/2 ∧B(2x) ∧ (P (2x) → P (x)))

(∀x ∈ B \ {0})P (x)
(AIB)

In what follows a concurrent version of the Rule (AIB) is needed.

Definition 6.1. Iterated concurrent Archimedean induction is the rule

(∀x ∈ B \ {0})
∗
⇊(P (x) ∨ (|x| ≤ 1/2 ∧B(2x) ∧ (P (2x) → P (x))))

(∀x ∈ B \ {0})
∗
⇊(P (x))

(CAIB∗)

where B and P are non-Harrop predicates.

Lemma 6.2. Rule (CAIB∗) is realisable. Let s realise the premise of (CAIB∗). Then

caibs
Def
= λb. a (s b) realises the conclusion of (CAIB∗), where a is defined by simultaneous

recursion together with s′ as

aw
rec
= mapamb s′w

s′ u
rec
= caseuof { Left(Left(c)) → Left(c);

Left(Right(Pair(b, d))) → Right(fbind (fret ◦ d) (a (s b)));
Right(w′) → Right(aw′) }.

Proof. λb. a (s b) has the right type, τ(B) → A∗(τ(P)) where A∗(α)
Def
= fixβ.A(α + β).

This holds, since we have that s : τ(B) → A∗(ρ), with ρ
Def
= τ(P) + τ(B)× (τ(P) → τ(P)),

from which one can infer by a simple type inference that a : A∗(ρ) → A∗(τ(P)), and
s′ : (ρ+A∗(ρ)) → (τ(P) +A∗(τ(P))).

Set C(x)
Def
= P (x) ∨ (|x| ≤ 1/2 ∧B(2x) ∧ (P (2x) → P (x))). To complete the proof, it

clearly suffices to show that if x ̸= 0 and w realises
∗
⇊(C(x)), then aw realises

∗
⇊(P (x)).

Let

Q(x)
Def
= (∀w) (w r

∗
⇊(C(x)) → (aw) r

∗
⇊(P (x))).

We use Rule (AI) to prove that (∀x ̸= 0)Q(x).
Let x ̸= 0. The Archimedean induction hypothesis is

(AIH): |x| ≤ 1/2 → Q(2x).

We show Q(x) by a side induction on the definition of w r
∗
⇊(C(x)). Hence we assume

w r
∗
⇊(C(x)), that is, w r⇊(C(x) ∨

∗
⇊(C(x))), and have to derive that aw realises

∗
⇊(P (x)).

1:38 D. Spreen and U. Berger Vol. 19:3

Thus, w = Amb(u, v) and aw = Amb(s′↓u, s′↓ v). Furthermore, u ̸= ⊥ or v ̸= ⊥,
hence s′↓u = s′ u or s′↓v = s′ v. Moreover, for k ∈ {u, v}, if k ̸= ⊥ then

k r (C(x) ∨
∗
⇊(C(x))) .

Before showing that Amb(s′↓u, s′↓v) realises
∗
⇊(P (x)), we prove:

If k ∈ {u, v} such that k ̸= ⊥, then (s′ k) r (P (x) ∨
∗
⇊(P (x))). (6.1)

Without restriction assume k = u ̸= ⊥. Hence u r (C(x) ∨
∗
⇊(C(x))) and s′↓u = s′ u.

If u = Left(Left(c)) with c rP (x), then s′ u = Left(c), which means that (s′ u) r (P (x)∨
∗
⇊(P (x))).

If u = Left(Right(Pair(b, d))) with |x| ≤ 1/2, b rB(2x) and d r (P (2x) → P (x)), then
s′ u = Right(fbind (fret ◦ d) (a (s b))). Moreover, by (AIH), a (s b) realises P (2x). Therefore,

since fret ◦ d realises (P (2x) →
∗
⇊(P (x))), we have that fbind (fret ◦ d) (a (s b)) realises

∗
⇊(P (x)), that is, (s′ u) r (P (x) ∨

∗
⇊(P (x))).

If u = Right(w′) with w′ r
∗
⇊(C(x)), then s′ u = Right(aw′). By the side induction

hypothesis, (aw′) r
∗
⇊(P (x)). Thus, (s′ u) r (P (x) ∨

∗
⇊(P (x))).

From the proof of (6.1) it follows easily that s′↓u, s′↓v ∈ (τ(P) +A∗(τ(P))). Therefore,
it remains to show:

1. For some k ∈ {u, v}, s′↓k ̸= ⊥.

2. If k ∈ {u, v} such that s′↓k ̸= ⊥, then (s′↓k) r (P (x) ∨
∗
⇊(P (x))).

For (1) assume without restriction that k = u ̸= ⊥. Then s′↓u = s′ u. By (6.1),

(s′ u) r (P (x) ∨
∗
⇊(P (x))). Hence, s′ u ̸= ⊥.

To prove (2), suppose s′↓k ̸= ⊥. Then k ̸= ⊥. It follows that (s′↓k) r (P (x) ∨
∗
⇊(P (x))),

by (6.1).

For what follows, we extend CFP again by adding Rule (CAIB∗).

7. Concurrent signed digit and Gray codes

We first briefly formalise the definitions given in Section 3 in IFP and CFP, respectively.
For details the reader is referred to [BT21a, BT21b].

Define the IFP predicates SD(x) and S(x) as follows

SD(z)
Def
= (z = −1 ∨ z = 1) ∨ z = 0,

II(z, x)
Def
= |2x− z| ≤ 1,

S(x)
ν
= (∃z)SD(z) ∧ II(z, x) ∧ S(2x− z).

For 3
Def
= (1+ 1) + 1 and δω

Def
= fixα. δ × α, their types are

τ(SD) = 3 and τ(S) = 3ω.

The predicate SD(z) is realised as follows

d r SD(z) = (d = Left(Left(Nil)) ∧ z = −1) ∨

Vol. 19:3 THE GRAY CODE CASE 1:39

(d = Left(Right(Nil)) ∧ z = 1) ∨
(d = Right(Nil) ∧ z = 0).

In the sequel the three digits −1, 1, 0 will be identified with their realisers, which are programs
of type 3. For the predicate S(x) we obtain

p r S(x)
ν
= (∃d, p′) p = Pair(d, p′) ∧ (∃z) d r SD(z) ∧ II(z, x) ∧ p′ r S(2x− z)
ν
= (∃d, p′) p = Pair(d, p′) ∧ II(d, x) ≤ 1 ∧ p′ r S(2x− d).

The realisers of S(x) are hence streams of digits -1, 0, 1.
Let us next consider the Gray code case. Define

B(x)
Def
= x ≤ 0 ∨ x ≥ 0,

D(x)
Def
= x ̸= 0 → B(x),

t(x)
Def
= 1− 2|x|,

G(x)
ν
= (−1 ≤ x ≤ 1) ∧D(x) ∧G(t(x)),

where types are τ(B) = τ(D) = 2 with 2
Def
= 1+ 1, and τ(G) = 2ω. Then the predicates

D(x) and G(x) are realised as follows

a rD(x) = a : 2 ∧ (x ̸= 0 → (a = Left(Nil) ∧ x ≤ 0) ∨ (a = Right(Nil) ∧ x ≥ 0),

q rG(x)
ν
= (−1 ≤ x ≤ 1) ∧ (∃a, q′) q = Pair(a, q′) ∧ a rD(x) ∧ q′ rG(t(x)).

Since an infinite Gray code may contain a ⊥, a sequential access of the sequence
from left to right will diverge when it accesses a ⊥. However, because at most one ⊥ is
contained in each sequence, if one evaluates the first two cells concurrently, then at least
one of the two processes is guaranteed to terminate. On the basis of this idea Berger and
Tsuiki [BT21b] showed that a concurrent algorithm converting infinite Gray code into signed
digit representation can be extracted from a CFP proof. To this end a concurrent variant of
the predicate S is introduced

S2(x)
ν
= ⇊((∃z)SD(z) ∧ II(z, x) ∧ S2(2x− z)).

S2(x) means that a signed digit representation of x is obtained through the concurrent
computation of two threads. Note that τ(S2) = fixα.A(3× α).

Theorem 7.1 [BT21b]. S ⊆ G ⊆ S2.

This result expresses the fact that, as explained above, when computably translating from
Gray code to signed digit representation one needs to allow for computations to be carried
out concurrently, which, however is not the case for the converse translation from signed digit
representation to Gray code. On the other hand the result is not completely satisfying, as
one would like to see under which conditions both representations are computably equivalent.

To achieve a result of this kind we have to introduce concurrent Gray code. In addition
we have to allow for iterated concurrent computations. Define

S∗(x)
ν
=

∗
⇊((∃z)SD(z) ∧ II(z, x) ∧ S∗(2x− z)),

B∗(x)
Def
=

∗
⇊(x ≤ 0 ∨ x ≥ 0),

D∗(x)
Def
= x ̸= 0 → B∗(x),

1:40 D. Spreen and U. Berger Vol. 19:3

G∗(x)
ν
= (−1 ≤ x ≤ 1) ∧D∗(x) ∧G∗(t(x)).

For the concurrent signed digit representation we have S∗ = ν(ΦS∗) where

ΦS∗(Y)(x) =
∗
⇊((∃z)SD(z) ∧ II(z, x) ∧ Y (2x− z)),

τ(ΦS∗)(α) = A∗(3× α),

τ(S∗) = fix τ(ΦS∗) = fix α .A∗(3× α),

monτ(ΦS∗) : (α → β) → A∗(3× α) → A∗(3× β),

monτ(ΦS∗) f = fmon (λPair(d, a) .Pair(d, f a)),

and

A∗(α) = fixβ .A(α+ β),

fmon : (α → β) → A∗(α) → A∗(β),

fmon
rec
= λh.mapamb (λd . case dof {Left(a) → Left(h a); Right(c) → fmon h c}).

On the other hand, for the concurrent infinite Gray code we have G∗ = ν(ΦG∗) where

ΦG∗(Y)(x) = D∗(x) ∧ Y (t(x)),

τ(ΦG∗)(α) = A∗(2)× α,

τ(G∗) = fix τ(ΦG∗) = fix α .A∗(2)× α = (A∗(2))ω,

monτ(ΦG∗) : (α → β) → (A∗(2)× α) → (A∗(2)× β),

monτ(ΦS∗) f Pair(m, a) = Pair(m, f a).

We see that a realiser of G∗(x) is simply an ordinary infinite stream (where the cons-
operation is the deterministic constructor Pair) of non-deterministic partial binary digits,
whereas a realiser of S∗(x) is something that could be called a non-deterministic stream
(where the cons-operation is non-deterministic) given by a pair of concurrent computations
at least one of which will yield a head, which is signed digit, and a tail, which is again
a non-deterministic stream. Consequently, the function monτ(ΦG∗) is much simpler than
monτ(ΦS∗).

Our next goal is to show that S∗ = G∗. Note that iterated concurrent computations
also occur in the case of S2, which can be seen by unfolding the co-inductive definition.

Lemma 7.2. If S∗(x), then also

1. S∗(−x) and
2. S∗(t(x)).

Proof. (1) Let P
Def
= {x | S∗(−x) }. We use co-indution to prove that P ⊆ S∗. So, we have

to show that

S∗(−x) →
∗
⇊((∃z′)SD(z′) ∧ II(z′, x) ∧ S∗(−(2x− z′))),

i.e.,

∗
⇊((∃z)SD(z) ∧ II(z,−x) ∧ S∗(−2x− z)) →

∗
⇊((∃z′)SD(z′) ∧ II(z′, x) ∧ S∗(−(2x− z′))).

Because of Rule (
∗
⇊-mon) it suffices to prove that

(∃z)SD(z) ∧ II(z,−x) ∧ S∗(−2x− z) → (∃z′)SD(z′) ∧ II(z′, x) ∧ S∗(−(2x− z′)).

Vol. 19:3 THE GRAY CODE CASE 1:41

Let z ∈ SD. We show that

II(z,−x) ∧ S∗(−2x− z) → (∃z′)SD(z′) ∧ II(z′, x) ∧ S∗(−(2x− z′)).

If II(z,−x) with S∗(−2x− z), then II(−z, x). Moreover, S∗(−(2x− z′)) with z′ = −z.

(2) Let Q
Def
= { y | (∃x)S∗(x) ∧ y = t(x) }. We use concurrent half-strong co-induction

(Lemma 5.10) to show that Q ⊆ S∗. This means that we have to prove that

Q(y) →
∗
⇊(

∗
⇊((∃z′)SD(z′) ∧ II(z′, y) ∧Q(2y − z′)) ∨ S∗(y)).

By the definition of Q we therefore have to show for x, y with y = t(x) that

∗
⇊((∃z)SD(z)∧ II(z, x)∧S∗(2x− z)) →

∗
⇊(

∗
⇊((∃z′)SD(z′)∧ II(z′, y)∧Q(2y− z′))∨S∗(y)).

Because of the monotonicity and return rules for
∗
⇊, it suffices to prove that for x, y, with

y = t(x) and z ∈ SD that

II(z, x) ∧ S∗(2x− z) → ((∃z′)SD(z′) ∧ II(z′, y) ∧Q(2y − z′)) ∨ S∗(y),

which follows by case distinction:
Case z = −1 We have that x ∈ [−1, 0] and S∗(2x+ 1). Since 2x+ 1 = t(x) = y in this

case, it follows that S∗(y).
Case z = 1. Now, x ∈ [0, 1]. Therefore, 2x − 1 = −t(x) = −y. Since moreover,

S∗(2x− 1), we have that S∗(−y), from which we obtain that S∗(y), by Part (1).
Case z = 0. It follows that x ∈ [−1/2, 1/2], which implies that II(1, t(x)). Therefore,

it suffices to show that Q(2y − 1). Note that 2y − 1 = −t(y) = −t(t(x)) = t(2x). Since
S∗(2x), it follows that Q(2y − 1).

The first statement is realised by

f7.2.1
Def
= fmon λPair(d, a).Pair(−d, a),

and the second by

f7.2.2
Def
= chscoitτ(ΦS∗) (fmon λPair(d, a).

case dof {−1 → Right(a);

1 → Right(f7.2.1 a);

0 → Left(Amb(Left(Pair(1, a)),⊥)) }).

Proposition 7.3. S∗ ⊆ G∗.

Proof. The proof is by co-induction. Because of Lemma 7.2(2) it remains to show that

S∗(x) → D∗(x) ,

that is, (∀x ∈ S∗ \ {0})
∗
⇊(B(x)). We prove this formula by iterated concurrent Archimedean

induction (CAIB∗). Therefore, we have to show

(∀x ∈ S∗ \ {0})
∗
⇊(B(x) ∨ (|x| ≤ 1/2 ∧ S∗(2x) ∧ (B(2x) → B(x)))) .

By Rule (
∗
⇊-mon) and since B(2x) → B(x) holds, it suffices to show

((∃z)SD(z) ∧ II(z, x) ∧ S∗(2x− d)) → (B(x) ∨ (|x| ≤ 1/2 ∧ S∗(2x))) .

1:42 D. Spreen and U. Berger Vol. 19:3

Let z ∈ SD with II(z, x) and S∗(2x− z). If z = −1 or z = 1, then x ≤ 0 or x ≥ 0, hence
B(x). If z = 0, then |2x| ≤ 1 and S∗(2x).

Statement S∗ ⊆ D∗ is realised by

fd
Def
= caibs (fmon λPair(d, a). case dof {−1 → Left(−1);

1 → Left(1);

0 → Right(Pair(a, id))}),

and the inclusion S∗ ⊆ G∗ by f7.3
Def
= coitτ(ΦG∗) (λ c.Pair(fd c, f7.2.2 c)), that is,

f7.3 c
rec
= Pair(fd c, f7.3 (f7.2.2 c)).

Let us now consider the converse inclusion.

Lemma 7.4. G∗(x) → G∗(−x).

Proof. Let P
Def
= {x | G∗(−x) }. We will use strong co-induction to show that P ⊆ G∗. To

this end it needs to be shown that

P(y) → D∗(y) ∧ (P(t(y)) ∨G∗(t(y))).

Assume that P(y). Then y = −x for some x ∈ G∗. It follows that D∗(x) and G∗(t(x)).
The first property implies that D∗(−x), that is D∗(y). Moreover, since t(x) = t(−x), we
also have G∗(t(y)).

The statement (∀x) (G∗(x) → G∗(−x)) is realised by

f7.4Pair(m, a)
Def
= Pair(fmon (λd.−d)m, a).

Lemma 7.5. For d ∈ {−1, 1},

G∗(x) → II(d, x) → G∗(2x− d).

Proof. By case distinction on d we show that

G∗(x) → G∗(2x− d).

Therefore, assume that G∗(x). Then D∗(x) and G∗(t(x)).
Case d = −1. This case is obvious as t(x) = 2x+ 1.
Case d = 1. Now t(x) = 1− 2x = −(2x− 1). Therefore, the statement follows with

Lemma 7.4.

(∀x) (G∗(x) → (∀d ∈ {−1, 1}) (II(d, x) → G∗(2x− d))) is realised by

f7.5Pair(, a) d
Def
= case dof {−1 → a; 1 → f7.4 a}.

Lemma 7.6. II(1, x) ∧G∗(x) → G∗(1− x).

Proof. Assume II(1, x) and G∗(x). II(1, x) implies II(1, 1−x) and hence D∗(1−x). Therefore,
it suffices to show G∗(t(1 − x)). Note that in our case, t(1 − x) = 2x − 1. Thus, G∗(x)
implies G∗(t(1− x)), by Lemma 7.5.

Vol. 19:3 THE GRAY CODE CASE 1:43

(∀x) (II(1, x) ∧G∗(x) → G∗(1− x)) is realised by

f7.6 a
Def
= Pair(Amb(Left(1),⊥), f7.5 a 1).

Hence,
f7.6Pair(, a) = Pair(Amb(Left(1),⊥), f7.4 a).

Lemma 7.7. II(0, x) ∧G∗(x) → G∗(2x).

Proof. Assume II(0, x) and G∗(x). Then D∗(x) and G∗(t(x)). Hence also D∗(2x) and
t(x) ≥ 0. With Lemma 7.6 it follows G∗(2|x|) (since 1− t(x) = 2|x|). Therefore, G∗(t(2x))
(since t(|x|) = t(x)). It follows G∗(2x).

(∀x) (II(0, x) ∧G∗(x) → G∗(2x)) is realised by

f7.7Pair(m, a)
Def
= Pair(m,πR (f7.6 a)).

Lemma 7.8. D∗(x) ↔
∗
⇊(x ≤ 0 ∨ x ≥ 0)↾x̸=0.

Proof. Note that ¬(x ̸= 0), i.e, x = 0, implies that x ≤ 0 ∧ x ≥ 0. Now, assume that D∗(x).

Then we obtain with Rule (
∗
⇊-↾-intro) that

∗
⇊(x ≤ 0 ∨ x ≥ 0)↾x ̸=0.

For the converse implication assume that x ̸= 0. Then if follows with Rule (↾-mp) that
∗
⇊(x ≤ 0 ∨ x ≥ 0). So, D∗(x) holds.

(∀x) (D∗(x) →
∗
⇊(x ≤ 0 ∨ x ≥ 0)↾x ̸=0) is realised by the function h+ as defined in

Lemma 5.6. The converse implication is realised by the identity.

Lemma 7.9. G∗(x) →
∗
⇊((∃z)SD(z) ∧ II(z, x)).

Proof. Assume G∗(x). We have to show A(x)
Def
=

∗
⇊((∃z)SD(z) ∧ II(z, x)). By Rule (⇊-

∗
⇊-absorb), it suffices to show ⇊(A(x)). Therefore, by Rule (⇊-∨-elim) it is sufficient to
derive

1. A(x)↾x ̸=0

2. A(x)↾t(x)̸=0.

Set D′(y)
Def
=

∗
⇊(y ≤ 0 ∨ y ≥ 0)↾t(x)̸=0. The assumption G∗(x) entails D∗(x) and D∗(t(x))

and therefore also D′(x) as well as D′(t(x)), by Lemma 7.8. Now, (1) follows immediately

from D′(x), by Rules (
∗
⇊-mon) and (↾-mon).

For (2) we use that D′(t(x)). Because of Rule (↾-mon) it suffices to derive
∗
⇊(t(x) ≤

0 ∨ t(x) ≥ 0) → A(x). With Rule (
∗
⇊-bind) this can be further reduced to showing

(t(x) ≤ 0 ∨ t(x) ≥ 0) → A(x). If t(x) ≤ 0, then x ≠ 0, and hence
∗
⇊(x ≤ 0 ∨ x ≥ 0) because

of D∗(x). As x ≤ 0 ∨ x ≥ 0 → (∃z)SD(z) ∧ II(z, x), an application of Rule (
∗
⇊-mon) leads

to A(x). If t(x) ≥ 0, then II(0, x). Hence, A(x), by Rule (
∗
⇊-return).

(∀x) (G∗(x) →
∗
⇊((∃z)SD(z) ∧ II(z, x))) is realised by the function

f7.9Pair(m,Pair(n,))
Def
= mapamb RightAmb(h+m,

fbind (λ c. case cof {Left(a) → m;Right(b) → fret 0})n).

1:44 D. Spreen and U. Berger Vol. 19:3

Proposition 7.10. G∗ ⊆ S∗.

Proof. Again the assertion follows by co-induction. We have to show that

G∗(x) →
∗
⇊((∃z)SD(z) ∧ II(z, x) ∧G∗(2x− z)).

From Lemmas 7.5 and 7.7 it follows

G∗(x) → (∃z)SD(z) ∧ II(z, x) → (∃z) (SD(z) ∧ II(z, x) ∧G∗(2x− z)),

from which we obtain by Rule (
∗
⇊-mon) that

G∗(x) →
∗
⇊((∃z)SD(z) ∧ II(z, x)) →

∗
⇊((∃z) (SD(z) ∧ II(z, x) ∧G∗(2x− z))).

Note that because of Lemma 7.9 the assumption
∗
⇊((∃z)SD(z) ∧ II(z, x)) can be discharged.

The inclusion G∗ ⊆ S∗ is realised by

f7.10
Def
= coitτ(ΦS∗) (λa. fmon (λd. case dof {−1 → f7.5 a d;

1 → f7.5 a d; 0 → f7.7 a}) (f7.9 a)).

Theorem 7.11. S∗ = G∗

8. The compact sets case

As is well known, the collection K(X) of non-empty compact subsets of a non-empty compact
metric space is a compact space again with respect to the Hausdorff metric µH.

Definition 8.1. Let (X,E) be a digit space. A digital tree is a nonempty set T ⊆ E<ω

of finite sequences of digits that is downwards closed under the prefix ordering and has no
maximal element, that is, [] ∈ T and whenever [e0, . . . , en] ∈ T , then [e0, . . . , en−1] ∈ T and
[e0, . . . , en, e] ∈ T for some e ∈ E.

Let TE denote the set of digital trees with digits in E. Note that each such tree is finitely
branching as E is finite. Moreover, every element [e0, . . . , en−1] ∈ T can be continued to an
infinite path α in T , that is, α ∈ Eω is such that αi = ei, for i < n, and [α0, . . . , αk−1] ∈ T
for all k ∈ N. In the following we write α ∈ [T] to mean that α is a path in T , and by a
path we always mean an infinite path. [T] is a non-empty compact subset of Eω, for every
tree T ∈ TE , and conversely, for every non-empty compact subset C of Eω, C = [TC], where

TC Def
= {α<n | α ∈ C ∧ n ∈ N } (cf. [BS16]).
For T ∈ TE and n ≥ 0, let T≤n be the finite initial subtree of T of height n. Then

T≤n = {α<m | α ∈ [T] ∧m ≤ n }.
Every such initial subtree defines a map fT,n : X → P(X) from X into the powerset of X in
the obvious way:

fT,n(x)
Def
= { e⃗(x) | e⃗ ∈ En ∩ T }.

Definition 8.2. For every T ∈ TE we define its value by

(|T |) Def
=

⋂
n∈N

fT,n[X].

Vol. 19:3 THE GRAY CODE CASE 1:45

Lemma 8.3 [BS16]. (|T |) = { [[α]] | α ∈ [T] }.

The metric defined on Eω in Section 2 can be transferred to TE . As we will see next, it
coincides with the Hausdorff metric.

Lemma 8.4 [BS16]. For S, T ∈ TE,

δH(S, T) =

{
0 if S = T ,

2−min{n|S≤n ̸=T≤n } otherwise.

Proposition 8.5 [BS16].

1. (| · |) : TE → K(X) is onto and uniformly continuous.
2. The topology on K(X) induced by the Hausdorff metric is equivalent to the quotient

topology induced by (| · |).

As a consequence of Lemma 8.3 we have for trees T1, T2 ∈ TE that

(|T1|) = (|T2|) ⇐⇒ (∀α ∈ [T1])(∃β ∈ [T2])α ∼ β ∧ (∀β ∈ [T2])(∃α ∈ [T1])α ∼ β.

Definition 8.6. A digital tree T ∈ TE is full, if [T] is closed under ∼.

Lemma 8.7. Let T1, T2 ∈ TE be full. Then

(|T1|) = (|T2|) ⇐⇒ T1 = T2.

Proof. We have that

(|T1|) = (|T2|) ⇒ (∀α ∈ [T1])(∃β ∈ [T2])α ∼ β ∧ (∀β ∈ [T2])(∃α ∈ [T1])α ∼ β

⇒ [T1] ⊆ [T2] ∧ [T2] ⊆ [T1] (as T1, T2 are full)

⇒ T1 = T2.

The converse implication holds trivially, as (| · |) is a map.

Lemma 8.8. Let T ∈ TE and C be a non-empty compact subset of Eω. Then the following
two statements hold:

1. If T is full, then [T] is a non-empty compact subset of Eω that is closed under ∼.
2. If C is closed under ∼, then TC is full.

By Proposition 2.4, [̂[·]] is a bijection between Eω/∼ and space X. So, if C is a non-empty

compact, and hence closed, subset of X, [̂[·]]
−1

[C] is a non-empty closed subset of Eω/∼.

Consequently, C
Def
= q−1

∼ [[̂[·]]
−1

[C]] is a non-empty closed, and thus compact, subset of Eω,

which in addition is closed under ∼. It follows that TC is a full tree in TD with [[TC]] = C.

Let T f
E be the subspace of full trees in TE .

Proposition 8.9. (| · |) : T f
E → K(X) is one-to-one and onto.

This shows that K(X) can be represented in straightforward one-to-one way without
requiring that X is represented in this way. For the special case of the real interval I and
Gray code we have seen in Section 2 that [[·]] : Ĝ → I is one-to-one. Hence, every digital tree

T ∈ TGF with [T] ⊆ Ĝ is full.

1:46 D. Spreen and U. Berger Vol. 19:3

9. Archimedean induction for compact sets

Archimedean induction is a formulation of the Archimedean property as an induction
principle introduced in [BT21a]. It turned out quite a powerful proof tool. We will now lift
this induction principle to the case of non-empty compact sets. Let Z(x) be the predicate
stating that x is an integer. Moreover, for K : P(ι) and n ∈ Z define

K ≤ 0
Def
= (∀x ε K)x ≤ 0,

K ≥ 0
Def
= (∀x ε K)x ≥ 0,

|K| Def
= { y | (∃x ε K) y = |x| },

nK
Def
= { y | (∃x ε K) y = nx },

K0(K)
Def
= K(K) ∧ 0 ̸ε K.

Here, K is a predicate constant denoting the set of non-empty compact subsets of the

compact interval II
Def
= [−1, 1] (see Section 4.1).

Definition 9.1. Archimedean induction for compact sets is the following rule

(∀K ∈ K0) ((∀K ′ ∈ K)(K ′ ⊆ K ∧ |K ′| ≤ 1/2 → P (2K ′)) → P (K))

(∀K ∈ K0)P (K)
(AIC).

Also Archimedean induction for compact sets is a special case of well-founded induction.
Set

K ′′ ≺ K
Def
= K ∈ K ∧ (∃K ′ ∈ K) (K ′ ⊆ K ∧ |K ′| ≤ 1/2 ∧K ′′ = 2K ′).

Then the premise of Rule (AIC) is equivalent to Prog≺,K0
(P).

Lemma 9.2. Acc≺(K) if and only if K ∈ K0.

Proof. The ‘only if’ part follows by induction on Acc≺(K). Since Acc≺ = µΦ with

Φ(X)
Def
= {K ∈ K | (∀K ′ ∈ K) (K ′ ⊆ K ∧ |K ′| ≤ 1/2 → X(2K ′)) }

we have to show that Φ(K0) ⊆ K0. Let K ∈ Φ(K0) and suppose that 0 ε K. Then
the compact set {0} is a subset of K and |{0}| ≤ 1/2. Since K ∈ Φ(K0), it follows that
2{0} ∈ K0, which is a contradiction.

The ‘if’ part reduces, by BTnc, to the implication K ∈ K0 → ¬Path≺(K). Therefore,
we assume K ∈ K0 and Path≺(K) with the aim to arrive at a contradiction. Recall that

Path≺(K)
ν
= K ∈ K ∧ (∃K ′ ∈ K) (K ′ ⊆ K ∧ |K ′| ≤ 1/2 ∧Path≺(2K

′)).

Hence by unfolding Path≺(K) we can construct a decreasing sequence (Kn)n∈N ⊆ K such
that K0 = K and for all n ∈ N, |Kn| ≤ 2−n.

The sequence (Kn)n∈N is constructed such that K0 = K and for all n, Path≺(2
nKn),

|Kn| ≤ 2−n, and Kn+1 ⊆ Kn. For K0 the properties hold by assumption. For the step,
we use that Path≺(2

nKn) holds and therefore exists K ′ ∈ K such that K ′ ⊆ 2nKn,

|K ′| ≤ 1/2 and Path≺(2K
′). We set Kn+1

Def
= 2−nK ′. Since 2n+1Kn+1 = 2K ′ it follows

that Path≺(2
n+1Kn+1) holds. Furthermore, |Kn+1| = 2−n|K ′| ≤ 2−(n+1). Finally, Kn+1 =

2−nK ′ ⊆ 2−n(2nKn) = Kn.
Since K is compact, there exists x ε

⋂
n∈NKn. Then |x| ≤ 2−n, for all n ∈ N. By the

Archimedean axiom, x = 0, hence 0 ε K, contradicting our assumption.

Vol. 19:3 THE GRAY CODE CASE 1:47

Proposition 9.3. Archimedean induction for compact sets (AIC) is derivable in IFP(AR)
and realised by rec .

Proof. It remains to show the second statement. Note that both ≺ and the predicate K0(K)
are Harrop. Moreover, let s realise the premise of Rule (AIC). Then s also realises Prog≺,K0

.
Therefore, it follows with the result in Example 4.8 that rec s realises Acc≺ ∩ K0 ⊆ P
which is equivalent to the conclusion of the rule.

In applications, Archimedean induction is mostly used for compact sets that are generated
in a particular way and therefore come with a special kind of realisers. Here, we are interested
in the case that non-empty compact sets are represented by signed digit code.

Definition 9.4. We define the analogue of the signed digit representation for compact sets
as

SK(K)
ν
= K(K) ∧ (∃E ∈ Pfin(SD))K ⊆ IIE ∧ (∀d ε E)(Kd ̸= ∅ ∧ SK(av−1

d [Kd]))

with IId
Def
= {x | II(d, x) }, IIE

Def
= {x | (∃d ε E) II(d, x) }, Kd

Def
= K ∩ IId, and avd(x)

Def
=

(x+ d)/2.

As follows from the definition of realisability, the type τ(SK(K)) of realisers of the
formula SK(K) is given by

τ(SK(K)) = fixα.
∑

E∈Pfin(SD)
α∥E∥

= fixα. {−1} × α+ {0} × α+ {1} × α+ {−1, 0} × α2 +

{−1, 1} × α2 + {0, 1} × α2 + {−1, 0, 1} × α3,

which is essentially the set TSD of all digital trees.
In the case of non-empty compact sets with property SK the Archimedean induction

rule can be much simplified. Let S0
K denote the set of all K ∈ SK with 0 ̸ε K.

Definition 9.5. Archimedean induction for signed-digit represented compact sets is the rule

(∀K ∈ S0
K) (P (K) ∨ (SK(2(K0)) ∧ (P (2(K0)) → P (K))))

(∀K ∈ S0
K)P (K)

(AICSD)

where P is a non-Harrop predicate.

Proposition 9.6. Archimedean induction for signed-digit represented compact sets (AICSD)
is derivable in IFP(AR), and if s realises the premise, then

f a
rec
= case s aof{Left(b) → b;Right(Pair(a′, h)) → h(fa′)}

realises the conclusion.

Proof. We will show that Rule (AICSD) is a consequence of Rule (AIC). Set A(X)
Def
=

SK(X) → P (X). It suffices to show that the premise of (AICSD) implies the premise of
(AIC). Therefore, let K ∈ K0 and assume that

(∀K ′ ∈ K)(K ′ ⊆ K ∧ |K ′| ≤ 1/2 → A(2K ′)) (9.1)

We have to prove that A(K). So, let K ∈ SK. Then we need to derive P (K).
By the premise of (AICSD) we have that

1. P (K) or
2. SK(2(K0)) ∧ (P (2(K0)) → P (K)).

1:48 D. Spreen and U. Berger Vol. 19:3

In the first case we are done. Let us therefore consider the second case.
Since |K0| ≤ 1/2, by (9.1), A(2(K0)) holds, i.e.,

SK(2(K0)) → P (2(K0)).

Since we know that SK(2(K0)), we obtain that P (2(K0)) and hence, as we are considering
the second case, that P (K).

As we have just seen, the premise of (AICSD) implies the premise of (AIC). If the first
premise is realised by s the latter is realised by

s′ = λf. λa. case s aof{Left(b) → b;Right(Pair(a′, h)) → h (f a′)}.

Thus, f
rec
= s′ f , i.e.,

f a
rec
= case s aof{Left(b) → b;Right(Pair(a′, h)) → h (f a′)},

realises the conclusion (∀K ∈ S0
K)P (K).

If one strengthens the premise of Rule (AICSD) to all K ∈ SK instead of only those not
containing 0, one can strengthen the conclusion to a restriction.

Definition 9.7. Archimedean induction with restriction for signed-digit represented compact
sets is the rule

(∀K ∈ SK) (P (K) ∨ (SK(2(K0)) ∧ (P (2(K0)) → P (K))))

(∀K ∈ SK)P (K)↾0 ̸εK
(AICR)

where P is a productive non-Harrop predicate.

Proposition 9.8. Archimedean induction with restriction for signed-digit represented com-
pact sets (AICR) is realisable. More precisely, if s realises the premise, then the conclusion
is realised by

χa
rec
= case s aof {Left(b) → b;Right(Pair(a′, f)) → f↓(χa′)}.

Proof. Assuming a r SK(K) we have to show

1. 0 ̸ε K → χa ̸= ⊥
2. χa ̸= ⊥ → (χa) rP (K).

(1) It suffices to show

(∀K ∈ K0)(∀a) (a r SK(K) → χa ̸= ⊥).

We prove the statement by Archimedean induction for compact sets. Let K ∈ K0 and
assume, as induction hypothesis,

(∀K ′ ∈ K)(K ′ ⊆ K ∧ |K ′| ≤ 1/2 → (∀a′)(a′ r SK(2K ′) → χa′ ̸= ⊥)).

We need to show that (∀a)(a r SK(K) → χa ̸= ⊥). Assume a r SK(K). Then

(s a) r (P (K) ∨ (SK(2(K0)) ∧ (P (2(K0)) → P (K)))).

If s a = Left(b) where b rP (K), then χa = b. Since P (K) is productive, by asumption,
b ̸= ⊥. Hence, χa ̸= ⊥. If, however, s a = Right(Pair(a′, f)), then a′ rSK(2(K0)) (with
K0 ∈ K) and f r (P (2(K0)) → P (K)). Since |K0| ≤ 1/2, we have χa′ ̸= ⊥, by the induction
hypothesis. It follows that χa = f↓(χa′) ̸= ⊥. Thus, we are done.

(2) We use Scott induction, that is, we consider the approximations χi of χ,

χ0 a = ⊥,

χi+1 a = case s aof {Left(b) → b;Right(Pair(a′, f)) → f↓(χi a)}

Vol. 19:3 THE GRAY CODE CASE 1:49

Observe that a restricted form of Scott induction (as is used here) is included in the axiom
set for the extension RIFP of IFP that allows to deal with realisability in a formal way (cf.
[BT21a]).

By the continuity of function application, if χa ≠ ⊥, then χi a ̸= ⊥, for some i ∈ N.
Therefore, it suffices to show

(∀i ∈ N)(a r SK(K) ∧ χi a ̸= ⊥ → (χa) rP (K)).

We induce on i. The induction base is trivial as χ0 a = ⊥. For the induction step assume
a r SK(K) and χi+1 a ̸= ⊥. Then

(s a) r (P (K) ∨ (SK(2(K0)) ∧ (P (2(K0)) → P (K)))).

If s a = Left(b) where b rP (K), then χa = b and we are done. In the other case s a =
Right(Pair(a′, f)) where a′ rSK(2(K0)) and f r (P (2(K0)) → P (K)). Then χi+1 a =
f↓(χi a

′). Since χi+1 a ̸= ⊥ and the application of f is strict, it follows that χi a
′ ̸= ⊥ as

well. By the induction hypothesis we therefore have that (χa′) rP (2(K0)). Consequently,
χa = (f↓(χa′)) rP (K).

As in the real number case, in what follows also a concurrent version of the predicate
SK for the signed digit representation of non-empty compact subsets of the interval II will
be considered.

Definition 9.9.

S∗
K(K)

ν
= K(K) ∧

∗
⇊((∃E ∈ Pfin(SD))K ⊆ IIE ∧ (∀d ε E)(Kd ̸= ∅ ∧ S∗

K(av−1
d [Kd]))).

In this case the above induction rule is still valid, if we allow the ‘or’ in the premise
being decided concurrently.

Definition 9.10. Concurrent Archimedean induction with restriction for signed-digit repre-
sented compact sets is the following rule

(∀K ∈ S∗
K)⇊(P (K) ∨ (S∗

K(2(K0)) ∧ (P (2(K0)) → P (K))))

(∀K ∈ S∗
K)P (K)↾0 ̸εK

(CAICR)

where P =
∗
⇊(P ′) for some non-Harrop predicate P ′.

Proposition 9.11. Concurrent Archimedean induction with restriction for signed-digit
represented compact sets (CAICR) is realisable. More precisely, let g be the canonical

realiser of Rule (⇊-
∗
⇊-absorb), namely g = mapamb Right, and let s realise the premise

of (CAICR). Set

s′
Def
= λf. λu. caseuof {Left(u′) → u′;Right(Pair(u′′, d)) → d↓(f u′′)}.

Then the conclusion of (CAICR) is realised by

f b
rec
= g↓mapamb (s′f) (s b).

Proof. Let b r S∗
K(K). We have to show

1. 0 ̸ε K → f b ̸= ⊥,
2. f b ̸= ⊥ → (f b) rP (K).

1:50 D. Spreen and U. Berger Vol. 19:3

(1) Since b r S∗
K(K) it follows that s b = Amb(u, v) and

f b = g↓mapamb (s′f) (s b)

= g↓Amb((s′f)↓u, (s′f)↓v)
= Amb(Right↓((s′f)↓u),Right↓((s′f)↓v)) ̸= ⊥

(2) Again we use Scott induction. For i ∈ N let

f0 b
Def
= ⊥,

fi+1 b
Def
= g↓mapamb (s′fi) (s b).

By the continuity of function application, if f b ̸= ⊥ then fi b ̸= ⊥, for some i ∈ N.
Therefore, it suffices to show

(∀i ∈ N) (b r S∗
K(K) ∧ fi b ̸= ⊥ → (f b) rP (K)).

We induce on i. The induction base is trivial as f0 b = ⊥. For the induction step assume
that b rS∗

K(K) and fi+1 b ̸= ⊥. As we have seen above, s b = Amb(u, v). Hence, fi+1 b =
Amb((s′fi)↓u, (s′fi)↓v). Moreover, u ̸= ⊥ or v ≠ ⊥, and for k ∈ {u, v} with k ̸= ⊥,
(s′fi)↓k = s′fi k as well as

k r (P (K) ∨ (S∗
K(2(K0)) ∧ (P (2(K0)) → P (K)))).

We show that (s′fi k) rP (K).
If k = Left(k′) with k′ rP (K), then s′fi k = k′. Hence we are done. In the other

case k = Right(Pair(k′′, d)) where k′′ rS∗
K(2(K0)) and d r (P (2(K0)) → P (K)). Then

s′fi k = d↓(fi k′′). Since fi+1 b ̸= ⊥, we have that also (s′fi)↓k ̸= ⊥, as otherwise s′fi = ⊥
and hence Amb((s′fi)↓u, (s′fi)↓v) = ⊥ as well as g↓Amb((s′fi)↓u, (s′fi)↓v) = ⊥. Thus,
d↓(fi k′′) ̸= ⊥. Because application is strict, it follows that fi k

′′ ̸= ⊥. By the induction
hypothesis we therefore have that (f k′′) rP (2(K0)). Hence, d↓(f k′′) rP (K). It follows that
(mapamb (s′f) (s b)) r⇊(P (K) and consequently (f b) rP (K).

We extend the rules of CFP by the new Rules (AICR) and (CAICR).
In the following we will use that the elements of Pfin(SD) are decidable classical subsets

of SD:

Lemma 9.12. If E ∈ Pfin(SD), then

1. (∀d ∈ SD) (d ε E ∨ d ̸ε E)
2. (∀d ε E)¬¬(d ∈ SD)

Proof. Easy induction on Pfin(SD)). In part (1), SD could be replaced by any discrete
predicate, that is, predicate P such that (∀x, y ∈ P) (x = y ∨ x ≠ y). In part (2), SD could
be replaced by any predicate.

Let

BK(K)
Def
= (K ≤ 0 ∨K ≥ 0) ∨ (K−1 ̸= ∅ ∧K1 ̸= ∅).

Proposition 9.13. If SK(K), then BK(K)↾0 ̸εK .

Vol. 19:3 THE GRAY CODE CASE 1:51

Proof. It suffices to verify the premise of Rule (AICR) with P (K)
Def
= BK(K). That is we

must show that
BK(K) ∨ (SK(2(K0)) ∧ (BK(2(K0)) → BK(K))).

Since SK(K), there is some E ∈ Pfin(SD) with K ⊆ IIE so that Kd is non-empty, for all
d ε E. Thanks to Lemma 9.12 (1), we can do a case analysis on the elements of E.

Case 0 ̸ε E, that is, E ⊆ GC. In this case, we have that both K−1 and K1 are not
empty, if E = GC; K ≤ 0, if 1 ̸ε E; and K ≥ 0, if −1 ̸ε E. Hence BK(K) holds.

Case 0 ε E. Then SK(2(K0)), by the definition of SK. It remains to show that
BK(2(K0)) → BK(K). Assume that BK(2(K0)). Then also BK(K0).

If both K0 ∩ II−1 and K0 ∩ II1 are not empty, K−1 and K1 are not empty as well. In
case K0 ≤ 0, then K ≤ 0, if, in addition, 1 ̸ε E. Otherwise, K−1 ̸= ∅ and K1 ≠ ∅; similarly,
if K0 ≥ 0. Thus, BK(K).

10. Signed digit and Gray code for non-empty compact sets

In this section the Gray code representation of non-empty compact sets is introduced and
its connection with the signed digit representation of these sets is studied.

Definition 10.1.

GK(K)
ν
= K(K) ∧G(minK) ∧G(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → GK(t[Kd])).

Our first goal is to show that SK ⊆ GK. To this end we need the following results.

Lemma 10.2. If SK(K) then also

1. SK(−K).
2. S(minK).
3. S(maxK).
4. (∀d ∈ GC) (Kd ̸= ∅ → SK(t[Kd])).

Proof. (1) Let P
Def
= {K | SK(−K) }. We use co-induction to prove that P ⊆ SK. That is,

we show that

P (K) → (∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ε E) (Kd ̸= ∅ ∧ P (av−1
d [Kd]))).

Since SK(−K), there is some F ∈ Pfin(SD) so that −K =
⋃
{ (−K)d | d ∈ F } and for

all d ε F , (−K)d ≠ ∅ as well as SK(av−1
d [(−K)d]). Note that (−K)d = −(K(−d)) and

av−1
d [(−K)d] = −av−1

−d[K(−d)]. Therefore, we can choose E
Def
= {−d | d ε F }.

(2) The proof is by co-induction. Let R
Def
= {x ∈ II | (∃K ∈ SK)x = minK }. We show

R(x) → (∃d ∈ SD) (x ∈ IId ∧R(av−1
d (x))).

If x ∈ R then x = minK, for some K ∈ SK. Hence, there exists E ∈ Pfin(SD) so
that K =

⋃
{Ke | e ε E }. Moreover, Ke ≠ ∅ and SK(av−1

e [Ke]), for all e ε E. Order SD
by −1 < 0 < 1 and let d be the least element of E with respect to this order (which can
be determined, thanks to Lemma 9.12(1)). Then minK ∈ Kd ⊆ IId and av−1

d (minK) ∈
av−1

d [Kd]. Note that av−1
d is monotone. Therefore, av−1

d (minK) = minav−1
d [Kd]. Since

av−1
d [Kd] ∈ SK, it follows that av−1

d (minK) ∈ R.
(3) The statement follows easily with the first two statements and [BT21a, Lemma 23],

stating that S is closed under λx.−x,

1:52 D. Spreen and U. Berger Vol. 19:3

(4) Let d ∈ GC and set

Qd Def
= {L | (∃K ∈ SK) (Kd ̸= ∅ ∧ L = t[Kd]) }.

We use half-strong co-induction to show that Qd ⊆ SK. That is, we prove

Qd(L) → ((∃E ∈ Pfin(SD)) (L ⊆ IIE ∧ (∀e ε E) (Le ̸= ∅ ∧Qd(av−1
e [Le])))) ∨ SK(L).

Assume that Qd(L). Then there is some K ∈ SK such that Kd ̸= ∅ and L = t[Kd].
Since SK(K), there is some F ∈ Pfin(SD) so that

• K ⊆ IIF and
• (∀f ε F) (Kf ̸= ∅ ∧ SK(av−1

f [Kf])).

We perform a case analysis on whether d ε F using Lemma 9.12(1).
If d ε F , we have that SK(av−1

d [Kd]). If d = −1, then av−1
d (x) = 2x+ 1 = t(x). Thus,

av−1
d [Kd] = t[Kd] = L. That is, we have that SK(L). On the other hand, if d = 1, then

av−1
d (x) = 2x − 1 = −t(x). Hence, av−1

d [Kd] = −L. It follows that SK(−L), whence we
obtain that SK(L).

If d ̸ε F , then F ⊆ {0} ∪ {−d}, by Lemma 9.12(2).
Case 0 ε F . Then Kd ⊆ II0 and SK(2(K0)). Furthermore,

2(Kd) = 2(K ∩ II0 ∩ IId) = 2(K0) ∩ IId

and
av−1

1 [L] = −t[L] = −t[t[Kd]] = t[2(Kd)] = t[2(K0) ∩ IId],

from which it follows that Qd(av−1
1 [L]). Moreover, L = t[Kd] ⊆ t[II0] = II1 and hence

L1 = L ̸= ∅. Therefore, we have proven the left part of the disjunction with E
Def
= {1}.

Case 0 ̸ε F . Now, F = {−d}. Hence Kd = {0} and L = {1}. As it follows by
co-induction that {{−1}, {1}} ⊆ SK, we have SK(L).

With Theorem 7.1 and Lemma 10.2 we now obtain by co-induction what we were looking
for.

Proposition 10.3. SK ⊆ GK.

Remark 10.4. Inspecting the proof of Part (4) of Lemma 10.2, one sees that the extracted
realiser yields a defined result for every d ∈ SD, even if Kd = ∅. In that case the computed
realiser of the implication Kd ̸= ∅ → SK(t[Kd]) is defined but does not necessarily realise
SK(t[Kd]). Therefore, this implication cannot be strengthened to a restriction. The
computation contained in the proof of (4) takes as input only d and F (more precisely,
realisers of d ∈ SD and F ∈ Pfin(SD)) and a realiser of SK(K). It does not use the
information that Kd is non-empty. This information is only needed to prove the correctness
of the result. Thus the transformation extracted from the proof of Proposition 10.3 outputs
for every realiser of SK(K) a total full binary tree, that is, the addresses of nodes are all

finite sequences of elements in GC. Each node d⃗ = d0, . . . , dn−1 is labelled by a pair of
infinite Gray codes such that with g

d⃗
= [gd0 , . . . , gdn−1] (using the notation of Section 2

where g−1 and g1 are the inverses of the legs of t), if g−1

d⃗
[K] is non-empty, then the label

consists of realisers of G(min g−1

d⃗
[K]) and G(max g−1

d⃗
[K]). If g−1

d⃗
[K] is empty, the label is

meaningless. It is not possible to computationally distinguish meaningful from meaningless
labels since in general a realiser of K does not allow us to recognise the non-emptiness of
g−1

d⃗
[K]. An extreme example is K = {0} where we may only ever know that the label at

Vol. 19:3 THE GRAY CODE CASE 1:53

the root contains reliable information, namely realisers of G(minK) and G(maxK). The
labels at all other nodes may never be known to carry correct information. This shows,
in particular, that the conjuncts G(minK) and G(maxK), in the co-inductive definition
of GK(K) cannot be replaced by the weaker formulas D(minK) and D(maxK) which
would only provide the first digits of the Gray codes of minK and maxK. If, however, for

some node d⃗ the first digit of the Gray code of min g−1

d⃗
[K] is defined, it will tell us whether

min g−1

d⃗
[K] ≤ 0 and hence (g−1

d⃗
[K])−1 ≠ ∅, or min g−1

d⃗
[K] ≥ 0 and thus (g−1

d⃗
[K])1 ≠ ∅;

similarly for max g−1

d⃗
[K].

Our next aim is to show that GK ⊆ S∗
K. We start with a technical lemma.

Lemma 10.5.

GK(K) → GK(−K).

Proof. Let R
Def
= {K | GK(−K) }. We use strong co-induction to show that R ⊆ GK, That

is, we have to show that

R(K) → (G(minK) ∧G(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → (R(t[Kd]) ∨GK(t[Kd])))).

Assume that R(K). Then GK(−K) and hence

G(min (−K)) ∧G(max (−K)) ∧ (∀d ∈ GC) ((−K)d ̸= ∅ → GK(t[(−K)d])).

Note that −(Kd) = (−K)(−d) and hence t[Kd] = t[−(Kd)] = t[(−K)(−d)]. Moreover,
min (−K) = −maxK and max (−K) = −minK. Since G is closed under λx. − x, by
[Be16, Lemma 7], it follows that

G(maxK) ∧G(minK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → GK(t[Kd])),

as was to be shown.

Lemma 10.6. For d ∈ GC,

GK(K) → Kd ̸= ∅ → GK(av−1
d [Kd]).

Proof. The statement follows by case distinction on d. Assume that GK(K). Then
GK(t[Kd]).

Case d = −1. This case is obvious, as for x ∈ II−1, t(x) = 2x+ 1 = av−1
−1(x).

Case d = 1. For x ∈ II1, t(x) = 1− 2x = −av−1
1 (x). Therefore the statement follows

with Lemma 10.5.

Lemma 10.7. Let K ⊆ II1. Then

GK(K) → GK((λx. 1− x)[K]).

Proof. The statement follows by co-induction. Note to this end that (λx. 1− x)[K] ⊆ II1 as
well. Moreover, min ((λx. 1− x)[K]) = 1−maxK and max ((λx. 1− x)[K]) = 1−minK.
Now assume that GK(K). Then G(minK) and G(maxK). By [Be16, Lemma 10] we
have for x ∈ II1 with G(x) that also G(1− x). Thus, we obtain G(min (λx. 1− x)[K]) and
G(max (λx. 1 − x)[K]). Since for x ∈ II1, t(1 − x) = 2x − 1 = av−1

1 (x), it follows with
Lemma 10.6 that GK(t[(λx. 1− x)[K]]).

Lemma 10.8. Let K ⊆ II. Then

GK(1/2K) → GK(K).

1:54 D. Spreen and U. Berger Vol. 19:3

Proof. The statement follows again by co-induction. Assume that GK(1/2K). Then
G(minK/2) and G(maxK/2). Since by [Be16, Lemma 11] G is closed under λx. 2x for
|x| ≤ 1/2, it follows that G(minK) and G(maxK).

As a further consequence of our assumption we have for d ∈ GC with Kd ̸= ∅ that
GK(t[1/2Kd]). Because t(x/2) = 1 − |x|, we obtain that GK((λx. 1 − |x|)[Kd]). Hence,
GK(|Kd|), by Lemma 10.7, and therefore GK(t[Kd]).

Set

Bmin
0

Def
= minK ̸= 0, Bmin

1
Def
= t(minK) ̸= 0,

Bmax
0

Def
= maxK ̸= 0, Bmax

1
Def
= t(maxK) ̸= 0.

Then

¬¬(Bmin
0 ∨Bmin

1)

and

¬¬(Bmax
0 ∨Bmax

1).

It follows for

Ci,j
Def
= Bmin

i ∧Bmax
j

with i, j ∈ {0, 1} that

¬¬(
∨

0≤i,j≤1

Ci,j). (10.1)

Moreover, all Ci,j are Harrop.
Now, let

A(K)
Def
= (∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅).

Lemma 10.9. GK(K) →
∗
⇊(A(K)).

Proof. Assume GK(K). Because of (10.1) and the Rules (
∗
⇊-↾-∨), (↾-stab), and (↾-mp), it

suffices to show

1. A(K)↾C0,0 ,
2. A(K)↾C0,1 ,
3. A(K)↾C1,0 ,
4. A(K)↾C1,1 .

The assumption GK(K) entails that G(minK) and G(maxK). Hence, we have for
x ∈ {minK,maxK} that

(x ≥ 0 ∨ x ≤ 0)↾x ̸=0. (10.2)

Since from G(x) we obtain that also G(t(x)), it follows in the same way that

(t(x) ≥ 0 ∨ t(x) ≤ 0)↾t(x)̸=0. (10.3)

Note that

minK ≥ 0 ↔ K ≥ 0,

minK ≤ 0 ↔ K−1 ̸= ∅,
maxK ≤ 0 ↔ K ≤ 0,

maxK ≥ 0 ↔ K1 ̸= ∅.

Vol. 19:3 THE GRAY CODE CASE 1:55

(1) Observe that C0,0 is the formula (minK ≠ 0 ∧ maxK ̸= 0). We use (10.2) for
x = minK and x = maxK. With Rules (↾-∧), (↾-mon), and (↾-antimon) we then obtain

((minK ≥ 0 ∨minK ≤ 0) ∧ (maxK ≥ 0 ∨maxK ≤ 0))↾minK ̸=0∧maxK ̸=0

which is equivalent to

(minK ≥ 0 ∨ (minK ≤ 0 ∧maxK ≥ 0) ∨maxK ≤ 0)↾C0,0

and, by the above equivalences, to

(K ≥ 0 ∨ (K−1 ̸= ∅ ∧K1 ̸= ∅) ∨K ≤ 0)↾C0,0 .

Since the formula (K ≥ 0∨ (K−1 ̸= ∅ ∧K1 ̸= ∅)∨K ≤ 0) clearly implies A(K), we are done
by Rule (↾-mon).

(2) C0,1 is the formula (minK ̸= 0∧ t(maxK) ̸= 0). We use (10.2) for x = minK and
(10.3) for x = maxK. With a similar argument as in the previous case we receive

((minK ≥ 0 ∨minK ≤ 0) ∧ (t(maxK) ≥ 0 ∨ t(maxK) ≤ 0))↾C0,1 .

Therefore, it suffices to show that A(K) is implied by the formula

(minK ≥ 0 ∨minK ≤ 0) ∧ (t(maxK) ≥ 0 ∨ t(maxK) ≤ 0)).

The latter is equivalent to

(K ≥ 0 ∨K−1 ̸= ∅) ∧ (|maxK| ≤ 1/2 ∨ |maxK| ≥ 1/2).

If K ≥ 0, we choose E
Def
= {1}.

If K−1 ̸= ∅ and |maxK| ≤ 1/2 we chose E
Def
= {−1, 0}.

If K−1 ̸= ∅ and |maxK| ≥ 1/2 we have maxK ̸= 0 and can therefore use (10.2) and
Rule (↾-mp) to get maxK ≥ 0 ∨maxK ≤ 0, that is, K1 ̸= ∅ ∨K ≤ 0.

If K1 ̸= ∅, we choose E
Def
= {−1, 1}. If K ≤ 0, we choose E

Def
= {−1}.

(3) is dual to (2).
(4) C1,1 is the formula (t(minK) ̸= 0 ∧ t(maxK) ̸= 0). Using (10.3) for x = minK

and x = maxK we obtain

((t(minK) ≥ 0 ∨ t(minK) ≤ 0) ∧ (t(maxK) ≥ 0 ∨ t(maxK) ≤ 0))↾C1,1 .

Therefore, it suffices to show that A(K) is implied by the formula

(t(minK) ≥ 0 ∨ t(minK) ≤ 0) ∧ (t(maxK) ≥ 0 ∨ t(maxK) ≤ 0).

The latter is equivalent to

(|minK| ≤ 1/2 ∨ |minK| ≥ 1/2) ∧ (|maxK| ≤ 1/2 ∨ |maxK| ≥ 1/2).

If |minK| ≤ 1/2 and |maxK| ≤ 1/2, we choose E
Def
= {0}.

If |minK| ≤ 1/2 and |maxK| ≥ 1/2, then maxK ≥ 1/2, hence we choose E
Def
= {0, 1}.

If |minK| ≥ 1/2 and |maxK| ≤ 1/2, then minK ≤ −1/2, hence we choose E
Def
=

{−1, 0}.
If |minK| ≥ 1/2 and |maxK| ≥ 1/2, then, by (10.3), (minK ≥ 0 ∨ minK ≤

0) ∧ (maxK ≥ 0 ∨maxK ≤ 0), which, as in case (1), implies A(K).

The above statements now allow the derivation of the result we are looking for.

Proposition 10.10.
GK ⊆ S∗

K.

1:56 D. Spreen and U. Berger Vol. 19:3

Proof. The statement follows by co-induction. We have to show that

GK(K) →
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧GK(av−1

d [Kd])))).

From Lemmas 10.6 and 10.8 it follows

GK(K) → ((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅)
→ (∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧GK(av−1

d [Kd])))).

By the monotonicity of
∗
⇊ we thus obtain

GK(K) → (
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅))

→
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧GK(av−1

d [Kd]))))),

where, the assumption
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅)) can be discharged

by Lemma 10.9.

The result we have obtained so far is analogous to the number case.

Theorem 10.11. SK ⊆ GK ⊆ S∗
K.

Remark 10.12. The definition of GK(K) (Definition 10.1) can be simplified to

GK(K) = K(K) ∧G(minK) ∧G′
K(K)

where

G′
K(K)

ν
= G(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → G′

K(t[Kd])).

This is equivalent to 10.1 since G is closed under the function t and for d ∈ GC with
Kd ̸= ∅, K(K) implies K(t[Kd]), and if d = −1, then min t[Kd] = t(minK) while for d = 1,
min t[Kd] = t(maxK). Although the new definition looks more complicated, it leads to
simpler realisers since in each recursion step it refers to G only once. The definition of
G∗

K(K) in the subsequent Section 11 can be simplified in a similar way.

11. Concurrent Gray code for non-empty compact sets

Next, set

G∗
K(K)

ν
= K(K) ∧G∗(minK) ∧G∗(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → G∗

K(t[Kd])).

Our next and final goal is to show that S∗
K = G∗

K.

Lemma 11.1. If S∗
K(K) then also

1. S∗
K(−K).

2. S∗(minK).
3. S∗(maxK).
4. (∀d ∈ GC)(Kd ̸= ∅ → S∗

K(t[Kd])).

Vol. 19:3 THE GRAY CODE CASE 1:57

Proof. (1) Let P
Def
= {K | S∗

K(−K) }. We use co-induction to prove that P ⊆ S∗
K. That is,

we have to show that

P (K) →
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧ P (av−1

d [Kd])))).

By definition of P it suffices to derive

∗
⇊((∃F ∈ Pfin(SD)) (−K ⊆ IIF ∧ (∀d ∈ F) ((−K)d ̸= ∅ ∧ S∗

K(av−1
d [(−K)d]))))

→
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧ P (av−1

d [Kd])))).

Because of the monotonicity rule for
∗
⇊ we thus only have to show that

(∃F ∈ Pfin(SD)) (−K ⊆ IIF ∧ (∀d ∈ F) ((−K)d ̸= ∅ ∧ S∗
K(av−1

d [(−K)d])))

→ (∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧ P (av−1
d [Kd]))),

which has been done in the proof of Lemma 10.2(1).
(2) The proof is an adaptation of the proof of Lemma 10.2(2). Let

R
Def
= {x ∈ II | (∃K ∈ S∗

K)x = minK }.
We have to show that

R(K) →
∗
⇊((∃d ∈ SD) (x ∈ IId ∧R(av−1

d (x)))).

Assume R(K). Then there is some K ∈ S∗
K with x = minK. It follows that

∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀e ∈ E) (Ke ̸= ∅ ∧ S∗

K(av−1
e [Ke])))).

Because of the monotonicity law for
∗
⇊ it suffices to prove that

(∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀e ∈ E) (Ke ̸= ∅ ∧ S∗
K(av−1

e [Ke]))) →
(∃d ∈ SD) (x ∈ IId ∧R(av−1

d (x))).

Order SD again by −1 < 0 < 1 and let d be the least element of E with respect to
this order. Then minK ∈ Kd ⊆ IId and av−1

d (minK) ∈ av−1
d [Kd]. Note that av−1

d is

monotone. Therefore, av−1
d (minK) = minav−1

d [Kd]. Since av−1
d [Kd] ∈ S∗

K, it follows that

av−1
d (minK) ∈ R.
(3) As in Lemma 10.2, the statement is a direct consequence of Statements 1 and 2 as

well as Lemma 7.2(1).
(4) Set

Rd
K(K)

Def
= {K | (∃Z ∈ S∗

K) (Zd ̸= ∅ ∧K = t[Zd]) }.
We use concurrent half-strong co-induction to show that Rd

K ⊆ S∗
K. That is, we have to

prove that

Rd
K(K) →

∗
⇊(

∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧

(∀e ∈ E) (Ke ̸= ∅ ∧Rd
K(av−1

e [Ke])))) ∨ S∗
K(K)).

(11.1)

If Rd
K(K), there is some Z ∈ S∗

K so that Zd ̸= ∅ and K = t[Zd]. Since S∗
K(Z), it follows

that
∗
⇊((∃F ∈ Pfin(SD)) (Z ⊆ IIF ∧ (∀f ∈ F) (Zf ̸= ∅ ∧ S∗

K(av−1
f [Zf])))).

1:58 D. Spreen and U. Berger Vol. 19:3

Now, assume that there is some F ∈ Pfin(SD) such that Z =
⋃

f∈F Zf and for all

f ∈ F , Zf ̸= ∅ and S∗
K(av−1

f [Zf]). As in the proof of Lemma 10.2(4) it follows for d ∈ GC

with Zd ̸= ∅ and K = t[Zd] that S
∗
K(K), if d ∈ F or, 0 /∈ F and d /∈ F , and Rd

K(av−1
1 [K]),

if d /∈ F , but 0 ∈ F . Thus, we have that

((∃E′ ∈ Pfin(SD)) (K ⊆ IIE′ ∧ (∀e ∈ E′) (Ke ̸= ∅ ∧Rd
K(av−1

e [Kd])))) ∨ S∗
K(K).

With the monotonicity and the idempotency of
∗
⇊ and

∗
⇊-∨ distribution we therefore obtain

∗
⇊((∃F ∈ Pfin(SD)) (Z ⊆ IIF ∧ (∀f ∈ F) (Zf ̸= ∅ ∧ S∗

K(av−1
f [Zf])))) →

∗
⇊(

∗
⇊((∃E′ ∈ Pfin(SD)) (K ⊆ IIE′ ∧ (∀e ∈ E′)

(Ke ̸= ∅ ∧Rd
K(av−1

e [Ke])))) ∨ S∗
K(K)),

of which (11.1) is a direct consequence.

By co-induction we now obtain the first inclusion we are looking for.

Proposition 11.2. S∗
K ⊆ G∗

K.

Let us now start with proving the converse inclusion. Again we need some technical
results.

Lemma 11.3. G∗
K(K) → G∗

K(−K).

Proof. Let P
Def
= {K | G∗

K(−K) }. We prove P ⊆ G∗
K by strong co-induction. That is, we

must show that

P (K) → (G∗(minK) ∧G∗(maxK) ∧ (∀d ∈ GC) (Kd ̸= ∅ → (P (t[Kd]) ∨G∗
K(t[Kd])))).

Assume that P (K). ThenG∗
K(−K) and henceD∗

K(−K) andG∗
K(t[(−K)d]), for d ∈ GC

with (−K)d ̸= ∅. Note that t(x) = t(−x) and (−K)d = −(K(−d)). Thus, G∗
K(t[Kd]), for

d ∈ GC with Kd ̸= ∅. By Lemma 7.4 it follows that G∗(maxK) and G∗(minK). Moreover,
as t(x) = t(−x) and (−K)d = −(K(−d)), G

∗
K(t[Kd]), for all d ∈ GC with Kd ̸= ∅.

Lemma 11.4. For d ∈ GC,

G∗
K(K) → Kd ̸= ∅ → G∗

K(av−1
d [Kd]).

The statement follows as in case of Lemma 10.6.

Lemma 11.5. Let K ⊆ II1. Then

G∗
K(K) → G∗

K((λx. 1− x)[K]).

The proof proceeds as in Lemma 10.7 by using Lemma 7.6.

Lemma 11.6. Let K ∈ K. Then

G∗
K(1/2K) → G∗

K(K).

The result follows as in Lemma 10.8 by applying Lemma 7.7.

Lemma 11.7.

G∗
K(K) →

∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅)).

Vol. 19:3 THE GRAY CODE CASE 1:59

Proof. The proof follows the derivation of Lemma 10.9. Set

A(K)
Def
= (∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅).

Then the assertion is

G∗
K(K) →

∗
⇊(A(K)).

Let again

Bmin
0

Def
= minK ̸= 0, Bmin

1
Def
= t(minK) ̸= 0,

Bmax
0

Def
= maxK ̸= 0, Bmax

1
Def
= t(maxK) ̸= 0.

and

Ci,j
Def
= Bmin

i ∧Bmax
j ,

for i, j ∈ {0, 1}. As we have seen in the proof of Lemma 10.9, it suffices to show that

1.
∗
⇊(A(K))↾C0,0 ,

2.
∗
⇊(A(K))↾C0,1 ,

3.
∗
⇊(A(K))↾C1,0 ,

4.
∗
⇊(A(K))↾C1,1 .

Assume that G∗
K(K) and note for x ∈ {minK,maxK} that G∗(x) entails G∗(t(x)).

From both we obtain that
∗
⇊(B(x))↾x ̸=0 and

∗
⇊(B(t(x)))↾t(x) ̸=0. Because of Rules (↾-∧),

(↾-mon), and (↾-antimon) it follows that

(
∗
⇊(B(x)) ∧

∗
⇊(B(y)))↾x ̸=0∧y ̸=0,

from which we obtain with Rules (
∗
⇊-∧-intro) and (↾-mon) that

∗
⇊(B(x) ∧B(y))↾x̸=0∧y ̸=0. (11.2)

As we have seen in the proof of Lemma 10.9,

(B(x) ∧B(y)) →
∗
⇊(A(K)),

for each choice of x and y. With Rules (
∗
⇊-mon) and (

∗
⇊-idem) we thus have that

∗
⇊(B(x) ∧B(y)) →

∗
⇊(A(K)).

Consequently, by (11.2) and Rule (↾-mon), we obtain that
∗
⇊(A(K))↾Ci,j , for i, j ∈ {0, 1}.

Proposition 11.8. G∗
K ⊆ S∗

K.

Proof. The statement follows by co-induction. We need to show that

G∗
K(K) →

∗
⇊((∃E ∈ Pfin(SD))(K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧G∗

K(av−1
d [Kd])))).

From Lemmas 11.4 and 11.6 it follows

G∗
K(K) → ((∃E ∈ Pfin(SD) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅)

→ (∃E ∈ Pfin(SD))(K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧G∗
K(av−1

d [Kd])))).

1:60 D. Spreen and U. Berger Vol. 19:3

By monotonicity of
∗
⇊ we thus obtain

GK(K) → (
∗
⇊((∃E ∈ Pfin(SD))(K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅))

→
∗
⇊((∃E ∈ Pfin(SD))(K ⊆ IIE ∧ (∀d ∈ E) (Kd ̸= ∅ ∧G∗

K(av−1
d [Kd]))))),

where, the assumption
∗
⇊((∃E ∈ Pfin(SD)) (K ⊆ IIE ∧ (∀d ∈ E)Kd ̸= ∅)) can be discharged

by Lemma 11.7.

As a consequence of Propositions 11.2 and 11.8 we now obtain our central result for the
compact sets case.

Theorem 11.9. S∗
K = G∗

K.

12. Conclusion

In this paper the computational power of infinite Gray code has been re-considered and
compared with the signed digit representation which is mostly used in applications. Infinite
Gray code is a redundancy-free representation of the real numbers, whereas the signed digit
representation has a high degree of redundancy: every real number has infinitely many
names. Instead of all real numbers only the interval [-1, 1] was considered.

The central aim was to study the relationship between both representations without
having to discuss the manipulation of code words directly. To this end, for each of the two
kinds of representation, co-inductive characterisations for the spaces under consideration were
introduced in a formal logical system as predicates G and S, from which the representation
can be recovered via a realisability interpretation. Instead of dealing with representations
directly, the predicates were compared. Computable translations between the representations
can be extracted from the formal proofs. The proofs also guarantee the correctness of the
extracted programs.

As was known from earlier studies by Tsuiki [Ts02, TS05], infinite Gray code can be
translated into signed digit code in a sequential way; for the converse translation, however,
one has to allow the computations to proceed concurrently. In [BT21b], Berger and Tsuiki
introduced a modality ⇊ for concurrency. ⇊(A) has no effect on the classical validity of the
formula A, but on its realisability interpretation: two concurrent processes try to realise
A, in case ⇊(A) is realisable, at least one of them will do so. With help of this modality a
predicate S2 was co-inductively defined, the realisers of which are again streams of signed
digits. However, they can be computed concurrently. It was shown that S ⊆ G ⊆ S2.

In the present paper the set of rules coming with the modality ⇊ was enlarged by two
new realisable rules, and several other useful rules were derived. Moreover, the modality was

inductively extended to a modality
∗
⇊ of bounded non-determinism, co-inductively leading

to predicates G∗ and S∗. Proof rules for the new modality were derived, and by this way it
was shown that G∗ = S∗, thus extending the result in [BT21b].

A powerful proof tool in the proof of the inclusion S ⊆ G case was Archimedean
induction. Here, a similar rule was presented for the concurrent case.

In [BS16, Sp21] the present authors have given a co-inductive characterisation of the
hyperspace of all non-empty compact subsets of a given digit space. Instead of streams
of digits, as in the point case, extracted realisers are now finitely branching infinite trees

Vol. 19:3 THE GRAY CODE CASE 1:61

with nodes being labelled with digits. By doing so, in particular a canonical way of lifting
the signed digit representation of the real numbers in [−1, 1] to a representation of the
non-empty compact subsets of [−1, 1] is obtained. The representation is very natural: the
infinite paths of a tree representing a compact set K correspond to the streams representing
the elements of K.

A central aim of the present research was to do analogous investigations for the lifted
representations as was done in the point case. The situation turned out very similar to
the point case. Predicates GK ,SK and S∗

K were defined co-inductively and the inclusions
SK ⊆ GK ⊆ S∗

K shown. Note, however, that for the last inclusion one had to use the

stronger modality
∗
⇊ in the definition of a predicate for ‘concurrent’ signed digit representation,

whereas in the point case the use of ⇊ sufficed. A co-inductive predicate G∗
K for ‘concurrent’

Gray code was introduced as well and G∗
K = S∗

K derived.
Moreover, an Archimedean induction rule for non-empty compact subsets was obtained.
A computability-theoretic approach to representing compact sets is carried out in work

by Pauly and Tsuiki [PT] who show in particular that K(I) has a faithful Tω-representation
Tω → K(I). Here, T is the partial order ({⊥, 0, 1},⊑) with ⊥ ⊑ 0, 1. In this study compact
sets are represented as trees as well, but then converted to bottomed sequences in such a
way that for finite sets the number of bottoms in the sequence increased by 1 coincides with
the cardinality of the set. The exact relationship of this kind of Gray code for K(I) with
the one introduced in the present paper will have to be investigated in future work. Since
the constructions given by Pauly and Tsuiki use coding and dove-tailing techniques, which
correspond to a direct reference to a fixed operational semantics, it is unclear whether they
can be recast in our abstract setting.

Acknowledgement

This research has been started during the Hausdorff trimester “Types, Sets and Construction”
at the Hausdorff Research Institute for Mathematics, Bonn, 2018. The authors are grateful
to the organisers of the trimester for having arranged this inspiring meeting and to the
Hausdorff Institute for providing such excellent working conditions.

Thanks are due to the referees for their careful reading of the paper. They did a
wonderful job: errors in results could be eliminated and the overall presentation of the paper
improved.

References

[Be11] U. Berger, From coinductive proofs to exact real arithmetic: theory and applications, Logical
Methods in Computer Science 7(1) (2011) 1–24, doi: 10.2168/LMCS7(1:8)2011.

[Be16] U. Berger, Extracting non-deterministic concurrent programs, in J.-M. Talbot, L. Regnier, edi-
tors, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 62, Dagstuhl, Germany, 2016, pages 26:1–26:21;
doi.org/10.4230/LIPIcs.CSL.2016.26.

[Be17] U. Berger. Manuscript. 2017.
[BH08] U. Berger, T. Hou, Coinduction for exact real number computation, Theory of Computing Systems

43 (2008) 394–409, doi: 10.1007.s0022400790176.
[BMST] U. Berger, K. Miyamoto, H. Schwichtenberg, H. Tsuiki, H. (2016). Logic for Gray-code computation,

in D. Probst, P. Schuster, editors, Concepts of Proof in Mathematics, Philosophy, and Computer
Science, De Gruyter, Berlin, 2016, doi: 10.1515/9781501502620-005.

1:62 D. Spreen and U. Berger Vol. 19:3

[BS16] U. Berger, D. Spreen. A coinductive approach to computing with compact sets, J. Logic & Analysis
8(3) (2016) 1–35; doi: 10.4115/jla.2016.8.3.

[BT21a] U. Berger, H. Tsuiki, Intuitionistic fixed point logic, Annals Pure Applied Logic 172(3) (2021),
doi.org/10.1016/j.apal.2020.102903.

[BT21b] U. Berger, H. Tsuiki. Extracting total Amb programs from proofs, in I. Sergey, editors, Programming
Languages and Systems, ESOP 2022, Lect. Notes Comp. Sci., vol. 13240, Springer-Verlag, Cham,
2022, pages 85–113, doi: 10.1007/978-3-030-99336-8 4.

[CG06] A. Ciaffaglione, P. Di Gianantonio, A certified, corecursive implementation of exact real numbers,
Theoretical Computer Science 351 (2006) 39–51; doi: 10.1016/j.tcs.2005.09.061.

[EH02] A. Edalat, R. Heckmann, Computing with real numbers: I. The LFT approach to real number
computation; II. A domain framework for computational geometry, in G. Barthe, P. Dybjer, L. Pinto,
J. Saraiva, editors, Applied Semantics — Lecture Notes from the International Summer School,
Caminha, Portugal, Springer-Verlag, Berlin, 2002, pages 193–267; doi: 10.1007/35404569965.

[Ed96] A. Edalat, Power domains and iterated function systems, Information and Computation 124 (1996)
182–197; doi.org/10.1006/inco.1996.0014.

[ES98] A. Edalat, P. Sünderhauf, A domain-theoretic approach to real number computation, Theoretical
Computer Science 210 (1998) 73–98, doi: 10.1016/S03043975(98)000978.

[GHKLMS03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous
Lattices and Domains, Cambridge University Press, Cambridge, 2003.

[Let02] P. Letouzey, A New Extraction for Coq. in TYPES 2002, Lect. Notes Comp. Sci., vol. 2646,
Springer-Verlag, Berlin, 2011, pages 200–219; doi.org/10.1007/3-540-39185-1 12.

[MC63] McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort, P., Hirschberg,
D. (eds.) Computer Programming and Formal Systems, Studies in Logic and the Foundations of
Mathematics, vol. 35, pp. 33 – 70. Elsevier (1963).

[ME07] J. R. Marcial-Romero, M. Hötzel Escardó, Semantics of a sequential language for exact real number
computation, Theoretical Computer Science 379(12) (2007) 120–141, doi: 10.1016/j.tcs.2007.01.021.

[Min11] U. Berger, K. Miyamoto, H. Schwichtenberg, M. Seisenberger, Minlog - A Tool for Program
Extraction for Supporting Algebra and Coalgebra, in Proc. of CALCO-Tools, Lect. Notes Comp. Sci.,
vol. 6859, Springer-Verlag, Berlin, 2011, pages 393–399; doi.org/10.1007/978-3-642-22944-2 29.

[PT] A. Pauly, H. Tsuiki. Computable dyadic subbases and Tω-representations of compact sets.
https://arxiv.org/abs/1604.00258.

[Pl77] G. D. Plotkin, LCF considered as a programming language, Theoretical Computer Science 5 (1977)
223–255.

[Sc79] D. S. Scott, Identity and existence in intuitionistic logic, in M. Fourman et al., editors, Applications
of sheaves, Proc. Res. Symp. Durham 1977, Lect. Notes Math., vol. 753, Springer-Verlag, Berlin,
1979, pages 660–669.

[Sp21] D. Spreen, Computing with continuous objects: a uniform co-inductive approach, Mathematical
Structures in Computer Science 31(2) (2021) 144–192, doi: 10.1017/S0960129521000116.

[Ts02] H. Tsuiki, Real number computation through Gray code embedding, Theoretical Computer Science
284(2) (2002) 467–485; doi.org/10.1016/S0304-3975(01)00104-9.

[TS05] H. Tsuiki, K. Sugihara, Streams with a bottom in functional languages, in M. Sagiv, editor,
ESOP 2005, Lec. Notes Comput. Sci., vol. 3444, Springer-Verlag, Berlin, 2005, pages 201–216;
doi.org/10.1007/978-3-540-31987-0 15.

[We00] K. Weihrauch, Computable Analysis, Springer Verlag, Berlin, 2000, doi: 10.1007/ 9783642569999.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Digit Spaces
	3. Inductive and co-inductive definitions
	4. Extracting algorithmic content from co-inductive proofs
	5. Computationally motivated logical connectives
	6. Concurrent Archimedean induction
	7. Concurrent signed digit and Gray codes
	8. The compact sets case
	9. Archimedean induction for compact sets
	10. Signed digit and Gray code for non-empty compact sets
	11. Concurrent Gray code for non-empty compact sets
	12. Conclusion
	Acknowledgement
	References

