
Logical Methods in Computer Science

Vol. 9(2:01)2013, pp. 1–39

www.lmcs-online.org

Submitted Sep. 28, 2012

Published Apr. 2, 2013

DECIDABLE CLASSES OF TREE AUTOMATA MIXING LOCAL AND

GLOBAL CONSTRAINTS MODULO FLAT THEORIES ∗

LUIS BARGUÑÓ a, CARLES CREUS b, GUILLEM GODOY c, FLORENT JACQUEMARD d,
AND CAMILLE VACHER e

a,b,c Universitat Politècnica de Catalunya, Jordi Girona 1, Barcelona, Spain
e-mail address: {luisbargu,ccreuslopez}@gmail.com, ggodoy@lsi.upc.edu

d INRIA Saclay, LSV-CNRS/ENS Cachan
e-mail address: florent.jacquemard@lsv.ens-cachan.fr

e LIFL, Univ. Lille I, INRIA Lille, 40 avenue Halley, 59650 Villeneuve d’Ascq, France
e-mail address: vacher@lsv.ens-cachan.fr

Abstract. We define a class of ranked tree automata TABG generalizing both the tree
automata with local tests between brothers of Bogaert and Tison (1992) and with global
equality and disequality constraints (TAGED) of Filiot et al. (2007). TABG can test for
equality and disequality modulo a given flat equational theory between brother subterms
and between subterms whose positions are defined by the states reached during a com-
putation. In particular, TABG can check that all the subterms reaching a given state
are distinct. This constraint is related to monadic key constraints for XML documents,
meaning that every two distinct positions of a given type have different values.

We prove decidability of the emptiness problem for TABG. This solves, in particular,
the open question of the decidability of emptiness for TAGED. We further extend our
result by allowing global arithmetic constraints for counting the number of occurrences
of some state or the number of different equivalence classes of subterms (modulo a given
flat equational theory) reaching some state during a computation. We also adapt the
model to unranked ordered terms. As a consequence of our results for TABG, we prove
the decidability of a fragment of the monadic second order logic on trees extended with
predicates for equality and disequality between subtrees, and cardinality.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Tree languages;
Logic—Higher order logic.

Key words and phrases: Logic, symbolic constraints, tree automata, XML processing.
∗ A preliminary version [BCG+10] appeared in the Proceedings of the 25th Annual IEEE Symposium on

Logic In Computer Science (LICS 2010). Here, we generalize the results by allowing the constraints to be
interpreted modulo a flat equational theory, and make the results stronger and easier to follow by presenting
completely new proofs for the part on arithmetic constraints.

a,b,c The first three authors were supported by the FORMALISM project (TIN2007-66523), by the SweetLogics
project (TIN2010-21062-C02-01), and by an FI-DGR grant.
d,e The last two authors were supported by the Future and Emerging Technologies (FET) program under the
FET-Open grant agreement FOX number FP7-ICT-23359, and by the INRIA ARC 2010 project ACCESS.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(2:01)2013

c© L. Barguñó, C. Creus, G. Godoy, F. Jacquemard, and C. Vacher
CC© Creative Commons

http://creativecommons.org/about/licenses

2 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

1. Introduction

Tree automata techniques are widely used in several domains like automated deduction (see
e.g. [CDG+07]), static analysis of programs [BT05] or protocols [VGL07, FGVTT04], and
XML processing [Sch07]. However, a severe limitation of standard tree automata (TA) is
that they are not able to test for equality (isomorphism) or disequality between subterms
in an input term. For instance, the language of terms matching a non-linear pattern such
as f(x, x) is not regular (i.e. there exists no TA recognizing this language). Let us illustrate
how this limitation can be problematic in the context of XML documents processing. XML
documents are commonly represented as labeled trees, and they can be constrained by XML
schemas, which define both typing restrictions and integrity constraints. All the typing
formalisms currently used for XML are based on finite tree automata. The key constraints
for databases are common integrity constraints expressing that every two distinct positions
of a given type have different values. This is typically the kind of constraints that can not
be characterized by TA.

One first approach to overcome this limitation of TA consists in adding the possibility
to make equality or disequality tests at each step of the computation of the automaton.
The tests are performed locally, between subterms at a bounded distance from the current
computation position in the input term. The emptiness problem, i.e. whether the language
recognized by a given automaton is empty, is undecidable with such tests [Mon81]. A decid-
able subclass is obtained by restricting the tests to sibling subterms [BT92] (see [CDG+07]
for a survey).

Another approach was proposed more recently in [FTT07, FTT08] with the definition
of tree automata with global equality and disequality tests (TAGED). The TAGED do not
perform the tests during the computation steps but globally on the term, at the end of the
computation, at positions which are defined by the states reached during the computation.
For instance, they can express that all the subterms that reached a given state q are equal,
or that every two subterms that reached respectively the states q and q′ are different.
Nevertheless, arbitrary disequalities are not allowed in TAGED, since such q and q′ must be
different. The emptiness has been shown decidable for several subclasses of TAGED [FTT07,
FTT08], but the decidability of emptiness for the whole class remained a challenging open
question.

In this paper, we answer this question positively, for a class of tree recognizers more
general than TAGED. We propose (in Section 3) a class of tree automata with local con-
straints between siblings and global constraints (TABG) which significantly extends TAGED

in several directions: (i) TABG combine global constraints a la TAGED with local equality
and disequality constraints between brother subterms a la [BT92], (ii) the equality and
disequality constraints are treated modulo a given flat equational theory (here flat means
that both sides of the equation have the same variables and height, and that this height
is bounded by 1), allowing to consider relations more general than syntactic equalities and
disequalities, like e.g. structural equalities and disequalities, (iii) testing global disequality
constraints between subterms that reached the same state is allowed (such test specify key
constraints, which are not expressible with TAGED), (iv) the global constraints are arbitrary
Boolean combinations (including negation) of atomic equality and disequality (in TAGED,
only conjunction of atoms are allowed, without negation).

TA WITH LOCAL AND GLOBAL CONSTRAINTS 3

In Section 4, we consider the addition to TABG of global counting constraints on the
number |q| of occurrences of a given state q in a computation, or the number ‖q‖ of dis-
tinct equivalence classes (modulo the flat theory) of subterms reaching a given state q in a
computation. These counting constraints are only allowed to compare states to constants,
like in |q| ≤ 5 or ‖q‖ + 2‖q′‖ ≥ 9 (with counting constraints being able to compare state
cardinalities, like in |q| = |q′|, the emptiness problem becomes undecidable). Using this
formalism as an intermediate step, we show that negative literals and disjunctions can be
eliminated without loss of generality in the global constraints of TABG, i.e. that TABG whose
global constraints are restricted to be conjunctions of positive literals (namely positive con-
junctive TABG) have already the same expressiveness of the full TABG class. In particular,
the counting constraints do not improve the expressiveness of TABG.

Our main result, presented in Section 5, is that emptiness is decidable for positive
conjunctive TABG (and hence for TABG). The decision algorithm uses an involved pumping
argument: every sufficiently large term recognized by the given TABG can be reduced by an
operation of parallel pumping into a smaller term which is still recognized. The existence
of the bound for the minimum accepted term is based on a particular well quasi-ordering.

We show that the emptiness decision algorithm of Section 5 can also be applied to
a generalization of the subclass TAG of TABG without the local constraints computing on
unranked ordered labeled trees (Section 6). This demonstrates the robustness of the method.

As an application of our results, in Section 7 we present a (strict) extension of the
monadic second order logic on trees whose existential fragment corresponds exactly to TAG.
In particular, we conclude its decidability.

Related Work. TABG is a strict (decidable) extension of TAG and TA with local equality
and disequality constraints, since the expressiveness of both subclasses is incomparable (see
e.g. [JKV09]).

The tree automata model of [BT92] has been generalized from ranked trees to unranked
ordered trees into a decidable class called UTASC [WL07, LW09]. In unranked trees, the num-
ber of brothers (under a position) is unbounded, and UTASC transitions use MSO formulae (on
words) with 2 free variables in order to select the sibling positions to be tested for equality
and disequality. The decidable generalization of TAG to unranked ordered trees proposed in
Section 6 and the automata of [WL07, LW09] are incomparable. The combination of both
formalisms could be the object of a further study.

Another way to handle subterm equalities is to use automata computing on DAG rep-
resentation of terms [Cha99, ANR05]. This model is incomparable to TAG whose constraints
are conjunctions of equalities [JKV09]. The decidable extension of TA with one tree shaped
memory [CC05] can simulate TAG with equality constraints only, providing that at most one
state per run can be used to test equalities [FTT07].

We show in Section 3 that the TABG strictly generalize the TAGED of [FTT07, FTT08].
The latter have been introduced as a tool to decide a fragment of the spatial logic TQL

[FTT07]. Decidable subclasses of TAGED were also shown decidable in correspondence with
fragments of monadic second order logic on the tree extended with predicates for subtree
(dis)equality tests. In Section 7, we generalize this correspondence to TAG and a more
natural extension of MSO.

There have been several approaches to extend TA with arithmetic constraints on cardi-
nalities |q| described above: the constraints can be added to transitions in order to count
between siblings [SSM03, DL06] (in this case we could call them local by analogy with

4 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

equality tests) or they can be global [KR02]. We compare in Section 4 the latter approach
(closer to our settings) with our extension of TABG, with respect to emptiness decision. To
our knowledge, this is the first time that arithmetic constraints on cardinalities of the form
‖q‖ are studied.

2. Preliminaries

2.1. Terms, Positions, Replacements. We use the standard notations for terms and
positions, see [BN98]. A signature Σ is a finite set of function symbols with arity. We
sometimes denote Σ explicitly as {f1 : a1, . . . , fn : an} where f1, . . . , fn are the function
symbols, and a1, . . . , an are the corresponding arities, or as {f1, . . . , fn} when the arities
are omitted. We denote the subset of function symbols of Σ of arity m as Σm. The set
of (ranked) terms over the signature Σ is defined recursively as T (Σ) := {f(t1, . . . , tm) |
f :m ∈ Σ, t1, . . . , tm ∈ T (Σ)}. Note that the base case of this definition is {f | f : 0 ∈ Σ},
which coincides with Σ0 by omitting the arity. Elements of this subset are called constants.

Positions in terms are denoted by sequences of natural numbers. With λ we denote the
empty sequence (root position), and p.p′ denotes the concatenation of positions p and p′.
The set of positions of a term is defined recursively as Pos

(
f(t1, . . . , tm)

)
= {λ} ∪ {i.p | i ∈

{1, . . . ,m} ∧ p ∈ Pos(ti)}. A term t ∈ T (Σ) can be seen as a function from its set of
positions Pos(t) into Σ. For this reason, the symbol labeling the position p in t shall be
denoted by t(p). By p < p′ and p ≤ p′ we denote that p is a proper prefix of p′, and that
p is a prefix of p′, respectively. In these cases, p′ is necessarily of the form p.p′′, and we
define p′ − p as p′′. Two positions p1, p2 incomparable with respect to the prefix ordering
are called parallel, and it is denoted by p1 ‖ p2. The subterm of t at position p, denoted
t|p, is defined recursively as t|λ = t and f(t1, . . . , tm)|i.p = ti|p. The replacement in t
of the subterm at position p by s, denoted t[s]p, is defined recursively as t[s]λ = s and
f(t1, . . . , ti−1, ti, ti+1, . . . , tm)[s]i.p = f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tm). The height of a term
t, denoted h(t), is the maximal length of a position of Pos(t). In particular, the length of
λ is 0.

2.2. Tree automata. A tree automaton (TA, see e.g. [CDG+07]) is a tupleA = 〈Q,Σ, F,∆〉
where Q is a finite set of states, Σ is a signature, F ⊆ Q is a subset of final (or accepting)
states and ∆ is a set of transition rules of the form f(q1, . . . , qm) → q where f : m ∈ Σ,
q1, . . . , qm, q ∈ Q. Sometimes, we shall refer to A as a subscript of its components, like in
QA to indicate that this is the set of states of A.

A run of A is a pair r = 〈t,M〉 where t is a term in T (Σ) and M : Pos(t) → ∆A is a
mapping satisfying the following statement for each p ∈ Pos(t): if t|p is written of the form
f(t1, . . . , tm), and M(p.1), . . . ,M(p.m) are rules with right-hand side states q1, . . . , qm ∈
QA, respectively, then M(p) is a rule of the form f(q1, . . . , qm) → q for some q ∈ QA. We
write r(p) for the right-hand side state of M(p), and say that r is a run of A on t. Moreover,
by term(r) we refer to t, and by symbol(r) we refer to t(λ). The run r is called successful
(or accepting) if r(λ) is in FA. The language L(A) of A is the set of terms t for which there
exists a successful run of A. A language L is called regular if there exists a TA A satisfying
L = L(A). For facility of explanations, we shall use term-like notations for runs defined
as follows in the natural way. For a run r = 〈t,M〉, by Pos(r) we denote Pos(t), and by
h(r) we denote h(t). Similarly, by r|p we denote the run 〈t|p,M |p〉, where M |p is defined as

TA WITH LOCAL AND GLOBAL CONSTRAINTS 5

M |p(p
′) = M(p.p′) for each p′ in Pos(t|p), and say that r|p is a subrun of r. Moreover, for

a run r′ = 〈t′,M ′〉 such that the states r′(λ) and r(p) coincide, by r[r′]p we denote the run
〈t[t′]p,M [M ′]p〉, where M [M ′]p is defined as M [M ′]p(p.p

′) = M ′(p′) for each p′ in Pos(t′),
and as M [M ′]p(p

′) = M(p′) for each p′ with p 6≤ p′.

2.3. Tree automata with local constraints between brothers. A tree automaton with
constraints between brothers (defined in [BT92] and called TACBB in [CDG+07]) is a tuple
A = 〈Q,Σ, F,∆〉 where Q, Σ and F are defined as for TA, but with the difference that ∆ is

a set of constrained rules of the form f(q1, . . . , qm)
C
→ q, where C is a set of equalities and

disequalities of the form i ≈ j or i 6≈ j for i, j ∈ {1, . . . ,m}. We call C a local constraint
between brothers. By ta(A) we define the TA obtained from A by removing all constraints
from ∆.

A run of a TACBB A is a pair r = 〈t,M〉 defined similarly to the case of TA; t is a
term in T (Σ) and the mapping M : Pos(t) → ∆A satisfies the following statement for each
p ∈ Pos(t): if t|p is written of the form f(t1, . . . , tm), and M(p.1), . . . ,M(p.m) are rules
with right-hand side states q1, . . . , qm ∈ QA, respectively, then M(p) is a rule of the form

f(q1, . . . , qm)
C
→ q for some q ∈ QA and constraint between brothers C. Moreover, for each

equality i ≈ j in C, ti = tj holds, and for each disequality i 6≈ j in C, ti 6= tj holds. The
notions of successful run and recognized language are defined for TACBB analogously to the
case of TA.

2.4. Term equations. Given a set of variables X , the set of (ranked) terms over Σ and
X is defined as T (Σ ∪ X) by considering arity 0 for the elements of X . A substitution
σ is a mapping from variables to terms σ : X → T (Σ ∪ X). It is also considered as a
function from arbitrary terms to terms σ : T (Σ∪X) → T (Σ∪X) by the recursive definition
σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)) for every function symbol f and subterms t1, . . . , tm.

An equation between terms is an unordered pair of terms denoted l ≈ r. Given a set
of equations E and two terms s, t, we say that s and t are equivalent modulo E, denoted
s =E t, if there exist terms s1, s2, . . . , sn, n ≥ 1 satisfying the following statement: s = s1,
sn = t, and for each i ∈ {1, . . . , n−1}, there exists an equation l ≈ r in E, a substitution σ,
and a position p, such that si|p = σ(l) and si+1 = si[σ(r)]p. A flat equation is an equation
l ≈ r where l and r are terms satisfying h(l) = h(r) ≤ 1, and any variable x occurs in l if
and only if x occurs in r. A flat theory is a set of flat equations.

The following technical lemma shows that equivalence modulo a flat theory is preserved
by certain replacements of subterms. It will be useful in Section 5.

Lemma 2.1. Let E be a flat theory. Let s = f(s1, . . . , sn), t = g(t1, . . . , tm), s′ =
f(s′1, . . . , s

′
n) and t′ = g(t′1, . . . , t

′
m) be terms satisfying the following conditions:

• For each i ∈ {1, . . . , n}, (si ∈ Σ0 ⇔ s′i ∈ Σ0) and (si, s
′
i ∈ Σ0 ⇒ si =E s′i) hold.

• For each j ∈ {1, . . . ,m}, (tj ∈ Σ0 ⇔ t′j ∈ Σ0) and (tj, t
′
j ∈ Σ0 ⇒ tj =E t′j) hold.

• For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, (s′i =E t′j ⇔ si =E tj) holds.

Then, s =E t ⇔ s′ =E t′ holds.

Proof. We prove the left-to-right direction only. The other one is analogous by swapping
the roles of s and t by the roles of s′ and t′, respectively.

6 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

Since s =E t holds, there exist terms u1, u2, . . . , uk, k ≥ 1 satisfying the following
statement: s = u1, uk = t, and for each i ∈ {1, . . . , k − 1}, there exists an equation l ≈ r in
E, a substitution σ, and a position p, such that ui|p = σ(l) and ui+1 = ui[σ(r)]p.

We prove the statement by induction on k. For k = 1, s = t holds. Thus, g is f , m is
n, and for each i ∈ {1, . . . , n}, si = ti holds. In particular, each si =E ti holds. Therefore,
each s′i =E t′i also holds, and hence s′ = f(s′1, . . . , s

′
n) =E f(t′1, . . . , t

′
n) = t′ holds.

Now, assume k > 1. Let l ≈ r, p and σ be the rule, position and substitution satisfying
u1|p = σ(l) and u2 = u1[σ(r)]p. Recall that u1 is s. First, suppose that p is not λ. Then, p
is of the form j.p′ for some j ∈ {1, . . . , n} and position p′. Note that u2|j =E u1|j holds, and
for each i ∈ {1, . . . , n} \ {j}, u2|i = u1|i holds. Thus, u2 is of the form f(v1, . . . , vn) and for
each i ∈ {1, . . . , n}, vi =E si holds. Moreover, since E is a flat theory, the step at p preserves
the height, and hence, for each i ∈ {1, . . . , n}, vi ∈ Σ0 ⇔ si ∈ Σ0 and vi, si ∈ Σ0 ⇒ vi =E si
hold. From the statement of the lemma, the following conditions follow:

• For each i ∈ {1, . . . , n}, (vi ∈ Σ0 ⇔ s′i ∈ Σ0) and (vi, s
′
i ∈ Σ0 ⇒ vi =E s′i) hold.

• For each j ∈ {1, . . . ,m}, (tj ∈ Σ0 ⇔ t′j ∈ Σ0) and (tj , t
′
j ∈ Σ0 ⇒ tj =E t′j) hold.

• For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, (s′i =E t′j ⇔ vi =E tj) holds.

By induction hypothesis, f(s′1, . . . , s
′
n) =E g(t′1, . . . , t

′
m) holds, and we are done.

Now, consider the case where p is λ. In this case s = u1 = σ(l), and u2 = σ(r). Since E
is a flat theory, l and r are of the form f(α1, . . . , αn) and h(β1, . . . , βµ), where either n, µ > 0
or n = µ = 0, and α1, . . . , αn, β1, . . . , βµ are either constants or variables. Moreover, a
variable occurs in l if and only if it occurs in r. Note that σ(α1) = s1, . . . , σ(αn) = sn
holds. We call v1 = σ(β1), . . . , vµ = σ(βµ). Note that u2 = h(v1, . . . , vµ). We define terms
v′1, . . . , v

′
µ as follows for each i in {1, . . . , µ}. If vi is a constant, then we define v′i as vi.

Otherwise, if vi is not a constant, then βi is a variable x. Since E is a flat theory, some
αj (we choose any) must be x. In this case we define v′i as s

′
j. With these definitions, the

following conditions follow:

• For each i ∈ {1, . . . , µ}, (vi ∈ Σ0 ⇔ v′i ∈ Σ0) and (vi, v
′
i ∈ Σ0 ⇒ vi =E v′i) hold.

• For each j ∈ {1, . . . ,m}, (tj ∈ Σ0 ⇔ t′j ∈ Σ0) and (tj , t
′
j ∈ Σ0 ⇒ tj =E t′j) hold.

• For each i ∈ {1, . . . , µ} and j ∈ {1, . . . ,m}, (v′i =E t′j ⇔ vi =E tj) holds.

By induction hypothesis, h(v′1, . . . , v
′
µ) =E g(t′1, . . . , t

′
m) holds.

Now, let s′′1 , . . . , s
′′
n be defined as follows for each i in {1, . . . , n}. If s′i is not a constant

then define s′′i as s′i. Otherwise, if s′i is a constant, then define s′′i as si. By the condition
(si, s

′
i ∈ Σ0 ⇒ si =E s′i) we have that f(s′1, . . . , s

′
n) =E f(s′′1, . . . , s

′′
n) holds. Moreover, the

same rule l ≈ r can be used to prove f(s′′1, . . . , s
′′
n) =E h(v′1, . . . , v

′
µ). Hence, f(s

′
1, . . . , s

′
n) =E

f(s′′1, . . . , s
′′
n) =E h(v′1, . . . , v

′
µ) =E g(t′1, . . . , t

′
m) holds, and we are done.

2.5. Well quasi-orderings. A well quasi-ordering [Gal91] ≤ on a set S is a reflexive and
transitive relation such that any infinite sequence of elements e1, e2, . . . of S contains an
increasing pair ei ≤ ej with i < j.

3. Tree Automata with Global Constraints

In this subsection, we define a class of tree automata with global constraints strictly gen-
eralizing both the TACBB of [BT92] and the TAGED of [FTT08]. The generalization consists

TA WITH LOCAL AND GLOBAL CONSTRAINTS 7

in considering more general global constraints, and interpreting all the constraints modulo
a flat equational theory.

As an intermediate step, we define an extension of the TACBB of [BT92] where the local
constraints between brothers are considered modulo a flat equational theory.

Definition 3.1. A tree automaton with constraints between brothers modulo a flat theory
(TAB) is a tuple A = 〈Q,Σ, F,∆, E〉 where 〈Q,Σ, F,∆〉 is a TACBB and E is a flat equational
theory.

By ta(A) we denote ta(〈Q,Σ, F,∆〉).
A run of a TAB A = 〈Q,Σ, F,∆, E〉 is a pair r = 〈t,M〉 defined analogously to a run

of a TACBB, except that the constraints between brothers are interpreted modulo E. More
specifically, for each position p in Pos(t), if t|p is written of the form f(t1, . . . , tm), and
M(p.1), . . . ,M(p.m) are rules with right-hand side states q1, . . . , qm ∈ Q, respectively, then

M(p) is a transition rule of ∆A of the form f(q1, . . . , qm)
C
→ q for some q ∈ Q and constraint

between brothers C. Moreover, for each equality i ≈ j in C, ti =E tj holds, and for each
disequality i 6≈ j in C, ti 6=E tj holds. The notions of successful run and recognized language
are defined for TAB analogously to the case of TA.

We further extend this class TAB with global equality and disequality constraints gen-
eralizing those of TAGED [FTT08].

Definition 3.2. A tree automaton with global and brother constraints modulo a flat theory
(TABG) is a tuple A = 〈Q,Σ, F,∆, E,C〉 where 〈Q,Σ, F,∆, E〉 is a TAB, denoted tab(A),
and C is a Boolean combination of atomic constraints of the form q ≈ q′ or q 6≈ q′, where
q, q′ ∈ Q.

By ta(A) we denote ta(tab(A)).
A run of a TABG A = 〈Q,Σ, F,∆, E,C〉 is a run r = 〈t,M〉 of tab(A) such that r satisfies

C, denoted r |= C, where the satisfiability of constraints is defined as follows. For atomic
constraints, r |= q ≈ q′ (respectively r |= q 6≈ q′) holds if and only if for all different positions
p, p′ ∈ Pos(t) such that M(p) = q and M(p′) = q′, t|p =E t|p′ (respectively t|p 6=E t|p′)
holds. This notion of satisfiability is extended to Boolean combinations as usual. As for TA,
we say that r is a run of A on t. A run r of A on t ∈ T (Σ) is successful (or accepting) if
r(λ) ∈ F . The language L(A) of A is the set of terms t for which there exists a successful
run of A.

It is important to note that the semantics of ¬(q ≈ q′) and q 6≈ q′ differ, as well as the
semantics of ¬(q 6≈ q′) and q ≈ q′. This is because we have a “for all” quantifier in both
definitions of semantics of q ≈ q′ and q 6≈ q′.

Let us introduce some notations, summarized in Figure 1 that we use below to charac-
terize some classes of tree automata related to TABG (Figure 1 also refers to a class defined
in Section 4). A TABG A is called positive if CA is a disjunction of conjunctions of atomic
constraints and it is called positive conjunctive if CA is a conjunction of atomic constraints.
The subclass of positive conjunctive TABG is denoted by TABG∧.

We recall that a TAB where all the constraints are empty is just a TA. For a TABG A,
when the theory EA is empty and tab(A) is just a TA, we say that A is just a tree automaton
with global constraints (TAG). Its subclass with positive conjunctive constraints is denoted
TAG∧.

With the notation TABG[τ1, . . . , τm], we characterize the class of tree automata with
global and brother constraints modulo a flat theory whose global constraints are Boolean

8 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

TABG[≈, 6≈,N] TABG[≈, 6≈] positive TABG[≈, 6≈] TABG∧[≈, 6≈]

TAG[≈, 6≈]

TAG[≈] TABG[≈] TABG[6≈] TAG[6≈]

TAB

TACBB

TA

: effective strict inclusion : effective equivalence

Figure 1: Decidable classes of TA with local and global constraints

combination of atomic constraints of types τ1, . . . , τm. The types ≈ and 6≈ denote respec-
tively the atomic constraints of the form q ≈ q′ and q 6≈ q′, where q, q′ are states. For
instance, the abbreviation TABG used in Definition 3.2 stands for TABG[≈, 6≈]. This notation
is extended to the positive conjunctive fragment by TABG∧[τ1, . . . , τk] and to the fragment
without local constraints between brother, by TAG[τ1, . . . , τk].

3.1. Expressiveness. The class of regular languages is strictly included in the class of
TABG languages due to the constraints.

Example 3.3. Let Σ = {a : 0, f : 2}. The set {f(t, t) | t ∈ T (Σ)} is not a regular tree
language (this can be shown using a classical pumping argument).

However, it is recognized by the following TAB:
〈
{q0, qf},Σ, {qf}, {a → q0, f(q0, q0) → q0, f(q0, q0) −−−→

1≈2 qf}, ∅
〉
,

and it is also recognized by the following TAG[≈]:

A =
〈
{q0, q1, qf},Σ, {qf}, {a → q0 | q1, f(q0, q0) → q0 | q1, f(q1, q1) → qf}, ∅, q1 ≈ q1

〉
,

where t → q | qr is an abbreviation for t → q and t → qr. An example of successful run of
A on t = f(f(a, a), f(a, a)) is qf

(
q1(q0, q0), q1(q0, q0)

)
, where we use term-like notation for

marking the reached state at each position.

Moreover, the TAGED of [FTT08] are also a particular case of TAG[≈, 6≈], since they can be
redefined in our setting as restricted TAG∧[≈, 6≈], where the equational theory is empty, and
where q and q′ are required to be distinct in any atomic constraint of the form q 6≈ q′.

Reflexive disequality constraints such as q 6≈ q correspond to monadic key constraints
for XML documents, meaning that every two distinct positions of type q have different
values. A state q of a TAG[≈, 6≈] can be used for instance to characterize unique identifiers
as in the following example, which presents a TAG[≈, 6≈] whose language cannot be recognized
by a TAGED. This example will be referred several times in Section 5, in order to illustrate
the definitions used in the decision procedure of the emptiness problem for TAG[≈, 6≈].

TA WITH LOCAL AND GLOBAL CONSTRAINTS 9

M
qM

1
qid

N
qt

2
qd

0
qN

L
qL

2
qid

N
qt

2
qd

0
qN

L
qL

3
qid

N
qt

2
qd

0
qN

L0
qL

4
qid

N
qt

2
qd

0
qN

Figure 2: Term and successful run (Example 3.4).

Example 3.4. The TAG[≈, 6≈] of our running example accepts (in state qM) lists of dishes
called menus, where every dish is associated with one identifier (state qid) and the time
needed to cook it (state qt). We have other states accepting digits (qd), numbers (qN) and
lists of dishes (qL).

The TAG[≈, 6≈] A = 〈Q,Σ, F,∆, ∅, C〉 is defined as follows: Σ = {0, . . . , 9 : 0, N,L0 :
2, L,M :3}, Q = {qd, qN , qid, qt, qL, qM}, F = {qM}, and ∆ = {i → qd |qN |qid |qt : 0 ≤ i ≤ 9}
∪ {N(qd, qN) → qN | qid | qt, L0(qid, qt) → qL, L(qid, qt, qL) → qL,M(qid, qt, qL) → qM}.

The constraint C ensures that all the identifiers of the dishes in a menu are pairwise
distinct (i.e. that qid is a key) and that the time to cook is the same for all dishes: C =
qid 6≈ qid ∧ qt ≈ qt. A term in L(A) together with an associated successful run are depicted
in Figure 2.

Althought this is a simple exercise, let us establish formally that TAG[≈, 6≈] are strictly
more expressive than TAGED.

Lemma 3.5. The class of languages recognized by TAG
∧[≈, 6≈] strictly includes the class of

languages recognized by TAGED.

Proof. Since a TAGED is just a TAG∧[≈, 6≈] where no constraint of the form q 6≈ q occurs, the
inclusion holds. In order to see that it is strict, it suffices to show a language L which can
be recognized by a TAG∧[≈, 6≈] but not by a TAGED.

Let Σ = {a : 0, s : 1, f : 2}. The set L of terms of T (Σ) of the form f(sn1(a), f(sn2(a),
. . . , f(snk(a), a) . . .)), such that k ≥ 0 and the natural numbers ni, for i ≤ k, are pairwise
distinct, is recognized by the following TAG∧[≈, 6≈]:

〈

{qa, q, qf},Σ, {qf},

a → qa | q | qf ,
s(qa) → qa | q,
f(q, qf) → qf

, ∅, q 6≈ q

〉

.

Assume that there exists a TAG∧[≈, 6≈] A without reflexive disequality constraints of
the form q 6≈ q (i.e. a TAGED), recognizing this language L. Then, there exists an accepting
run r of A on the term t = f(s(a), f(s2(a), . . . f(s|QA|+1(a), a) . . .)) ∈ L. Therefore, r |= CA

(the global constraint of A, which is positive by hypothesis).

There are two different positions pi =

i
︷ ︸︸ ︷

2.2.2 .1 and pj =

j
︷ ︸︸ ︷

2.2.2 .1, 0 ≤ i < j ≤
|QA| such that r(pi) = r(pj). Let us show that r′ = r[r|pi]pj is an accepting run of A on

10 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

t′ = t[t|pi]pj . Since r(pi) = r(pj) and r is a run of A on t, r′ is a run of ta(A) on t′. Hence,
it suffices to prove that the constraint CA is satisfied by r′. Consider a position p of the
form 2.2.2 with |p| < j. We start by proving that any atomic constraint involving r′(p)
is satisfied. Note that r′(p) = r(p) holds, and that the subterm t|p has only this occurrence
in t. Thus, any atomic constraint involving r(p) and a state q occurring in r is necessarily
of the form r(p) 6≈ q. Since any state occurring in r′ occurs also in r, any atomic constraint
involving r′(p) and a state q occurring in r′ is of the form r′(p) 6≈ q. Moreover, the subterm
t′|p has only this occurrence in t′. Thus, such a constraint is satisfied. Now consider two
different positions p1, p2 which are not of the form described above. It remains to see that
any atomic constraint involving r′(p1) and r′(p2) is satisfied. In the case where r′|p1 and
r′|p2 are different, this is a direct consequence of the fact that both subruns r′|p1 and r′|p2
are also subruns of r at different positions. Otherwise, in the case where r′|p1 and r′|p2 are
the same subrun, then, r′(p1) = r′(p2) holds, and any atomic constraint involving r′(p1) and
r′(p2) must be of the form r′(p1) ≈ r′(p2) because A has no reflexive disequalities. Thus,
the atomic constraint is also satisfied in this case.

The following example shows a TABG recognizing a language that cannot be recognized
by a TAG[≈, 6≈]. The proof is a simple exercise and it is left to the reader.

Example 3.6. Assume that the terms of Example 3.4 are now used to record the activity of
a restaurant. To this end, we transform the TAG of example 3.4 into a TABG as follows. First,
in order to simplify the example we omit the restriction that all cooking times coincide, i.e.
C = qid 6≈ qid. Second, we add a new argument of type qt to L0, L and M , so that the
old argument qt characterizes the theoretical time to cook, and the new qt characterizes
the real time that was needed to cook the dish. Let us replace the transitions with L0, L

and M in input by L0(qid, qt, qt) −−−→
2≈3 qL, L0(qid, qt, qt) −−−→

26≈3 q′L, L(qid, qt, qt, qL) −−−→
2≈3 qL,

L(qid, qt, qt, qL) −−−→
26≈3 q′L, M(qid, qt, qt, qL) −−−→

2≈3 qM , M(qid, qt, qt, qL) −−−→
26≈3 q′M , where q′L is

a new state meaning that there was an anomaly. We also add a transition L(qid, qt, qt, q
′
L) →

q′L to propagate q′L and M(qid, qt, qt, q
′
L) → q′M .

By keeping the set of final states as {qM}, the recognized language of the TABG obtained
is the set of records well cooked, i.e. such that for all dishes, the real time to cook is equal to
the theoretical time. By redefining the set of final states as {q′M}, the recognized language
is the set of records with an anomaly.

3.2. Decision Problems. Themembership is the problem to decide, given a term t ∈ T (Σ)
and a TABG A over Σ whether t ∈ L(A).

Proposition 3.7. Membership is NP-complete for TABG, by assuming that the maximum
arity of the signature Σ is a constant for the problem.

Proof. In order to prove that this problem is in NP, given a TABG A = 〈Q,Σ, F,∆, E,C〉
and a term t ∈ T (Σ), we can non-deterministically guess a function M from Pos(t) into
∆, and check that 〈t,M〉 is a successful run of A on t. The checking can be performed
in polynomial time. In particular, testing equivalence modulo E can be performed in
polynomial time using a dynamic programming scheme, by assuming that the maximum
arity of Σ is a constant of the problem, which is a usual assumption. More general results
are given in [Nie96, CHJ94]. For NP-hardness, [FTT08, JKV09] present PTIME reductions
of the satisfiability of Boolean expressions into membership for TAG∧[≈] whose constraints
are conjunctions of equalities of the form q ≈ q.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 11

Recall that for plain TA, membership is in PTIME.

The universality is the problem to decide, given a TABGA over Σ, whether L(A) = T (Σ).
It is known to be undecidable already for a small subclass of TAG.

Proposition 3.8. [FTT08, JKV09] Universality is undecidable for TAG
∧[≈].

The following consequence is a new result for TAGED.

Proposition 3.9. It is undecidable whether the language of a given TAG
∧[≈] is regular.

Proof. We show that universality is reducible to regularity using a new function symbol f
with arity 2, and any non-regular language L which is recognizable by a TAG∧[≈] (such a
language exists).

Let A be an input of universality for TAG∧[≈] and let

L′ =
{
f(t1, t2) | t1 ∈ T (Σ) ∧ t2 ∈ L

}
∪
{
f(t1, t2) | t1 ∈ L(A) ∧ t2 ∈ T (Σ)

}
.

It is possible to compute a new TAG∧[≈] A′ recognizing the language L′ (see Lemma 4.19).
Thus, in order to conclude, it suffices to show that L(A) = T (Σ) if and only if L(A′) is
regular. For this purpose let us first define the quotient of a term language R by a term
s with respect to a function symbol f : R/s := {t | f(s, t) ∈ R}. This operation preserves
regular languages: for all s and f , if R is regular then R/s is regular.

If L(A) = T (Σ), then L(A′) is
{
f(t1, t2) | t1, t2 ∈ T (Σ)

}
, which is regular. Assume

that L(A) 6= T (Σ) and let s ∈ T (Σ) \ L(A). By construction, L(A′)/s = L which is not
regular. Hence L(A′) is not regular.

The emptiness is the problem to decide, given a TABG A, whether L(A) = ∅. The proof
that it is decidable for TABG is rather involved and is presented in Section 5.

4. Arithmetic Constraints and Reduction to TABG∧

This section has two goals. The first goal is to present an extension of TABG by allowing
certain global arithmetic constraints. They are interesting by themselves since they allow
the representation of several natural properties in a simple way. The second goal is to
show that the class of TABG languages coincides (in expressiveness) with the class of TABG∧

languages. In other words, for each TABG there exists a TABG∧ recognizing the same language.
This reduction will be very useful in Section 5 in order to prove decidability of emptiness
of TABG.

The reason for presenting both results in the same section is that arithmetic constraints
simplify the task of transforming a TABG into a TABG∧ representing the same language. This
is because negations can be replaced by arithmetic constraints with an equivalent meaning
in a first intermediate step, and such constraints are easier to deal with.

All this work is developed in Subsection 4.2. Before that, in Subsection 4.1 we present
a more general form of arithmetic constraints for which emptiness is undecidable. The
motivation of this first subsection is to show the limits of positive results in this setting,
and to justify the limited form of the constraints in Subsection 4.2.

12 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

4.1. Global Integer Linear Constraints. Let Q be a set of states. A linear inequality

over Q is an expression of the form
∑

q∈Q

aq · |q| ≥ a or
∑

q∈Q

aq · ‖q‖ ≥ a where every aq

and a belong to Z. We consider the above linear inequalities as atomic constraints of tree
automata with global constraints, and denote by |.|Z and ‖.‖Z their respective types. The
type Z denotes |.|Z and ‖.‖Z together.

Using the notation introduced in Section 3, TABG[≈, 6≈, |.|Z, ‖.‖Z] (or TABG[≈, 6≈,Z]) de-
notes the class of tree automata with global and brother constraints modulo a flat theory
of the form A = 〈Q,Σ, F,∆, E,C〉 such that 〈Q,Σ, F,∆, E〉 is a TAB (denoted tab(A)) and
C is a Boolean combination of atomic constraints which can be linear inequalities as above
or equality or disequality constraints of the form q ≈ q′ or q 6≈ q′, with q, q′ ∈ Q.

LetA be a TABG[≈, 6≈, |.|Z, ‖.‖Z] over Σ and with state setQ and flat equational theoryE,
let r be a run of tab(A) on a term t ∈ T (Σ) and let q ∈ Q. Intuitively, the interpretation of |q|
with respect to r is the number of occurrences of q in r, i.e. the number of positions p holding
r(p) = q. The interpretation of ‖q‖ with respect to r is the number of different subterms
(modulo E) in t reaching state q with r, i.e. the maximum number of positions p1, p2, . . . , pn
holding r(p1) = r(p2) = . . . = r(pm) = q and such that the terms t|p1 , t|p2 , . . . , t|pn are
pairwise different (modulo E). More formally, the interpretations of |q| and ‖q‖ with respect
to r (and t) are defined, respectively, by the following cardinalities:

J |q| Kr =
∣
∣{p | p ∈ Pos(t) ∧ r(p) = q}

∣
∣

J ‖q‖ Kr =
∣
∣{[t|p]E | p ∈ Pos(t) ∧ r(p) = q}

∣
∣.

This permits to define the satisfiability of linear inequalities with respect to r and t: r |=
∑

q∈Q

aq · |q| ≥ a holds if and only if
∑

q∈Q

aq · J |q| Kr ≥ a holds, and r |=
∑

q∈Q

aq · ‖q‖ ≥ a holds

if and only if
∑

q∈Q

aq · J ‖q‖ Kr ≥ a holds. The satisfiability of the global constraint CA of A

by r, denoted r |= CA is defined accordingly, and if r |= CA then r is called a run of A. A
run of A on t ∈ T (Σ) is successful (or accepting) if r(λ) ∈ FA. The language L(A) of A is
the set of terms t for which there exists a successful run of A.

Example 4.1. Let us add a new argument to the dishes of the menu of Example 3.4 which
represents the price coded on two digits by a term N(d1, d0). We add a new state qp for
the type of prices, and other states qcheap , qmoderate , qexpensive , qchic describing price level
ranges, and transitions 0|1 → qcheap , 2|3 → qmoderate , 4|5|6 → qexpensive , 7|8|9 → qchic and
N(qcheap , qd) → qp, The price is a new argument of L0, L and M , hence we replace
the transitions with these symbols in input by L0(qid, qt, qp) → qL, L(qid, qt, qp, qL) → qL,
M(qid, qt, qp, qL) → qM . We can use a linear inequality |qcheap | + |qmoderate | − |qexpensive | −
|qchic| ≥ 0 to characterize the moderate menus, and |qexpensive |+ |qchic| ≥ 6 to characterize
the menus with too many expensive dishes. A linear inequality ‖qp‖ ≤ 1 expresses that all
the dishes have the same price.

The class TAG[|.|Z] has been studied under different names (e.g. Parikh automata
in [KR02], linear constraint tree automata in [BMSL09]) and it has a decidable empti-
ness test. Indeed, the set of successful runs of a given TA with state set Q is a context-free
language (seeing runs as words of Q∗), and the Parikh projection (the set of tuples over

N
|Q| whose components are the J |q| Kr for every run r) of such a language is a semi-linear

set. The idea for deciding emptiness for a TAG[|.|Z] A is to compute this semi-linear set

TA WITH LOCAL AND GLOBAL CONSTRAINTS 13

and to test the emptiness of its intersection with the set of solutions in N
|Q| of CA, the

arithmetic constraint of A (a Boolean combination of linear inequalities of type |.|Z) which
is also semi-linear. This can be done in NPTIME, see [BMSL09].

To our knowledge, the class TAG[‖.‖Z] with global constraints counting the number of
distinct subterms in each state, has not been studied, even modulo an empty theory.

Combining constraints of type ≈ and counting constraints of type |.|Z however leads to
undecidability.

Theorem 4.2. Emptiness is undecidable for TAG∧[≈, |.|Z].

Proof. We consider the Hilbert’s tenth problem, that is, solvability of an input equation P =
0 where P is a polynomial with integer coefficients and variables ranging over the natural
numbers. This problem is known undecidable, and with the addition of new variables it is
easily reducible to a question of the form ∃x1 . . . ∃xn : e1 ∧ . . . ∧ em, where x1, . . . , xn are
variables ranging over the natural numbers, and e1, . . . , em are equations that are either of
the form xj + xk = xt or xj ∗ xk = xt or xj = 1 or xj = 0. We reduce this last problem to
emptiness of TAG∧[≈, |.|Z].

We consider an instance ϕ ≡ ∃x1 . . . ∃xn : e1 ∧ . . . ∧ em. Without loss of generality, we
assume that e1, . . . , em′ for m′ ≤ m are all the equations of the form xj ∗ xk = xt, and that
for each of such equations, the indexes j, k, t are different. We will construct a TAG∧[≈, |.|Z]
A such that ϕ is true if and only if L(A) is not empty.

Since the construction of A is technical, let us give first some intuitions (see Figure 3).
Consider a possible assignment x1 := v1, . . . , xn := vn. A concrete run of A will be able
to check whether this assignment proves that ϕ is true, and only accept the corresponding
term if the answer is positive. In this run, there will be v1 occurrences of state q|x1|, v2
occurrences of state q|x2|, and so on. Equations of the form xj +xk = xt, xj = 1 and xj = 0
can directly be checked by constraints of the form |q|xj || + |q|xk|| = |q|xt||, |q|xj|| = 1 and

|q|xj || = 0.
For each equation ei of the form xj∗xk = xt there will be vk occurrences of a state called

qei,|xk|. This is ensured by the constraint |qei,|xk|| = |q|xk||. Under each of these occurrences,
there will be the same term, reaching a state qei,xj

, and containing vj occurrences of a
state qei,|xt|. The uniqueness of this term, as well as the number of occurrences of qei,|xt|,
are both ensured by an equality constraint qxj

≈ qei,xj
. In summary, there will be vj ∗ vk

occurrences of state qei,|xt|. The satisfiability of the equation xj ∗ xk = xt will be checked
by the constraint |q|xt|| = |qei,|xt||.

The components of the TAG∧[≈, |.|Z] A = 〈Q,Σ, F,∆, C〉 are defined as follows:

Q = {qaccept, qa} ∪ {q|xj |, qxj

∣
∣ j ∈ {1, . . . , n}} ∪ {qei

∣
∣ i ∈ {1, . . . ,m′}}∪

{qei,xj
, qei,|xt|, qei,|xk|

∣
∣ i ∈ {1, . . . ,m′}, ei ≡ xj ∗ xk = xt}

Σ = {a : 0, g : 1, h : 2, f : n+m′}
F = {qaccept}
∆ = {a → qa, f(qx1 , . . . , qxn , qe1 , . . . , qem′) → qaccept}∪

{g(qa) → q|xj|, g(qa) → qxj
, g(q|xj |) → q|xj|, g(q|xj |) → qxj

∣
∣ j ∈ {1, . . . , n}}∪

{g(qa) → qei,|xt|, g(qa) → qei,xj
, g(qei,|xt|) → qei,|xt|, g(qei,|xt|) → qei,xj

,
h(qei,xj

, qa) → qei,|xk|, h(qei,xj
, qei,|xk|) → qei,|xk|, h(qa, qei,|xk|) → qei ,

h(qa, qa) → qei
∣
∣ i ∈ {1, . . . ,m′}, ei ≡ xj ∗ xk = xt}

14 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

f
qaccept

g
qx1

(
g

q|x1|

)v1

a
qa

. . . g
qxn

(
g

q|xn|

)vn

a
qa

se1
qe1

. . .
se

m′

qe
m′

h
qei

a
qa

h
qei,|xk|

g
qei,xj

(
g

qei,|xt|

)vj

a
qa

h
qei,|xk|

(vk)

g
qei,xj

(
g

qei,|xt|

)vj

a
qa

a
qa

Figure 3: Accepting run of s = f(gv1+1(a), . . . , gvn+1(a), se1 , . . . , sem′) and the subrun of
sei , where ei is of the form xj ∗ xk = xt.

C =
∧

m′<i≤m,ei≡xj+xk=xt
|q|xj||+ |q|xk|| = |q|xt|| ∧∧

m′<i≤m,ei≡xj=1 |q|xj|| = 1 ∧
∧

m′<i≤m,ei≡xj=0 |q|xj|| = 0 ∧
∧

1≤i≤m′,ei≡xj∗xk=xt

(
|qei,|xt|| = |q|xt|| ∧ |qei,|xk|| = |q|xk|| ∧ qxj

≈ qei,xj

)

It remains to prove that ϕ is true if and only if L(A) is not empty. To this end,
let us first assume that x1 := v1, . . . , xn := vn is a solution of ϕ. In order to sim-
plify the presentation, we denote the term h(a, h(s, h(s, . . . , h(s, a) . . .))), with k occur-
rences of s, by h[a, s, . . . (k) . . . , s, a], and given an equation ei ≡ xj ∗ xk = xt, we de-
note the term h[a, gvj+1(a), . . . (vk) . . . , g

vj+1(a), a] by sei. Let us consider the term s =
f(gv1+1(a), . . . , gvn+1(a), se1 , . . . , sem′). It is not difficult to see that the run of Figure 3
is an accepting run of s. Note that for each equation ei ≡ xj ∗ xk = xt, the constraints
|qei,|xt|| = |q|xt||, |qei,|xk|| = |q|xk||, qxj

≈ qei,xj
are satisfied, since xj := vj , xk := vk, xt :=

vt satisfies the equation.
Now, assume that there is an accepting run r of A on a term s. Since r is accept-

ing, the transition rule f(qx1 , . . . , qxn , qe1 , . . . , qem′) → qaccept is applied at the root of s.
According to the form of the rules involving qx1 , . . . , qxn , it holds that s is of the form
s = f(gv1+1(a), . . . , gvn+1(a), se1 , . . . , sem′), for some natural numbers v1, . . . , vn and some
terms se1 , . . . , sem′ . Moreover, the states q|x1|, . . . , q|xn| have v1, . . . , vn occurrences, respec-
tively. It remains to see that the assignment x1 := v1, . . . , xn := vn makes ϕ true. The
satisfiability of a constraint of the form |q|xj|| + |q|xk|| = |q|xt|| (or |q|xj|| = 1 or |q|xj || = 0)

implies that vj + vk = vt (or vj = 1 or vj = 0), thus an equation of the form xj + xk = xt
(or xj = 1 or xj = 0) holds with this assignment. It remains to see that every equation ei
of the form xj ∗xk = xt also holds with this assignment. According to the form of the rules
of A and the satisfiability of the constraints |qei,|xk|| = |q|xk||, qxj

≈ qei,xj
, the term sei is

of the form h[a, gvj+1(a), . . . (vk) . . . , g
vj+1(a), a]. Moreover, |qei,|xt|| has vj ∗ vk occurrences.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 15

Therefore, by the satisfiability of the constraint |qei,|xt|| = |q|xt||, it follows vj ∗ vk = vt, and
hence the equation xj ∗ xk = xt holds with this assignment, and we are done.

4.2. Global Natural Linear Constraints. We present now a restriction on linear in-
equalities which enables a decidable emptiness test when combined with ≈ and 6≈ as global
constraints. A natural linear inequality over Q is a linear inequality as above whose coeffi-
cients aq and a all have the same sign. We call them natural since it is equivalent to consider
inequalities in both directions whose coefficients are all non-negative, like

∑
aq · |q| ≤ a,

with aq, a ∈ N, to refer to
∑

−aq · |q| ≥ −a. We also consider linear equalities
∑

aq · |q| = a,
with aq, a ∈ N, to refer to a conjunction of two natural linear inequalities.

The types of the natural linear inequalities are denoted by |.|N and ‖.‖N. Below, we
shall abbreviate these two types by N.

The main difference between the linear inequalities of type |.|Z and |.|N (and respectively
‖.‖Z and ‖.‖N) is that the former permits to compare the respective number of occurrences
of two states, like e.g. in |q| ≤ |q′|, whereas the latter only permits to compare the number
of occurrences of one state (or a sum of the number occurrences of several states with
coefficients) to a constant as e.g. in |q| ≤ 4 or |q|+ 2|q′| ≤ 9.

In the rest of the subsection we show that TABG[≈, 6≈,N] has the same expressiveness
as TABG∧[≈, 6≈]. The proof works in several steps:

• First, we define the notion of normalized TABG[≈, 6≈,N], that is a TABG[≈, 6≈,N] with a
constraint being a disjunction of conjunctions of literals in a simple form.

• Second, we remove negative literals of the form ¬(q ≈ q′) or ¬(q 6≈ q′), obtaining a list
of TABG∧[≈, 6≈,N] such that the union of their languages coincides with the language of
the original TABG[≈, 6≈,N]. In this step we use arithmetic constraints for simulating the
removed negative literals.

• Third, we remove arithmetic literals of type ‖.‖N, obtaining a new list of TABG∧[≈, 6≈, |.|N]
such that the union of their languages coincides with the language of the original TABG[≈
, 6≈,N]. In this step we use positive literals of types ≈, 6≈, and |.|N in order to simulate
the removed literals of type ‖.‖N.

• Fourth, we remove arithmetic literals of type |.|N, obtaining a new list of TABG∧[≈, 6≈] such
that the union of their languages coincides with the language of the original TABG[≈, 6≈,N].
In this step, new states are used for counting the amount of occurrences of original states.

• Finally, we show that TABG∧[≈, 6≈] are closed under union. Hence, we obtain a single
TABG∧[≈, 6≈] whose language coincides with the one of the original TABG[≈, 6≈,N].

Definition 4.3. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N]. The constraint C is nor-
malized if it is either true or false or a disjunction of conjunctions of literals, where all
arithmetic literals are positive.

Remember that the form of the positive arithmetic literals can be either a1‖q1‖+ . . .+
an‖qn‖⊗k or a1|q1|+ . . .+an|qn|⊗k, with ⊗ in {≥,≤,=}, n > 0, k ≥ 0 and strictly positive
a1, . . . , an.

Lemma 4.4. Any TABG[≈, 6≈,N] can be effectively transformed into a normalized TABG[≈
, 6≈,N] with the same equational theory and preserving the language.

Proof. First, by applying de Morgan laws, negations are moved inwards so that each nega-
tion is applied to just an atom. Second, negative arithmetic literals are made positive by

16 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

simple transformations: inequalities are inverted and equalities become disjunctions of in-
equalities. Third, strict inequalities are converted into non-strict by adding or subtracting 1
to a side. Fourth, by applying simple arithmetic operations all such literals are made of the
required form a1‖q1‖+ . . .+an‖qn‖⊗k or a1|q1|+ . . .+an|qn|⊗k, for ⊗ in {≥,≤,=}, n > 0
and strictly positive a1, . . . , an. In this step, a trivially false literal is replaced by false , and
a trivially true literal is replaced by true. Finally, by applying the standard transformation
into disjunctive conjunctive normal form we get the desired result.

In order to remove negative equality and disequality literals and positive arithmetic
constraints, we use the idea of inserting new states which are synonyms of existing states.
Intuitively, a synonym is a new state q̂ that behaves analogous to an existing state q̄, i.e.
the rules and constraints are modified such that the relation of q̂ with the other states is the
same as for q̄. Nevertheless, the constraints are further modified to ensure that, whenever
q̄ occurs in an execution, q̂ also occurs. Moreover, all subterms reaching q̂ are the same
(or equivalent modulo the relation induced by the flat theory), but are different from (non-
equivalent to) the ones reaching q̄. This way, an execution of the original automaton with
occurrences of q̄ can be transformed into an execution of the new automaton, where the
occurrences of a concrete subterm (up to the equivalence relation) reaching q̄ in the original
execution now reach q̂ instead.

Definition 4.5. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N]. Let q̄ be a state in Q. Let
q̂ be a state not in Q.

We define Fq̄❀q̂ as F if q̄ is not in F , and as F ∪ {q̂} if q̄ is in F .
We define ∆q̄❀q̂ as the set of rules obtained from the rules of ∆ with all possible

replacements of occurrences of q̄ by q̂. More formally, ∆q̄❀q̂ is {f(q′1, . . . , q
′
n) → q′n+1 |

∃f(q1, . . . , qn) → qn+1 ∈ ∆ : ∀i ∈ {1, . . . , n+ 1} : (qi = q′i ∨ (qi = q̄ ∧ q′i = q̂))}.
We define Cq̄❀q̂ as the constraint

(
(‖q̄‖ = 0 ∧ ‖q̂‖ = 0) ∨ (‖q̂‖ = 1 ∧ q̄ 6≈ q̂)

)
∧ C ′,

where C ′ is obtained from the normalization of C by replacing each literal by a new formula
according to the following description.

• Each literal (q1 ≈ q2) is replaced by the conjunction of the literals of the set
{
q′1 ≈ q′2

∣
∣

((q′1 = q1 ∨ (q1 = q̄ ∧ q′1 = q̂)) ∧ (q′2 = q2 ∨ (q2 = q̄ ∧ q′2 = q̂)))
}
.

• Each literal (q1 6≈ q2) is replaced by the conjunction of the literals of the set
{
q′1 6≈ q′2

∣
∣

((q′1 = q1 ∨ (q1 = q̄ ∧ q′1 = q̂)) ∧ (q′2 = q2 ∨ (q2 = q̄ ∧ q′2 = q̂)))
}
.

• Each literal ¬(q1 ≈ q2) is replaced by the disjunction of the literals of the set
{
¬(q′1 ≈

q′2)
∣
∣ ((q′1 = q1 ∨ (q1 = q̄ ∧ q′1 = q̂)) ∧ (q′2 = q2 ∨ (q2 = q̄ ∧ q′2 = q̂)))

}
.

• Each literal ¬(q1 6≈ q2) is replaced by the disjunction of the literals of the set
{
¬(q′1 6≈

q′2)
∣
∣ ((q′1 = q1 ∨ (q1 = q̄ ∧ q′1 = q̂)) ∧ (q′2 = q2 ∨ (q2 = q̄ ∧ q′2 = q̂)))

}
.

• Each occurrence of |q̄| is replaced by |q̄| + |q̂|, and each occurrence of ‖q̄‖ is replaced by
‖q̄‖+ ‖q̂‖.

We define Aq̄❀q̂ as 〈Q ∪ {q̂},Σ, Fq̄❀q̂,∆q̄❀q̂, E,Cq̄❀q̂〉.
We write (Fq̄❀q̂)q̄′❀q̂′ for q̂ 6= q̄′ and q̂ 6= q̂′ more succinctly as Fq̄,q̄′❀q̂,q̂′ , and similarly

for ∆q̄,q̄′❀q̂,q̂′ , Cq̄,q̄′❀q̂,q̂′ and Aq̄,q̄′❀q̂,q̂′ .

The condition (‖q̄‖ = 0 ∧ ‖q̂‖ = 0) added to Cq̄❀q̂ is necessary to satisfy L(Aq̄❀q̂) =
L(A), as it is proved in Lemma 4.6. This lemma is not used in the rest of the article, since
the introduction of synonyms is combined with other constraints in further transformations.
Nevertheless, we preserve Lemma 4.6 since its proof gives intuition about the definition of
synonyms, and the arguments are similar to other ones appearing later.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 17

Lemma 4.6. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N]. Let q̄ be a state in Q. Let q̂
be a state not in Q.

Then, L(Aq̄❀q̂) = L(A).

Proof. Accepting runs of A having no occurrence of q̄ are also accepting runs of Aq̄❀q̂. An
accepting run of A having occurrences of q̄ can be converted into an accepting run of Aq̄❀q̂

by choosing one subterm t reaching q̄ and replacing q̄ by q̂ at all positions with subterms
equivalent to t by the relation induced by E.

Accepting runs of Aq̄❀q̂ can be converted into accepting runs of A by replacing each
occurrence of q̂ by q̄.

The following lemma makes use of synonyms in order to remove a negative literal of
the form ¬(q̄ ≈ q̄′) preserving the language. The next one, Lemma 4.8, analogously permits
to remove a negative literal of the form ¬(q̄ 6≈ q̄′).

Lemma 4.7. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N]. Let q̄, q̄′ be states in Q.
Let q̂, q̂′ be distinct states not in Q. Let C be of the form ¬(q̄ ≈ q̄′) ∧ C ′. Let A′ be
〈Q ∪ {q̂, q̂′},Σ, Fq̄,q̄′❀q̂,q̂′ ,∆q̄,q̄′❀q̂,q̂′ , E, (‖q̂‖ = 1 ∧ ‖q̂′‖ = 1 ∧ q̂ 6≈ q̂′) ∧ C ′

q̄,q̄′❀q̂,q̂′〉.

Then, L(A′) = L(A) holds.

Proof. Accepting runs of A can be converted into accepting runs of A′ as follows. First,
we choose two subterms t̄ and t̄′ different modulo the equivalence relation induced by E
and reaching q̄ and q̄′, respectively. Note that these terms must exist in order to satisfy
the literal ¬(q̄ ≈ q̄′) of C. Second, we replace q̄ by q̂ at all the positions with subterms
equivalent to t̄ by the relation induced by E. Similarly, we replace q̄′ by q̂′ at all the positions
with subterms equivalent to t̄′ by the relation induced by E. This way, the subconstraint
‖q̂‖ = 1 ∧ ‖q̂′‖ = 1 ∧ q̂ 6≈ q̂′ is satisfied, but also C ′

q̄,q̄′❀q̂,q̂′ is satisfied.

Accepting runs of A′ can be converted into accepting runs of A by replacing each
occurrence of q̂ by q̄, and each occurrence of q̂′ by q̄′. Note that the subconstraint ‖q̂‖ =
1 ∧ ‖q̂′‖ = 1 ∧ q̂ 6≈ q̂′ ensures the existence of such occurrences, and with subterms which
are different modulo the equivalence relation induced by E. Thus, the literal ¬(q̄ ≈ q̄′) of
C is satisfied. The constraint C ′ is also satisfied.

Lemma 4.8. Consider the same assumptions as in Lemma 4.7, except that C is of the
form ¬(q̄ 6≈ q̄′) ∧ C ′ and the constraint of A′ is (‖q̂‖ = 1 ∧ ‖q̂′‖ = 1 ∧ q̂ ≈ q̂′) ∧ C ′

q̄,q̄′❀q̂,q̂′

Then, L(A′) = L(A) holds.

Proof. Analogous to the proof of Lemma 4.8.

The following definition will be used to remove literals of type ‖.‖N.

Definition 4.9. Let C be a constraint, and let k be a natural number. By C‖q̄‖❀k we
define the constraint obtained from C by replacing all occurrences of ‖q̄‖ by k.

The following two lemmas show how to remove literals of the form ‖q‖ = 1 or ‖q‖ = 0
preserving the language.

Lemma 4.10. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N]. Let q̄ be a state in Q. Let C
be of the form ‖q̄‖ = 1 ∧C ′. Let A′ be 〈Q,Σ, F,∆, E, |q̄| ≥ 1 ∧ q̄ ≈ q̄ ∧ C ′

‖q̄‖❀1〉.

Then, L(A′) = L(A) holds.

Proof. Accepting runs of A′ and A coincide because the constraints C and CA′ have the
same semantics.

18 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

Lemma 4.11. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N]. Let q̄ be a state in Q. Let C
be of the form ‖q̄‖ = 0 ∧C ′. Let A′ be 〈Q,Σ, F,∆, E, |q̄| = 0 ∧ C ′

‖q̄‖❀0〉.

Then, L(A′) = L(A) holds.

Proof. Accepting runs of A′ and A coincide because the constraints C and CA′ have the
same semantics.

Now, we will use the above lemmas in order to iteratively remove all negative literals
and the arithmetic literals of type ‖.‖N. Each removal step is not defined for arbitrary nor-
malized TABG[≈, 6≈,N], but just for normalized conjunctive TABG[≈, 6≈,N]. For this reason,
we first describe how to transform a given normalized TABG[≈, 6≈,N] into a list of normal-
ized conjunctive TABG[≈, 6≈,N] such that, the union of their languages coincides with the
language of the original TABG[≈, 6≈,N].

Definition 4.12. Let A = 〈Q,Σ, F,∆, E,C〉 be a normalized TABG[≈, 6≈,N], such that C
is of the form C1 ∨ C2 ∨ . . . ∨ Cn for conjunctive constraints C1, C2, . . . , Cn. Let A1 =
〈Q,Σ, F,∆, E,C1〉,A2 = 〈Q,Σ, F,∆, E,C2〉, . . . ,An = 〈Q,Σ, F,∆, E,Cn〉. These automata
are conjunctive and normalized and, moreover, L(A) = L(A1)∪L(A2)∪ . . .∪L(An) holds.
We say that A1,A2, . . . ,An is the subdivision of A.

Iteratively, we will transform a list of normalized conjunctive TABG[≈, 6≈,N] into a new
list of automata of the same kind but with simplified constraints, preserving the language. In
order to show that this process terminates, we define a measure on normalized conjunctive
TABG[≈, 6≈,N] which will decrease at each step. Moreover, a case with minimal measure
corresponds to a positive TABG[≈, 6≈, |.|N]. This measure is a pair of natural numbers which
depends on the constraint C of the normalized conjunctive TABG[≈, 6≈,N]. In the first
component we have the amount of negative literals in C. In the second component we have
the addition of the isolated constants in all arithmetic literal constraints of type ‖.‖N plus
the number of uses of the function symbol ‖.‖N.

Definition 4.13. We define the measure of a normalized conjunctive constraint C, denoted
〈C〉 as a pair of natural numbers. We describe it by distinguishing the following cases.

• If C is of the form q1 ≈ q2 or q1 6≈ q2, then its measure is 〈0, 0〉.
• If C is of the form ¬(q1 ≈ q2) or ¬(q1 6≈ q2), then its measure is 〈1, 0〉.
• If C is of the form (a1‖q1‖+ . . .+ an‖qn‖⊗ k), where ⊗ is in {=,≥,≤}, then its measure
is 〈0, n + k〉.

• If C is of the form (a1|q1| + . . . + an|qn| ⊗ k), where ⊗ is in {=,≥,≤}, then its measure
is 〈0, 0〉.

• If C is either true or false, then its measure is 〈0, 0〉.
• If C is a conjunction of two or more literals l1 ∧ l2 ∧ . . . ∧ ln with measures 〈a1, b1〉,
〈a2, b2〉, . . . , 〈an, bn〉, then its measure is 〈a1 + a2 + . . .+ an, b1 + b2 + . . .+ bn〉.

Let A = 〈Q,Σ, F,∆, E,C〉 be a normalized conjunctive TABG[≈, 6≈,N]. The measure of A,
denoted 〈A〉 is defined as 〈C〉.

We say that A1 is bigger than A2 (or, equivalently, that A2 is smaller than A1), denoted
A1 > A2 (or A2 < A1), if the measure of A1 is bigger (or smaller) than the measure of A2,
according to the lexicographic extension of the relation > of natural numbers.

The following lemma shows that any normalized conjunctive TABG[≈, 6≈,N] with non-
minimal measure can be transformed into a list of TABG[≈, 6≈,N] of the same kind with
smaller measures and preserving the language.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 19

Lemma 4.14. Let A = 〈Q,Σ, F,∆, E,C〉 be a normalized conjunctive TABG[≈, 6≈,N] whose
measure is not 〈0, 0〉.

Then one can construct normalized conjunctive TABG[≈, 6≈,N] A1, . . . ,An with the same
equational theory E, each of them having a measure smaller than 〈A〉 and such that L(A) =
L(A1) ∪ . . . ∪ L(An) holds.

Proof. In the case where C has some negative literal ¬(q ≈ q′) or ¬(q 6≈ q′), the transfor-
mations described in Lemmas 4.7 and 4.8 give a new TABG[≈, 6≈,N] A′, and the subdivision
A1, . . . ,An of the normalization of A′ (as defined in Definition 4.12) is such that the con-
straints CA1 , . . . , CAn have one less negative literal than C. Thus, the measure of each of
these automata is smaller than the measure of A.

In the case where C has no negative literals of the form ¬(q ≈ q′) or ¬(q 6≈ q′), its
measure is of the form 〈0,m〉 form > 0. It follows that there is at least one literal of the form
(a‖q̄‖+

∑
ai·‖qi‖⊗k), where⊗ is in {=,≥,≤}. We consider a new state q̂ and the automaton

Aq̄❀q̂. Its constraint Cq̄❀q̂ is of the form
(
(‖q̄‖ = 0 ∧ ‖q̂‖ = 0) ∨ (‖q̂‖ = 1 ∧ q̄ 6≈ q̂)

)
∧ C ′.

Note that, according to Definition 4.5, C ′ is a conjunction because there are no negative
literals of the form ¬(q ≈ q′) or ¬(q 6≈ q′) in C. Thus, Cq̄❀q̂ can be rewritten as the
disjunction of two conjunctions C1 and C2, where C1 is ‖q̄‖ = 0 ∧ ‖q̂‖ = 0 ∧ C ′ and C2 is
‖q̂‖ = 1∧ q̄ 6≈ q̂∧C ′. Hence, the subdivision of the normalization of Aq̄❀q̂ are the automata
A1,A2 obtained from Aq̄❀q̂ by replacing its constraint by C1 and C2, respectively. The
measures of C1 and C2 may be bigger than the one of C. In order to conclude, for each case
we show that additional transformations can be applied to A1 and A2, producing automata
with smaller measures than the one of A and preserving the represented language.

• The literals of C1 of type ‖.‖N are ‖q̄‖ = 0 and ‖q̂‖ = 0, and those obtained from the
literals of C of type ‖.‖N by replacing ‖q̄‖ by ‖q̄‖+ ‖q̂‖. Note that original literals of the
form (a‖q̄‖+

∑
ai · ‖qi‖⊗k) have been converted into (a‖q̄‖+a‖q̂‖+

∑
ai · ‖qi‖⊗k), and

recall that there is at least one literal of this form in C. Applying toA1 the transformation
described in Lemma 4.11 for q̄ and q̂, each one of the above literals is transformed into
(a · 0 + a · 0 +

∑
ai · ‖qi‖ ⊗ k), which has a smaller measure than the original literal

(a‖q̄‖ +
∑

ai · ‖qi‖ ⊗ k). Moreover, the literals ‖q̄‖ = 0 and ‖q̂‖ = 0 are converted into
|q̄| = 0 and |q̂| = 0, respectively. In summary, the measure of ((C1)q̄❀0)q̂❀0 is smaller
than the one of C.

• Similarly, the literals of C2 of type ‖.‖N are ‖q̂‖ = 1 and those obtained from the literals
of C of type ‖.‖N by replacing ‖q̄‖ by ‖q̄‖ + ‖q̂‖. As above, note that original literals of
the form (a‖q̄‖+

∑
ai · ‖qi‖⊗ k) have been transformed into (a‖q̄‖+ a‖q̂‖+

∑
ai · ‖qi‖⊗

k), and recall that there is at least one literal of this form in C. Applying to C2 the
transformation described in Lemma 4.10 for q̂, each one of the above literals is converted
into (a·‖q̄‖+a·1+

∑
ai ·‖qi‖⊗k). The normalization of such a literal is the normalization

of (a · ‖q̄‖+
∑

ai · ‖qi‖ ⊗ k − a), which might be already normalized or must be replaced
by true or false in order to normalize it, depending on k − a and ⊗. In every case, the
resulting literal has a smaller measure than the original literal (a‖q̄‖ +

∑
ai · ‖qi‖ ⊗ k).

Moreover, the literal ‖q̂‖ = 1 is replaced by |q̂| ≥ 1 ∧ q̂ ≈ q̂ as a consequence of the
transformation of Lemma 4.10. To summarize, the measure of (C2)q̂❀1 is smaller than
the one of C.

Corollary 4.15. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N].
Then, one can construct some TABG∧[≈, 6≈, |.|N] A1, . . . ,An with the same equational

theory E such that L(A) = L(A1) ∪ . . . ∪ L(An).

20 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

Proof. Without loss of generality, the constraint C can be assumed to be normalized. The
subdivision of A is a collection of normalized conjunctive TABG[≈, 6≈,N] such that the union
of their languages coincides with L(A).

By iterated application of the Lemma 4.14 to each automaton of the subdivision, com-
bined with the fact that the ordering on measures is well founded, we conclude to the
effective existence of normalized conjunctive TABG[≈, 6≈,N] A1, . . . ,An such that L(A) =
L(A1) ∪ . . . ∪ L(An) and each of them has measure 〈0, 0〉. This kind of automata are, in
fact, TABG∧[≈, 6≈, |.|N], since measure 〈0, 0〉 implies that negative literals and literals of type
‖.‖N do not occur.

Now, in order to remove all arithmetic constraints, it remains to remove the ones of type
|.|N. This is a rather easy task. For a given TABG∧[≈, 6≈, |.|N] A we create a new TABG∧[≈, 6≈]
A 6N whose purpose is to simulate the computations of A. To this end, the states of A 6N

count the number of occurrences of the states of A in the simulated computation, up to a
certain maximum value. This allows A 6N to check the constraints of type |.|N of A directly
through states. Thus, each state of A 6N is of the form qM for a state q of A and a mapping
M : QA → N, that is, a mapping counting the number of occurrences of each state.

Definition 4.16. Let A = 〈Q,Σ, F,∆, E,C〉 be a normalized TABG∧[≈, 6≈, |.|N].
We define maxA as one plus the maximum isolated constant occurring in the literals of

C of type |.|N, i.e. one plus the maximum constant k occurring in a literal of C of the form
(a1|q1|+ . . . + an|qn| ⊗ k), for ⊗ in {≥,≤,=}.

Given two mappings M1 : Q → {0, . . . , maxA} and M2 : Q → {0, . . . , maxA}, the
sum of M1 and M2 is defined as the mapping M1 + M2 : Q → {0, . . . , maxA} satisfying
(M1 + M2)(q) = min(M1(q) + M2(q), maxA). Given a state q in Q we define Mq : Q →
{0, . . . , maxA} as the mapping satisfying Mq(q) = 1 and Mq(q

′) = 0 for all q′ ∈ Q \ {q}.
We define A 6N as the TABG∧[≈, 6≈] 〈Q 6N,Σ, F6N,∆ 6N, E,C 6N〉, where:

• Q 6N is {qM | q ∈ Q ∧M : Q → {0, . . . , maxA}}.
• F6N is {qM ∈ Q 6N | q ∈ F ∧ ∀(a1|q1| + . . . + an|qn| ⊗ k) ∈ C,⊗ ∈ {≥,≤,=} : (a1M(q1) +
. . .+ anM(qn)⊗ k)}.

• ∆ 6N is {f((q1)M1 , . . . , (qm)Mm)
D
→ qM1+...+Mm+Mq | (f(q1, . . . , qm)

D
→ q) ∈ ∆}.

• C 6N is {q̄M̄ ≈ q̃M̃ | (q̄ ≈ q̃) ∈ C} ∪ {q̄M̄ 6≈ q̃M̃ | (q̄ 6≈ q̃) ∈ C}.

Lemma 4.17. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG∧[≈, 6≈, |.|N].
Then, L(A 6N) = L(A).

Proof. The accepting runs of A can be converted into accepting runs of A 6N and vice-versa,
following the transformations described below.

• A run r6N of A 6N can be converted into a run r of A by replacing each occurrence of a state
qM by the corresponding state q.

• A run r of A can be converted into a run r6N of A 6N. The transformation can be defined

recursively as follows. Let r be a run of the form (f(q1, . . . , qm)
D
→ q)(r1, . . . , rm). Let

(r1)6N, . . . , (rm)6N be the transformations of r1, . . . , rm, and let (q1)M1 , . . . , (qm)Mm be the

states reached by (r1)6N, . . . , (rm)6N, respectively. Then, r6N is (f((q1)M1 , . . . , (qm)Mm)
D
→

qM1+...+Mm+Mq)((r1)6N, . . . , (rm)6N).

Each one of the two above transformations is the inverse of the other. Thus, they describe
a bijection between runs of A and runs of A 6N. Moreover, for each run r of A, the state
qM reached by r6N holds that each q′ ∈ Q satisfies M(q′) = min(|r−1(q′)|, maxA) (note that

TA WITH LOCAL AND GLOBAL CONSTRAINTS 21

r−1(q′) is the set of positions reaching state q′). Hence, by the definition of F6N, it follows
that q is in F and r satisfies the arithmetic constraints of C if and only if qM is in FN. As
a consequence, r is accepting if and only if r6N is accepting. Thus, L(A 6N) = L(A) holds.

The following corollary is a consequence of Corollary 4.15 combined with Lemma 4.17.

Corollary 4.18. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N].
Then, one can construct some TABG∧[≈, 6≈] A1, . . . ,An with the same equational theory

E such that L(A) = L(A1) ∪ . . . ∪ L(An).

As a final step, we show that TABG∧[≈, 6≈] are closed under union for a fixed E.

Lemma 4.19. Let A1 and A2 be TABG∧[≈, 6≈] with the same equational theory E. Then, a
TABG∧[≈, 6≈] A with the same equational theory E can be effectively constructed satisfying
L(A) = L(A1) ∪ L(A2).

Proof. Let A1 be 〈Q1,Σ, F1,∆1, E,C1〉 and A2 be 〈Q2,Σ, F2,∆2, E,C2〉. Without loss of
generality we can assume that the sets of states Q1 and Q2 are disjoint.

In the case where C1 is just false the result follows by defining A := A2. Similarly, in
the case where C2 is just false the result follows by defining A := A1. From now on we
assume that these cases do not take place.

We define A as 〈Q1⊎Q2,Σ, F1⊎F2,∆1⊎∆2, E,C1∧C2〉. Note that A is a TABG∧[≈, 6≈].
It is clear that any accepting run of A is also an accepting run of either A1 or A2. Moreover,
it can be proved that any accepting run of either A1 or A2 is also an accepting run of A.
We show this fact only for A1, since the case for A2 is analogous.

Let r be an accepting run of A1. Then, r |= C1 holds. In order to see that it is, in
fact, an accepting run of A, it remains to prove r |= C2. Since A2 is a TABG∧[≈, 6≈], C2 is
a conjunction of positive literals of type ≈, 6≈ applied to states of Q2. Therefore, r |= C2

holds, since C2 is not false and any positive literal holds because r uses only states from
Q1.

Corollary 4.20. Let A = 〈Q,Σ, F,∆, E,C〉 be a TABG[≈, 6≈,N].
Then, one can construct a TABG∧[≈, 6≈] A′ with the same equational theory E such that

L(A′) = L(A).

Corollary 4.21. The class of TABG languages (modulo the same equational theory) is closed
under union.

In order to complete the closure results for TABG languages under basic set operations,
we show that they are also closed under intersection, but not under complementation.

Lemma 4.22. The class of TABG languages (modulo the same equational theory) is closed
under intersection.

Proof. We use a classical Cartesian product of sets of states, with a careful redefinition of
constraints on this product.

More precisely, let A1 = 〈Q1,Σ, F1,∆1, E,C1〉 and A2 = 〈Q2,Σ, F2,∆2, E,C2〉 be two
TABG. We construct the TABG A = 〈Q1 ×Q2,Σ, F1 ×F2,∆, E,C〉 where ∆ =

{
f
(
〈q1,1, q2,1〉,

. . . , 〈q1,n, q2,n〉
)
→ 〈q1, q2〉

∣
∣ f(qi,1, . . . , qi,n) → qi ∈ ∆i for i ∈ {1, 2}

}
and the constraint C is

obtained from C1∧C2 by replacing every atom q1 ≈ q′1 with q1, q
′
1 ∈ Q1 (respectively q2 ≈ q′2

with q2, q
′
2 ∈ Q2) by

∧

q2,q
′
2∈Q2

〈q1, q2〉 ≈ 〈q′1, q
′
2〉 (respectively

∧

q1,q
′
1∈Q1

〈q1, q2〉 ≈ 〈q′1, q
′
2〉),

and similarly for the atoms q1 6≈ q′1, q2 6≈ q′2. With this construction, L(A) = L(A1)∩L(A2)

22 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

holds: the left (respectively right) projection of a successful run of A on a term t ∈ T (Σ) is
a successful run of A1 (respectively A2) on t, and the product of two successful runs r1 of
A1 and r2 of A2, both on the same term t ∈ T (Σ), is a a successful run of A on t.

Lemma 4.23. The class of TABG languages is not closed under complementation.

Proof. To prove the statement it suffices to define a language L such that L is not recogniz-
able by TABG but its complement L is. In order to simplify the presentation, we denote terms
of the form f(gn1(a), f(gn2(a), . . . f(gnk−1(a), gnk (a)) . . .)) simply with [n1, n2, . . . , nk−1, nk].
Let L be the language defined as:

L = {[n1, . . . , nk] | k, n1, . . . , nk ∈ N ∧
∀i ∈ {1, . . . , k} ∃!j ∈ {1, . . . , k} \ {i} : ni = nj}

In order to prove that L is not recognizable by TABG, by Corollary 4.20, it suffices to prove
it for TABG∧[≈, 6≈]. We proceed by contradiction assuming that there exists a TABG∧[≈, 6≈]
A such that L(A) = L. Let t ∈ L be the term [1, . . . , n, n, . . . , 1], where n > |QA|, and let
r be an accepting run of A on t. By the pigeonhole principle, there exist i, j ∈ {1, . . . , n},

with i < j, such that the positions pi =

i−1
︷ ︸︸ ︷

2.2 and pj =

j−1
︷ ︸︸ ︷

2.2 satisfy r(pi) = r(pj).
Let r′ be the replacement r[r|pj]pi . Note that r′ is an accepting run of ta(A) on the term
[1, . . . , i − 1, j, . . . , n, n, . . . , 1], which is not in L. To conclude, it remains to prove that
the constraints of A are satisfied in r′. First, note that this replacement only introduces
new subterms at the positions P̂ = {p̂ ∈ Pos(r) | p̂ < pi}. Moreover, the rules applied

by r′ at positions in P̂ are the same as in r, and any constraint affecting a position in
P̂ in r is necessarily a disequality, since term(r|p̂) 6=EA

term(r|p′) holds for p̂ ∈ P̂ and
p′ ∈ Pos(r) \ {p̂}. By the definition of r′, necessarily term(r′|p̂) 6=EA

term(r′|p′) holds also

for p̂ ∈ P̂ and p′ ∈ Pos(r′) \ {p̂}. Therefore, r′ satisfies all the constraints, and hence, r′ is
an accepting run of A, a contradiction.

It remains to prove that L can be recognized by a TABG. We start by decomposing
L into simpler languages. First, let L1 be the language of the malformed terms, i.e. the
terms over {f : 2, g : 1, a : 0} that are not of the form [n1, . . . , nk]. Second, let L2 be
the language of the well-formed terms [n1, . . . , nk] such that for some i ∈ {1, . . . , k} there
exists no j ∈ {1, . . . , k} \ {i} satisfying ni = nj. Third, let L3 be the language of the
well-formed terms [n1, . . . , nk] such that there exist different i1, i2, i3 ∈ {1, . . . , k} satisfying
ni1 = ni2 = ni3 . It is easy to see that L = L1 ∪ L2 ∪ L3. Moreover, note that L1 can be
recognized by a TA, L2 can be recognized by a TABG∧[6≈, |.|N] and L3 can be recognized by
a TABG∧[≈, |.|N]. By Corollaries 4.20 and 4.21, this concludes the proof.

5. Emptiness Decision Algorithm

In this section we prove the decidability of the emptiness problem for TABG∧. As a conse-
quence of this result and the results of Section 4, it follows the decidability of emptiness for
TABG, and even more, of TABG[≈, 6≈,N].

The decidability of emptiness for TABG∧ is proved in three steps. In Subsection 5.1, we
present a new notion of pumping which allows to transform a run into a smaller run under
certain conditions. In Subsection 5.2, we define a well quasi-ordering ≤ on a certain set S.
In Subsection 5.3, we connect the two previous subsections by describing how to compute,

TA WITH LOCAL AND GLOBAL CONSTRAINTS 23

i Hi Ȟi H̊i

5 {λ} ∅ ∅
4 {3} {2} {1}
3 {3.3} {2, 3.2} {1, 3.1}
2 {3.3.3} {2, 3.2, 3.3.2} {1, 3.1, 3.3.1}
1 {2, 3.2, 3.3.2, 3.3.3.2} ∅ {1, 3.1, 3.3.1, 3.3.3.1}

Figure 4: Hi, Ȟi and H̊i of Example 5.2.

for each run r with height h = h(r), a certain sequence eh, . . . , e1 of elements of S satisfying
the following fact: there exists a pumping on r if and only if ei ≤ ej for some h ≥ i > j ≥ 1.
Moreover, each ei of the computed sequence is chosen among a finite number of possibilities.
Finally, all of these constructions are used as follows. Suppose the existence of an accepting
run r. If r is “too high”, the fact that ≤ is a well quasi-ordering and the properties of
the sequence imply the existence of such i, j. Thus, it follows the existence of a pumping
providing a smaller accepting run r′. We conclude the existence of a computational bound
for the height of a minimum accepting run, and hence, decidability of emptiness.

5.1. Global Pumpings. Pumping is a traditional concept in automata theory, and in
particular, it is very useful in order to reason about tree automata. The basic idea is to
convert a given run r into another run by replacing a subrun at a certain position p in r
by a run r′, thus obtaining a run r[r′]p. Pumpings are useful for deciding emptiness: if a
“big” run can always be reduced by a pumping, then decision of emptiness is obtained by
a search of an accepting “small” run.

For plain tree automata, a necessary and sufficient condition to ensure that r[r′]p is
a run is that the resulting states of r|p and r′ coincide, since the correct application of a
rule at a certain position depends only on the resulting states of the subruns of the direct
children. In this case, an accepting run with height bounded by the number of states exists,
whenever the accepted language is not empty.

When the tree automaton has equality and disequality constraints, the constraints may
be falsified when replacing a subrun by a new run. For TABG∧, we will define a notion of
pumping ensuring that the constraints are satisfied. This notion of pumping requires to
perform several replacements in parallel. We first define the sets of positions involved in
such kind of pumping.

Definition 5.1. Let A be a TABG∧. Let r be a run of A. Let i be an integer between 1 and
h(r). We define

Hi as {p ∈ Pos(r) | 0 < h(r|p) = i},
Ȟi as {p.j ∈ Pos(r) | 0 < h(r|p.j) < i ∧ h(r|p) > i},

H̊i as {p.j ∈ Pos(r) | 0 = h(r|p.j) < i ∧ h(r|p) > i}.

Example 5.2. According to Definition 5.1, for our running example (Example 3.4), we

have the Hi, Ȟi and H̊i presented in Figure 4.

The following lemma is rather straightforward from the previous definition.

Lemma 5.3. Let A be a TABG∧. Let r be a run of A. Let i be an integer between 1 and
h(r). Then, any two different positions in Hi ∪ Ȟi ∪ H̊i are parallel, and for any arbitrary

24 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

M
qM

1
qid

N
qt

2
qd

0
qN

L
qL

3
qid

N
qt

2
qd

0
qN

L0
qL

4
qid

N
qt

2
qd

0
qN

Figure 5: Global pumping of Example 5.5.

position p in Pos(r) there is a position p̄ in Hi ∪ Ȟi ∪ H̊i such that, either p is a prefix of
p̄, or p̄ is a prefix of p.

Proof. For the first fact, note that any proper prefix p of a position p̄ in Hi∪Ȟi∪H̊i satisfies
h(r|p) > i. Thus, such a p is not in Hi ∪ Ȟi ∪ H̊i. For the second fact, consider any p in
Pos(r). If h(r|p) ≤ i holds, then the smallest position p̄ satisfying p̄ ≤ p and h(r|p̄) ≤ i is

in Hi ∪ Ȟi ∪ H̊i, and we are done. Otherwise, if h(r|p) > i holds, then the smallest position

p̄ of the form p.1.1 and satisfying h(r|p̄) ≤ i is in Hi ∪ Ȟi ∪ H̊i, and we are done.

Definition 5.4. Let A be a TABG∧. Let E be EA. Let r be a run of A. Let i, j be integers
satisfying 1 ≤ j < i ≤ h(r). A pump-injection I : (Hi ∪ Ȟi ∪ H̊i) → (Hj ∪ Ȟj ∪ H̊j) is an
injective function such that the following conditions hold:

(C1) I(Hi) ⊆ Hj, I(Ȟi) ⊆ Ȟj and I(H̊i) ⊆ H̊j. Moreover, I restricted to H̊i is the identity,

i.e. I(p) = p for each p in H̊i.

(C2) For each p̄ in Hi ∪ Ȟi ∪ H̊i, r(p̄) = r(I(p̄)).

(C3) For each p̄1, p̄2 in Hi ∪ Ȟi ∪ H̊i, (term(r|p̄1) =E term(r|p̄2)) ⇔ (term(r|I(p̄1)) =E

term(r|I(p̄2))).

Let {p̄1, . . . , p̄n} be Hi ∪ Ȟi ∪ H̊i more explicitly written. The run r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n
is called a global pumping on r with indexes i, j, and injection I.

By Condition C2, r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n is a run of ta(A), but it is still necessary to
prove that it is a run of A. By abuse of notation, when we write r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n ,
we sometimes consider that I and {p̄1, . . . , p̄n} are still explicit, and say that it is a global
pumping with some indexes 1 ≤ j < i ≤ h(r).

Example 5.5. Following our running example, we define a pump-injection I : (H4 ∪ Ȟ4 ∪

H̊4) → (H3 ∪ Ȟ3 ∪ H̊3) as follows: I(1) = 1, I(2) = 2, I(3) = 3.3. We note that I is a

correct pump-injection: I(H4) ⊆ H3, I(Ȟ4) ⊆ Ȟ3 and I(H̊4) ⊆ H̊3 hold, and I restricted

to H̊4 is, in fact, the identity, thus (C1) holds. For (C2), we have r(1) = r(I(1)) = qid,
r(2) = r(I(2)) = qt, and r(3) = r(I(3)) = qL. Regarding (C3), for each different p̄1, p̄2
in H4 ∪ Ȟ4 ∪ H̊4, term(r|p̄1) 6= term(r|p̄2) and term(r|I(p̄1)) 6= term(r|I(p̄2)) hold. After
applying the pump-injection I, we obtain the term and run r′ of Figure 5.

Our goal is to prove that any global pumping r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n is a run, and
in particular, that all equality and disequality constraints are satisfied. To this end we
first state the following intermediate statement, which determines the height of the terms

TA WITH LOCAL AND GLOBAL CONSTRAINTS 25

pending at some positions after the pumping. It can be easily proved by induction on the
height of the involved term.

Lemma 5.6. Let A be a TABG∧. Let r be a run of A. Let r′ be the global pumping
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n on r with indexes 1 ≤ j < i ≤ h(r) and injection I. Let k ≥ 0 be a
natural number and let p be a position of r such that h(r|p) is i+ k.

Then, p is also a position of r′ and h(r′|p) is j + k.

Proof. Position p is obviously a position of r′ since no position in Hi ∪ Ȟi ∪ H̊i is a proper
prefix of p. We prove the second part of the statement by induction on k. First, assume k =
0. Then, h(r|p) is i. Thus, p is inHi, say p is p̄1. Therefore, r

′|p is r|I(p̄1). By Condition (C1)

of the definition of pump-injection, I(p̄1) ∈ Hj holds. Hence, h(r′|p) = h(r|I(p̄1)) = j.
Now, assume k > 0. Let m be the arity of symbol(r|p). Thus, p.1, . . . , p.m are all the

child positions of p in r. Since h(r|p) is i + k, all h(r|p.1), . . . , h(r|p.m) are smaller than or
equal to i+ k − 1, and at least one of them is equal to i+ k − 1.

Consider any α in {1, . . . ,m}. If h(r|p.α) is i + k′ for some 0 ≤ k′ ≤ k − 1, then, by
induction hypothesis, h(r′|p.α) is j + k′. Otherwise, if h(r|p.α) is strictly smaller than i,

then p.α is one of the positions in Ȟi ∪ H̊i, say p̄1. In this case, r′|p̄1 is r|I(p̄1), and by

Condition (C1) of the definition of I, I(p̄1) belongs to Ȟj ∪ H̊j. Therefore, h(r|I(p̄1)) < j

holds, and hence, h(r′|p.α) = h(r′|p̄1) = h(r|I(p̄1)) < j ≤ j + k − 1 holds.
From the above cases we conclude that, if h(r|p.α) is i+k−1, then h(r′|p.α) is j+k−1,

and if h(r|p.α) is smaller than i+ k − 1, then h(r′|p.α) is smaller than j + k − 1. It follows
that all h(r′|p.1), . . . , h(r

′|p.m) are smaller than or equal to j + k − 1, and at least one of
them is equal to j + k − 1. As a consequence, h(r′|p) is j + k.

Corollary 5.7. Let A be a TABG∧. Let r be a run of A. Let r′ be a global pumping on r.
Then, h(r′) < h(r).

The following lemma states that equality and disequality relations are preserved, not
only for terms pending at the positions of the domain of I, but also for terms pending at
prefixes of positions of such domain. Again, it is rather easy to prove by induction on the
height of the involved terms.

Lemma 5.8. Let A be a TABG∧. Let r be a run of A. Let r′ be the global pumping
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n with indexes 1 ≤ j < i ≤ h(r) and injection I. Let p1, p2 be positions

of r satisfying that each of them is a prefix of a position in Hi ∪ Ȟi ∪ H̊i.
Then, p1, p2 are positions of r′ and (term(r|p1) =E term(r|p2)) ⇔ (term(r′|p1) =E

term(r′|p2)) holds.

Proof. The first statement follows by Lemma 5.6. We prove the second part of the statement
by induction on h(r|p1) + h(r|p2). We distinguish the following cases:

• Assume that both p1 and p2 are positions in Hi ∪ Ȟi ∪ H̊i, say p̄1 and p̄2, respectively.
Therefore, r′|p1 is r|I(p̄1) and r′|p2 is r|I(p̄2). By Condition (C3) of the definition of pump-
injection, (term(r|p̄1) =E term(r|p̄2)) ⇔ (term(r|I(p̄1)) =E term(r|I(p̄2))) holds. Thus,
(term(r|p1) =E term(r|p2)) ⇔ (term(r′|p1) =E term(r′|p2)) holds, and we are done.

• Assume that one of p1 or p2, say p1, is a proper prefix of a position in Hi ∪ Ȟi ∪ H̊i, and
p2 is a position in Hi ∪ Ȟi ∪ H̊i. Then, h(r|p1) = i + k for some k > 0, and h(r|p2) ≤ i
holds. Thus, (term(r|p1) 6=E term(r|p2)) holds. By Lemma 5.6, h(r′|p1) = j + k. By the
definition of pump-injection, h(r′|p2) ≤ j. Thus, also (term(r′|p1) 6=E term(r′|p2)) holds,
and we are done.

26 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

• Assume that both p1 and p2 are proper prefixes of positions in Hi ∪ Ȟi ∪ H̊i. Note that,
in this case, symbol(r′|p1) = symbol(r|p1) and symbol(r′|p2) = symbol(r|p2) hold. Let
symbol(r|p1) and symbol(r|p2) be f and g, with arities n and m, respectively. Recall

that I is the identity for the positions in H̊i, and hence, a position α in {1, . . . , n} satis-
fies symbol(r|p1.α) ∈ Σ0 ⇔ symbol(r′|p1.α) ∈ Σ0, and symbol(r|p1.α), symbol(r

′|p1.α) ∈
Σ0 ⇒ symbol(r|p1.α) = symbol(r′|p1.α). Similarly, a position β in {1, . . . ,m} satis-
fies symbol(r|p2.β) ∈ Σ0 ⇔ symbol(r′|p2.β) ∈ Σ0, and symbol(r|p2.β), symbol(r

′|p2.β) ∈
Σ0 ⇒ symbol(r|p2.β) = symbol(r′|p2.β). Moreover, since such positions p1.α and p2.β

are prefixes of positions in Hi ∪ Ȟi ∪ H̊i, by induction hypothesis, (term(r|p1.α) =E

term(r|p2.β)) ⇔ (term(r′|p1.α) =E term(r′|p2.β)) for all such α in {1, . . . , n} and β in
{1, . . . ,m}. By Lemma 2.1, (term(r|p1) =E term(r|p2)) ⇔ (term(r′|p1) =E term(r′|p2))
follows, and we are done.

Now we prove that the result of a global pumping preserves the satisfaction of the global
constraints.

Lemma 5.9. Let A be a TABG∧. Let r be a run of A. Let r′ be the global pumping
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n with indexes 1 ≤ j < i ≤ h(r) and injection I.

Then, r′ satisfies all global constraints of A.

Proof. Let us consider two different positions p1, p2 of Pos(r′) involved in the constraint
CA, i.e. either r

′(p1) ≈ r′(p2) or r
′(p1) 6≈ r′(p2) occurs in CA. According to Lemma 5.3, we

can distinguish the following cases:

• Suppose that a position in Hi ∪ Ȟi ∪ H̊i, say p̄1, is a prefix of both p1, p2. Then, r′|p1 =
r|I(p̄1).(p1−p̄1) and r′|p2 = r|I(p̄1).(p2−p̄1) hold. Hence, r′|p1 and r′|p2 are also subruns of r
occurring at different positions. Thus, since r is a run, they satisfy the atom involving
r′(p1) and r′(p2).

• Suppose that two different positions in Hi ∪ Ȟi ∪ H̊i, say p̄1 and p̄2, are prefixes of p1
and p2, respectively. Then, r′|p1 = r|I(p̄1).(p1−p̄1) and r′|p2 = r|I(p̄2).(p2−p̄2) hold. By the
injectivity of I, I(p̄1) 6= I(p̄2) holds. Moreover, by Lemma 5.3, I(p̄1) ‖ I(p̄2) holds.
Hence, as before, r′|p1 and r′|p2 are subruns of r occurring at different (in fact, parallel)
positions. Thus, they satisfy the atom involving r′(p1) and r′(p2).

• Suppose that one of p1, p2, say p1, is a proper prefix of a position in Hi ∪ Ȟi ∪ H̊i, and
that p2 satisfies that some position in Hi ∪ Ȟi ∪ H̊i is a prefix of p2. It follows that
h(r′|p2) is smaller than or equal to j, and r′|p2 is also a subrun of r. Moreover, p1 is
also a position of r, r′(p1) = r(p1) holds, and h(r|p1) = i + k holds for some k > 0.
Hence, term(r|p1) 6=E term(r′|p2) holds. Since r is a run and r′|p2 is a subrun of r, the
atom involving r(p1) and r′(p2) is necessarily of the form r(p1) 6≈ r′(p2). Thus, the atom
involving r′(p1) and r′(p2) is necessarily of the form r′(p1) 6≈ r′(p2). By Lemma 5.6,
h(r′|p1) is j + k. Therefore, also term(r′|p1) 6=E term(r′|p2) holds, and hence, such an
atom is satisfied for such positions in r′.

• Suppose that both p1, p2 are proper prefixes of positions in Hi∪ Ȟi∪ H̊i. Then, p1, p2 are
positions of r satisfying h(r|p1), h(r|p2) ≥ i. Moreover, r(p1) = r′(p1) and r(p2) = r′(p2)
hold. Since r is a run, the atom involving r(p1) and r(p2) is satisfied in the run r for
positions p1 and p2. By Lemma 5.8, (term(r|p1) =E term(r|p2)) ⇔ (term(r′|p1) =E

term(r′|p2)) holds. Thus, the atom involving r′(p1) and r′(p2) is satisfied in the run r′ for
positions p1 and p2.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 27

Finally, we prove that the result of a global pumping preserves the satisfaction of the
constraints between brothers.

Lemma 5.10. Let A be a TABG∧. Let r be a run of A. Let r′ be the global pumping
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n with indexes 1 ≤ j < i ≤ h(r) and injection I.

Then, r′ satisfies all constraints between brothers of A.

Proof. Let us consider a position p of Pos(r′) and two positions i1, i2 involved in a constraint
of the rule used at position p in r′, i.e. either γ = (i1 ≈ i2) or γ = (i1 6≈ i2) occur in this
constraint. According to Lemma 5.3, we can distinguish the following cases:

• Suppose that a position in Hi ∪ Ȟi ∪ H̊i, is a prefix of p. Then, r′|p is also a subrun of r.
Thus, since r is a run, the constraint is satisfied.

• Suppose that p is a proper prefix of a position in Hi ∪ Ȟi ∪ H̊i. Then, p.i1 and p.i2 are
prefixes of positions in Hi ∪ Ȟi ∪ H̊i. By Lemma 5.8, (term(r|p.i1) =E term(r|p.i2)) ⇔
(term(r′|p.i1) =E term(r′|p.i2)) holds. Since r is a run, it follows that (term(r|p.i1) =E

term(r|p.i2)) ⇔ γ = (i1 ≈ i2). Thus, (term(r′|p.i1) =E term(r′|p.i2)) ⇔ γ = (i1 ≈ i2)
holds. Thus, the atom involving i1 and i2 is satisfied in the run r′ for position p.

As a consequence of the previous lemmas, we have that the result of a global pumping
satisfies all constraints.

Corollary 5.11. Let A be a TABG∧. Let r be a run of A. Let r′ be the global pumping
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n with indexes 1 ≤ j < i ≤ h(r) and injection I.

Then, r′ is a run of A.

5.2. A well quasi-ordering. In this subsection we define a well quasi-ordering. It assures
the existence of a computational bound for certain sequences of elements of the correspond-
ing well quasi-ordered set. It will be connected with global pumpings in the next subsection.

Definition 5.12. Let ≤ denote the usual quasi-ordering on natural numbers. Let n be a
natural number.

We define the extension of ≤ to n-tuples of natural numbers as 〈x1, . . . , xn〉 ≤ 〈y1, . . . , yn〉
if xi ≤ yi for each i in {1, . . . , n}. We define sum(〈x1, . . . , xn〉) := x1 + · · ·+ xn.

We define the extension of ≤ to multisets of n-tuples of natural numbers as [e1, . . . , eα] ≤
[e′1, . . . , e

′
β] if there is an injection I : {1, . . . , α} → {1, . . . , β} satisfying ei ≤ e′

I(i) for each i

in {1, . . . , α}. We define sum([e1, . . . , eα]) := sum(e1) + · · ·+ sum(eα).
We define the extension of ≤ to pairs of multisets of n-tuples of natural numbers as

〈P1, P̌1〉 ≤ 〈P2, P̌2〉 if P1 ≤ P2 and P̌1 ≤ P̌2.

As a direct consequence of Higman’s Lemma [Gal91] we have the following:

Lemma 5.13. Given n, ≤ is a well quasi-ordering for pairs of multisets of n-tuples of
natural numbers.

In any infinite sequence e1, e2, . . . of elements from a well quasi-ordered set there always
exist two indexes i < j satisfying ei ≤ ej . In general, this fact does not imply the existence
of a bound for the length of sequences without such indexes. For example, the relation
≤ between natural numbers is a well quasi-ordering, but there may exist arbitrarily long
sequences x1, . . . , xk of natural numbers such that xi > xj for all 1 ≤ i < j ≤ k. In order to
bound the length of such sequences, it is sufficient to force that the first element and each

28 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

next element of the sequence are chosen among a finite number of possibilities. Indeed in
this this case, by König’s lemma, the prefix trees describing all such (finite) sequences is
finite. As a particular case of this fact we have the following result (the proof is standard,
but we include it for completeness).

Lemma 5.14. There exists a computable function B : N × N → N such that, given two
natural numbers a, n, B(a, n) is a bound for the length ℓ of any sequence 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉
of pairs of multisets of n-tuples of natural numbers such that the following conditions hold:

(1) The tuple 〈0, . . . , 0〉 does not occur in any Ti, Ťi for i in {1, . . . , ℓ}.
(2) sum(T1) = 1 and sum(Ť1) = 0.
(3) For each i in {1, . . . , ℓ− 1}, a · sum(Ti) + sum(Ťi) ≥ sum(Ti+1) + sum(Ťi+1).
(4) There are no i, j satisfying 1 ≤ i < j ≤ ℓ and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉.

Proof. For proving the statement, we first construct a rooted tree S = (V,E) labelled by
sequences of pairs of multisets of n-tuples, where the depth of each node is equal to the
length of the sequence labeling it and such that the set of internal nodes of S corresponds
exactly to the set of sequences satisfying conditions (1) to (4). Second, we show that S is
finite. This concludes the proof, since finiteness of S and its constructive definition imply
that S is computable, and B(a, n) can be defined as the maximal depth of S.

We define V as the set of all the sequences 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 of pairs of multisets
of n-tuples satisfying the conditions (1) to (3) and such that there are no i, j satisfying
1 ≤ i < j < ℓ and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉. This last condition, that we will refer to as (5), is
weaker than (4) since in (5) we have j < ℓ instead of j ≤ ℓ. Thus, all sequences satisfying
conditions (1) to (4) belong to V . Note that V contains the empty sequence, which we
denote as ε. We define E ⊆ V 2 as the set of edges containing 〈T1, Ť1〉, . . . , 〈Ti, Ťi〉 −→
〈T1, Ť1〉, . . . , 〈Ti, Ťi〉, 〈Ti+1, Ťi+1〉 for every such couple of sequences in V .

It is quite obvious that S = (V,E) is a tree rooted at ε, since ε does not have an input
edge, each sequence of length 1 has a unique input edge coming from ε, and each sequence
of length i > 1 has a unique input edge coming from its unique prefix sequence of length
i−1. Also, the set of internal nodes of S is exactly the set of sequences satisfying conditions
(1) to (4), and the set of leaves of S is exactly the set of sequences satisfying conditions (1)
to (3), and (5), but not (4).

It remains to show that S is finite. To this end, it suffices to see that S is finitely
branching and that there is no path with infinite length.

First, we prove that each node v ∈ V has a finite branching: ε links to all the sequences
of length 1, the number of which is bounded by conditions (1) and (2); and each sequence
〈T1, Ť1〉, . . . , 〈Ti, Ťi〉 can only link to sequences of the form 〈T1, Ť1〉, . . . , 〈Ti, Ťi〉, 〈Ti+1, Ťi+1〉,
the number of which is bounded by conditions (1) and (3).

Second, we prove that there is no path with infinite length in S in a standard way.
We proceed by contradiction by assuming that we have an infinite path v0, v1, v2, v3, . . . By
construction, we have v0 = ε, and for all i ≥ 1 and all j ≥ i, the prefix of length i of the
sequence vj is equal to vi. Consider the infinite sequence 〈T1, Ť1〉, 〈T2, Ť2〉, . . . where for all

i ≥ 1, 〈Ti, Ťi〉 is the last element of the sequence vi. Since ≤ on pairs of multisets of n-tuples
is a well quasi-ordering, there exist two indexes i, j satisfying i < j and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉.
Hence, all sequences vk for k > j do not satisfy condition (5), and hence they do not belong
to V , contradicting the infiniteness of the path.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 29

i rHi
rȞi

r
H̊i

5 [〈0,0,0,0,0,1〉] [] []
4 [〈0,0,0,0,1,0〉] [〈0,0,0,1,0,0〉] [〈0,0,1,0,0,0〉]
3 [〈0,0,0,0,1,0〉] [〈0,0,0,2,0,0〉] [〈0,0,1,0,0,0〉,〈0,0,1,0,0,0〉]
2 [〈0,0,0,0,1,0〉] [〈0,0,0,3,0,0〉] [〈0,0,1,0,0,0〉,〈0,0,1,0,0,0〉,

〈0,0,1,0,0,0〉]
1 [〈0,0,0,4,0,0〉] [] [〈0,0,1,0,0,0〉,〈0,0,1,0,0,0〉,

〈0,0,1,0,0,0〉,〈0,0,1,0,0,0〉]

Figure 6: Multisets rHi
, rȞi

and r
H̊i

of Example 5.17.

In order to bound the height of a term accepted by a given TABG∧ A (and of minimum
height), Lemma 5.14 will be used by making a to be the maximum arity of the signature of
A, and making n to be the number of states of A.

5.3. Mapping a run to a sequence of the well quasi-ordered set. We will associate,
to each number i in {1, . . . , h(r)}, a pair of multisets of n-tuples of natural numbers, which
can be compared with other pairs according to the definition of ≤ in the previous subsection.
To this end, we first associate n-tuples to terms and multisets of n-tuples to sets of positions.

Definition 5.15. Let A be a TABG∧. Let E be EA. Let q1, . . . , qn be the states of A. Let
r be a run of A. Let P be a set of positions of r. Let t be a term. We define rt,P as the
following tuple of natural numbers:

〈∣
∣{p ∈ P | term(r|p) =E t ∧ r(p) = q1}

∣
∣, . . . ,

∣
∣{p ∈ P |

term(r|p) =E t ∧ r(p) = qn}
∣
∣
〉

Definition 5.16. Let A be a TABG∧. Let E be EA. Let r be a run of A. Let P be a set
of positions of r. Let {[t1], . . . , [tk]} be the set of equivalence classes modulo E of the set
of terms {term(r|p) | p ∈ P} with representatives t1, . . . , tk. We define rP as the multiset
[rt1,P , . . . , rtk ,P].

Example 5.17. Following our running example, for the representation of the n-tuples of
natural numbers we order the states as 〈qd, qN , qid, qt, qL, qM 〉. The multisets rHi

, rȞi
and

r
H̊i

are presented in Figure 6.

The following lemma connects the existence of a pump-injection with the quasi-ordering
relation.

Lemma 5.18. Let A be a TABG∧. Let r be a run of A. Let i, j be integers satisfying
1 ≤ j < i ≤ h(r).

Then, there exists a pump-injection I : (Hi ∪ Ȟi ∪ H̊i) → (Hj ∪ Ȟj ∪ H̊j) if and only if
〈rHi

, rȞi
〉 ≤ 〈rHj

, rȞj
〉.

Proof. Although we prove both directions of the double implication, the left-to-right one is
technical but not conceptually difficult, and it is not necessary for the rest of the paper. In
the following, we write E for EA.
⇒) Assume that there exists a pump-injection I : (Hi ∪ Ȟi ∪ H̊i) → (Hj ∪ Ȟj ∪ H̊j). We
just prove rHi

≤ rHj
, since rȞi

≤ rȞj
can be proved analogously. By Condition (C1) of

the definition of pump-injection, I(Hi) ⊆ Hj holds. We write the equivalence classes of

30 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

{term(r|p) | p ∈ Hi} and {term(r|p) | p ∈ Hj} modulo E more explicitly as {[ti,1], . . . , [ti,α]}
and {[tj,1], . . . , [tj,β]}, respectively. Hence, it remains to prove that [rti,1,Hi

, . . . , rti,α ,Hi
] ≤

[rtj,1,Hj
, . . . , rtj,β ,Hj

]. To this end we define the function I ′ : {1, . . . , α} → {1, . . . , β} as
follows. For each γ in {1, . . . , α}, we choose a position p in Hi satisfying term(r|p) =E ti,γ ,
determine the index δ of the term tj,δ satisfying tj,δ =E term(r|I(p)), and define I ′(γ) := δ.

This function I ′ is injective due to Condition (C3) of the definition of pump-injection. In
order to conclude, it suffices to prove rti,γ ,Hi

≤ rtj,I′(γ),Hj
for each γ in {1, . . . , α}. We

just prove it for γ = 1. For proving rti,1,Hi
≤ rtj,I′(1),Hj

it suffices to prove the following

statement for each state q of A:
∣
∣{p ∈ Hi | term(r|p) =E ti,1 ∧ r(p) = q}

∣
∣ ≤

∣
∣{p ∈ Hj |

term(r|p) =E tj,I′(1) ∧ r(p) = q}
∣
∣.

To this end, since I is injective, it suffices to prove that I({p ∈ Hi | term(r|p) =E

ti,1 ∧ r(p) = q}) is included in {p ∈ Hj | term(r|p) =E tj,I′(1) ∧ r(p) = q} for each state q of
A. Thus, consider any p̄ of {p ∈ Hi | term(r|p) =E ti,1 ∧ r(p) = q}. Let p′ be the chosen
position for defining I ′(1). In particular, term(r|p′) =E ti,1 and term(r|I(p′)) =E tj,I′(1) hold.
Note that term(r|p̄) =E term(r|p′) =E ti,1 holds. Thus, by Condition (C3) of the definition
of pump-injection, term(r|I(p̄)) =E term(r|I(p′)) holds. Therefore, term(r|I(p̄)) =E tj,I′(1)
holds. In order to show the inclusion I(p̄) ∈ {p ∈ Hj | term(r|p) =E tj,I′(1) ∧ r(p) = q}
it remains to see r(I(p̄)) = q. Note that, since p̄ belongs to {p ∈ Hi | term(r|p) =E

ti,1 ∧ r(p) = q}, r(p̄) = q holds. By Condition (C2) of the definition of pump-injection,
r(I(p̄)) = r(p̄) = q holds, and we are done.

⇐) Assume that 〈rHi
, rȞi

〉 ≤ 〈rHj
, rȞj

〉 holds. We have to construct a pump-injection

I : (Hi ∪ Ȟi ∪ H̊i) → (Hj ∪ Ȟj ∪ H̊j). By the definition of pump-injection, the restriction

I : H̊i → H̊j must be defined as the identity, which is not a problem since H̊i is always

included in H̊j. Conditions (C2) and (C3) are satisfied for free for these positions. Moreover,

for positions p̄′1 ∈ Hi∪Ȟi and p̄′2 ∈ H̊i, Condition (C3) holds whenever Condition (C1) holds
since in this case term(r|p̄′1) 6=E term(r|p̄′2) and term(r|I(p̄′1)) 6=E term(r|I(p̄′2)) hold.

Hence, it remains to define I : (Hi ∪ Ȟi) → (Hj ∪ Ȟj). We just define I : Hi → Hj

and prove Conditions (C2) and (C3) for p̄, p̄1, p̄2 in Hi. This is because I : Ȟi → Ȟj

can be defined analogously, and Conditions (C2) and (C3) for the corresponding posi-
tions can be checked analogously. Moreover, for positions p̄′1 ∈ Hi and p̄′2 ∈ Ȟi, Condi-
tion (C3) holds whenever Condition (C1) holds since in this case term(r|p̄′1) 6=E term(r|p̄′2)

and term(r|I(p̄′1)) 6=E term(r|I(p̄′2)) hold. Hence, this simple case is enough to prove the
whole statement.

We write the set of equivalence classes of {term(r|p) | p ∈ Hi} and {term(r|p) | p ∈ Hj}
modulo E more explicitly as {[ti,1], . . . , [ti,α]} and {[tj,1], . . . , [tj,β]}, respectively. Since
〈rHi

, rȞi
〉 ≤ 〈rHj

, rȞj
〉 holds, rHi

≤ rHj
also holds. Thus, there exists an injective function

I ′ : {1, . . . , α} → {1, . . . , β} satisfying the following statement for each δ in {1, . . . , α} and
each state q of A:

∣
∣{p ∈ Hi | term(r|p) =E ti,δ ∧ r(p) = q}

∣
∣ ≤

∣
∣{p ∈ Hj | term(r|p) =E

tj,I′(δ) ∧ r(p) = q}
∣
∣ (†).

In order to define I : Hi → Hj, we define I for each of such sets {p ∈ Hi | term(r|p) =E

ti,δ ∧ r(p) = q} as any injective function I : {p ∈ Hi | term(r|p) =E ti,δ ∧ r(p) = q} → {p ∈
Hj | term(r|p) =E tj,I′(δ) ∧ r(p) = q}, which is possible by the above inequality (†). The

global I is then injective thanks to the injectivity of I ′. Conditions (C2) and (C3) trivially
follow from this definition.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 31

Example 5.19. Following our running example, we first prove 〈rH4 , rȞ4
〉 ≤ 〈rH3 , rȞ3

〉.
To this end just note that [〈0, 0, 0, 0, 1, 0〉] ≤ [〈0, 0, 0, 0, 1, 0〉] and that [〈0, 0, 0, 1, 0, 0〉] ≤

[〈0, 0, 0, 2, 0, 0〉] hold. We can define I : (H4 ∪ Ȟ4∪ H̊4) → (H3∪ Ȟ3∪ H̊3) from this relation
according to Lemma 5.18. Doing the adequate guess we obtain the following definition:
I(1) = 1, I(2) = 2, I(3) = 3.3 which is the pump-injection considered in Example 5.5 for
our running example.

The following lemma follows directly from the definition of the sets Hi and Ȟi, and
allows to connect such definitions with Lemma 5.14.

Lemma 5.20. Let A be a TABG∧. Let a be the maximum arity of the symbols in the signature
of A. Let r be a run of A. Then, the following conditions hold:

(1) |Hh(r)| = 1 and |Ȟh(r)| = 0.
(2) For each i in {2, . . . , h(r)}, a · |Hi|+ |Ȟi| ≥ |Hi−1|+ |Ȟi−1|.
(3) For each i in {1, . . . , h(r)}, |Hi| = sum(rHi

) and |Ȟi| = sum(rȞi
).

Proof. Item (1) is trivial by definition of Hi and Ȟi for i = h(r). For Item (2), it suffices to
observe that the positions in Hi−1∪Ȟi−1 are all the positions in Ȟi plus a subset of all child
positions of positions in Hi, and that each position has at most a children. For Item (3)
we just prove |Hi| = sum(rHi

), since |Ȟi| = sum(rȞi
) can be proved analogously. We write

the equivalence classes of the set {term(r|p) | p ∈ Hi} modulo E = EA more explicitly as
{[t1], . . . , [tα]}.

Note that Hi is the disjoint union {p ∈ Hi | term(r|p) =E t1} ∪ . . . ∪ {p ∈ Hi |
term(r|p) =E tα}. Thus, |Hi| equals |{p ∈ Hi | term(r|p) =E t1}| + . . . + |{p ∈ Hi |
term(r|p) =E tα}|. We conclude by observing that |{p ∈ Hi | term(r|p) =E t1}| =
sum(rt1,Hi

), . . . , |{p ∈ Hi | term(r|p) =E tα}| = sum(rtα,Hi
) hold.

Lemma 5.21. Let B : N × N → N be the computable function of Lemma 5.14. Let A be
a TABG∧. Let a be the maximum arity of the symbols in the signature of A. Let n be the
number of states of A. Let r be a run of A satisfying h(r) > B(a, n). Then, there is a
global pumping on r.

Proof. Consider the sequence 〈rHh(r)
, rȞh(r)

〉,. . . , 〈rH1 , rȞ1
〉. Note that the n-tuple 〈0, . . . , 0〉

does not appear in the multisets of the pairs of this sequence. By Lemma 5.20, |Hh(r)| = 1

and |Ȟh(r)| = 0 hold, and for each i in {2, . . . , h(r)}, a · |Hi|+ |Ȟi| ≥ |Hi−1|+ |Ȟi−1| holds.

Moreover, for each i in {1, . . . , h(r)}, |Hi| = sum(rHi
) and |Ȟi| = sum(rȞi

) hold. Thus,

sum(rHh(r)
) = 1, sum(rȞh(r)

) = 0, and for each i in {2, . . . , h(r)}, a · sum(rHi
) + sum(rȞi

) ≥

sum(rHi−1)+sum(rȞi−1
) hold. Hence, since h(r) ≥ B(a, n) holds, by Lemma 5.14 there exist

i, j satisfying h(r) ≥ i > j ≥ 1 and 〈rHi
, rȞi

〉 ≤ 〈rHj
, rȞj

〉. By Lemma 5.18, there exists

a pump-injection I : (Hi ∪ Ȟi ∪ H̊i) → (Hj ∪ Ȟj ∪ H̊j). Therefore, there exists a global
pumping on r.

Theorem 5.22. Emptiness is decidable for TABG∧.

Proof. Let a be the maximum arity of the symbols in the signature of A. Let n be the
number of states of A. Let r be an accepting run of A with minimum height.

Suppose that h(r) ≥ B(a, n) holds. Then, by Lemma 5.21, there exists a global pumping
r′ on r. By Corollary 5.7, h(r′) < h(r) holds. Moreover, by the definition of global pumping,
r′(λ) = r(λ) holds. Finally, by Corollary 5.11, r′ is a run of A. Thus, r′ contradicts the
minimality of r. We conclude that h(r) < B(a, n) holds.

32 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

The decidability of emptiness of A follows, since the existence of successful runs implies
that one of them can be found among a computable and finite set of possibilities.

Using Corollary 4.20 and Theorem 5.22, we can conclude the decidability of emptiness
for TABG, and more generally for TABG[≈, 6≈,N].

Corollary 5.23. Emptiness is decidable for TABG.

Corollary 5.24. Emptiness is decidable for TABG[≈, 6≈,N].

6. Unranked Ordered Trees

Our tree automata models and results can be generalized from ranked to unranked ordered
terms. In this setting, Σ is called an unranked signature, meaning that there is no arity
fixed for its symbols, i.e. that in a term a(t1, . . . , tn), the number n of children is arbitrary
and does not depend on a. Let us denote by U(Σ) the set of unranked ordered terms over
Σ. The notions of positions, subterms, etc., are defined for unranked terms of U(Σ) as for
ranked terms of T (Σ).

We extend the definition of automata for unranked ordered terms, called hedge au-
tomata [Mur99], with global constraints. We do not consider constraints between brothers
nor flat theories in this setting.

Definition 6.1. A hedge automaton with global constraints (HAG) over an unranked signa-
ture Σ is a tuple A = 〈Q,Σ, F,∆, C〉 where Q is a finite set of states, F ⊆ Q is the subset of
final states, C is a Boolean combination of atomic constraints of the form q ≈ q′ or q 6≈ q′,
with q, q′ ∈ Q, and ∆ is a set of transition rules of the form a(L) → q where a ∈ Σ, q ∈ Q
and L is a regular (word) language over Q∗, assumed given by a finite state automaton with
input alphabet Q.

We still use the notation HAG[τ1, . . . , τn] where the types τi can be ≈, 6≈, |.|
N
, ‖.‖N, N.

The notion of run of TAG is extended to HAG in the natural way. A run of a HAG A is
a pair r = 〈t,M〉 where t ∈ U(Σ) is an unranked ordered term and M is a mapping from
Pos(t) into ∆A such that for each position p ∈ Pos(t) with n children, ifM(p.1), . . . ,M(p.n)
are rules with right-hand side states q1, . . . , qn ∈ QA, respectively, then M(p) is a transition
rule of the form t(p)(L) → q in ∆, and the word q1 · · · qn belongs to L. Moreover, r |= CA,
where satisfiability of CA by r is defined like in Section 3. A run r is called successful (or
accepting) if r(λ) ∈ FA.

The emptiness decision results of Corollary 5.24 can be transposed from TAG into HAG

using a standard transformation from unranked to ranked binary terms, like the extension
encoding described in [CDG+07], Chapter 8.

Let us associate to the unranked signature Σ the (ranked) signature Σ@ := {a : 0 | a ∈
Σ} ∪ {@ : 2} where @ is a new symbol not in Σ. The operator curry is a bijection from
U(Σ) into T (Σ@) recursively defined as follows:

curry(a) = a for all a ∈ Σ
curry

(
a(t1, . . . , tn)

)
= @

(
curry

(
a(t1, . . . , tn−1)

)
, curry(tn)

)

An example of application of this operator is presented in Figure 7. We extend the appli-
cation of the operator curry to sets of unranked ordered terms by curry(L) = {curry(t) |
t ∈ L}.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 33

a

b

c

d f

g h

7→curry @

@

@

a @

b c

d

@

@

f g

h

Figure 7: Currying an unranked term.

Proposition 6.2. For all HAG[≈, 6≈,N] A over Σ, one can construct effectively in PTIME
a TAG[≈, 6≈,N] A′ over Σ@ such that L(A′) = curry

(
L(A)

)
.

Proof. Let A be 〈Q,Σ, F,∆, C〉 more explicitly written. Without loss of generality, we
assume that for each a ∈ Σ, q ∈ Q, the set of rules ∆ contains exactly one transition of the
form a(L) → q, and we denote by Āa,q the NFA recognizing the corresponding language
L. Recall that such automata have Q as input alphabet. Without loss of generality, we
assume that the sets of states of A and all Āa,q are pairwise disjoint. Let Q̄ be the union
of all states of all the automata Āa,q. Intuitively, the transitions of the automaton A′ will
simulate both the transitions of A and the transitions of the NFAs Āa,q, when running on
curry(t) for some t ∈ U(Σ).

Let A′ = 〈Q ∪ Q̄,Σ, F,∆′, C〉 where ∆′ contains the following transitions for each
a ∈ Σ, q ∈ Q:

• a → q if Āa,q recognizes the empty word,
• a → q̄ where q̄ is the initial state of Āa,q,

• @(q̄, q′) → q̄′ if there is a transition q̄ −−→q
′

q̄′ in Āa,q, and

• @(q̄, q′) → q if there is a transition q̄ −−→q
′

q̄′ in Āa,q and q̄′ is a final state of Āa,q.

It is not difficult to see that there exists an accepting run of A if and only if there exists
an accepting run of A′.

There exist alternative encodings from unranked to ranked trees in the literature, e.g.,
the first-child next-sibling encoding: see Figure 8 for an example of this transformation. This
alternative encoding makes the representation of equality and disequality between subterms
of the original unranked term difficult, since the transformed subterms may have original
siblings occurring now as their subterms. For example, in Figure 8, the two occurrences of
the subterm c correspond to different terms in the result of the transformation.

The following emptiness decision result is a direct consequence of Proposition 6.2 and
Corollary 5.24.

Corollary 6.3. Emptiness is decidable for HAG[≈, 6≈,N].

7. Logics on Trees

In this section, we discuss the application of our results to second order logics interpreted
over domains defined by terms. We propose a strict extension of the second order monadic
logic of the tree with equality, disequality and arithmetic constraints, and show that satis-
fiability is decidable for this extension thanks to a correspondence with TAG[≈, 6≈,N].

34 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

a

b

c

c f

g h

7→fcns a

b

c

#

c

f

g

h

#

#

#

Figure 8: First-child next-sibling encoding of an unranked term.

7.1. MSO on Ranked Terms. A ranked term t ∈ T (Σ) over Σ can be seen as a model
for logical formulae, with an interpretation domain which is the set of positions Pos(t). We
consider monadic second order formulae interpreted on such models, built with the usual
Boolean connectors, with quantifications over first order variables (interpreted as positions),
denoted x, y . . . and over unary predicates (i.e. second order variables interpreted as sets of
positions), denoted X,Y . . ., and with the following predicates,

• equality: x = y,
• membership: X(x),
• labeling: a(x), for a ∈ Σ
• navigation: Si(x, y), for all i smaller than or equal to the maximal arity of symbols of Σ
(we call +1 the type of such predicates),

• term equality: X ≈ Y , term disequality: X 6≈ Y (predicate types ≈ and 6≈),
• linear inequalities:

∑
ai · |Xi| ≥ a or

∑
ai · ‖Xi‖ ≥ a, where every ai and a belong to Z

(predicate types |.|Z and ‖.‖Z).

We write MSO[τ1, . . . , τk] for the set of monadic second order logic formulae with equality,
membership, labeling predicates and other predicates of types τ1, . . . , τk, amongst the above
types +1, ≈, 6≈, and |.|Z, ‖.‖Z. We also use the notations |.|N and ‖.‖N for natural linear in-
equalities (linear inequalities whose coefficient all have the same sign) and the abbreviations
Z and N of Section 4.

Let ∃MSO[τ1, . . . , τk] be the fragment of MSO[τ1, . . . , τk] containing the formulae of the
form ∃X1 . . . ∃Xn φ such that all the atoms of type ≈, 6≈, Z or N in φ involve only second
order variables amongst X1, . . . ,Xn.

A variable assignment into a term t ∈ T (Σ) is a function σ mapping first order variables
into positions of Pos(t) and second order variables into subsets of Pos(t). The satisfiability
of a formula φ by a term t ∈ T (Σ) and a variable assignment σ, denoted t, σ |= φ is defined
in the usual Tarskian manner, with:

TA WITH LOCAL AND GLOBAL CONSTRAINTS 35

t, σ |= x = y iff σ(x) = σ(y)
t, σ |= X(x) iff σ(x) ∈ σ(X)
t, σ |= a(x) iff t(σ(x)) = a
t, σ |= Si(x, y) iff σ(x).i = σ(y)
t, σ |= X ≈ Y iff ∀p ∈ σ(X), p′ ∈ σ(Y), p 6= p′ : t|p = t|p′
t, σ |= X 6≈ Y iff ∀p ∈ σ(X), p′ ∈ σ(Y), p 6= p′ : t|p 6= t|p′
t, σ |=

∑
ai · |Xi| ≥ a iff

∑

i ai · |σ(Xi)| ≥ a
t, σ |=

∑
ai · ‖Xi‖ ≥ a iff

∑

i ai ·
∣
∣{t|p | p ∈ σ(Xi)}

∣
∣ ≥ a

Example 7.1. The following formula of ∃MSO[≈, 6≈] expresses that all the subterms headed
by a in a term t are pairwise different: ∃Xa ((∀xXa(x) ↔ a(x)) ∧ Xa 6≈ Xa). In other
words, a is used to mark monadic keys in t (see Example 3.4).

A seminal result of [TW68] shows that MSO[+1] has exactly the same expressiveness as
TA, and therefore it is decidable. The extension MSO[+1,≈] is undecidable, see e.g. [FTT07].
The extension MSO[+1, |.|Z] is undecidable as well [KR02].

On the other side, the fragment ∃MSO[+1, |.|Z] is decidable [KR02], and a fragment of
∃MSO[+1,≈, 6≈] is shown decidable in [FTT08] for a restricted variant of 6≈, using a two way
correspondence between these formulae and a decidable subclass of TAGED.

This latter construction can be straightforwardly adapted to establish a two way cor-
respondence between ∃MSO[+1,≈, 6≈,N] and TAG[≈, 6≈,N].

Theorem 7.2. ∃MSO[+1,≈, 6≈,N] is decidable on ranked terms.

Proof. Following the same proof scheme as [FTT08], we show that for every closed formula
φ in ∃MSO[+1,≈, 6≈,N], we can construct a TAG[≈, 6≈,N] recognizing exactly the set of models
of φ. Then, the decidability of the logic follows from Theorem 5.24.

Without loss of generality, we may assume that φ is of the form

∃X1 . . . ∃Xn (φ0(X) ∧ φ≈(X) ∧ φN(X))

where φ0(X) is a MSO[+1] formula with free variables X = X1, . . . ,Xn, and φ≈(X) and
φN(X) are Boolean combinations of atoms of the respective form Xi ≈ Xj, Xi 6≈ Xj and
∑

ai · |Xi| ≥ a,
∑

ai · ‖Xi‖ ≥ a. Moreover, we shall also assume that φ≈(X) and φN(X) are
conjunctions of atoms or negations of atoms of the above form. Otherwise, we put them
into disjunctive normal form and then split φ into an equivalent formula φ1∨ . . .∨φk, where
each φi, i ≤ k, is of the form requested: φi = ∃X1 . . . ∃Xn (φi

0(X)∧φi
≈(X)∧φi

N
(X)), where

φi
0(X) ∈ MSO[+1] and φi

≈(X) and φi
N
(X) are conjunctions of atoms or negations of atoms

as above, and we solve satisfiability separately for each φi.
First, we recall the definitions of [TW68] of the signature Σ×{0, 1}n, where the arity of

a symbol 〈f, b1, . . . , bn〉 is the arity of f , and of the term t⊗ σ over this signature obtained,

from a term t over Σ and a mapping σ : {X1, . . . ,Xn} → 2Pos(t), by relabeling every
position p ∈ Pos(t) by 〈t(p), b1, . . . , bn〉, where for each i ≤ n, bi = 1 if p ∈ σ(Xi) and bi = 0
otherwise. Also, from [TW68] we get the construction of a TA A0 = 〈Q,Σ× {0, 1}n, F,∆0〉
which recognizes the set of terms {t⊗ σ ∈ T

(
Σ× {0, 1}n

)
| t, σ |= φ0(X)}.

Second, following a construction in [NPTT05], we shift in A0 the bit-vectors from the
signature into the state symbols, obtaining a TA A′

0 = 〈Q×{0, 1}n,Σ, F ×{0, 1}n,∆〉 where
∆ contains all the transition rules

f
(
〈q1, b1,1, . . . , b1,n〉, . . . , 〈qm, bm,1, . . . , bm,n〉

)
→ 〈q, b1, . . . , bn〉

36 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

such that f ∈ Σ, 〈f, b1, . . . , bn〉
(
q1, . . . , qm

)
→ q ∈ ∆0 and b1,1, . . . , b1,n, . . . , bm,1, . . . , bm,n ∈

{0, 1}. This automaton A′
0 recognizes the projection (on the first components) of the

terms recognized by A0, i.e. it recognizes the set of terms t ∈ T (Σ) such that there exists

σ : {X1, . . . ,Xn} → 2Pos(t) satisfying t, σ |= φ0(X).
Third, we obtain a constraint C by rewriting all the atoms of φ≈(X)∧ φN(X) with the

following rules:

Xi ≈ Xj 7→
∧

bi=b′
j
=1

〈q, b1, . . . , bn〉 ≈ 〈q′, b′1, . . . , b
′
n〉

Xi 6≈ Xj 7→
∧

bi=b′j=1

〈q, b1, . . . , bn〉 6≈ 〈q′, b′1, . . . , b
′
n〉

∑

i

ai · |Xi| ≥ a 7→
∑

i

∑

bi=1

ai · |〈q, b1, . . . , bn〉| ≥ a

∑

i

ai · ‖Xi‖ ≥ a 7→
∑

i

∑

bi=1

ai · ‖〈q, b1, . . . , bn〉‖ ≥ a

The TAG[≈, 6≈,N] A = 〈Q× {0, 1}n,Σ, F × {0, 1}n,∆, C〉 recognizes {t ∈ L(A) | t |= φ}.

The above transformation also works in the other direction (this result is not necessary
for the proof of Theorem 7.2 though): for every TAG[≈, 6≈,N], we can construct a formula φ
in ∃MSO[+1,≈, 6≈,N], whose set of models is L(A).

Note that ∃MSO[+1,≈] is strictly more expressive than MSO, since the equality between
subterms is not expressible in MSO (see e.g. [CDG+07]). The TA construction of [TW68]
for the decidability of MSO[+1] involves the closure under projection on components for TA
languages over signatures made of tuples of symbols (for the elimination of ∃ quantifiers).
TAG languages are not closed under projection on some components of tuples, as it is already
the case for simpler form tree automata with equality [Tre00]. Thus, the same approach
cannot be used to prove decidability of emptiness of TAG.

7.2. MSO on Unranked Ordered Terms. In unranked ordered terms of U(Σ), the
number of children of a position is unbounded. Therefore, for navigating in such terms with
logical formulae, the successor predicates Si(x, y) of Section 7.1 are not sufficient. In order
to describe unranked ordered terms as models, we replace these above predicates Si by:

• S↓(x, y) (y is a child of x),
• S→(x, y) (y is the successor sibling of x).

The type of these predicates is still called +1. Note that the above predicates S1, S2, . . .
can be expressed using these two predicates only.

The satisfiability of the above atoms by a term t ∈ U(Σ) and a variable assignment σ
is defined as follows:

t, σ |= S↓(x, y) iff there exists i such that σ(x).i = σ(y),
t, σ |= S→(x, y) iff there exists p ∈ Pos(t) and i such that σ(x) = p.i

and σ(y) = p.(i+ 1).

It is shown in [SSM03] that the extension MSO[+1, |.|Z] is undecidable for unranked ordered
terms when counting constraints are applied to sibling positions.

Using the results of Section 6, and an easy adaptation of the automata construction in
the proof of Theorem 7.2, we can generalize Theorem 7.2 to ∃MSO over unranked ordered
terms.

TA WITH LOCAL AND GLOBAL CONSTRAINTS 37

Theorem 7.3. ∃MSO[+1,≈, 6≈,N] is decidable on unranked ordered terms.

8. Conclusion

We have answered (positively) the open problem of decidability of the emptiness problem
for the TAGED [FTT08], by proposing a decision algorithm for a class TABG of tree automata
with global constraints strictly extending the global constraints of TAGED in several direc-
tions. Moreover, the TABG combine the global constraints with local tests between brother
subterms a la [BT92] and equality interpreted modulo flat theories. Our method for empti-
ness decision, presented in Section 5 appeared to be robust enough to deal with several
extensions like global counting constraints, and generalization to unranked terms.

A challenging question would be to investigate the precise complexity of the emptiness
problem, avoiding the use of Higman’s Lemma in the algorithm. For instance, in [FTT08], it
is shown, using a direct reduction into solving positive and negative set constraints [CP94,
GTT94, Ste94], that emptiness is decidable in NEXPTIME for TAGED (i.e. for TAG∧[6≈]
modulo an empty theory and such that in every atomic constraint q 6≈ q′, q and q′ are
distinct states). On the other hand, the best known lower bound for emptiness decision for
TABG is EXPTIME-hardness (this holds already for TAG∧[≈] as shown in [FTT08]).

Another interesting problem mentioned in the introduction is the combination of the
HAG of Section 6 with the unranked tree automata with tests between siblings, UTASC [WL07,
LW09]. Perhaps, the techniques of Section 5 could help for the emptiness decision for a
formalism using for instance MSO binary querying (following e.g. [NPTT05]) for selecting
the test position of global constraints.

Finally, another branch of research related to TABG concerns automata and logics for
data trees, i.e. trees labeled over an infinite (countable) alphabet (see [Seg06] for a survey).
Indeed, data trees can be represented by terms over a finite alphabet, with an encoding of
the data values into terms. This can be done in several ways, and with such encodings,
the data equality relation becomes the equality between subterms. Therefore, this could be
worth studying in order to relate our results on TAG to decidability results on automata or
logics on data trees like those in [JL07, BMSL09].

Acknowledgement

We thank Luc Segoufin for many valuable discussions and the anonymous referees at LICS
2010 for their useful comments and suggestions.

References

[ANR05] S. Anantharaman, P. Narendran, and M. Rusinowitch. Closure properties and decision problems
of DAG automata. Information Processing Letters, 94(5):231–240, 2005.

[BCG+10] L. Barguñó, C. Creus, G. Godoy, F. Jacquemard, and C. Vacher. The emptiness problem for
tree automata with global constraints. In Logic in Computer Science (LICS), pages 263–272,
2010.

[BMSL09] M. Bojanczyk, A. Muscholl, T. Schwentick, and Segoufin L. Two-variable logic on data trees
and applications to XML reasoning. JACM, 56(3), 2009. A preliminary version was presented
at PODS 06.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New
York, 1998.

38 L. BARGUÑÓ, C. CREUS, G. GODOY, F. JACQUEMARD, AND C. VACHER

[BT92] B. Bogaert and S. Tison. Equality and Disequality Constraints on Direct Subterms in Tree
Automata. In 9th Symp. on Theoretical Aspects of Computer Science, STACS, volume 577 of
LNCS, pages 161–171. Springer, 1992.

[BT05] A. Bouajjani and T. Touili. On computing reachability sets of process rewrite systems. In
Jürgen Giesl, editor, Term Rewriting and Applications, 16th International Conference, RTA
2005, Nara, Japan, April 19-21, 2005, Proceedings, volume 3467 of Lecture Notes in Computer
Science, pages 484–499. Springer, 2005.

[CC05] H. Comon and V. Cortier. Tree automata with one memory, set constraints and cryptographic
protocols. Theoretical Computer Science, 331(1):143–214, February 2005.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. http://tata.gforge.inria.fr,
2007.

[Cha99] W. Charatonik. Automata on DAG representations of finite trees. Technical Report Technical
Report MPI-I-99-2-001, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1999.

[CHJ94] H. Comon, M. Haberstrau, and J.P. Jouannaud. Syntacticness, cycle-syntacticness, and shallow
theories. Information and Computation, 111(1):154–191, 1994.

[CP94] W. Charatonik and L. Pacholski. Set constraints with projections are in NEXPTIME. In Pro-
ceedings of the 35th Symp. Foundations of Computer Science, pages 642–653, 1994.

[DL06] S. Dal and D. Lugiez. XML schema, tree logic and sheaves automata. Journal Applicable Algebra
in Engineering, Communication and Computing, 17(5):337–377, 2006.

[FGVTT04] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term Rewriting
Systems. Journal of Automated Reasoning, 33 (3-4):341–383, 2004.

[FTT07] E. Filiot, J.-M. Talbot, and S. Tison. Satisfiability of a spatial logic with tree variables. In
Proceedings of the 21st International Workshop on Computer Science Logic (CSL 2007), volume
4646 of Lecture Notes in Computer Science, pages 130–145. Springer, 2007.

[FTT08] E. Filiot, J.-M. Talbot, and S. Tison. Tree automata with global constraints. In 12th Interna-
tional Conference in Developments in Language Theory (DLT 2008), volume 5257 of Lecture
Notes in Computer Science, pages 314–326. Springer, 2008.

[Gal91] J. H. Gallier. What’s so special about kruskal’s theorem and the ordinal gamma0? a survey of
some results in proof theory. Annals of Pure Applied Logic, 53(3):199–260, 1991.

[GTT94] R. Gilleron, S. Tison, and M. Tommasi. Some new decidability results on positive and negative
set constraints. In Proceedings, First International Conference on Constraints in Computational
Logics, volume 845 of LNCS, pages 336–351. Spinger, 1994.

[JKV09] F. Jacquemard, F. Klay, and C. Vacher. Rigid tree automata. In Adrian Horia Dediu, Armand
Mihai Ionescu, and Carlos Mart́ın-Vide, editors, Proceedings of the 3rd International Conference
on Language and Automata Theory and Applications (LATA’09), volume 5457 of Lecture Notes
in Computer Science, pages 446–457, Tarragona, Spain, April 2009. Springer.

[JL07] M. Jurdzinski and R. Lazic. Alternation-free modal mu-calculus for data trees. In Logic in
Computer Science (LICS), pages 131–140. IEEE Computer Society, 2007.

[KR02] F. Klaedtke and H. Ruess. Parikh automata and monadic second-order logics with linear cardi-
nality constraints. Technical Report 177, Intitute of Computer Science at Freiburg University,
2002.

[LW09] C. Löding and K. Wong. On nondeterministic unranked tree automata with sibling con-
straints. In In IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS 2009), Leibniz International Proceedings in Informatics.
Schloss Dagstuhl - Leibniz Center for Informatics, 2009.

[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. PhD thesis,
Laboratoire d’Informatique Fondamentale de Lille, Université des Sciences et Technologies de
Lille, Villeneuve d’Ascq, France, 1981.

[Mur99] M. Murata. Hedge automata: a formal model for XML schemata. Technical report, Fuji Xerox
INformation Systems, 1999.

[Nie96] R. Nieuwenhuis. Basic paramodulation and decidable theories (extended abstract). In Logic in
Computer Science (LICS), pages 473–482, 1996.

http://tata.gforge.inria.fr

TA WITH LOCAL AND GLOBAL CONSTRAINTS 39

[NPTT05] J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree automata. In Pro-
ceedings of the 10th International Symposium on Database Programming Languages (DBPL),
volume 3774 of Lecture Notes in Computer Science, pages 217–231. Springer, 2005.

[Sch07] T. Schwentick. Automata for XML - a survey. J. Comput. Syst. Sci., 73(3):289–315, 2007.
[Seg06] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Computer

Science Logic, volume 4207 of LNCS. Springer, 2006.
[SSM03] H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries. In Principle of

Databases Systems (PODS), pages 155–166. ACM Press, 2003.
[Ste94] K. Stefansson. Systems of set constraints with negative constraints are nexptime-complete. In

Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science, pages 137–141.
IEEE Computer Society Press, 1994.

[Tre00] R. Treinen. Predicate logic and tree automata with tests. In J. Tiuryn, editor, Proc. of the 3rd
Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS, volume
1784 of LNCS, pages 329–343. Springer, 2000.

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical System Theory, 2:57–82, 1968.

[VGL07] K. N. Verma and J. Goubault-Larrecq. Alternating two-way ac-tree automata. Information and
Computation, 205(6):817–869, 2007.

[WL07] K. Wong and C. Löding. Unranked tree automata with sibling equalities and disequalities. In In
Proceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP), volume 4596 of LNCS, pages 875–887. Springer, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Related Work

	2. Preliminaries
	2.1. Terms, Positions, Replacements
	2.2. Tree automata
	2.3. Tree automata with local constraints between brothers
	2.4. Term equations
	2.5. Well quasi-orderings

	3. Tree Automata with Global Constraints
	3.1. Expressiveness
	3.2. Decision Problems

	4. Arithmetic Constraints and Reduction to TABG
	4.1. Global Integer Linear Constraints
	4.2. Global Natural Linear Constraints

	5. Emptiness Decision Algorithm
	5.1. Global Pumpings
	5.2. A well quasi-ordering
	5.3. Mapping a run to a sequence of the well quasi-ordered set

	6. Unranked Ordered Trees
	7. Logics on Trees
	7.1. MSO on Ranked Terms
	7.2. MSO on Unranked Ordered Terms

	8. Conclusion
	Acknowledgement
	References

