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Abstract. We study rational streams (over a field) from a coalgebraic perspective. Ex-
ploiting the finality of the set of streams, we present an elementary and uniform proof of
the equivalence of four notions of representability of rational streams: by finite dimensional
linear systems; by finite stream circuits; by finite weighted stream automata; and by finite
dimensional subsystems of the set of streams.

1. Introduction

A stream over a given set A is an infinite sequence of elements of A. Streams are abound
in both mathematics and computer science. Think of limits in mathematics, typically defined
in terms of converging sequences, and of Taylor series of analytical functions. In computer
science, streams occur in various fields such as data flow, infinite data types, semantics, formal
power series, and functional programming.

In this paper, we study rational streams (over a field). They are well-known in mathe-
matics, notably system theory, but have not received much attention in computer science. In
contrast, a basic ingredient in any introductory course in the theory of computation is the
notion of rational language (also called regular language). Rational languages are a proto-
typical example of a finitely presentable data type: a language is rational if and only if it is
recognisable by a finite automaton.

As we shall see, rational streams are similarly finitely representable, in various ways.
More specifically, a stream is rational iff it satisfies one of the following equivalent conditions:

(a) it is representable by a finite dimensional linear system;
(b) it is computable by a finite stream circuit;
(c) it is representable by a finite weighted stream automaton.

We shall explain the details of all of this as we will go along, but for now it is worthwhile
pointing out that condition (c) is similar, in the case of languages, to being recognisable by a
finite automaton. Condition (b) is particularly nice and relevant for computer scientists, since
it provides a very elementary characterisation of rational streams in terms of finite memory
(registers) and feedback.
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Streams are for the theory of coalgebra, one could say, what the natural numbers are for
algebra: a canonical example illustrating some of the essential notions of the theory. The set of
natural numbers is an initial algebra (and satisfies a principle of induction). Dually, the set of
streams is a final coalgebra (and satisfies a principle of coinduction). In the present paper, the
proofs of the equivalence of the above three conditions will in essence be based on the finality
of the set of streams. Finality moreover provides yet another equivalent characterisation of
rationality. A stream is rational if and only if

(d) it generates a finite dimensional subsystem of the set of all streams.

As we shall see, this criterion is particularly useful for proving that a stream is not rational.
Most of the above and of the contents of this paper is already known, but often at

different places in the literature and typically formulated in different languages, as it were.
The equivalence of rationality and condition (a) above is taken as a definition in the theory
of formal power series [BR88]. The equivalence of rationality and condition (b) is proved
in system theory and in signal processing, where stream circuits are known under various
names (such as signal flow graphs) [Kai80, Lah98]; see also our earlier paper [Rut07]. The
equivalence between (a) and (c) is known in automata theory. Condition (d) occurs in some
of our own work [Rut05b]; its use here to disprove rationality of a stream seems to be new.

All in all, our main goal has been to present rational streams and all of their characteri-
sations in one place and in elementary and uniform terms. Moreover, this paper is intended
as a form of publicity for rational streams to the computer science community. They provide
a basic and simple model of finite memory and feedback and deserve, therewith, a place in
the heart of the foundations of the theory of computing. Finally, our treatment of rational
streams serves as a good illustration of the relevance of the combined use of both algebraic
and coalgebraic methods in computer science.

2. Rational streams

We define the set of streams over a given set A by

Aω = {σ | σ : {0, 1, 2, . . .} → A}

We will denote elements σ ∈ Aω by σ = (σ(0), σ(1), σ(2), . . .). We define the stream derivative
of a stream σ by

σ′ = (σ(1), σ(2), σ(3), . . .)

and we call σ(0) the initial value of σ. For a ∈ A and σ ∈ Aω we use the following notation:

a : σ = (a, σ(0), σ(1), σ(2), . . .)

For instance, σ = σ(0) : σ′, for any σ ∈ Aω. (In computer science, the operations of initial
value and derivative are known as head and tail.)

If the set A carries some algebraic structure then typically this induces some structure
on the set Aω as well. In particular, if the set A is a (semi-)ring

A = (A, +, · , 0, 1)

(see the Appendix for the full definition) then the set Aω of streams over A can be equipped
with operations and constants that allow the formulation of an elementary but useful calculus.
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So let A be a (semi-)ring. Examples are the set of real numbers (which is also a field)
and the set of linear transformations on a vector space. We define the following operators on
the set Aω of streams over A, for all c ∈ A, σ, τ ∈ Aω, n ≥ 0:

[c] = (c, 0, 0, 0, . . .) (often simply denoted again by c)

X = (0, 1, 0, 0, 0, . . .)

(σ + τ)(n) = σ(n) + τ(n) [sum]

(σ × τ)(n) =
n

∑

i=0

σ(i) · τ(n − i) [convolution product]

(where · denotes multiplication in the ring A). For the above definitions, it is already
sufficient if A is a semi-ring. If A is moreover a ring then it comes equipped with an additive
inverse, which extends to streams, for σ ∈ Aω, as follows:

−σ = (−σ(0), −σ(1), −σ(2), . . .)

(here the minus symbols on the right are from the ring A). If the initial value σ(0) of a stream
σ has a multiplicative inverse σ(0)−1 in A then σ has a (unique) multiplicative inverse σ−1

in Aω:
σ−1 × σ = [1]

As usual, we shall often write 1/σ for σ−1. If · and hence × is commutative, then we also
write σ/τ for σ × τ−1.

In general, the nth element σ(n) of a stream σ is trivially given by

σ(n) = σ(n)(0)

where the superscript (n) denotes the nth stream derivative. In [Rut05b], various rules for
the computation of stream derivatives are given. For the examples used in the present paper,
all we shall be needing is the very simple rule presented in Corollary 2.5 below.

The stream operators introduced above are well behaved in that they inherit the proper-
ties of the operators of the underlying (semi-)ring. Notably sum and product are associative;
sum is commutative but product × is only commutative if · is; [0] is the additive identity,
[1] is the multiplicative identity. Another property we shall be using is the following. For all
σ ∈ Aω,

X × σ = σ ×X (2.1)

Note that this property also holds for (semi-)rings A in which multiplication is not commu-
tative.

Since X2 = (0, 0, 1, 0, 0, 0, . . .), X3 = (0, 0, 0, 1, 0, 0, 0, . . .) and so on, the following infinite
sum is well defined, for all σ ∈ Aω:

σ = σ(0) + (σ(1) ×X) + (σ(2) ×X2) + · · ·

(Note that we write σ(i) for [σ(i)]; similarly below.) It shows that σ can be viewed as a
formal power series in the indeterminate X (which here in fact is a constant stream). What
distinguishes our approach from the classical theory of formal power series is a systematic
use of the operation of stream derivative and the universal property of finality it induces (cf.
Section 4). This leads to a somewhat non-standard algebraic calculus, which we call stream
calculus.
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The following identity shows how one can compute a stream from its initial value and its
derivative. Since this amounts to a form of (stream) integration it is called the fundamental
theorem of stream calculus [Rut05b].

Theorem 2.1 (Fundamental theorem). Let A be a (semi-)ring. For all σ ∈ Aω,

σ = σ(0) + (X × σ′)

Proof. Immediate from the fact that X × σ′ = (0, σ(1), σ(2), σ(3), . . .). ✷

For future reference, we list the following identities on initial values, which are immediate
from the definition of the operations on streams.

Proposition 2.2 (Initial values). For all σ ∈ Aω,

(σ + τ)(0) = σ(0) + τ(0)

(σ × τ)(0) = σ(0) · τ(0)

σ−1(0) = σ(0)−1

where in the last identity σ(0) is assumed to have a multiplicative inverse in A. ✷

Next we introduce the notion of rational stream.

Definition 2.3 (Rational streams). We call a stream π polynomial if it is of the form

π = c0 + (c1 ×X) + (c2 ×X2) + · · · + (ck ×Xk)

= (c0, c1, c2, . . . , ck, 0, 0, 0, . . .)

A stream ρ is rational if it is the quotient

ρ = σ/τ = σ × τ−1

of two polynomial streams σ and τ for which τ(0)−1 exists. We denote the set of all rational
streams over A by

Rat(Aω) = {σ ∈ Aω | σ is rational }

✷

Remark 2.4. In the literature, one also encounters the notion of rational stream defined as
being ultimately periodic. In the present setting, these streams can be simply characterized
as having only finitely many distinct derivatives. As we shall see in Section 5, it follows from
this basic observation that ultimately periodic streams are a special case of rational streams
in our sense. ✷

Theorem 2.1 (together with Proposition 2.2) gives an easy calculation rule for the computation
of stream derivatives. First note that for all σ ∈ Aω,

(X × σ)′ = σ (2.2)

Furthermore we have, for any σ ∈ Aω, that X × σ′ = σ − σ(0), by Theorem 2.1, and
(X × σ′)′ = σ′, by (2.2). As a consequence, we have the following.

Corollary 2.5. For all σ ∈ Aω,
σ′ = (σ − σ(0))′

✷
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This trivial identity makes the computation of stream derivatives often surprisingly simple.

Example 2.6. Let

σ =
1

1 − (c×X)

with c ∈ A. We compute

σ′ = (σ − σ(0))′ [Corollary 2.5]

=

(

1

1 − (c×X)
− 1

)′

[Proposition 2.2]

=

(

c×X

1 − (c×X)

)′

=

(

X ×
c

1 − (c×X)

)′

[identity (2.1)]

=
c

1 − (c×X)
[identity (2.2)]

and, more generally,

σ(n) =
cn

1 − (c×X)

Using the fact that σ(n) = σ(n)(0), this yields the following well-known expression for this
prototypical example of a rational stream:

1

1 − (c×X)
= (1, c, c2, . . .) (2.3)

Similarly for

τ =
1

(1 −X)2

one computes

τ ′ = (τ − τ(0))′

=

(

1

(1 −X)2
− 1

)′

=

(

2X −X2

(1 −X)2

)′

=

(

X ×
2 −X

(1 −X)2

)′

=
2 −X

(1 −X)2

and again more generally,

τ (n) =
(n+ 1) − (n×X)

(1 −X)2

leading to
1

(1 −X)2
= (1, 2, 3, . . .)

✷
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3. Streams and vector spaces

Let V be a vector space (over a field k). The set

V ω = {σ | σ : {0, 1, 2, . . .} → V }

of streams over V is itself a vector space, with addition and scalar multiplication given, for
n ≥ 0 and c ∈ k, by

(σ + τ)(n) = σ(n) + τ(n) (c · σ)(n) = c · σ(n)

where on the right we use vector addition and scalar multiplication in the vector space V .
For future reference, we denote the operations of initial value and derivative by i : V ω → V

and d : V ω → V ω: for all σ ∈ V ω,

i(σ) = σ(0) d(σ) = σ′

Proposition 3.1. The operations of initial value i : V ω → V and derivative d : V ω → V ω

are linear.

Proof. Immediate from

(x · σ + y · τ)(0) = x · σ(0) + y · τ(0) (x · σ + y · τ)′ = x · σ′ + y · τ ′

for all x, y ∈ k and σ, τ ∈ V ω. ✷

3.1. Streams of linear transformations. Next we define streams of linear transformations.
To this end, we first note that the set

L(V, V ) = {F : V → V | F is a linear transformation }

(which we shall usually denote by L) is a ring

(L,+L, ·L, 0L, 1L )

Addition F +L G, multiplication F ·L G, and negation −LF are defined, for all F,G ∈ L and
v ∈ V , by

(F +L G)(v) = F (v) +G(v)

(F ·L G)(v) = F ◦G(v)

(−LF )(v) = −F (v)

The neutral elements 0L : V → V and 1L : V → V for sum and multiplication are given, for
all v ∈ V , by 0L(v) = 0V (the zero vector in V ) and 1L(v) = v.

The set L of linear transformations on a vector space V being a ring, we have, by the
definitions of Section 2, a calculus of streams of linear transformations. Streams φ ∈ Lω are
infinite sequences φ = (φ(0), φ(1), φ(2), . . .) of linear transformations φ(i) : V → V . The
operations of sum and (convolution) product are given, for φ,ψ ∈ Lω, by

(φ+ ψ)(n) = φ(n) +L ψ(n)

(φ× ψ)(n) =

n
∑

i=0

φ(i) ·L ψ(n− i)

=
n

∑

i=0

φ(i) ◦ ψ(n − i)
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As before we also have, for every F ∈ L, a constant stream

[F ] = (F, 0L, 0L, 0L, . . .)

In particular we also have
[1L] = (1L, 0L, 0L, 0L, . . .)

which we shall often simply denote by 1. The constant stream X now looks like

X = (0L, 1L, 0L, 0L, 0L, . . .)

Every stream φ ∈ Lω has an additive inverse −φ given, as before, by

−φ = (−φ(0), −φ(1), −φ(2), . . .)

A stream φ ∈ Lω has a (unique) multiplicative inverse φ−1 in Lω:

φ−1 × φ = 1 (= [1L] )

whenever the linear transformation φ(0) : V → V has a multiplicative inverse in the ring L,
that is, whenever φ(0) is invertible.

Example 3.2. For any linear transformation F ∈ L, we define the stream F̃ ∈ Lω by

F̃ =
1

1 − ([F ] ×X)

As before, it is a prototypical example of a rational stream. Note that

1 − ([F ] ×X) = (1L, −F, 0L, 0L, 0L, . . .)

indeed is invertible in Lω as 1L is trivially invertible in L. As an instance of identity (2.3) in
Example 2.6, we have

F̃ =
1

1 − ([F ] ×X)
= (1, F, F 2, · · · ) (3.1)

where now Fn+1 = F ◦ Fn, all n ≥ 0. ✷

So far we have looked at the set L = L(V, V ) of streams of linear transformations from
a vector spave V to itself. It will also be convenient to consider (streams of) linear transfor-
mations between two different vector spaces V and W :

L(V,W ) = {F : V →W | F is a linear transformation }

Note that L(V,W ) is not a (semi-)ring — we cannot define multiplication to be composition
as we did with L(V, V ) — and as a consequence the set L(V,W )ω of streams over L(V,W )
does not have as much structure as the set L(V, V )ω. It will be convenient, however, to use
the following generalised version of the operation of convolution product. For vector spaces
U, V,W and for all φ ∈ L(U, V )ω and ψ ∈ L(V,W )ω we define ψ × φ ∈ L(U,W )ω, for all
n ≥ 0, by

(ψ × φ)(n) =
n

∑

i=0

ψ(i) ◦ φ(n− i) (3.2)

One can also apply streams of linear transformations to streams of vectors, as follows. For
all φ ∈ L(V,W )ω and σ ∈ V ω we define φ× σ ∈W ω, for all n ≥ 0, by

(φ× σ)(n) =

n
∑

i=0

φ(i) (σ(n − i)) (3.3)
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For a linear transformation H : V →W , we put again

[H] = (H, 0L, 0L, 0L, . . .)

(where now 0L is the everywhere zero transformation from V to W ). As a special case of
(3.3) we have

[H] × σ = (H(σ(0)), H(σ(1)), H(σ(2)), . . .)

Note that the set of streams L(V, V )ω has also its own operation of convolution product,
which interacts nicely with the product defined in (3.3). For instance, for φ,ψ ∈ L(V, V )ω

and σ ∈ V ω,
(φ× ψ) × σ = φ× (ψ × σ) (3.4)

3.2. Streams of matrices. Since linear transformations between finite dimensional vector
spaces (over a field k) correspond to matrices (with entries in k), streams of linear trans-
formations correspond to streams of matrices. Here we show how rational streams of linear
transformations correspond to matrices with rational streams (over k) as entries.

First some conventions. For any set A and n ≥ 1, we denote the elements v ∈ An by
v = (v1, . . . , vn). It will sometimes be convenient to switch between streams of tuples and
tuples of streams. We define the transpose as follows:

(−)T : (An)ω → (Aω)n (σT )i(j) = (σ(j))i (3.5)

This function is an isomorphism and has an inverse which we denote again by

(−)T : (Aω)n → (An)ω

Now let k be a field. A linear transformation F : kn → km between finite dimensional
vector spaces corresponds to an m× n matrix MF with values Fij in k:

F : kn → km MF =











F11 F12 · · · F1n

F21 F22 · · · F2n
...

...
. . .

...
Fm1 Fm2 · · · Fmn











Here and in what follows, the matrix is with respect to the standard basis

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

of kn and km. Any stream φ = (φ(0), φ(1), φ(2), . . .) of linear transformations φ(i) : kn → km

corresponds to a stream of matrices

(Mφ(0), Mφ(1), Mφ(2), . . .) = Mφ(0) + (Mφ(1) ×X) + (Mφ(2) ×X2) + · · ·

If we consider Mφ(i) ×Xi as an m× n matrix obtained from Mφ(i) by multiplying each of its

entries by Xi, then the infinite sum on the right can itself be viewed as an m× n matrix Mφ

with entries in kω:

(Mφ)ij = (Mφ(0))ij + ((Mφ(1))ij ×X) + ((Mφ(2))ij ×X2) + · · · (3.6)
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The correspondence between φ and Mφ is given by the following commutative diagram:

(kn)ω
φ×(−)

//

(−)T

��

(km)ω

(−)T

��

(kω)n
Mφ×(−)

// (kω)m

(φ× σ)T = Mφ × σT (3.7)

Here φ× σ is as defined in (3.3) and Mφ × σT denotes matrix to vector multiplication.
Consider L = L(kn, kn) and recall that [1L] = (1L, 0L, 0L, 0L, . . .). Let I be the n × n

identity matrix over k. We have:
M[1L] = I (3.8)

Furthermore addition and convolution product of streams of linear transformations, on the
one hand, and matrix addition and multiplication, on the other, are related as follows:

Mφ+ψ = Mφ +Mψ

Mφ×ψ = Mφ ×Mψ (3.9)

As a consequence, we have the following proposition.

Proposition 3.3. Let ρ ∈ L(kn, kn)ω be a stream of linear transformations ρ(i) : kn → kn.
If ρ is rational then Mρ defined in (3.6) has entries in Rat(kω).

Proof: Consider two polynomial streams φ,ψ ∈ L(kn, kn)ω. The entries of the matrices Mφ

and Mψ are polynomial streams in kω. If ψ moreover has an inverse ψ−1 then (3.8) and (3.9)
imply Mψ−1 = (Mψ)−1, which has values in Rat(kω). It follows that Mφ×ψ−1 = Mφ× (Mψ)−1

has values in Rat(kω). ✷

Example 3.4. Let k = IR and let F,G : IR2 → IR2 be linear transformations defined by

MF =

(

1 1
0 0

)

MG =

(

0 −1
1 2

)

We compute the matrices of the rational streams F̃ = (1 − (F ×X) )−1 and G̃ = (1 − (G×
X) )−1:

MF̃ = (M1−(F×X))
−1 =

(

1 −X −X
0 1

)−1

=

(

1
1−X

X
1−X

0 1

)

MG̃ = (M1−(G×X))
−1 =

(

1 X
−X 1 − 2X

)−1

=
1

(1 −X)2
×

(

1 − 2X −X
X 1

)

✷
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4. Linear representations

We introduce linear systems and show how they can be used as representations for
streams. In particular, we shall show how finite dimensional linear systems represent ra-
tional streams.

Let O be a vector space the elements of which we think of as outputs. A linear system
with output in O is a pair (V, 〈H,F 〉) consisting of a vector space V called the state space
together with a linear transformation F : V → V called the transition function (or dynamics)
and a linear transformation H : V → O called the output function.

A linear system with output in O — or linear O-system for short — is in other words a
coalgebra of the functor

O × (−) : V ect→ V ect

on the category V ect of vector spaces and linear transformations. As a consequence, there
is the following (standard) notion of homomorphism. A homomorphism of linear systems
(V, 〈HV , FV 〉) and (W, 〈HW , FW 〉) is a linear transformation f : V →W such that HW ◦ f =
HV and FW ◦ f = f ◦ FV :

V
f

//

〈HV ,FV 〉
��

W

〈HW ,FW 〉
��

O × V
1×f

// O ×W

We saw (in Section 3) that if O is a vector space then Oω is also a vector space. Since the
operations of initial value i : Oω → O and derivative d : Oω → Oω are linear transformations
(Proposition 3.1), (Oω, 〈d, i〉) is a linear O-system. It is final among all linear O-systems.

Proposition 4.1 (Finality). From every linear O-system (V, 〈H,F 〉) there exists precisely
one homomorphism to (Oω, 〈i, d〉):

V
f

//_____

〈H,F 〉
��

Oω

〈i,d〉
��

O × V
1×f

// O ×Oω

Proof. There exists precisely one function f : V → Oω making the diagram above commute.
It is given by

f(v) = (H(v), H ◦ F (v), H ◦ F 2(v), . . .)

for all v ∈ V and it is linear because both H and F are. ✷

Definition 4.2 (Linear representation). In the situation above, we call the stream f(v) the
final behaviour of v. We call the linear O-system (V, 〈H,F 〉) with designated point v ∈ V a
linear representation for the stream σ ∈ Oω if f(v) = σ. ✷

Next we look at the special case where both O and V are finite dimensional vector spaces
over k. So let n,m ≥ 1, let

O = km, V = kn

and consider a linear km-system (kn, 〈H,F 〉) with dynamics F : kn → kn and output H :
kn → km. The final behaviour f : kn → (km)ω will map any state v ∈ kn to a stream of
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vectors in km. We claim that the transpose of the latter consists of a vector of m rational
streams in kω.

Theorem 4.3. Let n,m ≥ 1 and let (kn, 〈H,F 〉) be a finite dimensional km-system. Let

f : kn → (km)ω

be the final behaviour homomorphism. Then for all v ∈ kn,

f(v)T ∈ Rat(kω)m

Proof. First we observe that for every v ∈ V , we can express f(v) in terms of convolution
products as follows:

f(v) = (H(v), H ◦ F (v), H ◦ F 2(v), . . .)

= (H, 0, 0, 0, . . .) × (1, F, F 2, . . .) × (v, 0, 0, 0, . . .) [using (3.3) and (3.4)]

= (H, 0, 0, 0, . . .) × F̃ × (v, 0, 0, 0, . . .) [using (3.1)]

= [H] × F̃ × [v]

By (3.7), the following diagram commutes:

(kn)ω
F̃×(−)

//

(−)T

��

(kn)ω

(−)T

��

[H]×(−)
// (km)ω

(−)T

��

(kω)n
M

F̃
×(−)

// (kω)n
M[H]×(−)

// (kω)m

(4.1)

or, equivalently,
([H] × F̃ × (−))T = M[H] ×MF̃ × (−)T

It follows that the final behaviour f satisfies

f(v)T = ([H] × F̃ × [v])T = M[H] ×MF̃ × [v]T (4.2)

The matrix M[H] has entries in (k and thus in) Rat(kω). Since F̃ = (1 − (F × X))−1 is a
rational stream, the matrix MF̃ has values in Rat(kω), by Proposition 3.3. As a consequence,

f(v)T is obtained from [v]T by multiplication with an m× n matrix with values in Rat(kω).
This proves the theorem. ✷

Since finite dimensional linear systems are finitary objects (being completely determined by
two finite matrices), the relevance of Theorem 4.3 lies in the fact that it shows that such
finitary systems represent (vectors of) rational streams. In Section 5, we will see that any
rational stream can be represented in this manner. But first we look at a few examples
illustrating the present theorem.

Example 4.4. Let k = IR and consider the linear system (IR2, 〈H,F 〉) with output H : IR2 →
IR and dynamics F : IR2 → IR2 given by

H =
(

1 1
)

F =

(

1 1
0 0

)

The matrix MF̃ corresponding to F̃ has been computed in Example 3.4:

MF̃ =

(

1
1−X

X
1−X

0 1

)



12 J. RUTTEN

The final behaviour f〈H,F 〉 : IR2 → IRω of this system is given, for any (a, b) ∈ IR2, by

f〈H,F 〉(a, b) =
(

1 1
)

×

(

1
1−X

X
1−X

0 1

)

×

(

a
b

)

=
a+ b

1 −X

(omitting square brackets around a and b as usual). Repeating the example with a different
output function H̄ and the same dynamics F :

H̄ =
(

1 2
)

F =

(

1 1
0 0

)

leads to the following final behaviour:

f〈H̄,F 〉(a, b) =
(

1
1−X

2−X
1−X

)

×

(

a
b

)

=
a+ 2b− bX

1 −X
✷

Because linear O-systems are coalgebras, the general definition of coalgebraic equivalence
applies. In conclusion of this section, we spell out this definition together with the observation
that the corresponding minimization of a system is given by (the image under) the final
behaviour mapping.

Equivalence of linear O-systems is defined as follows. A relation R ⊆ V ×W is called
an O-bisimulation between O-systems (V, 〈HV , FV 〉) and (W, 〈HW , FW 〉) if for all v ∈ V and
w ∈W :

〈v,w〉 ∈ R⇒

{

HV (v) = HW (w) and
〈FV (v), FW (w)〉 ∈ R

We say that v and w are O-equivalent and write v ∼O w if there exists an O-bisimulation
R with 〈v,w〉 ∈ R. The final behaviour f : V → Oω of an O-system (V, 〈HV , FV 〉) identifies
precisely all O-equivalent states: v1 ∼O v2 iff f(v1) = f(v2), for all v1, v2 ∈ V . (For the
elementary proof, see [Rut05b].) As a consequence, the minimization of an O-system with
respect to O-equivalence is given by the image of V under f , which is a subsystem f(V ) ⊆ Oω

because f is a homomorphism. It follows that the greatest O-equivalence on V is given by
the kernel ker(f).

5. Constructing linear representations

Let k be a field. We show how to construct finite-dimensional linear representations for
(vectors of) rational streams in kω.

For a stream σ ∈ Oω we consider the smallest subspace of Oω that contains σ and is closed
under the operation of stream derivative, that is, the linear transformation d : Oω → Oω.
This (so-called d-cyclic) vector space Zσ is the subspace of Oω that is spanned by the set of
vectors given by

{σ(0), σ(1), σ(2), . . .} (5.1)

with σ(0) = σ and σ(n+1) = d(σ(n)) = (σ(n))′. We can turn Zσ into a linear system by taking
as output function and transition function the restrictions of i : Oω → O and d : Oω → Oω

to Zσ. The set inclusion
f : Zσ ⊆ Oω
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is then a homomorphism of linear O-systems. By finality of (Oω, 〈i, d〉), this homomorphism
is unique. It follows that (Zσ, 〈i, d〉) with initial state σ is a minimal representation of σ.

In general, the dimension of Zσ will be infinite. Of special interest are those σ ∈ Oω for
which there exists an n ≥ 1 such that all of σ = σ(0) through σ(n−1) are linearly independent
and

σ(n) =

n
∑

i=0

ci × σ(i)

for some coefficients c0, . . . , cn−1 in the base field k of O and Oω. Then Zσ is a vector space
of dimension n. The linear transformation G : Zσ → Zσ induced by d : Oω → Oω is given,
with respect to the (ordered) basis σ(0), . . . , σ(n−1), by the n× n matrix

MG =















0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cn−1















(This matrix is in fact (a variation of) the companion matrix of the so-called d-order poly-
nomial of σ; cf. [BM77, Thm.15, p.339].) The linear transformation H : Zσ → O induced by

i : Oω → O is given, again with respect to the basis σ(0), . . . , σ(n−1), by the matrix (of size
dim(O) × n)

MH =
(

σ(0)(0) σ(1)(0) σ(2)(0) · · · σ(n−1)(0)
)

Thus we have obtained a linear O-system (Zσ, 〈H,G〉) of dimension n. As before, the inclusion
f : Zσ ⊆ Oω is a homomorphism. Thus f(τ) = τ , for all τ ∈ Zσ and (Zσ, 〈H,G〉) with σ as
initial state is a minimal representation of σ.

Example 5.1. Let O = IR and consider the stream σ = 1/(1 −X)2 ∈ Oω. Computing the
successive stream derivatives of σ = σ(0), using Corollary 2.5, gives

σ(1) =
2 −X

(1 −X)2
σ(2) =

3 − 2X

(1 −X)2
= −σ(0) + (2 × σ(1))

Thus σ(0) and σ(1) form a basis for Zσ. Because σ(0)(0) = 1 and σ(1)(0) = 2, we have

MH =
(

1 2
)

MG =

(

0 −1
1 2

)

Now σ is represented by (Zσ, 〈H,G〉), with σ as the initial state. Clearly, IR2 ∼= Zσ. Note
that this isomorphism can also be obtained by computing the final behaviour f : IR2 → IRω

of the O-system (IR2, 〈H,G〉), using Theorem 4.3. This gives, for all (r1, r2) ∈ IR2,

f(r1, r2) = MH ×MG̃ × (r1, r2)

=
(

1 2
)

×
1

(1 −X)2
×

(

1 − 2X −X
X 1

)

×

(

r1
r2

)

(Recall the computation of MG̃ from Example 3.4.) As expected, we have f(1, 0) = σ and

f(0, 1) = σ(1). ✷
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Example 5.2. Let O = IR2 and consider the pair (τ, σ) ∈ (IRω)2 ∼= (IR2)ω, with τ =
1/(1 − 2X) and σ = 1/(1 −X)2. Computing (pairs of) stream derivatives

(τ, σ)(1) =

(

2

1 − 2X
,

2 −X

(1 −X)2

)

(τ, σ)(2) =

(

22

1 − 2X
,

3 − 2X

(1 −X)2

)

(τ, σ)(3) =

(

23

1 − 2X
,

4 − 3X

(1 −X)2

)

= 2 × (τ, σ)(0) − 5 × (τ, σ)(1) + 4 × (τ, σ)(2)

we see that Z(τ,σ) has dimension 3 with H : Z(τ,σ) → IR2 and G : Z(τ,σ) → Z(τ,σ) given by

MH =

(

1 2 4
1 2 3

)

MG =





0 0 2
1 0 −5
0 1 4





✷

Theorem 5.3. Let k be a field and let O = km. A vector of streams σ ∈ (kω)m is repre-
sentable by a linear km-system of finite dimension iff σ ∈ (Rat(kω))m.

Proof. From left to right, this is Theorem 4.3. For the converse, it is sufficient to observe that
the examples above generalise to arbitrary vectors of rational streams. This is immediate
from the fact that for a rational stream σ = ρ/τ , the dimension of Zσ in the construction
above is bounded by the maximum of the degrees of ρ and τ . ✷

For single streams, the results of this section can be summarized as follows.

Theorem 5.4. Let k be a field. For a stream σ ∈ kω, the following are equivalent:

(1) The stream σ is rational: σ = ρ/τ for polynomial streams ρ and τ (with τ(0) 6= 0).
(2) The stream σ is representable by a linear system of finite dimension.
(3) The subsystem Zσ ⊆ (kω, 〈i, d〉) generated by σ has finite dimension.

✷

In conclusion of this section, we show that (3) above can be conveniently used to prove that
a stream is not rational.

Corollary 5.5. In order to prove that a stream σ ∈ kω is not rational, it suffices to show
that

{σ(0), σ(1), σ(2), . . .} ⊆ kω

contains infinitely many linearly independent vectors. ✷

Example 5.6. Consider σ ∈ IRω given by

σ = (1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .)

= 1 + X + X3 + X6 + X10 + X15 + · · ·

=

∞
∑

k=0

Xk(k+1)/2
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The set of stream derivatives of σ contains the following infinite subset of linearly independent
streams:

(1, . . .)

(0, 1, . . .)

(0, 0, 1, . . .)

(0, 0, 0, 1, . . .)

· · ·

Thus σ is not rational. ✷

6. Stream circuits

We saw that rational streams can be represented by finite dimensional linear systems.
Such systems are finitary in that they are determined by (two) finite dimensional matrices
with values in k. In this section, we show that such systems — and as a consequence rational
streams — are, equivalently, computed by so-called stream circuits with finite memory.

Stream circuits (with values in a field k) are data flow networks that act on streams of
inputs and produce streams of outputs. They are built out of four types of basic gates by
means of composition, which amounts simply to connecting (single) output ends to (single)
input ends. We introduce these basic gates below, first describing their single-step behaviour
in terms of input and output values (in k). Next we shall describe their behaviour in terms
of input and output streams (in kω).

(i) For a fixed r ∈ k, an r-multiplier

x � r
// r · x

inputs a value x ∈ k at its input end and outputs that value multiplied with r at its
output end.

(ii) A register
y � x //

is a one-element buffer (or memory cell) containing as initial value an element x ∈ k.
Its stepwise computation consists of the (simultaneous) output of the present value
x in the buffer together with the input of an element y ∈ k, which becomes the new
contents of the buffer:

� y // x

(iii) An adder
x �

+ // x+y

y "

takes two input values at its input ends and outputs their sum at its output end. Here
we show a 2-to-1 adder but more generally we will also use n-to-1 adders, for n ≥ 2.
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(iv) Lastly a copier
x

x �
C

00

.. x

inputs a value at its input end and outputs multiple copies of it at its output ends.
Here we show a 1-to-2 copier but more generally we will also use 1-to-n copiers, for
n ≥ 2.

Sometimes it will be convenient to combine multipliers with adders (and similarly copiers).
For instance,

x � r1

+ // (r1 · x)+ (r2 · y)

y #
r2

multiplies its inputs x and y with the values r1 and r2 and outputs the sum of the results.
The presence of memory (in the form of registers) makes that the behaviour of stream

circuits cannot be described simply in terms of functions of single input and output values
in k. (This is reflected in our explanations above by the fact that we needed two pictures to
illustrate the behaviour of a register.) Rather we shall describe the behaviour of our circuits
in terms of streams of inputs and outputs. As it turns out, all we need are the basic operations
of stream calculus:

(i) An r-multiplier converts a stream of inputs σ ∈ kω

σ � r
// [r]×σ

into a stream of outputs [r]×σ by elementwise multiplying the input values with r:

[r]×σ = (r · σ(0), r · σ(1), r · σ(2), . . . )

(ii) A register with initial value x ∈ k takes a stream of inputs σ

σ � x // [x]+ (X × σ) (6.1)

and outputs it with one step delay, after having output the initial value x first:

[x]+ (X × σ) = (x, σ(0), σ(1), . . . )

(iii) An adder takes two input streams σ and τ

σ �

+ // σ+τ

τ !

and outputs the stream consisting of their elementwise addition:

σ+τ = (σ(0) + τ(0), σ(1) + τ(1), σ(2) + τ(2), . . .)

(iv) The copier simply copies input streams into output streams:

σ

σ �
C

00

.. σ
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Combinations of multipliers and adders (and similarly copiers) have the expected stream
behaviour:

σ � r1

+ // ([r1] × σ)+ ([r2] × τ)

τ #
r2

Now that we have seen the basic gates and their behaviour, let us look at composite
stream circuits and see how their behaviour can be computed from that of the gates from
which they are made. Consider the following circuit, built out of two registers, two copiers,
three adders, and six multipliers (two of which are combined with the adder at the bottom):

◦ � +

��

◦� ◦ � +

��

◦�

◦_

r1
��

◦_

r2
��

◦_ ◦_

◦
_

0

OO

Coo //

��

◦
A

1

MM

◦
}

−1

QQ

Coo //

��

◦
_

2

OO

◦ � 1
+

��

◦�
2

In the picture above, we use ◦ to denote the composition of an output end with an input end.
The circuit as a whole has no external input ends and one external output end. The heart of
the circuit consists of two registers with initial values r1 and r2. The outputs of the registers
are copied and:

(a) fed back to the input ends of the registers, via multipliers whose values can be ex-
pressed by the following 2 × 2 matrix:

M =

(

0 −1
1 2

)

This leads to new values of the registers given by
(

0 −1
1 2

)(

r1
r2

)

=

(

−r2
r1 + 2r2

)

(b) At the same time, the outputs of the registers are fed forward into an adder combined
with multipliers whose values are given by the following matrix:

N =
(

1 2
)

This leads to a (first) output value given by

(

1 2
)

(

r1
r2

)

= r1 + 2r2
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We call this a circuit in canonical form. More generally, we have the following definition.

Definition 6.1. We say that a stream circuit is in canonical form if it has no input ends and
one output end; consists of n ≥ 1 registers with feedback lines given by an n×n matrix; and
has feedforward lines given by an 1× n matrix leading via an n-to-1 adder to a single output
end. ✷

In the description of the example circuit above, (a) and (b) together describe one single atomic
computation step of the circuit. Next we describe the stream behaviour of our example
canonical circuit. As we shall see, the output end of a canonical stream circuit produces
precisely one (rational) stream. In order to compute this output stream, we first give names
(σ and τ) to the streams that will occur at the output ends of the two registers. Then we
apply the stream equations for each of the basic gates in the circuit, leading to:

0
� +

��

−τ� σ � +

��

2τ
�

−τ_

r1
��

σ + 2τ_

r2
��

σ_ τ_

σ
_

0

OO

Coo //

��

σ
9

1

II

τ�

−1

UU

Coo //

��

τ
_

2

OO

σ � 1
+

��

τ�
2

σ + 2τ

Applying the register law (6.1) to our two registers then leads to the following two equations
(writing r for [r] as usual):

σ = r1 + (X ×−τ)

τ = r2 + (X × (σ + 2τ))

or, equivalently, in matrix notation:
(

σ
τ

)

=

(

r1
r2

)

+ X ×

(

0 −1
1 2

)

×

(

σ
τ

)

whence
(

1 X
−X 1 − 2X

)

×

(

σ
τ

)

=

(

r1
r2

)

This leads to the following values for σ and τ :
(

σ
τ

)

=

(

1 X
−X 1 − 2X

)−1

×

(

r1
r2

)
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(recall that this inverse matrix was computed in Example 3.4). As a consequence the output
stream of the circuit is given by

σ + 2τ =
(

1 2
)

×

(

1 X
−X 1 − 2X

)−1

×

(

r1
r2

)

(6.2)

We saw that the above circuit is fully determined by the two matrices M andN containing
the values of the (feedback and feedforward) multipliers. As such, the circuit corresponds
precisely to a linear system (k2, 〈H,G〉) with G : k2 → k2 and H : k2 → k given by

G(r1, r2) = M ×

(

r1
r2

)

H(r1, r2) = N ×

(

r1
r2

)

A state of this linear system corresponds to the contents of the two registers of the circuit;
G(r1, r2) corresponds to the feedback multiplication with the matrix M ; and the output given
by H(r1, r2) corresponds to the feed-forward multiplication with the matrix N . Note that
the stream behaviour of our circuit as described above corresponds precisely with the (final)
behaviour of the corresponding linear systems, as given by (the proof of) Theorem 4.3 in
Section 4. This follows from the fact that identity (6.2) equals

σ + 2τ =
(

1 2
)

×

(

1 X
−X 1 − 2X

)−1

×

(

r1
r2

)

= M[H] × MG̃ ×

(

r1
r2

)

with H and G as defined above.
Summarizing, we have presented an example of a canonical stream circuit and shown that

how to compute the (rational) stream that it produces at its output end. Then we observed
that such a canonical stream circuit corresponds precisely to a finite dimensional linear system
via its two matrices of feedback and feedforward multipliers. Moreover, the stream behaviour
of the circuit coincides with that of the linear system.

In conclusion of this section, we note that one can construct, conversely, from any finite
dimensional linear system (V, 〈H,G〉) a corresponding canonical stream circuit with exactly
the same stream behaviour: the dimension of V determines the number of registers; the
matrix corresponding to G determines the values of the feedback multipliers; and the matrix
corresponding to H determines the values of the feedforward lines.

All in all, we have proved the following.

Theorem 6.2. Let k be a field. For σ ∈ kω, the following are equivalent:

(1) The stream σ is representable by a linear system of finite dimension.
(2) The stream σ is computable by a finite stream circuit.

✷

7. Weighted stream automata

We saw that rational streams are “finite memory”: they can be computed by stream
circuits with finitely many registers. In this section, we show they are also “finite state”:
they can be computed by finite so-called weighted stream automata.

A weighted stream automaton with values in a field k is a pair (Q, 〈o, t〉) consisting of
a set Q of states, together with an output function o : Q → k and a transition function
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t : Q → (Q → k). The output function o assigns to each state q ∈ Q a value o(q) ∈ k called
the output of q. The transition function t assigns to each state q ∈ Q a function t(q) : Q→ k,
which specifies for any state q′ ∈ Q a value t(q)(q′) ∈ k. This number can be thought of
as the weight with which the transition from q to q′ occurs. (There are various possible
interpretations of this notion of weight, such as the cost, multiplicity, duration etc. of the
transition.) We will use the following notation:

q
r // q′ ≡ t(q)(q′) = r , q

r
⇒ ≡ o(q) = r

Weighted stream automata represent streams in kω in the following manner.

Definition 7.1. For a state q ∈ Q of a weighted stream automaton (Q, 〈o, t〉) we define a
stream S(q), for all k ≥ 0, by

S(q)(k) =
∑

{ l0 × l1 × · · · × lk−1 × l | ∃ q0, . . . , qk : q = q0
l0 // q1

l1 // · · ·
lk−1 // qk

l
⇒ }

(Here × denotes multiplication in the field k.)

So the kth value of the stream S(q) is obtained by considering all transition paths of length k
starting in the state q; multiplying for each such path the labels of all transitions; and adding
up the resulting values for all paths. We say that the stream S(q) is represented by the state
q.

Example 7.2. Consider the following example of a weighted automaton:

q1
1

))
@AGF0 ED

��

1
��

q2
−1

ii

BCED 2GF
��

2
��

Computing the streams S(q1) and S(q2) according to Definition 7.1 above gives

S(q1) = (1, 2, 3, . . . ) , S(q2) = (2, 3, 4, . . . )

✷

We can represent all information contained in the definition of weighted stream automata by
two matrices, in very much the same way as we could define stream circuits by two matrices
as well. To this end, we define for a weighted stream automaton (Q, 〈o, t〉), with states
{q1, . . . , qn}, an output matrix L and a transition matrix K as follows:

Li = o(qi), Kij = t(qi)(qj)

Now we can compute the streams represented by the states of a weighted automaton directly
in terms of these matrices. Illustrating this for the example automaton above, we have

L =

(

1
2

)

K =

(

0 1
−1 2

)

Applying Theorem 2.1 to the (vector of) streams

σ = S(q1), τ = S(q2)

we obtain
(

σ
τ

)

=

(

σ(0)
τ(0)

)

+ X ×

(

σ′

τ ′

)
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Note that it follows from Definition 7.1 that
(

σ(0)
τ(0)

)

= L

and
(

σ′

τ ′

)

= K ×

(

σ
τ

)

As a consequence, we find
(

σ
τ

)

=

(

1
2

)

+ X ×

(

0 1
−1 2

)

×

(

σ
τ

)

which leads to
(

σ
τ

)

=

(

1 −X
X 1 − 2X

)−1

×

(

1
2

)

=
1

(1 −X)2
×

(

1 − 2X X
−X 1

)

×

(

1
2

)

It follows that

S(q1) = σ =
1

(1 −X)2
, S(q2) = τ =

2 −X

(1 −X)2

showing that the streams represented by our weighted automaton are rational. All of the
above generalises directly to arbitrary weighted automata and so we have proved one half of
the following theorem.

Theorem 7.3. A stream σ ∈ kω is rational iff it can be represented by a state q ∈ Q of a
finite weighted stream automata (Q, 〈o, t〉) with values in k.

Proof. The implication from right to left follows from the above. For the converse, consider
a rational stream σ ∈ kω. It follows from Theorem 5.4 that σ is representable by a linear
system of finite dimension (kn, 〈H,F 〉) with output in k. Without loss of generality we can
assume that σ is represented by the vector (1, 0, . . . , 0) ∈ kn. We define Q = {q1, . . . , qn} by

q1 = (1, 0, . . . , 0), . . . , qn = (0, . . . , 0, 1)

Next we define a weighted stream automaton (Q, 〈o, t〉) by putting, for all 1 ≤ i, j ≤ n,

o(qi) = Hi, t(qi)(qj) = F Tij = Fji

It follows that σ = S(q1), that is, σ is represented by the state q1 in (Q, 〈o, t〉). ✷

8. Summary and discussion

All in all, we have proved the following.

Theorem 8.1. Let k be a field. For a stream σ ∈ kω, the following are equivalent:

(1) The stream σ is rational: σ = ρ/τ for polynomial streams ρ and τ (with τ(0) 6= 0).
(2) The stream σ is representable by a linear system of finite dimension.
(3) The subsystem Zσ ⊆ (kω, 〈i, d〉) generated by σ has finite dimension.
(4) The stream σ is computable by a finite stream circuit.
(5) The stream σ is representable by a finite weighted stream automaton.

✷
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We mention a few examples of the many interesting questions and directions that remain to
be explored. Streams over a finite field enjoy many special properties. A special example
is the family of bitstreams, which consist of 0’s and 1’s. The interplay between coalgebraic
techniques and various algebraic structures on bitstreams, such as the Boolean and the 2-adic
operators, deserves further study, which may also be relevant for the construction and analysis
of digital circuits; see [Rut05a, HCR06] for some preliminary results. There is also much and
interesting life beyond rationality. For instance, it would be worthwhile to try and apply
coinductive techniques to the study of so-called automatic sequences, see for instance [AS03].
Another example is the combined use of linear systems theory and coalgebra in the world of
hybrid systems, where discrete time and continuous time phenomena occur simultaneously.
The relationship between rational streams and ω-regular infinite words from formal language
theory is yet another subject that deserves further study.
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Appendix A.

A semi-ring A = (A, +, ·, 0, 1) is a set A with a commutative operation of addition c+d;
a (generally non-commutative) operation of multiplication c ·d with c · (d+ e) = (c ·d)+ (c · e)
and (d + e) · c = (d · c) + (e · c); and with neutral elements 0 and 1 such that c + 0 = c,
1 · c = c · 1 = c and c · 0 = 0 · c = 0. If every c ∈ A moreover has an additive inverse −c
(with c + (−c) = 0) then A is a ring. If moreover multiplication is commutative and every
(non-zero) element c ∈ A has a multiplicative inverse c−1 (with c · c−1 = 1) then A is a field.
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