
Logical Methods in Computer Science
Volume 19, Issue 3, 2023, pp. 11:1–11:50
https://lmcs.episciences.org/

Submitted Sep. 13, 2022
Published Aug. 09, 2023

TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF

HIERARCHICAL QUERIES

AHMET KARA a, MILOS NIKOLIC b, DAN OLTEANU a, AND HAOZHE ZHANG a

aUniversity of Zurich
e-mail address: kara@ifi.uzh.ch, olteanu@ifi.uzh.ch, zhang@ifi.uzh.ch

bUniversity of Edinburgh
e-mail address: milos.nikolic@ed.ac.uk

Abstract. We investigate trade-offs in static and dynamic evaluation of hierarchical
queries with arbitrary free variables. In the static setting, the trade-off is between the time
to partially compute the query result and the delay needed to enumerate its tuples. In
the dynamic setting, we additionally consider the time needed to update the query result
under single-tuple inserts or deletes to the database.

Our approach observes the degree of values in the database and uses different computation
and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the
latter it partially computes the result, while for the former it computes enough information
to allow for on-the-fly enumeration.

We define the preprocessing time, the update time, and the enumeration delay as
functions of the light/heavy threshold. By appropriately choosing this threshold, our
approach recovers a number of prior results when restricted to hierarchical queries.

We show that for a restricted class of hierarchical queries, our approach achieves worst-
case optimal update time and enumeration delay conditioned on the Online Matrix-Vector
Multiplication Conjecture.

1. Introduction

The problems of static evaluation, i.e., computing the result of a query [Yan81, OZ15, KNS17,
NPRR18], and dynamic evaluation, i.e., maintaining the result of a query under inserts and
deletes of tuples to the input relations [Koc10, CY12, K+14, BKS17a, IUV17, KNN+19a],
are fundamental to relational databases.

We consider a refinement of these two problems that decomposes the overall evaluation
time into the preprocessing time, which is used to compute a data structure that represents
the query result, the update time, which is the time to update the data structure under
inserts and deletes to the input data, and the enumeration delay, which is the time between
the start of the enumeration process and the output of the first tuple in the query result,
the time between outputting any two consecutive tuples, and the time between outputting
the last tuple and the end of the enumeration process [DG07]. In this paper we investigate

Key words and phrases: adaptive evaluation, incremental maintenance.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(3:11)2023
© A. Kara, M. Nikolic, D. Olteanu, and H. Zhang
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-8155-8070
https://orcid.org/0000-0002-1548-6803
https://orcid.org/0000-0002-4682-7068
https://orcid.org/0000-0002-0930-1980
http://creativecommons.org/about/licenses

11:2 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

the relationship between preprocessing, update, and delay and answer questions such as,
how much preprocessing time is needed to achieve sublinear enumeration delay.

We consider the static and dynamic evaluation of a subclass of α-acyclic queries called
hierarchical queries:

Definition 1.1 [SORK11, BKS17a]. A conjunctive query is hierarchical if for any two
variables, their sets of atoms in the query are either disjoint or one is contained in the other.

For instance, the query Q(F) = R(A,B), S(B,C) is hierarchical, while Q(F) = R(A,B),
S(B,C), T (C) is not, for any F ⊆ {A,B,C}. In our study, we do not set any restriction on
the set of free variables of a hierarchical query.

Hierarchical queries enjoy highly desirable tractability properties in a variety of com-
putational settings, making them an important yardstick for database computation. The
notion of hierarchical queries used in this paper has been initially introduced in the context
of probabilistic databases [SORK11]. The Boolean conjunctive queries without repeating
relation symbols that can be computed in polynomial time on tuple-independent probabilis-
tic databases are hierarchical; non-hierarchical queries are hard for #P [SORK11]. This
dichotomy was extended to non-Boolean queries with negation [FO16]. Hierarchical queries
are the conjunctive queries whose provenance admits a factorized representation where
each input tuple occurs a constant number of times; any factorization of the provenance
of a non-hierarchical query would require a number of occurrences of the provenance of
some input tuple dependent on the input database size [OZ12]. For hierarchical queries
without self-joins, this read-once factorized representation explains their tractability for exact
probability computation over probabilistic databases. In the Massively Parallel Computation
(MPC) model, the hierarchical queries admit parallel evaluation with one communication
step [KS11b]. The r-hierarchical queries, which are conjunctive queries that become hierar-
chical by repeatedly removing the atoms whose complete set of variables occurs in another
atom, can be evaluated in the MPC model using a constant number of steps and optimal load
on every single database instance [HY19]. Hierarchical queries also admit one-step streaming
evaluation in the finite cursor model [GGL+09]. Under updates, the q-hierarchical queries
are the conjunctive queries that admit constant-time update and delay [BKS17a]. The
q-hierarchical queries are a proper subclass of both the free-connex α-acyclic and hierarchical
queries. Besides being hierarchical, the following condition holds on the free variables of a
q-hierarchical query: if the set of atoms of a free variable is strictly contained in the set of
another variable, then the latter must also be free.

In this paper we characterize trade-offs in the static and dynamic evaluation of hierar-
chical queries. In the static setting, we are interested in the trade-off between preprocessing
time and enumeration delay. In the dynamic case, we additionally consider the update
time. Section 2 states our main result in the static setting and explains how it recovers
prior results on static query evaluation. Section 3 gives our main result in the dynamic
setting and discusses its implications. These two sections also overview prior work on
static and dynamic query evaluation. Section 4 introduces the basic notions underlying
our approach. Sections 5-7 detail the preprocessing, enumeration, and update stages of our
approach. Section 8 shows that for a restricted class of hierarchical queries, our approach
achieves worst-case optimal update time and enumeration delay, conditioned on the Online
Matrix-Vector Multiplication Conjecture. We illustrate our approach using two detailed
examples in Section 9 and conclude in Section 10. The proofs of the main theorems in

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:3

Complexities for
Hierarchical Queries

0 1

1

w − 1

w

ϵ

logN time

preprocessing time 1 + (w − 1)ϵ

update time δϵ

delay 1− ϵ

Trade-offs in
Static Query Evaluation

0 1 w

1

logN delay

logN preprocessing time

conjunctive

α-acyclic

free-connex

hierarchical

Trade-offs in
Dynamic Query Evaluation

logNdelay

logNpreprocessing time

logNupdate time

0

(1, 0, 1)

1

1

w

δ

free-connex1

conjunctive

q-hierarchical

hi
er
ar
ch
ica
l

Figure 1. Left: Preprocessing time, enumeration delay, and amortized
update time for a hierarchical query with static width w and dynamic width δ
(δ can be w or w−1, hence the two red lines for the update time). Middle and
right: Trade-offs in static and dynamic evaluation. Our approach achieves
each blue point and each point on the blue lines. Prior approaches are
represented by the blue points.

Sections 2 and 3 and the propositions in Sections 5-7 are deferred to Appendices A-E. The
proofs of the propositions in Sections 4 and 8 can be found in the technical report [KNOZ19].

A preliminary version of this work appeared in PODS 2020 [KNOZ20]. We extended
it as follows. We overviewed in greater depth and breadth the related work for a more
complete picture of the state of the art (Sections 1-3). We added new motivating examples
to demonstrate that our approach achieves better overall evaluation time than existing
approaches both in the static and dynamic cases (Sections 2 and 3). We included necessary
background on the computational model and width measures (Section 4). We added a
detailed description of the algorithms (Union and Product) used by the enumeration
procedure of our approach (Section 6). We included the procedures for major and minor
rebalancing in case of updates and gave the procedure for the maintenance of a query result
under sequences of updates (Section 7). Finally, we included complete proofs of the main
results and the main statements on the preprocessing, enumeration, and update stages of
our approach (Appendices A-E).

2. Trade-offs in Static Query Evaluation

Our main result for the static evaluation of hierarchical queries is stated next.

Theorem 2.1. Given a hierarchical query with static width w, a database of size N , and
ϵ ∈ [0, 1], the query result can be enumerated with O(N1−ϵ) delay after O(N1+(w−1)ϵ)
preprocessing time.

The measure w, previously introduced as s↑ [OZ15], generalizes the fractional hypertree
width [Mar10] from Boolean to arbitrary conjunctive queries. This is equivalent to the
FAQ-width in case of Functional Aggregate Queries over a single semiring [AKNR16]. In
this paper, we refer to this measure as the static width of the query (Definition 4.6).

11:4 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Static Query Evaluation

preprocessing time/enumeration delay

conjunctive
O(Nw)/O(1)

[OZ15]

α-acyclic

O(N)/O(N)
[BDG07]

hierarchical

O(N1+(w−1)ϵ)/O(N1−ϵ)
ϵ ∈ [0, 1]

free-connex
O(N)/O(1)
[BDG07]

Dynamic Query Evaluation

preprocessing time/enumeration delay/update time

conjunctive

O(Nw)/O(1)/O(Nδ) [NO18]

triangle query O(N
3
2)/O(1)/O(N

1
2)∗ [KNN+19a]

α-acyclic

free-connexO(N)/O(1)/O(N)
[IUV17]

q-hierarchical
=

δ0-hierarchical

w = 1, δ = 0

[BKS17a]hier
arch

ical

O(N
1+(w−1)ϵ)/O(N

1−ϵ)/O(N
δϵ)∗

ϵ ∈ [0, 1]

δ1-hierarchical
w ∈ {1, 2}, δ = 1

Figure 2. Landscape of static and dynamic query evaluation. w: static
width; δ: dynamic width; *: amortized time.

Theorem 2.1 expresses the runtime components as functions of a parameter ϵ. The
dotted green line and the purple line in the left plot in Figure 1 depict the preprocessing time
and respectively the enumeration delay. The middle plot in Figure 1 visualizes the trade-off
between the two components. Our approach achieves each blue point and each point on
the blue line. Prior approaches are represented by the blue points in the trade-off space.
By appropriately setting ϵ, our approach recovers prior results restricted to hierarchical
queries. For ϵ = 0, both the preprocessing time and the delay become O(N), as for α-acyclic
queries [BDG07]. For ϵ = 1, we obtain O(Nw) preprocessing time and O(1) delay as for
conjunctive queries [OZ15]. Free-connex acyclic queries are a special class of queries that
enjoy linear preprocessing time and constant delay [BDG07]. We recover this result as
follows. First, we observe that any free-connex hierarchical query has static width w = 1.
This means that the preprocessing time remains O(N) regardless of ϵ; we then choose ϵ = 1
to obtain O(1) delay. For bounded-degree databases, i.e., where each value appears at most
c times for some constant c = Nβ, first-order queries admit O(N) preprocessing time and
O(1) delay [DG07, KS11a]. We recover the O(1) delay using ϵ = 1. The preprocessing
time becomes O(N · (Nβ)w−1) = O(N) if our approach uses the constant upper bound c
instead of the upper bound N ϵ on the degrees. The left Venn diagram in Figure 2 depicts
the relationship of our result in Theorems 2.1 with prior results.

The next example demonstrates how the complexities of our approach in the static case
imply lower overall evaluation time than existing approaches.

Example 2.2. Consider the hierarchical query Q(A,C) = R(A,B), S(B,C). Let us assume
that the input relations are of size N . Then, it takes quadratic time to compute the list of
tuples in the query result of Q. (As it will become clearer later, this query has static width
2, which explains the O(N2) time complexity for the evaluation of Q.)

An eager evaluation does just this: It readily computes the list of tuples in the query
result of Q. This requires quadratic preprocessing time, after which the tuples in the query
result can be enumerated with constant delay [OZ12].

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:5

In contrast, a lazy evaluation approach computes the first tuple in the query result then
the second tuple and so on. This can be done using linear preprocessing time followed by
linear enumeration delay for each tuple in the result [BDG07]. It is conjectured that the
delay cannot be lowered to constant after linear-time preprocessing for Q [BDG07]. (The
explanation is that Q is not free-connex, a notion we will introduce in Section 4.)

Our approach achieves O(N1+ϵ) preprocessing time and O(N1−ϵ) enumeration delay
for any ϵ ∈ [0, 1]. The complexities of the eager, lazy, and our approach are as follows:

approach preprocessing delay

lazy O(N) O(N)

eager O(N2) O(1)

ours O(N1+ϵ) O(N1−ϵ)

Our approach recovers the lazy approach at ϵ = 0 and the eager approach at ϵ = 1. For any
ϵ ∈ (0, 1), it achieves new trade-offs between preprocessing time and enumeration delay.

Given that the input relations have size N , the AGM bound [AGM13] implies that the
result of the query has at most N2 tuples. Assume that we want to enumerate Nγ tuples
from the result, for some 0 ≤ γ ≤ 2. In the following table, the second to fourth rows give
the exponents of the overall evaluation times achieved by the lazy, eager, and our approaches
for different values of γ. The last row gives the ϵ values at which we achieve the complexities
of our approach.

γ 0 1
2 1 11

2 2

lazy 1 11
2 2 21

2 3

eager 2 2 2 2 2

ours 1 11
4 11

2 13
4 2

ϵ 0 1
4

1
2

3
4 1

For instance, if γ = 11
2 , the lazy approach requires O(N +N1+ 1

2 ·N) = O(N2+ 1
2), the eager

approach requires O(N2 + N1+ 1
2 · 1) = O(N2), and our approach needs only O(N1+ 3

4 +

N1+ 1
2N

1
4) = O(N1+ 3

4) time at ϵ = 3
4 . In case γ is equal to 1

2 , 1, or 11
2 , the overall

computation time of our approach (highlighted in green) is strictly lower than the eager
and lazy approaches. For the other two cases shown in the table, our approach recovers the
lower complexity of the prior approaches (highlighted in yellow).

2.1. Further Prior Work on Static Query Evaluation. We complement our discussion
with further prior work on static query evaluation. Figure 3 gives a taxonomy of works in
this area.

Prior work exhibits a dependency between the space and enumeration delay for conjunc-
tive queries with access patterns [DK18]. It constructs a succinct representation of the query
result that allows for enumeration of tuples over some variables under value bindings for all
other variables. It does not support enumeration for queries with projection, as addressed
in our work. It also states Example 9.1 as an open problem.

The result of any α-acyclic conjunctive query can be enumerated with constant delay
after linear-time preprocessing if and only if it is free-connex. This is under the conjecture
that Boolean multiplication of n×n matrices cannot be done in O(n2) time [BDG07]. More
recently, this was shown to hold also under the hypothesis that the existence of a triangle in

11:6 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Class of Queries Preprocessing Delay Extra Space Source

f.c. α-acyclic CQ̸= O(N) O(1) O(N) [BDG07]
f.c. β-acyclic negative CQ O(N) O(1) – [BB13, BB12]

f.c. signed-acyclic CQ O(N (logN)|Q|) O(1) – [BB13]

Acyclic CQ ̸= O(N) O(N) O(N) [BDG07]

CQ̸= of f.c. treewidth k O(|Dom|k+1 +N) O(1) – [BDG07]

CQ O(Nw(Q)) O(1) O(Nw(Q)) [OZ15, AKNR16]

Full CQ with access patterns O(Nρ∗(Q)) O(τ) O(N +Nρ∗(Q)/τ) [DK18]

CQ on X-structures (trees, grids) O(N) O(N) – [BDFG10]
FO on bound. degree O(N) O(1) – [DG07, KS11a]
FO on bound. expansion O(N) O(1) – [KS13a]
FO on local bounded expansion O(N1+γ) O(1) – [SV17]
FO on low degree O(N1+γ) O(1) O(N2+γ) [DSS14]
FO on nowhere dense O(N1+γ) O(1) O(N1+γ) [SSV18]
MSO on Bounded treewidth O(N) O(1) – [Bag06, KS13b]

Figure 3. Prior work on the trade-off between preprocessing time, enu-
meration delay, and extra space for different classes of queries (Conjunctive
Queries, First-Order, Monadic Second-Order) and static databases under
data complexity; f.c. stands for free-connex. Parameters: Query Q with
factorization width w [OZ15] and fractional edge cover number ρ∗ [AGM13];
database of size N ; slack τ is a function of N and ρ∗; γ > 0. Most works do
not discuss the extra space utilization (marked by –).

a hypergraph of n vertices cannot be tested in time O(n2) and that for any k, testing the
presence of a k-dimensional tetrahedron cannot be decided in linear time [BB13]. The free-
connex characterization generalizes in the presence of functional dependencies [CK18]. An
in-depth pre-2015 overview on constant-delay enumeration is provided by Segoufin [Seg15].

There are also enumeration algorithms for document spanners [ABMN19] and satisfying
valuations of circuits [ABJM17].

3. Trade-offs in Dynamic Query Evaluation

Our main result for the dynamic query evaluation generalizes the static case.

Theorem 3.1. Given a hierarchical query with static width w and dynamic width δ, a
database of size N , and ϵ ∈ [0, 1], the query result can be enumerated with O(N1−ϵ) delay

after O(N1+(w−1)ϵ) preprocessing time and O(N δϵ) amortized update time for single-tuple
updates.

The left plot in Figure 1 depicts the preprocessing time (dotted green line), the update
time (dashed red lines), and the enumeration delay (purple line) of our approach in the
dynamic case. For hierarchical queries, the dynamic width δ can be equal to either the
static width w or w− 1 (Proposition 4.8). The plot hence shows two dashed red lines for the
update time. The right plot in Figure 1 depicts the trade-off between the three components.
Our approach can achieve sublinear amortized update time and delay for hierarchical queries
with arbitrary free variables (Figure 1 left and right). For any ϵ = 1

δ+α > 0 with α > 0, our

algorithm has update time O(N1−α· 1
δ+α) and delay O(N1− 1

δ+α).

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:7

The update time for a single tuple is at most the preprocessing time: δϵ ≤ wϵ ≤
ϵ + (w − 1)ϵ ≤ 1 + (w − 1)ϵ. If δ = w − 1, then δϵ = (w − 1)ϵ, i.e., the update time is
an O(N) factor less than the preprocessing time. The complexity of preprocessing thus
amounts to inserting N tuples in an initially empty database using our update mechanism.
If δ = w, then inserting N tuples would need O(N1+(w−1)ϵ+ϵ) time, which is an O(N ϵ)
factor more than the complexity of one bulk update using our preprocessing algorithm. This
suggests a gap between single-tuple updates and bulk updates. A similar gap highlighting
a fundamental limitation of single-tuple updates has been shown for the Loomis-Whitney
query that generalizes the triangle query from a join of three binary relations to a join of
n (n − 1)-ary relations: The amortized update time for single-tuple updates is O(N1/2),
which is worst-case optimal unless the Online Matrix-Vector Multiplication conjecture
fails [KNN+19b]. Inserting N tuples in the empty database would cost O(N3/2), yet the

query can be computed in the static setting in time O(N
n

n−1) [NPRR18].
Amortized O(N δϵ) update time means that, given any sequence of updates, the average

cost of a single update is O(N δϵ). Since updates can change the data structure, our approach
needs to do a rebalancing step whenever the data structure gets out of balance. The time
needed for a single update without rebalancing is O(N δϵ) in the worst case. A rebalancing
step can require super-linear time (Propositions 7.3 and 7.4). We show that for any update
sequence, the overall time needed for the updates and rebalancing steps, when averaged over
the number of updates in the sequence, remains O(N δϵ) in the worst case (Proposition 7.5).
Using classical de-amortization techniques [KP98], we can adapt our update mechanism to
obtain non-amortized O(N δϵ) update time. The de-amortization strategy is analogous to
the one used for the update mechanism of triangle queries (Section 10 in [KNN+20]), which
performs more frequent but less time-consuming rebalancing steps.

Theorem 3.1 recovers prior work on conjunctive queries [NO18], free-connex acyclic
queries[IUV17], and q-hierarchical queries [BKS17a] by setting ϵ = 1 (Figure 1 right). For
hierarchical queries in general, our approach achieves the same complexities as prior work on
conjunctive queries when restricted to hierarchical queries. For free-connex queries, we obtain
linear-time preprocessing and update and constant-time delay since w = 1 (Proposition 4.9)
and then δ ∈ {0, 1} (Proposition 4.8) for these queries. For q-hierarchical queries, we
obtain linear-time preprocessing and constant-time update and delay since w = 1 and δ = 0.
Existing maintenance approaches, e.g, classical first-order IVM [CY12] and higher-order
recursive IVM [K+14], DynYannakakis [IUV17], and F-IVM [NO18], can achieve constant
delay for general hierarchical queries yet after at least linear-time updates. The right Venn
diagram in Figure 2 relates Theorem 3.1 with prior results.

The next example illustrates that our approach achieves better overall evaluation time
than existing approaches when considering a sequence of updates.

Example 3.2. Let us consider the (free-connex hierarchical) query Q(A) = R(A,B), S(B).
The query has static and dynamic width 1. We assume that the input relations are of size
N and consider the dynamic setting.

A lazy evaluation approach requires no preprocessing: For each single-tuple update,
it only updates the input relations without propagating the changes to the query result.
Before enumerating the A-values in the query result, it first scans the relation R to collect all
A-values that are paired with B-values contained in S. This takes linear time. Afterwards,
the approach can enumerate the A-values with constant delay.

11:8 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

An eager evaluation approach precomputes the initial result in linear time. On a single-
tuple update, it computes the delta query obtained by fixing the variables of one relation
to constants. For an update δR(a, b) to R, the delta query δQ(a) = δR(a, b), S(b) can be
computed in constant time. For an update δS(b) to S, the delta query δQ(A) = R(A, b), δS(b)
can be computed in linear time. In general, the update time is linear. Since the query result
is materialized and eagerly maintained, the A-values in the result can be enumerated after
an update with constant delay.

For this query, our approach achieves O(N) preprocessing time, O(N ϵ) update time,
and O(N1−ϵ) enumeration delay for any ϵ ∈ [0, 1]. The following table summarizes the
preprocessing-update-delay trade-off achieved by the three approaches:

approach preprocessing update delay

lazy O(1) O(1) O(N)

eager O(N) O(N) O(1)

ours O(N) O(N ϵ) O(N1−ϵ)

Our approach recovers the lazy and eager approaches by setting ϵ to 0 and respectively
1, with one exception: it cannot recover the constant preprocessing time in the lazy approach
as it requires one pass over the input data.

Consider now a sequence of Nm updates, each followed by one access request to
enumerate Nγ values out of the at most N A-values in the query result, for m, γ ∈ [0, 1].
With the eager and lazy approaches, this sequence takes time (excluding preprocessing)
O(Nm(N +Nγ)), which is O(Nm+1) since γ ≤ 1. With our approach, the sequence takes
O(Nm(N ϵ +NγN1−ϵ)) = O(Nm+ϵ +Nm+γ+1−ϵ). Depending on the values of m and γ, we
can tune our approach (by appropriately setting ϵ) to minimize the overall time to execute
the bulk of updates and access requests. For γ < 1 and any m, our approach has consistently
lower complexity than the lazy/eager approaches, while for γ = 1 and any m it matches
that of the lazy/eager approaches. The complexity of processing the sequence of updates
and access requests is shown in the next table for various values of m and γ:

our approach eager/lazy approaches

m

γ
0 1

4
1
2

3
4 1 0 1

4
1
2

3
4 1

0 1
2

5
8

3
4

7
8 1 1 1 1 1 1

1
2 1 11

8 11
4 13

8 11
2 11

2 11
2 11

2 11
2 11

2

1 11
2 15

8 13
4 17

8 2 2 2 2 2 2

ϵ 1
2

5
8

3
4

7
8 1

The middle five columns (highlighted by green and yellow) show the complexities for our
approach. The last row states the values of ϵ for which the complexities in the same
columns are obtained. The rightmost five columns show the complexities for the lazy/eager
approaches for γ ∈ {0, 14 ,

1
2 ,

3
4}. They are all higher than for our approach, except for the last

column for which γ = 1: Regardless of m, the complexity gap is O(N
1
2) for γ = 0, O(N

3
8)

for γ = 1
4 , O(N

1
4) for γ = 1

2 , and O(N
1
8) for γ = 3

4 For γ = 1, our approach defaults to the
eager approach and achieves the lowest complexities for ϵ = 1. □

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:9

Class of Queries Preprocessing Update Delay Extra Space Source

q-hierarchical CQ O(N) O(1) O(1) – [BKS17a, IUV17]

Triangle count O(N
3
2) O(Nmax{ϵ,1−ϵ})� O(1) O(N1+min{ϵ,1−ϵ}) [KNN+19a]

Full triangle query O(N
3
2) O(N

1
2)� O(1) O(N

3
2) [KNN+20]

q-hierarchical UCQ O(N) O(1) O(1) – [BKS18]

FO+MOD on bound. degree O(N) O(1) O(1) – [BKS17b]
MSO on Strings O(N) O(logN) O(1) – [NS18]

Figure 4. Prior work on the trade-off between preprocessing time, update
time, enumeration delay, and extra space for different classes of queries
(Conjunctive Queries, Count Queries, First-Order Queries with modulo-
counting quantifiers, Monadic Second Order Logic) and databases under
updates in data complexity. Parameters: Query Q; database of size N ;
ϵ ∈ [0, 1]. Most works do not discuss the extra space utilization (marked by
–). �: amortized update time.

3.1. Further Prior Work on Dynamic Query Evaluation. We discuss further prior
work on dynamic query evaluation. Figure 4 gives a taxonomy of works in this field.

The q-hierarchical queries are the conjunctive queries that admit linear-time prepro-
cessing and constant-time update and delay [BKS17a, IUV17]. If a conjunctive query
without repeating relation symbols is not q-hierarchical, there is no γ > 0 such that the

query result can be enumerated with O(N
1
2
−γ) delay and update time, unless the Online

Matrix Vector Multiplication conjecture fails. The constant delay and update time carry
over to first-order queries with modulo-counting quantifiers on bounded degree databases,
unions of q-hierarchical queries [BKS18], and q-hierarchical queries with small domain
constraints [BKS17b].

Prior work characterizes the preprocessing-space-update trade-off for counting triangles
under updates [KNN+19a]. A follow-up work generalizes this approach to the triangle queries
with arbitrary free variables, adding the enumeration delay to the trade-off space [KNN+20].
In this work, we consider arbitrary hierarchical queries instead of the triangle queries, and
we use a less trivial adaptive maintenance technique, where the same relation may be subject
to partition on different tuples of variables and where the overall number of cases for each
partition is reduced to only two: the all-light case and the at-least-one-heavy case.

MSO queries on strings admit linear-time preprocessing, constant delay, and logarithmic
update time. Here, updates can relabel, insert, or remove positions in the string. Further
work considers MSO queries on trees under updates [LM14, ABM18].

DBToaster [K+14], F-IVM [NO18], and DynYannakakis [IUV17, IUV+18] are recent
systems implementing incremental view maintenance approaches.

4. Preliminaries

Data Model. A schema X = (X1, . . . , Xn) is a non-empty tuple of distinct variables.
Each variable Xi has a discrete domain Dom(Xi). We treat schemas and sets of variables
interchangeably, assuming a fixed ordering of variables. A tuple x of data values over schema
X is an element from Dom(X) = Dom(X1)× · · · × Dom(Xn).

11:10 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

A relation R over schema X is a function R : Dom(X) → Z such that the multiplicity
R(x) is non-zero for finitely many tuples x. A tuple x is in R, denoted by x ∈ R, if R(x) ̸= 0.
The notation ∃R denotes the use of R with set semantics: ∃R(x) equals 1 if x ∈ R and 0
otherwise; also, ∄R(x) = 1− ∃R(x). The size |R| of R is the size of the set {x | x ∈ R}. A
database is a set of relations and has size given by the sum of the sizes of its relations.

Given a tuple x over schema X and S ⊆ X , x[S] denotes the restriction of x to S such
that the values in x[S] follow the ordering in S. For instance, (a, b, c)[(C,A)] = (c, a) for the
tuple (a, b, c) over the schema (A,B,C). For a relation R over X , schema S ⊆ X , and tuple
t ∈ Dom(S), σS=tR = {x | x ∈ R ∧ x[S] = t } denotes the set of tuples in R that agree
with t on the variables in S, while πSR = {x[S] | x ∈ R } denotes the set of restrictions of
the tuples in R to the variables in S.

Computational Model. We consider the RAM model of computation where schemas
and data values are of constant size. We assume that each relation R over schema X is
implemented by a data structure that stores key-value entries (x, R(x)) for each tuple x
with R(x) ̸= 0 and needs O(|R|) space. This data structure can: (1) look up, insert, and
delete entries in constant time, (2) enumerate all stored entries in R with constant delay,
and (3) report |R| in constant time. For a schema S ⊂ X , we use an index data structure
that for any t ∈ Dom(S) can: (4) enumerate all tuples in σS=tR with constant delay, (5)
check t ∈ πSR in constant time; (6) return |σS=tR| in constant time; and (7) insert and
delete index entries in constant time.

In an idealized setting, the above requirements can be ensured using hashing. In practice,
hashing can only achieve amortized constant time for some of the above operations. In our
paper, whenever we claim constant time for hash operations, we mean amortized constant
time. We give a hash-based example data structure that supports the above operations
in amortized constant time. Consider a relation R over schema X . A hash table with
chaining stores key-value entries (x, R(x)) for each tuple x over X with R(x) ̸= 0. The
entries are doubly linked to support enumeration with constant delay. The hash table can
report the number of its entries in constant time and supports lookups, inserts, and deletes
in amortized constant time. To support index operations on a schema F ⊂ X , we create
another hash table with chaining where each table entry stores an F-value t as key and a
doubly-linked list of pointers to the entries in R having t as F-value. Looking up an index
entry given t takes amortized constant time, and its doubly-linked list enables enumeration
of the matching entries in R with constant delay. Inserting an index entry into the hash
table additionally prepends a new pointer to the doubly-linked list for a given t; overall, this
operation takes amortized constant time. For efficient deletion of index entries, each entry in
R also stores back-pointers to its index entries (one back-pointer per index for R). When an
entry is deleted from R, locating and deleting its index entries in doubly-linked lists takes
constant time per index. An alternative data structure that can meet our requirements is a
tree-structured index such as a B+-tree. This would, however, require worst-case logarithmic
time and imply an additional logarithmic factor in our complexity results.

Modeling Updates Using Multiplicities. We restrict multiplicities of tuples in the input
relations to be strictly positive. Multiplicity 0 means the tuple is not present. A single-tuple
update to a relation R is expressed as δR = {x → m}. The update is an insert of the tuple
x in R if the multiplicity m is strictly positive. It is a delete of x from R if m is negative.
Such a delete is rejected if the existing multiplicity of x in R is less than |m|. A batch

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:11

update may consist of both inserts and deletes. Applying δR to R means creating a new
version of R that is the union of δR and R.

Partitioning. The number of occurrences of a value in a relation is called the degree of the
value in the relation. We partition relations based on value degree.

Definition 4.1. Given a relation R over schema X , a schema S ⊂ X , and a threshold θ, the
pair (H,L) of relations is a partition of R on S with threshold θ if it satisfies the following
four conditions:

(union) R(x) = H(x) + L(x) for x ∈ Dom(X)

(domain partition) πSH ∩ πSL = ∅
(heavy part) for all t ∈ πSH: |σS=tH| ≥ 1

2θ

(light part) for all t ∈ πSL: |σS=tL| < 3
2θ

The pair (H,L) is a strict partition of R on S with threshold θ if it satisfies the union and
domain partition conditions and strict versions of the heavy and light part conditions:

(strict heavy part) for all t ∈ πSH : |σS=tH| ≥ θ

(strict light part) for all t ∈ πSL : |σS=tL| < θ

The relations H and L are the heavy and light parts of R.

Assuming |R| = N and the strict partition (H,L) of R on S with threshold θ = N ϵ

for ϵ ∈ [0, 1], we have: ∀t ∈ πSL : |σS=tL| < θ = N ϵ; and |πSH| ≤ |R|
θ = N1−ϵ. We

subsequently denote the light part of R on S by RS .

Queries. A conjunctive query (CQ) has the form

Q(F) = R1(X1), . . . , Rn(Xn).

We denote by: (Ri)i∈[n] the relation symbols; (Ri(Xi))i∈[n] the atoms; vars(Q) =
⋃

i∈[n]Xi

the set of variables; free(Q) = F ⊆ vars(Q) the set of free variables; bound(Q) = vars(Q)−
free(Q) the set of bound variables; atoms(Q) = {Ri(Xi) | i ∈ [n]} the set of the atoms; and
atoms(X) the set of the atoms containing X. The query Q is full if free(Q) = vars(Q).

The hypergraph G = (vars(Q), atoms(Q)) of a query Q has one node per variable and
one hyperedge per atom that covers all nodes representing its variables. A join tree for
Q is a tree with the following properties: (1) Its nodes are exactly the atoms of Q; (2) if
any two nodes have variables in common, then all nodes along the path between them also
have these variables. The query Q is called α-acyclic if it has a join tree. It is free-connex
if it is α-acyclic and remains α-acyclic when we add to its body a fresh atom over its free
variables [BB13]. It is hierarchical if for any two of its variables, either their sets of atoms
are disjoint or one is contained in the other. It is q-hierarchical if it is hierarchical and for
every variable A ∈ free(Q), if there is a variable B such that atoms(A) ⊂ atoms(B) then
B ∈ free(Q) [BKS17a].

Example 4.2. The following query is α-acyclic:

Q(A,C, F) = R(A,B,C), S(A,B,D), T (A,E, F), U(A,E,G)

A join tree is the path U(AEG)−T (AEF)−R(ABC)−S(ABD). It is free-connex since we
can extend this join tree as follows: U(AEG)− T (AEF)−Q(ACF)−R(ABC)− S(ABD).

11:12 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

A

B E

C D F G

S(A,B,D)R(A,B,C) T (A,E, F) U(A,E,G)

A

C F

B E
D G

S(A,B,D)R(A,B,C) T (A,E, F) U(A,E,G)

Figure 5. Canonical (left) and non-canonical but free-top (right) vari-
able order for the query Q(A,C, F) = R(A,B,C), S(A,B,D), T (A,E, F),
U(A,E,G) in Example 4.2. Free variables are underlined.

It is also hierarchical but not q-hierarchical: The bound variables B and E dominate the
free variables C and respectively F .

Variable Orders. Two variables depend on each other if they occur in the same atom.

Definition 4.3 (adapted from [OZ15]). A variable order ω for a conjunctive query Q is a
pair (T, depω) such that the following holds:

• T is a rooted forest with one node per variable in Q. The variables of each atom in Q lie
along the same root-to-leaf path in T .

• The function depω maps each variable X to the subset of its ancestor variables in T on
which the variables in the subtree rooted at X depend, i.e., for every variable Y that is a
child of variable X, depω(Y) ⊆ depω(X) ∪ {X}.

An extended variable order is a variable order where we add as new leaves the atoms
corresponding to relations. We add each atom as the child of its variable placed lowest in
the variable order. Whenever we refer to a variable order, we mean its extension with atoms
at leaves. For ease of presentation, we often use ω to refer to the tree of ω.

The subtree of a variable order ω rooted at X is denoted by ωX . The sets vars(ω),
atoms(ω), and anc(X) consist of all variables of ω, the atoms at the leaves of ω, and the
variables on the path from X to the root excluding X, respectively. The flag has sibling(X)
is true if X has siblings. The variable order ω is free-top if no bound variable is an ancestor
of a free variable (called d-tree extension [OZ15]). It is canonical if the variables of the leaf
atom of each root-to-leaf path are the inner nodes of the path. The sets freeTopVO(Q),
canonVO(Q), and VO(Q) consist of free-top, canonical, and all variable orders of Q.

Example 4.4. The left variable order in Figure 5 is a canonical variable order for the query
from Example 4.2. This variable order is not free-top since the bound variables B and E sit
on top of the free variables C and respectively F . The right variable order in Figure 5 is a
free-top variable order for the query. This variable order is not canonical: the atom at the
leaf of the path A− C −B −D − S(ABD) does not have the variable C.

Hierarchical queries admit canonical variable orders, while q-hierarchical queries admit
canonical free-top variable orders. The canonical variable order of a hierarchical query is
unique up to orderings of variables sharing the same set of atoms.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:13

Width Measures. Given a conjunctive query Q and F ⊆ vars(Q), a fractional edge cover
of F is a solution λ = (λR(X))R(X)∈atoms(Q) to the following linear program [AGM13]:

minimize
∑

R(X)∈ atoms(Q)

λR(X)

subject to
∑

R(X)∈ atoms(Q) s.t. X∈X

λR(X) ≥ 1 for all X ∈ F and

λR(X) ∈ [0, 1] for all R(X) ∈ atoms(Q)

The optimal objective value of the above program is called the fractional edge cover number
of the variable set F and is denoted as ρ∗Q(F). An integral edge cover of F is a feasible

solution to the variant of the above program with λR(X) ∈ {0, 1} for each R(X) ∈ atoms(Q).
The optimal objective value of this program is called the integral edge cover number of F and
is denoted as ρQ(F). If Q is clear from the context, we omit the index Q in the expressions
ρ∗Q(F) and ρQ(F). For a database of size N , the result of the query Q can be computed in

time O(Nρ∗) [NPRR18].
For hierarchical queries, the integral and fractional edge cover numbers are equal. The

proofs of the following propositions in this section are given in the technical report [KNOZ19]
(Appendices B and C).

Proposition 4.5. For any hierarchical query Q and F ⊆ vars(Q), it holds ρ∗(F) = ρ(F).

Definition 4.6. The static width of a conjunctive query Q is

w(Q) = min
ω∈freeTopVO(Q)

w(ω)

w(ω) = max
X∈vars(Q)

ρ∗({X} ∪ depω(X))

If Q is Boolean, then w is the fractional hypertree width [Mar10]. FAQ-width generalizes
w to queries over several semirings [AKNR16] 1.

Definition 4.7. The dynamic width of a conjunctive query Q is

δ(Q) = min
ω∈freeTopVO(Q)

δ(ω)

δ(ω) = max
X∈vars(Q)

max
R(Y)∈atoms(ωX)

ρ∗(({X} ∪ depω(X))− Y)

While the static width of a free-top variable order ω is defined over the sets {X}∪depω(X)
with X ∈ vars(Q), the dynamic width of ω is defined over restrictions of these sets obtained
by dropping the variables in the schema of one atom. For any canonical variable order
ω, variable X in ω, and atom R(Y) in atoms(ωX), the set ({X} ∪ depω(X))− Y is empty.
Hence, queries that admit canonical free-top variable orders have dynamic width 0.

Proposition 4.8. Given a hierarchical query with static width w and dynamic width δ, it
holds that δ = w or δ = w − 1.

Free-connex hierarchical queries have static width 1.

1To simplify presentation, we focus on queries that contain at least one atom with non-empty schema.
This implies that the static width of queries is at least 1. Queries where all atoms have empty schemas
obviously admit constant preprocessing time, update time, and enumeration delay.

11:14 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Proposition 4.9. Any free-connex hierarchical query has static width 1.

We give a syntactic classification of hierarchical queries based on their dynamic width.

Definition 4.10. A hierarchical query is δi-hierarchical for i ∈ N if i is the smallest
number such that for each bound variable X and atom R(Y) of X, there are i atoms
R1(Y1), . . . , Ri(Yi) such that all free variables in the atoms of X are included in Y∪

⋃
j∈[i] Yj .

For instance, the query Q(Y0, . . . , Yi) = R0(X,Y0), . . . , Ri(X,Yi) is a δi-hierarchical
query for i ∈ N. The class of hierarchical queries can be partitioned into subclasses of δi-
hierarchical queries for i ∈ N. Then, the δ0-hierarchical queries are precisely the q-hierarchical
queries from prior work [BKS17a].

Proposition 4.11. A query is q-hierarchical if and only if it is δ0-hierarchical.

As depicted in Figure 2 (right), all free-connex hierarchical queries are either δ0- or
δ1-hierarchical.

Proposition 4.12. Any free-connex hierarchical query is δ0- or δ1-hierarchical.

The following proposition relates δi-hierarchical queries to their dynamic width.

Proposition 4.13. A hierarchical query is δi-hierarchical for i ∈ N if and only if it has
dynamic width i.

Proposition 4.13 and Theorem 3.1 imply the following corollary.

Corollary 4.14. Given a δi-hierarchical query with i ∈ N and static width w, a database
of size N , and ϵ ∈ [0, 1], the query result can be enumerated with O(N1−ϵ) delay after

O(N1+(w−1)ϵ) preprocessing time and O(N iϵ) amortized time for single-tuple updates.

5. Preprocessing

In the preprocessing stage, we construct a data structure that represents the result of a given
hierarchical query. The data structure consists of a set of view trees, where each view tree
computes one part of the query result. A view tree is a tree-shaped hierarchy of materialized
views with input relations as leaves and upper views defined in terms of their child views.
The construction of view trees exploits the structure of the query and the degree of data
values in base relations. We construct different sets of view trees for the static and dynamic
evaluation of a given hierarchical query.

We next assume that the canonical variable order of the given hierarchical query consists
of a single connected component. For several connected components, the preprocessing
procedure is executed on each connected component separately.

5.1. View Trees Encoding the Query Result. Given a hierarchical query Q(F) and
a canonical variable order ω for Q, the function BuildVT in Figure 6 constructs a view
tree that encodes the query result. The function proceeds recursively on the structure of
ω and constructs a view over schema FX at each inner node X; the leaves correspond to
the atoms in the query. The view is defined over the join of its child views projected onto
FX (Figure 7). The schema FX includes the ancestors of X in ω since they are needed for
joins at nodes above X. Each constructed view has a name to help us identify the place and
purpose of the view in the view tree.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:15

BuildVT(string prefix , variable order ω, schema F) : view tree

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . . ωk

2 let Ti = BuildVT(V, ωi,F),∀i ∈ [k]

3 let viewname = prefix + “ ” +X.name

4 if (anc(X) ∪ {X}) ⊆ F
5 let FX = anc(X) ∪ {X}
6 let subtrees = {AuxView(root of ωi, Ti) }i∈[k]
7 return NewVT(viewname,FX , subtrees)

8 let FX = anc(X) ∪ (F ∩ vars(ω))

9 let subtrees = {Ti}i∈[k]
10 return NewVT(viewname,FX , subtrees)

Figure 6. Construction of a view tree for a canonical variable order ω of a
hierarchical query with free variables F . View names share a given prefix .

NewVT(string viewname, schema S, view trees T1, . . . , Tk) : view tree

1 let Vi(Si) = root of Ti,∀i ∈ [k]

2 let V (S) = join of V1(S1), . . . , Vk(Sk) projected onto S
3 V.name := viewname

4 return

T1 , k = 1 ∧ S = S1

V (S)

T1 . . . Tk

, otherwise

Figure 7. Construction of a view tree with a given root view name, root
schema S, and children T1, . . . , Tk.

If X is free, then it is included in the schema of the view constructed at X (and not
included if bound). It is also kept in the schemas of the views on the path to the root until
it reaches a view whose schema does not have bound variables. The constructed view tree
has the upper levels only with views over the free variables. The hierarchy of such views
represents the query result and allows its enumeration with constant delay.

In the dynamic case, at each child Z of X we construct a view with schema anc(Z) on
top of the view created at Z (Figure 8). This auxiliary view aggregates away Z from the
latter view. The children of the view created at X then share the same schema FX . This
property enables the efficient maintenance of the view at X since processing a change coming
from any child view requires only constant-time lookups into that child’s sibling views.

Our preprocessing is particularly efficient for free-connex hierarchical queries in the
static case and for their strict subclass of δ0-hierarchical queries in the dynamic case.

For a canonical variable order of a hierarchical query, the free-connex property fails if
there are free variables such that they are below a bound join variable and are not covered

11:16 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

AuxView(node Z, view tree T) : view tree

1 let V (S) = root of T

2 let viewname = V.name + “ ’ ”

3 if mode = ‘dynamic’ ∧ has sibling(Z) ∧ anc(Z) ⊂ S
4 return NewVT(viewname, anc(Z), {T})
5 return T

Figure 8. A tree T constructed at variable Z is extended with a new root
view that aggregates away Z.

by one atom. Indeed, assume two branches out of a bound join variable X and with free
variables Y and respectively Z. Then, there are two atoms in Q whose sets of variables
include {X,Y } and respectively {X,Z}, while {Y,Z} are included in the head atom of Q.
This creates a cycle in the hypergraph of Q, which means that Q is not free-connex.

For δ0-hierarchical queries, there is no bound variable whose set of atoms strictly contains
the atoms of a free variable. Such queries thus admit canonical free-top variable orders
where all free variables occur above the bound ones.

For any free-connex hierarchical query, each view created by BuildVT is defined over
variables from one atom of the query and can be materialized in linear time. We can
thus recover the linear-time preprocessing for such queries used for static [BDG07] and
dynamic [BKS17a, IUV17] evaluation.

Example 5.1. Consider the free-connex query

Q(A,D,E) = R(A,B,C), S(A,B,D), T (A,E)

and its canonical variable order in Figure 9. We construct the view tree bottom-up as follows.
At C, we create the view VC(A,B) that aggregates away the bound variable C but keeps its
ancestors A and B to define views up in the tree. Since D is free and has only one child, we
skip creating a view at D; see the first case in Line 4 of NewVT from Figure 7. Similarly,
no view is created at E. At B, we create the view VB(A,D) = VC(A,B), S(A,B,D),
which keeps D as it is free and A as the ancestor of B. At A, we create the views
VA(A) = VB(A,D), T (A,E) in the static case and VA(A) = V ′

B(A), T
′(A) in the dynamic

case, where V ′
B(A) = VB(A,D) and T ′(A) = T (A,E). Each view can be computed in

linear time by aggregating away variables and semi-join reduction. The result of Q can be
enumerated using VA(A), VB(A,D), and T (A,E) with constant delay.

5.2. Skew-Aware View Trees. For free-connex queries, the procedure BuildVT con-
structs in linear time a data structure that allows for constant-time enumeration delay
(Proposition 6.1 and Lemma C.4). For δ0-hierarchical queries, it also admits constant-time
updates (Lemma E.1). We now focus on the bound join variables that violate the free-connex
property in the static case or the δ0-hierarchical property in the dynamic case. For each
such violating bound variable X, we use two evaluation strategies.

The first strategy materializes a subset of the query result obtained for the light values
over the set of variables anc(X) ∪ {X} in the variable order. It also aggregates away the
bound variables in the subtree rooted at X. Since the light values have a bounded degree,
this materialization is inexpensive.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:17

A

B E

T (A,E)

C D

S(A,B,D)R(A,B,C)

VA(A)

V ′
B(A)

VB(A,D)

T ′(A)

T (A,E)

VC(A,B)

S(A,B,D)R(A,B,C)

Figure 9. Canonical variable order and view tree for Q(A,D,E) =
R(A,B,C), S(A,B,D), T (A,E) in Example 5.1. The views V ′

B and T ′ are
created in the dynamic case. Free variables are underlined.

The second strategy computes a compact representation of the rest of the query result
obtained for those values over anc(X) ∪ {X} that are heavy (i.e., have high degree) in at
least one relation. This second strategy treats X as a free variable and proceeds recursively
to resolve further bound variables located below X in the variable order and to potentially
fork into more strategies.

The union of these strategies precisely cover the entire query result, yet not necessarily
disjointly. To enumerate the distinct tuples in the query result, we then use an adaptation
of the union algorithm [DS11] where the delay is given by the number of heavy values of the
variables we partitioned on and by the number of strategies.

Heavy and Light Indicators. We consider a bound join variables that violates the free-
connex property in the static case or the δ0-hierarchical property in the dynamic case. We
compute heavy and light indicator views consisting of disjoint sets of values for each such
variable X. The heavy indicator has the values that exist in all relations and are heavy in
at least one relation. The light indicator has the values that exist in all relations and are
light in all relations. Indicator views have set semantics. They allow us to rewrite the query
into an equivalent union of two queries.

Partitioning the query result only based on the degree of X-values may blow up the
enumeration delay: the path from X to the root may contain several bound join variables,
each creating buckets of values per bucket of their ancestors, thus leading to an explosion of
the number of buckets that need to be unioned together during enumeration. However, one
remarkable property holds for hierarchical queries: each base relation located in the subtree
rooted at X contains X but also all the ancestors of X. Thus, by partitioning each relation
jointly on X and its ancestors, we can ensure the enumeration delay remains linear in the
number of distinct heavy values over anc(X) ∪ {X}.

Figure 10 shows how to construct a triple of view trees for computing the indicators for
anc(X) ∪ {X}, where X is the root of a variable order ω that is a subtree in the variable
order of a hierarchical query (thus anc(X) may be non-empty). We first construct a view
tree that computes the tuples of values for variables keys = anc(X) ∪ {X} over the join of
the relations from ω. We then build a similar view tree for the light indicator for keys using
a modified variable order ωkeys of the same structure as ω but with each relation R replaced
by the light part of R partitioned on keys. Finally, the view tree for the heavy indicator
computes the difference of all keys-values and those from the light indicator.

View Trees with Indicators. Figure 11 gives the algorithm for constructing the view trees
for a variable order ω of a hierarchical query Q(F). The algorithm traverses the variable

11:18 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

IndicatorVTs(variable order ω) : triple of view trees

1 let X = root of ω

2 let keys = anc(X) ∪ {X}
3 let alltree = BuildVT(“All ”, ω, keys)

4 let ltree = BuildVT(“ L ”, ωkeys, keys)

5 let allroot = root of alltree

6 let lroot = root of ltree

7 let htree = NewVT(“H ” +X.name, keys, {allroot, ∄lroot})
8 return (alltree, ltree, htree)

Figure 10. Construction of the heavy and light indicator view trees for a
canonical variable order ω of a hierarchical query. The variable order ωkeys

has the structure of ω but each atom R(Y) is replaced with the light part
Rkeys(Y) of relation R partitioned on keys. The view ∄lroot maps all tuples
contained in lroot to 0 and all other tuples to 1.

order ω top-down, maintaining the invariant that all ancestors of a node are free variables
(or treated as such in case of bound join variables whose values are heavy).

The free variables at node X are the ancestors of X and the free variables in the subtree
rooted at X (Line 3). If the residual query QX at node X (Line 4) is free-connex in the
static case or δ0-hierarchical in the dynamic case, we return a view tree for QX (Lines
5-7). If X is free, we recursively compute a set of view trees for each child of X. We may
extend the root of each child tree with an auxiliary view in the dynamic mode to support
constant-time propagation of updates coming via the siblings of X. For each combination of
the child view trees, we form a new view joining the roots of the child view trees and using
X and its ancestors as free variables (Lines 8-11). If X is bound, we create two evaluation
strategies for the residual query QX based on the degree of values of X and its ancestors in
the relations of QX . We construct the indicator view trees for X and its ancestors (Line 12).
The heavy indicator restricts the joins of the child views to only heavy values for the tuple
of X and its ancestors (Lines 13-15). We also construct a view tree over the light parts of
the relations in ω (Line 16).

The algorithm from Figure 11 uses different criteria for the static and dynamic cases
(Lines 5-6) to decide on whether to stop recursively traversing the variable order. Since
the class of δ0-hierarchical queries is a proper subset of the class of free-connex queries, the
algorithm may partition input relations on more attributes and create more view trees in
the dynamic case than in the static case for the same variable order and free variables.

We next showcase our approach on a non-free-connex query. Section 9 provides additional
examples with δ1-hierarchical queries.

Example 5.2. Figure 12 shows the view trees for the query

Q(C,D,E, F) = R(A,B,D), S(A,B,E), T (A,C, F), U(A,C,G).

We start from the root A in the variable order. Since Q is not free-connex (and also
not δ0-hierarchical) and A is bound, we create the view trees for the indicators HA(A) and
LA(A). Materializing the views in these view trees takes linear time.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:19

τ(variable order ω, free variables F) : set of view trees

switch ω:

R(Y) 1 return {R(Y)}

X

ω1 . . .ωk

2 let keys = anc(X) ∪ {X}
3 let FX = anc(X) ∪ (F ∩ vars(ω))

4 let QX(FX) = join of atoms(ω)

5 if (mode = ‘static’ ∧QX(FX) is free-connex)∨
6 (mode = ‘dynamic’ ∧QX(FX) is δ0-hierarchical)

7 return {BuildVT(“V ”, ω,FX) }
8 if X ∈ F
9 return {NewVT(“V ” +X.name, keys, {T̂1, ..., T̂k})

10 | Ti ∈ τ(ωi,F)i∈[k],

11 T̂i = AuxView(root of ωi, Ti)i∈[k]}
12 let (, , HX) = roots of IndicatorVTs(ω)

13 let htrees = {NewVT(“V ” +X.name, keys, {∃HX , T̂1, ..., T̂k})
14 | Ti ∈ τ(ωi,F)i∈[k],

15 T̂i = AuxView(root of ωi, Ti)i∈[k]}
16 let ltree = BuildVT(“V ”, ωkeys,FX)

17 return htrees ∪ { ltree }

Figure 11. Construction of skew-aware view trees for a canonical variable
order ω of a hierarchical query with free variables F . The global parameter
mode ∈ {‘static’, ‘dynamic’} specifies the evaluation mode. The variable
order ωkeys has the structure of ω but each atom R(Y) is replaced by the
light part Rkeys(Y) of relation R partitioned on keys. The view ∃HX maps
all tuples contained in HX to 1 and all other tuples to 0.

In the light case for A, we create a view tree with the root VA(C,D,E, F) and the
leaves being the light parts of the input relations partitioned on A (bottom-left). Computing
VG(A,C) and VC(A,C, F) takes linear time. We compute the view VB(A,D,E) in time
O(N1+ϵ): For each (a, b, d) tuple in RA, we iterate over at most N ϵ (a, b, e) values in SA.
The view VB(A,D,E) contains at most N1+ϵ tuples. Similarly, we compute VA(C,D,E, F)
in time O(N1+2ϵ): For each (a, d, e) tuple in VB, we iterate over at most N ϵ (a, c, f) values
in VC . The view VA(C,D,E, F) allows constant delay enumeration of its result.

In the heavy case for A, we recursively process the subtrees of A in ω and treat A
as free. The right subquery, QC(A,C, F) = T (A,C, F), U(A,C,G) is free-connex and δ0-
hierarchical, thus we compute its view tree with the root VC(A,C) in the static case and
the root V ′

C(A) in the dynamic case (view trees in the second row) in linear time. The
left subquery QB(A,D,E) = R(A,B,D), S(A,B,E), however, is neither free-connex nor
δ0-hierarchical. Since B is bound, we create the indicator relations HB(A,B) and LB(A,B)
in linear time. We distinguish two new cases: In the light case for (A,B), we construct a

11:20 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

A

B C

D E F G

R(A,B,D) S(A,B,E) T (A,C, F) U(A,C,G)

VA(C,D,E, F)

VB(A,D,E) VC(A,C, F)

VG(A,C)

RA(A,B,D) SA(A,B,E) TA(A,C, F) UA(A,C,G)

VA(A)

∃HA(A) V ′
B(A)

VB(A,D,E)

RAB(A,B,D)SAB(A,B,E)

V ′
C(A)

VC(A,C)

T ′(A,C) VG(A,C)

T (A,C, F)U(A,C,G)

VA(A)

∃HA(A) V ′
B(A)

VB(A,B)
∃HB(A,B)

R′(A,B)

R(A,B,D)

S′(A,B)

S(A,B,E)

V ′
C(A)

VC(A,C)

T ′(A,C) VG(A,C)

T (A,C, F)U(A,C,G)

AllA(A)

AllB(A) AllC(A)

AllD(A,B)AllE(A,B) AllF (A,C) AllG(A,C)

R(A,B,D)S(A,B,E) T (A,C, F) U(A,C,G)

LA(A)

LB(A) LC(A)

LD(A,B) LE(A,B) LF (A,C) LG(A,C)

RA(A,B,D)SA(A,B,E) TA(A,C, F)UA(A,C,G)

HA(A)

AllA(A) ∄LA(A)

AllB(A,B)

AllD(A,B) AllE(A,B)

R(A,B,D) S(A,B,E)

LB(A,B)

LD(A,B) LE(A,B)

RAB(A,B,D) SAB(A,B,E)

HB(A,B)

AllB(A,B) ∄LB(A,B)

Figure 12. Canonical variable order for the query Q(C,D,E, F) =
R(A,B,D), S(A,B,E), T (A,C, F), U(A,C,G) (top left). The three view
trees constructed for the query (top right and second row). The indicator
view trees for computing HA and HB (third and fourth row). The views with
a dashed box are only needed for dynamic query evaluation.

view tree with the root VB(A,D,E) = RAB(A,B,D), SAB(A,B,E) (second row left) and
compute VB(A,D,E) in time O(N1+ϵ) by iterating over RAB and, for each (a, b, d), iterating
over at most N ϵ E-values in SAB. In the heavy case for (A,B), we process the subtrees
of B considering B as free variable. The two subqueries, QD(A,B,D) = R(A,B,D) and
QE(A,B,E) = S(A,B,E), are δ0-hierarchical.

Overall, we create three view trees for Q and two sets of view trees for the indicator
relations at A and B. The time needed to compute these view trees is O(N1+2ϵ).

Given a hierarchical query, our algorithm effectively rewrites it into an equivalent union
of queries, with one query defined by the join of the leaves of a view tree.

Proposition 5.3. Let {T1, . . . , Tk} = τ(ω,F) be the set of view trees constructed by the
algorithm in Figure 11 for a given hierarchical query Q(F) and a canonical variable order ω

for Q. Let Q(i)(F) be the query defined by the conjunction of the leaf atoms in Ti, ∀i ∈ [k].

Then, Q(F) ≡
⋃

i∈[k]Q
(i)(F).

The preprocessing time of our approach is given by the time to materialize the views in
the view trees.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:21

T.open(tuple ctx)

1 let V (S) = root of T

2 V.open(ctx)

3 T.buckets := ∅
4 let {T1, . . . , Tk} = children of T

5 if ∃i ∈ [k] such that Ti = ∃H // heavy indicator as child

6 ∃H.open(ctx)

7 while (h := ∃H.next()) ̸= EOF

8 T ′ := shallow copy of T without ∃H
9 T ′.open(h)

10 T.buckets := T.buckets ∪ {T ′}
11 else if S ⊂ free variables in T // need to recurse

12 T.ctx := V.next() // current context for entire tree T

13 foreach i ∈ [k] do Ti.open(T.ctx)

14 T.next() // initializes T.tuple to first tuple to be returned

Figure 13. Open the view iterators in a view tree.

Proposition 5.4. Given a hierarchical query Q(F) with static width w, a canonical variable
order ω for Q, a database of size N , and ϵ ∈ [0, 1], the views in the set of view trees τ(ω,F)

can be materialized in O(N1+(w−1)ϵ) time.

6. Enumeration

For any hierarchical query, Section 5 constructs a set of view trees that together represent
the query result. We now show how to enumerate the distinct tuples in the query result
with their multiplicity using the open/next/close iterator model for such view trees.

Each view in a view tree follows the iterator model. The function V.open(ctx) initializes
the iterator on view V using the tuple ctx as context, setting the range of the iterator to
those tuples that are consistent with ctx in V , that is, ctx is part of each such tuple in
V . The function V.next() returns a tuple consistent with ctx in V ; or it returns EOF if
the tuples in the range of the iterator are exhausted. The tuples returned by V.next() are
distinct. Both functions operate in constant time, as per our computational model.

Given a subtree T of a view tree and the current tuple ctx in its parent view, the call
T .open(ctx) described in Figure 13 sets the range of the iterator of T to those tuples in its
root view that agree with ctx and positions the iterator at the first tuple in this range. The
open call is recursively propagated down the view tree with an increasingly more specific
context tuple. A T.close() call resets the iterators of tree T . Each subtree T has an attribute
T.tuple storing the next tuple to be reported. The open method ends with a call to T.next()
to set T.tuple to the first tuple to be reported.

There are two cases that need special attention. If the schema of a view V includes all
free variables in the subtree rooted at V , then there is no need to open the views in this
subtree since V already has the tuples over these free variables; e.g., this is the case of the

11:22 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

T.next() : tuple

1 let V (S) = root of T

2 if (T has no children) ∨ (S = free variables in T) // no need to recurse

3 t := T.tuple; T.tuple := V.next(); return t

4 if T.buckets ̸= ∅
5 t := T.tuple; T.tuple := Union(T.buckets); return t

6 let {T1, . . . , Tk} = children of T

7 while (T.ctx ̸= EOF) do

8 if (n := Product(T1, . . . , Tk, T.ctx)) ̸= EOF // next tuple in Cartesian product

9 t := T.tuple; T.tuple := n; return t

10 T.ctx := V.next() // Cartesian product exhausted, next tree context

11 foreach i ∈ [k] do Ti.close(); Ti.open(T.ctx)

12 t := T.tuple; T.tuple := EOF; return t

Figure 14. Find the next tuple in a view tree.

view VA(C,D,E, F) in Figure 12. The views with heavy indicators, e.g., the views VA(A)
and VB(A,B) in Figure 12, also require special treatment. If V has as child a heavy indicator
∃H, the tree T rooted at V represents possibly overlapping relations in the contexts given
by the different tuples h ∈ ∃H. We ground the heavy indicator by creating an iterator for
each heavy tuple agreeing with the current tuple ctx at the parent view of V and keep
this iterator in a shallow copy of T . Creating a shallow copy of T means creating a tree of
iterators of the same structure as T but without copying the content of views under T .

After the first open call for a view tree T , we can enumerate the distinct tuples from
T with their multiplicity by calling T.next(), see Figure 14. The next call propagates
recursively down T and observes the same cases as the open call. If a view V in T already
covers all free variables in T , then it suffices to enumerate from V . If T has as child a heavy
indicator, we return the next tuple and its multiplicity from the union of all its groundings
using the Union algorithm (Section 6.1). Otherwise, we synthesize the returning tuple out
of the tuples at the iterators of T ’s children. Given the current context at T ’s view, we
return the next tuple and its multiplicity from the Cartesian product of the tuples produced
by T ’s children using the Product algorithm (Section 6.2).

For a view tree with no heavy indicators, calling open and next on the view tree translates
to calling open and next on its views, where each such call on a view takes constant time
and the number of such calls is independent of the size of the database. Thus, calling open
and next on a view tree with no heavy indicators takes constant time.

In the presence of heavy indicators, the time to initialize a view tree and produce the
next tuple is dominated by the number of shallow view trees created in the grounding step.
The delay of the Union algorithm is the sum of the delays of the grounded view trees. Their
number is determined by the size of the heavy indicators in the view tree, which is O(N1−ϵ).
Thus, calling open and next on a view tree with heavy indicators takes O(N1−ϵ) time.

So far we discussed the case of enumerating from one view tree. In case of a set of
view trees we again use the Union algorithm. In case the query has several connected

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:23

Union(view trees T1, . . . , Tn) : tuple

1 if (n = 1) return Tn.next()

2 if ((t,m) := Union(T1, . . . , Tn−1)) ̸= EOF

3 if Tn.lookup (t) ̸= 0

4 (tn,mn) := Tn.next()

5 return (tn,mn +
∑

i∈[n−1] Ti.lookup (tn))

6 return (t,m)

7 if ((tn,mn) := Tn.next()) ̸= EOF

8 return (tn,mn +
∑

i∈[n−1] Ti.lookup (tn))

9 return EOF

Figure 15. Find the next tuple in a union of view trees.

components, i.e., it is a Cartesian product of hierarchical queries, we use the Product
algorithm with an empty context.

The multiplicity for a tuple returned by the Union algorithm is the sum of the multi-
plicities of its occurrences across the buckets, while for a tuple returned by the Product
algorithm it is the multiplication of the multiplicities of the constituent tuples. Since all
tuples in the database have positive multiplicities, the derived multiplicities are always
strictly positive and therefore the returned tuple is part of the result.

We next explain the Union and Product algorithms used by T.next() in Figure 14.

6.1. The Union Algorithm. TheUnion algorithm is given in Figure 15. It is an adaptation
of prior work [DS11]. It takes as input n view trees that represent possibly overlapping sets
of tuples over the same relation and returns a tuple and its multiplicity in the union of these
sets, where the tuple is distinct from all tuples returned before.

We first explain the algorithm on two views T1 and T2 that have been already open and
with their iterators positioned at the first respective tuples. On each call, we return one
tuple together with its multiplicity or EOF. We check whether the next tuple t1 in T1 is
also present in T2. If so, we return the next tuple in T2 and its total multiplicity from T1

and T2; otherwise, we return t1 and its multiplicity in T1. If T1 is exhausted, we return the
next tuple in T2 and its total multiplicity from T1 and T2, or EOF if T2 is also exhausted.

In case of n > 2 views, we consider one view defined by the union of the first n− 1 views
and a second view defined by Tn, and we then reduce the general case to the previous case
of two views.

The delay of this algorithm is given by the delay of iterating over each view, the cost
of lookups into the views, and the cost of computing output multiplicities. The lookup
costs are constant when using a hierarchy of materialized views for representing the query
result [OZ15]. Given n views, computing an output multiplicity takes O(n) time. The
overall delay is the sum of the delays of the n views, which is O(n).

In our paper, we employ the Union algorithm in two cases: (1) on the set of view trees
obtained after grounding the heavy indicators; and (2) on the set of view trees obtained by
using skew-aware indicators in the preprocessing stage. In the first case, the number of the

11:24 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Product(view trees T1, . . . , Tk, tuple ctx) : tuple

1 while (T1.tuple ̸= EOF) do

. . .

2 while (Tk−1.tuple ̸= EOF) do

3 while (Tk.tuple ̸= EOF) do

4 let (ti,mi) = Ti.tuple,∀i ∈ [k]

5 let (tctx ,) = ctx , where tctx is over schema S
6 t := tctx ◦⃝i∈[k]πfree variables in Ti−S ti
7 m :=

∏
i∈[k]mi

8 Tk.next()

9 return (t,m)

10 Tk.close(); Tk.open(ctx); Tk−1.next()

. . .

11 T2.close(); T2.open(ctx); T1.next()

12 return EOF

Figure 16. Find the next tuple in a product of view trees. In case k = 1,
the innermost loop is executed.

view trees is in O(N1−ϵ), since the number of heavy tuples in any heavy indicator view is at
most N1−ϵ. In the second case, the number of view trees does not depend on the database
size N , but it may depend exponentially on the number of bound join variables in the input
hierarchical query.

6.2. The Product Algorithm. The Product algorithm is given in Figure 16. It takes as
input a set of view trees T1, . . . , Tk and a context, which is the current tuple in the parent
view, and outputs the next tuple and its multiplicity in the Cartesian product of the tuples
returned by the k view trees given the context. By construction, the parent view joins the
roots of the k view trees and thus yields only contexts for which each of the view trees
produces a non-empty result.

In case k = 1, we execute the innermost loop for Tk: On a call, we take the current tuple
in Tk and project away the variables that are in common with the context tuple, retaining
only the free variables in Tk. We concatenate this projection with the context tuple. The
concatenation operator is ◦. Before we return this concatenated tuple and its multiplicity,
we advance the iterator to the next tuple-multiplicity pair in Tk. Eventually, we reach the
end of the iterator for Tk, in which case we return EOF.

In case k > 1, we hold the current tuple-multiplicity pairs for T1, . . . , Tk−1 and iterate
over Tk. Whenever Tk reaches EOF, we reset it and advance the iterator for Tk−1. We
concatenate the context tuple and the current tuples of all iterators, projected onto the
variables that are not in the schema of the context tuple (since those fields are already in
the context). We multiply the current multiplicities of all iterators and advance the iterator
for Tk before returning the concatenated tuple and its multiplicity.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:25

The delay for a Product call is given by the sum of the delays of the k input view trees.
In the worst case, the algorithms makes k − 1 open calls and k next calls before returning
the next tuple. We use this algorithm in two cases: (1) enumerating from a view with several
children in a tree (in which case the context is given as the current tuple in the view); (2) a
collection of view trees, one per connected component of the input query (in which case the
context is the empty tuple). In both cases, the number of parameters to the Product call
is independent of the size of the database and only dependent on the number of atoms and
respectively of connected components in the input query. This means that the delay (in data
complexity) is the maximum delay of any of its parameter view trees, which is O(N1−ϵ).

We next state the complexity of enumeration in our approach.

Proposition 6.1. The tuples in the result of a hierarchical query Q(F) over a database of
size N can be enumerated with O(N1−ϵ) delay using the view trees constructed by τ(ω,F)
for a canonical variable order ω for Q.

7. Updates

We present our strategy for maintaining the views in the set of view trees τ(ω,F) constructed
for a canonical variable order ω of a hierarchical query Q(F) under updates to input relations.
We specify here the procedure for processing a single-tuple update to any input relation.
Processing a sequence of such updates builds upon this procedure and occasional rebalancing
steps (Section 7.2).

We write δR = {x → m} to denote a single-tuple update δR mapping the tuple x to
the non-zero multiplicity m ∈ Z and any other tuple to 0; i.e., |δR| = 1. Inserts and deletes
are updates represented as relations in which tuples have positive and negative multiplicities.
We assume that after applying an update to the database, all relations and views contain no
tuples with negative multiplicities.

Compared to static evaluation, our strategy for dynamic evaluation may construct
additional views to support efficient updates to all input relations. In Figure 12, the view
tree created for the case of heavy (A,B)-values (second row right) has five such additional
views, marked with dashed boxes. These views enable an update to any leaf view to be
propagated to the root view in constant time. For instance, the views R′ and S′ eliminate
the need to iterate over the D-values in relation R for updates to relation S and ∃HB and
respectively over the E-values in S for updates to R and ∃HB. Figure 8 gives the rule for
creating such views: If node Z has a sibling in the variable order, then we create an auxiliary
view that aggregates away Z to avoid iterating over the Z-values for updates coming via the
(auxiliary) views constructed for the siblings of Z.

7.1. Processing a Single-Tuple Update. An update δR to a relation R may affect
multiple view trees in the set of view trees constructed by our algorithm from Figure 11.2

We apply δR to each such view tree in sequence, by propagating changes along the path
from the leaf R to the root of the view tree. For each view on this path, we update the view
result with the change computed using the standard delta rules [CY12] (see Example 9.1).
To simplify the reasoning about the maintenance task, we assume that each view tree has a

2We focus here on updates to hierarchical queries without repeating relation symbols. In case a relation R
occurs several times in a query, we treat an update to R as a sequence of updates to each occurrence of R.

11:26 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Apply(view tree T , update δR) : delta view

switch T :

K(X) 1 if K = R

2 R(X) := R(X) + δR(X)

3 return δR

4 return ∅

V (X)

T1 . . . Tk

5 let Vi(Xi) = root of Ti, for i ∈ [k]

6 if ∃ j ∈ [k] such that R ∈ Tj

7 δVj := Apply(Tj , δR)

8 let δV (X) = join of V1(X1), . . . , δVj(Xj), . . . , Vk(Xk) proj. onto X
9 V (X) := V (X) + δV (X)

10 return δV

11 return ∅

Figure 17. Updating views in a view tree T for a single-tuple update δR
to relation R.

UpdateIndTree(indicator tree TInd, update δR) : indicator change

1 let I(S) = root of TInd

2 let key = x[S], where δR = {x → m}
3 let #before = I(key)

4 Apply(TInd, δR)

5 if (#before = 0) ∧ (I(key) > 0) return {key → 1}
6 if (#before > 0) ∧ (I(key) = 0) return {key → −1}
7 return ∅

Figure 18. Updating an indicator view tree TInd for a single-tuple update
δR to relation R.

copy of its base relations. We use Apply(T, δR) from Figure 17 to propagate an update δR
in a view tree T ; if T does not refer to R, the procedure has no effect.

Updates to indicator views, however, may trigger further changes in the views constructed
over them. Consider, for instance, the heavy indicator HB(A,B) constructed over the view
AllB(A,B) and the light indicator ∄LB(A,B) in Figure 12. An insert δR = {(a, b, d) → 1}
into R may change the multiplicity HB(a, b) from 0 to non-zero, thus changing ∃HB(A,B)
and its dependent views: VB(A,B), V ′

B(A), and VA(A). But if the multiplicity HB(a, b)
stays 0 or non-zero after applying δR, then ∃HB also stays unchanged.

Figure 18 shows the function UpdateIndTree that applies an update δR to an indicator
tree TInd with a root view I(S). The function returns the change δ(∃I) in the support of the
indicator view I, to be further propagated to other views. The free variables S of I appear
in each input relation from TInd, and δR fixes their values to constants; thus, |δ(∃I)| ≤ 1.

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:27

UpdateTrees(view trees T , indicator triples TInd, update δR)

1 foreach T ∈ T do Apply(T, δR)

2 foreach (TAll, TL, TH) ∈ TInd such that R ∈ TAll do

3 let All(S) = root of TAll, L(S) = root of TL, H(S) = root of TH

4 let key = x[S], where δR = {x → m}
5 let #before = All(key)

6 Apply(TAll, δR)

7 let #change = All(key)−#before

8 let δ(∃H) = UpdateIndTree(TH , δAll = {key → #change })
9 foreach T ∈ T do Apply(T, δ(∃H))

10 if (key /∈ πSR) ∨ (key ∈ πSR
S)

11 foreach T ∈ T do Apply(T, δRS = δR)

12 let δ(∃L) = UpdateIndTree(TL, δR
S = δR)

13 let δ(∃H) = UpdateIndTree(TH , δ(∄L) = −δ(∃L))
14 foreach T ∈ T do Apply(T, δ(∃H))

Figure 19. Updating a set T of view trees and a set TInd of triples of
indicator trees for a single-tuple update δR to relation R.

Figure 19 gives our algorithm for maintaining a set of view trees T and a set of indicator
tress TInd under an update δR. We first apply δR to the view trees from T (Line 1). Then,
we consider the triples (TAll, TL, TH) of indicator trees from TInd that are affected by δR.
We maintain the heavy indicator tree TH with the root H(S) = All(S),∄L(S) for changes
in both All and ∄L. We apply δR to TAll (Line 6) and subsequently δAll to TH (Line 8).
The latter may trigger a change δ(∃H) in the support of H, which we apply to the view
trees from T (Line 9). If the update δR belongs to the light part RS (Line 10), we apply
δRS to the view trees from T and to the light indicator tree TL (Lines 11-12). We then
propagate the opposite change δ(∄L) in the support of the root L of TL, if any, to TH and
further to the view trees from T (Lines 13-14).

Example 7.1. We analyze the time needed to maintain the views from Figure 12 under
a single-tuple update to any input relation. For the view tree constructed for the case of
heavy (A,B)-values (second row right), propagating an update from any relation to the
root view takes constant time. For instance, an update δR to R changes the view R′(A,B)
with δR′(a, b) = δR(a, b, d); the view VB(A,B) with δVB(a, b) = ∃HB(a, b), δR

′(a, b), S′(a, b);
changes to the views V ′

B(A) and VA(A) are similar. The auxiliary views S′(A,B) and V ′
C(A)

enable the constant-time updates in this case by aggregating away the E-values in S(A,B,E)
and the C-values in VC(A,B).

Consider now the view tree defined over the light parts of input relations (bottom-left).
The update δR = {(a, b, d) → m} affects the light part RA of R when (a, b, d) /∈ R or
a ∈ πAR

A. If so, computing δVB(a, d,E) = δRA(a, b, d), SA(a, b, E) takes O(N ϵ) time since
a is light in SA. The size of δVB is also O(N ϵ). Computing δVA at the root requires pairing
each E-value from δVB with the (C,F)-values in VC for the given a. Since a is light in TA,
the number of such (C,F)-values in TA is O(N ϵ). Thus, computing δVA takes O(N2ϵ) time.

11:28 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

MajorRebalancing(view trees T , indicator triples TInd, threshold θ)

1 foreach (TAll, TL, TH) ∈ TInd do

2 foreach RF ∈ TL, R ∈ TAll do

3 RF = {x → R(x) | x ∈ R, key = x[F], |σF=keyR| < θ}
4 Recompute(TL), Recompute(TH)

5 foreach T ∈ T do Recompute(T)

Figure 20. Recomputing the light parts of base relations and affected views.

A similar analysis shows that updates to SA and TA also take O(N2ϵ) time, while updates
to UA take O(N3ϵ) time.

For the view tree constructed for the case of heavy A-values (bottom-middle), updates
to RAB and SAB take O(N ϵ) time, while updates to T and U take constant time. The
indicator view trees (top and middle row) encode the results of δ0-hierarchical queries, thus
maintaining their views takes constant time per update.

The indicator views ∃HA(A) and ∃HB(A,B) may change under updates to any relation
and respectively under updates to R and S. For instance, the update δR can trigger a new
single-tuple change in ∃HA when the multiplicity HA(a) increases from 0 to non-zero or vice
versa. Applying this change δ(∃HA) to the view trees containing ∃HA takes constant time;
the same holds for propagating a change δ(∃HB) to the view trees containing ∃HB.

In conclusion, maintaining the views from Figure 12 under a single-tuple update to any
relation takes O(N3ϵ) overall time.

We next state the complexity of updates in our approach.

Proposition 7.2. Given a hierarchical query Q(F) with dynamic width δ, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], maintaining the views in the set
of view trees τ(ω,F) under a single-tuple update to any input relation takes O(N δϵ) time.

7.2. Rebalancing Partitions. As the database evolves under updates, we periodically
rebalance the relation partitions and views to account for a new database size and updated
degrees of data values. The cost of rebalancing is amortized over a sequence of updates.

Major Rebalancing. We loosen the partition threshold to amortize the cost of rebalancing
over multiple updates. Instead of the actual database size N , the threshold now depends on
a number M for which the invariant

⌊
1
4M

⌋
≤ N < M always holds. If the database size falls

below ⌊14M⌋ or reaches M , we perform major rebalancing, where we halve or respectively
double M , followed by strictly repartitioning the light parts of input relations with the new
threshold M ϵ and recomputing the views. Figure 20 shows the major rebalancing procedure.

Proposition 7.3. Given a hierarchical query Q(F) with static width w, a canonical variable
order ω for Q, a database of size N , and ϵ ∈ [0, 1], major rebalancing of the views in the set

of view trees τ(ω,F) takes O(N1+(w−1)ϵ) time.

The cost of major rebalancing is amortized over Ω(M) updates. After a major rebalancing
step, it holds that N = 1

2M (after doubling), or N = 1
2M − 1

2 or N = 1
2M −1 (after halving).

To violate the size invariant
⌊
1
4M

⌋
≤ N < M and trigger another major rebalancing, the

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:29

MinorRebalancing(trees T , tree TL, tree TH , source R, key, insert)

1 let L(F) = root of TL, H(F) = root of TH

2 foreach x ∈ σF=keyR do

3 let cnt = if (insert) R(x) else −R(x)

4 foreach T ∈ T do Apply(T, δRF = {x → cnt})
5 let δ(∃L) = UpdateIndTree(TL, δR

F = {x → cnt})
6 let δ(∃H) = UpdateIndTree(TH , δ(∄L) = −δ(∃L))
7 foreach T ∈ T do Apply(T, δ(∃H))

Figure 21. Deleting heavy tuples from or inserting light tuples into the
light part of relation R.

number of required updates is at least 1
4M . In the extended technical report, we prove the

amortized O(N (w−1)ϵ) time of major rebalancing [KNOZ19]. By Proposition 4.8, we have
δ = w or δ = w − 1; hence, the amortized major rebalancing time is O(M δϵ).

Minor Rebalancing. After an update δR = {x → m} to relation R, we check the light
part and heavy part conditions of each partition of R. Consider the light part RS of R
partitioned on a schema S. If the number of tuples in RS that agree with x on S exceeds
3
2M

ϵ, then we delete those tuples from RS . If the number of tuples that agree with x on S
in RS is zero and in R is below 1

2M
ϵ, then we insert those tuples into RS . Figure 21 shows

this minor rebalancing procedure.

Proposition 7.4. Given a hierarchical query Q(F) with dynamic width δ, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], minor rebalancing of the views

in the set of view trees τ(ω,F) takes O(N (δ+1)ϵ) time.

The cost of minor rebalancing is amortized over Ω(M ϵ) updates. This lower bound on
the number of updates is due to the gap between the two thresholds in the heavy and light
part conditions. The extended technical report proves the amortized O(N δϵ) time of minor
rebalancing [KNOZ19].

Figure 22 gives the trigger procedure OnUpdate that maintains a set of view trees T
and a set of indicator trees TInd under a sequence of single-tuple updates to input relations.
We first apply an update δR to the view trees from T and indicator trees from TInd using
UpdateTrees from Figure 19. If this update leads to a violation of the size invariant⌊
1
4M

⌋
≤ N < M , we invoke MajorRebalancing to recompute the light parts of the input

relations and affected views. Otherwise, for each triple of indicator trees from TInd with the
light part RF partitioned on F , we check if the heavy or light condition is violated; if so, we
invoke MinorRebalancing to move the R-tuples having the F-values of the update δR
either into or from the light part RF of relation R.

We state the amortized maintenance time of our approach under a sequence of single-
tuple updates.

Proposition 7.5. Given a hierarchical query Q(F) with dynamic width δ, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], maintaining the views in the set
of view trees τ(ω,F) under a sequence of single-tuple updates takes O(N δϵ) amortized time
per single-tuple update.

11:30 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

OnUpdate(view trees T , indicator triples TInd, update δR)

1 UpdateTrees(T , TInd, δR)

2 if (N = M)

3 M = 2M

4 MajorRebalancing(T , TInd,M ϵ)

5 else if (N <
⌊
1
4M

⌋
)

6 M =
⌊
1
2M

⌋
− 1

7 MajorRebalancing(T , TInd,M ϵ)

8 else

9 foreach (TAll, TL, TH) ∈ TInd such that R ∈ TAll do

10 let RF ∈ TL be light part of R partitioned on F
11 let key = x[F], where δR = {x → m}
12 if (|σF=keyR

F | = 0 ∧ |σF=keyR| < 1
2M

ϵ)

13 MinorRebalancing(T , TL, TH , R, key, true)

14 else if (|σF=keyR
F | ≥ 3

2M
ϵ)

15 MinorRebalancing(T , TL, TH , R, key, false)

Figure 22. Updating a set of view trees T and a set of triplets of indicator
view trees TInd under a sequence of single-tuple updates to base relations.

The proof of Proposition 7.5 is based on prior work (Section 4.1 in [KNN+19a]). The
adapted proof is given in the technical report (Section F.4 in [KNOZ19]).

8. Matching Lower Bound for δ1-Hierarchical Queries

Corollary 4.14 says that, given a database of size N and ϵ ∈ [0, 1], any δi-hierarchical query
with i ∈ N can be evaluated with O(N iϵ) amortized update time and O(N1−ϵ) enumeration
delay. For δ1-hierarchical queries, this upper bound is matched by a lower bound conditioned
on the Online Matrix-Vector Multiplication Conjecture [HKNS15]. The following proposition
extends the lower bound result from prior work [BKS18] to amortized update time. The
adapted proof can be found in the technical report (Proposition 10 in [KNOZ19]).

Proposition 8.1. Given a δ1-hierarchical query without repeating relation symbols, γ > 0,
and a database of size N , there is no algorithm that maintains the query with arbitrary

preprocessing time, O(N
1
2
−γ) amortized update time, and O(N

1
2
−γ) enumeration delay,

unless the Online Matrix-Vector Multiplication conjecture fails.

logNdelay

logNpreprocessing time

logNupdate time

0

(1, 0, 1)

1

(2, 1, 0)

1

2

δ = 1

1
2

1
2

(32 ,
1
2 ,

1
2)

weakly Pareto optimal

The blue line connecting the points (1, 0, 1) and
(2, 1, 0) in the left figure visualizes the trade-offs of our
approach for δ1-hierarchical queries. The gray cuboid
is infinite in the dimension of preprocessing time. Each
point strictly included in the gray cuboid corresponds to

a combination of some preprocessing time and O(N
1
2
−γ)

amortized update time and delay for γ > 0. Following
Proposition 8.1, this is not attainable, unless the Online
Matrix-Vector Multiplication conjecture fails. Each point

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:31

on the surface of the cuboid corresponds to Pareto worst-case optimality in the update-delay

trade-off space. For ϵ = 1
2 , our approach needs O(N

1
2) amortized update time and delay,

which is weakly Pareto worst-case optimal: there can be no tighter upper bounds for both
the update time and delay. Since w ∈ {1, 2} for δ1-hierarchical queries, the preprocessing

time is O(N
3
2).

9. Examples Showcasing Our Approach

We exemplify our approach for the static and dynamic evaluation of two δ1-hierarchical
queries. We start with the query from Example 2.2.

Example 9.1. Consider the δ1-hierarchical and non-free-connex query Q(A,C) = R(A,B),
S(B,C) from Example 2.2 whose relations have size at most N . We partition R and S
on B: A B-value b is light in R if |{a | (a, b) ∈ R}| ≤ N ϵ and heavy otherwise (similar for
S). Since each heavy B-value is paired with at least N ϵ A-values in R, there are at most
N1−ϵ heavy B-values. There are four cases to consider: B is either light or heavy in each
of R and S. We can reduce them to two cases: either B is light in both relations, or B is
heavy in at least one of them. We keep the light/heavy information in two indicator views:
LB(B) = RB(A,B), SB(B,C), where RB and SB are the light parts of R and respectively
S; and HB(B) = AllB(B),∄LB(B), where AllB(B) = R(A,B), S(B,C). The ∃ operator
before indicators denotes their use with set semantics, i.e., the tuple multiplicities are 0 or 1.
The ∄ operator flips the multiplicity.

Figure 23 gives the evaluation and maintenance strategies for our query. A strategy is
depicted by a view tree, with one view per node such that the head of the view is depicted
at the node and its body is the join of its children.

To support light/heavy partitions, we need to keep the degree information of the B-
values in the two relations. The light/heavy indicators can be computed in linear time, e.g.,
for LB we start with the light parts of R and S, aggregate away A and respectively C and
then join them on B.

If B is light, we compute the view VB(A,C) in time O(N1+ϵ): We iterate over SB and
for each of its tuples (b, c), we fetch the A-values in RB paired with b in R. The iteration
over SB takes linear time and for each b there are at most N ϵ A-values in R. The view
VB(A,C) is a subset of Q’s result.

If B is heavy, we construct the view VB(B) with up to N1−ϵ heavy B-values. For
each such value b, we can enumerate the distinct tuples (a, c) such that R(a, b) and S(b, c)
hold. Distinct B-values may, however, have the same tuple (a, c). Therefore, if we were to
enumerate such tuples for one B-value after those for another B-value, the same tuple (a, c)
may be output several times, which violates the enumeration constraint. To address this
challenge, we use the union algorithm [DS11]. We use the N1−ϵ buckets of (a, c) tuples, one
for each heavy B-value, and an extra bucket VB(A,C) constructed in the light case. From
each bucket of a B-value, we can enumerate the distinct (a, c) tuples with constant delay by
looking up into R and S. The tuples in the materialized view VB(A,C) can be enumerated
with constant delay. We then use the union algorithm to enumerate the distinct (a, c) tuples
with delay given by the sum of the delays of the buckets. For each such tuple, we sum up
the positive multiplicities of its occurrences in the buckets. This yields an overall O(N1−ϵ)
delay for the enumeration of the distinct tuples in the result of Q.

11:32 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

AllB(B)

AllA(B) AllC(B)

R(A,B) S(B,C)

LB(B)

LA(B) LC(B)

RB(A,B) SB(B,C)

HB(B)

AllB(B) ∄LB(B)

VB(A,C)

RB(A,B) SB(B,C)

VB(B)

∃HB(B) R′(B)

R(A,B)

S′(B)

S(B,C)

Figure 23. The view trees for Q(A,C) = R(A,B), S(B,C) in Example 9.1.
The dashed boxes enclose views that are only needed in the dynamic case.

We now turn to the dynamic case. The preprocessing time and delay remain the same
as in the static case, while each single-tuple update can be processed in O(N ϵ) amortized
time. To support updates, we need to maintain tuple multiplicities in addition to the degree
information of the B-values in the two relations. The multiplicity of a result tuple is the sum
of the multiplicities of its duplicates across the O(N1−ϵ) buckets. We also need two views to
support efficient updates to R and S; these are marked with the dashed boxes in Figure 23.
For simplicity, we assume that each view tree maintains copies of its base relations.

Consider a single-tuple update δR = {(a, b) → m} to relation R. We maintain each view
affected by δR using the hierarchy of materialized views from Figure 23. The changes in those
views are expressed using the classical delta rules [CY12]. We update the views R′(B) and
VB(B) in the bottom-right tree with δR′(b) = δR(a, b) and δVB(b) = ∃HB(b), δR

′(b), S′(b)
in constant time; the same holds for updating the views AllA(B), AllB(B), and HB(B).

The update δR affects the light part RB of R if the B-value b already exists among
the B-values in RB or does not exist in R. For such change δRB, we update VB(A,C) with
δVB(a,C) = δRB(a, b), SB(b, C) in time O(N ϵ) since b is light in SB; updating LB(B) and
HB(B) takes constant time.

The update δR may trigger a new single-tuple change in ∃HB, affecting VB(B). The
change δ(∃HB) is non-empty only when the multiplicity HB(b) changes from 0 to non-zero
or vice versa. For such change δ(∃HB), we update VB(B) via constant-time lookups in R′(b)
and S′(b).

The update δR may change the degree of b in R from light to heavy or vice versa. In such
cases, we need to rebalance the partitioning of R and possibly recompute some of the views.
Although such rebalancing steps may take time more than O(N ϵ), they happen periodically
and their amortized cost remains the same as for a single-tuple update (Section 7).

Next, we demonstrate our approach for the δ1-hierarchical query from Example 3.2.

Example 9.2. Consider the δ1-hierarchical free-connex query Q(A) = R(A,B), S(B) from
Example 3.2 whose relations have size at most N . Figure 24 shows the single view tree
(bottom-left) that our approach constructs in the static case, and the other five view trees
needed in the dynamic case. In the static case, since Q is free-connex, its result can be
computed in O(N) time and then its tuples can be enumerated with O(1) delay. Our
approach does not partition the relations in the static case. We compute the view VB(A) in

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:33

AllB(B)

AllA(B)

R(A,B) S(B)

LB(B)

LA(B)

RB(A,B) SB(B)

HB(B)

AllB(B) ∄LB(B)

VB(A)

R(A,B) S(B)

VB(A)

RB(A,B) SB(B)

VB(B)

∃HB(B) R′(B)

R(A,B) S(B)

Figure 24. The view trees for Q(A) = R(A,B), S(B) in Example 9.2. The
bottom-left view tree is the only one needed in the static case, all others are
needed in the dynamic case.

time O(N) by iterating over the tuples in R and looking up for each tuple (a, b) in R the
multiplicity of b in S in O(1) time. The result can be enumerated from the view VB(A) with
O(1) delay.

In the dynamic case, we partition relations R and S on the bound join variable B and
create the indicators LB(B) and HB(B) as in Figure 24. In the light case, we compute the
view VB(A) in O(N) time: For each (a, b) in the light part RB of R, we check the multiplicity
of b in the light part SB of S using a constant-time lookup. In the heavy case, we compute
the view VB(B) in O(N) time using the heavy indicator ∃HB, the input relation S, and the
projection R′(B) of R on B.

We can enumerate the tuples in the query result with O(N1−ϵ) delay: Since there
are at most N1−ϵ heavy B-values in VB(B), each with its own list of A-values in R, we
need O(N1−ϵ) delay to enumerate the distinct A-values paired with the heavy B-values.
In addition, we can enumerate from the view VB(A) created for the light B-values with
constant delay. To obtain the multiplicity of each output tuple, we sum up the positive
multiplicities of the duplicates of the tuple across the O(N1−ϵ) buckets.

A single-tuple update to R triggers constant-time updates to all views. A single-tuple
update to S triggers constant-time updates to the indicators and VB(B). In the light case,
the update to VB(A) is given by δVB(A) = RB(A, b), δSB(b), which requires O(N ϵ) time
since b is light in RB. We may need to rebalance the partitions, which gives an amortized
update time of O(N ϵ).

Since both queries in Examples 9.1 and 9.2 are δ1-hierarchical and do not have repeating
relation symbols, there is no algorithm that can maintain them under single-tuple updates

with O(N
1
2
−γ) amortized update time and O(N

1
2
−γ) delay for γ > 0 unless the Online

Matrix-Vector Multiplication conjecture fails (Proposition 8.1). Our approach meets this
lower bound for ϵ = 1

2 .

10. Conclusion and Future Work

This paper investigates the preprocessing-update-delay trade-off for hierarchical queries
and introduces an approach that recovers a number of prior results when restricted to
hierarchical queries. There are several lines of future work. Of paramount importance is the

11:34 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

generalization of our trade-off from hierarchical to conjunctive queries. The results of this
paper can be immediately extended to hierarchical queries with group-by aggregates and
order-by clauses. In particular, this extension would capture the prior result on constant-
delay enumeration for such queries in the context of factorized databases [OS16]. An open
problem is to find lower bounds for δi-hierarchical queries for i > 1. We conjecture our
update/delay upper bounds O(N iϵ)/O(N1−ϵ) are worst-case optimal, as it is the case for
i = 0 with ϵ = 1 [BKS17a] and i = 1 with ϵ = 1

2 (Proposition 8.1).

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 682588.

References

[ABJM17] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A Circuit-Based Approach
to Efficient Enumeration. In ICALP, pages 111:1–111:15, 2017. doi:10.4230/LIPIcs.ICALP.
2017.111.

[ABM18] Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumeration on Trees under Relabelings.
In ICDT, pages 5:1–5:18, 2018. doi:10.4230/LIPIcs.ICDT.2018.5.

[ABMN19] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-Delay
Enumeration for Nondeterministic Document Spanners. In ICDT, pages 22:1–22:19, 2019.
doi:10.1145/3422648.3422655.

[AGM13] Albert Atserias, Martin Grohe, and Dániel Marx. Size Bounds and Query Plans for Relational
Joins. SIAM J. Comput., 42(4):1737–1767, 2013. doi:10.1109/FOCS.2008.43.

[AKNR16] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked Frequently. In
PODS, pages 13–28, 2016. doi:10.1145/2902251.2902280.

[Bag06] Guillaume Bagan. MSO Queries on Tree Decomposable Structures Are Computable with Linear
Delay. In CSL, pages 167–181, 2006. doi:10.1007/11874683_11.

[BB12] Johann Brault-Baron. A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic. In
CSL, pages 137–151, 2012. doi:10.4230/LIPIcs.CSL.2012.137.

[BB13] Johann Brault-Baron. De la pertinence de l’énumération: complexité en logiques propositionnelle
et du premier ordre. PhD thesis, Université de Caen, 2013.

[BDFG10] Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. Efficient Enumeration
for Conjunctive Queries over X-underbar Structures. In CSL, pages 80–94, 2010. doi:10.1007/
978-3-642-15205-4_10.

[BDG07] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries and
Constant Delay Enumeration. In CSL, pages 208–222, 2007. doi:10.1007/978-3-540-74915-8_
18.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of Acyclic
Database Schemes. J. ACM, 30(3):479–513, 1983. doi:10.1145/2402.322389.

[BKS17a] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries
Under Updates. In PODS, pages 303–318, 2017. doi:10.1145/3034786.3034789.

[BKS17b] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD Queries Under
Updates on Bounded Degree Databases. In ICDT, pages 8:1–8:18, 2017. doi:10.1145/3232056.

[BKS18] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under Updates
and in the Presence of Integrity Constraints. In ICDT, pages 8:1–8:19, 2018. doi:10.4230/
LIPIcs.ICDT.2018.8.

[CK18] Nofar Carmeli and Markus Kröll. Enumeration Complexity of Conjunctive Queries with Func-
tional Dependencies. In ICDT, pages 11:1–11:17, 2018. doi:10.1007/s00224-019-09937-9.

[CY12] Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends DB, 4(4):295–405, 2012.
doi:10.1561/1900000020.

https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.4230/LIPIcs.ICDT.2018.5
https://doi.org/10.1145/3422648.3422655
https://doi.org/10.1109/FOCS.2008.43
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1007/11874683_11
https://doi.org/10.4230/LIPIcs.CSL.2012.137
https://doi.org/10.1007/978-3-642-15205-4_10
https://doi.org/10.1007/978-3-642-15205-4_10
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3232056
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1561/1900000020

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:35

[DG07] Arnaud Durand and Etienne Grandjean. First-order Queries on Structures of Bounded Degree
are Computable with Constant Delay. ACM Trans. Comput. Logic, 8(4):21, 2007. doi:10.1145/
1276920.1276923.

[DK18] Shaleen Deep and Paraschos Koutris. Compressed Representations of Conjunctive Query Results.
In PODS, pages 307–322, 2018. doi:10.1145/3196959.3196979.

[DS11] Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems with
Second-order Variables. In CSL, pages 189–202, 2011. doi:10.4230/LIPIcs.CSL.2011.189.

[DSS14] Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating Answers to First-order
Queries over Databases of Low Degree. In PODS, pages 121–131, 2014. doi:10.1145/2594538.
2594539.

[FO16] Robert Fink and Dan Olteanu. Dichotomies for Queries with Negation in Probabilistic Databases.
ACM Trans. Datab. Syst., 41(1):4:1–4:47, 2016. doi:10.1145/2877203.

[GGL+09] Martin Grohe, Yuri Gurevich, Dirk Leinders, Nicole Schweikardt, Jerzy Tyszkiewicz, and Jan Van
den Bussche. Database Query Processing Using Finite Cursor Machines. Theory Comput. Syst.,
44(4):533–560, 2009. doi:10.1007/s00224-008-9137-7.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In STOC, pages 21–30, 2015. doi:10.1145/2746539.2746609.

[HY19] Xiao Hu and Ke Yi. Instance and Output Optimal Parallel Algorithms for Acyclic Joins. In
PODS, pages 450–463, 2019. doi:10.1145/3294052.3319698.

[IUV17] Muhammad Idris, Mart́ın Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Algorithm:
Compact and Efficient Query Processing Under Updates. In SIGMOD, pages 1259–1274, 2017.
doi:10.1145/3035918.3064027.

[IUV+18] Muhammad Idris, Mart́ın Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner.
Conjunctive Queries with Inequalities Under Updates. PVLDB, pages 733–745, 2018. doi:
10.14778/3192965.3192966.

[K+14] Christoph Koch et al. DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh
Views. VLDB J., 23(2):253–278, 2014. doi:10.1007/s00778-013-0348-4.

[KNN+19a] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting Triangles
under Updates in Worst-Case Optimal Time. In ICDT, pages 4:1–4:18, 2019. doi:10.4230/
LIPIcs.ICDT.2019.4.

[KNN+19b] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting Triangles
under Updates in Worst-Case Optimal Time. CoRR, 2019. abs/1804.02780.

[KNN+20] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
triangle queries under updates. ACM Trans. Database Syst., 45(3):11:1–11:46, 2020. doi:10.
1145/3396375.

[KNOZ19] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static and Dynamic
Evaluation of Hierarchical Queries. CoRR, 2019. abs/1907.01988v2. doi:10.1145/3375395.
3387646.

[KNOZ20] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static and Dynamic
Evaluation of Hierarchical Queries. In PODS, pages 375–392, 2020. doi:10.1145/3375395.
3387646.

[KNS17] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What Do Shannon-type Inequalities,
Submodular Width, and Disjunctive Datalog Have to Do with One Another? In PODS, pages
429–444, 2017. doi:10.1145/3034786.3056105.

[Koc10] Christoph Koch. Incremental Query Evaluation in a Ring of Databases. In PODS, pages 87–98,
2010. doi:10.1145/1807085.1807100.

[KP98] S. Rao Kosaraju and Mihai Pop. De-amortization of Algorithms. In COCOON, pages 4–14, 1998.
doi:10.1007/3-540-68535-9_4.

[KS11a] Wojciech Kazana and Luc Segoufin. First-order Query Evaluation on Structures of Bounded
Degree. LMCS, 7(2), 2011. doi:10.2168/LMCS-7(2:20)2011.

[KS11b] Paraschos Koutris and Dan Suciu. Parallel Evaluation of Conjunctive Queries. In PODS, pages
223–234, 2011. doi:10.1145/1989284.1989310.

[KS13a] Wojciech Kazana and Luc Segoufin. Enumeration of First-order Queries on Classes of Structures
with Bounded Expansion. In PODS, pages 297–308, 2013. doi:10.1145/2463664.2463667.

https://doi.org/10.1145/1276920.1276923
https://doi.org/10.1145/1276920.1276923
https://doi.org/10.1145/3196959.3196979
https://doi.org/10.4230/LIPIcs.CSL.2011.189
https://doi.org/10.1145/2594538.2594539
https://doi.org/10.1145/2594538.2594539
https://doi.org/10.1145/2877203
https://doi.org/10.1007/s00224-008-9137-7
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/3294052.3319698
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.14778/3192965.3192966
https://doi.org/10.14778/3192965.3192966
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://arxiv.org/abs/1804.02780
https://doi.org/10.1145/3396375
https://doi.org/10.1145/3396375
https://arxiv.org/abs/1907.01988v2
https://doi.org/10.1145/3375395.3387646
https://doi.org/10.1145/3375395.3387646
https://doi.org/10.1145/3375395.3387646
https://doi.org/10.1145/3375395.3387646
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/1807085.1807100
https://doi.org/10.1007/3-540-68535-9_4
https://doi.org/10.2168/LMCS-7(2:20)2011
https://doi.org/10.1145/1989284.1989310
https://doi.org/10.1145/2463664.2463667

11:36 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

[KS13b] Wojciech Kazana and Luc Segoufin. Enumeration of Monadic Second-order Queries on Trees.
ACM Trans. Comput. Logic, 14(4):25:1–25:12, 2013. doi:10.1145/2528928.

[LM14] Katja Losemann and Wim Martens. MSO Queries on Trees: Enumerating Answers under
Updates. In CSL-LICS, pages 67:1–67:10, 2014. doi:10.1145/2603088.2603137.

[Mar10] Dániel Marx. Approximating Fractional Hypertree Width. ACM Trans. Alg., 6(2):29:1–29:17,
2010. doi:10.1145/1721837.1721845.

[NO18] Milos Nikolic and Dan Olteanu. Incremental View Maintenance with Triple Lock Factorization
Benefits. In SIGMOD, pages 365–380, 2018. doi:10.1145/3183713.3183758.

[NPRR18] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case Optimal Join Algorithms.
J. ACM, 65(3):16:1–16:40, 2018. doi:10.1145/2213556.2213565.

[NS18] Matthias Niewerth and Luc Segoufin. Enumeration of MSO Queries on Strings with Constant
Delay and Logarithmic Updates. In PODS, pages 179–191, 2018. doi:10.1145/3196959.3196961.

[OS16] Dan Olteanu and Maximilian Schleich. Factorized Databases. SIGMOD Rec., 45(2):5–16, 2016.
doi:10.1145/3003665.3003667.

[OZ12] Dan Olteanu and Závodný. Factorised Representations of Query Results: Size Bounds and
Readability. In ICDT, pages 285–298, 2012. doi:10.1145/2274576.2274607.

[OZ15] Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query Results.
ACM TODS, 40(1):2:1–2:44, 2015. doi:10.1145/2656335.

[Seg15] Luc Segoufin. Constant Delay Enumeration for Conjunctive Queries. SIGMOD Rec., 44(1):10–17,
2015. doi:10.1145/2783888.2783894.

[SORK11] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Syn-
thesis Lectures on Data Management. Morgan & Claypool Publishers, 2011. doi:10.1007/
978-1-4899-7993-3_275-2.

[SSV18] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO Queries over
Nowhere Dense Graphs. In PODS, pages 151–163, 2018. doi:10.1145/3196959.3196971.

[SV17] Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries over Databases
with Local Bounded Expansion. In ICDT, pages 20:1–20:16, 2017. doi:10.4230/LIPIcs.ICDT.
2017.20.

[Yan81] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB, pages 82–94, 1981.
doi:10.5555/1286831.1286840.

Appendix A. Proofs of the Results in Section 2

Theorem 2.1. Given a hierarchical query with static width w, a database of size N ,
and ϵ ∈ [0, 1], the query result can be enumerated with O(N1−ϵ) delay after O(N1+(w−1)ϵ)
preprocessing time.

The theorem follows from Propositions 5.3, 5.4, and 6.1. Let Q(F) be a hierarchical
query and ω an arbitrary canonical variable order for Q. Without loss of generality, assume
that ω consists of a single tree. The preprocessing stage materializes the views in the view
trees {T1, . . . , Tk} returned by τ(ω,F) from Figure 11 in the static mode. By Proposition 5.4,

these views can be materialized in O(N1+(w−1)ϵ). By Proposition 5.3, Q(F) is equivalent
to

⋃
i∈[k]Qi(F), where Qi(F) is the query defined by the join of the leaves in Ti. By

Proposition 6.1, the result of Q(F) can be enumerated from these materialized views with
delay O(N1−ϵ).

If the canonical variable order for Q consists of several trees ω1, . . . , ωm, we construct
a set Ti of view trees for each ωi, where i ∈ [m]. The result of the query is the Cartesian
product of the tuple sets obtained from each Ti. Given that each set Ti of view trees admits
O(N1−ϵ) enumeration delay, the tuples in the Cartesian product can be enumerated with
the same delay using the Product algorithm (Figure 16), since m is independent of the
database size N .

https://doi.org/10.1145/2528928
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1145/1721837.1721845
https://doi.org/10.1145/3183713.3183758
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/3196959.3196961
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.1007/978-1-4899-7993-3_275-2
https://doi.org/10.1007/978-1-4899-7993-3_275-2
https://doi.org/10.1145/3196959.3196971
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://doi.org/10.5555/1286831.1286840

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:37

Appendix B. Proofs of the Results in Section 3

Theorem 3.1. Given a hierarchical query with static width w and dynamic width δ, a
database of size N , and ϵ ∈ [0, 1], the query result can be enumerated with O(N1−ϵ) delay

after O(N1+(w−1)ϵ) preprocessing time and O(N δϵ) amortized update time for single-tuple
updates.

The theorem follows from Propositions 5.3, 5.4, 6.1, 7.2, and 7.5. Let Q(F) be a
hierarchical query and ω an arbitrary canonical variable order for Q. Without loss of
generality, assume that ω consists of a single tree. The preprocessing stage materializes the
views in the set of view trees returned by τ(ω,F) from Figure 11 in the dynamic mode.

The preprocessing time O(N1+(w−1)ϵ) follows from Proposition 5.4, which captures both
the static and dynamic modes (see the proof). The equivalence between the constructed
view trees and the query follows from Proposition 5.3. The delay O(N1−ϵ) needed when
enumerating the query result from these materialized views follows from Proposition 6.1.
The time O(N δϵ) to maintain these materialized views under a single-tuple update follows
from Proposition 7.2. By Proposition 7.5, the amortized maintenance time under a sequence
of single-tuple updates is O(N δϵ).

If the canonical variable order consists of several view trees, the reasoning is analogous
to the proof of Theorem 2.1.

Appendix C. Proofs of the Results in Section 5

C.1. Proof of Proposition 5.3.

Proposition 5.3. Let {T1, . . . , Tk} = τ(ω,F) be the set of view trees constructed by the
algorithm in Figure 11 for a given hierarchical query Q(F) and a canonical variable order ω

for Q. Let Q(i)(F) be the query defined by the conjunction of the leaf atoms in Ti, ∀i ∈ [k].

Then, Q(F) ≡
⋃

i∈[k]Q
(i)(F).

We use two observations. (1) The procedure BuildVT constructs a view tree whose
leaf atoms are exactly the same as the leaf atoms of the input variable order. (2) Each of
the procedures NewVT and AuxView constructs a view tree whose set of leaf atoms is
the union of the sets of leaf atoms of the input trees. For a variable order or view tree T
and schema a set S of variables occurring in T , we define QT (S) = ⋊⋉R(X)∈atoms(T)R(X).

The proof is by induction over the structure of ω. We show that for any subtree ω′ of ω,
it holds:

Qω′(F ∩ vars(ω′)) ≡
⋃

T∈τ(ω′,F)

QT (F ∩ vars(ω′)). (C.1)

Base case: If ω′ is an atom, the procedure τ returns it and the base case holds trivially.

Inductive step: Assume that ω′ has root variable X and subtrees ω′
1, . . . , ω

′
k. Let keys =

anc(X) ∪ {X}, FX = anc(X) ∪ (F ∩ vars(ω′)), and QX(FX) = ⋊⋉R(X)atoms(ω′)R(X). The
procedure τ distinguishes the following cases:

Case 1: (mode = ‘static’ ∧ QX(FX) is free-connex)∨ (mode = ‘dynamic’ ∧ QX(FX)
is δ0-hierarchical). The procedure τ returns a view tree T constructed by the procedure
BuildVT(·, ω′,FX). The leaves of T are the atoms of ω′. This implies Equivalence C.1.

11:38 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Case 1 does not hold and X ∈ F : The set of view trees τ(ω′,F) is defined as fol-
lows: for each set {Ti}i∈[k] with Ti ∈ τ(ω′

i,F), the set τ(ω′,F) contains the view tree

NewVT(·, keys, {T̂i}i∈[k]) where T̂i = AuxView(root of ω′
i, Ti) for i ∈ [k].

Using the induction hypothesis, we rewrite as follows:

Qω′(F ∩ vars(ω′)) = ⋊⋉i∈[k]Qω′
i
(F ∩ vars(ω′

i))
IH≡ ⋊⋉i∈[k]

(⋃
T∈τ(ω′

i,F)

QT (F ∩ vars(ω′
i))

)
≡

⋃
∀i∈[k]:Ti∈τ(ω′

i,F)

⋊⋉i∈[k]QTi(F ∩ vars(ω′
i)) ≡

⋃
∀i∈[k]:Ti∈τ(ω′

i,F)

QNewVT(·,keys,{T̂i}i∈[k])
(F ∩ vars(ω′))

=
⋃

T∈τ(ω′,F)

QT (F ∩ vars(ω′)).

Case 1 does not hold and X ̸∈ F : The procedure τ creates the views AllX(keys) =
⋊⋉R(X)∈atoms(ω′)R(X), LX(keys) = ⋊⋉R(X)∈atoms(ω′)R

keys(X), and HX(keys) = AllX(keys)
⋊⋉ ∄LX(keys). It then returns the view trees {ltree} ∪ htrees defined as follows:
– ltree = BuildVT(·, ωkeys,F), where ωkeys has the same structure as ω′ but each atom is

replaced by its light part;
– for each set {Ti}i∈[k] with Ti ∈ τ(ω′

i,F), htrees contains the view tree NewVT(·, keys,
{∃HX} ∪ {T̂i}i∈[k]) where T̂i = AuxView(root of ω′

i, Ti) for i ∈ [k].
From ALLX(keys) = LX(keys) ∪ HX(keys), we derive the following equivalence. For
simplicity, we skip the schemas of queries:⋃

∀i∈[k]:Ti∈τ(ω′
i,F)

⋊⋉i∈[k] QTi ≡ Qltree ∪
⋃

∀i∈[k]:Ti∈τ(ω′
i,F)

QNewVT(·,keys,{∃HX}∪{T̂i}i∈[k])
(C.2)

Using Equivalence (C.2) and the induction hypothesis, we obtain:

Qω′ =⋊⋉i∈[k]Qω′
i

IH≡ ⋊⋉i∈[k]

(⋃
T∈τ(ω′

i,F)

QT

)
≡

⋃
∀i∈[k]:Ti∈τ(ω′

i,F)

⋊⋉i∈[k]QTi

(C.2)
≡ Qltree ∪

⋃
∀i∈[k]:Ti∈τ(ω′

i,F)

QNewVT(·,keys,{∃HX}∪{T̂i}i∈[k])

= Qltree ∪
⋃

T∈htrees
QT =

⋃
T∈τ(ω′,F)

QT

C.2. Proof of Proposition 5.4.

Proposition 5.4. Given a hierarchical query Q(F) with static width w, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], the views in the set of view trees

τ(ω,F) can be materialized in O(N1+(w−1)ϵ) time.

We analyze the procedure τ from Figure 11 for both of the cases mode = ‘static’ and
mode = ‘dynamic’. We show that in both cases the time to materialize the set of view trees
τ(ω,F) is O(N1+(w−1)ϵ).

We explain the intuition behind the complexity analysis. If the procedure τ runs in
‘static’ mode and Q is free-connex, or it runs in ‘dynamic’ mode and Q is δ0-hierarchical,
the procedure constructs a view tree that can be materialized in O(N) time. Otherwise,

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:39

there must be at least one bound variable X in ω such that the subtree ωX rooted at X
contains free variables. In this case, the algorithm partitions the relations at the leaves of
ωX into heavy and light parts and creates view trees for computing parts of the query. The
time to materialize the views of the view trees where at least one leaf relation is heavy is
O(N). The overall time to materialize the view trees τ(ω,F) is dominated by the time to
materialize the views of the view trees where all leaf relations are light. In the worst case,
the root variable of ω is bound and we need to materialize a view that joins the light parts
of all leaf relations in ω and has the entire set F as free variables. We can compute such a
view V (F) as follows. We first aggregate away all bound variables that are not ancestors
of free variables in ω. By using the algorithm InsideOut [AKNR16], this can be done in
O(N) time. Then, we choose one atom to iterate over the tuples of its relation (outer loop
of the evaluation). For each such tuple, we iterate over the matching tuples in the relations
of the other atoms (inner loops of the evaluation). To decide which atom to take for the
outer loop and which ones for the inner loops of our evaluation strategy, we use an optimal
integral edge cover λ of F . The schema of each atom that is mapped to 0 by λ must be
subsumed by the schema of an atom mapped to 1. Hence, we can take one of the atoms
mapped to 1 to do the outer loop. The other atoms that are mapped to 1 are used for the
inner loops. For the atoms that are mapped to 0, it suffices to do constant-time lookups
during the iteration over the tuples of the other atoms. By exploiting the degree constraints
on light relation parts, the view V (F) can be materialized in O(N1+(ρ(F)−1)ϵ) time. By
Proposition 4.5, ρ(F) = ρ∗(F). Considering the time needed to aggregate away bound

variables before computing V (F), we get O(Nmax{1,1+(ρ∗(F)−1)ϵ}) overall time complexity.
We show that max{1, 1 + (ρ∗(F)− 1)ϵ} is upper-bounded by 1 + (w(Q)− 1)ϵ.

The proof is structured following the basic building blocks of the procedure τ . Lemmas
C.2-C.6 give upper bounds on the times to materialize the views in the view trees returned
by the procedures NewVT (Figure 7), AuxView (Figure 8) BuildVT (Figure 6), and
IndicatorVTs (Figure 10). Lemma C.7 states the complexity of the procedure τ based
on a measure ξ defined over canonical variable orders. The section closes with the proof of
Proposition 5.4 that bridges the measure ξ and the static width of hierarchical queries.

We introduce the measure ξ. Let ω be a canonical variable order, F ⊆ vars(ω), and X
a variable or atom in ω. We denote by ωX the subtree of ω rooted at X and by QX a query
that joins the atoms at the leaves of ωX . We define

ξ(ω,X,F) = max
Y ∈vars(ωX)

(anc(Y)∪{Y })̸⊆F

{ρ∗QX
(vars(ωY) ∩ F)}.

If ωX does not contain a variable Y with (anc(Y) ∪ {Y }) ̸⊆ F , then ξ(ω,X,F) = 0. If X
has children X1, . . . , Xk, then

ξ(ω,X,F) ≥ max
i∈[k]

{ξ(ω,Xi,F)}. (C.3)

We start with an observation that each view V constructed by the procedures BuildVT
(Figure 6), NewVT (Figure 7), AuxView (Figure 8), IndicatorVTs (Figure 10), and τ
(Figure 11) at some node X of a variable order ω contains in its schema all variables in the
root path of X and no variables which are not in ωX . Moreover, V results from the join of
its child views. This can be shown by a straightforward induction over the structure of ω.

11:40 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Observation C.1. Let ω be a canonical variable order and V (F) a view constructed at some
node X of ω by one of the procedures BuildVT, NewVT, AuxView, IndicatorVTs,
and τ . It holds

(1) anc(X) ⊆ F ⊆ anc(X) ∪ vars(ω).
(2) If V1(F1), . . . , Vk(Fk) are the child views of V (F), then V (F) = V1(F1), . . . , Vk(Fk).

The next lemma gives a bound on the time to materialize the views in a view tree
returned by the procedure NewVT in Figure 7.

Lemma C.2. Given a set {Ti}i∈[k] of view trees with root views {Vi(Si)}i∈[k], let Mi be
the time to materialize the views in Ti, for i ∈ [k]. If the query V (S) = V1(S1), . . . , Vk(Sk)
with S ⊆

⋂
i∈[k] Si is δ0-hierarchical, the views in the view tree NewVT(·,S, {Ti}i∈[k]) can

be materialized in O(maxi∈[k]{Mi}) time.

Proof. The procedure NewVT defines the view V (S) = V1(S1), . . . , Vk(Sk) (Line 2). The
view tree T returned by NewVT is defined as follows (Line 4): If k = 1 and S = S1, then
T = T1; otherwise, T is the view tree that has root V (S) and subtrees T1, . . . , Tk. By
assumption, the time to materialize the views in the trees T1, . . . , Tk is O(maxi∈[k]{Mi}).
Hence, the sizes of the materialized root views V1(S1), . . . , Vk(Sk) must be O(maxi∈[k]{Mi}).
Assume that the query defining V (S) is δ0-hierarchical. Hence, we can construct a free-
top canonical variable order for the query. We materialize V (S) as follows. Traversing
the variable order bottom-up, we aggregate away all bound variables using the InsideOut
algorithm [AKNR16]. Since the query defining V (S) is α-acyclic, this aggregation phase can
be done in time linear in the size of the views V1(S1), . . . , Vk(Sk). Thus, the aggregation
phase requires O(maxi∈[k]{Mi}) time. It follows that the time to materialize the views in
the tree returned by NewVT is O(maxi∈[k]{Mi}).

We proceed with a lemma that gives a bound on the time to materialize the views in
the view tree returned by the procedure AuxView in Figure 8.

Lemma C.3. Let T be a view tree and M the time to materialize the views in T . The views
in the view tree AuxView(·, T) can be materialized in time O(M).

Proof. Assume that the parameters of the procedure AuxView are Z and T . Let V (S) be
the root of T . If the condition in Line 3 of the procedure AuxView does not hold, the
procedure returns T (Line 5). Otherwise, it returns a view tree T ′ that results from T by
adding a view V ′(anc(Z)) on top of V (S) (Line 4). Since anc(Z) ⊂ S, V ′(anc(Z)) results
from V (S) by aggregating away the variables in S − anc(Z). Since the size of V (S) must
be O(M) and the variables can be aggregated away in time linear in the size of V (S), the
overall time to materialize the views in the output tree T ′ is O(M).

The following lemma says that if the input to the procedure BuildVT in Figure 6
represents a free-connex query, the procedure outputs a view tree whose views can be
materialized in time linear in the database size.

Lemma C.4. Let ω be a canonical variable order, X a node in ω, N the size of the leaf
relations of ω, and F a set of variables. If the query QX(F ′) = join of atoms(ωX) with
F ′ = F ∩ (anc(X) ∪ vars(ωX)) is free-connex, the views in the view tree BuildVT(·, ωX ,F)
can be materialized in O(N) time.

Proof. The proof is by induction over the structure of the variable order ωX .

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:41

Base case: Assume that X is a single atom R(X). In this case, the procedure BuildVT
returns this atom, which can obviously be materialized in O(N) time.

Inductive step: Assume that X is a variable with child nodes X1, . . . , Xk and QX(F ′) =
join of atoms(ωX) a free-connex query. Let Fi = F ∩ (anc(Xi) ∪ vars(ωXi)), for i ∈ [k].

We first show that for each i ∈ [k]:

QXi(Fi) = join of atoms(ωXi) is free-connex. (C.4)

An α-acyclic query is free-connex if and only if after adding an atom R(X), where X is the
set of free variables, the query remains α-acyclic [BB13]. A query is α-acyclic if it has a
(not necessarily free-top) variable order with static width 1 [OZ15, BFMY83]. Let Q′

X be
the query that results from QX by adding a new atom R(F ′). Likewise, let Q′

Xi
be the

query that we obtain from QXi by adding a new atom Ri(Fi), for i ∈ [k]. Since QX is
free-connex, there must be a variable order ω′ = (Tω′ , depω′) for Q′

X , such that w(ω′) = 1.
In the following, we turn ω′ into a variable order ω′

i = (Tω′
i
, depω′

i
) for Q′

Xi
with w(ω′

i) = 1,

for i ∈ [k]. From this, it follows that QXi is free-connex, for each i ∈ [k]. To obtain ω′
i, we

traverse ω′ bottom-up and eliminate all variables and atoms (including R(F ′)) that do not
occur in Q′

Xi
. When eliminating a node Y with a parent node Z, we append the children

of Y to Z. If Y does not have any parent node, the subtrees rooted at its children nodes
become independent. Finally, we append Ri(Fi) under the lowest variable Y in the obtained
variable order such that Y is included in Fi. In the following we show that for i ∈ [k]:

(1) ω′
i is a valid variable order for Q′

Xi
.

(2) w(ω′
i) = 1.

(1) ω′
i is a valid variable order for Q′

Xi
, for i ∈ [k]: The following property follows from

the construction of the variable order ω′
i:

(∗): Any two variables in vars(Q′
Xi
) that are on the same root-to-leaf path in ω′ remain on

the same root-to-leaf path in ω′
i.

Each atom K(X) in atoms(Q′
Xi
) − {Ri(Fi)} is also an atom in atoms(Q′

X). Hence, the

variables in X must be on the same root-to-leaf path in ω′. Due to (∗), they also must be
on the same root-to-leaf path in ω′

i. It remains to show that all variables in Fi are on the
same root-to-leaf path in ω′

i. In the canonical variable order ω, each variable in F ′ − {X} is
either above or below X. Hence, X depends on all variables in F ′ − {X}, which means that
all variables in F ′ must be on the same root-to-leaf path in ω′. Due to Fi ⊆ {X} ∪ F ′ and
Property (∗), all variables in Fi must be on the same root-to-leaf path in ω′

i.

(2) w(ω′
i) = 1, for i ∈ [k]: Let Y ∈ vars(ω′

i) for some i ∈ [k]. We need to show that
ρ∗Q′

Xi

({Y } ∪ depω′
i
(Y)) = 1. By Proposition 4.5, it suffices to show that Q′

Xi
contains an

atom that covers {Y }∪depω′
i
(Y), i.e., whose schema includes the latter set. By construction,

Y must be included in ω′. First, observe that any two variables that are not dependent in
Q′

X cannot be dependent in Q′
Xi
. Moreover, each variable Z included in the root path of Y

in ω′
i, is included in the root path of Y in ω′. Hence:

(∗∗) {Y } ∪ depω′
i
(Y) ⊆ ({Y } ∪ depω′(Y)) ∩ vars(Q′

Xi
).

Due to w(ω′) = 1 and Proposition 4.5, there must be an atom K(X) ∈ atoms(Q′
X) such

that {Y } ∪ depω′(Y) ⊆ X . First, assume that K(X) ̸= R(F ′). Since X includes Y ,
the atom K(X) must be under the variable Y in ωXi , which means that atoms(Q′

Xi
)

includes K(X). Due to Property (∗∗), K(X) covers {Y } ∪ depω′
i
(Y). Now assume that

11:42 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

K(X) = R(F ′). This means that {Y }∪depω′(Y) ⊆ F ′. By Property (∗∗), {Y }∪depω′
i
(Y) ⊆

({Y } ∪ depω′(Y)) ∩ vars(Q′
Xi
) ⊆ F ′ ∩ vars(Q′

Xi
). Since Fi = F ′ ∩ vars(Q′

Xi
), Ri(Fi) covers

{Y } ∪ depω′
i
(Y).

This completes the proof of (C.4).

Let T = BuildVT(·, ωX ,F). To construct the view tree T , the procedure BuildVT
first constructs the view trees {Ti}i∈[k] with Ti = BuildVT(·, ωXi ,F) for each i ∈ [k]
(Line 2). By Property (C.4) and the induction hypothesis, the views in each view tree
Ti can be materialized in O(N) time. In the following we show that all views in T can
be materialized in O(N) time. We distinguish whether anc(X) ∪ {X} is included in F
(Lines 4-7) or not (Lines 8-10):

Case anc(X) ∪ {X} ⊆ F : In this case, it holds T = NewVT(·,FX , subtrees), where
subtrees = {AuxView(Xi, Ti) }i∈[k] and FX = anc(X) ∪ {X}. The procedures NewVT
and AuxView are given in Figures 7 and 8, respectively. By the induction hypothesis and
Lemma C.3, the views in subtrees can be materialized in O(N) time. Let V ′

1(F ′
1), . . . , Vk(F ′

k)
be the roots of the trees in subtrees. The overall size of these root views must be O(N).
Observation C.1.(1) implies that for any i, j ∈ [k] with i ̸= j, it holds F ′

i ∩ F ′
i = FX . Hence,

the query VX(FX) = V1(F ′
1), . . . , Vk(F ′

k) is δ0-hierarchical. Since FX = anc(X) ∪ {X} ⊆⋂
i∈[k]F ′

i , it follows from Lemma C.2 that the views in T can be materialized in O(N) time.

Case anc(X) ∪ {X} ̸⊆ F : n this case, we have T = NewVT(·,FX , subtrees), where
FX = anc(X) ∪ (F ∩ vars(ωX)) and subtrees = {Ti}i∈[k]. Let V ′

i (F ′
i) be the root of Ti,

for i ∈ [k]. By the definition of the procedure NewVT, the tree T results from the trees
{Ti}i∈[k] by adding a new root view defined by VX(FX) = V ′

1(F ′
1), . . . , V

′
k(F ′

k). It follows
from Observation C.1.(2), that VX(FX) can be rewritten as VX(FX) = join of atoms(ωX).
We show that the view VX(FX) can be materialized in O(N) time. The set atoms(ωX)
must contain an atom R(Y) with FX ⊆ Y (Lemma 35 in [KNOZ19]). Hence, we can easily
materialize the view VX(FX) by using the InsideOut algorithm [AKNR16] to aggregate
away all variables that are not included in FX . Since the query defining the view VX(FX) is
(α-)acyclic, the whole computation takes O(N) time.

The next lemma upper bounds the time to materialize the views constructed by the

procedure BuildVT in Figure 6 for a variable order ωkeys
X . This variable order has the same

structure as ωX yet each atom R(Y) is replaced by the light part Rkeys(Y) of relation R
partitioned on the variable set keys (cf. Section 5.2).

Lemma C.5. Given a canonical variable order ω, a node X in ω, the size N of the
leaf relations in ω, keys = anc(X) ∪ {X}, F ⊆ vars(ω), and ϵ ∈ [0, 1]. The view tree

BuildVT(·, ωkeys
X ,F) can be materialized in O(Nmax{1,1+(ξ(ωkeys,X,F)−1)ϵ}) time.

Proof. For a node X in ωkeys, we set

mX = max{1, 1 + (ξ(ωkeys, X,F)− 1)ϵ}.

The proof is by induction on the structure of ωkeys
X .

Base case: If ωkeys
X is a single atom R(X), the procedure BuildVT returns this atom,

which can be materialized in O(N) time. Since mX ≥ 1, this completes the base case.

Inductive step: Assume X ∈ vars(ωkeys) and has child nodes X1, . . . , Xk. The procedure

first calls BuildVT(·, ωkeys
Xi

,F) for each i ∈ [k] and produces the view trees {Ti}i∈[k] (Line 2).

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:43

By induction hypothesis, we need O(NmXi) time to materialize the views in each view tree Ti

with i ∈ [k]. The procedure BuildVT distinguishes whether (anc(X)∪{X}) ⊆ F (Lines 4-7)
or not (Lines 8-10).

Case (anc(X) ∪ {X}) ⊆ F : The view tree T returned by the procedure BuildVT
is NewVT(·,FX , subtrees), where subtrees is defined as {AuxView(Xi, Ti) }i∈[k] and
FX = anc(X) ∪ {X}. By induction hypothesis and Inequality (C.3), the overall time to
materialize the views in {Ti}i∈[k] is O(NmX). For each view tree Ti, AuxView(Xi, Ti) adds
at most one view with schema anc(Xi) on top of the root view of Ti. Then, anc(Xi) is
a subset of the schema of the root view of Ti. Since the size of the root view of Ti must
be bounded by O(NmX), the view added by AuxView can be materialized in O(NmX)
time. Assume that V1(F1), . . . , Vk(Fk) are the roots of the view trees in subtrees. In case
k = 1 and F = Fi, NewVT(VX ,FX , subtrees) returns V1(F1); otherwise, it returns a view
tree that has VX(FX) = V1(F1), . . . , Vk(Fk) as root view and subtrees as subtrees. By the
definition of AuxView, it holds Fi ∩ Fj = (anc(X) ∪ {X}) = FX for any i, j ∈ [k]. Hence,
the view VX(FX) can be computed by iterating over the tuples in a view Vi(Fi) with i ∈ [k]
and filtering out those tuples that do not have matching tuples in all views Vj(Fj) with
j ∈ [k] − {i}. Since the size of Vi(Fi) is O(NmX) and materialized views allow constant
time lookups, the view VX(FX) can be computed in O(NmX) time. It follows that the view
tree T returned by BuildVT can be materialized in O(NmX) time. This completes the
inductive step for this case.

Case (anc(X)∪{X}) ̸⊆ F : The procedure BuildVT sets FX = anc(X)∪(F∩vars(ωkeys
X))

and subtrees = {Ti}i∈[k]. The view tree T returned by the procedure BuildVT is
NewVT(·,FX , subtrees). We show that all views in the view tree T can be material-
ized in O(NmX) time. We analyze the steps in NewVT. In case subtrees consists of a
single tree T ′ such that the schema of the root view of T ′ is FX , the procedure NewVT
returns the view tree T ′. By induction hypothesis and Inequality (C.3), the views in T = T ′

can be materialized in O(NmX) time. Otherwise, let V (Fi) be the root view of Ti, for i ∈ [k].
The tree T returned by NewVT consists of the root view

VX(FX) = V1(F1), . . . , Vk(Fk)

with subtrees {Ti}i∈[k]. By induction hypothesis and Inequality (C.3), the views in the
trees {Ti}i∈[k] can be materialized in O(NmX) time. It suffices to show that VX(FX) can
be materialized in O(NmX) time. Using Observation C.1.(2), we rewrite the view VX(FX)

using the leaf atoms of ωkeys
X :

VX(FX) = join of atoms(ωkeys
X).

We materialize the view VX(FX) as follows. Using the InsideOut algorithm [AKNR16], we

first aggregate away all variables in vars(ωkeys
X) − FX that are not above a variable from

FX . Since the view VX is defined by an α-acyclic query, the time required by this step is
O(N). Let V ′

X(FX) = R1(F1), . . . , Rk(Fk) be the resulting query. We distinguish between
two subcases.

Subcase 1: For all Ri(Fi), it holds Fi ∩ vars(ωkeys
X) = ∅

This means that FX and each Fi are contained in anc(X)∪{X}. Since ωkeys is canonical,
the inner nodes of each root-to-leaf path are the variables of an atom. Hence, there is an
Ri(Fi) with i ∈ [k] such that Fi subsumes FX and each Fj with j ∈ [k]. Thus, we can

11:44 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

materialize the result of V ′
X(FX) in O(N) time by iterating over the tuples in Ri and doing

constant-time lookups in the other relations.

Subcase 2: There is an Ri(Fi) with Fi ∩ vars(ωkeys
X) ̸= ∅

Let λ = (λRi(Fi))i∈[k] be an edge cover of FX∩vars(ωkeys
X) with

∑
i∈[k] λRi(Fi) = ρ∗V ′

X
(FX∩

vars(ωkeys
X)). Since V ′

X is hierarchical, we can assume that each λRi(Fi) is either 0 or 1
(Proposition 4.5). There must be at least one Ri(Fi) with λRi(Fi) = 1, otherwise there

cannot be any variable from FX in ωkeys
X and we fall back to Subcase 1. Since ωkeys

X is
canonical, for each atom Ri(Fi) with λRi(Fi) = 0, there must be a witness atom Rj(Fj) such
that λRj(Fj) = 1 and Fi ⊆ Fj . The atoms R1(F1), . . . , Rk(Fk) can still contain variables not

included in FX . Each such variable appears above at least one variable from FX in ωkeys
X .

We first compute the result of the view V ′′
X(

⋃
i∈[k]Fk) = R1(F1), . . . , Rk(Fk) as follows. We

choose an arbitrary atom Ri(Fi) with λRi(Fi) = 1 and iterate over the tuples in Ri. For each
such tuple, we iterate over the matching tuples in the other atoms mapped to 1 by λ. For
atoms that are not mapped to 1, it suffices to do constant-time lookups while iterating over
one of their witnesses. To obtain the result of V ′

X from V ′′
X , we aggregate away all variables

not included in FX . Recall that for each atom Ri(Fi), there is an atom in atoms(ωkeys
X) that

is the light part of a relation partitioned on keys = anc(X) ∪ {X}. Hence, each tuple in the
relation of an atom mapped to 1 by λ can be paired with O(N ϵ) tuples in the relation of any

other atom mapped to 1. This means that the time to materialize V ′′
X and hence V ′

X is O(Nm′
)

where m′ = 1+(ρ∗V ′
X
(FX ∩vars(ωkeys

X))−1)ϵ. Since V ′
X results from VX by aggregating away

variables in vars(ωkeys
X)−FX , we have ρ∗V ′

X
(FX ∩ vars(ωkeys

X)) = ρ∗VX
(FX ∩ vars(ωkeys

X)). It

follows from anc(X) ∪ {X} ̸⊆ F that ρ∗VX
(FX ∩ vars(ωkeys

X)) = ξ(ωkeys, X,F). Hence, the

view V ′
X can be materialized in O(N1+(ξ(ωkeys,X,F)−1)ϵ) time.

We sum up the analysis for the case (anc(X) ∪ {X}) ̸⊆ F : the initial aggregation step
and the computation in Subcase 1 take O(N) time; the computation in Subcase 2 takes

O(N1+(ξ(ωkeys,X,F)−1)ϵ) time. Thus, given mX = max{1, 1 + (ξ(ωkeys, X,F) − 1)ϵ}, the
time to materialize the result of VX is O(NmX). This completes the inductive step in case
(anc(X) ∪ {X}) ̸⊆ F .

The next lemma states that the view trees returned by the procedure IndicatorVTs
from Figure 10 can be materialized in time linear in the database size.

Lemma C.6. Let ω be a canonical variable order, X a variable in ω, and N the size
of the leaf relations in the variable order ω. The views in the view trees returned by
IndicatorVTs(ωX) can be materialized in O(N) time.

Proof. In Lines 3 and 4, the procedure constructs the view tree alltree, which is defined by

BuildVT(“All ”, ωX , keys) and the view tree ltree = BuildVT(“ L ”, ωkeys
X , keys), where

keys consists of the set anc(X) ∪ {X}. The variable order ωkeys
X results from ωX by

replacing each atom R(X) by the atom Rkeys(X), which denotes the light part of relation
R partitioned on keys. These light parts can be computed in O(N) time. The queries

QX(keys) = join of atoms(ωX) and Qkeys
X (keys) = join of atoms(ωX) are free-connex. By

using Lemma C.4, we derive that the views in alltree and ltree can be materialized in
O(N) time. Hence, the roots allroot and lroot of alltree and ltree, respectively, can be
materialized in O(N) time as well. It remains to analyze the time to materialize the views in

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:45

the view tree htree = NewVT(·,F , {allroot,¬lroot}) (Line 7). It follows from Observation
C.1.(1) that V (F) = allroot, ∄lroot is δ0-hierarchical. By using Lemma C.2, we derive that
the views in htree can be materialized in O(N) time. Overall, all views in the view trees
(alltree, ltree, htree) can be materialized in O(N) time.

We use Lemmas C.2-C.6 to show an upper bound on the time to materialize the views
in any tree produced by the procedure τ in Figure 11.

Lemma C.7. Let ω be a canonical variable order, X a node in ω, F ⊆ vars(ω), N the size
of the leaf relations in ω, and ϵ ∈ [0, 1]. The views in the trees returned by τ(ωX ,F) can be

materialized in O(Nmax{1,1+(ξ(ω,X,F)−1)ϵ}) time.

Proof. For simplicity, we set

m = max{1, 1 + (ξ(ω,X,F)− 1)ϵ}.
The proof is by induction on the structure of ωX .

Base case: Assume that ωX is a single atom R(X). In this case, the procedure τ
returns this atom (Line 1). The atom can obviously be materialized in O(N) time. It holds
ξ(ω,X,F) = 0, since ωX does not contain any node which is a variable. This means that
m = 1. Then, the statement in the lemma holds for the base case.

Inductive step: Assume that X is a variable with children nodes X1, . . . , Xk. Let
keys = anc(X) ∪ {X}, FX = anc(X) ∪ (F ∩ vars(ωX)), and QX(FX) = join of atoms(ω).
Following the control flow in τ(ωX ,F), we make a case distinction.

Case 1: mode = ‘static’ ∧ QX(FX) is free-connex or mode = ‘dynamic’ ∧ QX(FX) is
δ0-hierarchical (Lines 5-7):

The procedure τ returns the view tree BuildVT(“V ”, ωX ,FX) (Line 7). Since
δ0-hierarchical queries are in particular free-connex, it follows from Lemma C.4 that
BuildVT(“V ”, ωX ,FX) can be materialized in time O(N). This completes the induc-
tive step for Case 1.

Case 2: Case 1 does not hold and X ∈ F (Lines 8-11):
The set of view trees τ(ωX ,F) is defined as follows: for each set {Ti}i∈[k] with Ti ∈
τ(ωXi ,F), the set τ(ωX ,F) contains the view tree NewVT(·, keys, {T̂i}i∈[k]), where T̂i =
AuxView(Xi, Ti) for each i ∈ [k]. We consider one such set {Ti}i∈[k] of view trees. By

induction hypothesis, the views in each Ti can be materialized in O(Nmax{1,1+(ξ(ω,Xi,F)−1)ϵ})
time. It follows from Inequality (C.3), that the overall time to materialize the views in

these view trees is O(Nm). By Lemma C.3, the views in each view tree T̂i with i ∈ [k]

can be materialized in O(Nm) time. Let Vi(Fi) be the root view of T̂i, for i ∈ [k]. It
follows from Observation C.1.(1) that keys is included in each Fi and the query VX(keys) =
V1(F1), . . . , Vk(Fk) is δ0-hierarchical. Hence, it follows from Lemma C.2 that the views in

the view tree NewVT(·, keys, {T̂i}i∈[k]) can be materialized in time O(Nm). This completes
the inductive step in this case.

Case 3: Case 1 does not hold and X ̸∈ F (Lines 12-17):
The procedure τ first calls IndicatorVTs(ωX) (Line 12) given in Figure 10, which constructs
the indicator view trees alltree, ltree, and htree. By Lemma C.6, the views in these view
trees can be materialized in O(N) time. Let HX be the root of htree. The only difference
between the construction of the view trees returned in Case 2 above and the view trees in
the set htrees defined in Lines 13-15 is that the roots of the view trees in the latter set have

11:46 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

∃HX as additional child view. By the same argumentation as in Case 2, it follows that the

views in htrees can be materialized in O(Nm) time. Let ltree = BuildVT(“V ”, ωkeys
X ,FX)

as defined in Line 16, where ωkeys
X shares the same structure as ωX , but each atom R(X) is

replaced with Rkeys(X) denoting the light part of relation R partitioned on keys. It follows
from Lemma C.5 that the views in the view tree ltree can be materialized in O(Nm) time.
Thus, all views of the views trees in the set htrees ∪ {ltree} can be materialized in O(Nm)
time. This completes the inductive step for Case 3.

Using Lemma C.7, we prove Proposition 5.4. Without loss of generality, assume that ω
consists of a single connected component. Otherwise, we apply the same reasoning for each
connected component. We also assume that Q contains at least one atom with non-empty
schema. Otherwise, τ(ω, ∅) returns a single atom with empty schema, which can obviously
be materialized in constant time.

By Lemma C.7, the view trees generated by τ(ω,F) can be materialized in time

O(Nmax{1,1+(ξ(ω,X,F)−1)ϵ}), where X is the root variable of ω. It remains to show:

max{1, 1 + (ξ(ω,X,F)− 1)ϵ} ≤ 1 + (w − 1)ϵ. (C.5)

First, assume that ξ(ω,X,F) = 0. This means that max{1, 1+(ξ(ω,X,F)−1)ϵ} = 1. Since
Q contains at least one atom with non-empty schema, we have w ≥ 1. Thus, Inequality (C.5)
holds. Now, let ξ(ω,X,F) = ℓ ≥ 1. We show that w ≥ ℓ. It follows from ξ(ω,X,F) = ℓ
that ω contains a bound variable Y such that ρ∗Q(B) = ℓ, where B = vars(ωY) ∩ F . The
inner nodes of each root-to-leaf path of a canonical variable order are the variables of an
atom. Hence, for each variable Z ∈ B, there must be an atom in Q that contains both Y
and Z. This means that Y and Z depend on each other. Let ω′ = (T, depω′) be an arbitrary
free-top variable order for Q. Since all variables in B depend on Y , each of them must be
on a root-to-leaf path with Y . Since Y is bound and the variables in B are free, the set B
must be included in anc(Y). Hence, B ⊆ depω′(Y). This means ρ∗Q({Y } ∪ depω′(Y)) ≥ ℓ,

which implies w(ω′) ≥ ℓ. It follows w ≥ ℓ.

Appendix D. Proofs of the Results in Section 6

Proposition 6.1. The tuples in the result of a hierarchical query Q(F) over a database
of size N can be enumerated with O(N1−ϵ) delay using the view trees constructed by τ(ω,F)
for a canonical variable order ω for Q.

Following Proposition 5.3, the union of queries defined by the set of view trees constructed
by τ(ω,F) is equivalent Q(F). We enumerate the tuples over F from this set of view trees
using the next calls of these trees in the set.

We first discuss the case of one view tree. In case there are no indicator views, then
the view tree consisting of a hierarchy of views admits constant delay [OZ15]. In the static
case, this holds for free-connex hierarchical queries; in the dynamic case, this holds for
δ0-hierarchical queries (Section 5.1).

The view subtrees constructed over the light parts of input relations only do not bring
additional difficulty. By construction (Section 5), the root view V of such a subtree T
contains all the free variables that are present in T . In this case, the open and next calls
stop at V and do not explore the children of V . This means that for enumeration purposes,
we can discard the descendants of V .

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:47

By grounding the heavy indicators in T , we obtain instances of T that may represent
overlapping relations. We next analyze the enumeration delay in the presence of heavy
indicators as a function of the view tree instances of a view tree created for Q.

Consider one heavy indicator. Since its size is O(N1−ϵ), it may lead to that many view
tree instances. From each instance, we can enumerate with constant delay, and we can also
look up a tuple with schema S in constant time. Given there are O(N1−ϵ) such tuples, we
can enumerate from T with O(N1−ϵ) delay.

Consider p heavy indicators ∃H1(X1), . . . , ∃Hp(Xp) whose parents V1(X1), . . . , Vp(Xp)
are along the same path in the view tree. Let us assume Vi is an ancestor of Vj for i < j.
By construction, there is a total strict inclusion order on their sets of variables, with the
indicator above having less variables than at a lower depth: X1 ⊂ · · · ⊂ Xp. Each indicator
draws its tuples from the input relations whose schemas include that of the indicator. There
is also an inclusion between the parent views: Vi ⊆ πXiVi+1,∀i ∈ [p− 1]. This holds since
Vi is defined by the join of the leaves underneath, so the view Vj that is a descendant of
Vi is used to define Vi in joins with other views or relations. The size of Vi is at most
that of ∃Hi since they both have the same schema and the former is defined by the join
of the latter with other views. Since the size of ∃Hi is O(N1−ϵ), it follows that the size of
Vi is also O(N1−ϵ). When grounding ∃Hi, we create an instance for each tuple t that is
in both ∃Hi and Vi: If t were not in Vi, then there would be at least one sibling of ∃Hi

that does not have it. When opening the descendants of Vi before enumeration, only these
tuples in Vi that also occur in ∃Hi and in all its siblings can be extended at the descendant
views, including all views Vj for j > i. The overall number of groundings for the h heavy
indicators is therefore O(N1−ϵ). Let ni be the number of instances of ∃Hi. Then, the delay
for enumerating from the union of ∃Hi instances is

∑
i≤j≤p nj using the Union algorithm,

which also accounts for the delay incurred for enumeration from unions at instances of all
∃Hj that are descendants of ∃Hi. The overall delay is that for the union of instances for
∃H1:

∑
1≤j≤p nj = O(p×N1−ϵ) = O(N1−ϵ).

Consider again the p heavy indicators, but this time their parents V1, . . . , Vp are not
all along the same path in the view tree. Each path is treated as in the previous case.
We distinguish two cases. In the first case, there is no parent Vi that is an ancestor of
several other parents in our list. Let W be a common ancestor of several parents. Then,
the enumeration algorithm uses each tuple of W (possibly extended by descendant views)
as context for the instances of these parents. A next tuple is produced in sequence at each
of these parents over their corresponding schemas. These tuples are then composed into a
larger tuple over a larger schema at their common ancestor using the Product algorithm.
The number of branches is bounded by the number of atoms in the query, which means that
the overall delay remains O(N1−ϵ). In the second case, a parent Vi is a common ancestor of
several other parents in our list. We reason similarly to the one-path case and obtain that
the overall delay is O(p×N1−ϵ) = O(N1−ϵ).

So far we discussed the case of enumerating from one view tree. In case of a set of view
trees we use the Union algorithm to enumerate the distinct tuples. In case the query has
several connected components, i.e., it is a Cartesian product of hierarchical queries, we use
the Product algorithm.

11:48 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Appendix E. Proofs of the Results in Section 7

E.1. Proof of Proposition 7.2.

Proposition 7.2. Given a hierarchical query Q(F) with dynamic width δ, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], maintaining the views in the set
of view trees τ(ω,F) under a single-tuple update to any input relation takes O(N δϵ) time.

We first give the maintenance time for the views constructed by BuildVT given a
δ0-hierarchical query (Lemma E.1). We then show the maintenance time for the views
constructed by τ given a hierarchical query (Lemma E.2). The maintenance time uses a
new measure, which we relate to dynamic width (Lemma E.3). We finally show the running
times of UpdateIndTree and UpdateTrees.

Lemma E.1. Given a δ0-hierarchical query Q(F), a canonical variable order ω for Q, and a
database of size N , the views constructed by BuildVT(·, ω,F) from Figure 6 in the dynamic
mode can be maintained under a single-tuple update to any input relation in O(1) time.

Proof. At each node X of a canonical variable order ω for a δ0-hierarchical query, the set
FX of free variables is either anc(X)∪{X} if X is free, or anc(X) if X is bound because the
set F ∩ vars(ωX) of free variables in ωX is empty for δ0-hierarchical queries. The functions
AuxView and NewVT maintain the following invariant for δ0-hierarchical queries in the
dynamic mode: If X has a sibling node in ω, then the view created at node X has anc(X)
as free variables. If X is bound, then already F = anc(X); otherwise, AuxView constructs
an extra view with anc(X) as free variables.

Now consider an update δR to a relation R. Due to the hierarchical property of the
input query, the update δR fixes the values of all variables on the path from the leaf R to
the root to constants. While propagating an update through the view tree, the delta at
each node X requires joining with the views constructed for the siblings of X. Each of the
sibling views has anc(X) as free variables, as discussed above. Thus, computing the delta at
each node makes only constant-time lookups in the sibling views. Overall, propagating the
update through the view tree constructed for a δ0-hierarchical query using BuildVT takes
constant time.

Consider now a canonical variable order ω for a hierarchical query and a set F of free
variables. Given a node X in ω, let QX denote the join of atoms(ωX). We define κ(ω,F) as:

max
X∈vars(ω)−F

max
R(Y)∈atoms(ωX)

{ρ∗QX
((vars(ωX) ∩ F)− Y)},

The measure κ(ω,F) is the maximal fractional edge cover number of QX over the free
variables occurring in the subtree ωX of ω rooted at a bound variable X, when the variables
of one atom R(Y) in ωX are excluded.

Lemma E.2. Given a hierarchical query Q(F), a canonical variable order ω for Q, a
database of size N , and ϵ ∈ [0, 1], the views constructed by τ(ω,F) from Figure 11 in the

dynamic mode can be maintained under a single-tuple update in O(Nκ(ω,F)ϵ) time.

Proof. If Q is δ0-hierarchical, the function τ returns a view tree for Q that admits O(1)
update time, per Lemma E.1.

Consider now a view tree created by τ for a non-δ0-hierarchical query. Let us restrict
this view tree such that the views created in the light case are treated as leaf views. This

Vol. 19:3 TRADE-OFFS IN STATIC AND DYNAMIC EVALUATION OF HIERARCHICAL QUERIES 11:49

restricted view tree encodes the result of a δ0-hierarchical query! As the procedure τ traverses
the variable order in a top-down manner, every bound variable X with a free variable below
is replaced by a set of view trees where X is free (heavy case) and by a view tree whose
root view aggregates away X and includes only free variables (light case). Thus, single-tuple
updates to the leaves of this restricted view tree take constant time. That is, updates to the
relations that are not part of the views materialized in the light case are constant.

However, updates to the relations that are part of the views materialized in the light case
might not be constant. The view tree ltree constructed by BuildVT at a bound variable X
is defined over the light parts of relations partitioned on keys = anc(X) ∪ {X} (Line 16 in
Figure 11). Each view VZ in ltree constructed at a variable Z includes all the free variables
in ωZ . A single-tuple update δR to any relation R in ltree fixes the values of the variables
keys, thus reducing the size of other relations in ltree to O(N ϵ). The maintenance cost for
VZ under the update δR with schema Y is O(NmZϵ), where mZ = ρ∗QZ

((vars(ωZ) ∩ F)− Y).
The maintenance cost for ltree is dominated by the maintenance cost for its root VX .

The change computed at VX for the single-tuple update consist of O(NmXϵ) tuples and
needs to be propagated further up in the tree. Because there are no further light cases on
the path from X to the root, the propagation cost is constant per tuple. The overall time
needed to maintain VX and propagate the change at VX up to the root is O(Nm′

Xϵ), where
m′

X = maxR(Y)∈atoms(ωX){ρ∗QX
((vars(ωX) ∩ F)− Y)}. In the worst case, the root variable

of ω is bound; then, maintaining the root view and its descendants takes O(Nκ(ω,F)ϵ) time.
The views constructed by τ in the light cases thus determine the overall maintenance

O(Nκ(ω,F)ϵ) time.

We next relate the measure κ(ω,F) to dynamic width.

Lemma E.3. Given a canonical variable order ω for a hierarchical query Q(F) with dynamic
width δ, it holds that κ(ω,F) ≤ δ.

Proof. Given any variable order ω′ for Q and a variable X in ω′, we denote by Qω′
X the query

that joins the atoms in atoms(ω′
X). To prove κ(ω,F) ≤ δ, we need to show that

κ(ω,F) ≤ δ(ωf) (E.1)

for any free-top variable order ωf for Q. It follows from the definition of κ(ω,F) that ω has
a bound variable X and an atom R(Y) ∈ atoms(Qω

X) such that

κ(ω,F) = ρ∗Qω
X
(B)

where B = (vars(ωX) ∩ F)− Y. Since ω is canonical, it holds:

(∗) Each atom in Q containing a variable from B must contain X.

Let ωf = (T, depωf) be a free-top variable order for Q. Property (∗) implies that the
variables in B depend on X. Since X is bound and all variables in B are free, the latter
variables cannot be below X in ωf . Hence, B ⊆ depωf (X). Since R(Y) contains X, it must

be included in atoms(ωf
X). To prove Inequality (E.1), it thus suffices to show:

ρ∗Q(B) ≥ ρ∗Qω
X
(B). (E.2)

By Property (∗), each atom in Q covering a variable from B contains X. Hence, all such
atoms are contained in atoms(Qω

X). This implies that any fractional edge cover λ′ of B
using atoms in Q can be turned into a fractional edge cover λ of B using atoms in Qω

X such
that

∑
λ∈λ λ ≤

∑
λ′∈λ′ λ′. This implies Inequality (E.2) and hence Inequality (E.1).

11:50 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang Vol. 19:3

Lemma E.4. Given an indicator tree TInd constructed by IndicatorVTs from Figure 10
and a single-tuple update δR, UpdateIndTree from Figure 18 runs in O(1) time.

Proof. The tree TInd encodes the result of a δ0-hierarchical query and admits constant-time
updates per Lemma E.1. The remaining operations in UpdateIndTree also take constant
time.

We next analyze the procedure UpdateTrees from Figure 19 under a single-tuple
update. Applying the update to each view tree from T (Line 1) takes O(N δϵ) time, per
Lemmas E.2 and E.3. We then apply the update to each triple (TAll, TL, TH) of indicator view
trees. The tree TAll is a view tree of a δ0-hierarchical query, thus updating it takes constant
time (Line 6). The tree TL is updated using UpdateIndTree in constant time (Line 12),
per Lemma E.4. Both of these changes may trigger a change in ∃TH , and propagating δ(∃H)
through each view tree from T (Lines 9 and 14) takes constant time since this change does
not affect any view materialized in the light case. Updating each light part of relation R
and the affected view trees (Line 11) takes O(N δϵ) time, per Lemmas E.2 and E.3.

Overall, the procedure UpdateTrees maintains the views constructed by τ under a
single-tuple update in O(N δϵ) time.

E.2. Proof of Proposition 7.3.

Proposition 7.3. Given a hierarchical query Q(F) with static width w, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], major rebalancing of the views

in the set of view trees τ(ω,F) takes O(N1+(w−1)ϵ) time.

Consider the major rebalancing procedure from Figure 20. The light relation parts
can be computed in O(N) time. Proposition 5.4 implies that the affected views can be

recomputed in time O(N1+(w−1)ϵ).

E.3. Proof of Proposition 7.4.

Proposition 7.4. Given a hierarchical query Q(F) with dynamic width δ, a canonical
variable order ω for Q, a database of size N , and ϵ ∈ [0, 1], minor rebalancing of the views

in the set of view trees τ(ω,F) takes O(N (δ+1)ϵ) time.

Figure 21 shows the procedure for minor rebalancing of the tuples with the partitioning
value key in the light part RS of relation R. Minor rebalancing either inserts fewer than
1
2M

ϵ tuples into RS (heavy to light) or deletes at most 3
2M

ϵ tuples from RS (light to heavy).
Each action updates the indicator trees TL and TH in constant time (lines 5 and 6), per
Lemma E.4. Propagating the update to the light part of relation R through each view
tree from T (line 4) takes O(N δϵ) time, per Lemmas E.2 and E.3. Propagating the change
δ(∃H) through each view tree from T takes constant time (line 7), as discussed in the
proof of Proposition 7.2. Since there are O(M ϵ) such operations and the size invariant⌊
1
4M

⌋
≤ N < M holds, the total time is O(N (δ+1)ϵ).

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Trade-offs in Static Query Evaluation
	2.1. Further Prior Work on Static Query Evaluation

	3. Trade-offs in Dynamic Query Evaluation
	3.1. Further Prior Work on Dynamic Query Evaluation

	4. Preliminaries
	5. Preprocessing
	5.1. View Trees Encoding the Query Result
	5.2. Skew-Aware View Trees

	6. Enumeration
	6.1. The Union Algorithm
	6.2. The Product Algorithm

	7. Updates
	7.1. Processing a Single-Tuple Update
	7.2. Rebalancing Partitions

	8. Matching Lower Bound for 1-Hierarchical Queries
	9. Examples Showcasing Our Approach
	10. Conclusion and Future Work
	Acknowledgment
	References
	Appendix A. Proofs of the Results in Section 2
	Appendix B. Proofs of the Results in Section 3
	Appendix C. Proofs of the Results in Section 5
	C.1. Proof of Proposition 5.3
	C.2. Proof of Proposition 5.4

	Appendix D. Proofs of the Results in Section 6
	Appendix E. Proofs of the Results in Section 7
	E.1. Proof of Proposition 7.2
	E.2. Proof of Proposition 7.3
	E.3. Proof of Proposition 7.4

