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Abstract. We compare tools for complementing nondeterministic Büchi automata with
a recent termination-analysis algorithm. Complementation of Büchi automata is a key step
in program verification. Early constructions using a Ramsey-based argument have been
supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee
et al. presented the size-change termination (SCT) problem, along with both a reduction
to Büchi automata and a Ramsey-based algorithm. The Ramsey-based algorithm was
presented as a more practical alternative to the automata-theoretic approach, but strongly
resembles the initial complementation constructions for Büchi automata.

We prove that the SCT algorithm is a specialized realization of the Ramsey-based
complementation construction. To do so, we extend the Ramsey-based complementation
construction to provide a containment-testing algorithm. Surprisingly, empirical analysis
suggests that despite the massive gap in worst-case complexity, Ramsey-based approaches
are superior over the domain of SCT problems. Upon further analysis we discover an
interesting property of the problem space that both explains this result and provides a
chance to improve rank-based tools. With these improvements, we show that theoretical
gains in efficiency of the rank-based approach are mirrored in empirical performance.

1. Introduction

The automata-theoretic approach to formal program verification reduces questions about
program adherence to a specification to questions about language containment. Represent-
ing liveness, fairness, or termination properties requires finite automata that operate on
infinite words. One automaton, A, encodes the behavior of the program, while another
automaton, B, encodes the formal specification. To ensure adherence, verify that the in-
tersection of A with the complement of B is empty. Finite automata on infinite words are
classified by their acceptance condition and transition structure. We consider here nonde-
terministic Büchi automata, in which a run is accepting when it visits at least one accepting
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state infinitely often. For these automata, the complementation problem is known to in-
volve an exponential blowup [25]. Thus the most difficult step in checking containment is
constructing the complementary automata B.

The first complementation constructions for nondeterministic Büchi automata employed
a Ramsey-based combinatorial argument to partition the set of all infinite words into a finite
set of omega-regular languages. Proposed by Büchi in 1962 [5], this construction was shown

in 1987 by Sistla, Vardi, and Wolper to be implementable with a blow-up of 2O(n2) [29].
This brought the complementation problem into singly-exponential blow-up, but left a gap
with the 2Ω(n logn) lower bound proved by Michel [25].

The gap was tightened in 1988, when Safra described a 2O(n logn) construction [26].

Work since then has focused on improving the practicality of 2O(n logn) constructions, either
by providing simpler constructions, further tightening the bound [27], or improving the
derived algorithms. In 2001, Kupferman and Vardi employed a rank-based analysis of Büchi
automata to simplify complementation [23]. Recently, Doyen and Raskin have demonstrated
the utility of using a subsumption technique in the rank-based approach, providing a direct
universality checker that scales to automata several orders of magnitude larger than previous
tools [10].

Separately, in the context of program termination analysis, Lee, Jones, and Ben-Amram
presented the size-change termination (SCT) principle in 2001 [24]. This principle states
that, for domains with well-founded values, if every infinite computation contains an infin-
itely decreasing value sequence, then no infinite computation is possible. Lee et al. describe
a method of size-change termination analysis and reduce this problem to the containment
of two Büchi automata. Stating the lack of efficient Büchi containment solvers, they also
propose a Ramsey-based combinatorial solution that captures all possible call sequences in
a finite set of graphs. The Lee, Jones, and Ben-Amram (LJB) algorithm was provided as a
practical alternative to reducing the verification problem to Büchi containment, but bears
a striking resemblance to the 1987 Ramsey-based complementation construction [29].

In this paper we show that the LJB algorithm for deciding SCT [24] is a specialized
implementation of the 1987 Ramsey-based complementation construction [29]. Section 2
presents the background and notation for the paper. Section 3 expands the Ramsey-based
complementation construction into a containment algorithm, and then presents the proof
that the LJB algorithm is a specialized realization of this Ramsey-based containment al-
gorithm. In Section 4, we empirically explore Lee et al.’s intuition that Ramsey-based
algorithms are more practical than Büchi complementation tools on SCT problems. Ini-
tial experimentation does suggest that Ramsey-based tools are superior on SCT problems.
This is surprising, as the worst-case complexity of the LJB algorithm is significantly worse
than that of rank-based tools. Investigating this discovery in Section 5, we note that it
is natural for SCT problems to be reverse-deterministic, and that for reverse-deterministic
problems the worst-case bound for Ramsey-based algorithms matches that of the rank-
based approach. This suggests improving the rank-based approach in the face of reverse
determinism. Indeed, we find that reverse-deterministic SCT problems have a maximum
rank of 2, collapsing the complexity of rank-based complementation to 2O(n). Revisiting
our experiments, we discover that with this improvement rank-based tools are superior on
the domain of SCT problems. To further explore the phenomena, we generate a set of non-
reverse-deterministic SCT problems from monotonicity constraint systems, a more complex
termination problem. We conclude with a discussion in Section 6.
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Figure 1: An automaton which accepts words with finitely many a’s.

2. Preliminaries

In this section we review the relevant details of the Büchi complementation and size-change
termination, introducing along the way the notation used throughout this paper. A nonde-
terministic Büchi automaton on infinite words is a tuple B = 〈Σ, Q,Qin, ρ, F 〉, where Σ is a
finite nonempty alphabet, Q a finite nonempty set of states, Qin ⊆ Q a set of initial states,
F ⊆ Q a set of accepting states, and ρ : Q×Σ→ 2Q a nondeterministic transition function.
We lift the ρ function to sets of states and words of arbitrary length as follows. Given a
set of states R, define ρ(R, σ) to be

⋃
q∈R ρ(q, σ). Inductively, given a set of states R: let

ρ(R, ε) = R, and for every word w = σ0...σn let ρ(R,w) be defined as ρ(ρ(R, σ0), σ1...σn).
A run of a Büchi automaton B on a word w ∈ Σω is a infinite sequence r = q0q1... ∈ Qω

such that q0 ∈ Qin and, for every i ≥ 0, we have qi+1 ∈ ρ(qi, wi). A run is accepting iff qi ∈ F
for infinitely many i ∈ IN . A word w ∈ Σω is accepted by B if there is an accepting run of B
on w. The words accepted by B form the language of B, denoted by L(B). Correspondingly,
a path in B from q to r on a word w ∈ Σ+ is a finite sequence r = q0...qn ∈ Q+ such that
q0 = q, qn = r, and, for every i ∈ {0...n− 1}, we have qi+1 ∈ ρ(qi, wi). A path is accepting
if some state in the path is in F .

Example 2.1. An example automaton is shown in Figure 1, which accepts words with a
finite, but non-zero, number of a’s. The automaton waits in q and guesses when it has seen
the last a, transitioning on that a to r. If the automaton moves to r prematurely, it can
transition to s before it encounters any remaining a’s to continue the run. From s, it can
guess once again when it has seen the last a, transitioning this time to t.

A Büchi automaton A is contained in a Büchi automaton B iff L(A) ⊆ L(B), which can
be checked by verifying that the intersection of A with the complement B of B is empty:
L(A) ∩ L(B) = ∅. We know that the language of an automaton is non-empty iff there
are states q ∈ Qin, r ∈ F such that there is a path from q to r and an accepting path
from r to itself. The initial path is called the prefix, and the combination of the prefix
and cycle is called a lasso [31]. Furthermore, the intersection of two automata can be
constructed, having a number of states proportional to the product of the number states of
the original automata [6]. Thus, the most computationally demanding step is constructing
the complement of B. In the formal verification field, existing empirical work has focused
on the simplest form of containment testing, universality testing, where A is the universal
automaton [9, 30].
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Figure 2: Three graphs in Q̃B for the automaton of Figure 1. From left to right, the graph
describing the word a, the graph describing the word b, and the graph describing the word ab.

2.1. Ramsey-Based Universality. When Büchi introduced these automata in 1962, he
described a complementation construction involving a Ramsey-based combinatorial argu-
ment [5]. We describe an optimized implementation presented in 1987 [29]. To construct

the complement of B = 〈Σ, Q,Qin, ρ, F 〉, where Q = {q0, ..., qn−1}, we construct a set Q̃B
whose elements capture the essential behavior of B. Each element corresponds to an answer
to the following question:

Given a finite nonempty word w, for every two states q, r ∈ Q:
(1) Is there a path in B from q to r over w?
(2) If so, is some such path accepting?

Define Q′ = Q× {0, 1} ×Q, and Q̃B to be the subset of 2Q
′

whose elements, for every

q, r ∈ Q, do not contain both 〈q, 0, r〉 and 〈q, 1, r〉. Each element of Q̃B is a {0, 1}-arc-labeled
graph on Q. An arc represents a path in B, and the label is 1 if the path is accepting. Note

that there are 3n
2

such graphs. With each graph g̃ ∈ Q̃B we associate a language L(g̃), the
set of words for which the answer to the posed question is the graph encoded by g̃.

Definition 2.2. Let g̃ ∈ Q̃B and w ∈ Σ+. Then w ∈ L(g̃) iff, for all pairs of states q, r ∈ Q:

(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a path in B from q to r over w.
(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting path in B from q to r over w.

Example 2.3. Three graphs from Q̃B are shown in Figure 1. All graphs have a non-empty
language. The word a is in the language of the first graph, the word b is in the language of
the second graph, and the word ab is in the language of the third graph.

Lemma 2.4. [5, 29]

(1) {L(g̃) | g̃ ∈ Q̃B} is a partition of Σ+

(2) If u ∈ L(g̃), v ∈ L(h̃), and uv ∈ L(k̃), then L(g̃) · L(h̃) ⊆ L(k̃)

The languages L(g̃), for the graphs g̃ ∈ Q̃B, form a partition of Σ+. With this partition

of Σ+ we can devise a finite family of ω-languages that cover Σω. For every g̃, h̃ ∈ Q̃B, let

Y (g̃, h̃) be the ω-language L(g̃) · L(h̃)ω. Say that a language Y (g̃, h̃) is proper if Y (g̃, h̃) is

non-empty, L(g̃) · L(h̃) ⊆ L(g̃), and L(h̃) · L(h̃) ⊆ L(h̃). There are a finite, if exponential,
number of such languages. A Ramsey-based argument shows that every infinite string
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belongs to a language of this form, and that L(B) can be expressed as the union of languages
of this form.

Lemma 2.5. [5, 29] Σω =
⋃
{Y (g̃, h̃) | Y (g̃, h̃) is proper}

Proof: The proof is based on Ramsey’s Theorem. Consider an infinite word w = σ0σ1...
By Lemma 2.4, every prefix of the word w is in the language of a unique graph g̃i. Let

k = 3n
2

be the number of graphs. Thus w defines a partition of IN into k sets D1, ..., Dk

such that i ∈ Dl iff σ0...σi−1 ∈ L(g̃l). Clearly there is some m such that Dm is infinite.
Similarly, by Lemma 2.4 we can use the word w to define a partition of all pairs of

elements (i, j) from Dm, where i < j. This partition consists of k sets C1, ...Ck, such that
〈i, j〉 ∈ Cl iff σi...σj−1 ∈ L(g̃l). Ramsey’s Theorem tells us that, given such a partition,
there exists an infinite subset {i1, i2, ...} of Dm and a Cn such that for all pairs of distinct
elements ij , ik, it holds that 〈ij , ik〉 ∈ Cn.

This implies that the word w can be partitioned into

w1 = σ0...σi1−1, w2 = σi1 ...σi2−1, w3 = σi2 ...σi3−1, ...,

where w1 ∈ L(g̃m) and wi ∈ L(g̃n) for i > 1. By construction, σ0...σij−1 ∈ L(g̃m) for every
ij , and thus we have that w1w2 ∈ L(g̃m). In addition, as σij ...σik−1 ∈ L(g̃n) for every pair
ij , ik, we have that w2w3 ∈ L(g̃n). By Lemma 2.4, it follows that L(g̃m) · L(g̃n) ⊆ L(g̃m),
and that L(g̃n) · L(g̃n) ⊆ L(g̃n), and thus Y (g̃m, g̃n) is proper.

Furthermore, each proper language is entirely contained or entirely disjoint from L(B).
This provides a way to construct the complement of L(B): take the union every proper
language that is disjoint from L(B).

Lemma 2.6. [5, 29]

(1) For g̃, h̃ ∈ Q̃B, either Y (g̃, h̃) ∩ L(B) = ∅ or Y (g̃, h̃) ⊆ L(B).

(2) L(B) =
⋃
{Y (g̃, h̃) | Y (g̃, h̃) is proper and Y (g̃, h̃) ∩ L(B) = ∅}

To obtain the complementary Büchi automaton B, Sistla et al. construct, for each

g̃ ∈ Q̃B, a deterministic automata on finite words, Bg, that accepts exactly L(g̃). Using the

automata Bg, one can then construct the complementary automaton B [29]. We can then

use a lasso-finding algorithm on B to prove the emptiness of B, and thus the universality
of B. However, we can avoid an explicit lasso search by employing the rich structure of the

graphs in Q̃B. For every two graphs g̃, h̃ ∈ Q̃B, determine if Y (g̃, h̃) is proper. If Y (g̃, h̃) is
proper, test if it is contained in L(B) by looking for a lasso with a prefix in g̃ and a cycle

in h̃. B is universal if every proper Y (g̃, h̃) is so contained.

Lemma 2.7. [29] Given an Büchi automaton B and the set of graphs Q̃B,

(1) B is universal iff for every proper Y (g̃, h̃), it holds that Y (g̃, h̃) ⊆ L(B).

(2) Let g̃, h̃ ∈ Q̃B be two graphs where Y (g̃, h̃) is proper. Y (g̃, h̃) ⊆ L(B) iff there exists

q ∈ Qin, r ∈ Q, a ∈ {0, 1} where 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃.

Lemma 2.7 yields a PSPACE algorithm to determine universality [29]. Simply check

each g̃, h̃ ∈ Q̃B. If Y (g̃, h̃) is both proper and not contained in L(B), then the pair (g̃, h̃)
provide a counterexample to the universality of B. If no such pair exists, the automaton
must be universal.
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2.2. Rank-Based Complementation. While our focus is mainly on the Ramsey-based
approach, in Section 5 we look at the rank-based construction described here. If a Büchi au-
tomaton B does not accept a word w, then every run of B on w must eventually cease visiting
accepting states. The rank-based construction, foreshadowed in [20] and first introduced in
[21], uses a notion of ranks to track the progress of each possible run towards this point.
Consider a Büchi automaton B = 〈Σ, Q,Q∈, ρ,Qf 〉 and an infinite word w = ω0ω1.... The
runs of B on w can be arranged in an infinite DAG (directed acyclic graph), Gw = 〈V,E〉,
where

• V ⊆ Q× IN is such that 〈q, l〉 ∈ V iff some run r of B on w has r(l) = q.
• E ⊆

⋃
l≥0(Q× {l})× (Q× {l + 1}) is E(〈q, l〉, 〈q′, l + 1〉) iff 〈q, l〉 ∈ V and q′ ∈ ρ(q, ωl).

Gw, called the run DAG of B on w, exactly embodies all possible runs of B on w.
We define a run DAG Gw to be accepting when there exists a path in Gw with infinitely
many states in F . This path corresponds to an accepting run of B on w. When Gw is not
accepting, we say it is a rejecting run DAG. Say that a node 〈q, i〉 of a graph is finite if it
has only finitely many descendants, that it is accepting if q ∈ Qf , and that it is F -free if it
is not accepting and does not have accepting descendants.

Given a run DAG Gw, we inductively define a sequence of subgraphs by eliminating
nodes that cannot be part of accepting runs. A node that is finite can clearly not be part
of an infinite run, much less an accepting infinite run. Similarly, a node that is F -free may
be part of an infinite run, but this infinite run can not visit an infinite number accepting
states.

• Gw(0) = Gw
• Gw(2i+ 1) = Gw(2i) \ {〈q, l〉 | 〈q, l〉 is finite in Gw(2i)}
• Gw(2i+ 2) = Gw(2i+ 1) \ {〈q, l〉 | 〈q, l〉 is F -free in Gw(2i)}
If the final graph a node appears in is Gw(i), we say that node is of rank i. If the rank
of every node is at most i, we say Gw has a rank of i. B has a maximum rank of i when
every rejecting run DAG of B has a maximum rank of i. Note that nodes with odd ranks
are removed because they are F -free. Therefore no accepting state can have an odd rank.
Kupferman and Vardi prove that the maximum rank of a rejecting run DAG for every
automaton is bounded by 2|Q|− 2 [21]. This allows us to create an automaton that guesses
the ranking of rejecting run DAG of B as it proceeds along the word.

A level ranking for an automaton B with n states is a function f : Q→ {0...2n− 2,⊥},
such that if q ∈ F then f(q) is even or ⊥. Let a be a letter in Σ and f, f ′ be two level
rankings f . Say that f covers f ′ under a when for all q and every q′ ∈ ρ(q, a), if f(q) 6= ⊥
then f ′(q′) 6= ⊥ and f ′(q′) ≤ f(q); i.e. no transition between f and f ′ on a increases in
rank. Let Fr be the set of all level rankings.

Definition 2.8. If B = 〈Σ, Q,Qin, ρ, F 〉 is a Büchi automaton, define KV (B) to be the
automaton 〈Σ, Fr × 2Q, 〈fin, ∅〉, ρ′, Fr × {∅}〉, where

• fin(q) = 2n− 2 for each q ∈ Qin, ⊥ otherwise.

• Define ρ′ : 〈Fr × 2Q〉 × σ → 2〈Fr×2Q〉 to be
− If o 6= ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, o′ \ d〉 | f covers f ′ under σ, o′ = ρ(o, σ), d = {q | f ′(q) odd}}.

− If o = ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, o′〉 | f covers f ′ under a, o′ = {q | f ′(q) even}}.

Lemma 2.9. [22] For every Büchi automaton B, L(KV (B)) = L(B).
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This automaton tracks the progress of B along a word w = σ0σ1... by attempting to
find an infinite series f0f1... of level rankings. We start with the most general possible
level ranking, and ensure that every rank fi covers fi+1 under σi. Every run has a non-
increasing rank, and so must eventually become trapped in some rank. To accept a word, the
automaton requires that each run visit an odd rank infinitely often. Recall that accepting
states cannot be assigned an odd rank. Thus, for a word rejected by B, every run can
eventually become trapped in an odd rank. Conversely, if there is an accepting run that
visits an accepting node infinitely often, that run cannot visit an odd rank infinitely often
and the complementary automaton rejects it.

An algorithm seeking to refute the universality of B can look for a lasso in the state-space
of the rank-based complement of B. A classical approach is Emerson-Lei backward-traversal
nested fixpoint νY.µX.(Pre(X) ∪ (Pre(Y ) ∩ F )) [11]. This nested fixpoint employs the
observation that a state in a lasso can reach an arbitrary number of accepting states. The
outer fixpoint iteratively computes sets Y0, Y1, ... such that Yi contains all states with a path
visiting i accepting states. Universality is checked by testing if Y∞, the set of all states with
a path visiting arbitrarily many accepting states, intersects Qin. The strongest algorithm
implementing this approach, from Doyen and Raskin, takes advantage of the presence of
a subsumption relation in the rank-based construction: one state 〈f, o〉 subsumes another
〈f ′, o′〉 iff: f ′(x) ≤ f(x) for every x ∈ Q; o′ ⊆ o; and o = ∅ iff o′ = ∅. When computing
sets in the Emerson-Lei approach, it is sufficient to store only the maximal elements under
this relation. Furthermore, the predecessor operation for a single state and letter results
in at most two incomparable elements. This algorithm has scaled to automata an order of
magnitude larger than other approaches [9].

2.3. Size-Change Termination. In [24] Lee et al. proposed the size-change termination
(SCT) principle for programs: “If every infinite computation would give rise to an infinitely
decreasing value sequence, then no infinite computation is possible.” The original presen-
tation concerned a first-order pure functional language, where every infinite computation
arises from an infinite call sequence and values are always passed through a sequence of
parameters.

Proving that a program is size-change terminating is done in two phases. The first
extracts from a program a set of size-change graphs, G, containing guarantees about the
relative size of values at each function call site. The second phase, and the phase we
focus on, analyzes these graphs to determine if every infinite call sequence has a value that
descends infinitely along a well-ordered set. For an excellent discussion of the abstraction
of functional language semantics, refer to [19]. We consider here a set H of functions, and
denote the parameters of a function f by P (f).

Definition 2.10. A size-change graph (SCG) from function f1 to function f2, written
G : f1 → f2, is a bipartite {0, 1}-arc-labeled graph from the parameters of f1 to the

parameters of f2, where G ⊆ P (f1) × {0, 1} × P (f2) does not contain both x
1→ y and

x
0→ y.

Size-change graphs capture information about a function call. An arc x
1→ y indicates

that the value of x in the function f1 is strictly greater than the value passed as y to function

f2. An arc x
0→ y indicates that x’s value is greater than or equal to the value given to
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Figure 3: Size-Change Graphs: A size-change problem with two functions, f and g, and three call
sites: a call a to g occurring in the body of f , and two recursive calls, b and c, from g to itself.
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Figure 4: The dotted line forms a prefix of a late-start thread in the call sequence abcbcbc · · · .

y. We assume that all call sites in a program are reachable from the entry points of the
program1.

A size-change termination (SCT) problem is a tuple L = 〈H,P,C,G〉, where H is a
set of functions, P a mapping from each function to its parameters, C a set of call sites
between these functions, and G a set of SCGs for C. A call site is written c : f1 → f2

for a call to function f2 occurring in the body of f1. The size-change graph for a call site
c : f1 → f2 is written as Gc. Given a SCT problem L, a call sequence in L is a infinite
sequence cs = c0, c1, . . . ∈ Cω, such that there exists a sequence of functions f0, f1, . . . where
c0 : f0 → f1, c1 : f1 → f2 . . .. A thread in a call sequence c0, c1, . . . is a connected sequence of

arcs, x
a→ y, y

b→ z, . . ., beginning in some call ci such that x
a→ y ∈ Gci , y

b→ z ∈ Gci+1 , . . ..
We say that L is size-change terminating if every call sequence contains a thread with
infinitely many 1-labeled arcs. Note that a thread need not begin at the start of a call
sequence. A sequence must terminate if a well-founded value decreases infinitely often,
regardless of when this decrease begins. Therefore threads can begin in arbitrary function
calls, in arbitrary parameters. We call this the late-start property of SCT problems We
revisit this property in Section 3.3.

Example 2.11. Three size-change graphs, which will provide a running example for this
paper, are presented in Figure 3. The represented problem is size-change terminating. The
call sequence abcbc . . . is displayed in Figure 4, where a thread of infinite descent exists,
starting in the second graph. This late-start thread proves the sequence terminating.

Every call sequence can be represented as a word in Cω, and a SCT problem re-
duced to the containment of two ω-languages. The first language Flow(L) = {cs ∈
Cω | cs is a call sequence}, contains all call sequences. The second language, Desc(L) =
{cs ∈ Flow(L) | some thread in cs has infinitely many 1-labeled arcs}, contains only call

1The implementation provided by Lee et al. [24] also make this assumption, and in the presence of
unreachable functions size-change termination may be undetectable.
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Figure 5: AFlow(L) and ADesc(L): the automata resulting from applying Definition 2.12 to the SCT
problem of Figure 3.

sequences that guarantee termination. A SCT problem L is size-change terminating if and
only if Flow(L) ⊆ Desc(L).

Lee et al. [24] describe two Büchi automata, AFlow(L) and ADesc(L), that accept these
languages. AFlow(L) is simply the call graph of the program. ADesc(L) waits in a copy of
the call graph and nondeterministically chooses the beginning point of a descending thread.
From there it ensures that a 1-labeled arc is taken infinitely often. To do so, it keeps two
copies of each parameter, and transitions to the accepting copy only on a 1-labeled arc. Lee
et al. prove that L(AFlow(L)) = Flow(L), and L(ADesc(L)) = Desc(L). The automata for
our running example are provided in Figure 5.

Definition 2.12. 2

AFlow(L) = 〈C,H,H, ρF , H〉, where

• ρF (f1, c) = {f2 | c : f1 → f2}
ADesc(L) = 〈C,Qp ∪H,Qp ∪H, ρD, F 〉, where

• Qp = {〈x, r〉 | f ∈ H, x ∈ P (f), r ∈ {1, 0}},
• ρD(f1, c) = {f2 | c : f1 → f2} ∪ {〈x, 0〉 | c : f1 → f2, x ∈ P (f2)}
• ρD(〈x, r〉, c) = {〈x′, r′〉 | x r′→ x′ ∈ Gc},
• F = {〈x, 1〉 | f ∈ H, x ∈ P (f)}

Using the complementation constructions of either Section 2.1 or 2.2 and a lasso-finding
algorithm, we can determine the containment of AFlow(L) in ADesc(L). Lee et al. propose an
alternative graph-theoretic algorithm, employing SCGs to encode descent information about
entire call sequences. A notion of composition is used, where a call sequence c0...cn−1 has a
thread from x to y if and only if the composition of the SCGs for each call, Gc0 ; ...;Gcn−1 ,

contains the arc x
a→ y. The closure of G under the composition operation, called S, is

2The original LJB construction [24] restricted starting states in ADesc(L)to functions. This was changed

to simplify Section 3.4. The modification does not change the accepted language.
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Figure 6: The composition of the SCGs for b and c, from Figure 3. The resulting size-change graph

is idempotent, contains the arc y
1→ y, and describes the call sequence of Figure 4.

then searched for a counterexample describing an infinite call sequence with no infinitely
descending thread.

Definition 2.13. Let G : f1 → f2 and G′ : f2 → f3 be two SCGs. Their composition G;G′

is defined as G′′ : f1 → f3 where:

G′′ = {x 1→ z | x a→ y ∈ G, y b→ z ∈ G′, y ∈ P (f2), a = 1 or b = 1}

∪ {x 0→ z | x 0→ y ∈ G, y 0→ z ∈ G′, y ∈ P (f2), and

for all y′, a, b if x
a→ y′ ∈ G and y′

b→ z ∈ G′ then a = b = 0}

Using composition, we can focus on a subset of graphs. Say that a graph G : f → f
is idempotent when G = G;G. Each idempotent graph describes a cycle in the call graph,
and a Ramsey-based argument shows that each cycle in the call graph can be accounted
for by at least one idempotent graph. The composition of two graphs is shown in Figure 6,
which describes the call sequence in Figure 4.

Algorithm LJB searches for a counterexample to size-change termination. First, it
iteratively build the closure set S: initialize S as G; and for every G : f1 → f2 and
G′ : f2 → f3 in S, include the composition G;G′ in S. Second, the algorithm check every
G : f1 → f1 ∈ S to ensure that if G is idempotent, then G has an associated thread with

infinitely many 1-labeled arcs. This thread is represented by an arc of the form x
1→ x. There

are pathological SCT problems for which the complexity of Algorithm LJB is 2O((n/2)2).
The next theorem, whose proof uses a Ramsey-based argument, demonstrates the cor-

rectness of Algorithm LJB in determining the size-change termination of an SCT problem
L = 〈H,P,C,G〉.

Theorem 2.1. [24] A SCT problem L = 〈H,P,C,G〉 is not size-change terminating iff S,
the closure of G under composition, contains an idempotent SCG graph G : f → f that

does not contain an arc of the form x
1→ x.

3. Size-Change Termination and Ramsey-Based Containment

The Ramsey-based test of Section 2.1 and the LJB algorithm of Section 2.3 bear a remarkable
similarity. In this section we bridge the gap between the Ramsey-based universality test and
the LJB algorithm, by demonstrating that the LJB algorithm is a specialized realization of the
Ramsey-based containment test. This first requires developing a Ramsey-based framework
for Büchi containment testing.
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Algorithm 1: LJB(〈H,P,C,G〉)
Data: A size-change termination problem 〈H,P,C,G〉.
Result: Whether or not the problem is size-change terminating.
Initialize S⇐ G
repeat

for all pairs G : f → g, G′ : g → h in S do
G′′ : f → h⇐ G;G′

Add G′′ to S
if f = h and G′′;G′′ = G′′ then

if there does not exist an arc of the form x
1→ x in G′′ then

return Not Terminating

until S reaches closure
return Terminating

3.1. Ramsey-Based Containment with Supergraphs. To test the containment of a
Büchi automaton A in a Büchi automaton B, we could construct the complement of B using
either the Ramsey-based or rank-based construction, compute the intersection automaton
of A and B, and search this intersection automaton for a lasso. With universality, however,
we avoided directly constructing B by exploiting the structure of states in the Ramsey-based
construction (see Lemma 2.7). We demonstrate a similar test for containment.

Consider two automata, A = 〈Σ, QA, QinA , ρA, FA〉 and B = 〈Σ, QB, QinB , ρB, FB〉. When
testing the universality of B, any word not in L(B) is a sufficient counterexample. To test
L(A) ⊆ L(B) we must restrict our search to the subset of Σω accepted by A. In Section

2.1, we defined a set Q̃B of 0-1 arc-labeled graphs, whose elements provide a family of ω-

languages that covers Σω (see Lemma 2.5). We now define a set, Q̂A,B, which provides a
family of ω-languages covering L(A).

We first define Q̄A = QA × QA to capture the connectivity in QA. An element ḡ =
〈q, r〉 ∈ Q̄A is a single arc asserting the existence of a path in A from q to r. With each arc
we associate a language, L(ḡ).

Definition 3.1. Given w ∈ Σ+, say that w ∈ L(〈q, r〉) iff there is a path in A from q to r
over w.

Define Q̂A,B as Q̄A×Q̃B. The elements of Q̂A,B, called supergraphs, are pairs consisting

of an arc from Q̄A and a graph from Q̃B. Each element simultaneously captures all paths in
B and a single path in A. The language L(〈ḡ, g̃〉) is then L(ḡ) ∩ L(g̃). For convenience, we
implicitly take ĝ = 〈ḡ, g̃〉, and say 〈q, a, r〉 ∈ ĝ when 〈q, a, r〉 ∈ g̃. Since the language of each
graph consists of finite words, we employ the concatenation of languages to characterize
infinite runs. To do so, we first prove Lemma 3.2, which simplifies the concatenation of
entire languages by demonstrating an equivalence to the concatenation of arbitrary words
from these languages.

Lemma 3.2. If u ∈ L(ĝ), v ∈ L(ĥ), uv ∈ L(k̂), and L(ḡ) ·L(h̄) ⊆ L(k̄), then L(ĝ) ·L(ĥ) ⊆
L(k̂)

Proof: Assume we have such an u and v. We demonstrate every word w ∈ L(ĝ) · L(ĥ)

must be in L(k̂). If we expand the premise, we obtain w ∈ (L(ḡ)∩L(g̃)) ·(L(h̄)∩L(h̃)). This
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implies w must be in L(ḡ) ·L(h̄) and in L(g̃) ·L(h̃). Next, we know that u ∈ L(g̃), v ∈ L(h̃),

and uv ∈ L(k̃). Thus by Lemma 2.4, L(g̃) · L(h̃) ⊆ L(k̃), and w ∈ L(k̃). Along with the

premise L(ḡ) · L(h̄) ⊆ L(k̄), we can now conclude w ∈ L(k̄) ∩ L(k̃), which is L(k̂).

The languages L(ĝ), ĝ ∈ Q̂A,B, cover all finite subwords of L(A). A subword of L(A)
has at least one path between two states in QA, and thus is in the language of an arc in
Q̄A. Furthermore, by Lemma 2.4 this word is described by some graph, and the pair of the
arc and the graph makes a supergraph. Unlike the case of graphs and Σ+, the languages of
supergraphs do not form a partition of L(A): a word might have multiple paths between
states in A, and so be described by more than one arc in Q̄A. With them we construct

the finite family of ω-languages that cover L(A). Given ĝ, ĥ ∈ Q̂A,B, let Z(ĝ, ĥ) be the

ω-language L(ĝ) · L(ĥ)ω. In analogy to Section 2.1, call Z(ĝ, ĥ) proper if: (1) Z(ĝ, ĥ) is

non-empty; (2) ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ QinA and r ∈ FA; (3) L(ĝ) · L(ĥ) ⊆ L(ĝ)

and L(ĥ) · L(ĥ) ⊆ L(ĥ). Call a pair of supergraphs 〈ĝ, ĥ〉 proper if Z(ĝ, ĥ) is proper. We

note that Z(ĝ, ĥ) is non-empty if L(ĝ) and L(ĥ) are non-empty, and that, by the second

condition, every proper Z(ĝ, ĥ) is contained in L(A).

Lemma 3.3. Let A and B be two Büchi automata, and Q̂A,B the corresponding set of

supergraphs. L(A) =
⋃
{Z(ĝ, ĥ) | , ĝ, ĥ ∈ Q̂A,B, Z(ĝ, ĥ) is proper}.

Proof: We extend the Ramsey argument of Lemma 2.5 to supergraphs.
Consider an infinite word w = σ0σ1... with an accepting run p = p0p1... in A. As p is

accepting, we know that p0 ∈ QinA and pi ∈ FA for infinitely many i. Since FA is finite, at
least one accepting state q must appear infinitely often. Let D ⊆ IN be the set of indexes i
such that pi = q.

We pause to observe that, by the definition of the languages of arcs, for every i ∈ D the
word σ0...σi−1 is in L(〈p0, q〉), and for every i, j ∈ D, i < j, the word σi...σj−1 ∈ L(〈q, q〉).

Every language Z(ĝ, ĥ) where ḡ = 〈p0, q〉 and ḡ = 〈q, q〉 thus satisfies the second requirement
of properness.

In addition to restricting our attention the subset of nodes where pi = q, we further

partition D into k = 3n
2

sets D1, ..., Dk based on the prefix of w until that point, where
there is a Dl associated with each possible graph g̃l. By Lemma 2.4, every finite word is in
the language of some graph g̃. Say that i ∈ Dl iff σ0...σi−1 ∈ L(g̃l). As k is finite, for some
m Dm must be infinite. Let g̃ = g̃m.

Similarly, by Lemma 2.4 we can use the word w to define a partition of all unordered
pairs of elements from Dm. This partition consists of k sets C1, ...Ck, such that (i, j) ∈ Cl
iff σi...σj−1 ∈ L(g̃l). Without loss of generality, for (i, j) ∈ Cl, assume i < j. Ramsey’s
Theorem tells us that, given such a partition, there exists an infinite subset {i1, i2, ...} of
Dm and a Cn such that (ij , ik) ∈ Cn for all pairs of distinct elements ij , ik.

This is precisely to say there is a graph h̃ so that, for every (ij , ik) ∈ Cn, it holds that

σij ...σik−1 ∈ L(h̃). Cn thus partitions the word w into

w1 = σ0...σi1−1, w2 = σi1 ...σi2−1, w3 = σi2 ...σi3−1, ...,

such that w1 ∈ L(g̃) and wi ∈ L(h̃) for i > 1. Let ĝ = 〈〈p0, q〉, g̃〉 and let ĥ = 〈〈q, q〉, h̃〉. By

the above partition of w, we know that w ∈ Z(ĝ, ĥ).

We now show that Z(ĝ, ĥ) is proper. First, as w ∈ Z(ĝ, ĥ), we know Z(ĝ, ĥ) is non-
empty. Second, as noted above, the second requirement is satisfied by the arcs 〈p0, q〉
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and 〈q, q〉. Finally, we demonstrate the third condition holds. As σ0...σi−1 ∈ L(g̃) for
every i ∈ Cn, we have that w1w2 ∈ L(g̃). Both w1 and w1w2 are in L(〈p0, q〉) and so
w1, w1w2 ∈ L(ĝ). By the definition of the language of arcs, L(〈p0, q〉) ·L(〈q, q〉) ⊆ L(〈p0, q〉).

Thus by Lemma 3.2, we can conclude that L(ĝ) · L(ĥ) ⊆ L(ĝ). Next observe that as

σi...σj−1 ∈ L(h̃) for every pair i, j ∈ Cn, we have that w2w3 ∈ L(h̃). As w2, w2w3 are

both in 〈q, q〉, it holds that w2, w2w3 ∈ L(ĥ). By the definition of the language of arcs,

L(〈q, q〉) · L(〈q, q〉) ⊆ L(〈q, q〉). By Lemma 3.2 we can now conclude L(ĥ) · L(ĥ) ⊆ L(ĥ).

Therefore Z(ĝ, ĥ) is a proper language containing w.

Lemma 3.4. Let A and B be two Büchi automata, and Q̂A,B the corresponding set of
supergraphs.

(1) For all proper Z(ĝ, ĥ), either Z(ĝ, ĥ) ∩ L(B) = ∅ or Z(ĝ, ĥ) ⊆ L(B).

(2) L(A) ⊆ L(B) iff every proper language Z(ĝ, ĥ) ⊆ L(B).

(3) Let ĝ, ĥ be two supergraphs such that Z(ĝ, ĥ) is proper. Z(ĝ, ĥ) ⊆ L(B) iff there exists

q ∈ QinB , r ∈ QB, a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ.

Proof: Given two supergraphs ĝ = 〈ḡ, g̃〉 and ĥ = 〈h̄, h̃〉, recall that Y (g̃, h̃) is the ω-

language L(g̃) · L(h̃)ω. Further note that L(ĝ) ⊆ L(g̃) and L(ĥ) ⊆ L(h̃), and therefore

Z(ĝ, ĥ) ⊆ Y (g̃, h̃).

1: Consider two supergraphs ĝ, ĥ. By Lemma 2.6 either Y (g̃, h̃) ∩ L(B) = ∅ or Y (g̃, h̃) ⊆
L(B). Since Z(ĝ, ĥ) ⊆ Y (g̃, h̃), it holds that Z(ĝ, ĥ) ∩ L(B) = ∅ or Z(ĝ, ĥ) ⊆ L(B).

2: Immediate from Lemma 3.3 and clause 1.

3: By Lemma 2.6 either Y (g̃, h̃) ⊆ L(B) or Y (g̃, h̃) ∩ L(B) = ∅. By Lemma 2.7 Y (g̃, h̃) ⊆
L(B) iff a q, r and a exist such that 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃. Since Z(ĝ, ĥ) ⊆ Y (g̃, h̃),

Z(ĝ, ĥ) ⊆ L(B) iff such a q, r and a exist.

In an analogous fashion to Section 2.1, we can use supergraphs to test the containment

of two automata, A and B. Search all pairs of supergraphs, ĝ, ĥ ∈ Q̂A,B for a pair that is
both proper and for which there does not exist a q ∈ QinB , r ∈ QB, a ∈ {0, 1} such that

〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ. Such a pair is a counterexample to containment. If no such
pair exists, then L(A) ⊆ L(B).

3.2. Composition of Supergraphs. Employing supergraphs to test containment faces
difficulty on two fronts. First, the number of supergraphs is very large. Second, verifying
properness requires checking language nonemptiness and containment: PSPACE-hard prob-
lems. To address these problems we construct only supergraphs with non-empty languages.
Borrowing the notion of composition from Section 2.3 allows us to use exponential space
to compute exactly the needed supergraphs. Along the way we develop a polynomial-time
test for the containment of supergraph languages. Our plan is to start with graphs corre-
sponding to single letters and compose them until we reach closure. The resulting subset

of Q̂A,B, written Q̂fA,B, contains exactly the supergraphs with non-empty languages. In
addition to removing the need to check for emptiness, composition allows us to test the sole
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Figure 7: The composition of a graph with itself.

remaining aspect of properness, language containment, in time polynomial in the size of the
supergraphs. We begin by defining the composition of simple graphs.

Definition 3.5. Given two graphs g̃ and h̃ define their composition, written as g̃; h̃, as the
graph

{〈q, 1, r〉 | q, r, s ∈ QB, 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, b = 1 or c = 1}
∪ {〈q, 0, r〉 | q, r, s ∈ QB, 〈q, 0, s〉 ∈ g̃, 〈s, 0, r〉 ∈ h̃, and

for all t ∈ QB, b, c ∈ {0, 1} if 〈q, a, t〉 ∈ g̃ and 〈t, b, r〉 ∈ h̃ then a = b = 0}

Example 3.6. Figure 7 shows the composition of a simple graph with itself. Figure 2 is
also illustrative, as the third graph is the composition of the first two.

We can then define the composition of two supergraphs ĝ = 〈〈q, r〉, g̃〉 and ĥ = 〈〈r, s〉, h̃〉,
written ĝ; ĥ, as the supergraph 〈〈q, s〉, g̃; h̃〉. To generate exactly the set of supergraphs with
non-empty languages, we start with supergraphs describing single letters. For a containment

problem L(A) ⊆ L(B), define the subset of Q̂A,B corresponding to single letters to be

Q̂1
A,B = {ĝ | ĝ ∈ Q̂A,B, a ∈ Σ, a ∈ L(ĝ)}. For completeness, we present a constructive

definition of Q̂1
A,B.

Definition 3.7.

Q̂1
A,B =

{
〈〈q, r〉, g̃〉 | q ∈ QA, r ∈ ρA(q, a), a ∈ Σ,

g̃ = {〈q′, 0, r′〉 | q′ ∈ QB \ FB, r′ ∈ (ρB(q′, a) \ FB)} ∪
{〈q′, 1, r′〉 | q′ ∈ QB, r′ ∈ ρB(q′, a), q′ or r′ ∈ FB)}

}
We then define Q̂fA,B to be the closure of Q̂1

A,B under composition. Algorithm
DoubleGraphSearch, which we prove correct below, employs composition to check the con-
tainment of two automata. It first generates the set of initial supergraphs, and then com-
putes the closure of this set under composition. Along the way it tests properness by using
composition. Every time it encounters a proper pair of supergraphs, it either verifies that
a satisfying pair of arcs exist, or halts with a counterexample to containment. We call this
search the double-graph search.

To begin proving our algorithm correct, we link composition and the concatenation of
languages, first for simple graphs and then for supergraphs.

Lemma 3.8. For every two graphs g̃ and h̃, it holds that L(g̃) · L(h̃) ⊆ L(g̃; h̃).
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Algorithm 2: DoubleGraphSearch(A,B)
Data: Two Büchi automata, A and B.
Result: Whether L(A) is contained in L(B).

Initialize Q̂f ⇐ Q̂1
A,B

repeat

for all pairs ĝ, ĥ ∈ Q̂f where ḡ = 〈q, r〉 and h̄ = 〈r, s〉 do

Add ĝ; ĥ to Q̂f

if q ∈ QinA , r ∈ FA, s = r, g̃; h̃ = g̃ and h̃; h̃ = h̃ then

if there do not exist 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ where q ∈ QinB then
return Not Contained

until Q̂f reaches closure
return Contained

Proof: Consider two words w1 ∈ L(g̃), w2 ∈ L(h̃). By Definition 2.2, to prove w1w2 ∈
L(g̃; h̃) we must show that for every q, r ∈ Q: both (1) 〈q, a, r〉 ∈ g̃; h̃ iff there is a path
from q to r over w1w2, and (2) that a = 1 iff there is an accepting path.

If an arc 〈q, a, r〉 ∈ g̃; h̃ exists, then there is an s ∈ Q such that 〈q, b, s〉 ∈ g̃ and

〈s, c, r〉 ∈ h̃. By Definition 2.2, this implies the existence of a path x1s from q to s over w1,
and a path sx2 from s to r over w2. Thus x1sx2 is a path from q to r over w1w2.

If a is 1, then either b or c must be 1. By Definition 2.2, b (resp., c) is 1 iff there is an
accepting path x′1s (resp., sx′2) over w1 (resp.,w2) from q to s (resp., s to r). In this case
x′1sx2 (resp., x1sx

′
2) is an accepting path in B from q to r over w1w2.

Symmetrically, if there is a path x from q to r over w1w2, then after reading w1 we are
in some state s and have split x into x1sx2, so that x1s is a path from q to s and sx2 a

path from s to r. Thus by Definition 2.2 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, and 〈q, a, s〉 ∈ g̃; h̃.
Furthermore, if there is an accepting path from q to r over w1w2, then after reading w1

we are in some state s and have split the path into x1sx2, so that x1s is a path from q to
s, and sx2 a path from s to r. Either x1s or sx2 must be accepting, and thus by Definition

2.2 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, and either b or c must be 1. Therefore a must be 1.

Lemma 3.9. Let ĝ, ĥ, k̂ be supergraphs in Q̂fA,B such that ḡ = 〈q, r〉, h̄ = 〈r, s〉, and k̄ = 〈q, s〉.

Then ĝ; ĥ = k̂ iff L(ĝ) · L(ĥ) ⊆ L(k̂).

Proof: Assume ĝ; ĥ = k̂ as a premise. This implies k̂ = 〈〈q, s〉, g̃; h̃〉). If either L(ĝ) or

L(ĥ) are empty, then L(ĝ) · L(ĥ) is empty and this direction holds trivially. Otherwise,

take two words u ∈ L(ĝ), v ∈ L(ĥ). By construction, u ∈ L(〈q, r〉) and v ∈ L(〈r, s〉). The
definition of the languages of arcs therefore implies the existence of a path from q to r over

u and a path from r to s over v. Thus uv ∈ L(〈q, s〉). Similarly, u ∈ L(g̃), v ∈ L(h̃),

and Lemma 3.8 implies that uv ∈ L(k̃). Thus uv is in L(〈〈q, r〉, k̃〉). and by Lemma 3.2

L(ĝ) · L(ĥ) ⊆ L(k̂).

In the other direction, if L(ĝ) · L(ĥ) ⊆ L(k̂), we show that ĝ; ĥ = k̂. By definition,

ĝ; ĥ is 〈〈q, s〉, g̃; h̃〉. As ĝ, ĥ ∈ Q̂fA,B, they are the composition of a finite number of graphs

from Q̂1
A,B. The above direction then demonstrates that they are non-empty, and there is
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a word w ∈ L(ĝ) · L(ĥ). This expands to w ∈ (L(ḡ) ∩ L(g̃)) · (L(h̄) ∩ L(h̃)), which implies

w ∈ L(g̃) · L(h̃). By Lemma 3.8, w is then in L(g̃; h̃). Since, by Lemma 2.4, w is the

language of exactly one graph, we have that g̃; h̃ = k̃, which proves ĝ; ĥ = k̂.

Lemma 3.9 provides the polynomial time test for properness employed in Algorithm

DoubleGraphSearch. Namely, given two supergraphs ĝ = 〈〈q, r〉, g̃〉 and ĥ = 〈〈r, r〉, h̃〉 from

Q̂fA,B, the pair 〈ĝ, ĥ〉 is proper exactly when q ∈ QinA , r ∈ FA, g̃; h̃ = g̃ and h̃; h̃ = h̃. We now

provide the final piece of our puzzle: proving that the closure of Q̂1
A,B under composition

contains every non-empty supergraph.

Lemma 3.10. For two Büchi automata A and B, every ĥ ∈ Q̂A,B, where L(ĥ) 6= ∅, is in

Q̂fA,B.

Proof: Let ĥ = 〈〈q, r〉, h̃〉 where L(ĥ) 6= ∅. Then there is at least one wordw = σ0...σn−1 ∈
L(ĥ), which is to say w ∈ L(〈q, r〉) ∩ L(h̃). By the definition of the languages of arcs, there
is a path p = p0...pn in A over w such that p0 = q and pn = r.

Define g̃σi to be the graph in Q̃1
B containing σi. Let ĝσi be 〈〈pi, pi+1〉, g̃σi〉, and let ĝw

be ĝσ0 ; ĝσ1 ; ...; ĝσn−1 . Note that each ĝσi ∈ Q̂1
A,B. By Lemma 3.9 w ∈ g̃w. By Lemma 2.4,

w is in only one graph and g̃w = h̃. By construction, ḡw = 〈q, r〉. Therefore 〈ḡw, g̃w〉 =

〈〈q, r〉, h̃〉 = ĥ, and ĥ is in the closure of Q̂1
A,B under composition.

We can now show the correctness of Algorithm DoubleGraphSearch, using Lemma
3.9 to justify testing properness with composition, and Lemma 3.11 below to justify the
correctness and completeness of our search for a counterexample.

Lemma 3.11. Let A and B be two Büchi automata. L(A) is not contained in L(B) iff

Q̂fA,B contains a pair of supergraphs ĝ, ĥ such that 〈ĝ, ĥ〉 is proper and there do not exist

arcs 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ, q ∈ QinB .

Proof: As all proper graphs are non-empty, this follows from parts (2) and (3) of Lemma
3.4 and Lemma 3.10.

Theorem 3.1. For every two Büchi automata A and B, it holds that L(A) ⊆ L(B) iff
DoubleGraphSearch(A,B) returns Contained.

Proof: By Lemma 3.9, testing for composition is equivalent to testing for language con-
tainment, and the outer conditional in Algorithm DoubleGraphSearch holds only for proper
pairs of supergraphs. By Lemma 3.11, the inner conditional checks if a proper pair of su-

pergraphs is a counterexample, and if no such proper pair in Q̂fA,B is a a counterexample

then containment must hold.

3.3. Strongly Suffix Closed Languages. Algorithm DoubleGraphSearch has much the
same structure as Algorithm LJB. The most noticeable difference is that Algorithm
DoubleGraphSearch checks pairs of supergraphs, where Algorithm LJB checks only sin-
gle size-change graphs. Indeed, Theorem 2.1 suggests that, for some languages, a cycle
implies the existence of a lasso. When proving containment of Büchi automata with such

languages, it is sufficient to search for a graph ĥ ∈ Q̂B, where ĥ; ĥ = ĥ, with no arc 〈r, 1, r〉.
This single-graph search reduces the complexity of our algorithm significantly. What enables
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this in size-change termination is the late-start property: threads can begin at arbitrary
points. We here define the class of automata amenable to this optimization, first presenting
the case for universality testing, without proof, for clarity.

In size-change termination, the late-start property asserts that an accepting cycle can

start at an arbitrary point. Intuitively, this suggests that an arc 〈r, 1, r〉 ∈ h̃ might not
need a matching prefix 〈q, a, r〉 in some g̃: the cycle can just start at r. In the context of
universality, we can apply this method when it is safe to add or remove arbitrary prefixes
of a word. To describe these languages we extend the standard notion of suffix closure. A
language L is suffix closed when, for every w ∈ L, every suffix of w is in L.

Definition 3.12. A language L is strongly suffix closed if it is suffix closed and for every
w ∈ L, w1 ∈ Σ+, we have that w1w ∈ L.

Lemma 3.13. Let B be an Büchi automaton where every state in Q is reachable and L(B) is
strongly suffix closed. B is not universal iff the set of supergraphs with non-empty languages,

Q̃fB, contains a graph h̃ such that h̃; h̃ and h̃ does not contain an arc of the form 〈r, 1, r〉.

As an intuition for the correctness of Lemma 3.13, note that the existence of an 1-labeled

cyclic arc in h̃ implies a loop, that Q being reachable implies a prefix can be prepended to
this loop to make a lasso, and that strong suffix closure allows us to swap this prefix for the
prefix of every other word that share this cycle.

To extend this notion to handle containment questions L1 ⊆ L2, we restrict our focus
to words in L1. Instead of requiring L2 to be closed under arbitrary prefixes, L2 need only
be closed under prefixes that keep the word in L1.

Definition 3.14. A language L2 is strongly suffix closed with respect to L1 when L2 is suffix
closed and, for every w ∈ L1 ∩ L2, w1 ∈ Σ+, if w1w ∈ L1 then w1w ∈ L2.

When checking the containment ofA in B for the case when L(B) is strongly suffix closed
with respect to L(A), we can employ a the simplified algorithm below. As in Algorithm

DoubleGraphSearch, we search all supergraphs in Q̂fA,B. Rather than searching for a proper
pair of supergraphs, however, Algorithm SingleGraphSearch searches for a single super-

graph ĥ where ĥ; ĥ = ĥ that does not contain an arc of the form 〈r, 1, r〉. We call this search
the single-graph search.

We now prove Algorithm SingleGraphSearch correct. Theorem 3.2 demonstrates that,
under the requirements specified, the presence of a single-graph counterexample refutes
containment, and the absence of such a supergraph proves containment.

Theorem 3.2. Let A and B be two Büchi automata where QinA = QA, every state in QB
is reachable, and L(B) is strongly suffix closed with respect to L(A). Then L(A) is not

contained in L(B) iff Q̂fA,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 such that s ∈ FA, ĥ; ĥ = ĥ,

and ĥ does not contain an arc 〈r, 1, r〉.

Proof: In one direction, assume Q̂fA,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 where s ∈ FA,

ĥ; ĥ = ĥ, and there is no arc 〈r, 1, r〉 ∈ ĥ. We show that Z(ĥ, ĥ) is a proper language not

contained in L(B). As ĥ ∈ Q̂fA,B, we know L(ĥ) is not empty, implying Z(ĥ, ĥ) is non-

empty. As QA = QinA , it holds that s ∈ QinA . By Lemma 3.9, the premise ĥ; ĥ = ĥ implies

L(ĥ) · L(ĥ) ⊆ L(ĥ), and Z(ĥ, ĥ) is proper. Finally, as there is no 〈r, 1, r〉 ∈ ĥ, by Theorem

3.1, Z(ĥ, ĥ) 6∈ L(B), and Z(ĥ, ĥ) is a counterexample to L(A) ⊆ L(B).
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Algorithm 3: SingleGraphSearch(A,B)
Data: Two Büchi automata, A and B.
Require QinA = QA, QB is reachable, and L(B) is strongly suffix closed w.r.t. L(A)
Result: Whether L(A) is contained in L(B).

Initialize Q̂f ⇐ Q̂1
A,B

repeat

for all pairs ĝ, ĥ ∈ Q̂f where ḡ = 〈q, r〉 and h̄ = 〈r, s〉 do

k̂ ⇐ ĝ; ĥ

Add k̂ to Q̂f

if q ∈ FA, q = s, and k̂; k̂ = k̂ then

if there does not exist an arc 〈r, 1, r〉 ∈ k̂ then
return Not Contained

until Q̂f reaches closure
return Contained

In the opposite direction, assume the premise that Q̂fA,B does not contain a supergraph

ĥ = 〈〈s, s〉, h̃〉 where s ∈ FA, ĥ; ĥ = ĥ, and there is no arc 〈r, 1, r〉 ∈ ĥ. We prove that every
word w ∈ L(A) is also in L(B). Take a word w ∈ L(A). By Lemma 3.3, w is in some proper

language Z(ĝ, ĥ) and can be broken into w1w2 where w1 ∈ L(ĝ), w2 ∈ L(ĥ)ω.

Because Z(ĝ, ĥ) is proper, Lemma 3.9 implies ĥ = 〈〈s, s〉, h̃〉 where s ∈ FA and ĥ; ĥ = ĥ.

This, along with our premise, implies ĥ contains an arc 〈r, 1, r〉. Since all states in QB are
reachable, there is q ∈ QinB and u ∈ Σ+ with a path in B from q to r over u. By Lemma 2.7,
this implies uw2 is accepted by B. For L(B) to strongly suffix closed with respect to L(A),
it must be suffix closed. Therefore w2 ∈ L(B). Now we move to L(A), and note that the
premise QinA = QA implies L(A) is suffix closed. Thus the fact that w1w2 ∈ L(A) implies
w2 ∈ L(A). Since L(B) is strongly suffix closed with respect to L(A), and w2 ∈ L(B), it
must be that w1w2 ∈ L(B).

3.4. From Ramsey-Based Containment to Size-Change Termination. We now delve
into the connection between the LJB algorithm for size-change termination and the single-
graph search algorithm for Büchi containment. We will show that Algorithm LJB is a special-
ized realization of Algorithm SingleGraphSearch. Given an SCT problem L, size-change
graphs in LJB(L) are direct analogues of supergraphs in SingleGraphSearch(AFlow(L),

ADesc(L)). For convenience, take L = 〈H,P,C,G〉, AFlow(L) = 〈C,QFl, QinF l, ρFl, FFl〉, and

ADesc(L) = 〈C,QDs, QinDs, ρDs, FDs〉.
We first show that AFlow(L) and ADesc(L) satisfy the preconditions of Algorithm

SingleGraphSearch: that QinF l = QFl; that every state in QDs is reachable; and that
Desc(L) is strongly suffix closed with respect to Flow(L). For the first and second require-
ment, it suffices to observe that every state in both AFlow(L) and ADesc(L) is initial.3

For the third, strong suffix closure is a direct consequence of the definition of a thread:
since a thread can start at arbitrary points, it does not matter what call path we use to

3In the original reduction, 1-labeled parameters may not have been reachable.
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Figure 8: Size-Change Graphs vs. Supergraphs: The SCGs for call sites a and b, from Figure 3,

and corresponding supergraphs for the characters a and b, from Q̂1
AFlow(L),ADesc(L)

.

reach that point. Adding a prefix to a call path cannot cause that call path to become
non-terminating. Thus the late-start property is precisely Desc(L) being strongly suffix
closed with respect to Flow(L), and we can employ the single-graph search.

Consider supergraphs in Q̂AFlow(L),ADesc(L)
, from here simply denoted by Q̂L. The state

space of AFlow(L) is the set of functions H, and the state space of ADesc(L) is the union of H

and Qp, the set of all {0, 1}-labeled parameters. A supergraph in Q̂L thus comprises an arc
〈q, r〉 in H and a {0, 1}-labeled graph g̃ over H ∪Qp. The arc asserts the existence of a call
path from q to r, and the graph g̃ captures the relevant information about corresponding
paths in ADesc(L).

These supergraphs are almost the same as SCGs, G : q → r (See Figure 8). Aside from
notational differences, both contain an arc asserting the existence of a call path between
two functions, and a {0, 1}-labeled graph. There are nodes in both graphs that correspond
to parameters of functions, and arcs between two such nodes describe a thread between the
corresponding parameters. The analogy falls short, however, on three points:

(1) In SCGs, nodes are always parameters of functions. In supergraphs, nodes can be either
parameters of functions or function names.

(2) In SCGs, nodes are unlabeled. In supergraphs, nodes are labeled either 0 or 1.
(3) In an SCG, only the nodes corresponding to the parameters of two specific functions

are present. In a supergraph, nodes corresponding to every parameter of every function
exist.

Each difference is an opportunity to specialize the Ramsey-based containment algo-
rithm, Algorithm SingleGraphSearch, by simplifying supergraphs. When these specializa-
tions are taken together, we have Algorithm LJB.

1 No functions in H are accepting for ADesc(L), and once we transition out of H into Qp
we can never return to H. Therefore nodes r corresponding to function names can never
be part of a descending arc 〈r, 1, r〉. Since we only search for arcs of the form 〈r, 1, r〉,
we can simplify supergraphs in Q̂L by removing all nodes corresponding to functions.

2 The labels on parameters are the result of encoding a Büchi edge acceptance condition
in a Büchi state acceptance condition automaton, and can be dropped from supergraphs
with no loss of information. Consider an arc 〈〈f, a〉, b, 〈g, c〉〉. If b is 1, we know the
corresponding thread contains a descending arc. The value of c tells us if the final arc
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in the thread is descending, but which arc is descending is irrelevant. Thus it is safe to

simplify supergraphs in Q̂L by removing labels on parameters.
3 While all parameters have corresponding states in ADesc(L), each supergraph describes

threads in a call sequence between two particular functions. There are no threads in
this call sequence between parameters of other functions, and so no supergraph with a
non-empty language has arcs between the parameters of other functions. We can thus

simplify supergraphs in Q̂L by removing all nodes corresponding to parameters of other
functions.

To formalize this notion of simplification, we first define, ĜL, the set of simplified

supergraphs and show that ĜL is in one-to-one correspondence with S, the closure of G
under composition.

Definition 3.15. ĜL = {〈〈f1, f2〉, k̃〉 | f1, f2 ∈ H, k̃ ⊆ 2P (f1)×{0,1}×P (f2)}

Say that 〈r, g̃〉 ∈ Q̂L simplifies to 〈r, k̃〉 ∈ ĜL when 〈q, b, r〉 ∈ k̃ iff there exists a, c ∈
{0, 1} such that 〈〈q, a〉, b, 〈r, c〉〉 ∈ g̃. Let Ĝ1

L be {k̂ | ĝ ∈ Q̂1
L, ĝ simplifies to k̂}, and ĜfL be

the closure of Ĝ1
L under composition.

We can map SCGs directly to elements of ĜL. Say G : f1 → f2 ≡ 〈〈f1, f2〉, g̃〉 when

q
a→ r ∈ G iff 〈q, a, r〉 ∈ g̃. Note that the composition operations for supergraphs of this

form is identical to the composition of SCGs: if G1 ≡ ĝ and G2 ≡ ĥ, then G1;G2 ≡ ĝ; ĥ.

Therefore every element of Q̂fL simplifies to some element of ĜfL.
We now show that supergraphs whose languages contain single characters are in one-

to-one correspondence with G, and that every idempotent element of ĜfL contains an arc
of the form〈r, 1, r〉 exactly when the closure of G under composition does not contain a
counterexample graph.

Lemma 3.16. Let L = 〈H,P,C,G〉 be an SCT problem.

(1) The ≡ relation is a one-to-one correspondence between Ĝ1
L and G

(2) L is not size-change terminating iff ĜfL contains a supergraph k̂ such that k̂; k̂ = k̂ and

there does not exist an arc of the form 〈r, 1, r〉 in k̂.

Proof:
(1): Given a size-change graph G ∈ G, we construct a unique supergraph k̂ ∈ Ĝ1 such

that k̂ ≡ G. Every size-change graph G : f1 → f2 ∈ G is the SCG for a call site c from

f1 to f2. This is a call sequence of length one. Thus there is a ĝ ∈ Q̂1
L so that c ∈ L(ĝ)

and ḡ = 〈f1, f2〉. We show that the simplification of ĝ is equivalent to G. By the reduction
of Definition 2.12 and the definition of graphs in Definition 2.2, the arc 〈〈q, b〉, a, 〈r, c〉〉 ∈ ĝ,

for some b, c ∈ {0, 1}, exactly when q
a→ r ∈ G. The supergraph ĝ simplifies to some

k̂ ∈ ĜL. By the definition of simplification, 〈〈q, b〉, a, 〈r, c〉〉 ∈ ĝ exactly when 〈q, a, r〉 ∈ k̂.

Thus k̂ ≡ G : f1 → f2.

In the other direction, k̂ ∈ Ĝ1 iff there exists a ĝ = 〈〈f1, f2〉, g̃〉 ∈ Q̂1
L that simplifies to k̂.

By Definition 3.7, which defines Q̂1
L and Definition 2.12, ĝ exists because there is a call site

c. This call site corresponds to a SCG G : f1 → f2. Analogously to the above, by Definition
2.12 the arcs in g̃ between parameters correspond to arcs in G: 〈〈q, b〉, a, 〈r, c〉〉 ∈ g̃, for

some b, c ∈ {0, 1}, exactly when q
a→ r ∈ G. These are the only arcs that remain after

simplification, during which the labels are removed. Thus k̂ ≡ G : f1 → f2.
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(2): By (1), G is in one-to-one correspondence with Ĝ1
L under the ≡ relation. Since

composition of supergraphs and SCGs is identical, S, the closure of G under composition,

is in one-to-one correspondence with the ĜfL. Claim (2) then follows from Theorem 2.1 and
claim (1).

In conclusion, we can specialize the Ramsey-based containment algorithm for L(AFlow(L))
⊆ L(ADesc(L)) in two ways. First, by Theorem 3.2 we know that Flow(L) ⊆ Desc(L) if and

only if Q̂L contains an idempotent graph ĝ = ĝ; ĝ with no arc of the form 〈r, 1, r〉. Thus we
can employ the single-graph search instead of the double-graph search. Secondly, we can

simplify supergraphs in Q̂L by removing the labels on nodes and keeping only nodes asso-
ciated with appropriate parameters for the source and target function. The simplifications
of supergraphs whose languages contain single characters are in one-to-one corresponding
with G, the initial set of SCGs. As every state in Flow(L) is accepting, every idempotent
supergraph can serve as a counterexample. Therefore Desc(L) ⊆ Flow(L) if and only if
the closure of the set of simplified supergraphs, which is in one-to-one correspondence with
G, under composition does not contain an idempotent supergraph with no arc of the form
〈r, 1, r〉. This is precisely Algorithm LJB.

4. Empirical Analysis

All the Ramsey-based algorithms presented in Section 2.3 have worst-case running times
that are exponentially larger than those of the rank-based algorithms. We now compare
existing, Ramsey-based, SCT tools tools to a rank-based Büchi containment solver on the
domain of SCT problems. To facilitate a fair comparison, we briefly describe two improve-
ments to the algorithms presented above.

4.1. Towards an Empirical Comparison. First, in constructing the analogy between
SCGs in the LJB algorithm and supergraphs in the Ramsey-based containment algorithm,
we noticed that supergraphs contain nodes for every parameter, while SCGs contain only
nodes corresponding to parameters of relevant functions. These nodes are states in ADesc(L).
While we can specialize the Ramsey-based test to avoid them, Büchi containment solvers
might suffer. These states duplicate information. As we already know which functions
each supergraph corresponds to, there is no need for each node to be unique to a specific
parameter.

These extra states emerge because Desc(L) only accepts strings that are contained in
Flow(L), and in doing so demands that parameters only be reached by appropriate call
paths. But the behavior of ADesc(L) on strings not in Flow(L) is irrelevant to the question
of Flow(L) ⊆ Desc(L), and we can replace the names of parameters in ADesc(L) with their
location in the parameter list. Further, we can rely on Flow(L) to verify the sequence of
function calls before our accepting thread and make do with a single waiting state. As an
example, see Figure 9.
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from the reduction of Definition 4.1.

Definition 4.1. Given an SCT problem L = 〈H,P,C,G〉 and a projection Ar of all pa-
rameters onto their positions 1..n in the parameter list, define:

A′Desc(L) = 〈C, S ∪ {q0}, S ∪ {q0}, ρD, F 〉
where S = {1..n} × {1, 0}

ρD(q0, c) = {q0} ∪ {〈Ar(x), 0〉 | c : f1 → f2, x ∈ P (f2)}

ρD(〈h, a〉, c) = {〈Ar(y), a′〉 | x a′→ y ∈ Gc, h = Ar(x)}
F = {1..n} × {1}

Lemma 4.2. L(AFlow(L)) ⊆ L(ADesc(L)) iff L(AFlow(L)) ⊆ L(A′Desc(L))

Proof: The languages of ADesc(L) and A′Desc(L) are not the same. What we demonstrate

is that for every word in Flow(L), we can convert an accepting run in one of ADesc(L) or
A′Desc(L) into an accepting run in the other. Recall that the states of AFlow(L) are functions

f ∈ H. States of ADesc(L) are either elements of H or elements of Qp =
⋃
f∈H P (f)×{1, 0},

the set of labeled parameters. For convenience, given a pair 〈x, a〉 ∈ Qp, define Ar(〈x, a〉)
to be 〈Ar(x), a〉.

Consider an accepting run r = r0r1... of ADesc(L) over a word w. Let s = s0s1... be
the sequence of states in A′Desc(L) such that when ri ∈ H, si = q0, and when ri ∈ Qp,

si = Ar(ri). By the definition of A′Desc(L), q0 always transitions to q0 and a transition

between ri and ri+1 implies a transition between Ar(ri) and Ar(ri+1). Therefore s is a
run of A′Desc(L) over w. Furthermore, if 〈x, a〉 is an accepting state in ADesc(L), a = 1 and

〈Ar(x), a〉 is an accepting state A′Desc(L). Thus, s is an accepting run of A′Desc(L) over w.

Conversely, consider a word w with an accepting run r = r0r1... of A′Desc(L) and an

accepting run s = s0s1... of AFlow(L). We define an accepting run t = t0t1.. of ADesc(L) on
w. Each ti depends on the corresponding ri and si. If ri = q0 and si = f , then ti = f . If
ri = 〈k, a〉 and si = f , then ti = 〈x, a〉 where x is the kth parameter in f ’s parameter list.

For a call c : f1 → f2, take two labeled parameters, q a labeled parameter of f1 and
r a labeled parameter of f2. If 〈Ar(q), c, Ar(r)〉 is a transition in A′Desc(L), then 〈q, c, r〉 is
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Figure 10: Subsumption: two graphs g̃ and h̃, where g̃ � h̃.

a transition in ADesc(L). Therefore t is a run of ADesc(L) on w. Furthermore, note that
〈x, a〉 ∈ FADesc(L)

and 〈Ar(x), a〉 ∈ FADesc(L)
iff a = 1. Therefore t is an accepting run.

Second, in [4], Ben-Amram and Lee present a polynomial approximation of the LJB al-
gorithm for SCT. To facilitate a fair comparison, they optimize the LJB algorithm for SCT
by using subsumption to remove certain SCGs when computing the closure under composi-
tion. This suggests that the single-graph search of Algorithm SingleGraphSearch can also
employ subsumption. When computing the closure of a set of graphs under compositions,
we can ignore elements when they are approximated by other elements. Intuitively, a graph

g̃ approximates another graph h̃ when it is strictly harder to find a 1-labeled sequence of

arcs through g̃ than through h̃. If we can replace h̃ with g̃ without losing arcs, we do not

have to consider h̃. When the right arc can be found in g̃, then it also occurs in h̃. On the
other hand, when g̃ does not have a satisfying arc, then we already have a counterexample.

Formally, given two graphs g̃, h̃ ∈ Q̃B say that g̃ approximates h̃, written g̃ � h̃, when

for every arc 〈q, a, r〉 ∈ g̃ there is an arc 〈q, a′, r〉 ∈ h̃, a ≤ a′. An example is provided
in Figure 10. Note that approximation is a transitive relation. In order to safely employ
approximation as a subsumption relation, Ben-Amram and Lee replace the search for a
single arc in idempotent graphs with a search for a strongly connected component in all

graphs. This was proven to be safe in [13]: when computing the closure of Q̃1
B under

composition, it is sufficient to store only maximal elements under this relation.

4.2. Experimental Results. All experiments were performed on a Dell Optiplex GX620
with a single 1.7Ghz Intel Pentium 4 CPU and 512 MB. Each tool was given 3500 seconds,
a little under one hour, to complete each task.

Tools: The formal-verification community has implemented rank-based tools in order to
measure the scalability of various approaches. The programming-languages community has
implemented several Ramsey-based SCT tools. We use the best-of-breed rank-based tool,
Mh, developed by Doyen and Raskin [9], that leverages a subsumption relation on ranks.
We expanded the Mh tool to handle Büchi containment problems with arbitrary languages,
thus implementing the full containment-checking algorithm presented in their paper.

We use two Ramsey-based tools. SCTP is a direct implementation of the LJB algorithm
of Theorem 2.1, written in Haskell [15]. We have extended SCTP to reduce SCT problems
to Büchi containment problems, using either Definition 2.12 or 4.1. sct/scp is an optimized
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C implementation of the SCT algorithm, which uses the subsumption relation of Section
4.1 [4].

Problem Space: Existing experiments on the practicality of SCT solvers focus on examples
extracted from the literature [4]. We combine examples from a variety of sources [1, 4, 15,
17, 24, 28, 32]. The time spent reducing SCT problems to Büchi automata never took
longer than 0.1 seconds and was dominated by I/O. Thus this time was not counted. We
compared the performance of the rank-based Mh solver on the derived Büchi containment
problems to the performance of the existing SCT tools on the original SCT problems. If
an SCT problem was solved in all incarnations and by all tools in less than 1 second, the
problem was discarded as uninteresting. Unfortunately, of the 242 SCT problems derived
from the literature, only 5 prove to be interesting.

Experiment Results: Table 1 compares the performance of the rank-based Mh solver
against the performance of the existing SCT tools, displaying which problems each tool
could solve, and the time taken to solve them. Of the interesting problems, both SCTP
and Mh could only complete 3. On the other hand, sct/scp completed all of them, and had
difficulty with only one problem.

Problem SCTP (s) Mh (s) sct/scp (s)
ex04 [4] 1.58 Time Out 1.39
ex05 [4] Time Out Time Out 227.7
ms [15] Time Out 0.1 0.02
gexgcd [15] 0.55 14.98 0.023
graphcolour2 [17] 0.017 3.18 0.014

Table 1: SCT problem completion time by tool.

The small problem space makes it difficult to draw firm conclusions, but it is clear
that Ramsey-based tools are comparable to rank-based tools on SCT problems: the only
tool able to solve all problems was Ramsey based. This is surprising given the significant
difference in worst-case complexity, and motivates further exploration.

5. Reverse-Determinism

In the previous section, the theoretical gap in performance between Ramsey and rank-based
solutions was not reflected in empirical analysis. Upon further investigation, it is revealed
that a property of the domain of SCT problems is responsible. Almost all problems, and
every difficult problem, in this experiment have SCGs whose nodes have an in-degree of at
most 1. This property was first observed by Ben-Amram and Lee in their analysis of SCT
complexity [4]. After showing how this property explains the performance of Ramsey-based
algorithms, we explore why this property emerges and argue that it is a reasonable property
for SCT problems to possess. Finally, we improve the rank-based algorithm for problems
with this property.
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Algorithm 4: gcd(X,Y )

1 if Y > X then
2 gcd(X, Y −X)

3 else if X > Y then
4 gcd(X − Y ,Y )

5 else return X

As stated above, all interesting SCGs in this experiment have nodes with at most one
incoming edge. In analogy to the corresponding property for automata, we call this property
of SCGs reverse-determinism. Say that a SCG is reverse-deterministic if every parameter of
f2 has at most one incoming edge. Given a set of reverse-deterministic SCGs G, we observe
three consequences. First, a reverse-deterministic SCG can have no more than n arcs:
one entering each node. Second, there are only 2O(n logn) possible such combinations of n
arcs. Third, the composition of two reverse-deterministic SCGs is also reverse-deterministic.
Therefore every element in the closure of G under composition is also reverse-deterministic.
These observations imply that the closure of G under composition contains at most 2O(n logn)

SCGs. This reduces the worst-case complexity of the LJB algorithm to 2O(n logn). In the
presence of this property, the massive gap between Ramsey-based algorithms and rank-based
algorithms vanishes, helping to explain the surprising strength of the LJB algorithm.

Lemma 5.1. When operating on reverse-deterministic SCT problems, the LJB algorithm
has a worst-case complexity of 2O(n logn).

Proof: A reverse-deterministic SCT problem contains only reverse-deterministic SCGs.
Observe that the composition of two reverse-deterministic SCGs is itself reverse-deterministic.
As there are only 2O(n logn) possible reverse-deterministic SCGs, the closure computed in
the LJB algorithm cannot become larger than 2O(n logn). The LJB algorithm checks each
graph in the closure exactly once, and so has a time complexity of 2O(n logn).

It is not a coincidence that all SCT problems considered possess this property. As noted
in [4], straightforward analysis of functional programs generates only reverse-deterministic
problems. In fact, every tool we examined is only capable of producing reverse-deterministic
SCT problems. To illuminate the reason for this, imagine a SCG G : f → g where f has
two parameters, x and y, and g the single parameter z. If G is not reverse deterministic,
this implies both x and y have arcs, labeled with either 0 or 1, to z. This would mean that
z’s value is both always smaller than or equal to x and always smaller than or equal to y.

The program in Algorithm 4 can produce non-reverse-deterministic size-change graphs,
and serves to demonstrate the difficult analysis required to do so4. Consider the SCG for
the call on line 2. It is clear there should be a 0-labeled arc from X to X. To reach this
point, however, we must satisfy the inequality on line 1. Therefore we can also assert that
Y > X, and include a 1-labeled arc from Y to X. This is a kind of analysis is difficult to
make, and none of the size-change analyzers we examined were capable of detecting this
relation.

4This example emerges from the Terminweb experiments by Mike Codish, and was translated into a
functional language by Amir Ben-Amram and Chin Soon Lee. The authors are grateful to Amir Ben-Amram
for bringing this illustrative example to our attention.
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5.1. Reverse Determinism and Rank-Based Containment. Since the Ramsey-based
approach benefited so strongly from reverse-determinism, we examine the rank-based ap-
proach to see if it can similarly benefit. As a first step, we demonstrate that reverse-
deterministic automata have a maximum rank of 2, dramatically lowering the complexity
of complementation to 2O(n). We note, however, that given a reverse-deterministic SCT
problem L,i the automaton ADesc(L) is not reverse-deterministic. Thus a separate proof is
provided to demonstrate that the rank of the resulting automata is still bounded by 2.

An automaton is reverse-deterministic when no state has two incoming arcs labeled
with the same character. Formally, an automaton is reverse-deterministic when, for each
state q and character a, there is at most one state p such that q ∈ ρ(p, a). As a corollary to
Lemma 5.1, the Ramsey-based complementation construction has a worst-case complexity
of 2O(n logn) for reverse deterministic automata With reverse-deterministic automata, we do
not have to worry about multiple paths to a state. As a consequence, a maximum rank of
2, rather than 2n−2, suffices to prove termination of every path, and the worst-case bound
of the rank-based construction improves to 2O(n).

Theorem 5.1. Given a reverse-deterministic Büchi automaton B with n states, there exists
an automaton B′ with 2O(n) states such that L(B′) = L(B).

Proof: In a run DAG Gw of a reverse-deterministic automaton, all nodes have only one
predecessor. This implies the run DAG is a tree, and that the number of infinite paths
grows monotonically and at some point stabilizes. Call this point k. If Gw is rejecting, we
demonstrate that there is a point j ≥ k past which all accepting states are finite in Gw.
Observe that each infinite path eventually stops visiting accepting states. Let j be the last
such point over all infinite paths, or k, whichever is greater. Past j, consider a branch off
this path containing an accepting state. This branch cannot be a new infinite path, as the
number of infinite paths is stable. This branch cannot lead to an existing infinite path,
because that would violate reverse determinism. Therefore this path must be finite, and
the accepting state is finite.

Recall that Gw(0) is Gw, Gw(1) is Gw(0) with all finite nodes removed, Gw(2) is Gw(1)
with all F -free nodes removed, and Gw(3) is Gw(2) with all finite nodes removed. Because
there are no infinite accepting nodes past j, Gw(1) has no accepting nodes at all past j.
Thus every node past j is F -free in Gw(1), and Gw(2) has no nodes past j. Thus Gw(3)
is empty, and the DAG has a rank of at most 2. We conclude that the maximum rank
of rejecting run DAG is 2, and the state space of the automaton in Definition 2.8 can be
restricted to level rankings with no ranking larger than 2.

Unfortunately, neither the reduction of Definition 2.12 nor the reduction of Definition
4.1 preserve reverse determinism, which is to say that given a reverse-deterministic SCT
problem, they do not produce a reverse-deterministic Büchi containment problem. However,
we can show that, given a reverse-deterministic SCT problem, the automata produced by
Definition 4.1 does have a maximum rank of 2. A similar claim could be made about
Definition 2.12 with minor adjustments.

Formally, we prove that for every reverse-deterministic SCT problem L, A′Desc(L) has

a maximum rank of 2. Let w be an infinite word c1c2... not in L(A′Desc(L)), and Gw the

rejecting run DAG of A′Desc(L) on w. There are two kinds of states in A′Desc(L). There is

a waiting state, q0, which always transitions to itself, and there are two states for every
variable position h ∈ 1..n, 〈h, 0〉 and 〈h, 1〉. Every state is an initial state. Consider Gw, the
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Figure 11: An overapproximation of the run DAG for A′
Desc(L), where the maximum arity of

functions in L 2. For clarity, this figure includes unreachable states. By definition, however, the
DAG has only nodes that can be reached from a node on the first level.

run DAG of A′Desc(L) on a word c0c1.... Each character ci represents a function call from

some function fi to another function fi+1. At level i of the run DAG, the waiting state has
outgoing edges to itself and the positions of 0-labeled parameters of fi+1. Each variable
state only has outgoing edges to a 0 or 1-labeled position. To get an idea of what the run
DAG looks like, Figure 11 displays a supergraph of the run DAG that includes all states at
all levels, even if they are not reachable.

We now prove that the rejecting run DAG Gw has a maximum rank of 2. To do so,
we analyze the structure of Gw by first examining subgraphs, and then extending these
observations to Gw. Let G′w be the subgraph of the run DAG that omits the waiting state
q0 at every level of the run DAG. Every path in G′w corresponds to a (possibly finite) thread
in the call sequence c1c2 . . ..

Lemma 5.2. For a level i, f ∈ F , and x ∈ P (f), at most one of (〈Ar(x), 0〉, i) and
(〈Ar(x), 1〉, i) has incoming edges in G′w.

Proof: For i = 0, this holds trivially. For i > 0, take a pair of nodes (〈h, 0〉, i) and
(〈h, 1〉, i). The edges from level i − 1 correspond to transitions in A′Desc(L) on some call c.

As c is a call to a single function, we know there is a unique variable x such that h = Ar(x).
Because L is reverse deterministic, we know that there is at most one edge in Gc leading to
x. If there is no edge, then there are no edges entering (〈h, 0〉, i) or (〈h, 1〉, i).

Otherwise there is exactly one edge in Gc, y
r→ x, r ∈ {0, 1}. In this case, the only

nodes in level G′w with an edge to either (〈h, 0〉, i) or (〈h, 1〉, i) are (〈Ar(y), 0〉, i − 1) and
(〈Ar(y), 1〉, i − 1). By the transition function ρD, both of these states transition only to
(〈h, r〉, i), and only (〈h, r〉, i) has incoming edges in G′w.
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Now, define G′′w to be the subgraph of G′w containing only nodes with an incoming edge
in G′w. This removes nodes whose only incoming edge was from q0. While this excludes
nodes that begin threads, this cannot change the accepting or rejecting nature of a thread.

Lemma 5.3.

(1) G′′w is a forest.
(2) Every infinite path in G′w appears in G′′w.
(3) Every accepting node in Gw is also in G′′w.

Proof:

(1): Lemma 5.2 implies, for every h and i, that only one of (〈h, 1〉, i) and (〈h, 0〉, i) is
in G′′w. Combined with the fact that L is reverse deterministic, every node in G′′w can have
at most one incoming edge, and thus it is a forest.

(2): For every infinite path in G′w, all nodes past the first have an incoming edge from
G′w. Every node with an incoming edge from G′w is in G′′w. Thus for every infinite path in
G′w, a corresponding path, perhaps without the first node, occurs in G′′w.

(3): Only nodes of the form (〈h, 1〉, i) are accepting. Let (〈h, 1〉, i) be a accepting node.
By the definition of a run DAG, (〈h, 1〉, i) must be reachable if it is in Gw. Thus there is
an edge from another node in Gw to (〈h, 1〉, i). By the transition function , the waiting
state (q0, i− 1) only has an edge to (〈h, 0〉, i). Therefore the only nodes that have an edge
to (〈h, 1〉, i) are nodes of the form (〈h′, r〉, i − 1). All nodes of this form are in G′w, and
therefore (〈h, 1〉, i) has an incoming edge from G′w, and is in G′′w.

We can now make observations about the rejecting run DAGs of A′Desc(L) that mirror

those made about rejecting run DAGs of reverse deterministic automata.

Lemma 5.4. There exists j ∈ IN where for all i > j, G′′w has no infinite accepting nodes at
level i.

Proof: As G′′w is a forest, the number of infinite nodes in level i+1 cannot be smaller than
the number of infinite nodes in level i. Thus at some level k the number of infinite nodes
reaches a maximum. Past level k, each infinite node has a unique infinite path through G′′w.
As Gw is rejecting, every infinite path eventually stops visiting accepting nodes at some
level. Let j be the last such point over all infinite paths, or k, whichever is greater. Past
j, consider an accepting node v that branch off an infinite path. This branch cannot be
part of the existing infinite path, as this path has ceased visiting accepting nodes. Likewise,
this branch cannot be part of a new infinite path, as the number of infinite paths can not
increase. Therefore v must be finite.

Lemma 5.5. Gw(3) is empty.

Proof: Let j be the level past which there are no infinite accepting nodes in G′′w, as per
Lemma 5.4. This precisely means that, past j, every accepting node in G′′w has a finite
path. As all accepting nodes in Gw are in G′′w, past j every reachable accepting node in Gw
has a finite path. After level j, Gw(1) contains only non-accepting nodes. This implies that
Gw(2) contains no nodes past j, and therefore that Gw(3) is empty.
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Theorem 5.2. Given a reverse-deterministic SCT problem L with maximum arity n, there
is an automaton B′ with at most 2O(n) states such that L(B′) = L(A′Desc(L)).

Proof: By Lemma 5.5, we know that every rejecting run DAG of A′Desc(L) has a maximum

rank of 2. Therefore it suffices to restrict the rank in Definition 2.8 to 2, replacing all
occurrences of 2n− 2 in the definition with 2. The resulting automata is of size O(23n).

5.2. Experiments revisited. In light of this discovery, we revisit the experiments and
again compare rank and Ramsey-based approaches on SCT problems. This time we tell
Mh, the rank-based solver, that the problems have a maximum rank of 2. Table 2 compares
the running time of Mh and sct/scp on the five most difficult problems. As before, time
taken to reduce SCT problems to automata containment problems was not counted.

Problem Mh (s) sct/scp (s)
ex04 0.01 1.39
ex05 0.13 227.7
ms 0.1 0.02
gexgcd 0.39 0.023
graphcolour2 0.044 0.014

Table 2: SCT problem completion time times by tool, exploiting reverse-determinism.

While our problem space is small, the theoretical worst-case bounds of Ramsey and
rank-based approach appears to be reflected in the table. The Ramsey-based sct/scp com-
pletes some problems more quickly, but in the worst cases of ex04 and ex05, sct/scp per-
forms significantly more slowly than Mh. It is worth noting, however, that the benefits of
reverse-determinism on Ramsey-based approaches emerges automatically, while rank-based
approaches must explicitly test for this property in order to exploit it.

5.3. Monotonicity Constraints: Termination Problems Lacking Reverse-Deter-
minism. Monotonicity constraints [8] are a generalization of size-change graphs. While an
SCG for a call from f to g is bipartite, with edges only from variables of f to variables
of g, monotonicity constraints allow edges between any two variables, even of the same
function. In addition, while SCGs only have edges representing less than and less than
or equal relations, monotonicity constraints allow edges representing equality relations. A
collection of monotonicity constraints is called a monotonicity constraint system (MCS).
For a formal presentation, please see [3].

Deciding termination for MCS problems is more involved than for SCT problems, but
correctness similarly relies on Ramsey’s Theorem [8]. One method is to reduce a MCS
to an SCT problem through elaboration [3]. Unfortunately, elaboration is an exponential
reduction, and increases the size of the MCS. Alternatively, it is possible to project an
individual monotonicity constraint into an SCG in a lossy fashion. To do so, simply remove
all edges that are not from a variable of f to a variable of g, and replace equality edges with
less-than-or-equal edges. By projecting every monotonicity constraint in an MCS down to
a SCG, we obtain a SCT problem. Doing so, however, often removes valuable information
that can still be encoded in a size-change graph. To preserve this information, new arcs
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that are logically implied by existing arcs can be added to the monotonicity constraint
before the constraint is projected to a SCG. The simplest implied arcs are those derived

from equality edges: given two arcs x
a→ y and x

=→ x′, add x′
a→ y to the monotonicity

constraint. Similarly, given an arc y
=→ y′, add x

a→ y′. More complex implied arcs can be
computed by similarly composing other arcs.

We obtained a corpus of 373 monotonicity constraint systems from [7]. In each case,
we produced three SCT problems from each MCS: one from directly projecting, one by
computing arcs implied by equality before projecting, and one by computing all implied
arcs before projecting. We again defined a problem to be interesting if either sct/scp or Mh
took more than 1 second to solve the problem. For every interesting problem, there was no
difference in result and no significant difference in running time between the two types of
implied arcs. Thus we consider only the third, most complex, SCT problem generated from
each MC problem, resulting in nine final problems.

None of the interesting SCT problem produced in this fashion were reverse deterministic.
Given the complexity of monotonicity constraints, this is perhaps unsurprising. Four of the
resulting problems were non-terminating. For these problems, the maximum rank can be
computed. To do so, Mh is initially limited to a rank of 1, and the rank is increased until
Mh can detect non-termination. Table 3 displays the results for these problems. Despite the
lack of reverse-determinism, none of these problems proved difficult for sct/scp: consuming
at most 0.4 seconds. However, several were difficult for Mh, including one that took over
eight minutes. In cases where we could bound the rank, the running time for Mh often
improved dramatically. While we again have only a sparse corpus of interesting problems,
these results serve to emphasize the importance of reverse determinism. Perhaps more
interestingly, they suggest that, even in cases where reverse determinism does not hold, the
Ramsey-based approach performs well.

Problem rank Mh (s) sct/scp (s)
Test3 N/A 4.44 0.047
Test4 N/A 4.65 0.079
Test5 N/A 111.8 0.074
Test6 N/A 482.0 0.097
WorkingSignals 13 1.32 (1.0) 0.098
Gauss 3 1.10 (0.08) 0.146
PartitionList 3 1.38 (0.22) 0.081
Sudoku 5 7.18 (2.42) 0.405

Table 3: MC problem, maximum rank for non-terminating problems, and completion times by tool.
Times for Mh in parenthesis are times when given the maximum rank, as if it were precomputed.

6. Conclusion

In this paper we demonstrate that the Ramsey-based size-change termination algorithm
proposed by Lee, Jones, and Ben-Amram [24] is a specialized realization of the 1987 Ramsey-
based complementation construction [5, 29]. With this link established, we compare rank-
based and Ramsey-based tools on the domain of SCT problems. Initial experimentation
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revealed a surprising competitiveness of the Ramsey-based tools, and led us to further
investigation. We discover that SCT problems are naturally reverse-deterministic, reducing
the complexity of the Ramsey-based approach. By exploiting reverse determinism, we were
able to demonstrate the superiority of the rank-based approach.

Our initial test space of SCT problems was unfortunately small, with only five inter-
esting problems emerging. Despite the very sparse space of problem, they still yielded two
interesting observations. First, subsumption appears to be critical to the performance of
Büchi complementation tools using both rank and Ramsey-based algorithms. It has al-
ready been established that rank-based tools benefit strongly from the use of subsumption
[9]. Our results demonstrate that Ramsey-based tools also benefit from subsumption, and
in fact experiments with removing subsumption from sct/scp seem to limit its scalability.
Second, by exploiting reverse determinism, we can dramatically improve the performance
of both rank and Ramsey-based approaches to containment checking.

Reverse determinism, however, is not the whole story in comparing the rank and Ramsey
based approaches. On a separate corpus of problems derived from Monotonicity Constraints,
which are not reverse-deterministic, the Ramsey-based approach outperformed the rank-
based approach in every interesting case. It should be noted that, in addition to reverse
determinism, there are several ways to achieve a better bound on the maximum rank than
2n − 2 [16, 18], even for problems that are not known to be non-terminating. The rank-
based approach might prove more competitive if such analyses were applied before checking
containment. None the less, it is clear that despite the theoretical differences in complexity,
we cannot discount the Ramsey-based approach. The competitive performance of Ramsey-
based solutions remains intriguing.

In [9, 30], a space of random automata universality problems is used to provide a diverse
problem domain. Unfortunately, it is far more complex to similarly generate a space of ran-
dom SCT problems. First, universality involves a single automaton: SCT problems check
the containment of two automata, with a corresponding increase in parameters. Worse,
there is no reason to expect that one random automaton will have any probability of con-
taining another random automaton. Sampling this problem space is further complicated by
the low transition density of reverse-deterministic problems: in [9, 30] the most interesting
problems had a transition density of 2.

On the theoretical side, we have extended the subsumption relation present in sct/scp.
Recent work has extended the subsumption relation to the double-graph search of Algorithm
DoubleGraphSearch, and others have improved the relation through the use of simulation
[2, 14]. Doing so has enabled us to compared Ramsey and rank-based approaches on the
domain of random universality problems [14], with promising results. Future work will in-
vestigate how to generate an interesting space of random containment problems, addressing
the concerns raised above.

The effects of reverse-determinism on the complementation of automata bear further
study. Reverse-determinism is not an obscure property, it is known that automata derived
from LTL formula are often reverse-deterministic [12]. As noted above, both rank and
Ramsey-based approaches improves exponentially when operating on reverse-deterministic
automata. Further, Ben-Amram and Lee have defined SCP, a polynomial-time approxima-
tion algorithm for SCT [4]. For a wide subset of SCT problems with restricted in degrees,
including the set used in this paper, SCP is exact. In terms of automata, this property is
similar, although perhaps not identical, to reverse-determinism. The presence of an exact
polynomial algorithm for the SCT case suggests a interesting subset of Büchi containment
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problems may be solvable in polynomial time. The first step in this direction would be to
determine what properties a containment problem must have to be solved in this fashion.
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