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Abstract. This paper studies colimits of sequences of finite Chu spaces and their rami-
fications. Besides generic Chu spaces, we consider extensional and biextensional variants.
In the corresponding categories we first characterize the monics and then the existence (or
the lack thereof) of the desired colimits. In each case, we provide a characterization of
the finite objects in terms of monomorphisms/injections. Bifinite Chu spaces are then ex-
pressed with respect to the monics of generic Chu spaces, and universal, homogeneous Chu
spaces are shown to exist in this category. Unanticipated results driving this development
include the fact that while for generic Chu spaces monics consist of an injective first and
a surjective second component, in the extensional and biextensional cases the surjectivity
requirement can be dropped. Furthermore, the desired colimits are only guaranteed to ex-
ist in the extensional case. Finally, not all finite Chu spaces (considered set-theoretically)
are finite objects in their categories. This study opens up opportunities for further in-
vestigations into recursively defined Chu spaces, as well as constructive models of linear
logic.

1. Introduction

Within semantic frameworks for programming languages, a basic approach to the study of
infinite objects is through their finite approximations. This is true both within an individual
domain, as well as with domains collectively. A salient example of the latter is Plotkin’s
approach to SFP [15], where a class of domains is constructed systematically by taking col-
imits of sequences of finite partial orders. An important component of this framework is the
notion of embedding-projection pair, capturing when one partial order is an approximation
of another. An interesting outcome of this process is that completeness of an individual
domain, the property that makes a cpo complete, becomes a natural by-product obtained
by taking colimits of finite structures. In domain theory, the SFP- (or bifinite) domains
now form an important cartesian closed category of domains, see [1].

In this paper we study colimits of sequences of finite Chu spaces. This entails the use of
monic morphisms (or monomorphisms) as a way to formulate the substructure relationship.
Such an innocuous attempt led to striking differentiations of the notion dictated by the
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extensionality properties of the underlying spaces. We consider three base categories of Chu
spaces: the generic Chu spaces (C), the extensional Chu spaces (E), and the biextensional
Chu spaces (B). The main results are: (1) a characterization of monics in each of the three
categories; (2) existence (or the lack thereof) of colimits and a characterization of finite
objects in each of the corresponding categories using monomorphisms/injections (denoted
as iC, iE, and iB, respectively); (3) a formulation of bifinite Chu spaces with respect to
iC; (4) the existence of universal, homogeneous Chu spaces in this category. Unanticipated
results driving this development include the fact that: (a) in C, a morphism (f, g) is monic
iff f is injective and g is surjective while for E and B, (f, g) is monic iff f is injective (but
g is not necessarily surjective); (b) while colimits always exist in iE, it is not the case for
iC and iB; (c) not all finite Chu spaces (considered set-theoretically) are finite objects in
their categories.

Bifinite Chu spaces can be viewed, in an intuitive category-theoretic sense, as “count-
able” objects which are approximable by the finite objects of the category. The class of
bifinite Chu spaces is very rich (up to isomorphism, there are uncountably many such
spaces). However, we show that there is a single bifinite Chu space U which contains any
other bifinite Chu space as a subspace. Moreover, U can be chosen to be homogeneous,
i.e. to bear maximal possible degree of symmetry, and with this additional property U is
unique up to isomorphism.

Our interest in Chu spaces stems from a number of recent developments. Chu spaces
provide a suitable model of linear logic, originating from a general categorical construction
introduced by Barr and his student [2, 3]. The rich mathematical content of Chu spaces has
been extensively illustrated by Pratt and his collaborators in a variety of settings, ranging
from concurrency to logic and category theory [18, 19, 20, 21, 23, 24]. In particular, Pratt
shows that all small categories can be embedded in a certain category of Chu spaces [22].

Chu spaces are closely related to the topic of Formal Concept Analysis (FCA [8, 27]).
Both areas use the same objects but the morphisms considered in FCA are different. Chu
spaces are also related to domains [27]. In [13], a class called casuistries was introduced as
a “continuous” version of Chu spaces, and yet maintaining the constructions desired as a
model of linear logic. On the other hand, if instead of Chu transformations, Chu spaces are
equipped with what are called approximable mappings [9, 26], one obtains a cartesian closed
category equivalent to the category of algebraic lattices and Scott continuous functions [10].
For this to work properly, a modified notion of formal concept, called approximable concept,
needs to be used [28]. This way, an infinite concept can be approximated by finite ones.

Universal objects have played an important role in the development of domain theory.
For example, the early work of Scott [25] and Plotkin [16] showed that with universal
objects, domain equations can be treated by a calculus of retracts.

By studying Chu spaces that are colimits of sequences of finite objects, we hope to
understand these spaces from a constructive angle, formulate a notion of completeness, and
study the existence of universal, homogeneous objects. Recursively defined Chu spaces as
well as models of linear logic within bifinite Chu spaces are some topics worth revisiting in
light of this paper.

The rest of the paper is organized as follows. Section 2 recalls basic terminologies
and gives a characterization of monic morphisms in the categories C, E, and B. Section 3
studies colimits in the categories iC, iE, and iB. Section 4 characterizes finite objects in iC,
iE, and iB. Section 5 introduces bifinite Chu spaces and shows the existence of universal,
homogeneous bifinite Chu spaces using finite amalgamation.
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Remark: The shortened conference version of the paper was presented at CALCO 2007
in Bergen, Norway.

2. Chu spaces and monic morphisms

We recall some basic definitions to fix notation, following [4]. Readers interested in more
details should consult [19]. In [19], the morphisms are called Chu transformations.

Definition 2.1. A Chu space over a set Σ is a triple (A, r,X) where A is a set whose
elements can be considered as objects and X is a set whose elements can be regarded as
attributes. The satisfaction relation r is a function A ×X → Σ. A morphism from a Chu
space (A, r,X) to a Chu space (B, s, Y ) is a pair of functions (f, g), with f : A → B and
g : Y → X such that for any a ∈ A and y ∈ Y , s(f(a), y) = r(a, g(y)). To alleviate the
notational burden, we refer to a morphism by ϕ = (f, g), and refer to the forward component
by ϕ+ = f and the backward component by ϕ− = g.

For all the examples we consider in this paper, Σ = {0, 1}. If Σ is left unspecified, then
it is assumed to contain at least two elements, denoted as 0 and 1. A Chu space (A, r,X) has
two equivalence relations built-in. One is on the rows, where the a-th row corresponds to
a function r(a,−) : X → Σ. Two rows a, b are equivalent if r(a,−) = r(b,−). Similarly, an
equivalence relation exists on columns, defined by equality r(−, x) = r(−, y) for x, y ∈ X.
A Chu space (A, r,X) is called extensional if r(−, x) = r(−, y) implies x = y, i.e., r does
not contain repeated columns. Similarly, a Chu space (A, r,X) is separable if it does not
contain repeated rows. Using topological analogy, if we think of objects in A as points and
attributes in X as open sets, then separable Chu spaces are those for which distinct points
can be differentiated by the open sets containing them (such spaces are called T0). A Chu
space is biextensional if it is both separable and extensional.

We denote by C the category of Chu spaces and morphisms defined above, and E

and B the full subcategories of extensional and biextensional Chu spaces, respectively.
Composition of morphisms reduces to functional compositions of the components: ϕ2◦ϕ1 =
(ϕ+

2 ◦ϕ+
1 , ϕ1

− ◦ϕ2
−), noting that the second component goes backwards. For abbreviation,

objects are denoted as Ci for short, where Ci := (Ai, ri,Xi). We refer to Ai the object set,
and Xi as the attribute set of Ci, respectively. As a refinement of an observation in [13], we
have the following result which will be useful for subsequent developments of the paper.

Proposition 2.1. Suppose ϕ1, ϕ2 : C → C
′ are morphisms in C. Then

(1) if C is extensional, then ϕ+
1 = ϕ+

2 implies ϕ−
1 = ϕ−

2 ;
(2) if C′ is separable, then ϕ−

1 = ϕ−
2 implies ϕ+

1 = ϕ+
2 ;

(3) if C and C
′ are biextensional, then ϕ−

1 = ϕ−
2 iff ϕ+

1 = ϕ+
2 .

Thus, the forward and backward components in a morphism determine each other
uniquely in the category of biextensional Chu spaces.

Proof. Let us write C = (A, r,X) and C
′ = (A′, r′,X ′). First we show (1). Suppose C is

extensional and ϕ+
1 = ϕ+

2 . Then for all x′ ∈ X ′ and a ∈ A we have

r(a, ϕ−
1 (x

′)) = r′(ϕ+
1 (a), x

′) = r′(ϕ+
2 (a), x

′) = r(a, ϕ−
2 (x

′))

Hence ϕ−
1 (x

′) = ϕ−
2 (x

′) by extensionality of C. Now (2) follows from (1) by duality, and (1)
and (2) imply (3).
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As a first order of business, we consider monic morphisms, which capture the notion of
a “substructure”. In categorical terms, a morphism ϕ : C1 → C2 is monic (or mono) if for
any other morphisms ϕi : C

∗ → C1 (i = 1, 2) such that ϕ ◦ ϕ1 = ϕ ◦ ϕ2, we have ϕ1 = ϕ2.
Remark. To make a distinction in our reference to morphisms at different levels, we

reserve the term monic, mono, epi, etc for Chu spaces, and use one-to-one, onto, injective,
surjective for the functions on the underlying sets. When properties on the underlying
functions carry over to Chu spaces, we occasionally mix the terms.

Proposition 2.2. We have:

(1) A morphism ϕ : C → C
′ in C is monic iff ϕ+ is injective and ϕ− is surjective.

(2) A morphism ϕ : C → C
′ in E is monic iff ϕ+ is injective.

(3) A morphism ϕ : C → C
′ in B is monic iff ϕ+ is injective.

(4) Suppose ϕ : (A, r,X) → (B, s, Y ) is a morphism in C and (B, s, Y ) is extensional. If
ϕ+ is surjective, then ϕ− is injective.

Proof. (1) The “If” part is straightforward. We check the “Only If” part. Suppose ϕ : C →
C
′ is such that for any pair of morphisms ϕi : C

∗ → C, i = 1, 2, if ϕ ◦ ϕ1 = ϕ ◦ ϕ2, then
ϕ1 = ϕ2. We show that ϕ+ is injective and ϕ− is surjective. Let’s write C = (A, r,X) and
C
′ = (A′, r′,X ′).

First we show that ϕ− is surjective. Suppose otherwise. Choose two sets X1,X2 of
the same cardinality as X \ ϕ−(X ′) such that ϕ−(X ′),X1,X2 are pairwise disjoint. Put
X∗ = ϕ−(X ′)∪X1 ∪X2 and A∗ = A. For i = 1, 2, choose a bijection gi : X \ϕ−(X ′) → Xi

and let g∗i = idϕ−(X′) ∪ gi : X → X∗ be the joint extension of the identity idϕ−(X′) on

ϕ−(X ′) and gi. Let f
∗ = idA. For a ∈ A∗ and x ∈ X∗, let r∗(a, x) = r(a, x) if x ∈ ϕ−(X ′),

r∗(a, x) = r(a, g−1
1 (x)) if x ∈ X1, and r

∗(a, x) = r(a, g−1
2 (x)) if x ∈ X2.

Let C
∗ = (A∗, r∗,X∗). Then (f∗, g∗i ) : C

∗ → C, with i = 1, 2, are morphisms. Indeed,
r(f∗(a), x) = r(a, x) = r∗(a, g∗i (x)) if x ∈ ϕ−(X ′), and r(f∗(a), x) = r(a, x) = r∗(a, gi(x))
also, if x ∈ X \ϕ−(X ′), for i = 1, 2 by the definition of r∗. Moreover, (f∗, g∗i ) yield the same
composition with ϕ because g∗i s behave the same on the image set ϕ−(X ′). Now ϕ being
monic implies that g1 = g2, a contradiction because X \ ϕ−(X ′) 6= ∅. Hence ϕ−(X ′) = X.
Note that for this construction to work, C∗ cannot be required to be extensional.

The proof for the injectivity of ϕ+ is the same as the “only if” part for item (2), given
next.

(2) and (3). If. Let ϕ : C → C
′ be a morphism and ϕ+ an injection. Consider two

morphisms ϕi : C
∗ → C (i = 1, 2), which yield the same compositions with ϕ. Then

ϕ+
1 = ϕ+

2 , since ϕ
+ is injective. By Prop. 2.1, we have ϕ−

1 = ϕ−
2 . Hence ϕ is monic.

Only If. Let ϕ : C → C
′ be monic and write C = (A, r,X) and C

′ = (A′, r′,X ′). Assume
a1, a2 ∈ A are such that ϕ+(a1) = ϕ+(a2) = a′. Construct a Chu space C∗ = (A∗, r∗,X∗) as
follows. Let A∗ = {a}, a singleton, and X∗ = Σ. Also, let r∗(a, σ) = σ for σ ∈ Σ. Clearly,
C
∗ is biextensional.

Now define ϕi : C
∗ → C, i = 1, 2, as follows. Let ϕ+

i (a) = ai for i = 1, 2. For x ∈ X,

put ϕ−
i (x) = r(ai, x) ∈ Σ = X∗ (i = 1, 2). Then ϕ1, ϕ2 : C∗ → C are morphisms. Clearly,

ϕ+ ◦ ϕ+
1 = ϕ+ ◦ ϕ+

2 . We claim that also ϕ−
1 ◦ ϕ− = ϕ−

2 ◦ ϕ−. Indeed, if x′ ∈ X ′ and
x = ϕ−(x′), then

ϕ−
1 (x) = r(a1, x) = r′(a′, x′) = r(a2, x) = ϕ−

2 (x).

Hence ϕ1, ϕ2 : C
∗ → C yield the same compositions with ϕ. Since ϕ is monic, it follows

that ϕ+
1 = ϕ+

2 . Thus a1 = a2, and ϕ
+ is injective.
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(4) Let y, y′ ∈ Y with ϕ−(y) = ϕ−(y′) = x, say. Choose any b ∈ B and then a ∈ A

with ϕ+(a) = b. Then s(b, y) = r(a, x) = s(b, y′). Then y = y′ by extensionality.

The second and third items above would not be so surprising if the injectivity of ϕ+

implied the surjectivity of ϕ− in B and E. But this is not the case.

Example 2.3. Consider C := ({a}, r, {x1 , x2}), with r(a, x1) = 0 and r(a, x2) = 1; C′ :=
({b}, r′, {y}), with r′(b, y) = 0. Then the constraints f(a) = b and g(y) = x1 satisfy the
property that r′(f(a), y) = 0 = r(a, g(y)) and the pair (f, g) gives rise to a morphism.
Clearly C,C′ ∈ B and f is injective, but g is not surjective. With respect to items (2) and
(3) in the proposition, this means that the backward component of a monic morphism in E

and B need not be surjective.

Remark. Using a similar proof, we can show that a morphism ϕ : C → C
′ is monic

if and only if ϕ− is surjective, in the category of separable Chu spaces. We omitted this
statement in Prop. 2.2 because we do not consider the category of separable Chu spaces in
the rest of the paper.

3. Colimits of ω-Chains

We are interested in the subcategories of C, E, and B with monic morphisms, denoted as
iC, iE, and iB, respectively. Let us begin with an unexpected observation that colimits
do not exist in iC in general. For this purpose, we recall the definition of colimits, here
formulated in iC, but it can easily be seen as an instantiation of a general notion [14]. We
then show that colimits do exist in iE and iB.

Definition 3.1. An ω-sequence in iC is a family (Ci, ϕi)i≥1

C1
ϕ1 // C2

ϕ2 // C3
ϕ3 // · · ·Ci−1

ϕi−1 // Ci
ϕi // Ci+1 · · ·

Definition 3.2. A cocone from an ω-sequence (Ci, ϕi)i≥1 to a Chu space C := (A, r,X) is

a family of mappings Ci
ψi // C such that ψi+1 ◦ ϕi = ψi, for all i ≥ 1, i.e., the diagram

C1
ϕ1 //

ψ1

EE
EE

EE
E

""EEEEEEE

C2

ψ2

33
33

3

��3
3

3
3

3

ϕ2 // C3
ϕ3 //

ψ3

��

· · ·
ϕi // Ci+1 · · ·

ψi+1

uuuuuuu

zzuuuuuuuu

C

commutes.
A cocone (Ci

ψi // C)i≥1 is universal if for any other cocone (Ci
ψ′

i // C′)i≥1 such that

ψ
′

i+1 ◦ ϕi = ψ
′

i for all i ≥ 1, there exists a unique C
ψ // C′ such that ψ ◦ ψi = ψ

′

i for all
i ≥ 1. Such a universal cocone, if it exists, is called the colimit of the family (Ci, ϕi)i≥1,
while ψ is called the mediating map. In this case we write C = colimi(Ci, ϕi).

Theorem 3.1. Colimits of ω-chains of finite Chu spaces do not always exist in iC.

Proof. Consider finite Chu spaces Ci := ({1, . . . , i}, ri, {1, . . . , i}), such that ri(a, x) = 1 if
a ≤ x, and ri(a, x) = 0 otherwise. Observe that Ci is biextensional. Define ϕi : Ci → Ci+1

such that ϕ+
i (a) = a for a = 1, . . . , i, and ϕ−

i (i + 1) = i, but ϕ−
i (x) = x otherwise. It

is straightforward to verify that the ϕis are indeed morphisms: for all 1 ≤ a ≤ i and
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1 ≤ x ≤ i + 1, ri+1(ϕ
+
i (a), x) = 1 iff ri+1(a, x) = 1 iff a ≤ x iff ri(a, ϕ

−
i (x)) = 1. Hence ϕi

is monic.
Consider C := (N, r,N), with r(a, x) = 1 iff a ≤ x, and r(a, x) = 0 otherwise. Define

ψi : Ci → C by letting ψi
+ be inclusions and ψi

−(x) = x if x ≤ i and ψi
−(x) = i for x > i.

One readily checks that (ψi : Ci → C)i≥1 is a cocone. Consider another cocone defined by
C
′ := (N, r′,N ∪ {t}), where r′ extends r with r′(a, t) = 1 for all a ∈ N. Define ψ′

i : Ci → C
′

by ψ′
i
+ = ψi

+ and letting ψ′
i
− extend ψ−

i with ψ′
i
−(t) = i. Clearly, (ψ′

i : Ci → C
′)i≥1 is also

a cocone.
Now we can infer that the colimit does not exist. More specifically, suppose (ψ∗

i : Ci →
C
∗)i≥1 with C

∗ = (A∗, r∗,X∗) were a colimit. First consider a mediating map ψ′ : C∗ → C
′.

We have ψ′−(t) = x∗ for some x∗ ∈ X∗. Then for each a∗ ∈ A∗ we obtain r∗(a∗, x∗) =
r∗(a∗, ψ′−(t)) = r′(ψ′+(a∗), t) = 1, thus r∗(−, x∗) = 1. Next consider a mediating map
ψ : C∗ → C. Since ψ− : N → X∗ must be onto, ψ−(n) = x∗ for some n ∈ N. We obtain
0 = r(n + 1, n) = rn+1(n + 1, n) = rn+1(n + 1, ψ∗

n+1
−(x∗)) = r∗(ψ∗

n+1
+(n + 1), x∗) = 1, a

contradiction.

Subsequently we will show that particular ω-sequences of Chu spaces do have colimits.
For this we provide a generic construction. It is the standard construction in the category
of sets, assimilated into the context of Chu spaces. We phrase it explicitly since we will
often refer to it.

Construction 3.2. Let (Ci, ϕi)i≥1 be an ω-sequence of Chu spaces where Ci = (Ai, ri,Xi)
and ϕ+

i : Ai → Ai+1 is the inclusion mapping, for each i ≥ 1. Consider C := (A, r,X) where

A :=
⋃
i≥1Ai,

X := {(xj)j≥1 | ∀j ≥ 1, xj ∈ Xj & ϕ−
j (xj+1) = xj},

r(a, (xj)j≥1) := ri(a, xi) if a ∈ Ai (i ≥ 1).

Subsequently, we will denote a sequence (xj)j≥1 ∈ X often by x̃.

For each i ≥ 1, define Ci
ψi // C by ψ+

i (a) := a and ψ−
i (x̃) := xi for all a ∈ Ai and

x̃ ∈ X.

In Construction 3.2, observe that possiblyX = ∅. Note that the relation r is well-defined
since if i ≥ 1 and a ∈ Ai, then xi = ϕ−

i (xi+1) so ri+1(a, xi+1) = ri(a, xi); inductively we
obtain rj(a, xj) = ri(a, xi) for each j > i.

Clearly, ψi is a morphism. Then we have, for each x̃ ∈ X,

(ϕ−
i ◦ ψ−

i+1)(x̃) = ϕ−
i (xi+1) = xi = ψ−

i (x̃)

and for any a ∈ A,
(ψ+

i+1 ◦ ϕ
+
i )(a) = a = ψ+

i (a)

Therefore, ψi+1 ◦ ϕi = ψi, and (Ci
ψi // C)i≥1 is indeed a cocone. We note:

Proposition 3.3. If an ω-sequence (Ci, ϕi)i≥1 in iC has a colimit, then this colimit is

provided, up to isomorphism, by the cocone (Ci
ψi // C)i≥1 of Construction 3.2.

Proof. Let (Ci, ϕi)i≥1 have a colimit (Ci
ψ′

i // C′)i≥1 in iC where C
′ = (A′, r′,X ′). By

Proposition 2.2(1), the mappings ϕ+
i are injective and the mappings ϕ−

i are surjective, and

we may assume the ϕ+
i s to be inclusions. Now construct C = (A, r,X) and ψi : Ci →

C (i ≥ 1). as in Construction 3.2. We claim that each ψi (i ≥ 1) is a morphism in iC. By
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Proposition 2.2(1), it remains to show that ψ−
i is onto. Using that the ϕ−

j s are onto, for

any xi ∈ Xi we can easily find x̃ ∈ X with xi = ψ−
i (x̃).

Since C
′ is the colimit, there is a unique ψ : C′ → C in iC such that ψ ◦ ψ′

i = ψi for all
i ≥ 1. Then ψ+ : A′ → A is injective. If a ∈ Ai (i ≥ 1), then a = ψ+

i (a) = ψ+ ◦ ψ′
i
+(a)

and ψ′
i
+(a) ∈ A′, so ψ+ is onto. Further, ψ− : X → X ′ is onto, and we claim that ψ−

is injective. Let x̃, ỹ ∈ X with ψ−(x̃) = ψ−(ỹ). For each i ≥ 1, then xi = ψ−
i (x̃) =

ψ′
i
− ◦ ψ−(x̃) = ψ′

i
− ◦ ψ−(ỹ) = ψ−

i (ỹ) = yi, showing x̃ = ỹ. Hence ψ is an isomorphism.

In contrast to Theorem 3.1, we have the following.

Theorem 3.4. Colimits exist in iE, as given by Construction 3.2.

Proof. Let (Ci, ϕi)i≥1 be an ω-sequence in iE where Ci = (Ai, ri,Xi) for each i ≥ 1. By
Proposition 2.2(2), the mappings ϕ+

i are injective, and we may assume the ϕ+
i s to be

inclusions. Now construct C = (A, r,X) and ψi : Ci → C (i ≥ 1) as in Construction 3.2.
We claim that C is extensional. Let x̃, ỹ ∈ X and assume that r(−, x̃) = r(−, ỹ). We need
to show that x̃ = ỹ. Indeed, let i ≥ 1 and choose any a ∈ Ai. Then ri(a, xi) = r(a, x̃) =
r(a, ỹ) = ri(a, yi). So ri(−, xi) = ri(−, yi) and thus xi = yi as Ci is extensional. Hence
x̃ = ỹ, and C is extensional.

For universality, let (Ci
ψ′

i // C′)i≥1 be a cocone, where C
′ = (A′, r′,X ′). Define ψ :

C → C
′ by letting ψ+ : A → A′ be such that ψ+(a) := ψ′+

i (a) if a ∈ Ai, and letting

ψ− : X ′ → X be given as ψ−(x′) := (ψ′−
m(x

′))m≥1. Then ψ+ is well-defined because

for any 1 ≤ i < j, ψ′+
j (a) = ψ′+

i (a); also ψ− is well-defined because for any j ≥ 1,

ϕ−
j (ψ

′−
j+1(x

′)) = ψ′−
j (x

′), and hence the sequence (ψ′−
m(x

′))m≥1 belongs to X. Further, ψ is

a morphism. We have ψ ◦ ψi = ψ′
i for all i ≥ 1 because ψ+(ψ+

i (a)) = ψ+(a) = ψ′
i(a), and

ψ−
i (ψ

−(x′)) = ψ−
i ((ψ

′−
j (x

′))j≥1) = ψ′−
i (x

′) for all a ∈ Ai and x
′ ∈ X ′, by definitions.

The mediating morphism ψ is a morphism in iE because ψ+ is injective, and by
Prop. 2.2(2), it is monic. The mediating morphism is unique because its values are fixed by
the commutativity requirements of the colimit diagram.

We now consider the biextensional case. In order to avoid potential confusion of ter-
minology, we call a Chu space C := (A, r,X) with finite A and X a finite Chu structure.
Finite objects in categorical terms will be studied in the next section, as we will learn that
finite objects and finite Chu structures do not always agree.

The proof of the following result involves a typical König’s-lemma argument for finite
Chu structures which we will encounter again later.

Theorem 3.5. Colimits exist in iB for ω-sequences of finite Chu structures. They do not
exist in general for ω-sequences of arbitrary (non-finite) Chu structures in iB. If for an
ω-sequence in iB there is a cocone to some Chu space in iB, then the sequence has a colimit
in iB.

Proof. The proof is similar to that of Theorem 3.4, except that we need to show that in
case the Ci constitute a sequence composed of finite biextensional structures, C := (A, r,X)
is biextensional as well. Since extensionality is already shown to be preserved by this limit
structure, it remains to show that separability is preserved.

Suppose all Cis are separable. Let a, b ∈ A with r(a,−) = r(b,−). Let m ≥ 1 be
minimal with a, b ∈ Am. We claim that rm(a,−) = rm(b,−) in Cm. The separability of Cm
then gives us a = b.
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Suppose rm(a,−) 6= rm(b,−). Then for any i ≥ m we have ri(a,−) 6= ri(b,−). For each
element xi ∈ Xi such that ri(a, xi) 6= ri(b, xi) let s(xi) = (yj)1≤j≤i be the sequence defined

inductively by yi = xi and yj−1 = ϕ−
j−1(yj) for each j = i, i− 1, . . . , 2. Consider the set

T := {s(xi) | i ≥ m}.

Clearly, T is an infinite set. Consider elements of T as nodes, and an edge from s(xi)
to s(xj) exists if j = i + 1, and s(xi+1) is an extension of s(xi), that is, xi = ϕ−

i (xi+1).

Observe that if i ≥ m, xi+1 ∈ Xi+1, and xi = ϕ−
i (xi+1), then ri(a, xi) 6= ri(b, xi) iff

ri+1(a, xi+1) 6= ri+1(b, xi+1). So, in this case s(xi) is defined iff s(xi+1) is defined, and then
they are connected by an edge. Since each Xi is finite, T is a finite branching, infinite
tree. By König’s Lemma, this tree has an infinite branch, say, (s(xi))i≥1. Consequently,
ϕ−
i (xi+1) = xi for all i ≥ 1. Clearly, by the construction above, we have x̃ = (xi)i≥1 ∈ X

and r(a, x̃) 6= r(b, x̃), a contradiction.
For the second part of the theorem, we construct a counterexample as follows. Let

Ci := (N, ri,N) for i ≥ 1, with ri(a, x) = 1 iff (x + i − 1) mod a = 0 and ri(a, x) = 0
otherwise. For example, r1 is displayed below as a countable matrix, which will be referred
to as M for future reference.

1 1 1 1 1 1 1 · · ·
0 1 0 1 0 1 0 · · ·
0 0 1 0 0 1 0 · · ·
0 0 0 1 0 0 0 · · ·
0 0 0 0 1 0 0 · · ·
0 0 0 0 0 1 0 · · ·
0 0 0 0 0 0 1 · · ·

...

Intuitively, ri is obtained by starting from the countable matrix r1 from the i-th column.
Clearly, Ci is biextensional. The morphism ϕi : Ci → Ci+1 is defined by ϕ+

i := idN, and

ϕ−
i (x) = x+ 1. Then,

ri+1(ϕ
+
i (a), x) = ri+1(a, x) = ri(a, x+ 1) = ri(a, ϕ

−
i (x)),

and so ϕi is indeed a Chu morphism for each i ≥ 1.
Now assume that (ψi : Ci → C)i≥1 is a cocone where C = (A, r,X). We show that then

X = ∅. Suppose there is x ∈ X. Then, for any i ≥ 1, ψ−
i (x) = ϕ−

i (ψ
−
i+1(x)) = ψ−

i+1(x) + 1

by the definition of ϕ−
i . Inductively, we have ψ−

n+1(x) = ψ−
1 (x) − n for all n ≥ 1. But

ψ−
n+1(x) ∈ N for all n ≥ 1, a contradiction. Hence X is empty. But then C is not separable.

For the last part of the theorem, let (Ci, ϕi)i≥1 be an ω-sequence in iB with some cocone

(Ci
ψ′

i // C′)i≥1 in iB. By Theorem 3.4, the sequence (Ci, ϕi)i≥1 has a colimit (Ci
ψi // C)i≥1

in iE. We claim that this is also the colimit of the sequence in iB. Now there is a morphism
ψ : C → C

′ in iE making the diagram commute. We show that C is separable. Let C =
(A, r,X) and C

′ = (A′, r′,X ′). Choose any a, b ∈ A with r(a,−) = r(b,−) . For any x′ ∈ X ′

we have r′(ψ+(a), x′) = r(a, ψ−(x′)) = r(b, ψ−(x′)) = r′(ψ+(b), x′), so ψ+(a) = ψ+(b) since
C
′ is biextensional, and a = b as ψ+ is injective.

Hence C is biextensional, and by Proposition 2.2(2) and (3), the morphisms ψi : Ci → C

(i ≥ 1) belong to iB, and our claim follows.
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It is informative to think about the example given in the proof of Theorem 3.1. By
the colimit construction, C′ = (N, r′,N ∪ {t}) is the colimit both in iE and in iB. There is
indeed a monic morphism ψ from C

′ to C = (N, r,N), where ψ+ is the identity (injection),
and ψ− is the inclusion (but not onto).

Also note that even though Theorem 3.4 confirms that colimit always exists for ex-
tensional Chu spaces, the counterexample for Theorem 3.5 shows that colimits for infinite
structures may have weird behaviors with unintended effects. This invites us to look more
into objects constructed as colimits of finite structures, in the next sections.

4. Finite objects

In studying patterns of approximation in Chu spaces, finite objects play an important role
since they serve as the basis of approximation. In most cases, one expects finite objects
to correspond to finite structures, objects whose constituents are finite sets. In categorical
terms, finite objects are captured using colimits in a standard way, and the notion of
“approximation” is captured by monic morphisms. Therefore, we work with categories
iC, iE, and iB. However, since Prop. 2.2 indicates that what counts as monic morphisms
depends on extensionality, the existence of colimits and the characterization of finite objects
are not straightforward set-theoretic generalizations obtained by treating each component
of Chu spaces separately.

We give a characterization of the finite objects of iC. Surprisingly, not all finite struc-
tures in iC are finite objects; finite objects are characterized as extensional structures with
finite object set instead. The following definition is phrased in iC; but as a general cat-
egorical concept it can be made explicit in iE and iB as well, and we do not repeat this
here.

Definition 4.1. An object F of iC is finite if for every ω-sequence (Ci, ϕi)i≥1 of Chu spaces
having a colimit, for every morphism ϕ : F → colimi(Ci, ϕi) in iC there exist i ≥ 1 and a
morphism ψ : F → Ci such that the diagram

C1
ϕ1 //

ψ1

PPPPPPPPPPPPPPPP

''PPPPPPPPPPPPPP

C2
ϕ2 //

ψ2

JJJJ
JJJ

JJJ
JJ

$$JJ
JJJ

JJ
JJJ

J

· · ·
ϕi−1 // Ci

ϕi //

ψi

��

· · ·
ϕj // Cj+1 · · ·

ψj+1

rrrrrrrrrrr

yyrrrrrrrrrrr

F
ϕ //

ψ

AA�
�

�
�

�
�

�
�

�
colimi(Ci, ϕi)

commutes, i.e., ψ : F → Ci is such that ϕ = ψi ◦ ψ.

If Σ is finite and F = (A, r,X) is a finite object in iC, one can show that both A and
X are finite sets, i.e. F is a finite Chu space. However, somewhat surprisingly (at least to
us), the converse does not hold, as already simple examples show, see Example 4.2 below.
The following result characterizes the finite objects of iC.

Theorem 4.1. An object F = (B, s, Y ) is finite in iC iff B is finite and F is extensional.

In this case, |Y | ≤ |Σ||B|; in particular, if Σ is finite, so is Y .
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Proof. (Only if.) Suppose F = (B, s, Y ) is a finite object of iC as in Definition 4.1. If B
is infinite, then we can write B = A1 ∪ {ai | i ≥ 1}, where A1 ∩ {ai | i ≥ 1} = ∅. Let
Ci := (Ai, si, Y ), where Ai = A1∪{a1, . . . , ai} and si is s restricted to the product Ai×Y . It
can then be checked that (ψi : Ci → F)i≥1 is the colimit of the ω-sequence (Ci, ϕi)i≥1, with
ϕ+
i , ψ

+
i inclusion and ϕ−

i , ψ
−
i identity for all i ≥ 1. We have (idB , idY ) : F → F a morphism.

Since F is a finite object, there exist an i ≥ 1 and ψ : F → Ci, such that idB = ψ+
i ◦ ψ+.

Then ai+1 = ψ+
i ◦ψ+(ai+1) = ψ+(ai+1) ∈ Ai, a contradiction. Therefore, B must be finite.

Next we show that F is extensional. Suppose there are y1, y2 ∈ Y with y1 6= y2 and
s(−, y1) = s(−, y2). Put Y

′ = Y \ {y1, y2}. We may assume that Y ′ ∩N = ∅. Now let Ci =
(B, si, Yi) with Yi = Y ′ ∪ {1, . . . , i} and C = (B, s′, Y ′ ∪ N). Put s′(b, y) = si(b, y) = s(b, y)
for each y ∈ Y ′ and s′(b, j) = si(b, j) = s(b, y1) for each 1 ≤ j ≤ i ∈ N and b ∈ B. We
let ϕ+

i be the identities, and ϕ−
i leave everything unchanged except ϕ−

i (i + 1) = 1. Also,
let ψ+

i be the identity map, ψ−
i (j) = j if j ≤ i or j ∈ Y ′, and ψ−

i (j) = 1 if j > i. Then

the ω-sequence (Ci, ϕi)i≥1 has (Ci
ψi // C)i≥1 as its colimit. Now define ϕ : F → C with

ϕ+ = idB , ϕ
− mapping odd numbers to y1, even numbers to y2, and leaving elements in

Y ′ unchanged. Since F is finite, there are an i ≥ 1 and a morphism ψ : F → Ci such that
ϕ = ψi◦ψ. Then (ψ− ◦ψ−

i )(i+1) = ψ−(1) = (ψ− ◦ψ−
i )(i+2), contradicting the assumption

that ϕ−(i+ 1) 6= ϕ−(i+ 2).
(If) Suppose ϕ : F → colimi(Ci, ϕi) in iC, where B is finite, F is extensional and Ci =

(Ai, ri,Xi) (i ≥ 1). Since the colimit of an ω-sequence is unique up to isomorphism, we may

assume that all ϕ+
i s are inclusions and that colimi(Ci, ϕi) is the structure (Ci

ψi // C)i≥1

with C = (A, r,X) given in Construction 3.2. We can further assume that ϕ+ is an inclusion
by renaming the elements of B. As B is a finite set, B ⊆ A =

⋃
iAi implies that B ⊆ Am

for some m ≥ 1. Now define ψ− : Xm → Y by q 7→ ϕ−(x) if and only if x ∈ X satisfies
q = ψ−

m(x).
We show that ψ− is a function. For this, let x, x′ ∈ X such that ψ−

m(x) = ψ−
m(x

′) = q.
Observe that B ⊆ Am ⊆ A. For any b ∈ B, we have

s(b, ϕ−(x)) = r(b, x) (ϕ+ is inclusion)
= rm(b, ψ

−
m(x)) (ψ+

m is inclusion)
= rm(b, ψ

−
m(x

′)) (ψ−
m(x) = ψ−

m(x
′))

= r(b, x′) (ψ+
m is inclusion)

= s(b, ϕ−(x′)) (ϕ+ is inclusion)

Therefore, s(−, ϕ−(x)) = s(−, ϕ−(x′)) and by extensionality, ϕ−(x) = ϕ−(x′).

Cm

ψm

DD
DD

DD

""D
DD

DD
DD

ϕm //

ψ−

���
�
�
�
�

Cm+1

ψm+1

��
F

ψ+=idB

OO

ϕ // C

(where C = colimi(Ci, ϕi))
We check that ψ = (idB , ψ

−) : F → Cm is a Chu morphism. Indeed, for any b ∈ B and
xm ∈ Xm, we have
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rm(ψ
+(b), xm) = rm(b, xm) (ψ+ = idB)

= rm(b, ψ
−
m(x)) (ψ−

m onto; ψ−
m(x) = xm)

= r(ψ+
m(b), x) (ψm : Cm → C)

= r(b, x) (ψ+
m = idAm)

= r(ϕ+(b), x) (ϕ+ = idB)
= s(b, ϕ−(x)) (ϕ : F → C)
= s(b, (ψ− ◦ ψ−

m)(x)) (ψ− ◦ ψ−
m = ϕ−)

= s(b, ψ−(xm)) (ψ−
m(x) = xm)

as required. Since ϕ− is onto, ψ− is onto, and ψ is monic. Finally, we have ψ− ◦ ψ−
m = ϕ−

since for any x ∈ X, by the definition of ψ−, ψ−(ψ−
m(x)) = ϕ−(x). Hence ϕ = ψm ◦ ψ, and

F is shown to be finite.
Finally, let ΣB denote the set of all functions from B into Σ. Note that s(−, y) ∈ ΣB

for each y ∈ Y , and if F is extensional, the mapping y 7→ s(−, y) provides an injection of Y

into ΣB , showing |Y | ≤ |ΣB | = |Σ||B| by cardinal arithmetic.

Next we give two examples to illustrate Theorem 4.1.

Example 4.2. Let Σ = {0, 1} and F := ({⋆}, r, {1, 2}), a finite Chu space. If r(⋆, 1) =
r(⋆, 2) = 0, then F is not extensional and thus, by Theorem 4.1, not a finite object of
iC. To see this more explicitly, one can construct a sequence (Ci, ϕi)i≥1 as in the proof of
Theorem 4.1, with Y ′ = ∅.

Example 4.3. Only in this example, let Σ be an arbitrary (possibly infinite) set, and let
F = ({⋆}, r,Σ) with r(⋆, σ) = σ for each σ ∈ Σ. Then F is extensional, and by Theorem 4.1,
F is a finite object of iC. Trivially, if Σ is infinite, F is not a finite Chu space.

Theorem 4.4. In the category iE, if F = (B, s, Y ) is finite then B is finite.

An independent proof is needed even though we follow a similar path as the proof of
Theorem 4.1. Not only should we make sure that the Chu spaces involved are all exten-
sional, but also the monic morphisms are characterized differently. These entail non-trivial
modifications from the proof of Theorem 4.1.

Proof. Suppose F = (B, s, Y ) is a finite object in iE. Suppose B is infinite. Then we
can write B = A1 ∪ {ai | i ≥ 1}, where A1 ∩ {ai | i ≥ 1} = ∅. Fix c ∈ Y . Let Ci :=
(A1 ∪ {a1, . . . , ai}, ri,Xi), where Xi = {c} and ri is s restricted to the product (A1 ∪
{a1, . . . , ai})×{c}. Clearly, all Cis are extensional. For morphisms ϕi : Ci → Ci+1, define ϕ

+
i

as inclusions, and ϕ−
i : Xi+1 → Xi the identity. By Theorem 3.4, the colimit (Ci

ψi // C)i≥1

with C = (A, r,X) of the sequence (Ci, ϕi)i≥1 exists, and can be taken as the one given in
Construction 3.2. Since each Xi is a singleton, X is a singleton as well. Thus we may
assume A = B. With ϕ+ identity and ϕ− inclusion, we obtain a monic morphism ϕ from
F to C. Hence there is a monic morphism ψ from F to some Ci which makes the required
diagram commute. But then ϕ+(ai+1) = ψ+

i (ψ
+(ai+1)) 6= ai+1, a contradiction.

The converse of Theorem 4.4 is not true. To show this, we adapt the counterexample
for the second part of Theorem 3.5 as follows. Let Ci := (N, ri,N∪{c}), with ri(a, x) = 1 iff
(x+ i− 1) mod a = 0 for a, x ∈ N, and ri(−, c) = 1. Intuitively, ri is obtained by starting
from the countable matrix r1 from the i-th column. The morphism ϕi : Ci → Ci+1 is
defined by ϕ+

i := idN, and ϕ
−
i (x) = x+1, but we keep c constant. Then, the colimit of this
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sequence is C := (N, r, {c}), with r(−, c) = 1. Now let B := ({1, 2}, s, {c}), with inclusion
and identity paired to form a morphism ϕ from B to C. There cannot be a morphism ψ

from B to any Ci, because ψ
− : (N ∪ {c}) → {c} cannot be defined, simply because B’s

column contains two 1s, and each ri(2, i) = 0. Hence B is a finite extensional Chu space
and thus a finite object of iC but not of iE.

Definition 4.2. A Chu space (A, r,X) over Σ is called discrete, if for any mapping f : A→
Σ there is x ∈ X with f = r(−, x).

Theorem 4.5. In the category iE, F = (B, s, Y ) is finite iff B is finite and F is discrete.

Proof. (Only if). By Theorem 4.4, we know that B is finite. Suppose F = (B, s, Y ) is not
discrete. Let v : B → Σ be such that v 6= s(−, y) for any y ∈ Y . Let Ci := (B∪N, ri, Y ∪N),
with ri(a, y) = s(a, y) for a ∈ B and y ∈ Y , and ri(a, x) = 1 iff (x + i − 1) mod a = 0 for
a, x ∈ N. Furthermore, for all a ∈ N and y ∈ Y , we let ri(a, y) = 0, and for all b ∈ B and
x ∈ N, we let ri(b, x) = v(b). Viewed as an infinite matrix, ri is obtained by placing s at the
upper-left corner, and the infinite matrixes used in Theorem 3.5 on the lower-right corner.
The lower-left corner is filled with zeros, and the upper-right corner is filled with repeated
columns duplicating v. A rendering of r1 is given next, where O is a N × Y matrix of all
0s, and M is the countable matrix used in the proof of Theorem 3.5.

Y N

B s v v v · · ·

N O M

We define morphisms ϕi : Ci → Ci+1 (i ≥ 1) by letting ϕ+
i = idB∪N, ϕ

−
i |Y = idY and

ϕ−
i (x) = x + 1 for each x ∈ N. One can check that up to isomorphism the colimit of this

sequence is (ψi : Ci → C)i≥1 where C = (B ∪ N, s′, Y ) such that s′ coincides with s on
B×Y , and s′(a, y) = 0 for each a ∈ N, y ∈ Y ; further, ψ+

i = idB∪N and ψ−
i = idY . Clearly,

ϕ = (idB , idY ) is a monomorphism from F to C. Since F is finite, there are i ≥ 1 and a
morphism ψ : F → Ci which make the diagram commute. Then ψ+ = idB , and for any
b ∈ B and x ∈ N we obtain ri(b, x) = s(b, ψ−(x)) 6= v(b) = ri(b, x), a contradiction.

(If). We follow a pattern similar to the “if” part for Theorem 4.1. Suppose ϕ : F →
colimi(Ci, ϕi) in iE, where F = (B, s, Y ) is discrete and B is finite. By Theorem 3.4, we
may assume that colimi(Ci, ϕi) is the structure C given in Construction 3.2. We can further
assume that ϕ+ is an inclusion by renaming its elements. As B is a finite set, B ⊆ A =

⋃
iAi

implies that B ⊆ Am for some m ≥ 1. Since F is discrete, we can define ψ− : Xm → Y such
that for each x ∈ Xm, ψ

−(x) ∈ Y is such that for all b ∈ B, rm(b, x) = s(b, ψ−(x)). This
entails that (idB , ψ

−) : F → Cm is a Chu morphism.
To check the condition ψ− ◦ ψ−

m = ϕ−, note that for any b ∈ B and x ∈ Xm, we have

s(b, ψ−(ψ−
m(x))) = rm(b, ψ

−
m(x)) (def. of ψ−)

= r(ψ+
m(b), x) (ψm : Cm → C)

= r(b, x) (ψ+
m = idAm)

= r(ϕ+(b), x) (ϕ+ = idB)
= s(b, ϕ−(x)) (ϕ : F → C)

and by the extensionality of F, we have ψ−(ψ−
m(x)) = ϕ−(x), as required.
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The following easy remark shows that the structure of discrete extensional Chu spaces
C = (A, r,X) is very restricted: it is completely determined, up to isomorphism, by the
cardinality of the object set A.

Remark 4.6. Let C = (A, r,X) and C
′ = (A′, r′,X ′) be two discrete extensional Chu spaces

with |A| = |A′|. Then C and C
′ are isomorphic in iC.

Proof. Choose a bijection ϕ+ : A→ A′. By the assumption on C, for each x′ ∈ X ′ there is a
uniquely determined x ∈ X with r(−, x) = r′(−, x′) ◦ϕ+. The mapping ϕ− : X ′ → X with
ϕ−(x′) = x yields a Chu morphism ϕ = (ϕ+, ϕ−), and ϕ− is bijective by the assumption on
C
′.

Almost similar to Theorem 4.5, we have the following. However, an independent proof
is needed because the structures used in the proof for Theorem 4.5 are not biextensional,
and an extra case arises..

Theorem 4.7. In the category iB, F = (B, s, Y ) is finite iff B is finite and F is discrete,
or else B is a singleton, Y = ∅, and Σ is finite.

Proof. (If.) In the first case, by Theorem 4.5, F is finite in iE, and F is biextensional. Note
that a colimit of an iB-sequence taken in iB coincides with the colimit of this sequence
taken in iE. Hence F is finite in iB.

Secondly, assumeB is a singleton, Y = ∅, and Σ is finite. Suppose ϕ : F → colimi(Ci, ϕi)
in iB. By Theorem 3.5, we may name colimi(Ci, ϕi) as the structure C = (A, r,X) given in
Construction 3.2. Since ϕ− : X → Y is a mapping and Y = ∅, we also obtain that X = ∅.
Thus A is a singleton, since C is biextensional. Hence we may assume that B = A = Ai for
each i ≥ 1. Since each Ci is biextensional and Σ is finite, we obtain that Xi is finite, too.

Suppose that Xi 6= ∅ for each i ≥ 1. For each i ≥ 1 and each element xi ∈ Xi define
the sequence s(xi) as in the proof of Theorem 3.5, and let again T = {s(xi)|i ≥ 1, xi ∈ Xi}.
Then with the extension order, T is an infinite finite-branching tree since each Xi is finite,
and therefore T contains, by König’s Lemma, an infinite branch. This implies that X 6= ∅,
a contradiction.

Hence we have Xi = ∅ for some i ≥ 1. Then ψi = (ϕ+, ∅) : F → Ci makes the diagram
commute, showing that F is finite.

(Only if.) First we assume that Y = ∅. Since F is biextensional, B must be a singleton,
say, B = {b}. We claim that Σ is finite. Suppose Σ was infinite. We may assume that
N ⊆ Σ. We define Chu spaces Ci = (Ai, ri,Xi) such that Ai = B,Xi = {j ∈ N | j ≥ i} and
ri(b, j) = j for each j ≥ i and i ≥ 1. Also, let ϕ+

i be the identity mapping and ϕ−
i be the

inclusion. Then (Ci, ϕi)i≥1 is an ω-chain in iB having F as its colimit. So there exists some
i ≥ 1 such that ψi : F → Ci. In particular, ψ−

i : Xi → Y is a mapping, which contradicts
the assumption that Y = ∅.

Next we assume that Y 6= ∅ and we show that F is discrete.
For this, we refine the arguments employed for Theorem 4.5. If F = (B, s, Y ) is not

discrete, choose v : B → Σ such that v 6= s(−, y) for any y ∈ Y . Now choose an infinite set
J of size at least |B ∪ Y |. Put Y ′ =

⋃
j∈J Y × {j}; we write Yj for Y × {j} for conciseness.

Let Ci := (B∪J ∪N, ri, Y
′∪N) (i ≥ 1) and C = (B∪J ∪N, r, Y ′) where r and ri (i ≥ 1)

are defined as follows:
On each B × Yj (j ∈ J), define r and ri precisely as s in F on B × Y . Next, choose a

bijection π : J ∪ N → Y ′. On (J ∪ N) × Y ′ define r and ri as “unit matrix”, i.e., for any
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x ∈ J ∪ N and y ∈ Y ′ let r(x, y) = ri(x, y) = 1 if y = π(x), and r(x, y) = ri(x, y) = 0
otherwise. In the picture, ri is denoted as Iπ.

Further, for all b ∈ B and x ∈ N let ri(b, x) = v(b). On N × N, let ri be the same
relation as used in the proof of Theorem 3.5. Recall that (N, ri,N) is biextensional. Finally,
put ri ≡ 0 on J × N.

· · · Yj Yk · · · N

B · · · s s · · · v v v · · ·

J

Iπ

O

N Mi

Observe that for each b ∈ B either s(b,−) is the constant-0 function, which implies that
ri(b,−) = r(b,−) is constantly 0 on Y ′, or else ri(b, y) = r(b, y) = 1 for infinitely many
y ∈ Y ′. It follows that Ci and C are biextensional.

Now define morphisms ϕi : Ci → Ci+1 and ψi : Ci → C such that ϕ+
i = ψ+

i = idB∪J∪N,
ϕ−
i and ψ−

i are the identity on Y ′, and ϕ−
i (x) = x+1 for each x ∈ N. Then (ψi : Ci → C)i≥1

is the colimit of the sequence (Ci, ϕi)i≥1. Next we define a morphism ψ : F → C by letting
ψ+ = idB and ψ−(y, j) = y for each y ∈ Y , j ∈ J . Since F is finite, there is a morphism
from F into some Ci, which implies a contradiction by the choice of v.

Secondly, suppose that B is infinite. For a subset S ⊆ B, we call two elements y, y′ ∈ Y

S-equivalent if r(−, y) and r(−, y′) coincide on S. Now split B = A′ ∪ {ai | i ∈ N} with
A′ ∩ {ai | i ∈ N} = ∅. For each i ≥ 1, let Ai = A′ ∪ {aj | 1 ≤ j ≤ i}, and let Xi contain
from each Ai-equivalence class in Y exactly one element.

Let ri be r restricted to Ai ×Xi, and put Ci = (Ai, ri,Xi). Then Ci is separable, since
B is separable and Xi intersects each Ai-equivalence class, and Ci is extensional since Xi

contains from each Ai-equivalence class at most one element.
Now let ϕ+

i be the identity, and for xi+1 ∈ Xi+1 let ϕ−
i (xi+1) = xi if xi ∈ Xi lies in

the Ai-equivalence class of xi+1. The sequence (Ci, ϕi)i≥1 has a colimit C = (A, r,X) in iE,
and clearly C is separable. Also, we may assume that C is obtained by Construction 3.4;
then A = B.

There is a unique Chu morphism ϕ from F to C with ϕ+ the identity on B; here the
existence of ϕ− follows from F being discrete and the uniqueness from F being extensional.
Hence there are an i ≥ 1 and ϕ : F → Ci which make the diagram commute, and this implies
a contradiction about ai+1 as in the proof of Theorem 4.1.
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5. Bifinite Chu spaces

In this section, we will investigate Chu spaces which are, intuitively and in a category-
theoretic sense, countable objects and approximable by the finite objects in the category.
That is, we will define bifinite Chu spaces as colimits of a sequence of (strongly) finite Chu
spaces. We will then show that this subcategory of iC contains a universal homogeneous
object.

Recall that the finite objects of iC may have an infinite attribute set, if Σ is infinite (cf.
Example 4.3). For technical reasons (cf. the proofs of Theorem 5.3 and Proposition 5.5),
we will need that the objects employed here have a finite and non-empty set of attributes.
We will call a space F in iC strongly finite, if F is a finite object in iC and a finite Chu
space with non-empty set of attributes. Clearly, if Σ is finite, the finite and the strongly
finite objects of iC with non-empty sets of attributes coincide.

Definition 5.1. A Chu space in iC is called bifinite if it is isomorphic to the colimit (with
respect to iE) of a chain of stronly finite objects in iC. The corresponding full subcategory
of bifinite Chu spaces of C and iC are denoted as Cbif and iCbif , respectively.

As an example, consider the sequence of strongly finite biextensional spaces (Ci, ϕi)i≥1

described in the proof of Theorem 3.1. As shown there, this sequence has no colimit in the
category iC. But by Theorem 3.4, the sequence has a colimit with respect to the category
iE. This colimit thus belongs to iCbif . Moreover, we will see below in Theorem 5.3, that
this space is also a colimit of the given sequence with respect to the category iCbif .

Recall that any finite object of iC is extensional, hence any bifinite Chu space is also
extensional. It would not be interesting to formulate the concept of bifinite spaces in iE

or iB, i.e. as colimits of chains of finite objects of iE resp. iB: By Theorems 4.5 and 4.7,
these finite objects are discrete. One can show that colimits of chains of discrete extensional
objects are again discrete and extensional. Hence any two such ‘bifinite’ objects (in iE or
iB) with countably infinite object set are isomorphic by Remark 4.6. In contrast, we show
that iCbif is very large:

Proposition 5.1. iCbif contains at least continuum many non-isomorphic objects.

Proof. Consider a strictly increasing sequence of finite subsets A1 ⊂ A2 ⊂ . . . ⊂ N of N.
We define a sequence (Ci, ϕi)i≥1 as follows. For each i ≥ 1, let Ci = (Ai, ri,Xi) with
Xi = {1, . . . , i} and ri(a, j) = 1 if a ∈ Aj and ri(a, j) = 0 otherwise, for any a ∈ Ai, j ∈ Xi.
We let ϕ+

i be the inclusion mapping, ϕ−
i (j) = j if 1 ≤ j ≤ i, and ϕ−

i (i+1) = i. As colimit of

this sequence of strongly finite objects we obtain, up to isomorphism, (Ci
ψi // C)i≥1 with

C = (N, r,N∪{∞}), r(a, j) = 1 if a ∈ Aj and r(a, j) = 0 otherwise, for any a, j ∈ N, further
r(−,∞) = 1, and ψ+

i inclusion, ψ−
i (j) = j if 1 ≤ j ≤ i and ψ−

i (j) = i if i < j ∈ N ∪ {∞}.
Note that in C the set {a ∈ N | r(a, i) = 1} equals Ai if i ∈ N, and N if i = ∞. Hence
the bifinite space C constructed in this way determines the sequence of subsets (Ai)i≥1

uniquely, and two different sequences give rise to non-isomorphic bifinite spaces. Since
there are continuum many such sequences, the result follows.

Remark 5.2. By cardinality arguments, one can show that up to isomorphism iCbif has
size |Σ|ω; this equals the continuum if Σ has size at most continuum.

With the restriction of objects to bifinite Chu spaces, colimits now exist, in contrast to
Theorem 3.1.
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Theorem 5.3. Colimits exist in iCbif .

The technical content of the result is that iCbif is closed in iC and in iE with respect to
taking colimits of sequences in iCbif , and these colimits taken in iE constitute the colimits
of the given sequences with respect to iCbif .

Proof. First, let (Ci, ϕi)i≥1 be an ω-sequence in iC with finite objects Ci = (Ai, ri,Xi),
Xi 6= ∅, and each ϕ+

i being an inclusion. By Theorem 4.1 each Ci is extensional. Define
C = (A, r,X) and ψi : Ci → C (i ≥ 1) as in Construction 3.2. By Theorem 3.4, the cocone

(Ci
ψi // C)i≥1 is a colimit of (Ci, ϕi)i≥1 in iE. We claim that it is also a colimit of this

sequence in iCbif .
First we show that each ψi : Ci → C is a morphism in iC, i.e., that ψ−

i : X → Xi is

onto. Choose any xi ∈ Ci. Clearly, since all ϕ−
j : Xj+1 → Xj (j ≥ 1) are onto, there is a

sequence (xj)j≥1 with xj ∈ Xj and ϕ−
j (xj+1) = xj for each j ≥ 1. Then x̃ = (xj)j≥1 ∈ X

and ψ−
i (x̃) = xi, as needed.

C1
ϕ1 //

ψ1

DDDD
DDD

D

""D
DD

DD
DD

DD

ψ′
1

RRRRR

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

C2

ψ2

2
2

2
2
2

2

��2
22

22
22

ψ′
2

NN
NN

''NNNNNNNNNNNNNNNNNNNNNN

ϕ2 // C3
ϕ3 //

ψ3

��

ψ′
3

GGG

##GG
GG

GG
GGG

GG
GG

GG
G

· · ·
ϕi−1 // Ci · · ·

ψi
xx

xx
xx

xx
x

{{xx
xx

xx
xx

xx
ψ′
i

��
ρi

*
*
*
*
*
*
*
*
*
*
*
*
*
*

��*
*
*
*
*
*
*
*
*
*
*
*
*
*C

ψ //
C
′

C
′
1

ϕ′
1

//

π′
1lllllllllllllllll

66llllllllllllllllll

C
′
2

π′
2ppppppppppppp

88ppppppppppppp

ϕ′
2

// C′
3

ϕ′
3

//

π′
3xxxxxxxxx

<<xxxxxxxxx

· · ·
ϕ′
i−1

// C′
i · · ·

π′
i

OO

ϕ′
ni−1

// C′
ni

π′
ni666666

ZZ6666666

· · ·

For universality, let C
′ = (A′, r′,X ′) ∈ iCbif and (Ci

ψ′
i // C′)i≥1 be a cocone. Define

ψ : C → C
′ as in the proof of Theorem 3.4. Then ψ is a mediating morphism in iE, and

it only remains to show surjectivity of ψ− : X ′ → X. Choose any x̃ = (xj)j≥1 ∈ X. Since
C
′ ∈ iCbif , we can choose a chain of finite objects C′

i = (A′
i, r

′
i,X

′
i) and monics ϕ′

i such that

(C′
i

π′
i // C′)i≥1 is a colimit of this chain in iC. Again we can assume that the ϕ′

i
+s are

inclusions and that the colimit (C′
i

π′
i // C′)i≥1 is given as in Construction 3.2. Each Ci is a

finite object. Observing the morphisms ψ′
i : Ci → C

′ = colimi(C
′
i, ϕ

′
i), we obtain a sequence

of numbers n1 < n2 < . . . and monics ρi : Ci → C
′
ni

which make the diagram commute,
that is, for each i ≥ 1 we have ψ′

i = π′ni
◦ ρi. For i < j let ϕ′

i,j be the composition of ϕ′
i up

to ϕ′
j−1 from C

′
i to C

′
j . Since the diagram commutes and the π′i are monic, we obtain

(∗) ϕ′
ni,ni+1

◦ ρi = ρi+1 ◦ ϕi, for each i ≥ 1.

Now consider the collection K of all finite sequences (x′1, . . . , x
′
m) such that

(∗∗) xj
′ ∈ X ′

nj
and ρ−j (xj

′) = xj for each j ≤ m

and
ϕ′
nj ,nj+1

−
(x′j+1) = x′j for each j < m.
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We claim that there are arbitrarily long sequences. Choose any m ∈ N. Since ρ−j is

surjective, there is x′m ∈ X ′
nm

satisfying ρ−m(x
′
m) = xm. Now put x′j = ϕ′

nj ,nm

−(x′m) for each

1 ≤ j < m. By (*), inductively we obtain

ρ−j (x
′
j) = ρ−j ◦ ϕ′

nj ,nj+1

−
(x′j+1) = ϕ−

j ◦ ρ−j+1(x
′
j+1) = ϕ−

j (xj+1) = xj ,

and our requirements (**) follow.
Now considerK with the extension order. The setsX ′

j are finite since the C
′
j are strongly

finite objects. So, K is an infinite finite-branching tree. By König’s lemma, there is an
infinite branch in this tree. Hence there is an infinite sequence (x′j) satisfying requirements

(**) for each j ≥ 1. Now fill up this sequence with the necessary additional elements from

X ′
i to obtain an element x̃′ = (x′′j )j≥1 ∈ X ′ satisfying x′′nj

= x′j for each j ≥ 1. We claim

that ψ−(x̃′) = x̃. Indeed, choose any i ≥ 1. Then ψ′
i
−(x̃′) = ρ−i ◦ π′ni

−(x̃′) = ρ−i (x
′′
ni
) =

ρ−i (x
′
i) = xi. This proves our claim.

Secondly, consider an arbitrary ω-sequence (Ci, ϕi)i≥1 in iCbif , and let (Ci
ψi // C)i≥1

be its colimit in iE. We claim that this is also the colimit in iCbif . As before, we can show
that each ψi : Ci → C is a morphism in iC. Now we continue in a standard way.

For each i ≥ 1, since Ci ∈ iCbif , we can write Ci as a colimit of a sequence of strongly
finite objects (Cij)j≥1 in iC and in iE. By a diagonal argument, there is a sequence of
numbers n1 < n2 < . . . such that the spaces (Ci,ni

)i≥1 form a sequence in iC whose colimit,
if it exists, is also colimit of the sequence (Ci, ϕi)i≥1 in iC, and whose colimit in iE is C.
Hence C ∈ iCbif , and by our first part, C is the colimit of the sequence (Ci,ni

)i≥1 also in
iCbif . Thus C is the colimit of (Ci, ϕi)i≥1 in iCbif .

To make the paper self-contained, we recall briefly a result of Droste and Göbel [6]
concerning the existence of a universal, homogeneous object in an algebroidal category. Let
G be a category in which all the morphisms are monic, and G∗ a full subcategory of G.
Individually, an object U of G is called

• G∗-universal if for any object A in G∗, there is a morphism f : A→ U ;
• G∗-homogeneous if for any A in G∗ and any pair f, g : A → U , there is an isomorphism
h : U → U such that f = h ◦ g;

Intuitively, G∗-homogeneity means that each isomorphism between twoG∗-substructures
of U extends to an automorphism of U ; this means that U has maximal possible degree of
symmetry.

Collectively, the category G∗ is said to have the amalgamation property if for any
f1 : A → B1, f2 : A → B2 in G∗, there exist g1 : B1 → B, g2 : B2 → B in G∗ such that
g1 ◦ f1 = g2 ◦ f2.

Definition 5.2. Let G be a category in which all morphisms are monic. Then G is called
algebroidal, if G has the following properties:

(1) G has a weakly initial object,
(2) Every object of G is a colimit of an ω-chain of finite objects,
(3) Every ω-sequence of finite objects has a colimit, and
(4) The number of finite objects of G, up to isomorphism, is countable and between any

pair of finite objects there exist only countably many morphisms.

Theorem 5.4. (Droste and Göbel) Let G be an algebroidal category with all morphisms
monic. Let Gf be the full subcategory of finite objects of G. Then there exists a G-universal,
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Gf -homogeneous object iff Gf has the amalgamation property. Moreover, in this case the
G-universal, Gf -homogeneous object is unique up to isomorphism.

Proposition 5.5. The category iCbif contains an initial object. The strongly finite objects
of iC are precisely the finite objects of iCbif . If Σ is countable, there are only countably
many non-isomorphic finite objects in iCbif . Between any pair of finite objects there are
only finitely many injections. Moreover, the finite objects of iCbif have the amalgamation
property.

Proof. The space (∅, ∅, {x}) is the initial object of iCbif , since all spaces in iCbif have non-
empty attribute sets. Next, we show only the amalgamation property; the rest is easy to
see. Suppose C := (A, r,X), C1 := (A1, r1,X1), and C2 := (A2, r2,X2) are strongly finite
objects in iC such that A = A1 ∩A2, and let ϕ1 : C → C1 and ϕ2 : C → C2 be morphisms
in iC.

C1

C

ϕ1

88qqqqqqqqqqq

ϕ2 &&MMMMMMMMMMM

C2

Construct C′ := (A′, r′,X ′) as:

A′ = A1 ∪A2

X ′ = {(x1, x2) ∈ X1 ×X2 | ϕ
−
1 (x1) = ϕ−

2 (x2)}
r′(a, (x1, x2)) = r1(a, x1) if a ∈ A1

r′(a, (x1, x2)) = r2(a, x2) if a ∈ A2.

Note that in case a ∈ A1 ∩A2, we have

r1(a, x1) = r(a, ϕ−
1 (x1))

= r(a, ϕ−
2 (x2))

= r2(ϕ
+
2 (a), x2)

= r2(a, x2).

To see that C
′ is extensional, suppose (x1, x2), (y1, y2) ∈ X ′ are such that r′(a, (x1, x2)) =

r′(a, (y1, y2)) for all a ∈ A1 ∪ A2. By the definition of C′, then, for each a ∈ A1, we have
r1(a, x1) = r1(a, y1). By the extensionality of C1, we have x1 = y1. Similarly, by the
extensionality of C2, we have x2 = y2 and so (x1, x2) = (y1, y2), as required.

C1
(id,pr1)

&&MMMMMMMMMMM

C

ϕ1

88qqqqqqqqqqq

ϕ2 &&MMMMMMMMMMM C
′

C2

(id,pr2)

88qqqqqqqqqqq

It is easy to check further that (id, pr1) : C1 → C
′ and (id, pr2) : C2 → C

′ are morphisms in
iC.
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By Proposition 5.5, the following result immediately follows from Theorem 5.4.

Theorem 5.6. Let Σ be countable. Then iCbif is an algebroidal category containing a
universal homogeneous object U . Moreover, U is unique up to isomorphism.

Since iCbif contains spaces with an attribute set of size continuum, it follows that the
attribute set of U also has size continuum. However, we just note that since the proof of
Theorem 5.4 is constructive, we can construct a sequence (Ci, ϕi)i≥1 whose colimit is the
universal homogeneous object U .

We remark that iCbif does not contain all countable extensional Chu spaces (just as
not all countable cpos are SFP). Let C = (N, r,N) be the biextensional Chu space described
in the proof of Theorem 3.1. We claim that C is not bifinite.

Indeed, choose the sequence (Ci, ϕi)i≥1, the space C
′ = (N, r′,N ∪ {t}) and the monics

ψ′
i : Ci → C

′ as in the proof of Theorem 3.1. By Theorem 3.4, (ψ′
i : Ci → C

′)i≥1 is the colimit
of the chain (Ci, ϕi)i≥1 in iE. By Theorem 5.3, this is also the colimit of the sequence of
finite spaces Ci in the category iCbif . Consider the morphisms (ψi : Ci → C)i≥1 described
in the proof of Theorem 3.1. Now if C was bifinite, there would be a unique morphism
ψ : C′ → C in iCbif making the diagram commute. But then ψ+ = idN, and ψ

−(n) = t for
some n ∈ N, yielding 0 = r(n+ 1, n) = r′(n+ 1, t) = 1, a contradiction.

6. Concluding Remarks

One specific motivation for considering the notion of bifinite Chu space is for modeling
linear logic [12], for which tensor and linear negation should also be brought into the picture.
Although the category of bifinite Chu spaces is monoidal, it is not monoidal closed [11].
Also, the construction of linear negation cannot be accounted for nicely in bifinite Chu
spaces either. In spite of these, one has to look at the bigger picture and consider our
results in the context of Chu spaces as a general framework for studying the dualities of
objects and properties, points and open sets, and terms and types, under rich mathematical
contexts. This view has already been made amply clear by Pratt [18, 19, 20, 21, 22, 23, 24].
Traditionally, the study on Chu spaces had a non-constructive flavor. This paper provides
(1) a basis for a more constructive analysis of categories of Chu spaces collectively; (2) a
framework in which finite Chu spaces can be used to approximate infinite ones as colimits of
ω-chains of finite Chu spaces; (3) the “completeness” of the delineated categories under the
colimit construction. On the technical side, the development of our framework hinges upon
the adoption of monic morphisms as the basic steps for approximation at the structural
level. It is certainly reasonable to consider other possible notions of “approximation” as
well, such as “regular mono” or more generally “embedding-projection pair”, of which monic
morphism can be regarded as a special case.

Acknowledgment. The authors would like to thank F. Lamarche and the anonymous
referees for valuable feedback.
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