
Logical Methods in Computer Science

Vol. 3 (3:5) 2007, pp. 1–21

www.lmcs-online.org

Submitted Nov. 9, 2006

Published Aug. 14, 2007

FROM NONDETERMINISTIC BÜCHI AND STREETT AUTOMATA TO

DETERMINISTIC PARITY AUTOMATA
∗

NIR PITERMAN

Ecole Polytechnique Fédéral de Lausanne (EPFL)
e-mail address: nir.piterman@epfl.ch

Abstract. In this paper we revisit Safra’s determinization constructions for automata on
infinite words. We show how to construct deterministic automata with fewer states and,
most importantly, parity acceptance conditions. Determinization is used in numerous ap-
plications, such as reasoning about tree automata, satisfiability of CTL∗, and realizability
and synthesis of logical specifications. The upper bounds for all these applications are
reduced by using the smaller deterministic automata produced by our construction. In
addition, the parity acceptance conditions allows to use more efficient algorithms (when
compared to handling Rabin or Streett acceptance conditions).

1. Introduction

One of the fundamental questions in the theory of automata is determinism vs. non-
determinism. Another related question is the question of complementation. That is, given
some machine in some complexity class can we produce a machine in the same class that
accepts the complement language? The problems of determinization and complementation
are strongly related. Indeed, if the machine is deterministic we just have to dualize its
answer. If the machine is nondeterministic we do not have a simple solution.

In the theory of finite automata on finite words the relation between nondeterministic
and deterministic automata is well understood. We know that there exists an efficient pro-
cedure that gets a nondeterministic automaton with n states and constructs a deterministic
automaton with 2n states accepting the same language [RS59]. This construction is tight
[HMU00]. By dualizing the acceptance condition of the deterministic automaton we get an
automaton for the complement language, which is again tight [HMU00].

In his proof that satisfiability of S1S is decidable, Büchi introduces nondeterministic
automata on infinite words [Büc62]. Büchi takes a ‘normal’ finite automaton and runs it
on infinite words. A run of such an automaton is an infinite sequence of states, instead of a
finite sequence. The set of states recurring infinitely often is used to define the acceptance
condition. A run is accepting according to the Büchi condition if the set of recurring states
intersects the set of accepting states.

2000 ACM Subject Classification: F.1.1 Models of Computation, F.4.3 Formal Languages.
Key words and phrases: determinization, finite automata, Büchi, Streett, parity.

∗ This is an extended version of [Pit06].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (3:5) 2007

c© N. Piterman
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. PITERMAN

In the case of finite automata on infinite words determinization and complementation
are much more involved. Given a deterministic Büchi automaton one can easily construct
a nondeterministic Büchi automaton for the complement language [Kur87]. However, de-
terministic Büchi automata are not closed under complementation [Lan69]. This forced the
introduction of more complex acceptance conditions such as Muller, Rabin, Streett, and
parity. A Rabin acceptance condition is a set of pairs of subsets of the states. A run is
accepting according to a Rabin condition if there exists a pair 〈E,F 〉 such that the set of
recurring states does not intersect E but does intersect F . The Streett condition is the
dual of Rabin. A run is accepting according to a Streett condition if for every pair 〈R,G〉
we have that if G intersects the set of recurring states so must R. A parity condition gives
an integer priority to every state and a run is accepting if the minimal recurring priority
is even. The number of priorities is the index of the parity condition. Rabin and Streett
conditions are more general than parity in the following sense. A parity condition of index
2k can be written as a Rabin (or Streett) condition with k pairs (without modifying the
structure of the automaton). We can translate a Rabin or Streett condition with k pairs
to a parity condition of index 2k + 1 using a gadget with k2k! states, thus we multiply the
number of states of the automaton by k2k!. All three conditions are strong enough to allow
determinization [Tho90].

In the case of automata on infinite words determinization and complementation are no
longer so strongly coupled. Determinization can be used for complementation by dualizing
the acceptance condition of the deterministic automaton. However, there are complementa-
tion constructions that are much simpler than determinization. Specifically, Büchi showed
that the class of languages recognized by nondeterministic Büchi automata is closed under
complement without determinization [Büc62]. Sistla, Vardi, and Wolper suggested a singly
exponential complementation construction [SVW85], however with a quadratic exponent.
This was followed by a complementation construction by Klarlund [Kla91] and a very el-
egant complementation via alternating automata by Kupferman and Vardi [KV01]. The
latter construction was recently improved to give a complement automaton with at most
(0.96n)n states [FKV04], which is currently the best complementation construction. See
also [Tho90].

Determinization constructions for automata on infinite words followed a similar path1.
McNaughton showed a determinization construction that is doubly exponential and results
in an automaton with the Muller acceptance condition [McN66]. Safra gives a determiniza-
tion construction which takes a nondeterministic Büchi automaton with n states and returns
a deterministic Rabin automaton with at most (12)nn2n states and n pairs [Saf88]. An al-
ternative determinization with a similar upper bound that also results in a deterministic
Rabin automaton was given by Muller and Schupp [MS95]. Michel showed that this is
asymptotically optimal and that the best possible upper bound for determinization and
complementation is n! [Mic88, Löd98].

Safra’s idea is to use multiple subsets for one state of the deterministic automaton and
organize them in the form of a tree. The root of the tree is the classical subset construction
for automata on finite words. In every transition, a node with set of states S spawns a new
son that includes all the accepting states in S. Thus, all the states in a leaf are the endpoints
of runs that agree (more or less) on the number of times they have visited the acceptance
set. In order to keep the tree finite, we ensure that every state is followed in at most one

1Incidentally, both determinization constructions provided the best upper bound for complementation at
the time of their introduction.

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 3

branch of the tree. Whenever a state is followed in more than one branch we keep only
the copy in the oldest branch. Furthermore, whenever all the states followed by some node
have visited the acceptance set, the node is marked as accepting and all its descendants are
removed. The Rabin acceptance condition associates a pair with every node in the tree.
There should be some node that is erased from the tree at most finitely often and marked
accepting infinitely often for a run to be accepting.

The fact that stronger acceptance conditions are introduced raises the question of de-
terminization of automata using these conditions. Rabin and parity automata can be easily
converted to Büchi automata. Given a Rabin automaton with n states and k pairs there
exists an equivalent nondeterministic Büchi automaton with n(k + 1) states. Applying
Safra’s determinization on top of this automaton produces a deterministic Rabin automa-
ton with (12)n(k+1)(n(k+1))2n(k+1) states and n(k + 1) pairs. For Streett automata, going
through nondeterministic Büchi automata is far from optimal. A nondeterministic Streett
automaton with n states and k pairs can be converted to a nondeterministic Büchi au-
tomaton with n2k states [Cho74], which is optimal [SV89]. Combining this conversion with
the determinization results in a doubly exponential deterministic automaton. In order to
handle Streett automata, Safra generalized his determinization construction [Saf92]. Given
a Streett automaton with n states and k pairs he constructs a Rabin automaton with
(nk)O(nk) states and O(nk) pairs.

We mentioned that the Rabin and Streett conditions are duals; the dual of the parity
condition is parity again. Sometimes, given a nondeterministic automaton, we need to
generate a deterministic automaton for the complementary language, a process called co-

determinization (e.g., for converting alternating tree automata to nondeterministic tree
automata). While complementing a deterministic automaton can be easily done by dualizing
the acceptance condition, such a dualization for a Rabin or Streett automaton results in an
automaton of the second type. Thus, co-determinization of a Büchi (or Streett) automaton
results in a deterministic Streett automaton. Translating from Streett to Rabin or parity is
exponential, we add a gadget with k2k! states where k is the number of pairs of the Streett
condition [Saf92]. Thus, we multiply the number of states of the automaton by k2k!. The
translation of Rabin to Streett or parity is dual and has exactly the same complexity.

Determinization has many uses other than complementation. For example, Rabin uses
McNaughton’s determinization of Büchi automata to complement nondeterministic Rabin
tree automata [Rab72].2 A node in an infinite tree belongs to infinitely many branches. A
tree automaton has to choose states that handle all branches in a single run. In many cases,
we want all branches of the tree to belong to some word language. If we have a deterministic
automaton for this word language, we run it in all directions simultaneously. This kind of
reasoning enables conversion of alternating tree automata to nondeterministic tree automata
and complementation of nondeterministic tree automata (cf. [Rab72, Tho90, Var98]).

Deterministic automata are used also for solving games and synthesizing strategies. In
the context of games, the opponent may be able to choose between different options. Using
a deterministic automaton we can follow the game step by step and monitor the goal of the
game. For example, in order to solve a game in which the goal is an LTL formula, one first
converts the LTL formula to a deterministic automaton and then solves the resulting Rabin
game [PR89] (cf. [KV98, dAHM01]). Using Safra’s determinization, reasoning about tree

2Rabin uses this complementation in order to prove that satisfiability of S2S is decidable [Rab72]. This
is essentially the same use that Büchi had for the complementation of Büchi automata. In the context of
tree automata one has to use a more general acceptance condition.

4 N. PITERMAN

automata reduces to reasoning about nondeterministic Rabin tree automata and reasoning
about general games reduces to reasoning about Rabin games. Some of these applications
use co-determinization, the deterministic automaton for the complementary language.

In this paper we revisit Safra’s determinization constructions. We show that we can
further compact the tree structure used by Safra to get a smaller representation of the
deterministic automata. By using dynamic node names instead of the static names used by
Safra we can construct directly a deterministic parity automaton. Specifically, starting from
a nondeterministic Büchi automaton with n states, we end up with a deterministic parity
automaton with 2nnn! states and index 2n (instead of Rabin automaton with (12)nn2n

states and n pairs). Starting from a Streett automaton with n states and index k, we end

up with a deterministic parity automaton with 2nn(k+1)n(k+1)(n(k+1))! states and index

2n(k + 1) (instead of Rabin automaton with (12)n(k+1)nn(k+1)n(k+1)(n(k+1))n(k+1) states
and n(k + 1) pairs). For both constructions, complementation is done by considering the
same automaton with a dual parity condition.

Though dividing the number of states by 12n is not negligible, the main importance
of our result is in the fact that the resulting automaton is a parity automaton instead
of Rabin. Solving Rabin games (equivalently, emptiness of nondeterministic Rabin tree
automata) is NP-complete in the number of pairs [EJ88]. Solution of parity games is in
NP∩co-NP. The current best upper bound for solving Rabin games is mnk+1k! where m
is the number of transitions, n the number of states, and k the number of pairs [PP06].
Using our determinization construction instead of reasoning about Rabin conditions we can
consider parity conditions. The best upper bound for solving parity games is mnk/2 [Jur00]
(cf. [BSV03, JPZ06] for other solutions). That is, we save a multiplier of at least kk!.

The gain by using our determinization is even greater when we consider applications
that use co-determinization. As Streett is the dual of Rabin it follows that solving Streett
games is co-NP-complete. Even if we ignore the computational difficulty, the Rabin accep-
tance condition at least allows using memoryless strategies. That is, when reasoning about
Rabin games (or Rabin tree automata) the way to resolve nondeterminism relies solely on
the current location. This is not the case for Streett. In order to solve Streett games we
require exponential memory [DJW97, Hor05]. Applications like nondeterminization of alter-
nating tree automata use co-determinization but require the result to be a Rabin or parity
automaton. Hence, the resulting deterministic Streett automaton has to be converted to a
parity automaton. Again, the price tag of this conversion is a blowup of k2k! where k is the
number of pairs. As the complexity of reasoning about parity games is mnk/2, the extra
multiplier grows to (k2k!)k.

Recently, Kupferman and Vardi showed that they can check the emptiness of an alter-
nating parity tree automaton without directly using Safra’s determinization [KV05]. Their
construction can be used for many game / tree automata applications that require deter-
minization. However, Kupferman and Vardi use Safra’s determinization to get a bound
on the size of the minimal model of the alternating tree automaton. Given such a bound,
they can check emptiness by restricting the search to small models. Our improved con-

struction implies that the complexity of their algorithm reduces from (12)n
2

n4n2+2n(n!)2n

to (2nnn!)2n.

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 5

2. Nondeterministic Automata

Given a finite set Σ, a word over Σ is a finite or infinite sequence of symbols from Σ.
We denote by Σ∗ the set of finite sequences over Σ and by Σω the set of infinite sequences
over Σ. Given a word w = σ0σ1σ2 · · · ∈ Σ∗ ∪ Σω, we denote by w[i, j] the word σi · · · σj.

A nondeterministic automaton is N = 〈Σ, S, δ, s0, α〉, where Σ is a finite alphabet,
S is a finite set of states, δ : S × Σ → 2S is a transition function, s0 ∈ S is an initial
state, and α is an acceptance condition to be defined below. A run of N on a word
w = w0w1 · · · is an infinite sequence of states s0s1 · · · ∈ Sω such that s0 is the initial
state and for all j ≥ 0 we have sj+1 ∈ δ(sj , wj). For a run r = s0s1 · · · , let inf (r) =
{s ∈ S | s = si for infinitely many i’s} be the set of all states occurring infinitely often
in the run. We consider four acceptance conditions. A Rabin condition α is a set of pairs
{〈E1, F1〉, . . . , 〈Ek, Fk〉} where for all i we have Ei ⊆ S and Fi ⊆ S. We call k the index of the
Rabin condition. A run is accepting according to the Rabin condition α if there exists some
i such that inf (r) ∩ Ei = ∅ and inf (r) ∩ Fi 6= ∅. That is, the run visits finitely often states
from Ei and infinitely often states from Fi. The Streett condition is the dual of the Rabin
condition. Formally, a Streett condition α is also a set of pairs {〈R1, G1〉, . . . , 〈Rk, Gk〉}
where for all i we have Ri ⊆ S and Gi ⊆ S. We call k the index of the Streett condition. A
run is accepting according to the Streett condition α if for every i either inf (r)∩Gi = ∅ or
inf (r) ∩ Ri 6= ∅. That is, the run either visits Gi finitely often or visits Ri infinitely often.
As a convention for pairs in a Rabin condition we use E and F and for pairs in a Streett
condition we use R and G. A parity condition α is a partition {F0, . . . , Fk} of S. We call
k the index of the parity condition. A run is accepting according to the parity condition α
if for some even i we have inf (r) ∩ Fi 6= ∅ and for all i′ < i we have inf (r) ∩ Fi′ = ∅. A
Büchi condition α is a subset of S. A run is accepting according to the Büchi condition α if
inf (r) ∩ α 6= ∅. That is, the run visits infinitely often states from α. A word w is accepted

by N if there exists some accepting run of N over w. The language of N is the set of words
accepted by N . Formally, L(N) = {w | w is accepted by N}. Two automata are equivalent

if they accept the same language.
Given a set of states S′ ⊆ S and a letter σ ∈ Σ, we denote by δ(S′, σ) the set⋃

s∈S′ δ(s, σ). Similarly, for a word w ∈ Σ∗ we define δ(S′, w) in the natural way: δ(S′, ǫ) =
S′ and δ(S′, wσ) = δ(δ(S′, w), σ). For two states s and t and w ∈ Σ∗, we say that t is
reachable from s reading w if t ∈ δ({s}, w).

An automaton is deterministic if for every state s ∈ S and letter σ ∈ Σ we have
|δ(s, σ)| = 1. In that case we write δ : S × Σ → S. We use deterministic automata to
complement a word automaton, i.e., construct an automaton that accepts the complement
language. We can use deterministic automata also as monitors in games (see below). Deter-

minization for automata on finite words is relatively simple [RS59]. For automata on infinite
words this is not the case. Deterministic Büchi automata are strictly weaker than nonde-
terministic Büchi automata. However, for every nondeterministic Büchi automaton there
exists an equivalent deterministic automaton with one of the stronger acceptance conditions.
The best determinization constructions take nondeterministic Büchi or Streett automata
and convert them to deterministic Rabin automata. We describe these two constructions
below.

We use acronyms in {N,D}×{R,S, P,B}×{W} to denote automata. The first symbol
stands for the branching mode of the automaton: N for nondeterministic and D for deter-
ministic. The second symbol stands for the acceptance condition of the automaton: R for

6 N. PITERMAN

Rabin, S for Streett, P for parity, and B for Büchi. The last symbol stands for the object
the automaton is reading, in our case W for words. For example, a DRW is a deterministic
Rabin word automaton and an NBW is a nondeterministic Büchi word automaton.

3. Determinization of Büchi Automata

In this section we give a short exposition of Safra’s determinization [Saf88] and show
how to improve it. We replace the constant node names with dynamic names, which allow us
to simulate the index appearance record3 construction within the deterministic automaton.
We get a deterministic automaton with fewer states and in addition a parity automaton
instead of Rabin.

3.1. Safra’s Construction. Here we describe Safra’s determinization construction [Saf88,
Saf89]. The construction takes an NBW and constructs an equivalent DRW. Safra con-
structs a tree of subset constructions. Every node in the tree is labeled by the states it
follows. The labels of siblings are disjoint and the label of a node is a strict superset of the
union of the labels of its descendants. The sons are ordered according to their age. The
transition of a tree replaces the label of every node by the set of possible successors. If
the label now includes some accepting states, we add a new son to the node with all these
accepting states. Intuitively, the states that label the sons of a node have already visited
an accepting state. Thus, the states in the label of a node that are not in the labels of
its descendants are states that still owe a visit to the acceptance set. If a state occurs in
two sibling nodes (or more), we remove it from the younger sibling and keep it only in the
older sibling. If the label of a node becomes equal to the union of labels of its descendants
then we mark this node as accepting and remove all its descendants. If some node remains
eventually always in the tree and is marked accepting infinitely often, the run is accepting.
Formally, we have the following.

Let N = 〈Σ, S, δ, s0, α〉 be an NBW with |S| = n. Let V = [n]. We first define Safra
trees.

Definition 3.1. A Safra tree t over S is 〈N, r, p, ψ, l, E, F 〉 where the components of t are
as follows.

• N ⊆ V is a set of nodes.
• r ∈ N is the root node.
• p : N → N is the parent function defined over N−{r}, defining for every v ∈ N−{r} its

parent p(v).
• ψ is a partial order defining “older than” on siblings (i.e., children of the same node).
• l : N → 2S is a labeling of the nodes with subsets of S. The label of every node is a proper

superset of the union of the labels of its sons. The labels of two siblings are disjoint.
• E,F ⊆ V are two disjoint subsets of V . They are used to define the Rabin acceptance

condition.

The following claim is proved in [Saf88, Saf89, Jut97, KV05].

Claim 3.2. The number of Safra trees over S is not more than (12)nn2n.

3The index appearance record is the gadget that allows to translate Rabin and Streett conditions to parity
conditions [Saf92]. It is a permutation over the pairs in the Rabin / Streett condition with two pointers into
the permutation.

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 7

Proof. The number of ordered trees on n nodes is the (n − 1)th Catalan number. We

know that Cat(n) = (2n)!
n!(n+1)! and Cat(n − 1) ≤ 4n. We represent the naming of nodes by

f : [n] → [n] that associates the ith node with its name f(i). There are at most nn such
functions. The labeling function is l : S → [n] where l(s) = i means that s belongs to the ith
node and all its ancestors. Finally, we represent E and F by a function a : V → {∅, E, F}
such that a(i) = ∅ means that i /∈ E ∪ F , a(i) = E means that i ∈ E, and a(i) = F means
that i ∈ F . There are at most 3n such functions.

To summarize, the number of trees is at most 4n · 3n · nn · nn = (12)nn2n.

We construct the DRW D equivalent to N . Let D = 〈Σ,D, ρ, d0, α
′〉 where the compo-

nents of D are as follows.

• D is the set of Safra trees over S. For a state d ∈ D we denote by a d subscript the
components of d. For example, Nd is the set of nodes of d and ld is the labeling of d.

• d0 is the tree with a single node 1 labeled by {s0} where E is V −{1} and F is the empty
set.

• Let α′ = {〈E1, F1〉, . . . , 〈En, Fn〉} be the Rabin acceptance condition where Ei = {d ∈
D | i ∈ Ed} and Fi = {d ∈ D | i ∈ Fd}.

• For every tree d ∈ D and letter σ ∈ Σ the transition d′ = ρ(d, σ) is the result of the
following transformations on d. We use temporarily the set of names V ′ disjoint from V .
(1) For every node v with label S′ replace S′ by δ(S′, σ) and set E and F to the empty

set.
(2) For every node v with label S′ such that S′ ∩α 6= ∅, create a new node v′ ∈ V ′ which

becomes the youngest child of v. Set its label to be S′ ∩ α.
(3) For every node v with label S′ and state s ∈ S′ such that s also belongs to the label

of an older sibling v′ of v, remove s from the label of v and all its descendants.
(4) Remove all nodes with empty labels.
(5) For every node v whose label is equal to the union of the labels of its children, remove

all descendants of v. Add v to F .
(6) Add all unused nodes to E.
(7) Change the nodes in V ′ to nodes in V .

Claim 3.3. The transition is well defined.

Proof. It is simple to see that the label of every node is a proper superset of the union of
the labels of its children and that the labels of two siblings are disjoint. We have to show
that the n nodes in V are sufficient to complete step 7.As the labels of siblings are disjoint
and the union of labels of children is a proper subset of the label of the parent it follows
that every node is the minimal (according to the subset order on the labels) to contain (at
least) some state s ∈ S. It follows that n node names are sufficient.

Theorem 3.4. [Saf88] L(D) = L(N).

For other expositions of this determinization we refer the reader to [Jut97, Löd98, Rog01].

3.2. From NBW to DPW. We now present our construction. Intuitively, we take Safra’s
construction and replace the constant node name with a dynamic one that decreases as nodes
below it get erased from the tree. Using the new names we can give up the “older than”
relation. The smaller the name of a node, the older it is. Furthermore, the names give a
natural parity order on good and bad events. Erasing a node is a bad event (which forces

8 N. PITERMAN

all nodes with greater name to change their name). Finding that the label of some name
is equal to the union of labels of its descendants is a good event. The key observation is
that a node can change its name at most a finite number of times without being erased.
It follows that the names of all nodes that stay eventually in the tree get constant. Thus,
bad events happen eventually only to nodes that get erased from the tree. Then we can
monitor good events that happen to the nodes with constant names and insist that they
happen infinitely often. Formally, we have the following.

Let N = 〈Σ, S, δ, s0, α〉 be an NBW with |S| = n. For the sake of the proof we would
like to treat the nodes as entities. Hence, we distinguish between the set of nodes V = [2n]
of a tree and their names that may change and range over [n]. All important information
(tree structure, label) can be associated with the names and in practice the distinction
between nodes and their names is not needed.

Definition 3.5. A compact Safra tree t over S is 〈N,M, 1, p, l, e, f 〉 where the components
of t are as follows.

• N ⊆ V is a set of nodes.
• M : N → [n] is the naming function.
• 1 ∈ N such that M(1) = 1 is the root node.
• p : N → N is the parent function.
• l : N → 2S is a labeling of the nodes with subsets of S. The label of every node is a proper

superset of the union of the labels of its sons. The labels of two siblings are disjoint.
• e, f ∈ [n + 1] are used to define the parity acceptance condition. The number e is used

to memorize the minimal node that changed its name and f the minimal node that is
equivalent to its descendants.

Notice that we give up the “older than” relation and replace the sets E and F by numbers
e and f . We require that the naming M is a bijection from N to [|N |]. That is, the names
of the nodes in N are consecutive starting from the root, which is named 1.

The following claim is proved much like the similar proof for Safra trees.

Claim 3.6. The number of compact Safra trees over S is not more than 2nnn!.

Proof. Just like Safra trees there are at most n nodes. We use only the names of the
nodes. The parent of the node has a smaller name. Thus, the parenthood relation can be
represented by a sequence of (at most) n − 1 pointers, where the ith pointer is pointing
to a value in 1, . . . , i−1. It follows that there are at most (n−1)! such trees. As in Safra
trees, every node has at least one unique state in S that belongs to it. We add the function
l : S → [n] that associates a state with the minimal node (according to the descendant
order in the tree) to which it belongs. There are n options for e and f each. In order to
define the acceptance condition (see below) we need to know the value of e in case e ≤ f
and the value of f in case f < e. Thus, we need 2n possible values. It follows that there
are at most 2n · (n−1)! · nn = 2nnn! different compact Safra trees.

We construct the DPW D equivalent to N . Let D = 〈Σ,D, ρ, d0, α
′〉 where the components

of D are as follows.

• D is the set of compact Safra trees over S.
• d0 is the tree with a single node 1 labeled {s0} and named 1 where e = 2 and f = 1.
• The parity acceptance condition α′=〈F0, . . . , F2n−1〉 is defined as follows.

- F0 = {d ∈ D | f = 1 and e > 1}

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 9

- F2i+1 = {d ∈ D | e = i+ 2 and f ≥ e}
- F2i+2 = {d ∈ D | f = i+ 2 and e > f}
Note that the case e = 1 is not considered above. In this case the label of the root is
empty. This is a rejecting sink state.

• For every tree d ∈ D and letter σ ∈ Σ the transition d′ = ρ(d, σ) is the result of the
following transformations on d.
(1) For every node v with label S′ replace S′ by δ(S′, σ).
(2) For every node v with label S′ such that S′ ∩ α 6= ∅, create a new son v′ /∈ N of v.

Set its label to S′∩α. Set its name to the minimal value greater than all used names.
We may have to use temporarily names in the range [(n+1)..(2n)].

(3) For every node v with label S′ and state s ∈ S′ such that s belongs also to some
sibling v′ of v such that M(v′) < M(v), remove s from the label of v and all its
descendants.

(4) For every node v whose label is equal to the union of the labels of its children, remove
all descendants of v. Call such nodes green. Set f to the minimum of n+1 and the
names of green nodes. Notice that no node in [(n+1)..(2n)] can be green.

(5) Remove all nodes with empty labels. Set e to the minimum of n+1 and the names of
nodes removed during all stages of the transformation. Notice that the priority of a
state is even only when f < e. Thus, green nodes that are removed cannot make a
state of even priority.

(6) Let Z denote the set of nodes removed during all previous stages of the transformation.
For every node v let rem(v) be |{v′ ∈ Z | M(v′) < M(v)}|. That is, we count how
many nodes are removed during the transformation and have smaller name than
the name of v. For every node v such that l(v) 6= ∅ we change the name of v to
M(v) − rem(v). It is simple to see that the resulting names are consecutive again
and in the range [n].

We show that the two automata are equivalent. The proof is an adaptation of Safra’s proof
[Saf88].

Theorem 3.7. L(D) = L(N).

Proof. Consider w ∈ L(N). We have to show w ∈ L(D). Let r = s0s1 · · · be an accepting
run of N on w. Let r′ = d0d1 · · · be the run of D on w and let di = 〈Ni,Mi, 1, pi, li, ei, fi〉.
It is simple to see that for all i ≥ 0 we have si ∈ li(1) and ei > 1. If step 4 is applied
infinitely often to node 1 (equivalently, f = 1 infinitely often, or during the transformation
of the trees the label of 1 equals the labels of its sons) then r′ visits F0 infinitely often.

Otherwise, from some point onwards in r′ we have step 4 is not applied to node 1. Let
i0 be this point. There exists a point i1 > i0 such that si1 ∈ α. It follows that for all
i > i1 we have si belongs to some son v1 of 1. Notice, that just like in Safra’s case, the run
r may start in some son of 1 and move to a son with a smaller name. However, this can
happen finitely often and hence we treat v1 as constant. The name M(v1) may decrease
finitely often until it is constant. Let i2 be such that for all i > i2 we have a1 = Mi(v1). As
Mi(v1) = a1 for all i > i2 it follows that ei > a1 for all i > i2.

Suppose that step 4 is applied to v1 infinitely often (equivalently, f ≤ a1 infinitely
often). It follows that for every odd a′ < 2a1 − 2 we have Fa′ is visited finitely often and
either F2a1−2 is visited infinitely often or there exists some even a′ < 2a1 − 2 such that Fa′

is visited infinitely often. In this case D accepts w.

10 N. PITERMAN

Otherwise, step 4 is applied to v1 finitely often. We construct by induction a sequence
v1, . . . , vk such that eventually v1, . . . , vk do not change their names and r belongs to all of
them. As the number of active nodes in a tree (nodes v such that l(v) 6= ∅) is bounded by
n we can repeat the process only finitely often. Hence, w is accepted by D.

In the other direction, consider w ∈ L(D). Let r′ = d0d1 · · · be the accepting run of D
on w where di = 〈Ni,Mi, 1, pi, li, fi, ei〉. Let F2a be the minimal set to be visited infinitely
often. It follows that eventually always ei > a+ 1 and infinitely often fi = a+ 1. We first
prove two claims.

Claim 3.8. For every i ∈ N, v ∈ Ni, and every state s ∈ li(v) we have s is reachable from

s0 reading w[0, i − 1].

Proof. We prove the claim simultaneously for all v ∈ Ni by induction on i. Clearly, it holds
for i = 0. Suppose that it holds for i. As li+1(v) ⊆ δ(li(v

′), wi) for some v′ ∈ Ni it follows
that every state in li+1(v) is reachable from s0 reading w[0, i].

Claim 3.9. Consider i, i′ ∈ N such that i < i′, di, di′ ∈ F2a for some a, and for all a′ ≤ 2a
and for all i < j < i′ we have dj /∈ Fa′ . Then there exists a node v such that Mj(v) = a+ 1
for all i ≤ j ≤ i′ and every state s in li′(v) is reachable from some state in li(v) reading

w[i, i′ − 1] with a run that visits α.

Proof. There exists some node v such that Mi(v) = a + 1 (as di ∈ F2a). By assumption,
for every a′ < 2a the set Fa′ is not visited between i and i′. Hence, for every node v′ such
that Mi(v) ≤ a+ 1 we have that Mj(v

′) = Mi(v
′) for all i ≤ j ≤ i′. That is, between i and

i′ all nodes whose name is at most a + 1 do not change their names. In particular, for all
i ≤ j ≤ i′ we have Mj(v) = a+ 1. We show that for every i ≤ j < i′ and every descendant
v′ of v, every state in lj(v

′) is reachable from some state in li(v) along a run visiting α.
As v is a leaf in di for j = i this is obviously true. Suppose it is true for j and prove for
j + 1. We know that for every descendant v′ of v either lj+1(v

′) ⊆ δ(lj(v), wj) ∩ α or for
some descendant v′′ of v we have lj+1(v

′) ⊆ δ(lj(v
′′), wj) (v′′ may be v′). As during the

transformation from di′−1 to di′ the label li′(v) equals the union of labels of sons of v the
claim follows. In particular, if i′ = i+ 1 then all states in li′(v) are in α and we are done.

We construct an infinite tree with finite branching degree. The root of the tree corre-
sponds to the initial state of N . Every node in the tree is labeled by some state of N and
a time stamp i. An edge between the nodes labeled (s, i) and (t, j) corresponds to a run
starting in s, ending in t, reading w[i, j − 1], and visiting α. From König’s lemma this tree
contains an infinite branch. The composition of all the run segments in this infinite branch
is an infinite accepting run of N on w.

Let (s0, 0) label the root of T . Let i0 be the maximal location such that for all a′ < 2a
the set Fa is not visited after i0. Let v be the node such that for all i > i0 we have
Mi(v) = a+1. Let i1 be the minimal location such that i1 > i0 and fi1 = a+1 (that is step
4 was applied to v). For every state s in li1(v) we add a node to T , label it by (s, i1) and
connect it to the root. We extend the tree by induction. We have a tree with leafs labeled
by the states in lij (v) stamped by time ij , and fij = a+ 1 (step 4 was applied to v). That
is, for every state s in lij (v) there exists a leaf labeled (s, ij). We know that F2a is visited
infinitely often. Hence, there exists ij+1 > ij such that fij+1

= a + 1 (step 4 is applied to
v). For every state s′ in lij+1

(v) we add a node to T and label it (s′, ij+1). From Claim 3.9
there exists a state s in lij (v) such that s′ is reachable from s reading w[ij , ij+1 − 1] with a
run that visits α. We connect (s′, ij+1) to (s, ij).

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 11

From Claim 3.8 it follows that every edge (s0, 0), (s
′, i1) corresponds to some run starting

in s0, ending in s′, and reading w[0, i1 − 1]. From Claim 3.9, every other edge in the tree
(s, ij), (s

′, ij+1) corresponds to some run starting in s, ending in s′, reading w[ij , ij+1 − 1],
and visiting α. From König’s lemma there exists an infinite branch in the tree. This infinite
branch corresponds to an accepting run of N on w.

Theorem 3.10. For every NBW N with n states there exists a DPW D with 2nnn! states

and index 2n such that L(D) = L(N).

We note that this improves Safra’s construction in two ways. First, we reduce the number
of states from (12)nn2n to 2nnn!. Second, our automaton is a parity automaton which
is amenable to simpler algorithms. For example, given a DPW it is possible to check
in polynomial time what is the minimal parity index that enables recognition of the same
language, and to find such an optimal parity index on the same automaton structure [CM99].
On the other hand, finding the minimal Rabin index of a DRW is NP-hard [KPBV95]
and it may be the case that an optimal condition cannot be found on the same structure
[KMM04]. Many times we are interested in a deterministic automaton for the complement
language, a process called co-determinization. The natural complement of a DRW is a DSW.
However,the Streett acceptance condition is less convenient in many applications (due to the
fact that Streett acceptance conditions require memory). Thus, the complement automaton
is usually converted to a DPW using the IAR construction [Saf92]. In such a case, one would
have to multiply the number of states by k2k! where k is the number of Rabin pairs. A
similar effect occurs when using deterministic automata in the context of games. Solution
of Rabin games incurs an additional multiplier of k2k!. With our construction this penalty
is avoided.

4. Determinization of Streett Automata

In this section we give a short exposition of Safra’s determinization of Streett automata
[Saf92] and show how to improve it. Again, we replace the constant node names with
dynamic names. We get a deterministic automaton with fewer states and in addition a
parity automaton instead of Rabin. The intuition is similar to the construction in Section 3.

4.1. Safra’s Construction. Here we describe Safra’s determinization for Streett Automata
[Saf92]. The construction takes an NSW and constructs an equivalent DRW.

As mentioned, in the case of Streett automata, determinization via conversion to Büchi
automata is less than optimal. Safra generalizes his construction to work for Streett au-
tomata. The idea is still to use a set of subset constructions. Let S = 〈Σ, S, δ, s0, α〉 be an
NSW where α = {〈R1, G1〉, . . . , 〈Rk, Gk〉}. We say that a run r of S is accepting according
to the witness set J ⊆ [k] if for every j ∈ J we have inf (r)∩Rj 6= ∅ and for every j /∈ J we
have inf (r)∩Gj = ∅. It is easy to construct an NBW whose language consists of all words
accepted according to witness set J . The NBW has two parts. In the first part it waits until
all visits to Gj for j /∈ J have occurred. Then it moves nondeterministically to the second
part where it waits for visits to Rj for each j ∈ J according to their order and disallows
visits to Gj for every j /∈ J . If the automaton loops through all j ∈ J infinitely often the
run is accepting. Unfortunately, the number of possible witness sets is exponential.

Safra’s construction arranges all possible runs of the NSW and all relevant witness sets
in a tree structure. A state is again a tree of subset constructions. Every node in a tree

12 N. PITERMAN

represents a process that is monitoring some witness set and checking this witness set. The
node for witness set J follows some set of states. It waits for visits to Rj for every j ∈ J
(in descending order), if this happens without visiting Gj for j /∈ J then the node succeeds
and starts all over again.

A Streett Safra tree is a tree whose nodes are labeled by subsets of the states in S.
The labels of siblings are disjoint and the labels of sons form a partition of the label of the
parent. In addition every node is annotated by a subset J ⊆ [k]. The annotation of a son
misses at most one element from the annotation of the parent. Every node that is not a leaf
has at least one son whose annotation is a strict subset. In addition, children are ordered
according to their age.

The root node monitors the set [k] as a possible witness set. If some node is annotated
with J and has a child annotated J − {j} this means that the child has given up on the
hope that Rj will occur. If a node has given up on Rj but visits Gj then the states visiting
Gj have no place in this node and they are moved to a new sibling. Similarly, if a node has
given up on Rj and visits Rj then the states visiting Rj have no place in this node and they
are moved to a new sibling. Whenever the label of a node gets empty it is removed from
the tree. If all the states followed by a node completed a cycle through its witness set, all
the descendants of this node are removed and it is marked accepting. The Rabin condition
associates a pair with every node. A run is accepting if some node is erased finitely often
and marked accepting infinitely often.

Let S = 〈Σ, S, δ, s0, α〉 be an NSW where α = {〈R1, G1〉, . . . , 〈Rk, Gk〉} and |S| = n.
Let m = n(k + 1) and V = [m]. We first define Streett Safra trees.

Definition 4.1. A Streett Safra tree t over S is 〈N, r, p, ψ, l, h,E, F 〉 where the components
of t are as follows.

• N ⊆ V is the set of nodes.
• r ∈ N is the root node.
• p : N → N is the parent function defined over N−{r}, defining for every v ∈ N−{r} its

parent p(v).
• ψ is a partial order defining “older than” on siblings (i.e., children of the same node).
• l : N → 2S is a labeling of nodes with subsets of S. The label of every node is equal to

the union of the labels of its sons. The labels of two siblings are disjoint.
• h : N → 2[k] annotates every node with a set of indices from [k]. The root is annotated

by [k]. The annotation of every node is contained in that of its parent and it misses at
most one element from the annotation of the parent. Every node that is not a leaf has
at least one son with strictly smaller annotation.

• E,F ⊆ V are two disjoint subsets of V . They are used to define the Rabin acceptance
condition.

The following claim is proved in [Saf92, Sch01].

Claim 4.2. The number of Streett Safra trees over S is at most

(12)n(k+1)nn(k+1)n(k+1)(n(k+1))n(k+1).

Proof. The number of ordered trees on m nodes is at most 4m. We represent the naming
of the nodes by f : [m] → [m]. There are at most mm such functions. The labeling of a
node is determined by the labels of the leaves in the subtree below it and labels of leaves
are disjoint. The labeling function S → [n] associates a state s with the leaf it belongs to.
There are at most n leaves and nn such functions. We can represent the annotation h by

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 13

annotating every edge by the value j ∈ [k] such that j is in the annotation of the parent
and not in the annotation of the son. If no such j exists then we annotate the edge by 0.
The edge annotation function is h : [m] → [0..k] associating an index to the target node of
the edge. Finally, E and F are represented by a function a : V → {∅, E, F}. The number

of trees is at most 4m · 3m ·mm · nn · (k + 1)m = (12)n(k+1)nn(k+1)n(k+1)(n(k+1))n(k+1).

We construct the DRW D equivalent to S. Let D = 〈Σ,D, ρ, d0, α
′〉 where the components

of D are as follows.

• D is the set of Streett Safra trees over S.
• d0 is the tree with a single node 1 labeled by {s0} where E is V −{1} and F is the empty

set.
• Let α′ = {〈E1, F1〉, . . . , 〈Em, Fm〉} be the Rabin acceptance condition where Ei = {d ∈
D | i ∈ Ed} and Fi = {d ∈ D | i ∈ Fd}.

• For every tree d ∈ D and letter σ ∈ Σ the transition d′ = ρ(d, σ) is the result of the
following (recursive) transformation applied on d starting from the root. Before we start,
we set E and F to the empty set and replace the label of every node v by δ(l(v), σ). We
use temporarily the set of names V ′ disjoint from V .
(1) If v is a leaf such that h(v) = ∅ stop.
(2) If v is a leaf such that h(v) 6= ∅, add to v a new son v′ ∈ V ′. Set l(v′) = l(v) and

h(v′) = h(v) − {max(h(v))}.
(3) Let v1, . . . , vl be the sons of v (ordered from oldest to youngest) and let j1, . . . , jl be

the indices such that ji ∈ h(v) − h(vi) (note that |h(v) − h(vi)| ≤ 1; in case that
h(v) = h(vi) we have ji = 0). Call the entire procedure recursively on v1, . . . , vl (call
recursively also for sons created in step 2 above).
For every son vi and every state s ∈ l(vi) do the following.
(a) If s ∈ Rji

, remove s from the label of vi and all its descendants. Add a new
youngest son v′ ∈ V ′ to v. Set l(v′) = {s} and h(v′) = h(v)−{max({0}∪ (h(v)∩
{1, . . . , ji − 1}))}.

(b) If s ∈ Gji
, remove s from the label of vi and all its descendants. Add a new

youngest son v′ ∈ V ′ to v. Set l(v′) = {s} and h(v′) = h(v) − {ji}.
4

(4) If a state s appears in l(vi) and l(vi′) and ji < ji′ then remove s from the label of vi′

and all its descendants.
(5) If a state s appears in l(vi) and l(vi′) and ji = ji′ then remove s from the label of the

younger sibling and all its descendants.
(6) Remove sons with empty label.
(7) If all sons are annotated by h(v) remove all the sons and all their descendants. Add

v to F .
Finally, we add all unused names to E, remove unused names from F , and change the
nodes in V ′ to nodes in V .

Claim 4.3. The transition is well defined.

4We note that in Safra’s original construction [Saf92, Sch01] the rank of the new node is set to h(v′) =
h(v)−{max(h(v))}. In case that both Gji

and Rji
are visited infinitely often this may lead to the following

situation. Suppose that the node v has a son v′ that is waiting for a visit to Rji
where ji is not the maximum

in h(v). In the case that Gji
is visited, the runs are moved to new siblings that await max(h(v)) again.

This way, the run may cycle infinitely often between max(h(v)) and ji, leading to incompleteness of the
construction.

14 N. PITERMAN

Proof. It is simple to see that the label of every node is equal to the union of the labels of
its children and that the labels of two siblings are disjoint. We have to show that the m
nodes in V are sufficient to change the nodes in V ′ to nodes in V .

There exists a path from the root to a leaf where no edge is annotated by 0. For every
edge annotated 0, there is a path from the target of this edge to a leaf where no edge is
annotated by 0. Hence, there are at most n− 1 edges annotated by 0. Every other edge is
either annotated by some index i ∈ [k] or connects a parent v to a son v′ such that there
is some state s ∈ S such that s ∈ l(v) and s /∈ l(v′). Thus, there can be at most nk such
edges. Totally, n(k + 1) node names are sufficient.

Theorem 4.4. [Saf92] L(D) = L(S).

For other expositions of this determinization we refer the reader to [Jut97, Sch01].

4.2. From NSW to DPW. We now present our construction. Let S = 〈Σ, S, δ, s0, α〉
be an NSW where α = {〈R1, G1〉, . . . , 〈Rk, Gk〉} and |S| = n. Denote m = n(k + 1). For
the sake of the proof, we distinguish between the set of nodes V = [2m] of a tree and
their names that range over [m]. All important information (tree structure, label) can be
associated with the names and in practice the distinction between nodes and their names
is not needed.

Definition 4.5. A compact Streett Safra tree t over S is 〈N,M, 1, p, l, h, e, f〉 where the
components of t are as follows.

• N ⊆ V is a set of nodes.
• M : N → [m] is the naming function.
• 1 ∈ N such that M(1) = 1 is the root node.
• p : N → N is the parent function.
• l : N → 2S is a labeling of the nodes with subsets of S. The label of every node is equal

to the union of the labels of its sons. The labels of two siblings are disjoint.
• h : N → 2[k] annotates every node with a set of indices from [k]. The root is annotated

by [k]. The annotation of every node is contained in that of its parent and it misses at
most one element from the annotation of the parent. Every node that is not a leaf has
at least one son with strictly smaller annotation.

• e, f ∈ [m+ 1] are used to define the parity acceptance condition.

Notice that we give up the “older than” relation and replace the sets E and F by
numbers e and f . The naming M is a bijection from N to [|N |]. That is, the names of
nodes in N are consecutive starting from the root, which is named 1.

The following claim is proved much like the similar proof for Streett Safra trees.

Claim 4.6. The number of compact Streett Safra trees over S is not more than

2nn(k+1)n(k+1)(n(k+1))!.

Proof. Just like Streett Safra trees there are at most m nodes. We use only the names of
the nodes. The parent of the node has a smaller name. Thus, the parenthood relation can
be represented by a sequence of (at most) m− 1 pointers, where the ith pointer is pointing
to a value in 1, . . . , i−1. It follows that there are at most (m−1)! such trees. As the labels
of the leaves form a partition of the set of states S there are at most n leaves. We add
the function l : S → [n] that associates a state with the unique leaf to which it belongs.

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 15

Setting l(s) = i means that s belongs to the ith leaf. We can represent the annotation h
by annotating every edge by the value j ∈ [k] such that j is in the annotation of the parent
and not in the annotation of the son. If no such j exists then we annotate the edge by 0.
The edge annotation is represented by a function h : [m] → [0, . . . , k]. In order to define
the acceptance condition (see below) we need to know the value of e in case e ≤ f and the
value of f in case f < e. Thus, we need 2m possible values.

It follows that the number of compact Streett Safra tress is at most 2m · (m−1)! · nn ·
(k + 1)m = 2m! · nn · (k + 1)m = 2nn(k+1)n(k+1)(n(k+1))!.

We construct the DPW D equivalent to S. Let D = 〈Σ,D, ρ, d0, α
′〉 where the components

of D are as follows.

• D is the set of compact Streett Safra trees over S.
• d0 is the tree with a single node 1 labeled {s0}, named 1, and annotated [k]. We set e = 2

and f = 1.
• The parity acceptance condition α′=〈F0, . . . , F2m−1〉 is defined as follows.

- F0 = {d ∈ D | f = 1 and e > 1}
- F2i+1 = {d ∈ D | e = i+ 2 and f ≥ e}
- F2i+2 = {d ∈ D | f = i+ 2 and e > f}
As before, the case where e = 1 is a rejecting sink state.

• For every tree d ∈ D and letter σ ∈ Σ the transition d′ = ρ(d, σ) is the result of the
following (recursive) transformation applied on d starting from the root. Before we start,
we set e and f to m+ 1 and replace the label of every node v by δ(l(v), σ).
(1) If v is a leaf such that h(v) = ∅ stop.
(2) If v is a leaf such that h(v) 6= ∅, add to v a new son v′. Set l(v′) = l(v), h(v′) =

h(v)−{max(h(v))}, and set M(v′) to the minimal value greater than all used names.
We may use temporarily names out of the range [m].

(3) Let v1, . . . , vl be the sons of v (ordered according to their names) and let j1, . . . , jl be
the indices such that ji = max((h(v) ∪ {0}) − h(vi)) (note that |h(v) − h(vi)| ≤ 1;
in case that h(v) = h(vi) we have ji = 0). Call recursively the entire procedure on
v1, . . . , vl (including sons created in step 2 above).
For every son vi and every state s ∈ l(vi) do the following.
(a) If s ∈ Rji

, remove s from the label of vi and all its descendants. Add a new son
v′ to v. Set l(v′) = {s}, h(v′) = h(v)−{max({0} ∪ (h(v)∩{1, . . . , ji − 1}))}, and
set M(v′) to the minimal value larger than all used names.

(b) If s ∈ Gji
, remove s from the label of vi and all its descendants. Add a new son

v′ to v. Set l(v′) = {s}, h(v′) = h(v) − {ji}, and set M(v′) to the minimal value
larger than all used names.

(4) If a state s appears in l(vi) and l(vi′) and ji < ji′ then remove s from the label of vi′

and all its descendants.
(5) If a state s appears in l(vi) and l(vi′), ji = ji′ , and M(vi) < M(vi′) then remove s

from the label of vi′ and all its descendants.
(6) Remove sons with empty label. Set e to the minimum of its previous value and the

minimal name of a removed descendant.
(7) If all sons are annotated by h(v) remove all sons and all their descendants. Set e to

the minimum of its previous value and the minimal name of a removed descendant.
Set f to the minimum of its previous value and the name of v.

16 N. PITERMAN

Let Z denote the set of nodes removed during this recursive procedure. For every node
v let rem(v) be |{v′ ∈ Z | M(v′) < M(v)}|. That is, we count how many nodes got
removed during the recursive transformation and their name is smaller than the name of
v. For every node v such that l(v) 6= ∅ we change the name of v to M(v) − rem(v). The
resulting names are consecutive again and in the range [m].

We show that the two automata are equivalent. The proof is an adaptation of Safra’s proof
[Saf92].

Theorem 4.7. L(D) = L(S).

Proof. Consider w ∈ L(S). We have to show w ∈ L(D). Let r = s0s1 · · · be an accepting
run of S on w. Let J ⊆ [k] be the maximal witness set for r. Let r′ = d0d1 · · · be the run of
D on w and let di = 〈Ni,Mi, 1, pi, li, hi, ei, fi〉. It is simple to see that for all i ≥ 0 we have
si ∈ li(1) and ei > 1. Let i1 be the location such that for all i > i1 we have si ∈ inf (r).
That is, all states appearing after i1 appear infinitely often in the run. In particular, for all
i > i1 we have si /∈ Gj for all j /∈ J .

If step 7 is applied infinitely often to node 1 (equivalently, f = 1 infinitely often, or
during the application of transitions the descendants of 1 are all annotated by [k]) then r′

visits F0 infinitely often. Otherwise, from some point onwards in r′ we have step 7 is not
applied to node 1. Let i2 > i1 be this point. It follows that for all i > i2 node 1 is not a
leaf. Then for all i > i2 we have si appears in the label of some son of 1. This son can
be changed a finite number of times. The annotation of the edge to the son containing r
can only decrease. If the edge is annotated by some j ∈ J then r eventually visits again
Rj and r is migrated to some son annotated by j′ < j. If the edge is annotated by some
j /∈ J then r never visits Gj again and the only way to migrate to a different son is if r
somehow appears again in a different son with smaller annotation, or if r appears again in
a different son with smaller name. Obviously, this can happen a finite number of times and
eventually r stays in the same son of 1. The edge to this son is either annotated by 0 or by
some j1 /∈ J . Formally, let i3 > i2 be such that for all i > i3 we have si appears in li(v1)
and v1 is a son of 1. We know that for all i > i3 we have J ⊆ hi(v1). The name M(v1) may
decrease finitely often until it is constant. Let i4 > i3 be such that for all i > i4 we have
a1 = Mi(v1). As Mi(v1) = a1 for all i > i4 it follows that ei > a1 for all i > i4.

If step 7 is applied to node v1 infinitely often then we are done. Otherwise, we construct
by induction a sequence 1, v1, . . . , vo such that eventually v1, . . . , vo do not change their
names and r appears in the label of all of them. Furthermore, we have J ⊆ h(vo) (which
implies that J ⊆ h(vo′) for all o ∈ [1..o]). As the number of active nodes in a tree is bounded
by m we can repeat the process only finitely often. Hence, w is accepted by D.

In the other direction, consider w ∈ L(D). Let r′ = d0d1 · · · be the accepting run of
D on w where di = 〈Ni,Mi, 1, pi, li, hi, ei, fi〉. Let F2a be the minimal set to be visited
infinitely often. It follows that eventually always ei > a+ 1 and infinitely often fi = a+ 1.

We write in short avoids G
J

instead of avoids Gj for every j /∈ J and visits R
J

instead
of visits Rj for every j ∈ J . We first prove two claims.

Claim 4.8. For every i ∈ N, v ∈ Ni, and every state s ∈ li(v) we have s is reachable from

s0 reading w[0, i − 1].

Proof. We prove the claim simultaneously for all v ∈ Ni by induction on i. Clearly, it holds
for i = 0. Suppose that it holds for i. As li+1(v) ⊆ δ(li(v

′), wi) for some v′ ∈ Ni it follows
that every state in li+1(v) is reachable from s0 reading w[0, i].

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 17

The following claim shows that if some node v is colored green twice, and it is not
removed and does not change its name between the two greens, then all the runs followed
by v visit R

J
, where J is the annotation of v. We essentially prove that all states that are

followed by a son v′ of v annotated by j ∈ J are endpoints for runs that already visited Rj′

for all j′ ∈ J such that j′ > j. When v is colored green the second time, all states followed
by v are in sons annotated 0. This means that all RJ is visited.

Claim 4.9. Consider i, i′ ∈ N such that i < i′, di, di′ ∈ F2a for some a, and for all a′ ≤ 2a
and for every o ∈ [i..i′] we have do /∈ Fa′ . Then there exists a node v such that Mo(v) = a+1
for every o ∈ [i..i′] and every state s in li′(v) is reachable from some state in li(v) reading

w[i, i′ − 1] with a run that avoids G
J

and visits R
J
.

Proof. As di ∈ F2a, there exists some node v such that Mi(v) = a+ 1. By assumption, for
every a′ < 2a the set Fa′ is not visited between i and i′. Hence, for every node v′ such that
Mi(v

′) ≤ a + 1 and for every o ∈ [i..i′] we have that Mo(v
′) = Mi(v

′). That is, between i
and i′ all nodes whose name is at most a+ 1 do not change their names. In particular, for
every o ∈ [i..i′] we have Mo(v) = a+ 1. In addition, there exists J ⊆ [k] such that for every
o ∈ [i..i′] we have ho(v) = J .

We find a run followed by node v between i and i′ that avoids G
J

and visits R
J
.

We first show that all runs followed by v avoid G
J
. One of the invariants maintained

by the transition is that if a node v is annotated by a set J then it cannot be labeled by
states in Gj for j /∈ J . Formally, suppose that for some o ∈ [i..i′] there exists s ∈ lo(v) such
that s ∈ Gj for some j /∈ J . Let v′ be the youngest (according to the parenthood relation)
ancestor of v such that j ∈ ho(v

′) and let v′′ be the son of v′ that is an ancestor of v (it may
be v itself). It follows that the edge from v′ to v′′ is labeled by j. Then, when applying
step 3b on the transformation from do−1 to do the state s would have been moved from v′′

to some other son of v′.
We show now that for every o ∈ [i..i′] and every s ∈ lo(v) such that s appears in a son

of v whose edge is annotated j ∈ J there exists a run starting in some state in li(v), visiting
R[(j+1)..k]∩J , reading w[i, o−1], and ending in s. We prove this by induction on o. The first
thing in the transformation from di to di+1 is to put all the elements in li+1(v) in a son
labeled by max(J). Clearly, this satisfies our requirement. Suppose that it is true for o and
prove for o+1. Consider a state s appearing in lo+1(v) in a son v′ such that the edge (v, v′)
is annotated by j. If there is a predecessor of s in the same son in do then the claim follows
(this covers the case where the same state appears in a node with smaller annotation or in
a node with same annotation but smaller name). Otherwise, s appears in a son created by
step 3a. It follows that there is some predecessor s′ of s in a son v′′ of v in do such that
(v, v′′) is annotated by the minimal j′ > j such that j′ ∈ J . Then, by induction there exists
a run that ends in s′ and visits R[(j′+1)..k]∩J . In addition s is in Rj′ . The claim follows.

As during the transformation from di′−1 to di′ all the states s ∈ li′(v) are found in sons
whose edge is annotated by 0 we conclude that every state s ∈ li′(v) is reachable along a
run that visits R

J
.

We find a witness set J ⊆ [k] and construct an infinite tree with finite branching degree.
The root of the tree corresponds to the initial state of S. Every node in the tree is labeled
by some state of S and a time stamp i. An edge between the nodes labeled (s, i) and (t, i′)
corresponds to a run starting in s, ending in t, reading w[i, i′−1], avoiding G

J
, and visiting

R
J
. From König’s lemma this tree contains an infinite branch. The composition of all the

18 N. PITERMAN

run segments in this infinite branch is an infinite accepting run of S on w according to
witness set J .

Let (s0, 0) label the root of T . Let i0 be the minimal location such that for all a′ < 2a
the set Fa′ is not visited after i0. Let v be the node such that for all i > i0 we have
Mi(v) = a + 1. Let J ⊆ [k] be such that for all i > i0 we have hi(v) = J . Let i1 be the
minimal location such that i1 > i0 and fi1 = a + 1 (that is step 7 was applied to v). For
every state s in li1(v) we add a node to T , label it by (s, i1) and connect it to the root.
We extend the tree by induction. We have a tree with leaves labeled by the states in lio(v)
stamped by time io, and fio = a+ 1 (step 7 was applied to v). That is, for every state s in
lio(v) there exists a leaf labeled (s, io). We know that F2a is visited infinitely often. Hence,
there exists a minimal io+1 > io such that fio+1

= a+ 1 (step 7 is applied to v). For every
state s′ in lio+1

(v) we add a node to the tree and label it (s′, io+1). From Claim 4.9 there
exists a state s in lio(v) such that s′ is reachable from s reading w[io, io+1 − 1] with a run
that avoids G

J
and visits R

J
. We connect (s′, io+1) to (s, io).

From Claim 4.8 it follows that every edge (s0, 0), (s
′, i1) corresponds to some run starting

in s0, ending in s′, and reading w[0, i1 − 1]. From Claim 4.9, every other edge in the tree
(s, io), (s

′, io+1) corresponds to some run starting in s, ending in s′, reading w[io, io+1 − 1],
avoiding G

J
, and visiting R

J
. From König’s lemma there exists an infinite branch in the

tree. This infinite branch corresponds to an accepting run of S on w.

Theorem 4.10. For every NSW S with n states and index k there exists a DPW D with

2nn(k+1)n(k+1)(n(k+1))! states and index 2n(k + 1) such that L(D) = L(S).

As before, when compared to Safra’s construction, we reduce the number of states and get
a parity automaton. The advantages are similar to those described in Section 3.

5. Conclusions and Future Work

We improved both of Safra’s determinization constructions. In both cases, we reduce
the number of states and more important construct directly a parity automaton. In the case
of NBW we reduce the maximal number of states from (12)nn2n to 2nnn!. In the case of
NSW we reduce the maximal number of states from (12)n(k+1)nn(k+1)n(k+1)(n(k+1))n(k+1)

to 2nn(k+1)n(k+1)(n(k+1))!. The fact that our automata are parity automata makes them
easier to use ‘down the line’. The algorithms for solving parity games are much simpler
than those that solve Rabin games. In particular, Rabin games are NP-complete in the
Rabin index while parity games are known to be in NP∩co-NP. The complement of a DPW
is again a DPW. In contrast, the complement of a DRW is a DSW. In order to get back
to Rabin (or parity) one has to multiply the number of states by k2k!, where k is the
number of Rabin pairs of the automaton. Our upper bound improves the best known upper
bound in numerous applications, such as solving games, complementation of tree automata,
emptiness of alternating tree automata, satisfiability of µ-calculus with backward modalities
and CTL∗. In particular, in the recent emptiness algorithm for alternating parity tree

automata [KV05] the upper bound is reduced from (12)n
2

n4n2+2n(n!)n to (2nnn!)2n.
There are lower bounds for both determinization constructions. For an NBW with n

states the best possible DPW has at least n! states [Mic88]. For an NSW with n states
and k Streett pairs the best possible DPW has at least (Ω(nk))n states [Yan06]. We have
gotten closer to this lower bound however there is still a large gap between the lower bound

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 19

and the upper bound. We are not aware on similar lower bounds on the index of the
resulting automata. As DPW[k+1] recognize more languages than DPW[k] [Wag79] and
NBW recognize all ω-regular languages we cannot hope for a determinization construction
with constant index. The language Lk = {w ∈ [1..k]ω | min(inf(w)) is even} is in DPW[k]
but not in DPW[k-1]. It is simple to construct an NBW with k states recognizing Lk. This
suggests that a determinization of NBW with k states may result in DPW with k priorities.
It is an interesting question whether the 2k priorities produced by our construction are
indeed necessary. A similar question arises for NSW.

Acknowledgment

I thank T.A. Henzinger for fruitful discussions, O. Kupferman and M.Y. Vardi for dis-
cussions on Safra’s construction and comments on an earlier version, Y. Lustig for comments
on an earlier version and for tightening the analysis of the number of states, and the referees
for comments and suggesting the lower bound on the index of NBW.

References

[BSV03] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm for parity
games. In 20th Annual Symposium on Theoretical Aspects of Computer Science, volume 2607 of
Lecture Notes in Computer Science, pages 663–674. Springer-Verlag, 2003.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12, Stanford, 1962. Stan-
ford University Press.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of Computer and
System Sciences, 8:117–141, 1974.

[CM99] O. Carton and R. Maceiras. Computing the rabin index of a parity automaton. Theoretical
Informatics and Applications, 33(6):495–506, 1999.

[dAHM01] L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to control: dynamic programs
for omega-regular objectives. In Proceedings of the 16th Annual Symposium on Logic in Computer
Science, pages 279–290. IEEE Computer Society Press, 2001.

[DJW97] S. Dziembowski, M. Jurdziński, and I. Walukiewicz. How much memory is needed to win infinite
games. In Proc. 12th IEEE Symp. on Logic in Computer Science, pages 99–110, 1997.

[EJ88] E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc.
29th IEEE Symp. on Foundations of Computer Science, pages 328–337, White Plains, October
1988.

[FKV04] E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter. In 2nd In-
ternational Symposium on Automated Technology for Verification and Analysis, volume 3299 of
Lecture Notes in Computer Science, pages 64–78. Springer-Verlag, 2004.

[HMU00] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation (2nd Edition). Addison-Wesley, 2000.

[Hor05] F. Horn. Streett games on finite graphs. In Proc. 2nd Workshop on Games in Design and Veri-
fication, 2005.

[JPZ06] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving
parity games. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pages 117–123.
ACM/SIAM, 2006.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In 17th Annual Symposium on
Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in Computer Science,
pages 290–301. Springer-Verlag, 2000.

[Jut97] C.S. Jutla. Determinization and memoryless winning strategies. Information and Computation,
133(2):117–134, 1997.

20 N. PITERMAN

[Kla91] N. Klarlund. Progress measures for complementation of ω-automata with applications to tempo-
ral logic. In Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 358–367, San
Juan, October 1991.

[KMM04] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata. In 2nd In-
ternational Symposium on Automated Technology for Verification and Analysis, volume 3299 of
Lecture Notes in Computer Science, pages 324–338. Springer-Verlag, 2004.

[KPBV95] S.C. Krishnan, A. Puri, R.K. Brayton, and P.P. Varaiya. The Rabin index and chain automata,
with applications to automata and games. In Computer Aided Verification, Proc. 7th Interna-
tional Conference, pages 253–266, Liege, July 1995.

[Kur87] R.P. Kurshan. Complementing deterministic Büchi automata in polynomial time. Journal of
Computer and System Science, 35:59–71, 1987.

[KV98] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time to
branching-time. In Proc. 13th IEEE Symp. on Logic in Computer Science, pages 81–92, June
1998.

[KV01] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans. on
Computational Logic, 2(2):408–429, July 2001.

[KV05] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, Pittsburgh, October 2005.

[Lan69] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–384,
1969.

[Löd98] C. Löding. Methods for the transformation of ω-automata: Complexity and connection to second-
order logic. Master’s thesis, Christian-Albrechts-University of Kiel, 1998.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,
1988.

[MS95] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic au-
tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra. Theoretical
Computer Science, 141:69–107, 1995.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. In Proc. 25th Symposium on Logic in Computer Science, pages 255–264. IEEE press,
2006.

[PP06] N. Piterman and A. Pnueli. Faster solution of Rabin and Streett games. In Proc. 21st Symposium
on Logic in Computer Science, pages 275–284. IEEE, IEEE press, 2006.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp. on
Principles of Programming Languages, pages 179–190, Austin, January 1989.

[Rab72] M.O. Rabin. Automata on infinite objects and Church’s problem. Amer. Mathematical Society,
1972.

[Rog01] M. Roggenbach. Determinization of Büchi-automata. In Automata, Logics, and Infinite Games:
A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science, pages 43–60.
Springer-Verlag, 2001.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research
and Development, 3:115–125, 1959.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of Com-
puter Science, pages 319–327, White Plains, October 1988.

[Saf89] S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of Science,
Rehovot, Israel, 1989.

[Saf92] S. Safra. Exponential determinization for ω-automata with strong-fairness acceptance condition.
In Proc. 24th ACM Symp. on Theory of Computing, Victoria, May 1992.

[Sch01] S. Schwoon. Determinization and complementation of Streett automata. In Automata, Logics,
and Infinite Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer
Science, pages 79–91. Springer-Verlag, 2001.

[SV89] S. Safra and M.Y. Vardi. On ω-automata and temporal logic. In Proc. 21st ACM Symp. on
Theory of Computing, pages 127–137, Seattle, May 1989.

DETERMINIZATION OF BÜCHI AND STREETT AUTOMATA 21

[SVW85] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with
applications to temporal logic. In Proc. 10th International Colloquium on Automata, Languages
and Programming, volume 194 of Lecture Notes in Computer Science, pages 465–474, Nafplion,
July 1985. Springer-Verlag.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pages
133–191, 1990.

[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th International Coll.
on Automata, Languages, and Programming, volume 1443 of Lecture Notes in Computer Science,
pages 628–641. Springer-Verlag, July 1998.

[Wag79] K. Wagner. On ω-regular sets. Information and Control, 43:123–177, 1979.
[Yan06] Q. Yan. Lower bounds for complementation of ω-automata via the full automata technique. In

Proc. 33rd Intl. Colloq. on Automata, Languages and Pr ogramming, volume 4052 of Lecture
Notes in Computer Science, pages 589–600. Springer-Verlag, 2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Nondeterministic Automata
	3. Determinization of Büchi Automata
	3.1. Safra's Construction
	3.2. From NBW to DPW

	4. Determinization of Streett Automata
	4.1. Safra's Construction
	4.2. From NSW to DPW

	5. Conclusions and Future Work
	Acknowledgment
	References

