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Abstract. A fundamental theorem of Büchi and Landweber shows that the Church syn-
thesis problem is computable. Büchi and Landweber reduced the Church Problem to
problems about ω-games and used the determinacy of such games as one of the main
tools to show its computability. We consider a natural generalization of the Church prob-
lem to countable ordinals and investigate games of arbitrary countable length. We prove
that determinacy and decidability parts of the Büchi and Landweber theorem hold for all
countable ordinals and that its full extension holds for all ordinals < ω

ω.

1. Introduction

Two fundamental results of classical automata theory are decidability of the monadic
second-order logic of order (MLO) over ω = (N, <) and computability of the Church synthe-
sis problem. These results have provided the underlying mathematical framework for the
development of formalisms for the description of interactive systems and their desired prop-
erties, the algorithmic verification and the automatic synthesis of correct implementations
from logical specifications, and advanced algorithmic techniques that are now embodied in
industrial tools for verification and validation.

In order to prove decidability of the monadic theory of ω, Büchi introduced finite au-
tomata over ω-words. He provided a computable reduction from formulas to finite automata.

Büchi generalized the concept of an automaton to allow automata to “work” on words of
any countable length (ordinal) and used this to show that the MLO-theory of any countable
ordinal is decidable (see [BS73]).

What is known as the “Church synthesis problem” was first posed by A. Church in
[Ch63] for the case of (ω,<). The Church problem is much more complex than the decidabil-
ity problem for MLO. Church uses the language of automata theory. It was McNaughton
(see [Mc65]) who first observed that the Church problem can be equivalently phrased in
game-theoretic language.

Let α > 0 be an ordinal and let ϕ(X1,X2) be a formula, where X1 and X2 are set
(monadic predicate) variables. The McNaughton game Gαϕ is defined as follows.

(1) The game is played by two players, called Player I and Player II.
(2) A play of the game has α rounds.
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(3) At round β < α: first, Player I chooses πX1
(β) ∈ {0, 1}; then, Player II chooses

πX2
(β) ∈ {0, 1}.

(4) By the end of the play πX1
, πX2

: α→ {0, 1} have been constructed. Set

Pπ := π−1
X1

(1), Qπ := π−1
X2

(1).

(5) Then, Player I wins the play if (α,<) |= ϕ(Pπ , Qπ); otherwise, Player II wins the play.

What we want to know is: Does either one of the players have a winning strategy in Gαϕ?
If so, which one? That is, can Player I choose his moves so that, whatever way Player II
responds we have ϕ(Pπ, Qπ)? Or can Player II respond to Player I’s moves in a way that
ensures the opposite?

Since at round β < α, Player I has access only to Qπ ∩ [0, β) and Player II has access
only to Pπ ∩ [0, β], it seems that the following formalizes well the notion of a strategy in
this game:

Definition 1.1 (Causal operator). Let α be an ordinal, f : P(α) → P(α) maps the subsets
of α into the subsets of α. We call f causal (resp. strongly causal) iff for all P,P ′ ⊆ α and
β < α, if

P∩[0, β] = P ′∩[0, β] (resp. P ∩ [0, β) = P ′ ∩ [0, β)) implies f(P )∩[0, β] = f(P ′)∩[0, β] .

That is, if P and P ′ agree up to and including (resp. up to) β, then so do f(P ) and f(P ′).

So a winning strategy for Player I is a strongly causal f : P(α) → P(α) such that for
every P ⊆ α, (α,<) |= ϕ(f(P ), P ); a winning strategy for Player II is a causal f : P(α) →
P(α) such that for every P ⊆ α, (α,<) |= ¬ϕ(P, f(P )).

It is clear that if Player I has a winning strategy in Gαϕ , then α |= ∀X2∃X1ϕ. It is also
easy to see that α |= ∀X2∃X1ϕ does not imply that Player I has a winning strategy.

This leads to

Definition 1.2 (Game version of the Church problem). Let α be an ordinal. Given a
MLO-formula ϕ(X1,X2), decide whether Player I has a winning strategy in Gαϕ .

From now on, we will use “formula” for “MLO-formula” unless stated otherwise.
To simplify notations, games and the Church problem were previously defined for for-

mulas with two free variables X1 and X2. It is easy to generalize all definitions and results
to formulas ψ(X1, . . . ,Xm, Y1, . . . Yn) with many variables. In this generalization at round
β, Player I chooses values for X1(β), . . . ,Xm(β), then Player II replies by choosing values
for Y1(β), . . . , Yn(β). Note that, strictly speaking, the input to the Church problem is not
only a formula, but a formula plus a partition of its free variables to Player I’s variables
and Player II’s variables.

In [BL69], Büchi and Landweber prove the computability of the Church problem in
ω = (N, <). Even more importantly, they show that in the case of ω we can restrict
ourselves to definable strategies, that is causal (or strongly causal) operators computable
by finite state automata or, equivalently, definable in MLO . (Recall that F : P(N) → P(N)
is definable in MLO if there is an MLO formula ψ(X,Y ) such that for every P,Q ⊆ N we
have P = F (Q) iff ω |= ψ(Q,P ).)

Theorem 1.3 (Büchi-Landweber, 1969). Let ϕ(X̄, Ȳ ) be a formula, where X̄ and Ȳ are
disjoint lists of variables. Then:

Determinacy: One of the players has a winning strategy in the game Gωϕ .
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Decidability: It is decidable which of the players has a winning strategy.

Definable strategy: The player who has a winning strategy, also has a definable winning
strategy.

Synthesis algorithm: We can compute a formula ψ(X̄, Ȳ ) that defines (in ω) a winning
strategy for the winning player in Gωϕ .

After stating their main theorem, Büchi and Landweber write:

“We hope to present elsewhere a corresponding extension of [our main the-
orem] from ω to any countable ordinal.”

However, despite the fundamental role of the Church problem, no such extension is even
mentioned in a later book by Büchi and Siefkes [BS73], which summarizes the theory of
finite automata over words of countable ordinal length.

In [RS08], we provided a counter-example to a full extension of the Büchi-Landweber
theorem to α ≥ ωω. Let ϕ(Y ), ψ(Y ) be formulas and M be a structures. We say that ψ
selects (or, is a selector for) ϕ in M iff:

(1) M |= ∃≤1Y ψ(Y ) (i.e., there is at most one Y that satisfies ψ),
(2) M |= ∀Y (ψ(Y ) → ϕ(Y )), and
(3) M |= ∃Y ϕ(Y ) → ∃Y ψ(Y ).

In [RS08], we proved that for every ordinal α ≥ ωω there is an MLO formula ψα(Y ) such
that α |= ∃Y ψα; however, there is no MLO formula that selects ψα in α.

Now, consider McNaughton game of length α for ϕ(X1,X2) defined as ψα(X1)∧X2 = X2

(so, we ignore X2 and this can be considered as a one-player game). Player I cannot have
a definable strategy in Gαϕ . Indeed, if χ could define such a strategy, then ∃X2(X2 =
∅ ∧ χ) would select ψα(X1) over α. On the other hand, Player I does win this game: she
simply plays a fixed X1 that satisfies ψα(X1) over α, ignoring Player II moves. Hence, the
definability and the synthesis parts of the Büchi-Landweber theorem fail for every α ≥ ωω.
Shomrat [Sho07] proved

Theorem 1.4. The Büchi-Landweber theorem holds for an ordinal α if and only if α < ωω.

The proof in [Sho07] is very long and requires the development of an extensive game-
theoretic apparatus. Moreover, the technique of [Sho07] cannot be extended to games of
length ≥ ωω. In this article, we provide a simple proof of Theorem 1.4.

Our main results show that the determinacy and the decidability parts of the Büchi-
Landweber Theorem hold for every countable ordinal.

Theorem 1.5 (Main). Let α be a countable ordinal and ϕ(X̄, Ȳ ) be a formula.Then:

Determinacy: One of the players has a winning strategy in the game Gαϕ .

Decidability: It is decidable which of the players has a winning strategy in Gαϕ .

Our proof uses both game theoretical techniques and the “composition method” developed
by Feferman-Vaught, Shelah and others (see, e.g. [Sh75]).

The article is organized as follows. The next section recalls standard definitions about
monadic logic of order, summarizes elements of the composition method and reviews known
facts about the monadic theory of countable ordinals. In Section 3, we introduce game-types,
define games on game types and show that these game are a special case of McNaughton
games. Section 4 contains the main technical lemmas of the paper and shows that the role
of the game types is similar to the role of monadic types in the composition method. In
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Section 5, we prove that the Büchi-Landweber theorem holds in its entirety for all ordinals
α < ωω. In Sections 6 and 7, it is proved that the determinacy and decidability parts
of the Büchi-Landweber theorem hold for all countable ordinals. Section 8 provides an
MLO-characterisation of the winner and shows that for every formula ϕ(X,Y ) there exists
an MLO sentence ψ such that for every countable ordinal α: Player I wins Gαϕ iff α |= ψ.
Section 9 addresses the problem whether the winner has a definable winning strategy. We
were unable to show that this problem is decidable for ordinals ≥ ωω; however, we reduced
the decidability of this problem for countable ordinals ≥ ωω to the case of games of length
ωω. Section 10 contains a conclusion and states some open problems.

2. Preliminaries and Background

2.1. Notations and terminology. We use n, k, l,m, p, q for natural numbers and α, β, γ, δ
for ordinals. We use N for the set of natural numbers and ω for the first infinite ordinal.
We write α + β, αβ, αβ for the sum, multiplication and exponentiation, respectively, of
ordinals α and β. We use the expressions “chain” and “linear order” interchangeably.

We use P(A) for the set of subsets of A.

2.2. The Monadic Logic of Order (MLO).

2.2.1. Syntax. The syntax of the monadic second-order logic of order - MLO has in its vo-
cabulary individual (first order) variables t1, t2 . . ., monadic second-order variablesX1,X2 . . .

and one binary relation < (the order).
Atomic formulas are of the formX(t) and t1 < t2. Well formed formulas of the monadic

logic MLO are obtained from atomic formulas using Boolean connectives ¬,∨,∧,→ and the
first-order quantifiers ∃t and ∀t, and the second-order quantifiers ∃X and ∀X. The quantifier
depth of a formula ϕ is denoted by qd(ϕ).

We use upper case letters X, Y , Z,... to denote second-order variables; with an overline,
X̄, Ȳ , etc., to denote finite tuples of variables.

2.2.2. Semantics. A structure is a tuple M := (A,<M, P̄M) where: A is a non-empty set,
<M is a binary relation on A, and P̄M :=

(

PM
1 , . . . , PM

l

)

is a finite tuple of subsets of A.

If P̄M is a tuple of l sets, we call M an l-structure. If <M linearly orders A, we call
M an l-chain.

Suppose M is an l-structure and ϕ a formula with free-variables among X1, . . . ,Xl.
We define the relation M |= ϕ (read: M satisfies ϕ) as usual, understanding that the
second-order quantifiers range over subsets of A.

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of all formulas
with free-variables among X1, . . . ,Xl satisfied by M.

From now on, we omit the superscript in ‘<M’ and ‘P̄M’. We often write (A,<) |= ϕ(P̄ )
meaning (A,<, P̄ ) |= ϕ.

Definition 2.1 (MLO Definable Function). Let M := (A,<) be a chain. A function F :
P(A)n → P(A)m isMLO-definable inM if there is anMLO formula ϕ(X1, . . . ,Xn, Y1, . . . , Ym)
such that M |= ϕ(P1, . . . , Pn, Q1, . . . Qm) iff (Q1, . . . , Qm) = F (P1, . . . , Pn).
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2.3. Elements of the composition method. Our proofs make use of the technique
known as the composition method developed by Feferman-Vaught and Shelah [FV59, Sh75].
To fix notations and to aid the reader unfamiliar with this technique, we briefly review the
definitions and results that we require. A more detailed presentation can be found in [Th97]
or [Gu85].

2.3.1. Hintikka formulas and n-types. Let n, l ∈ N. We denote by Formn
l the set of formulas

with free variables among X1, . . . ,Xl and of quantifier depth ≤ n.

Definition 2.2. Let n, l ∈ N and let M,N be l-structures. The n-theory of M is

Thn(M) := {ϕ ∈ Formn
l | M |= ϕ}.

If Thn(M) = Thn(N ), we say that M and N are n-equivalent and write M ≡n N .

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set Formn
l

is infinite. However, it contains only finitely many semantically distinct formulas. So,
there are finitely many ≡n-equivalence classes of l-structures. In fact, we can compute
characteristic sentences for the ≡n-classes:

Lemma 2.3 (Hintikka Lemma). For n, l ∈ N, we can compute a finite set Charnl ⊆ Formn
l

such that:

• For every ≡n-equivalence class A there is a unique τ ∈ Charnl such that for every l-
structure M: M ∈ A iff M |= τ .

• Every MLO formula ϕ(X1, . . . Xl) with qd(ϕ) ≤ k is equivalent to a (finite) disjunction
of characteristic formulas from Charkl . Moreover, there is an algorithm which for every

formula ϕ(X1, . . . Xl) computes a finite set G ⊆ Char
qd(ϕ)
l of characteristic formulas,

such that ϕ is equivalent to the disjunction of all the formulas in G.

Any member of Charkl we call a (k, l)-Hintikka formula or (k, l)-characteristic formula. We
use τ , τi, τ

j to range over the characteristic formulas and G,Gi, G
′ to range over sets of

characteristic formulas.

Definition 2.4 (n-Type). For n, l ∈ N and an l-structure M, we denote by typen(M) the
unique member of Charnl satisfied by M and call it the n-type of M.

Thus, typen(M) determines Thn(M) and, indeed, Thn(M) is computable from typen(M).

2.3.2. The ordered sum of chains and of n-types.

Definition 2.5.

(1) Let l ∈ N, I := (I,<I) a chain and S := (Mα | α ∈ I) a sequence of l-chains. Write
Mα := (Aα, <

α, P1
α, . . . , Pl

α) and assume that Aα ∩ Aβ = ∅ whenever α 6= β are in I.
The ordered sum of S is the l-chain

∑

I

S := (
⋃

α∈I

Aα, <
I,S,

⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α),

where:

if α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <
I,S a iff β <I α or β = α and b <α a.

If the domains of the Mα’s are not disjoint, replace them with isomorphic l-chains that
have disjoint domains, and proceed as before.
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(2) If for all α ∈ I, Mα is isomorphic to M for some fixed M, we denote
∑

I S by M×I.
(3) If I = ({0, 1}, <) and S = (M0,M1), we denote

∑

I S by M0 +M1.

The next proposition says that taking ordered sums preserves ≡n-equivalence.

Proposition 2.6. Let n, l ∈ N. Assume:

(1) (I,<I) is a linear order,
(2)

(

M0
α | α ∈ I

)

and
(

M1
α | α ∈ I

)

are sequences of l-chains, and

(3) for every α ∈ I, M0
α ≡n M1

α.

Then,
∑

α∈I M
0
α ≡n

∑

α∈I M
1
α.

This allows us to define the sum of formulas in Charnl with respect to any linear order.

Definition 2.7.

(1) Let n, l ∈ N, I := (I,<I) a chain, H := (τα | α ∈ I) a sequence of (n, l)-Hintikka
formulas. The ordered sum of H, (notations

∑

I H or
∑

α∈I τα), is an element τ of
Charnl such that:
if S := (Mα | α ∈ I) is a sequence of l-chains and typen(Mα) = τα for α ∈ I, then

typen(
∑

I

S) = τ.

(2) If for all α ∈ I, τα = τ for some fixed τ ∈ Charnl , we denote
∑

α∈I τα by τ × I.
(3) If I = ({0, 1}, <) and H = (τ0, τ1), we denote

∑

α∈I τα by τ0 + τ1.

The following fundamental result of Shelah can be found in [Sh75]:

Theorem 2.8 (Composition Theorem). Let ϕ(X1, . . . ,Xl) be a formula, let n = qd(ϕ) and
let {τ1, . . . , τm} = Charnl . Then, there is a formula ψ(Y1, . . . , Ym) such that for every chain
I = (I,<I) and a sequence (Mα | α ∈ I) of l-chains the following holds:

∑

α∈I

Mα |= ϕ iff I |= ψ(Q1, . . . Qm), where Qj = {α ∈ I : Mα |= τj} .

Moreover, ψ is computable from ϕ.

We are usually interested in cases (2) and (3) of the Definition 2.7. The following
Theorems are important consequences of the Composition Theorem:

Theorem 2.9 (Addition Theorem). The function which maps the pairs of characteristic
formulas to their sum is a recursive function. Formally, the function λn, l ∈ N.λτ0, τ1 ∈
Charnl .τ0 + τ1 is recursive.

Theorem 2.10 (Multiplication Theorem). Let I be a chain. The function λn, l ∈ N.λτ ∈
Charnl .τ × I is recursive in the monadic theory of I.

2.4. The monadic theory of countable ordinals. Büchi (see, e.g., [BS73]) has shown
that there is a finite amount of data concerning any countable ordinal that determines its
monadic theory.
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Definition 2.11 (Code of an ordinal). Let α > 0 be a countable ordinal. Write α = ωωβ+ζ
where ζ < ωω (this can be done in a unique way). If ζ 6= 0, write

ζ =
∑

i≤n

ωn−i · an−i ,where ai ∈ N for i ≤ n and an 6= 0

(this, too, can be done in a unique way).
Define Code(α) as

Code(α) :=







(0, an, . . . , a0) if γ = 0
(1, an, . . . , a0) if γ 6= 0 and ζ 6= 0
〈1〉 otherwise, i.e., if γ 6= 0 and ζ = 0

.

The following is implicit in [BS73]:

Theorem 2.12 (Code Theorem). There is an algorithm that, given a sentence ϕ and the
code of an ordinal α, determines whether (α,<) |= ϕ.

3. Game types

Recall that Charn2 is the set of characteristic formulas of the quantifier depth n with
free variables among {X1,X2}.

For G ⊆ Charn2 we denote by GαG, the McNaughton game Gαϕ , where ϕ is the disjunction
of all formulas in G.

By Lemma 2.3, for every formula ϕ(X1,X2) of quantifier depth n there is G ⊆ Charn2
such that ϕ is equivalent to the disjunction of all formulas from G. Moreover, G is com-
putable from ϕ. Hence, in order to show that every McNaughton game of length α is
determinate, it is enough to show that for every n and G ⊆ Charn2 , the game GαG is deter-
minate. Moreover, if it is decidable who wins the games of the form GαG, then it is decidable
who wins Gαϕ games.

Definition 3.1 (Game Types). Let n ∈ N.

Game type of ordinal: For an ordinal α: game-typen(α) is defined as

{G ⊆ Charn2 | Player I wins GαG} .

Formal game-type: A formal n-game-type is an element1 of P(P(Charn2 )).

Let α be an ordinal, C be a formal n-game-type and G ⊆ Charn2 . We consider the
following α-game Gameα(C,G).

Gameα(C,G): The game has α rounds and it is defined as follows:
Round i:
• Player I chooses Gi ∈ C.
• Player II chooses τi ∈ Gi.

Winning conditions: Let τi (i ∈ α) be the sequence that appears in the play. I wins
the play if Σi∈ατi ∈ G.

The following lemma is immediate:

Lemma 3.2. If C1 ⊆ C2, G1 ⊆ G2 and I wins Gameα(C1, G1), then I wins Gameα(C2, G2).

1recall that P(A) stands for the set of subsets of A
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As a consequence of Theorem 2.8 and Theorem 1.3 we obtain the following lemma
which will play a prominent role in our proofs:

Lemma 3.3.

(1) The game Gameω(C,G) is determinate.
(2) It is decidable which of the players wins Gameω(C,G).

Proof. We provide a reduction from Gameα(C,G) to a McNaughton game.
Let {τ1, . . . , τm} = Charn2 . For every G

′ ⊆ Charn2 :

• Let J(G′) := {j | τj ∈ G′}.
• Let ϕG′(X1,X2) be

∨

τ∈G′ τ - the disjunction of all formulas from G′.
• Let ψG′(Y1, . . . , Ym) be constructed from ϕG′ as in the Composition Theorem (Theorem
2.8).

Let C = {G1, . . . , Gk}. Define formula ϕC,G(X1, . . . ,Xk, Y1, . . . , Ym) as the disjunction of

(1) For all t exactly one of Xi(t) (i = 1, . . . , k) holds and ψG(Y1, . . . Ym).
(2) There is t such that not exactly one of Yj(t) holds.
(3) There is t and i ∈ {1, . . . , k} such that Xi(t) and ¬

∨

j∈J(Gi)
Yj(t).

Consider the McNaughton game GαϕC,G
. The second disjunct forces Player II at each round

to assign the value 1 exactly to one of Yj, and the third disjunct forces Player II to reply
to the choice of Xi of Player I by choosing Yj such that τj ∈ Gi. It is clear that Player I
(respectively, Player II) has a winning strategy in Gameα(C,G) iff Player I (respectively,
Player II) has a winning strategy in GαϕC,G

.

Therefore, by the Büchi-Landweber theorem, Gameω(C,G) is determinate, and it is
decidable whether I wins Gameω(C,G).

4. Addition and Multiplication Lemmas for Game Types

This section contains the main technical lemmas of this paper. In particular, the role
of game types in Lemma 4.1 and Lemma 4.4 is similar to the role of the monadic types in
the Addition and Multiplication theorems.

We say that an ordinal α is determinate if for every MLO formula ϕ, one of the player
has a winning strategy in Gαϕ .

In the next lemma and throughout this section we often use “α-game with a winning
condition G” for the McNaughton game Gαϕ , where ϕ = ∨τ∈Gτ ; recall that this game is also
denoted by GαG (see beginning of Section 3).

Lemma 4.1. Let β be an ordinal, Cβ = game-typen(β) and G be a formal n-game-type.
For every Gi ∈ Cβ, let K(Gi, G) = {τ ∈ Charn2 | ∀τ ′ ∈ Gi(τ + τ ′ ∈ G)}. Let K(Cβ, G) =
∪Gi∈Cβ

K(Gi, G). If α and β are determinate, then:

A: If Player I wins the α-game with winning condition K(Cβ , G), then Player I wins the
α+ β-game with winning condition G.

B: If Player I cannot win the α-game with winning condition K(Cβ, G), then Player II
wins the α+ β-game with winning condition G.

Proof. (A) Assume that Player I has a winning strategy Fα for the α-game with winning
condition K(Cβ , G). He plays the first α rounds according to the strategy Fα. Assume
that after α rounds the play satisfies τ ∈ K(Cβ, G). Then there is Gi ∈ Cβ such that
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τ ∈ K(Gi, G). Player I plays the next β rounds according to a winning strategy Fβ,Gi
for

the β game with winning condition Gi. (Such a winning strategy exists, by definition of Cβ.)
Hence during these β rounds τi ∈ Gi is realized. The type of the play will be τ + τi ∈ G.
Hence, Player I wins the α+ β-game with winning condition G.

(B) Now assume that Player I cannot win the α-game with winning condition K(Cβ , G).
Then, by determinacy of α games, Player II has a winning strategy for this game. Let him
play the first α rounds according to this winning strategy. Let τ 6∈ K(Cβ, G) be the type
reached after α rounds.

Let Gτ = {τ ′ : τ + τ ′ ∈ G}. We claim that Player II wins the β-game for Gτ . Indeed,
if he cannot win this game, then, by determinacy of β games, Player I wins it, i.e., Gτ ∈ Cβ,
and hence, τ ∈ K(Cβ, G). Contradiction

The next β rounds Player II can play according to his winning strategy for Gτ . This
will ensure that the type τ ′ of this β-play is not in Gτ . Hence, the type of the entire play
is τ + τ ′ 6∈ G.

Hence, Player II wins the α+ β game for G.
This completes the proof of (A) and (B).

As an immediate consequence, we obtain the following Theorem:

Theorem 4.2. If α and β are determinate, then

(1) α+ β is determinate.
(2) game-typen(α+ β) is computable from game-typen(α) and game-typen(β).

Proof.

(1) is an immediate consequence of Lemma 4.1.
(2) Assume Cα = game-typen(α) and Cβ = game-typen(β). To check whether G ∈

game-typen(α + β), first compute K(Cβ, G) and then check whether K(Cβ , G) ∈ Cα.
Lemma 4.1 implies that G ∈ game-typen(α+ β) iff K(Cβ, G) ∈ Cα.

The above theorem allows us to define the addition of n-game types for determinate ordinals.
We will use “+” for the addition of game types.

Recall that an ordinal α is definable if there is a sentence θα such that for every chain
M = (A,<): M |= θα iff M is isomorphic to α.

From the proof of Lemma 4.1 we deduce the following variant of Theorem 4.2 for
definable strategies:

Lemma 4.3. Assume that α is definable and in every game of length α or β one of the
players has a definable winning strategy. Then in every α+ β game one of the players has
a definable winning strategy. Moreover, if there are algorithms which for every ϕ compute

a definable winning strategy for Gαϕ and Gβϕ, then there is an algorithm that computes a

definable winning strategy for Gα+βϕ .

Proof. Let G ⊆ Charn2 . We will construct a definable winning strategy for Gα+βG . We use
here the notations of Lemma 4.1. As shown there, if Player I has a winning strategy in

Gα+βG , then the following strategy F is winning for Player I:

(1) F plays the first α rounds according to a winning strategy in Gα
K(Cβ ,G).

(2) If after α rounds the play satisfies τ ∈ K(Gi, G), then the last β steps F plays according

to a winning strategy in GβGi
.
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For τ ∈ K(Cβ , G), we denote by iτ the minimal i such that τ ∈ Gi. Now assume that
ψ(X1,X2) defines a winning strategy for Gα

K(Cβ ,G) and χi(X1,X2) defines a winning strategy

for GβGi
, and θα defines the ordinal α. Then the formula

∃t
(

θ<tα ∧ ψ<t ∧
∧

τ∈K(Cβ ,G)

(τ<t → χ≥t
iτ
)
)

defines a winning strategy described above. (Here, for a variable t which does not occur
free in ϕ, we denote by ϕ<t the formula obtained from ϕ by relativizing all first order
quantifiers to < t, i,e. by replacing “∀u(. . . )” by “∀u(u < t → . . . )”. The formula ϕ≥t is
defined similarly.)

The case when Player II has a winning strategy is treated similarly.

Lemma 4.4. Let n ∈ N, let (αi : i ∈ ω) be an ω-sequence of ordinals and let C ⊆
P(Charn2 ) be a formal n-game type. Assume that for every i:

(1) For every G ⊆ Charn2 , the αi game for G is determinate.
(2) C = game-typen(αi).

Then

A: If Player I wins Gameω(C,G), then Player I wins the
∑

αi-game for G.

B: If Player I cannot win Gameω(C,G), then Player II wins the
∑

αi-game for G.

C: For every G ⊆ Charn2 , the
∑

αi game for G is determinate.

D: G ∈ game-typen(
∑

αi) iff Player I wins Gameω(C,G).

Proof. (A) Let F be a winning strategy for Player I in Gameω(C,G). Consider the following
strategy for Player I

First α0 Rounds: Let G0 ∈ C be the first move of Player I according to F . Player I
will play the first α0 rounds according to the his winning strategy in the α0-game for G0.

Let π0 be a play according to this strategy and let τ0 = typen(π0). Note that τ0 ∈ G0

and a (partial) play G0τ0 is consistent with F .

Next αi+1 Rounds: Let Gi+1 ∈ C be the move of Player I according to F after
G0τ0 . . . Giτi. Player I will play the next αi+1 rounds according to his winning strat-
egy in the αi+1-game for Gi+1.

Let πi+1 be a play according to this strategy during these αi+1 rounds.
Let τi+1 = typen(πi+1). Note that τi+1 ∈ Gi+1 and the play G0τ0, . . . , Gi+1τi+1 is

consistent with F .

typen(π0 . . . πi . . . ) = Στi is in G, because the play G0τ0, . . . , Giτi, . . . is consistent with the
winning strategy F of Player I in Gameω(C,G). Hence, the described strategy is a winning
strategy for Player I in the

∑

αi game for G.
Now let us prove (B). Assume that Player I has no winning strategy in Gameω(C,G).

By Lemma 3.3 this game is determinate. Hence, Player II has a winning strategy F2 for
Gameω(C,G).

We show that the following strategy of Player II is winning in the
∑

αi game for G

First α0 Rounds: For every D ∈ C let τD be the response of Player II according to F2

to the first move D of Player I in Gameω(C,G).
Let H0 = {τD : D ∈ C}. We claim that Player II has a winning strategy in the

α0-game for ¬H0 - the complement of H0, i.e., for Char
n
2 \H0. Indeed, if he has no such
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strategy, then, by determinacy of α0, Player I has a winning strategy for ¬H0. Therefore,
¬H0 ∈ C. Let τ = F2(¬H0). Then τ ∈ ¬H0 and τ ∈ H0. Contradiction.

The first α0 rounds Player II will play according to his winning strategy for ¬H0.
Let π0 be a play according to this strategy and let τ0 = typen(π0). Note that τ0 ∈ H0.

Let G0 be such that τ0 = F2(G0). The (partial) play G0τ0 is consistent with F2.

Next αi+1 Rounds: For every D ∈ C let τD be the response of Player II according to
F2 to G0τ0 . . . GiτiD. (F2 is defined because G0τ0 . . . GiτiD is a play according to F2 for
every D ∈ C.) Let Hi+1 = {τD | D ∈ C}. We claim that Player II has a winning strategy
in αi+1 game for ¬Hi+1. (The arguments are the same as the arguments which show that
Player II has a winning strategy for ¬H0.)

The next αi+1 rounds Player II will play according to his winning strategy for ¬Hi+1.
Let πi+1 be a play according to this strategy and let τi+1 = typen(πi+1). Note

that τi+1 ∈ Hi+1. Let Gi+1 be such that τi+1 = F2(G0τ0 . . . GiτiGi+1). The play
G0τ0 . . . Gi+1τi+1 is consistent with F2.

typen(π0 . . . πi . . . ) = Στi is not in G, because the play G0τ0 . . . Giτi . . . is consistent with
the winning strategy F2 of Player II in Gameω(C,G). Hence, the described strategy is a
winning strategy for Player II in

∑

αi game for G.
(C) and (D) are immediate consequences of (A) and (B).

As a consequence of Lemma 4.4 and Lemma 3.3 we obtain the following Theorem:

Theorem 4.5. Assume α is determinate. Then

(1) α× ω is determinate.
(2) game-typen(α× ω) is computable from game-typen(α).

From the proof of Lemma 4.4, by arguments similar to those in the proof of Lemma
4.3, we deduce the following variant of Theorem 4.5 for definable strategies:

Lemma 4.6. Assume that α is definable and in every game of length α one of the players
has a definable winning strategy. Then in every α × ω game one of the players has a
definable winning strategy. Moreover, if there is an algorithm which for every ϕ computes
a definable winning strategy for Gαϕ , then there is an algorithm that computes a definable

winning strategy for Gα×ωϕ .

Note that Theorem 4.5 allows to define the multiplication by ω of n-game types for
determinate ordinals. The following Lemma allows to define ω-sums of n-game types of
determinate ordinals. It is an analog of Proposition 2.6 for game types.

Lemma 4.7. Let n ∈ N. Assume that

(1) ᾱ = (αi : i ∈ ω) and β̄ = (βi : i ∈ ω) are ω-sequences of determinate ordinals and
(2) game-typen(αi) = game-typen(βi) for every i ∈ N.

Then game-typen(
∑

αi) = game-typen(
∑

βi) and the ordinals
∑

αi and
∑

βi are determi-
nate.

The proof of Lemma 4.7 can be derived from Lemmas 4.1, 4.4 and the Ramsey theorem.
Its proof is omitted, since we won’t use this lemma in the sequel.
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5. Büchi-Landweber theorem holds for α < ωω

In this section we provide a simple proof of Shomrat’s theorem [Sho07] which extends
the Büchi-Landweber theorem to all ordinals α < ωω.

Theorem 5.1. Let α < ωω and ϕ(X,Y ) be a formula. Then:

Determinacy: One of the players has a winning strategy in the game Gαϕ .

Decidability: It is decidable which of the players has a winning strategy.

Definable strategy: The player who has a winning strategy also has a definable winning
strategy.

Synthesis algorithm: We can compute a formula ψ(X,Y ) that defines (in (α,<)) a
winning strategy for the winning player in Gαϕ .

Proof. Note that every ordinal α < ωω is definable. Games of length one have definable
winning strategies.

First, prove by the induction on n ∈ N that the theorem holds for α = ωn. The base
α = 1 is trivial. For the inductive step use Lemma 4.6.

Next, by Lemma 4.3, we obtain that the theorem is true for every α of the form
ωmnm + ωm−1nm−1 + . . .++ω0n0, where m,ni ∈ N.

Finally, note that every α < ωω is equal to ωmnm+ωm−1nm−1+ . . .++ω0n0, for some
k, ni ∈ N.

In [RS08] we proved that for every α ≥ ωω there is a formula ψα such that Player I wins
Gαψα

; however, he has no definable winning strategy in this game, i.e., the definability part
of the Büchi-Landweber theorem fails for every α ≥ ωω. Therefore, the Büchi-Landweber
theorem holds for α iff α < ωω.

6. Determinacy

Theorems 4.2 and 4.5 imply that the set of determinate ordinals is closed under ad-
dition and multiplication by ω. In this section, we prove that every countable ordinal is
determinate. First, let us show the following Lemma:

Lemma 6.1. ωα is determinate for every countable α.

Proof. By Induction on α.
The basis: α = 0 is immediate.
The case of successor follows from Lemma 4.5(1).
Assume that α is a countable limit ordinal. In this case α = limi∈N βi, where βi < α is

an increasing ω-sequence.
We are going to show that for every n ∈ N and every G ⊆ Charn2 , the ω

α game for G
is determinate.

For every n, the set P(Charn2 ) is finite. Therefore, there is C and an increasing ω-
subsequence γi of βi such that

C = game-typen(ω
γi) for every i.

Let αi = ωγi . By the inductive assumption αi are determinate. Therefore, by Lemma
4.4(C) and the equation above, for every G ⊆ Charn2 , the

∑

αi game for G is determinate.
Note that

∑

αi =
∑

ωγi = ωlim γi = ωlimβi = ωα. Hence, for every n ∈ N and every
G ⊆ Charn2 , the ω

α game for G is determinate. Therefore, ωα is determinate.
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Theorem 6.2. Every countable ordinal is determinate.

Proof. Every ordinal has a Cantor Normal Form representation ωα1n1+ω
α2n2+· · ·+ωαknk,

where k, ni ∈ N. Hence, by Lemmas 6.1 and 4.2, every countable ordinal is determinate.

7. Decidability

Lemma 7.1. For every n ∈ N there ism ∈ N such that game-typen(ω
m) = game-typen(ω

m×
α) for every countable ordinal α > 0. Moreover, m is computable from n.

Proof. The proof is similar to the proof of Theorem 3.5(B) in [Sh75]. For every ordinal α,
let us write t(α) for game-typen(α). By Lemma 4.5 there is a multiplication by ω operation
on the game-types of determinate ordinals. We denote it by ×ω; for every determinate
ordinal α if C = t(α), then C × ω is t(αω)). The multiplication by ω operation is even
computable by Lemma 4.5. Moreover, If all αi (i ∈ ω) are determinate and C = t(αi) for
all i ∈ ω and fixed C, then t(

∑

αi) = C × ω.
Let m := |P(P(Charn2 ))|, i.e., the number of possible formal n-game types. We are

going to show that this m satisfies the Lemma.
We first show that there is a p < m such that t(ωp) = t(ωp+1).
By the pigeon-hole principle, there are q < r ≤ m such that t(ωq) = t(ωr). Moreover,

by Theorem 4.5 we may compute such q and r. If r = q + 1, our claim is proved for p = q,
so assume r ≥ q + 2. We will show that p = q + 1 works. By Theorem 4.5(2),

t(ωq+2) = t(
∑

i∈N

(ωq+1 + ωq)) =
(

t(ωq+1 + ωq)
)

× ω =

(

t(ωq+1) + t(ωq)
)

× ω =
(

t(ωq+1) + t(ωr)
)

× ω =
(

t(ωq+1 + ωr)
)

× ω.

But, q + 1 < r, so ωq+1 + ωr = ωr. Thus, indeed,

t(ωq+2) = t(ωr)× ω = t(ωq)× ω = t(ωq+1).

Next, we show that any p, as above, will satisfy the claim of the lemma, i.e., t(ωp) =
t(ωpα) for every countable α > 0. First, note that

t(ωp) + t(ωp) = t(ωp) + t(ωp+1) =
(⋆⋆)

t(ωp + ωp+1) = t(ωp+1) = t(ωp).

Now, by induction on countable α > 1, we prove t(ωp ·α) = t(ωp). Assume α is a successor,
say, α = β + 1. If β = 0, there is nothing to prove. Assume β > 0.

t(ωpα) = t(ωpβ + ωp) = t(ωpβ) + t(ωp) = t(ωp) + t(ωp)
(⋆⋆)
= t(ωp).

Finally, assume that α is a limit ordinal. Then there is an increasing ω-sequence
(αi : i ∈ ω) such that α = limαi. Hence,

ωp × α = lim(ωp × αi) =
∑

ωp(αi+1 − αi). (7.1)

By the inductive assumption t(ωp) = t(ωp× (αi+1−αi)). Hence, t(ω
p+1) = t(ωp)×ω =

t(
∑

i∈ω ω
p × (αi+1 − αi)) = t(ωpα), by Lemma 4.4. Since t(ωp) = t(ωp+1), we derive that

t(ωp) = t(ωp × α).
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Recall that m := |P(P(Charn2 ))| ≥ q + 1 = p. Therefore, t(ωm) = t(ωpωm−p) =
t(ωpωm−p+1) = t(ωm+1). Hence, m satisfies the lemma.

Let n ∈ N and let m = m(n) ∈ N be computable from n as in Lemma 7.1. Every ordinal
α > 0 has a unique representation of the form α = ωmγ + ωm−1n1 + ωm−2n2 + · · ·+ ω0nm,
where ni ∈ N. Define Coden(α) as

Coden(α) :=

{

(0, n1, n2, . . . , nm) if γ = 0
(1, n1, n2, . . . , nm) otherwise

.

Theorem 7.2 (Decidability). There is an algorithm that given a formula ϕ(X1,X2) and the
Codeqd(ϕ)(α) of a countable ordinal α > 0, determines which of the players has a winning
strategy in Gαϕ .

Proof. By Lemma 7.1, we have that game-typen(ω
m) = game-typen(ω

m×γ) for every γ > 0.
Therefore, by Lemma 4.2, if Coden(α) = Coden(β), then game-typen(α) = game-typen(β).

Hence, for an input ϕ and Codeqd(ϕ)(α) = (n0, n1, n2, . . . , nm) it is enough to decide

which of the players wins the Gω
mn0+ωm−1n1+···+ω0nm

ϕ . This is decidable by Theorem 5.1.

8. MLO Characterisation of the Winner

In this section we show that for every formula ϕ(X,Y ) there exists an MLO sentence
ψ such that for every countable ordinal α: Player I wins Gαϕ iff α |= ψ.

Our proof refines the proof of Theorem 7.2. For every n ∈ N we will define a mapping
gcoden which assigns to every countable ordinal a code (game code). Then, we show that
(1) the gcoden(α) determines the game-typen(α) (2) for every code c in the range of gcoden,
the set Ac := {α | gcoden(α) = c} is definable by an MLO sentence and (3) the range of
gcoden is a finite set. From (1)-(3) it will be easy to show that the set of countable ordinals
for which Player I has a winning strategy in Gαϕ is MLO definable.

Let α = ωmn0 + ωm−1n1 + ωm−2n2 + · · · + ω0nm. Theorem 7.2 shows that in order
to determine game-typen(α) we do not have to know the coefficients of the ωi for every
sufficiently large i. The next Lemma will imply that in order to determine game-typen(α)
we do not need to know the precise value of the coefficients ni, even for small values of i.
It is sufficient to know these coefficients modulo a number which depends on n.

Recall that αn denotes the multiplication of the ordinal α by n.

Lemma 8.1. For every n ∈ N there is p ∈ N such that if n1 > n2 ≥ p and n1 = n2 mod p,
then game-typen(αn1) = game-typen(αn2) for every ordinal α > 0. Moreover, p is com-
putable from n.

Proof. For every ordinal α, let us write t(α) for game-typen(α).
Let m := |P(P(Charn2 ))|, i.e., the number of possible formal n-game types.
By the pigeon-hole principle, there are q < r ≤ m + 1 such that t(αq) = t(αr). By

Theorem 4.2, for every n:

t(α(n+ q)) = t(αn) + t(αq) = t(αn) + t(αr) = t(α(n + r))

Therefore, if n1 > n2 ≥ q and n1 is equal to n2 modulo r − q, then t(αn1) = t(αn2). Note
that q and r depend on α. However, if we define p := (m + 1)!, then this p satisfies the
lemma.
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Now we are ready to define gcoden. Let n ∈ N and let p = p(n) ∈ N be computable
from n as in Lemma 8.1. Let trunn : N → N be defined as

trunn(k) :=

{

k if k < p

p+ (k mod p) otherwise
.

Let m = m(n) ∈ N be computable from n as in Lemma 7.1. Every ordinal α > 0 has a
unique representation of the form α = ωmγ+ωm−1n1+ω

m−2n2+ · · ·+ω0nm, where ni ∈ N.
Define gcoden(α) as

gcoden(α) :=

{

(0, trunn(n1), trunn(n2), . . . , trunn(nm)) if γ = 0
(1, trunn(n1), trunn(n2), . . . , trunn(nm)) otherwise

.

(Hence, the tuple gcoden(α) is obtained from Coden(α) by applying truncn pointwise.)
By Theorem 4.2, Lemma 7.1 and Lemma 8.1 it follows that game-typen(α) is determinate
by gcoden(α). Moreover, by a proof similar to the proof of Theorem 7.2, we obtain the
following result:

Lemma 8.2 (Game Code Lemma). There is an algorithm that given a formula ϕ(X1,X2)
and the gcodeqd(ϕ)(α) of a countable ordinal α > 0, determines which of the players has a
winning strategy in Gαϕ .

Lemma 8.3. For every c in the range of gcoden there is a sentence ψc such that α |= ψc
iff gcoden(α) = c.

Proof. (Sketch) For every i ∈ N there is an MLO formula Multωi(X) which says that X
is a subset of the order type ωiγ for an ordinal γ > 0. For every k < p ∈ N there is an
MLO formula Modp,k(X,Y ) which says that X contains k mod p occurrences of Y . Using
these formulas it is not difficult to formalize the definition of gcoden and to write a desirable
formula ψc.

Now we are ready to provide an MLO characterization of the winner.

Theorem 8.4. There is an algorithm that given a formula ϕ(X1,X2) computes a sentence
Winϕ such that for every countable ordinal α: Player I wins Gαϕ if and only if α |=Winϕ.

Proof. Let n be the quantifier depth of ϕ. Let Cϕ be defined as

Cϕ := {c is a gcoden | Player I wins Gαϕ if gcoden(α) = c}

Since the range of gcoden is finite, the set Cϕ is finite and computable by Lemma 8.2. For
every c ∈ Cϕ compute ψc as in Lemma 8.3. Hence, Winϕ defined as

Winϕ :=
∨

c∈Cϕ

ψc

satisfies the lemma.
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9. Synthesis Problem

Let α be an ordinal. In this section we address the following synthesis problem:

Problem Synth(α):
Input: a formula ϕ(X1,X2),
Task: decide whether one of the players has a definable winning strategy in Gαϕ , and if
so, construct ψ which defines his winning strategy.

The decidability version of the synthesis problem for α requires only to decide whether one
of the players has a definable winning strategy in Gαϕ (but does not output it). We will
denote this version by Dsynth(α).

By Theorem 5.1, these problems are computable for α < ωω. Note Dsynth(α) is trivial
for α < ωω, because for these ordinals the winning player has a definable winning strategy.

As mentioned in the introduction, for every α ≥ ωω there is a formula ψα such that
Player I wins Gαψα

; however, he has no definable winning strategy. Therefore, Dsynth(α) is
non-trivial for α ≥ ωω.

Unfortunately, we were unable to show that the synthesis problems are computable for
every countable ordinal. However, we show here that a crucial ordinal is ωω.

First, note

Lemma 9.1. There is an algorithm which for formulas ψ(X1,X2) and ϕ(X1,X2) constructs

sentences Winϕ,ψI and Winϕ,ψII such that for every ordinal α:

(1) α |= Winϕ,ψI iff ψ defines a winning strategy for Player I in Gαϕ .

(2) α |= Winϕ,ψII iff ψ defines a winning strategy for Player II in Gαϕ .

Proof. Winϕ,ψI is the conjunction of the sentence that says that ψ defines a strongly causal
operator and the sentence ∀X2X1ψ(X1,X2) → ϕ(X1,X2).

Winϕ,ψII is defined similarly.

Recall (see Section 2.4) that the monadic theory of a countable ordinal α is definable
from Code(α). From Lemma 9.1 we deduce:

Lemma 9.2.

(1) The problems Synth(α) and Dsynth(α) are recursive in each other.
(2) If Code(α1)=Code(α2), then the problems Synth(α1) and Synth(α2) are equivalent, and

the problems Dsynth(α1) and Dsynth(α2) are equivalent.

Proof.

(1) It is clear that Dsynth(α) is recursive in Synth(α). We will show that Synth(α) is
recursive in Dsynth(α). Let ψ1, . . . ψi . . . be a recursive enumeration of all formulas.
Let ϕ be an input for Synth(α). First, check Dsynth(α) on input ϕ. If the answer is
“No”, then neither of the players has a definable winning strategy. If the answer is
“Yes”, then for i = 1, . . . use Lemma 9.1 and Theorem 2.12 to verify whether ψi is a
definable winning strategy for one of the players. When such ψi is found, output it and
terminate. The correctness of the reduction is immediate.

(2) If Code(α1)=Code(α2), then by Theorem 2.12, α1 and α2 satisfy the same monadic
sentences. Hence, by Lemma 9.1, ψ is a definable winning strategy in Gα1

ϕ iff ψ is a
definable winning strategy in Gα2

ϕ .
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The following lemma provides a reduction from Dsynth(α) to Dsynth(ωω). Hence,
Synth(α) is reducible to Synth(ωω).

Lemma 9.3. There is an algorithm that given the Code(α) of a countable α > ωω and
ϕ1(X1,X2) constructs ϕ2(X1,X2) such that a player has a definable winning strategy in
Gω

ω

ϕ2
iff he has a definable winning strategy in Gαϕ1

.

Proof. Let α = ωωα′+β with β < ωω (this can be done in a unique way), and let α1 = ωω+β.
Code(α)=Code(α1), therefore, by lemma 9.2, ψ defines a winning strategy in Gαϕ1

iff it
defines a winning strategy in Gα1

ϕ1
.

Let n be the quantifier depth of ϕ1. Compute G ⊆ Charn2 such that ϕ1 is equivalent to
the disjunction of formulas from G. Let Cβ and K(Cβ , G) be defined as in Lemma 4.1. Let
ϕ2 be the disjunction of formulas from K(Cβ, G). Note that ϕ2 is computable from code(α)
and ϕ1.

We claim that ϕ2 satisfies the conclusion of the Lemma.

Indeed, from the proof of Lemma 4.1, it follows that if F is a winning strategy in Gω
ω+β

ϕ1
,

then its first ωω rounds is a winning strategy Gω
ω

K(Cβ ,G) = Gω
ω

ϕ2
.

Assume that ψ(X1,X2) defines F in ωω+β. We are going to construct ψ2 which defines
in ωω the strategy F1 which plays F first ωω rounds.

Let ∆ = {(τ, τ ′) ∈ Charn2×Charn2 : τ+τ ′ → ψ}. Define ∆1 as ∆1 := {τ : ∃τ ′ : (τ, τ ′) ∈
∆ and β |= ∃X1X2τ

′}. Note that ∆ and ∆1 are computable.
From Theorem 2.9, it follows that the disjunction of formulas from ∆1 defines F1.
For the other direction, assume that there is a definable winning strategy F1 for Player

I in Gω
ω

K(Cβ ,G). Note that for every τ ∈ K(Cβ, G) there is a winning strategy for Player I in

the β game for Hτ = {τ ′ : τ + τ ′ ∈ G}. Since β < ωω Player I has a definable winning

strategy Fτ in the β game for Hτ . The definable winning strategy for Gω
ω+β

G is constructed
from F1 and the strategies Fτ as in Lemma 4.3. The only subtle point is that the ordinal
ωω is not definable. However, there is a formula θ(t) such that α1 |= θ(γ) iff γ = ωω (this
formula expresses that γ is the minimal ordinal such that the interval [γ, α1) is isomorphic
to (a definable ordinal) β.

The case when there is a definable winning strategy for Player II in Gω
ω

K(Cβ ,G) is similar.

10. Conclusion and Open Problems

We considered a natural extension of the Church Problem to countable ordinals. We
proved that the Büchi-Landweber theorem extends fully to all ordinals < ωω and that
its determinacy and decidability parts extend to all countable ordinals. We reduced the
synthesis problem for countable ordinals > ωω to the synthesis problem for ωω. However,
the decidability of the synthesis problems for ωω remains open.

In preliminary version of this paper we asked whether the first uncountable ordinal ω1

is determinate. For uncountable ordinals the situation changes radically. Let ϕspl (X,Y )
say: “X is stationary, Y ⊆ X and both Y and X \ Y are stationary” (recall that S ⊆ ω1

is called stationary iff for every closed unbounded C ⊆ ω1, S ∩ C 6= ∅). P. B. Larson and
S. Shelah pointed to us that it follows immediately from [LaS08] that each of the following
statements is consistent with ZFC:
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(1) None of the players has a winning strategy in Gω1

ϕspl
.

(2) Mrs. Y has a winning strategy in Gω1

ϕspl
.

(3) Mr. X has a winning strategy in Gω1

ϕspl
.

In other words, ZFC can hardly tell us anything concerning this game. On the other hand,
S. Shelah [She07] tells us he believes it should be possible to prove:

Conjecture 10.1. It is consistent with ZFC that Gω1

ϕ is determined for every formula ϕ.

Let us discuss a question of uniform definability of the winning strategy. Recall that
for every ϕ and α < ωω one of the players has a finite memory winning strategy in Gαϕ . It
is natural to ask the following uniform definability question: given ϕ(X,Y ) as above, is it
possible to provide ψ such that, for each ordinal below ωω such that Player I wins Gαϕ , the
formula ψ defines his winning strategy in Gαϕ?

The negative answer to the uniform definability question even for one-player games
follows from our results in [RS07]. Consider the formula ϕωub(Y ) expressing that “Y is an
unbounded ω-sequence.” It is clear that the moves of the Player I are unimportant in the
games with the winning condition ϕωub(Y ), and that Player II wins this game over every
countable limit ordinal. However, it was shown in [RS07] that Player II has no definable
winning strategy which uniformly works for all limit ordinals < ωω.

The negative answer to the uniform definability question leads to the following algo-
rithmic problem:

Problem: (uniform definability of winning strategy) Given ϕ(X,Y ). Decide whether
there is ψ which defines a winning strategy for Player I for each ordinal below ωω such
that Player I wins the Gαϕ .

The decidability of uniform definability problem is an open question.
Next, we describe a uniformization problem, sometimes called the Rabin uniformization

problem.
Let ϕ(X̄, Ȳ ), ψ(X̄, Ȳ ) be formulas and M be a structure. We say that ψ uniformizes

(or, is a uniformizer for) ψ in M iff:

(1) M |= ∀X̄∃≤1Ȳ ψ(X̄, Ȳ ),
(2) M |= ∀X̄∀Ȳ (ψ(X̄, Ȳ ) → ϕ(X̄, Ȳ )), and
(3) M |= ∀X̄

(

∃Ȳ ϕ(X̄, Ȳ ) → ∃Ȳ ψ(X̄, Ȳ )
)

.

M has the uniformization property iff every formula ϕ has a uniformizer ψ in M.
In [LS98], Lifsches and Shelah show that an ordinal α has the uniformization property

iff α < ωω.
Uniformization, too, naturally leads to a decision problem:

Uniformization Problem for α:
Input: an MLO formula ϕ(X,Y ).
Task: determine whether ϕ has a uniformizer in α, and if so, construct it.

Note the similarities and dissimilarities between the Church synthesis problem (see
Def. 1.2) and the uniformization problem. In uniformization, we are also given a formula
ϕ(X,Y ) and to every P we try and “respond” with a Q, such that ϕ(P,Q) holds. Only we
do not restrict ourselves to causal responses. On the other hand, we do restrict ourselves to
definable (in (α,<)) responses. In the Church problem, we do not require that the strategy
(=causal operator) is definable.
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While we are not yet able to decide uniformization in (ωω, <), we presented in [RS07]
a restricted version of this problem, and proved that this version is decidable for every
countable ordinal.

Our initial motivation to study games of length > ω was a hope to reduce ω-games with
complex winning conditions [CDT02, Se06] to longer games with simple winning conditions.
We plan to pursue this direction further.
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