
Logical Methods in Computer Science
Vol. 6 (1:4) 2010, pp. 1–22
www.lmcs-online.org

Submitted Jan. 11, 2008
Published Feb. 16, 2010

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND

NETWORK FLOWS

ACHIM BLUMENSATH

TU Darmstadt, Germany
e-mail address: blumensath@mathematik.tu-darmstadt.de

Abstract. According to a theorem of Courcelle monadic second-order logic and guarded
second-order logic (where one can also quantify over sets of edges) have the same expressive
power over the class of all countable k-sparse hypergraphs. In the first part of the present
paper we extend this result to hypergraphs of arbitrary cardinality. In the second part, we
present a generalisation dealing with methods to encode sets of vertices by single vertices.

introduction

Guarded second-order logic (GSO) is the variant of monadic second-order logic (MSO) where
one can not only quantify over sets of vertices but also over sets of edges. This modification
results in a large increase of expressive power. Statements that can be expressed in guarded
second-order logic, but not in monadic second-order logic, include the existence of certain
minors in a graph and the existence of Hamiltonian paths.

The high expressive power of guarded second-order logic means that most GSO-theories
are quite complicated. In [7] Seese has shown that every class of graphs with infinite tree
width has an undecidable GSO-theory. This result immediately generalises to hypergraphs.
It follows that all classes of hypergraphs with a decidable GSO-theory are k-sparse, for
some k, which roughly means that their members have few edges. For classes of countable
k-sparse hypergraphs, Courcelle [2] has shown that every GSO-formula is equivalent to an
MSO-formula over such a class. It follows that over every class of countable hypergraphs
with a decidable GSO-theory guarded second-order logic and monadic second-order logic
have the same expressive power. Unfortunately, the proof of Theorem 1.4 in [2] contains an
error. In the first part of the present article we give a new proof of this theorem. In addition,
we extend the result from countable hypergraphs to hypergraphs of arbitrary cardinality.

When we look at the results of the first part we see that most of them concern the
coding of sets of vertices by single vertices. In the abstract, this problem can be stated as
follows: given a set F ⊆ P(V) of finite sets of vertices, find a definable function f : F → V
that is injective. In our concrete case, F := E is the set of edges. In the second part of the
paper we consider more general instances of this problem where F can be arbitrary. This
generalisation is inspired by a result of Colcombet and Löding [1] on set interpretations. Their

1998 ACM Subject Classification: G.2.2, F.4.1.
Key words and phrases: Monadic Second-Order Logic, Guarded Second-Order Logic, Hypergraphs.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (1:4) 2010

c© A. Blumensath
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. BLUMENSATH

main technical result is a method to transform a definable finite-to-one function F → V into
an injective one. Colcombet and Lödung consider as background structure only the infinite
binary tree. Below we show that using guarded second-order parameters, i.e., sets of edges,
we can extend some of their results to arbitrary graphs.

The overview of the article is a follows. We start in Section 1 with basic definitions
and a survey of results on definable orientations of sparse hypergraphs. In Section 2 we
prove the general version of the one technical result of [2] whose proof does not extend to
arbitrary cardinalities. In Section 3 we summarise the consequences for the expressive power
of guarded second-order logic on sparse hypergraphs.

Section 4 contains the second part of the article. We study network flow problems and
we show how to use flows to transform definable finite-to-one maps into injective ones.

1. Orientations of sparse hypergraphs

Let us fix our terminology regarding graphs and hypergraphs. When we say ‘graph’ we will
mean an undirected one. Undirected graphs will always be simple and loop free, whereas
directed graphs will be simple, but they may contain loops. When dealing with hypergraphs
we will sometimes allow multiple edges. Such a hypergraph is a two-sorted structure 〈V,E, I〉
where V is the set of vertices, E the set of edges, and I ⊆ V × E the incidence relation.
Using sloppy notation we will tacitly identify an edge e ∈ E of such a hypergraph with the
set { v ∈ V | 〈v, e〉 ∈ I } of its vertices and we write v ∈ e instead of 〈v, e〉 ∈ I. Similarly, if
F ⊆ E is a set of edges then the union

⋃

F consists of all vertices incident with at least one
edge of F . We will use this notation even if there are multiple edges.

Monadic second-order logic (MSO) extends first-order logic by variables and quantifiers
that range over sets of vertices. Similarly, guarded second-order logic (GSO) extends first-
order logic by variables and quantifiers ranging over sets of vertices or sets of edges (for
detailed definitions see [4]). We will also consider weak monadic second-order logic (WMSO)
where quantification is restricted to finite sets of vertices.

Definition 1.1. Let H = 〈V,E〉 be a hypergraph.

(a) We say that H has rank m if every edge of H has at most m vertices.
(b) A subhypergraph of H is a hypergraph H0 = 〈V0, E0〉 with V0 ⊆ V and E0 ⊆ E.
(c) Let C ⊆ V . The subhypergraph induced by C is

H|C := 〈C,E|C 〉 with E|C := { e ∈ E | e ⊆ C } .

In order to translate GSO-formulae into MSO-formulae, we have to encode sets of edges
by sets of vertices. A simple way to do so consists in choosing an orientation of the hyper-
graph, i.e., a function assigning to each edge one of its vertices.

Definition 1.2. Let H = 〈V,E〉 be a hypergraph.

(a) An orientation1 of H is a function f : E → V with f(e) ∈ e, for all e ∈ E. We say that
a formula ϕ(x, Y) defines an orientation f of H if we have

H |= ϕ(a, e) iff f(e) = a , for all a ∈ A and e ∈ E .

(b) An orientation f is bounded by k if

|f−1(a)| ≤ k , for all a ∈ A .

1This is called a semi-orientation in [2].

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 3

(c) We call H MSO-orientable if there exist an MSO-formula ϕ(x, Y ; P̄) with parameters
Pi ⊆ V defining an orientation of H. Similarly, we say that H is GSO-orientable if there
exist a GSO-formula ϕ(x, Y ; P̄ , Q̄) with parameters Pi ⊆ V and Qi ⊆ E defining an
orientation of H.

In this paper we are mainly interested in sparse hypergraphs, i.e., hypergraphs with few
edges.

Definition 1.3. A hypergraph H = 〈V,E〉 is k-sparse2 if
∣

∣E|X
∣

∣ ≤ k · |X| , for every finite set X ⊆ V .

Lemma 1.4. Let G = 〈V,E〉 be a graph.

(a) If the degree of G is at most 2k, then G is k-sparse.
(b) If G is planar, then it is 3-sparse.

Proof.

(a) If X = 〈X,F 〉 is a finite induced subgraph of G then

2 · |F | =
∑

v∈X

deg(v) ≤ 2k · |X| .

(b) This follows from the fact that every planar graph with n vertices has at most 3n − 6
edges (see, e.g., Corollary 4.2.10 of [3]).

In the next section we will prove that every hypergraph of bounded rank is GSO-orientable.
In the remainder of this section we show that k-sparse hypergraphs are even MSO-orientable.
For countable hypergraphs these results are all due to Courcelle [2]. The only thing new in
the present section are two applications of the compactness theorem for first-order logic to
extend the results to uncountable hypergraphs. The proofs in Section 2, on the other hand,
are mostly new.

Lemma 1.5. A hypergraph H = 〈V,E〉 (possibly with multiple edges) of finite rank is k-
sparse if and only if there exists an orientation of H that is bounded by k.

Proof. For (⇐), let X ⊆ V be finite. Then
∣

∣E|X
∣

∣ ≤
∑

a∈X

|f−1(a)| ≤ k · |X| .

(⇒) First, let us consider the case where H is finite. If f is an arbitrary orientation of H then
∑

a∈V

|f−1(a)| = |E| ≤ k · |V | .

Hence, if there is some element a ∈ V with |f−1(a)| > k then there must be some other
element b ∈ V with |f−1(b)| < k. Let us define the weight of an orientation by

w(f) :=
∑

{

|f−1(a)| − k
∣

∣ a ∈ V, |f−1(a)| > k
}

.

We have to construct an orientation of weight 0. To do so we transform an orientation f with
w(f) > 0 into one with smaller weight. Given f , fix an element a ∈ V with |f−1(a)| > k.
Let F ⊆ E be the smallest subset of E such that a belongs to the set U :=

⋃

F and we have

2In [2] such hypergraphs are called uniformly k-sparse. Courcelle also introduces a notion of a k-sparse

graph. Since uniform sparsity is the more robust notion, and the only one we will use in this paper, we have
changed terminology for brevity. A related notion is the arboricity of a graph (see, e.g., Section 2.4 of [3]).

4 A. BLUMENSATH

f−1(c) ⊆ F , for every element c ∈ U . The subhypergraph H|U induced by U is k-sparse.
Hence, there exists some element b ∈ U with |f−1(b)| < k. By choice of F we can find a
sequence of edges e0, . . . , en ∈ F with

b ∈ e0 , f(ei) ∈ ei+1 , and f(en) = a .

We define a new orientation g by setting

g(e) :=

b if e = e0 ,

f(ei−1) if e = ei, i > 0 ,

f(e) otherwise .

It follows that

|g−1(x)| =

|f−1(a)| − 1 if x = a ,

|f−1(b)|+ 1 if x = b ,

|f−1(x)| otherwise .

Hence, w(g) < w(f). Repeating this construction we obtain an orientation f with w(f) = 0.
The general case where H may be infinite can be proved using the compactness theorem

for first-order logic. Let ∆ be the elementary diagram of H (i.e., the set of all first-order
formulae with parameters that hold in H; see [5] for details) where we consider H as a two-
sorted structure 〈V,E, I〉 with a binary incidence relation I. We can write down a formula ϕ
stating that f : E → V is a function such that

• 〈f(e), e〉 ∈ I , for all e ∈ E ,
• |f−1(a)| ≤ k , for all a ∈ V .

By assumption and the first part of the proof, every finite subset of ∆ ∪ {ϕ} is satisfiable.
Therefore, according to the compactness theorem, there exists a model H+=〈V +, E+, I+, f+〉
of ∆ ∪ {ϕ}. By the Diagram Lemma (see, e.g., [5]), we can find an elementary embedding
h : H → H+ (i.e., an embedding preserving every first-order formula). Since every edge of H
has only finitely many vertices it follows that

〈a, h(e)〉 ∈ I+ implies a = h(v) , for some v ∈ e .

Hence, we can define the desired orientation of H by f := h−1 ◦ f+ ◦ h.

It turns out that the orientation obtained via the preceding lemma is MSO-definable.
The following sequence of lemmas shows how we can encode such an orientation by a finite
set of unary predicates.

Definition 1.6. Let H = 〈V,E〉 be a directed graph and G an undirected one.

(a) Every orientation f of G induces an directed graph Gf by orienting every edge e of G
such that it points to the vertex f(e).

(b) An H-orientation of G consists of a pair 〈f, h〉 where f is an orientation of G and h is
a homomorphism Gf → H.

We say that an H-orientation 〈f, h〉 is bounded by k if f is bounded by k.
(c) We say that a family (Pv)v∈V of unary predicates encodes an H-orientation 〈f, h〉 of G

if Pv = h−1(v), for all v ∈ V .

Lemma 1.7. For every finite graph H, there exists a first-order formula ϕH(X̄) such that

G |= ϕH(P̄) iff the tuple P̄ encodes an H-orientation of G .

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 5

Proof. Let u0, . . . , un−1 be an enumeration of the vertices of H. All ϕH(X̄) has to say is that
the Xi form a partition of the vertices (some Xi may be empty) and that there is no edge
{v,w} of G such that v ∈ Xi, w ∈ Xk and 〈ui, uk〉 is not an edge of H.

Theorem 1.8 (Nešetřil, Sopena, Vignal [6]). For every k < ω, there exists a finite loop-
free directed graph Tk with antisymmetric edge relation that has the following property. For
every finite directed graph G, with irreflexive and antisymetric edge relation and indegree at
most k, there exists a homomorphism G → Tk.

Corollary 1.9. Every k-sparse undirected graph has a Tk-orientation which is bounded by k.

Proof. In Lemma 1.5, we have shown that such a graph G = 〈V,E〉 has an orientation
f : E → V that is bounded by k. It follows that Gf has indegree at most k. By the theorem,
there exists a homomorphism h : Gf → Tk. Thus, 〈f, h〉 is the desired Tk-orientation.

Lemma 1.10. For every k < ω, there exists a first-order formula ηk(X̄) such that

G |= ηk(P̄) iff P̄ encodes a Tk-orientation of G that is bounded by k .

Proof. Note that the homomorphism h of a Tk-orientation 〈f, h〉 uniquely determines the
orientation f since the edge relation of Tk is antisymmetric. In particular, the parameters P̄
encoding 〈f, h〉 tell us whether f is bounded by k. Hence, we can obtain ηk(X̄) by adding a
check for boundedness to the formula ϕTk

(X̄) of Lemma 1.7.

Corollary 1.11. The class of all k-sparse undirected graphs is finitely MSO-axiomatisable.

Proof. By Lemma 1.5 and Corollary 1.9 it follows that a graph G is k-sparse if and only if it
has a Tk-orientation that is bounded by k. Hence, we can use the formula ∃X̄ηk(X̄) where
ηk is the formula from Lemma 1.10.

In order to apply these results to hypergraphs we use the following construction associ-
ating a graph with every hypergraph.

Definition 1.12. Let H = 〈V,E〉 be a hypergraph with orientation f . We define a directed
graph Of (H) := 〈V, F 〉 with edge relation

F := { 〈a, b〉 | a 6= b and there is some edge e ∈ E with a ∈ e and f(e) = b } .

Lemma 1.13. Let H = 〈V,E〉 be a k-sparse hypergraph of rank m where 0 < k < ω and
1 < m < ω. Then H has an orientation f that is bounded by mk2 such that the edge relation
of Of (H) is antisymmetric.

Proof. First, we consider the case that H is finite. We call an element a ∈ V bad for an
orientation f of H if there is some element b ∈ V such that Of (H) contains both edges 〈a, b〉
and 〈b, a〉. Note that this implies that the vertex b is also bad.

We construct a sequence of orientations (fn)n such that

|f−1
n (a)| ≤

{

k if a is bad for fn ,

mk2 otherwise ,

and the number of bad elements decreases at every step. We start with an arbitrary orien-
tation f0 bounded by k.

Given an orientation fn with the above properties we construct a new orientation fn+1

with fewer bad elements as follows. Let a be a bad element, set X := f−1
n (a), and let

Y :=
{

e
∣

∣ a ∈ e and fn(e) ∈
⋃

X \ {a}
}

.

6 A. BLUMENSATH

Since a is bad we have

|X| ≤ k and |
⋃

X| ≤ k(m− 1) .

Note that every element of the form b := fn(e) with e ∈ Y is also bad since, by definition
of X, there is an edge e′ ∈ X with

b ∈ e′ and fn(e
′) = a .

Consequently, Ofn(H) contains the edges 〈b, a〉 (since fn(e
′) = a) and 〈a, b〉 (since fn(e) = b).

It follows that

|Y | ≤ k · |
⋃

X \ {a}| ≤ k2(m− 1) .

We define the new orientation fn+1 by

fn+1(e) :=

{

a if e ∈ Y ,

fn(e) otherwise .

Then we have

|fn+1(x)
−1| ≤

{

k + k2(m− 1) if x = a ,

|fn(x)
−1| otherwise .

In particular, fn+1 is bounded by mk2. By construction, the element a is not bad for fn+1.
Furthermore, if 〈b, c〉 is an edge in Ofn+1

(H) with b, c 6= a then this edge is induced by an
edge e in H with e /∈ X∪Y . Hence, 〈b, c〉 is also an edge of Ofn(H). Therefore, every element
that is bad for fn+1 is also bad for fn.

It remains to prove the claim for infinite hypergraphs H. Let Φ be the union of the
elementary diagram of H and formulae stating that f is an orientation of H that is bounded
by mk2 and that Of (H) has an antisymmetric edge relation. If M is a model of Φ then there
exists an embedding h : H → M and the desired orientation of H can be obtained via h from
that of M. Hence, it is sufficient to show that Φ is satisfiable. Note that every finite subset
Φ0 ⊆ Φ is satisfiable since every finite substructure of H has an orientation of the desired
form. By the compactness theorem it follows that Φ is satisfiable.

2. Depth-first spanning trees

While k-sparse hypergraphs are MSO-orientable there are hypergraphs without an MSO-
definable orientation. For instance, the countably infinite clique is such a graph. In this
section we will show that every hypergraph of bounded rank is at least GSO-orientable. A
basic tool the proof below is based on is the notion of a spanning tree of a hypergraph. Before
presenting the rather involved definition for hypergraphs let us start with considering the
simpler case of graphs.

For a countable undirected graph G we can define a depth-first spanning tree to be a
spanning tree T of G where no edge of G connects disjoint subtrees of T (see [2, 3]; in [3]
such trees are called normal). To generalise this definition to uncountable graphs we have
to admit trees of arbitrary ordinal height. Such trees are necessarily order trees, i.e., partial
orders 〈T,≤〉 where ≤ is a tree order, that is, a partial order such that any two elements
have an infimum and, for every element a, the set of all elements below a is well-ordered.
Unfortunately, we cannot in general hope to have a spanning subgraph that is an order tree,
since the partial order ≤ requires too many edges. Therefore, we will use a hybrid between

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 7

an ordinary tree and an order tree. The precise definition of a spanning tree T of a graph G

is as follows. Instead of requiring T to be a subgraph of G we consider trees T such that

• for every vertex w of T with immediate predecessor v, the edge 〈v,w〉 belongs to G, and
• for every vertex w of T without immediate predecessor, we can fix an increasing chain
(ui)i<α of predecessors of w with limit w and a family (πi)i<α of paths from w to ui.

Hence, every vertex w of T is attached to its predecessors via some auxiliary graph Fw that
is either a single edge or a tree with root w whose leaves form an increasing sequence of
predecessors of w with limit w.

Example 2.1. Consider the complete graph Kκ, for an uncountable cardinal κ. We can
enumerate the vertices of Kκ as (vα)α<κ where the index α ranges over all ordinals less
than κ. As depth-first spanning tree of this graph we can use a chain of length κ as follows.
We set T := 〈T,E〉 where

T := { vα | α < κ }

is the set of all vertices and

E := { 〈vα, vα+1〉 | α < κ } ∪ { 〈vα, vδ〉 | δ a limit ordinal and α < δ } .

The first part of E consists of the successor edges, whereas the second part contains the
auxiliary graphs Fvδ attaching a limit vertex vδ to its predecessors.

To generalise these ideas to hypergraphs we need a suitable replacement for the trees Fw.
Unfortunately, not every hypergraph has a spanning tree. A typical example is the hyper-
graph

•

• •

•

•

•

Instead, we will use certain tree-like hypergraphs called priority trees.

Definition 2.2. Let H = 〈V,E〉 be a hypergraph. A hyperpath in H is a sequence e0 . . . en
of edges such that

ei ∩ ek 6= ∅ iff |i− k| ≤ 1 .

If u ∈ e0 \ e1 and v ∈ en \ en−1 then we say that the hyperpath connects u and v.

Definition 2.3. Let H = 〈V,E〉 be a hypergraph of rank at most m, 〈T, F 〉 be a subhyper-
graph of H with T =

⋃

F , and suppose that there are partitions

T = P0 ·∪ · · · ·∪ Pm−1 and F = F0 ·∪ · · · ·∪ Fm−1 .

(a) Suppose that T = 〈T, F,L, (Fi)i<m, (Pi)i<m, v〉 with L ⊆ F and v ∈ T . We define by
induction when such a tuple T is a priority tree. The element v is called the root of T and
L is its set of leaf edges.

We start the induction with the case where F consists of a single hyperpath e0 . . . en with
v ∈ e0 \ e1, we have L = {en}, F0 = F , and P0 = T . Then T is a priority tree. We also call

8 A. BLUMENSATH

T a priority tree if it can be obtained from a priority tree T′ = 〈T ′, F ′, L′, (F ′
i)i, (P

′
i)i, v〉

with the same root v by adding a hyperpath e0 . . . en such that

ei ∩ T
′ 6= ∅ iff i = 0 ,

e0 6⊆ T ′ ,

L = L′ ∪ {en} ,

e0, . . . , en ∈ Fk ,

(e0 ∪ · · · ∪ en) \ T
′ ⊆ Pk ,

where k is the minimal index such that e0∩P
′
k = ∅. This is the successor case of the induction

step.
Finally, we also have a limit case. Suppose that

T
α = 〈Tα, Fα, Lα, (Fα

i)i, (P
α
i)i, v〉 , for α < β ,

is an increasing chain of priority trees. That is, the sequences (Tα)α, (Fα)α, (Lα)α, (Fα
i)α,

and (Pα
i)α are all increasing, and all trees Tα have the same root v. Then T is a priority

tree if it is the union of this chain, that is, if

T =
⋃

α<β

Tα, F =
⋃

α<β

Fα, L =
⋃

α<β

Lα, Fi =
⋃

α<β

Fα
i , Pi =

⋃

α<β

Pα
i .

(b) A branch of T is a hyperpath e0 . . . em ⊆ F satisfying the following conditions:
• e0 \ e1 contains the root v of T .
• Let ki be the index such that ei ∈ Fki . We have ei+1 \ ei ⊆ Pki+1

, for every i < m.
Furthermore, if ki 6= ki+1 then ki := min { l | ei+1 ∩ Pl 6= ∅ } .

(c) With each priority tree T we associate two relations, an order ≤ on F defined by

e ≤ f : iff every branch containing f also contains e,

and an equivalence relation ∼ on T defined by

u ∼ v : iff u, v ∈ Pk , for some k , and there exists a hyperpath

e0 . . . em ⊆ Fk connecting u and v .

Example 2.4. Consider the following priority tree with edges a, b, c, d, e, f where we have
labelled each vertex in Pi by the index i. The edge colours are given by F0 = {a, b, e},
F1 = {c}, F2 = {d, f}. The ordering ≤ is displayed to the right.

•
0

•
0

•
0

•
1

•
0

•
2

•
1

•
0

•
0

•
2

•
2

a

b
c

d

e

f

a

b c d

e f

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 9

Recall that a tree order is a partial order such that any two elements have an infimum
and, for every element a, the set of all elements below a is well-ordered. A preorder is a
reflexive and transitive relation. Every preorder ⊑ induces an equivalence relation ⊑∩⊑−1.
The equivalence classes of this relation are called ⊑-classes.

Lemma 2.5. Let T be a priority tree. The order ≤ on the edges is a tree order.

The proof consists of a straightforward but tedious induction following the construction
of priority trees.

Lemma 2.6. Let H = 〈V,E〉 be a connected hypergraph of rank at most m.

(a) For each vertex v ∈ V and every set L0 ⊆ E of edges, there exists a priority tree
T = 〈T, F,L, (Fi)i, (Pi)i, v〉 with root v such that

⋃

L0 ⊆ T and L ⊆ L0.
(b) For every GSO-formula ϑ(x, y) (possibly with parameters), there exists a GSO-formula

ϕ(x, y) (with parameters) such that, if ϑ defines a well-order on L0 and T is a priority
tree as in (a) then ϕ(x, y) defines a linear order on T .

Proof.

(a) Let (ei)i<α be an enumeration of L0. For every i < α, we fix a hyperpath πi = hi0 . . . h
i
mi

connecting v with himi
= ei. We construct T by induction on i. We start with the hyper-

path π0. At step i > 0 we determine the shortest suffix hil . . . h
i
mi

of the path πi that meets
the tree constructed so far and we add this suffix to the tree. (If ei ⊆ T we leave the tree
unchanged.) We choose the least index k with hil ∩Pk = ∅ and we put the new edges into Fk

and the new vertices into Pk. The limit of this construction is the desired priority tree.
(b) The equivalence relation ∼ associated with T is MSO-definable in H with the help of
the parameters T , F , Fi, and Pi. We denote the ∼-class of a vertex u by [u]. Note that, by
construction of T, [u] is a hyperpath and [u] contains a unique leaf edge which, furthermore,
is one of the ends of the hyperpath. We denote by η(u) the suffix of the hyperpath [u] that
connects u to the leaf edge in [u].

To define the desired order on T we first construct a preorder on T by setting x ⊑ y if
and only if one of the following conditions is satisfied:
• x ∈ Pi and y ∈ Pk, for i < k.
• x, y ∈ Pk and the leaf edge in [x] is ϑ-smaller than the leaf edge in [y].
• x, y ∈ Pk, [x] = [y], and η(x) ⊆ η(y).
Note that we have x ⊑ y and y ⊑ x if and only if η(x) = η(y). In this case x and y belong to
the same edge e ∈ F . Hence, every ⊑-class has size at most m. Adding m additional unary
predicates Q0, . . . , Qm−1 such that each Qi contains at most one element of each ⊑-class,
we can define

x < y : iff x ⊑ y and (either y 6⊑ x , or we have

x ∈ Qi and y ∈ Qk , for i < k) .

We have seen that every k-sparse graph has an MSO-definable orientation f that is bounded
by k. If we want to encode sets of edges via sets of vertices we can try to encode each
edge e by a pair 〈v, i〉 consisting of the vertex v := f(e) and a number i < k. This idea
requires a way to linearly order the sets f−1(v). In [2] Courcelle uses depth-first spanning
trees to obtain such linear orders. As remarked above one needs to adapt the definition of a
depth-first spanning tree when one tries to extend these results to uncountable hypergraphs.

10 A. BLUMENSATH

Definition 2.7. Let H = 〈V,E〉 be a hypergraph of rank m and suppose that T =
〈T,≤, (Fv)v∈T 〉 is a structure where 〈T,≤〉 is a tree (of ordinal height) with T ⊆ V and
with every vertex v ∈ T we associate a set Fv ⊆ E of edges. We assume that Fu ∩ Fv = ∅,
for u 6= v.

(a) The set of auxiliary nodes associated to a vertex v ∈ T is

Av := {v} ∪
⋃

Fv \
⋃

x<v

Ax .

(b) For X ⊆ V , we define

B(X/T) := { v ∈ T | X ∩Av 6= ∅ } and β(X/T) := maxB(X/T) .

(c) T is a depth-first spanning tree of H if it satisfies the following conditions:
• For all u 6= v, Au ∩Av = ∅ and Au ∩ T = {u}.
• For each edge e ∈ E the set B(e/T) is nonempty and linearly ordered by ≤.
• The vertices v ∈ T are partitioned into the following classes: (0) the root; (sl)l<m a

successor; (tl)l<m a limit; where the successor and limit vertices are subdivided into m
subclasses. This partition satisfies the following conditions:
(0) If v has type 0 then it is the root of T and Fv = ∅.
(sl) If v has type sl then it is the (immediate) successor of some vertex u ∈ T . We have

Fv = {e} with v ∈ e. Futhermore, v is the only vertex in B(e/T) of type sl and
β(e \ {v}/T) = u.

(tl) If v has type tl then it is the limit of an increasing sequence (ui)i<γ of vertices ui ∈ T .
Fv is (the set of edges of) a priority tree with root v. Furthermore,

{β(e/T) | e a leaf edge of Fv }

is a cofinal subset of (ui)i and v is the only vertex in B(
⋃

Fv/T) with type tl.

Proposition 2.8. Every connected hypergraph H has a depth-first spanning tree.

Proof. If in the definition of a depth-first spanning tree we drop the condition that B(e/T) 6=
∅, for every edge e, then we obtain a structure that we call a partial depth-first spanning
tree. We construct an increasing sequence

〈Tα,≤, (Fv)v∈Tα
〉 , α < κ ,

of such partial depth-first spanning trees with the property that, for every connected com-
ponent C of Uα := V \

⋃

v∈Tα
Av, the set

N(C/Tα) :=
⋃

{B(e/Tα) | e ∈ E with e ∩C 6= ∅ }

is linearly ordered by ≤. (A connected component of Uα is a maximal subset C ⊆ Uα such
that the subhypergraph H|C is connected.) The limit of this sequence will be the desired
depth-first spanning tree of H.

We start by choosing an arbitrary element v ∈ V and setting T0 := {v} and Fv := ∅.
For limit ordinals δ, we define Tδ :=

⋃

α<δ Tα. For the successor step, suppose that we
have already defined Tα. Fix some connected component C of Uα. Note that N(C/Tα) is
nonempty since H is connected. We distinguish two cases.

(1) If N(C/Tα) has a maximal element u then we choose some edge e with e ∩Au 6= ∅ and
e ∩ C 6= ∅, and we fix some vertex v ∈ e ∩ C. We add v to Tα as immediate successor
of u and we set Fv := {e}. It follows that Av = e ∩ Uα. Since B(e/Tα) contains at most

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 11

|e \ {v}| < m vertices there is some l < m such that B(e/Tα) contains no vertex of
type sl. Hence, in the new tree Tα+1 we can assign the type sl to v.

(2) Suppose that N(C/Tα) has no maximal element. We choose a sequence (ei)i<γ of edges
with ei ∩ C 6= ∅ such that the sequence (ui)i<γ defined by

ui := β(ei/Tα)

is increasing and cofinal in N(C/Tα). By taking a suitable subsequence we may assume
that the set of types appearing in B(ei/Tα) is the same for every i < γ.

For each edge ei, choose some edge hi ⊆ C with hi ∩ ei 6= ∅ and set L := {hi | i < γ }.
We select a vertex v ∈ C and a priority tree S = 〈S,H,L, F̄ , P̄ , v〉 such that S ⊆ C. We
define Tα+1 := Tα∪{v} where v is the limit ofN(C/Tα) and we set Fv := H∪{ ei | i < γ }.
It follows that Av = S ∪

⋃

i(ei ∩ Uα).

It remains to show that the constructed tree Tα+1 is a partial depth-first tree where all sets
N(C/Tα+1) are linearly ordered. We start by showing that each set B(e/Tα+1) with e ∈ E
is linearly ordered. If e ∩ Av = ∅ then B(e/Tα+1) = B(e/Tα) and we are done. Otherwise,
we have B(e/Tα+1) = B(e/Tα+1) ∪ {v}. Note that Av ⊆ C implies e ∩ C 6= ∅. Therefore,
we have B(e/Tα) ⊆ N(C/Tα). Since v is larger than every element in N(C/Tα) the claim
follows.

Let D be a connected component of Uα+1 := V \
⋃

x∈Tα+1
Ax. We have to show that

N(D/Tα+1) is linearly ordered. Since Uα+1 ⊆ Uα there is some connected component D′

of Uα containing D. If D′ 6= C then Uα \ Uα+1 ⊆ C implies that D = D′ and the set

N(D/Tα+1) = N(D′/Tα)

is linearly ordered. If, on the other hand, D ⊆ C then we have

N(D/Tα+1) ⊆ N(C/Tα) ∪ {v}

and the latter set is linearly ordered since v is greater than every element of N(C/Tα).

Remark 2.9.

(a) If the hypergraph H is countable then we can actually obtain a depth-first spanning tree
of height at most ω as follows. In the above proof, if we are slightly more careful in choosing
the vertex v that is added to the partial tree, then we can ensure that every vertex is chosen
already after finitely many steps.
(b) Note that, strictly speaking, the above proposition is not a generalisation of Theorem 1.4
of [2] since we use a different notion of a depth-first spanning tree.

We use depth-first spanning trees to encode orientations of a hypergraph. First, we show
that each depth-first spanning tree can be encoded by finitely many GSO-parameters.

Lemma 2.10. For every m < ω we can construct MSO-formulae ϕ(X; Z̄), ϑ(x, Y ; Z̄), and
χ(x, y; Z̄) such that, for every connected hypergraph H of rank at most m and each depth-first
spanning tree 〈T,≤, (Fv)v〉 of H, there are GSO-parameters S̄ such that

H |= ϕ(P ; S̄) iff P ⊆ T is downward ≤-closed,

H |= ϑ(v, P ; S̄) iff v ∈ T and P = Av ,

H |= χ(u, v; S̄) iff u, v ∈ T and u ≤ v .

Proof. We will use the following parameters:

• Unary predicates T0, Tsl , Ttl , for l < m, containing all vertices of the corresponding type.

12 A. BLUMENSATH

• F τ :=
⋃

{Fv | v ∈ Tτ }, for every type τ .
• F :=

⋃

τ F
τ .

• Aτ :=
⋃

{Av | v ∈ Tτ } \ T , for every type τ .

• If v is of type tl then the set Fv forms a priority tree. We use additional parameters F tl
i

and Pi, for i < m, encoding the corresponding partition

F tl = F tl
0 ·∪ · · · ·∪ F tl

m−1 and
⋃

F tl = P0 ·∪ · · · ·∪ Pm−1 .

Hence, for every vertex v of type tl we have a priority tree
〈
⋃

Fv , Fv , Lv, (F
tl
i ∩ Fv)i, (Pi ∩

⋃

Fv)i, v
〉

.

(1) First, we construct the formula ϑ. To simplify our task we define separate formulae
ϑτ (x, Y), for each type τ , such that

H |= ϑτ (v, P) iff v ∈ Tτ and P = Av .

Then we can set ϑ :=
∨

τ ϑτ .
If v has type 0 then Av = {v} and we can set

ϑ0(x, Y) := T0x ∧ Y = {x} .

If the type of v is sl then Fv = {e} and Av = {v} ∪ (e ∩Asl), where e is the unique edge in
F sl containing v. Hence, we can define

ϑsl(x, Y) := Tslx ∧ (∃e ∈ F sl)[x ∈ e ∧ Y = {x} ∪ (e ∩Asl)] .

Finally, if v has type tl then Av is the least subset of {v} ∪ Atl satisfying the following
conditions:
• v ∈ Y
• If e ∈ F tl and e ∩ Y 6= ∅ then e ∩Atl ⊆ Y .
Hence, we can define

ϑtl(x, Y) := Ttlx ∧ Y x ∧ (∀e ∈ F tl)(e ∩ Y 6= ∅ → e ∩Atl ⊆ Y)

∧ ∀Z[Zx ∧ (∀e ∈ F tl)(e ∩ Z 6= ∅ → e ∩Atl ⊆ Z) → Y ⊆ Z] .

(2) Next, we define a formula α(x, Y) such that

H |= α(v,Q) iff v ∈ T and Q = B(
⋃

Fv/T) .

The formula α(x, Y) should state that

Y = {u ∈ T | there is some e ∈ Fv with e ∩Ax 6= ∅ and e ∩Au 6= ∅ } .

Using the formulae ϑτ we can write α as

α(x, Y) :=
∨

τ

[Tτx ∧ (∃e ∈ F τ)(e ∩Ax 6= ∅ ∧ e ∩Au 6= ∅)] .

(3) With the help of α we can write down the desired formulae ϕ and χ.

ϕ(X) := ∀x∀Y [Xx ∧ α(x, Y) → Y ⊆ X] ,

χ(x, y) := ∀X[ϕ(X) → (Xy → Xx)] .

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 13

Lemma 2.11. We can construct GSO-formulae ψm(x, y; Z̄), for m < ω, such that, for
every depth-first spanning tree 〈T,≤, (Fv)v〉 of a connected hypergraph H of rank m, there
are GSO-parameters S̄ such that the formula ψm(x, y; S̄) defines a preorder ⊑0 with the
following properties:

• The restriction of ⊑0 to T coincides with ≤.
• ⊑0 linearly preorderes every set X ⊆ V such that B(X/T) is linearly ordered by ≤.
• Each ⊑0-class has at most m elements.

Proof. Let χ(x, y) and ϑ(x, Y) be the formulae of Lemma 2.10. For each type τ , we define
a formula ητ (x, y) linearly preordering each set Av where v is of type τ . Then the desired
formula ψm states that either

(1) x ∈ Au and y ∈ Av for u < v, or
(2) x, y ∈ Av, for some v of type τ , and ητ (x, y) holds.

If v is of type 0 or sl then Av contains at most m elements and we can set

ητ (x, y) := true .

For vertices of type tl we can use the formula from Lemma 2.6.

Corollary 2.12. We can construct GSO-formulae ψm(x, y; Z̄), for m < ω, such that, for
every depth-first spanning tree 〈T,≤, (Fv)v〉 of a connected hypergraph H of rank m, there
are GSO-parameters S̄ such that the formula ψm(x, y; S̄) defines a partial order ⊑ with the
following properties:

• The restriction of ⊑ to T coincides with ≤.
• ⊑ linearly orderes every set X ⊆ V such that B(X/T) is linearly ordered by ≤.

Proof. Let ⊑0 be the preorder from Lemma 2.11. Since every ⊑0-class contains at most m
elements we can add m new unary predicates P0, . . . , Pm−1 such that P0 ∪ · · · ∪ Pm−1 = V
and we have |X ∩ Pi| ≤ 1, for each ⊑0-class X and all i. Then we can define

u ⊑ v : iff either u ⊏0 v , or

u ⊑0 v , v ⊑0 u , u ∈ Pi , v ∈ Pk for i < k .

Theorem 2.13. We can construct GSO-formulae ϕm(x, Y ; Z̄), for m < ω, such that for ev-
ery hypergraph H of rank m, there are GSO-parameters S̄ such that, the formula ϕm(x, Y ; S̄)
defines an orientation of H.

Proof. Suppose that H has κ connected components Ci, i < κ. For each component Ci we
fix a depth-first spanning tree 〈T i,≤i, (F i

v)v〉. Let S̄i be the parameters from Lemma 2.10
and Lemma 2.11. For every edge e ∈ E, there exists a unique component Ci such that the
intersection X := e∩

⋃

v A
i
v is finite and nonempty. Furthermore, the set B(X/T i) is linearly

ordered by ≤. Using the ordering ⊑ of Corollary 2.12 we can write down a formula ϕm(v, e)
stating that v is the ⊑-least element of this set X.

Corollary 2.14. Every hypergraph of rank m < ω is GSO-orientable.

Let us mention the following consequences of this result. For countable hypergraphs
they are again due to Courcelle [2].

Definition 2.15.

(a) A formula ϕ(x, y, Z) defines an edge ordering of a hypergraph H = 〈V,E〉 if, for every
edge e ∈ E, the formula ϕ(x, y, e) defines a linear ordering on the vertices of e.

14 A. BLUMENSATH

(b) A formula ϕ(x, y, z) defines an neighbourhood ordering of a directed graph G = 〈V,E〉
if, for every vertex v ∈ V , the formula ϕ(x, y, v) defines a linear ordering on the set
{u ∈ V | (u, v) ∈ E }.

Lemma 2.16. There exist GSO-formulae ϕm(x, y, Z; Ū), for m < ω, such that, for ev-
ery hypergraph H = 〈V,E〉 of rank m, there are GSO-parameters S̄ such that the formula
ϕm(x, y, Z; S̄) defines an edge ordering of H.

Lemma 2.17. There exist MSO-formulae ϕm(x, y, z; Ū), for m < ω, such that, for every
directed graph G of indegree at most m, there are MSO-parameters P̄ such that the formula
ϕm(x, y, z; P̄) defines a neighbourhood ordering of G.

Proof. We can apply Lemma 2.16 to the hypergraph H := 〈V, F 〉 where

F := { I(v) | v ∈ V } with I(v) := {u ∈ V | (u, v) ∈ E } .

Note that every subset S ⊆ F can be encoded by the set

I−1(F) := { v ∈ V | I(v) ∈ F } ⊆ V .

Hence, every GSO-formula over H can be translated into an MSO-formula over G.

3. GSO versus MSO

In [2] Courcelle has shown that we can translate every GSO-formula ϕ into an MSO-formula ψ
that is equivalent to ϕ on all countable k-sparse hypergraphs. Using the results of the
previous sections we can lift the restriction to countable hypergraphs. The proof in [2] goes
through unchanged since it relies only on the statements of Lemma 2.16 and Lemma 2.17,
and on local modifications of hypergraphs.

Theorem 3.1. For all numbers m,k < ω, there exists a monadic second-order interpreta-
tion (with monadic parameters) that maps a k-sparse hypergraph of rank m to its incidence
structure.

Corollary 3.2. For all m,k < ω and all formulae ϕ(x̄, Ȳ , Z̄) ∈ GSO with first-order vari-
ables x̄, monadic variables Ȳ , and guarded second-order variables Z̄, there exists a formula
ψ(x̄, Ȳ , Z̄) ∈ MSO with the following property: for all k-sparse hypergraphs H = 〈V,E〉 of
rank m and all parameters ai ∈ V , Pi ⊆ V , Ri ⊆ E, there exist parameters Qi ⊆ V such
that

H |= ϕ(ā, P̄ , R̄) iff H |= ψ(ā, P̄ , Q̄) .

4. Sparse distributions

The results so far concern ways to encode edges by vertices. In this last section we consider
a more general problem. Let G = 〈V,E〉 be a graph. We denote by Pfin(V) the set of all
finite subsets of V . We would like to encode a given subset F ⊆ Pfin(V) by a set of vertices,
that is, we would like to find a definable function h : F → V that is injective. For F = E
this reduces to the problem considered in the preceding sections. For arbitrary F , such a
function h does not always exist. But we will show that sometimes we can transform a given
function h0 : F → V into an injective one.

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 15

These results are inspired by work of Colcombet and Löding [1] on set interpretations.
Colcombet and Löding consider a power set operation P on structures. One of their main
results in a commutation theorem for interpretations and the power set operation. They show
that, given a tree T and an FO-interpretation I such that I(P(T)) is of the form P(M), for
some structure M, then there exists a WMSO-interpretation J such that M ∼= J (T). On
ingredient in the proof of this result is a method to encode, in a definable way, finite subsets
of the tree T by single vertices.

Suppose we are given a function h0 : F → V that we want to transform into an injective
function h : F → V . Let δ(v) := |h−1

0 (v)|. The first step in the construction of h consists
in finding a definable function g : V → V such that |g−1(v)| = δ(v), for all v. Of course,
this is not always possible. For instance, if the graph is finite and we have δ(v) > 1, for
all vertices v. Therefore, we consider only functions δ that are sparse in the sense of the
following definition.

Definition 4.1. Let G = 〈V,E〉 be an undirected graph.

(a) The border of a subset Z ⊆ V is the set

BG(Z) := E ∩ (V \ Z)× Z

of all edges connecting a vertex in Z with a vertex outside of Z.
(b) A distribution of G is a map δ : V → ω. For X ⊆ V , we define the shorthand

δ(X) :=
∑

v∈X

δ(x) .

(c) Let h : X → V be an arbitrary mapping. The distribution induced by h is the function
δ : V → ω with

δ(v) := |h−1(v)| .

(d) A distribution δ is k-sparse if

δ(Z) ≤ |Z|+ k · |BG(Z)| , for every Z ⊆ V .

Given a k-sparse distribution δ we will construct the desired function g : V → V by
solving a network flow problem.

Definition 4.2. Let G = 〈V,E〉 be an undirected graph.

(a) A flow of G is a function f : V × V → Z such that, for all u, v ∈ V ,
• f(u, v) = −f(v, u) and
• f(u, v) 6= 0 implies (u, v) ∈ E.

(b) A flow f is acyclic if there is no cycle u0, . . . , um of G such that f(um, u0) > 0 and
f(ui, ui+1) > 0, for all i < m.

(c) The defect of a flow f is the distribution

df (v) :=
∑

u∈V

f(v, u) .

(d) A flow f is a δ-flow if, for every v ∈ V , either

df (v) = δ(v) − 1 or δ(v) = 0 and df (v) = 0 .

16 A. BLUMENSATH

(e) A flow f is edge-bounded by k if |f(u, v)| ≤ k, for all u, v ∈ V . We call f vertex-bounded
by k if

∑

u∈V

|f(u, v)| ≤ k , for all v ∈ V .

Our aim is to show that, for every k-sparse distribution δ there is a bounded δ-flow f and a
function g : V → V inducing δ. Furthermore, if δ is definable then g should also be definable.

Definition 4.3. Let L be a logic.

(a) A distribution δ is L-definable if there exist formulae ϕi(x) ∈ L, i < k, such that

G |= ϕi(v) iff δ(v) = i .

(b) Similarly, a flow f is L-definable if there exist formulae ϕi(x, y) ∈ L such that

G |= ϕi(u, v) iff f(u, v) = i .

Remark 4.4. Note that every edge-bounded flow can be encoded with the help of the
GSO-parameters

Si := { (u, v) ∈ E | f(u, v) = i } .

For trees the problem of encoding sets by vertices has been solved by Colcombet and
Löding [1]. In the general case proved below the function g is only definable with the help
of GSO-parameters, but for trees we can do without them.

Theorem 4.5 (Colcombet and Löding [1]). Let T = 〈T,E〉 be an infinite directed tree and
δ a WMSO-definable k-sparse distribution of T. There exists a WMSO-definable flow f that
is edge-bounded by 7k and satisfies df (v) ≥ δ(v) − 1, for all v.

Theorem 4.6 (Colcombet and Löding [1]). Let T = 〈T,E〉 be a directed tree and δ a WMSO-
definable k-sparse distribution of T such that δ(T) ≤ |T |. There exists WMSO-definable
function g : T → T such that δ is the distribution induced by g.

To prove our generalisation of these results we start with a few lemmas about bounded
flows. The first two follow immediately from the definitions.

Lemma 4.7. Every flow that is vertex-bounded by k is also edge-bounded by k.

Lemma 4.8. Suppose that G is a graph with maximal degree d. Every flow of G that is
edge-bounded by k is vertex-bounded by dk.

Lemma 4.9. For every δ-flow f there exists an acyclic δ-flow f ′ such that, if f is edge-
bounded by k or vertex-bounded by k then so is f ′.

Proof. We repeat the following construction until the flow is acyclic. Select a cycle u0, . . . , um
such that

c := min { f(ui, ui+1) | i ≤ m } > 0 .

We define f ′ by

f ′(x, y) :=

f(x, y)− c if x = ui and y = ui+1 , for some i ,

f(x, y) + c if x = ui+1 and y = ui , for some i ,

f(x, y) otherwise .

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 17

Proposition 4.10. Let G = 〈V,E〉 be an undirected graph and δ a k-sparse distribution.
Then G has a δ-flow f that is edge-bounded by k.

Proof. First, we assume that G is finite. In this case we can reduce the task to a network
flow problem. Let H be the graph obtained from G by adding two new vertices s and t that
are connected to every vertex of G. We define the capacity c(e) of edges e of H as follows.
For edges e of G we set c(e) := k. If e = (s, v) with v ∈ V we set c(e) := max{0, δ(v) − 1}.
Finally, if e = (v, t) with v ∈ V we define

c(e) :=

{

0 if δ(v) > 0 ,

1 otherwise .

Let f be a maximal flow from s to t with respect to c. We claim that its restriction to the
edges of G is the desired flow.

According to the Max-Flow Min-Cut Theorem, there is a set X of vertices containing s
but not t such that the maximal flow m from s to t equals

m =
∑

e∈BH(X)

c(e) .

Let X0 := X \ {s} ⊆ V and Y := δ−1(0). Since

BH(X) = BG(X0) ∪ { (v, t) | v ∈ X0 } ∪ { (s, v) | v ∈ V \X0 } ,

we have

m =
∑

e∈BH(X)

c(e)

= k · |BG(X0)|+ |X0 ∩ Y |+ δ(V \X0)− |(V \X0) \ Y |

= k · |BG(X0)|+ |X0|+ δ(V \X0)− |(V \X0) \ Y | − |X0 \ Y |

≥ δ(X0) + δ(V \X0)− |V \ Y |

= δ(V)− |V \ Y | .

On the other hand, for the set X = {s}, we have

m ≤
∑

e∈BH(X)

c(e) =
∑

v∈V

max{0, δ(v) − 1} = δ(V)− |V \ Y | .

Consequently, the maximal flow m from s to t equals

m = δ(V)− |V \ Y | .

This implies that

f(s, v) = max{0, δ(v) − 1} , for every v ∈ V .

For each v ∈ V , we therefore have

0 =
∑

u∈V ∪{s,t}

f(u, v) = max{0, δ(v) − 1}+ f(t, v) +
∑

u∈V

f(u, v) .

If δ(v) > 0 this implies

δ(v) − 1−
∑

u∈V

f(v, u) = 0 , that is df (v) = δ(v) − 1 ,

18 A. BLUMENSATH

while, for δ(v) = 0, we have

−f(v, t)−
∑

u∈V

f(v, u) = 0 .

Hence, either df (v) = −1 = δ(v) − 1 or df (v) = 0.
It remains to prove the lemma for infinite graphs. Let Φ(G) consist of the elementary

diagram of G together with first-order formulae stating that f is a δ-flow on G that is
edge-bounded by k. We will use the compactness theorem to show that Φ(G) is satisfiable.

Let Φ0 ⊆ Φ(G) be finite. There exists a finite induced subgraph G0 = 〈V0, E0〉 of G such
that Φ0 ⊆ Φ(G0). Let 〈u0, v0〉, . . . , 〈um−1, vm−1〉 be an enumeration (without repetitions) of
all edges 〈u, v〉 with u ∈ V0 and v ∈ V \ V0. We construct a new graph G′

0 = 〈V ′
0 , E

′
0〉 by

attaching to each vertex ui a path Pi of length k. Let δ′ be the distribution on G′
0 with

δ′(v) = δ(v), for v ∈ V0, and δ′(v) = 0, for v ∈ V ′
0 \V0. In order to show that Φ0 is satisfiable

it is sufficient to prove that G′
0 has a flow of the desired form. Consider an arbitrary set

X ⊆ V ′
0 of vertices. Let

I := { i | ui ∈ X } and J := { i | ui ∈ X and Pi ⊆ X } .

It follows that

δ′(X) = δ(X ∩ V0) ≤ |X ∩ V0|+ k · |BG(X ∩ V0)|

≤ |X| − k · |J |+ k · |BG′
0
(X ∩ V0)|

≤ |X| − k · |J |+ k ·
(

|BG′
0
(X)| + |J |

)

= |X| + k · |BG′
0
(X)| .

By the first part of the proof it follows that G′
0 has a flow of the desired form.

It remains to show how we can use the δ-flow f we have just constructed to define the
desired function g : V → V . We start by selecting a certain family of definable paths. Note
that we allow paths of length 0. Such paths are uniquely determined by the vertex they start
(and end) at.

Lemma 4.11. Let G be a countable undirected graph and f an acyclic δ-flow of G. There
exists a set P of finite paths through G satisfying the following conditions:

(i) For every v ∈ V , there are exactly δ(v) paths in P starting at v.
(ii) For every v ∈ V there is at most one path in P ending at v.
(iii) For every pair u, v ∈ V of vertices there are at most f(u, v) paths in P containing the

edge (u, v) (in this direction).

Proof. Fix an enumeration (vn, kn)n<ω of the set

{ 〈v, k〉 | v ∈ V, 0 ≤ k < δ(v) } .

For n < ω, we construct paths πn with the following properties:

• πn starts at vn.
• If m 6= n then the endpoints of πm and πn are different.
• For every edge (u, v) there are at most f(u, v) paths πn containing the edge (u, v).

By induction, suppose that we have already defined πi, for i < n. Let

(1) α(v) be the number of paths πi, i < n, starting at v,
(2) β(v) the number of paths πi, i < n, ending at v, and
(3) µ(u, v) the number of paths πi, i < n, containing the edge (u, v).

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 19

We construct a path u0 . . . um inductively starting with u0 := vn. For the induction step,
suppose that we have already defined u0, . . . , ui. If β(ui) = 0 then we stop and set πn :=
u0 . . . ui. Otherwise, we claim that there is some neighbour w of ui with f(ui, w) > µ(ui, w).
Hence, we can set ui+1 := w.

To prove the claim, we distinguish two cases. If i = 0 then α(u0) < δ(u0) implies that
∑

x∈V

µ(u0, x) = α(u0)− β(u0) +
∑

x∈V

µ(x, u0)

≤ α(u0)− 1 +
∑

{ f(x, u0) | f(x, u0) ≥ 0 }

= α(u0)− 1 +
∑

{ f(u0, x) | f(u0, x) ≥ 0 } − (δ(u0)− 1)

<
∑

{ f(u0, x) | f(u0, x) ≥ 0 } ,

as desired. Similarly, if i > 0 then µ(ui−1, ui) < f(ui−1, ui) implies that
∑

x∈V

µ(ui, x) = α(ui)− β(ui) +
∑

x∈V

µ(x, ui)

< α(ui)− 1 +
∑

{ f(x, ui) | f(x, ui) ≥ 0 }

= α(ui)− 1 +
∑

{ f(ui, x) | f(ui, x) ≥ 0 } − (δ(ui)− 1)

≤
∑

{ f(ui, x) | f(ui, x) ≥ 0 } .

Note that the construction of πn must terminate after at most n+ 1 steps since the flow f
is acyclic and there are only n vertices u with β(u) = 1.

Lemma 4.12. There exist GSO-formulae ϕm(X; Z̄), for m < ω, such that, for every graph G

and each set P of finite paths such that every vertex and every edge of G is contained in at
most m paths of P, there exists a tuple S̄ of GSO-parameters such that

G |= ϕm(P ; S̄) iff P is (the set of edges of) a nonempty path in P .

Proof. For every edge (u, v) of G we fix a bijection µ(u, v) : [n] → Pe where Pe ⊆ P is the
set of all paths containing the edge (u, v) (in either direction) and n := |Pe|. We assume
that µ(u, v) = µ(v, u).

Let S be the set of all edges of G contained in some path in P. By Lemma 2.17 there
exists an MSO-formula χ(x, y, z; S̄′) with parameters S̄′ such that, for every v ∈ V , the
formula χ(x, y, v; S̄′) linearly orders the set of all vertices that are connected to v via an
edge in S.

Finally, we define unary predicates Qik
jl containing all vertices v such that there exists

a path π ∈ P containing edges (u, v), (v,w) where

• µ(u, v)(k) = π, µ(v,w)(l) = π,
• u is the i-th neighbour of v (in the order defined by χ),
• w is the j-th neighbour of v.

It follows that a nonempty set P ⊆ E of edges is a path in P if and only if P is a minimal
nonempty subset of E satisfying the following condition:

P can be written as a union P = P0 ∪ · · · ∪ Pm−1 such that, for all vertices u, v, w such
that v ∈ Qik

jl and u and w are, respectively, the i-th and j-th neighbour of v, we have

(u, v) ∈ Pk ⇔ (v,w) ∈ Pl.

This condition can be expressed in GSO.

20 A. BLUMENSATH

Remark 4.13. Note that the set of empty paths in P is trivially definable with the help of
the parameter

Q := { v ∈ V | P contains an empty path from v to v } .

Using the family P we can construct a formula ϕ defining the function g.

Proposition 4.14. There exist GSO-formulae ϕm(x, y; Z̄), for m < ω, with the following
property: for every graph G = 〈V,E〉 and each acyclic δ-flow f of G that is vertex-bounded
by m, there exist GSO-parameters S̄ such that ϕm(x, y; S̄) defines on G a partial function
g : V → V with

|g−1(v)| = δ(v) , for all v ∈ V .

Proof. Let G′ be the graph obtained from G by removing every edge (u, v) with f(u, v) = 0.
Note that f is also a δ-flow of G′. Since f is vertex-bounded by m it follows that every
vertex of G′ has degree at most m < ω. Consequently, each connected component G0 of G
is countable. Let P0 be the set of paths obtained by applying Lemma 4.11 to the restriction
of f to G0, and let P be the union of all these sets P0 corresponding to the connected
components of G′. By Lemma 4.12, there exists a formula ψ(X; Z̄) and a set S̄ of guarded
relations such that

G |= ψ(P ; S̄) iff P is a nonempty path in P .

With the help of ψ we can define a partial function g : V → V such that

g(v) = u : iff P contains a path from u to v .

By construction of P we have |g−1(v)| = δ(v), for every v ∈ V .

Lemma 4.15. Let G = 〈V,E〉 be a graph of finite degree and ϕ(X, y) a GSO-formula that
defines a partial function h : P(V) → V such that the distribution δ induced by h is k-
sparse. Suppose that there exists a GSO-formula χ(X,Y, z) such that, for every vertex v ∈ V ,
χ(X,Y, v) linearly orders the set h−1(v). Then there exist MSO-definable partial functions
h0 : P(V) → V and g : V → V such that h = g ◦ h0 and h0 is injective.

Proof. By Proposition 4.10 there exists a δ-flow f that is edge-bounded by k. Since G has
finite degree it follows that f is vertex-bounded by some constant m < ω. Hence, we can
use Proposition 4.14 to find a definable function g : V → V with |g−1(v)| = δ(v) = |h−1(v)|.
Choose unary predicates P0, . . . , Pk−1 such that we have i 6= l whenever u ∈ Pi and v ∈ Pl

are distinct vertices with g(u) = g(v). Using these predicate we can define partial functions
g0, . . . , gk−1 : V → V such that gi(v) is the unique element of g−1(v) ∩ Pi. We define
h0 : P(V) → V by h0(X) := (gi ◦ h)(X) where the index i is chosen such that X is the
i-th element of h−1(h(X)) (in the order defined by χ). It follows that h(X) = g(h0(X)) and
h0 is injective. Furthermore, the function h0 is clearly GSO-definable. Since the graph G

has degree at most k it is k-sparse. Hence, every GSO-definable function is already MSO-
definable.

Recall that Pfin(V) denotes the set of all finite subsets of V . Combining the preceding
lemmas we obtain the main result of this section.

Theorem 4.16. Let G = 〈V,E〉 be a graph of finite degree and ϕ(X, y) a GSO-formula
that defines a partial function h : Pfin(V) → V such that the distribution δ induced by h is
k-sparse. Then there exist MSO-definable partial functions h0 : Pfin(V) → V and g : V → V
such that h = g ◦ h0 and h0 is injective.

GUARDED SECOND-ORDER LOGIC, SPANNING TREES, AND NETWORK FLOWS 21

Proof. By the preceding lemma it is sufficient to construct a formua χ(X,Y, z) (with GSO-
parameters) such that χ(X,Y, v) linearly orders h−1(v), for every v ∈ V . Let T0 ⊆ E be
a spanning forest of G and let P ⊆ V be a set containing exactly one element of each
connected component. Using the parameters P and T0 we can define the tree ordering on V
by

u ≤ v : iff the unique path in T0 from some element of P to v contains u .

Let T ⊆ V × V be the set obtained from T0 by orienting the edges according to this
ordering. Then T is a directed forest. Furthermore, since the degree of G is bounded we
can use Lemma 2.17 to linearly order the successors of every vertex in T . We use these
two orderings to define the lexicographic ordering ≤lex on T . Finally, we obtain the desired
ordering on Pfin(V) by setting

X < Y : iff the ≤lex-minimal element of (X \ Y) ∪ (Y \X) belongs to Y .

Each of these definitions can be expressed in GSO.

5. Conclusion

We have presented several methods to encode sets of finite vertices as single vertices. In the
first part, we used depth-first spanning trees to encode edges by vertices. As an application we
were able to extend Courcelle’s result on the collapse of GSO to MSO on sparse hypergraphs
from countable hypergraphs to hypergraphs of arbitrary cardinality. In the second part we
used network flows to encode arbitrary finite sets by vertices.

Let us mention some open questions. Considering the first part it would be interesting
to find out whether sparse classes are the only examples where GSO collapses to MSO.

Problem 5.1. Is there a class C that is not k-sparse, for any k, such that over C every
GSO-sentence is equivalent to an MSO-sentence?

The results of the second part are much less complete. It is unlikely that they are the
best possible.

Problem 5.2. Improve Theorem 4.16 by allowing

(a) more general classes of graphs or hypergraphs;
(b) more general classes of partial functions h : P(V) → V .

Our results were inspired by work of Colcombet and Löding [1]. The question arises of
whether we can also generalise the remaining results of that article.

Problem 5.3. Can we prove Corollary 4.4 of [1] for other graphs than trees?

Acknowledgement

I like to thank Bruno Courcelle for his many comments on earlier versions of this paper.

22 A. BLUMENSATH

References

[1] T. Colcombet and C. Löding, Transforming Structures by Set Interpretations, Logical Methods in
Computer Science, 3 (2007).

[2] B. Courcelle, The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set

quantifications, Theoretical Computer Science, 299 (2003), pp. 1–36.
[3] R. Diestel, Graph Theory, Springer, 3rd ed., 2006.
[4] E. Grädel, C. Hirsch, and M. Otto, Back and Forth Between Guarded and Modal Logics, ACM

Transactions on Computational Logics, (2002), pp. 418–463.
[5] W. Hodges, Model Theory, Cambridge University Press, 1993.
[6] J. Nešetřil, E. Sopena, and L. Vignal, T-preserving homomorphisms of oriented graphs, Comment.

Math. Univ. Carolinae, 38 (1997), pp. 125–136.
[7] D. Seese, The structure of the models of decidable monadic theories of graphs, Annals of Pure and

Applied Logic, 53 (1991), pp. 169–195.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	introduction
	1. Orientations of sparse hypergraphs
	2. Depth-first spanning trees
	3. GSO versus MSO
	4. Sparse distributions
	5. Conclusion
	Acknowledgement
	References

