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Abstract. A regular tree language L is locally testable if membership of a tree in L
depends only on the presence or absence of some fix set of neighborhoods in the tree. In
this paper we show that it is decidable whether a regular tree language is locally testable.
The decidability is shown for ranked trees and for unranked unordered trees.

1. Introduction

This paper is part of a general program trying to understand the expressive power of
first-order logic over trees. We say that a class of regular tree languages has a decidable
characterization if the following problem is decidable: given as input a finite tree automa-
ton, decide if the recognized language belongs to the class in question. Usually a decision
algorithm requires a solid understanding of the expressive power of the corresponding class
and is therefore useful in any context where a precise boundary of this expressive power
is crucial. In particular we do not possess yet a decidable characterization of the tree lan-
guages definable in FO(≤), the first-order logic using a binary predicate ≤ for the ancestor
relation.

We consider here the class of tree languages definable in a fragment of FO(≤) known
as Locally Testable (LT). A language is in LT if membership in the language depends only
on the presence or absence of neighborhoods of a certain size in the tree. A closely related
family of languages is the class LTT of Locally Threshold Testable languages. Membership
in such languages is determined by counting the number of neighborhoods of a certain size
up to some threshold. The class LT is the special case where no counting is done, the
threshold is 1. In this paper we provide a decidable characterization of the class LT over
trees.

The standard approach for deriving a decidable characterization is to first exhibit a set
of closure properties that hold exactly for the languages in the class under investigation
and then show that these closure properties can be automatically tested. This requires
a formalism for expressing the desired closure properties but also some tools, typically
induction mechanisms, for proving that the properties do characterize the class, and for
proving the decidability of those properties.
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Over words one formalism turned out to be successful for characterizing many classes
of regular languages. The closure properties are expressed as identities on the syntactic
monoid or syntactic semigroup of the regular language. The syntactic monoid or syntac-
tic semigroup of a regular language is the transition monoid of its minimal deterministic
automaton including or not the transition induced by the empty word. For instance the
class of word languages definable in FO(≤) is characterized by the fact that the syntactic
monoid of any such languages is aperiodic. The latter property corresponds to the identity
xω = xω+1 where ω is the size of the monoid. This equation is easily verifiable automatically
on the syntactic monoid. Similarly, the classes LTT and LT have been characterized using
decidable identities on the syntactic semigroup [BS73, McN74, BP89, TW85].

Over trees the situation is more complex and right now there is no formalism that can
easily express all the known closure properties for the classes for which we have a decidable
characterization. The most successful formalism is certainly the one introduced in [BW07]
known as forest algebras. For instance, these forest algebras were used for obtaining de-
cidable characterizations for the classes of tree languages definable in EF+EX [BW06],
EF+F−1 [Boj07b, Pla08], BC-Σ1(<) [BSS08, Pla08], ∆2(≤) [BS08, Pla08]. However it is
not clear yet how to use forest algebras in a simple way for characterizing the class LTT
over trees and a different formalism was used for obtaining a decidable characterization for
this class [BS10].

We were not able to obtain a reasonable set of identities for LT either by using forest
algebras or the formalism used for characterizing LTT. Our approach is slightly different.

There is another technique that was used on words for deciding the class LT. It is based
on the “delay theorem” [Str85, Til87] for computing the required size of the neighborhoods:
Given an automaton recognizing the language L, a number k can be computed from that
automaton such that if L is in LT then it is in LT by investigating the neighborhoods of
size k. Once this k is available, deciding whether L is indeed in LT or not is a simple
exercise. On words, a decision algorithm for LT (and also for LTT) has been obtained
successfully using this approach [Boj07a]. Unfortunately all efforts to prove a similar delay
theorem on trees have failed so far.

We obtain a decidable characterization of LT by combining the two approaches men-
tioned above. We first exhibit a set of necessary conditions for a regular tree language to
be in LT. Those conditions are expressed using the formalism introduced for characterizing
LTT. We then show that for languages satisfying such conditions one can compute the re-
quired size of the neighborhoods. Using this technique we obtain a characterization of LT
for ranked trees and for unranked unordered trees.

Other related work. There exist several formalisms that have been used for expressing
identities corresponding to several classes of languages but not in a decidable way. Among
them let us mention the notion of preclones introduced in [EW05] as it is close to the one
we use in this paper for expressing our necessary conditions.

Finally we mention the class of frontier testable languages, not expressible in FO(<),
that was given a decidable characterization using a specific formalism [Wil96].

Organization of the paper. We start with ranked trees and give the necessary notations
and preliminary results in Section 2. Section 3 exhibits several conditions and proves they
are necessary for being in LT. In Section 4 we show that for the languages satisfying the
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necessary conditions the required size of the neighborhoods can be computed, hence con-
cluding the decidability of the characterization. Finally in Section 5 we show how our result
extends to unranked trees.

2. Notations and preliminaries

We first investigate the case of binary trees. The case of unranked unordered trees will be
considered in Section 5.

Trees. We fix a finite alphabet Σ, and consider finite binary trees with labels in Σ. All the
results presented here extend to arbitrary ranks in a straightforward way. In the binary
case, each node of the tree is either a leaf (has no children) or has exactly two children,
the left child and the right child. We use the standard terminology for trees. For instance
by the descendant (resp. ancestor) relation we mean the reflexive transitive closure of the
child (resp. inverse of child) relation and by distance between two nodes we refer to the
length of the shortest path between the two nodes. A language is a set of trees.

Given a tree t and a node x of t the subtree of t rooted at x, consisting of all the nodes of t
that are descendant of x, is denoted by t|x. A context is a tree with a designated (unlabeled)
leaf called its port which acts as a hole. Given contexts C and C ′, their concatenation C ·C ′

is the context formed by identifying the root of C ′ with the port of C. A tree C · t can be
obtained similarly by combining a context C and a tree t. Given a tree t and two nodes
x, y of t such that y is a descendant (not necessarily strict) of x, the context of t between x
and y, denoted by t[x, y], is defined by keeping all the nodes of t that are descendants of x
but not descendants of y and by placing the port at y.

We say that a context C occurs in t if C is the context of t between x and y for some
nodes x and y of t.

Types. Let t be a tree and x be a node of t and k be a positive integer, the k-type of x is
the (isomorphism type of the) restriction of t|x to the set of nodes of t at distance at most
k from x. When k will be clear from the context we will simply say type. A k-type τ occurs

in a tree t if there exists a node of t of type τ . If C is the context t[x, y] for some tree t and
some nodes x, y of t, then the k-type of a node of C is the k-type of the corresponding node
in t. Notice that the k-type of a node of C depends on the surrounding tree t, in particular
the port of C has a k-type, the one of y in t.

Given two trees t and t′ we denote by t 4k t′ the fact that all k-types that occur in t
also occur in t′. Similarly we can speak of t 4k C when t is a tree and C is t′[x, y] for some
tree t′ and some nodes x, y of t′. We denote by t ≃k t′ the property that the root of t and
the root of t′ have the same k-type and t and t′ agree on their k-types: t 4k t′ and t′ 4k t .
Note that when k is fixed the number of k-types is finite and hence the equivalence relation
≃k has a finite number of equivalence classes. This property is no longer true for unranked
trees and this is why we will have to use a different technique for this case.

A language L is said to be κ-locally testable if L is a union of equivalence classes of ≃κ.
A language is said to be locally testable (is in LT) if there is a κ such that it is κ-locally
testable. In other words, in order to test whether a tree t belongs to L it is enough to check
for the presence or absence of κ-types in t, for some big enough κ.
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Regular Languages. We assume familiarity with tree automata and regular tree lan-
guages. The interested reader is referred to [CGJ+07] for more details. Their precise def-
initions are not important in order to understand our characterization. However pumping
arguments will be used in the decision algorithms.

The problem. We want an algorithm deciding if a given regular language is in LT. When
the complexity is not an issue, we can assume that the language L is given as a MSO
formula. Another option would be to start with a bottom-up tree automaton for L or,
even better, the minimal deterministic bottom-up tree automaton that recognize L. We
will come back to the complexity issues in Section 7. The main difficulty is to compute a
bound on κ, the size of the neighborhood, whenever such a κ exists.

The word case is a special case of the tree case as it corresponds to trees of rank 1. A de-
cision procedure for LT was obtained in the word case independently by [BS73] and [McN74].
A language L is in LT if and only if its syntactic semigroup satisifies the equations exe =
exexe and exeye = eyexe, where e is an arbitrary idempotent (ee = e) while x and y are
arbitrary elements of the semigroup. The equations are then easily verified after computing
the syntactic semigroup.

In the case of trees, we were not able to obtain a reasonably simple set of identities for
characterizing LT. Nevertheless we can show:

Theorem 2.1. It is decidable whether a regular tree language is in LT.

Our strategy for proving Theorem 2.1 is as follows. In a first step we provide necessary
conditions for a language to be in LT. In a second step we show that if a language L verifies
those necessary conditions then we can compute from an automaton recognizing L a number
κ such that if L is in LT then L is κ-locally testable. The last step is simple and show that
once κ is fixed, it is decidable whether a regular language is κ-locally testable. This last step
follows immediately from the fact that once κ is fixed, there are only finitely many κ-locally
testable languages and hence one can enumerate them and test whether L is equivalent to
one of them or not.

Given a regular language L, testing whether L is in LT is then done as follows: (1)
compute from L the κ of the second step and (2) test whether L is κ-locally testable using
the third step. The first step implies that this algorithm is correct.

Before starting providing the proof details we note that there exist examples showing
that the necessary conditions are not sufficient. Such an example will be provided in Sec-
tion 6. We also note that the problem of finding κ whenever such a κ exists is a special case
of the delay theorem mentioned in the introduction. When applied to LT, the delay theo-
rem says that if a finite state automaton A recognizes a language in LT then this language
must be κ-locally testable for a κ computable from A. The delay theorem was proved over
words in [Str85] and can be used in order to decide whether a regular language is in LT as
explained in [Boj07a]. We were not able to prove such a general theorem for trees.

3. Necessary conditions

In this section we exhibit necessary conditions for a regular language to be in LT. These
conditions will play a crucial role in our decision algorithm. These conditions are expressed
using the same formalism as the one used in [BS10] for characterizing LTT.
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Guarded operations. Let t be a tree, and x, x′ be two nodes of t such that x and x′ are
not related by the descendant relationship. The horizontal swap of t at nodes x and x′ is
the tree t′ constructed from t by replacing t|x with t|x′ and vice-versa, see Figure 1 (left).
A horizontal swap is said to be k-guarded if x and x′ have the same k-type.

Let t be a tree and x, y, z be three nodes of t such that x, y, z are not related by the
descendant relationship and such that t|x = t|y. The horizontal transfer of t at x, y, z is
the tree t′ constructed from t by replacing t|y with a copy of t|z, see Figure 1 (right). A
horizontal transfer is k-guarded if x, y, z have the same k-type.

t|x t|x′

x x′
⇐⇒

t|x′ t|x

x x′

t|x t|x t|z

x y z
⇐⇒

t|x t|z t|z

x y z

Figure 1: Horizontal Swap (left) and Horizontal Transfer (right)

Let t be a tree of root a, and x, y, z be three nodes of t such that y is a descendant of
x and z is a descendant of y. The vertical swap of t at x, y, z is the tree t′ constructed from
t by swapping the context between x and y with the context between y and z, see Figure 2
(left). More formally let C = t[a, x], ∆1 = t[x, y], ∆2 = t[y, z] and T = t|z. We then have
t = C ·∆1 ·∆2 ·T . The tree t′ is defined as t′ = C ·∆2 ·∆1 ·T . A vertical swap is k-guarded
if x, y, z have the same k-type.

Let t be a tree of root a, and x, y, z be three nodes of t such that y is a descendant of x
and z is a descendant of y such that ∆ = t[x, y] = t[y, z]. The vertical stutter of t at x, y, z
is the tree t′ constructed from t by removing the context between x and y, see Figure 2
(right). A vertical stutter is k-guarded if x, y, z have the same k-type.

C

∆1

∆2

T

x

y

z

⇐⇒

C

∆2

∆1

T

x

y

z

C

∆

∆

T

x

y

z

⇐⇒

C

∆

T

x

z

Figure 2: Vertical Swap (left) and Vertical Stutter (right)

Let L be a tree language and k be a number. If X is any of the four constructions
above, horizontal or vertical swap, or vertical stutter or horizontal transfer, we say that L
is closed under k-guarded X if for every tree t and every tree t′ constructed from t using
k-guarded X then t is in L iff t′ is in L. Notice that being closed under k-guarded X implies
being closed under k′-guarded X for k′ > k. An important observation is that each of the
k-guarded operation does not affect the set of (k + 1)-types occurring in the trees.

If L is closed under all the k-guarded operations described above, we say that L is
k-tame. A language is said to be tame if it is k-tame for some k.

The following simple result shows that tameness is a necessary condition for LT.



6 T. PLACE AND L. SEGOUFIN

Proposition 3.1. If L is in LT then L is tame.

Proof. Assume L is in LT. Then there is a κ such that L is κ-locally testable. We show
that L is κ-tame. This is a straightforward consequence of the fact that all the κ-guarded
operations above preserve (κ+ 1)-types and hence preserve κ-types.

A simple pumping argument shows that if L is tame then it is k-tame for k bounded by
a polynomial in the size of the minimal deterministic bottom-up tree automaton recognizing
L.

Proposition 3.2. Given a regular language L and A the minimal deterministic bottom-up

tree automaton recognizing L, we have L is tame iff L is k0-tame for k0 = |A|3 + 1.

Proof. We prove that if X is one of the four operations that defines tameness, then if L is
closed under k-guarded X for k > k0, then L is closed under k0-guarded X. This will imply
that if L is k-tame then it is k0-tame.

Consider the case of k-guarded horizontal transfer and assume L is closed under k-
guarded horizontal transfers. We show that L is closed under k0-guarded horizontal trans-
fers. Let t be a tree and x, y, z three nodes of t having the same k0-type and not related by
the descendant relation such that t|x = t|y. We need to show that replacing t|y by a copy
of t|z does not affect membership in L.

We do this in three steps, first we transform t by pumping in parallel in the subtrees of
x, y and z until x, y, z have the same k-type, then we use the closure of L under k-guarded
horizontal transfer in order to replace t|y by a copy of t|z, and finally we backtrack the
initial pumping phase in order to recover the initial subtrees.

We let t1 = t|x and t2 = t|z and we assume for now on that t1 6= t2. By position we
denote a string w of {0, 1}∗. A position w is realized in a tree t if there is a node x of t such
that if x1, · · · , xn = x is the sequence of nodes in the path from the root of t to x then for
all i ≤ n the ith bit of w is zero if xi is a left child and it is one if xi is a right child. We
order positions by first comparing their respective length and then using the lexicographical
order.

By hypothesis t1 and t2 are identical up to depth at least k0. Let w be the first position
such that t1 and t2 differ at that position. That can be either because w is realized in t1
but not in t2, or vice versa, or w is realized in both trees but the labels of the corresponding
nodes differ. We know that the length n of w is strictly greater than k0. If n > k, we are
done with the first phase. We assume now that n ≤ k.

Consider the run r of A on t. The run assigns a state q to each node of t. From r we
assign to each position w′ < w a pair of states (q, q′) such that q is the state given by r at
the corresponding node in t1 while q′ is the state given by r at the corresponding node in
t2. Because n > k0 > |A|2, there must be two prefixes w1 and w2 of w that were assigned
the same pair of states. Consider the context C1 = t1[v1, v2] where v and v′ are the nodes
of t1 at position w1 and w2 and the context C2 = t2[v

′

1, v
′

2] where v and v′ are the nodes
of t2 at position w1 and w2. Without affecting membership in L, we can therefore at the
same time duplicate C1 in the two copies of t1 rooted at x and y and C2 in the copy of t2
rooted at z.

Let t′1 and t′2 be the subtrees of the resulting tree, rooted respectively at x and z. The
reader can verify that t′1 and t′2 now differ at a position strictly greater than w.

Performing this repeatedly, we eventually arrive at a situation where the subtree t′1
rooted at x and y agree up to depth k with the subtree rooted at z. We can now apply
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k-guarded horizontal transfer and replace one occurrence of t′1 by a copy of t′2. We can then
replace t′1 by t1 and both copies of t′2 by t2 without affecting membership in L.

The other operations are done similarly. For the horizontal swap, we pump the subtrees
at positions x and x′ simultaneously, which is possible because k0 > |A|2. For vertical swap,
we pump the subtrees at the positions x, y and z simultaneously, and that requires k0 > |A|3.
Finally, for vertical stutter, we pump the subtrees at the positions x, y and z simultaneously,
which again requires k0 > |A|3.

Once k is fixed, a brute force algorithm can check whether L is k-tame or not. Indeed,
as L is regular, when testing for closure under k-guarded X, it is enough to consider all
relevant states and appropriate transition functions of the automata instead of all trees and
all contexts. See for instance Lemma 12 and Lemma 13 in [BS10].

Therefore Proposition 3.2 implies that tameness is decidable. However for deciding LT
we will only need the bound on k0 given by the proposition.

4. Deciding LT

In this section we show that it is decidable whether a regular tree language is in LT. This is
done by showing that if a regular language L is in LT then there is a κ computable from an
automaton recognizing L such that L is in fact κ-locally testable. Recall that once this κ is
computed the decision procedure simply enumerates all the finitely many κ-locally testable
languages and tests whether L is one of them.

Assume L is in LT. By Proposition 3.1, L is tame. Even more, from Proposition 3.2,
one can effectively compute a k such that L is k-tame. Hence Theorem 2.1 follows from the
following proposition.

Proposition 4.1. Assume L is a k-tame regular tree language then L is in LT iff L is

κ-locally testable where κ is computable from k.

Recall that for each k the number of k-types is finite. Let βk be this number. Proposi-
tion 4.1 is an immediate consequence of the following proposition.

Proposition 4.2. Let L be a k-tame regular tree language. Set κ = βk + k + 1. Then for

all l > κ and any two trees t, t′ if t ≃κ t′ then there exist two trees T, T ′ with

(1) t ∈ L iff T ∈ L
(2) t′ ∈ L iff T ′ ∈ L
(3) T ≃l T

′

Proof of Proposition 4.1 using Proposition 4.2. Assume L is k-tame and let κ be defined as
in Proposition 4.2. We show that L is in LT iff L is κ-locally testable. Assume L is in LT.
Then L is l-locally testable for some l ∈ N. We show that L is actually κ-locally testable.
For this it suffices to show that for any pair of trees t and t′, if t ≃κ t′ then t ∈ L iff t′ ∈ L.
Let T and T ′ be the trees constructed for l from t and t′ by Proposition 4.2. We have
T ≃l T

′ and therefore T ∈ L iff T ′ ∈ L. As we also have t ∈ L iff T ∈ L and t′ ∈ L iff
T ′ ∈ L, the proposition is proved.
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Before proving Proposition 4.2 we need some extra terminology. A non-empty context
C occurring in a tree t is a loop of k-type τ if the k-type of its root and the k-type of its port
is τ . A non-empty context C occurring in a tree t is a k-loop if there is some k-type τ such
that C is a loop of k-type τ . Given a context C we call the path from the root of C to its
port the principal path of C. Finally, the result of the insertion of a k-loop C at a node x
of a tree t is a tree T such that if t = D · t|x then T = D ·C · t|x. Typically an insertion will
occur only when the k-type of x is τ and C is a loop of k-type τ . In this case the k-types
of the nodes initially from t and of the nodes of C are unchanged by this operation.

Proof of Proposition 4.2. Suppose that L is k-tame. We start by proving two lemmas that
will be useful in the construction of T and T ′. Essentially these lemmas show that even
though being k-tame does not imply being (k + 1)-locally testable (recall the remark after
Theorem 2.1) some of the expected behavior of (k + 1)-locally testable languages can still
be derived from being k-tame. The first lemma shows that given a tree t, without affecting
membership in L, we can replace a subtree of t containing only (k + 1)-types occurring
elsewhere in t by any other subtree satisfying this property and having the same k-type as
root. The second lemma shows the same result for contexts by showing that a k-loop can
be inserted in a tree t without affecting membership in L as soon as all the (k + 1)-types
of the k-loop were already present in t. After proving these lemmas we will see how to
combine them for constructing T and T ′.

Lemma 4.3. Assume L is k-tame. Let t = Ds be a tree where s is a subtree of t. Let s′ be
another tree such that the roots of s and s′ have the same k-type.

If s 4k+1 D and s′ 4k+1 D then Ds ∈ L iff Ds′ ∈ L.

Proof. We start by proving a special case of the Lemma when s′ is actually another subtree
of t. We will use repeatedly this particular case in the proof.

Claim 4.4. Assume L is k-tame. Let t be a tree and let x, y be two nodes of t not related
by the descendant relationship and with the same k-type. We write s = t|x, s

′ = t|y and C
the context such that t = Cs. If s 4k+1 C then Cs ∈ L iff Cs′ ∈ L.

Proof. The proof is done by induction on the depth of s and makes crucial use of k-guarded
horizontal transfer.

Assume first that s is of depth less than k. Since x and y have the same k-type, we
have s = s′ and the result follows.

Assume now that s is of depth greater than k.
Let τ be the (k+1)-type of x. We assume that s is a tree of the form a(s1, s2). Notice

that the k-type of the roots of s1 and s2 are completely determined by τ . Since s 4k+1 C,
there exists a node z in C of type τ . We write s′′ = t|z.

We consider several cases depending on the relationship between x, y and z. We first
consider the case where x and z are not related by the descendant relationship, then we
reduce the other cases to this case.

Assume that x and z are not related by the descendant relationship. Since s′′ is of
type τ , it is of the form a(s′′1, s

′′

2) where the roots of s′′1 and s′′2 have the same k-type as
respectively the roots of s1 and s2. By hypothesis all the (k+1)-types of s1 and s2 already
appear in C and hence we can apply the induction hypothesis to replace s1 by s′′1 and s2 by
s′′2 without affecting membership in L. Notice that the resulting tree is Cs′′, that t = Cs ∈ L
iff Cs′′ ∈ L, and that Cs′′ contains two copies of the subtree s′′, one at position x and one
at position z. We now show that we can derive Cs′ from Cs′′ using k-guarded operations.
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Since L is k-tame it will follow that that Cs′′ ∈ L iff Cs′ ∈ L and thus Cs ∈ L iff Cs′ ∈ L.
Let t′′ = Cs′′ and we distinguish between three cases depending on the relationship between
z and y in t′′:

(1) If z is a descendant of y, let D = t′′[y, z] and notice that s′ = Ds′′. Since x, y and z
have the same k-type, we use k-guarded vertical stutter to duplicate D and a k-guarded
horizontal swap to move the new copy of D at position x (see the picture below). The
resulting tree is Cs′ as desired.

s′′
x

D

s′′

y

z

=⇒

Vertical
Stutter

s′′
x

D

D

s′′

y

z

=⇒

Horizontal
Swap

D

s′′

x
D

s′′

y

(2) If z is an ancestor of y, let D = t′′[z, y] and notice that s′′ = Ds′. Since y and x have the
same k-type, we use k-guarded horizontal swap followed by a k-guarded vertical stutter
to delete the copy of D (see the picture below). The resulting tree is Cs′ as desired.

D

s′

x
D

y
s′

z
=⇒

Horizontal
Swap

s′
x

D

D

s′
y

=⇒

Vertical
Stutter

s′
x

D

s′
y

(3) If z and y are not related by the descendant relation, then x, y and z have the same
k-type and t′′|x = t′′|z. We use k-guarded horizontal transfer to replace t′′|x with t′′|y
as depicted below.

s′′

x

s′′

z

s′

y =⇒

Horizontal
Transfer

s′

x

s′′

z

s′

y

This concludes the case where x and z are not related by the descendant relationship
in t. We are left with the case where x is a descendant of z (recall that z is outside s and
therefore not a descendant of x). We reduce this problem to the previous case by considering
two subcases:

• If y, z are not related by the descendant relationship, we use a k-guarded horizontal swap
to replace s by s′ and vice versa. This reverses the roles of x and y and as y and z are
not related by the descendant relationship and position y now has (k + 1)-type τ we can
apply the previous case.

s′
y

s

z

x

=⇒

Horizontal
Swap

s
y

s′

z

x

=⇒

Previous
Case

s′
x

s′

z

y
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• If z is an ancestor of both x and y we use k-guarded vertical stutter to duplicate the
context between z and x. This introduces a new node z′ of type τ that is not related to
y by the descendant relationship and we are back in the previous case.

D
z

s′

y

s

x

=⇒

Vertical
Stutter

D
z

s′

y
D

z′

s′

y′

s

x

=⇒

Previous
Case

D
z

s′

y
D

z′

s′

y′

s′

x

=⇒

Vertical
Stutter

D
z

s′

y

s′

x

We now turn to the proof of Lemma 4.3. The proof is done by induction on the depth
of s′. The idea is to replace s with s′ node by node.

Assume first that s′ is of depth less than k. Then because the k-type of the roots of s
and s′ are equal, we have s = s′ and the result follows.

Assume now that s′ is of depth greater than k.
Let x be the node of t corresponding to the root of s. Let τ be the (k + 1)-type of

the root of s′. We assume that s′ is a tree of the form a(s′1, s
′

2). Notice that the k-type of
the roots of s′1 and s′2 are completely determined by τ . By hypothesis s′ 4k+1 D, hence
there exists a node y in D of type τ . We consider two cases depending on the relationship
between x and y.

• If y is an ancestor of x, let E be t[y, x] and notice that x and y have the same k-type.
This case is depicted below. Hence applying a k-guarded vertical stutter we can duplicate
E obtaining the tree DEs. Because L is k-tame, DEs ∈ L iff t = Ds ∈ L. Now the
root of Es in DEs is of type τ and therefore of the form a(s1, s2) where the roots of s1
and s2 have the same k-type as respectively the roots of s′1 and s′2. By construction all
the (k+1)-types of s1 and s2 already appear in D and hence we can apply the induction
hypothesis to replace s1 by s′1 and s2 by s′2 without affecting membership in L. Altogether
this gives the desired result.

y

x

E

s

type τ

Vertical
Stutter
=⇒ E

E

s

type τ

=

s1 s2

E

a

Induction
=⇒

s′1 s′2

E

a

• Assume now that x and y are not related by the descendant relationship. This case is
depicted below. Let s′′ be the subtree of Ds rooted at y. By hypothesis all the (k + 1)-
types of s are already present in D and the roots of s and s′′ have the same k-type.
Hence we can apply Claim 4.4 and we have Ds ∈ L iff Ds′′ ∈ L. Now the root of s′′

is by construction of type τ . Hence s′′ is of the form a(s1, s2) where s1 and s2 have all
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their (k + 1)-types appearing in D and their roots have the same k-type as respectively
s′1 and s′2. Hence by induction s1 can be replaced by s′1 and s2 by s′2 without affecting
membership in L. Altogether this gives the desired result.

y x
s′′ s

type τ

Claim 4.4
=⇒ y x

s′′ s′′
type τ

=

y x
s′′

s′1 s′2

a

Induction
⇐= y x

s′′

s1 s2

a

We now prove a similar result for k-loops.

Lemma 4.5. Assume L is k-tame. Let t be a tree and x a node of t of k-type τ . Let t′

be another tree such that t ≃k+1 t′ and C be a k-loop of type τ in t′. Consider the tree T
constructed from t by inserting a copy of C at x. Then t ∈ L iff T ∈ L.

Proof. The proof is done in two steps. First we use the k-tame property of L to show that
we can insert a k-loop C ′ at x in t such that the principal path of C is the same as the
principal path of C ′. By this we mean that there is a bijection from the principal path
of C ′ to the principal path of C that preserves the child relation and (k + 1)-types. In a
second step we replace one by one the subtrees hanging from the principal path of C ′ with
the corresponding subtrees in C.

First some terminology. Given two nodes y, y′ of some tree T , we say that y′ is a
l-ancestor of y if y is a descendant of the left child of y′. Similarly we define r-ancestorship.

Consider the context C occurring in t′. Let y0, · · · , yn be the nodes of t′ on the principal
path of C and τ0, · · · , τn be their respective (k + 1)-type. For 0 ≤ i < n, set ci to l if yi+1

is a left child of yi and r otherwise.
From t we construct using k-guarded swaps and k-vertical stutters a tree t1 such that

there is a sequence of nodes x0, · · · , xn in t1 with for all 0 ≤ i < n, xi is of type τi and xi
is an ci-ancestor of xi+1. The tree t1 is constructed by induction on n (note that this step
do not require that C is a k-loop). If n = 0 then this is a consequence of t ≃k+1 t′ that
one can find in t a node of type τ0. Consider now the case n > 0. By induction we have
constructed from t a tree t′1 such that x0, · · · , xn−1 is an appropriate sequence in t′1. By
symmetry it is enough to consider the case where yn is the left child of yn−1. Because all
k-guarded operations preserve (k + 1)-types, we have t ≃k+1 t′1 and hence there is a node
x′ of t′1 of type τn. If xn−1 is a l-ancestor of x′ then we are done. Otherwise consider the
left child x′′ of xn−1 and notice that because yn is a child of yn−1 and xn−1 has the same
(k + 1)-type as yn−1 then x′′, yn and x′ have the same k-type.

We know that x′ is not a descendant of x′′. There are two cases. If x′ and x′′ are not
related by the descendant relationship then by k-guarded swaps we can replace the subtree
rooted in x′′ by the subtree rooted in x′ and we are done. If x′ is an ancestor of x′′ then the
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x0
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xi

xn

D
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E2

k
-l
o
op

k
-l
o
op

x
0
..
.x

n

vertical
stutter x0

xi−1

xi

xn

D

E1

E2

D

E1

E2

T
w
o
k
-l
o
op

s

vertical
swap x0

xi−1

xi

xn

E1

E2

D

E1

D

E2

vertical
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E1

E2

D

E1
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Figure 3: The construction of t2, eliminating the context D between xi−1 and xi

context between x′ and x′′ is a k-loop and we can use k-guarded vertical stutter to duplicate
it. This places a node having the same (k + 1)-type as x′ as the left child of xn−1 and we
are done.
This concludes the construction of t1. From t1 we construct using k-guarded swaps and
k-guarded vertical stutter a tree t2 such that there is a path x0, · · · , xn in t2 with xi is of
type τi for all 0 ≤ i < n.

Consider the sequence x0, · · · , xn obtained in t1 from the previous step. Recall that
the k-type of x0 is the same as the k-type of xn. Hence using k-guarded vertical stutter we
can duplicate in t1 the context rooted in x0 and whose port is xn. Let t

′

1 the resulting tree.
We thus have two copies of the sequence x0, · · · , xn that we denote by the top copy and the
bottom copy. Assume xi is not a child of xi−1. By symmetry it is enough to consider the
case where xi−1 is a l-ancestor of xi. Notice then that the context between the left child of
xi−1 and xi is a k-loop. Using k-guarded vertical swap (see Figure 3) we can move the top
copy of this context next to its bottom copy. Using k-guarded vertical stutter this extra
copy can be removed. We are left with an instance of the initial sequence in the bottom
copy, while in the top one xi is a child of xi−1. This construction is depicted in figure 3.

Repeating this argument yields the desired tree t2.
Consider now the context C ′ = t2[x0, xn]. It is a loop of k-type τ . Let T ′ be the tree

constructed from t by inserting C ′ at x.

Claim 4.6. T ′ ∈ L iff t ∈ L.

Proof. Consider the sequence of k-guarded swaps and k-guarded vertical stutter that was
used in order to obtain t2 from t. Because L is k-tame, t ∈ L iff t2 ∈ L.

We can easily identify the nodes of t with the nodes of T ′ outside of C ′. Consider the
same sequence of k-guarded operations applied to T ′. Observe that this yields a tree T2

corresponding to t2 with possibly several extra copies of C ′. As C ′ is a k-loop, each of the
roots and the ports of these extra copies have the same k-type. Hence, using appropriate
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E1

C ′

E2

C ′

E3
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w
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o
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s

vertical
swap

E1

E2

C ′

C ′

E3

Vertical Case

C ′

E1

C ′

E2
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horizontal
swap

C ′

C ′

E1

E2
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Figure 4: Bringing copies of the k-loop C ′ together in Claim 4.6

t

T ′

=⇒

k- guarded
operations

=⇒

k- guarded
operations

t2

T2

=
⇒

deletion
of extra

copies of C ′

Figure 5: Relation with t2

vertical k-swaps or appropriate horizontal k-swaps, depending on whether two copies are
related or not by the descendant relation, they can be brought together. Two examples of
such operation is given in Figure 4.

Then, using k-guarded vertical stutter all but one copy can be eliminated resulting in
t2. Hence T ′ ∈ L iff t2 ∈ L and the claim is proved. See figure 5.
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It remains to show that T ′ ∈ L iff T ∈ L. By construction of T ′ we have C ′ 4k+1 t.
Consider now a node xi in the principal path of C ′. Let Ti be the subtree branching out the
principal path of C at yi and T ′

i be the subtree branching out the principal path of C ′ at
xi. By construction xi and yi are of (k + 1)-type τi. Therefore the roots of Ti and T ′

i have
the same k-type. Because C ′ 4k+1 t all the (k + 1)-types of T ′

i already appear in the part
of T ′ outside of C ′. By hypothesis we also have Ti 4k+1 t. Hence we can apply Lemma 4.3
and replacing T ′

i with Ti does not affect membership in L. A repeated use of that lemma
eventually shows that T ′ ∈ L iff T ∈ L.

We return to the proof of Proposition 4.2. Recall that we have two trees t, t′ such that
t ≃κ t′ for κ = βk + k + 1. For l > κ, we want to construct T, T ′ such that:

(1) t ∈ L iff T ∈ L
(2) t′ ∈ L iff T ′ ∈ L
(3) T ≃l T

′

Recall that the number of k-types is βk. Therefore, by choice of κ, in every branch of a
κ-type one can find at least one k-type that is repeated. This provides many k-loops that
can be used using Lemma 4.5 for obtaining bigger types.

Take l > κ, we build T and T ′ from t and t′ by inserting k-loops in t and t′ without
affecting their membership in L using Lemma 4.5.

Let B = {τ0, ..., τn} be the set of k-types τ such that there is a loop of k-type τ in t or
in t′. For each τ ∈ B we fix a context Cτ as follows. Because τ ∈ B there is a context C in
t or t′ that is a loop of k-type τ . For each τ ∈ B, we fix arbitrarily such a C and set Cτ as
C · . . . · C
︸ ︷︷ ︸

l

, l concatenations of the context C. Notice that the path from the root of Cτ to

its port is then bigger than l.
We now describe the construction of T from t. The construction of T ′ from t′ is done

similarly. The tree T is constructed by simultaneously inserting, for all τ ∈ B, a copy of
the context Cτ at all nodes of t of type τ .

We now show that T and T ′ have the desired properties.
The first and second properties, t ∈ L iff T ∈ L and t′ ∈ L iff T ′ ∈ L, essentially

follow from Lemma 4.5. We only show that t ∈ L iff T ∈ L, the second property is proved
symmetrically. We view T as if it was constructed from t using a sequence of insertions
of some context Cτ for τ ∈ B. We write s0, ..., sm the sequence of intermediate trees with
s0 = t and sm = T . We call Ci the context inserted to get si+1 from si. We show by
induction on i that (i) si ≃k+1 t and (ii) si ∈ L iff si+1 ∈ L. This will imply t ∈ L iff T ∈ L
as desired. (i) is clear for i = 0. We show that for all i (i) implies (ii). Recall that Ci is
the concatenation of l copies of a k-loop present either in t or in t′. We suppose without
generality that the k-loop is present in t. Let s be the tree constructed from t by duplicating
the k-loop l times. Hence s is a tree containing Ci and by construction s ≃k+1 t. Because
t ≃κ t′ with κ > k + 1 and si ≃k+1 t we have s ≃k+1 si. By Lemma 4.5 this implies that
si+1 ∈ L iff si ∈ L. By construction we also have si+1 ≃k+1 si and the induction step is
proved.

We now show the third property:

Lemma 4.7. T ≃l T
′

Proof. We need to show that T 4l T
′, T ′ 4l T and that the roots of T and T ′ have the

same l-type. It will be convenient for proving this to view the nodes of T as the union of
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the nodes of t plus some nodes coming from the k-loops that were inserted. To do this more
formally, if x is a node of t of k-type not in B, then x is identified with the corresponding
node of T . If x is a node of t whose k-type is in B then x is identified in T with the port
of the copy of Cτ that was inserted at node x. We start with the following claim.

Claim 4.8. Take two nodes x in t and x′ in t′, such that x and x′ have the same κ-type.
Let y and y′ be the corresponding nodes in T and T ′. Then y and y′ have the same l-type.

Proof. Let ν the κ-type of x and x′. Consider a branch of ν of length κ. By the choice of
κ we know that in this branch one can find two nodes z and z′ with the same k-types τ ,
with z an ancestor of z′ and such that the k-type τ of z is determined by ν (z is at distance
≥ k from the leaves of ν). Hence τ is in B. Note that because the k-type of z is included
in ν, the presence of a node of type ν induces the presence of a node of type τ at the same
relative position than z. Hence a copy of Cτ is inserted simultaneously at the same position
relative to y and y′ during the construction of T and T ′. Because this is true for all branches
of ν and because all Cτ have depth at least l, then y and y′ have the same l-type.

From claim 4.8 it follows that the roots of T and T ′ have the same l-type. By symmetry
we only need to show that T 4l T

′. Let y be a node of T and µ be its l-type. We show
that there exists y′ ∈ T ′ with type µ. We consider two cases:

• y is not a node of a loop inserted during the construction of T . Let x be the corresponding
position in t and let ν be its κ-type. Since t ≃κ t′, there is a node x′ of t′ of type ν. Let
y′ be the node of T ′ corresponding to y′. By Claim 4.8 y and y′ have the same l-type.

• y is a node inside a copy of Cτ inserted to construct T . Let x be the node of t where this
loop was inserted. Let ν be the κ-type of x (the k-type of x is τ). Since t ≃κ t′, there is
a node x′ of t′ of type ν. Since κ > k, x and x′ have the same k-type, a copy of Cτ was
also inserted in t′ at position x′ during the construction of T ′. From Claim 4.8, x and x′,
when viewed as nodes of T and T ′ have the same l-type. Let y′ be the node of T ′ in the
copy of Cτ inserted at x′ that corresponds to the position y. Since y and y′ are ancestors
of x and x′ that have the same l-type, and since the context from y to x is the same as
the context from y′ to x′, then y and y′ must have the same l-type.

This concludes the proof of Proposition 4.2.

5. Unranked trees

In this section we consider unranked unordered trees with labels in Σ. In such trees, each
node may have an arbitrary number of children but no order is assumed on these children.
In particular even if a node has only two children we can not necessarily distinguish the left
child from the right child.

Our goal is to adapt the result of the previous section and provide a decidable charac-
terization of locally testable languages of unranked unordered trees.

In this section by regular language we mean definable in the logic MSO using only the
child predicate and unary predicates for the labels of the nodes. There is also an equivalent
automata model that we briefly describe next. A tree automaton A over unordered unranked
trees consists essentially of a finite set of states Q = {q1, · · · , qk}, an integerm denoted as the
counter threshold in the sequel, and a transition function δ associating a unique state to any
pair consisting of a label and a tuple (q1, γ1) · · · (qk, γk) where γi ∈ {= i | i < m} ∪ {≥ m}.
The meaning is straightforward via bottom-up evaluation: A node of label a get assigned
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a state q if for all i, the number of its children, up to threshold m, that were assigned state
qi is as specified by δ. In the sequel we assume without loss of generality that all our tree
automata are deterministic.

In the unranked tree case, there are several natural definitions of LT. Recall the def-
inition of k-type: the k-type of a node x is the isomorphism type of the subtree induced
by the descendants of x at distance at most k from x. With unranked trees this definition
generates infinitely many k-types. We therefore introduce a more flexible notion of type,
(k, l)-type, based on one extra parameter l restricting the horizontal information. It is de-
fined by induction on k. Consider an unordered tree t and a node x of t. For k = 0, the
(k, l)-type of x is just the label of x. For k > 0 the (k, l)-type of x is the label of x together
with, for each (k − 1, l)-type, the number, up to threshold l, of children of x of this type.
The reader can verify that over binary trees, the (k, 2)-type and the k-type of x always
coincide. As in the previous section we say that two trees are (k, l)-equivalent, and denote
this using ≃(k,l), if they have the same occurrences of (k, l)-types and their roots have the
same (k, l)-type. We also use t 4(k,l) t

′ to denote the fact that all (k, l)-types of t also occur
in t′.

Based on this new notion of type, we define two notions of locally testable languages.
The most expressive one, denoted ALT (A for Aperiodic), is defined as follows. A language
L is in (κ, λ)-ALT if it is a union of (κ, λ)-equivalence classes. A language L is in ALT if
there is a κ and a λ such that L is in (κ, λ)-ALT.

The second one, denoted ILT in the sequel (I for Idempotent), assumes λ = 1: A
language L is in ILT if there is a κ such that L is a union of (κ, 1)-equivalence classes.

The main result of this section is that we can decide membership for both ILT and
ALT.

Theorem 5.1. It is decidable whether a regular unranked unordered tree language is ILT.

It is decidable whether a regular unranked unordered tree language is ALT.

Tameness. The notion of k-tame is defined as in Section 3 using the same k-guarded op-
erations requiring that the swapped nodes have identical k-type. We also define a notion of
(k, l)-tame which corresponds to our new notion of (k, l)-type. Consider the four operations
of tameness defined in Section 3. A horizontal swap is said to be (k, l)-guarded if x and
x′ have the same (k, l)-type, a horizontal transfer is (k, l)-guarded if x, y, z have the same
(k, l)-type, a vertical swap is (k, l)-guarded if x, y, z have the same (k, l)-type and a vertical
stutter is (k, l)-guarded if x, y, z have the same (k, l)-type. Let L be a regular unranked
unordered tree language and let m be the counting threshold of the minimal automaton
recognizing L, we say that L is (k, l)-tame iff it is closed under (k, l)-guarded horizontal
swap, horizontal transfer, vertical swap and vertical stutter and l > m (we assume l > m
in order to make the statements of the results similar to those used in the binary setting).
We first prove that over unordered trees being k-tame is the same as being (k, l)-tame.

Proposition 5.2. Let L be an unordered unranked regular tree language, then for all inte-

gers k, L is k-tame iff there exists l such that L is (k, l)-tame. Furthermore, such an l can
be computed from any automaton recognizing L.

Proof. If there exists l such that L is (k, l)-tame then L is obviously k-tame. Suppose that
L is k-tame, and let m be the counting threshold of the minimal automaton A recognizing
L. We show that there exists l′ such that L is closed under (k, l′)-guarded operations. This
implies the result as one can then take l = max(m+ 1, l′).
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We need to show that L is closed under (k, l′)-guarded vertical swap, vertical stutter,
horizontal swap and horizontal transfer. The proof is similar to the proof of Proposition 1

in [BS10]. We will use the following claim which is proved in [BS10] using a simple pumping
argument:

Claim 5.3. [BS10] For every tree automaton A there is a number l′, computable from A,
such that for every k if a tree t1 is (k, l′)-equivalent to a tree t2, then there are trees t′1, t

′

2
with t′1 and t′2 k-equivalent such that A reaches the same state on t′i as on ti for i = 1, 2.

We use this claim to prove that L is closed under horizontal transfer. Let l′ be the
number computed from A by Claim 5.3. We prove that L is closed under (k, l′)-guarded
horizontal transfer. Consider a tree t and three nodes x, y, z of t not related by the descen-
dant relationship and such that t|x = t|y and such that x, y and z have the same (k, l′)-type.
Let t′ be the horizontal transfer of t at x, y, z. Let t1 = t|x and t2 = t|z and t′1, t

′

2 obtained
from t1, t2 using Claim 5.3. Let s be the tree obtained from t by replacing t|x and t|y with
t′1 and t|z with t′2, and let s′ be the tree obtained from t′ by replacing t′|x with t′1 and t′|y
and t′|z with t2. From Claim 5.3 it follows that t ∈ L iff s ∈ L and t′ ∈ L iff s′ ∈ L. Since
L is k-tame, it is closed under k-guarded horizontal transfer, therefore we have s ∈ L iff
s′ ∈ L, it follows that t ∈ L iff t′ ∈ L.

The closure under horizontal swap is proved using the same claim. The proofs for
vertical swap and vertical stutter uses a claim similar to Claim 5.3 but for contexts: For
every tree automaton A there is a number l computable from A such that for every k if the
context C1 is (k, l)-equivalent to the context C2 (by this we mean that their roots have the
same (k, l)-type), then there are contexts C ′

1, C
′

2 with C ′

1 k-equivalent to C ′

2 such that C ′

i

induces the same function on the states of A as Ci for i = 1, 2.

From this lemma we know that a regular language over unranked unordered trees is
tame iff it is k-tame for some k iff it is (k, l)-tame for some k, l. Moreover, as in the binary
setting, if a regular language is tame then it is (k, l)-tame for some k and l computable
from an automaton recognizing L. The bound on k can be obtained by a straightforward
adaptation of Proposition 3.2. The bound on l then follows from Proposition 5.2. Hence
we have:

Proposition 5.4. Let L be a regular language and let A be its minimal deterministic bottom-

up tree automaton, we have L is tame iff L is (k0, l0)-tame for k0 = |A|3 + 1 and some l0
computable from A.

5.1. Decision of ALT. We now turn to the proof of Theorem 5.1. We begin with the proof
for ALT as both the decision procedure and its proof are obtained as in the case of binary
trees. Assuming tameness we obtain a bound on κ and λ such that a language is in ALT iff
it is in (κ, λ)-ALT. Once κ and λ are known, it is easy do decide if a language is (κ, λ)-ALT
since the number of such languages is finite. The bounds on κ and λ are obtained following
the same proof structure as in the binary cases, essentially replacing k-tame by (k, l)-tame,
but with several technical modifications. Therefore, we only sketch the proofs below and
only detail the new technical material. Our goal is to prove the following result.

Proposition 5.5. Assume L is a (k, l)-tame regular tree language and let A be its minimal

automaton. Then L is in ALT iff L is in (κ, λ)-ALT where κ and λ are computable from

k, l and A.
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Notice that for each k, l the number of (k, l)-types is finite, let βk,l be this number.
Proposition 5.5 is now a simple consequence of the following proposition.

Proposition 5.6. Let L be a (k, l)-tame regular tree language and let A be the minimal

automaton recognizing L. Set λ = |A|l + 1 and κ = βk,l + k + 1. Then for all κ′ > κ, all
λ′ > λ and any two trees t, t′ if t ≃(κ,λ) t

′ then there exists two trees T, T ′ with

(1) t ∈ L iff T ∈ L
(2) t′ ∈ L iff T ′ ∈ L
(3) T ≃(κ′,λ′) T

′.

Before proving Proposition 5.6 we adapt the extra terminology we used in the proof
of Proposition 4.2 to the unranked setting. A non-empty context C occurring in a tree t
is a loop of (k, l)-type τ if the (k, l)-type of its root and the (k, l)-type of its port is τ . A
non-empty context C occurring in a tree t is a (k, l)-loop if there is some (k, l)-type τ such
that C is a loop of (k, l)-type τ . Given a context C we call the path from the root of C
to its port the principal path of C. Finally, the result of the insertion of a (k, l)-loop C at
a node x of a tree t is a tree T such that if t = D · t|x then T = D · C · t|x. Typically an
insertion will occur only when the (k, l)-type of x is τ and C is a loop of (k, l)-type τ . In
this case the (k, l)-types of the nodes initially from t and of the nodes of C are unchanged
by this operation.

Proof of Proposition 5.6. Suppose that L is (k, l)-tame. As we did for the proof of the
binary case we first prove two lemmas that are crucial for the construction of T and T ′.
They show that subtrees can be replaced and contexts can be inserted as long as this does
not change the (k + 1, l)-equivalence class of the tree. They are direct adaptations of the
corresponding lemmas for the ranked setting: Lemmas 4.3 and 4.5. We start with subtrees.

Lemma 5.7. Assume L is (k, l)-tame. Let t = Ds be a tree where s is a subtree of t. Let

s′ be another tree such that the roots of s and s′ have the same (k, l)-type.
If s 4(k+1,l) D and s′ 4(k+1,l) D then Ds ∈ L iff Ds′ ∈ L.

Proof sketch. As in the binary setting the proof is done by first proving a restricted version
where s′ is actually another subtree of t. Before doing that, we state a new claim, specific
to the unranked setting, that will be useful later in the induction bases of our proofs. In
the binary setting, two trees that had the same k-type at their root and were of depth
smaller than k were equal. This obviously does not extend to unranked trees and (k, l)-
types. However it is simple to see that equality can be replaced by indistinguishability by
the minimal tree automaton recognizing L.

Claim 5.8. Let A be a tree automaton and m be its counting threshold. Let t and t′ be
two trees of depth smaller than k and whose roots have the same (k,m)-type. Then t and t′

evaluate to the same state of A.

Proof. This is done by induction on k. If k = 0, t and t′ are leaves, it follows from their
(0,m)-type that t = t′.

Otherwise we know that t and t′ have the same (k,m)-type at their root therefore they
have the same root label. Let s and s′ be two trees that are children of the root of t or of
t′ and have the same (k − 1,m)-type at their root. The depth of s and s′ is smaller than
k − 1, therefore by induction hypothesis s and s′ evaluate to the same state of A. Now,
because the roots of t and t′ have the same (k,m)-type, for each (k − 1,m)-type τ , they
have the same number of children of type τ up to threshold m. From the previous remark
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this implies that for each state q of A, they have the same number of children in state q up
to threshold m. It follows from the definition of A that t and t′ evaluate to the same state
of A.

We are now ready to state and prove the lemma in the restricted case.

Claim 5.9. Assume L is (k, l)-tame. Let t be a tree and let x, y be two nodes of t not related
by the descendant relationship and with the same (k, l)-type. We write s = t|x, s

′ = t|y and

C the context such that t = Cs. If s 4(k+1,l) C then Cs ∈ L iff Cs′ ∈ L.

Proof sketch. This proof only differs from its binary tree counterpart Claim 4.4 in the details
of the induction step. It is done by induction on the depth of s.

Assume first that s is of depth less than k. Since x and y have the same (k, l)-type
and since l ≥ m it follows from Claim 5.8 that s and s′ evaluate to the same state on the
automaton A recognizing L. Hence we can replace s with s′ without affecting membership
in L.

Assume now that s is of depth greater than k.
Let τ be the (k+1, l)-type of x. We write s1, ..., sn for the children of s and a the label

of its root. Since s 4(k+1,l) C, there exists a node z in C of type τ . We write s′′ = t|z.
We now do a case analysis depending on the descendant relationships between x, y and

z. As for binary trees, all cases reduce to the case when x and z are not related by the
descendant relationship by simple (k, l)-tameness operations. Therefore we only consider
this case here.

Assume that x and z are not related by the descendant relationship. We show only
that Cs ∈ L iff Cs′′ ∈ L. The proof that Cs′ ∈ L iff Cs′′ ∈ L is then done exactly as for
binary trees.

Since x and z are of same (k+1, l)-type τ , the roots of s′ and s′′ have the same label a.
Let s′′1 , . . . , s

′′

n′ be the children of the root of s′′. As in the binary case we want to replace
the trees s1, . . . , sn with these children by induction since the depth of the trees s1, . . . , sn is
smaller than the depth of s. Unfortunately for each (k, l)-type τi, the number of trees whose
root has type τi among the children of x and among the children of z might not be the
same. However we know that in this case both numbers are greater than l. We overcome
this difficulty in two steps, first we modify the children of x, without affecting membership
in L, so that if si and sj have the same (k, l)-type then si = sj, then we use the fact that
l > m in order to delete or duplicate children of x until for each (k, l)-type τi the number
of trees of root of type τi among the children of x and among the children of z is the same.
By definition of A, this does not affect membership in L. Finally we replace the si by the
s′′i by induction as in the binary case.

For the first step notice that any of the si is by definition of depth smaller than s
therefore by the induction hypothesis we can replace it with any of its siblings having the
same (k, l)-type at its root without affecting membership in L.

We now turn to the proof of Lemma 5.7 in its general statement. The proof is done by
induction on the depth of s′. The idea is to replace s with s′ node by node.

Assume first that s′ is of depth smaller than k. Then because the (k, l)-types of the
roots of s and s′ are the same we are in the hypothesis of Claim 5.8 and it follows that s
and s′ evaluate to the same state of A. The result follows.

Assume now that s′ is of depth greater than k.
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Let x be the node of t corresponding to the root of s. Let τ be the (k + 1, l)-type of
the root of s′. In the binary tree case we used a sequence of tame operations to reduce
the problem to the case where x has (k + 1, l)-type τ . Using the same operations we can
also reduce the problem to this case in the unranked setting. Then we use the induction
hypothesis to replace the children of x by the children of the root of s′. As in the proof of
Claim 5.9, the problem is that the number of children might not match but this is solved
exactly as in the proof of Claim 5.9.

As in the binary tree case, we now prove a result similar to Lemma 5.9 but for (k, l)-
loops.

Lemma 5.10. Assume L is (k, l)-tame. Let t be a tree and x a node of t of (k, l)-type τ .
Let t′ be another tree such that t ≃(k+1,l) t

′ and C be a (k, l)-loop of type τ in t′. Consider

the tree T constructed from t by inserting a copy of C at x. Then t ∈ L iff T ∈ L.

Proof sketch. The proof is done using the same structure as Lemma 4.5 for the binary case.
First we use the (k, l)-tame property of L to show that we can insert a (k, l)-loop C ′ at x
in t such that the principal path of C is the same as the principal path of C ′. By this we
mean that there is a bijection from the principal path of C ′ to the principal path of C that
preserves the child relation and (k+1, l)-types. In a second step we replace one by one the
subtrees hanging from the principal path of C ′ with the corresponding subtrees in C.

Let T ′ be the tree resulting from inserting C ′ at position x. We do not detail the first
step as it is done using exactly the same sequence of tame operations we used for this step
in the proof of Lemma 4.5. This yields: t ∈ L iff T ′ ∈ L. We turn to the second step
showing that T ′ ∈ L iff T ∈ L.

By construction of T ′ we have C ′ 4(k+1,l) t. Consider now a node x′i in the principal
path of C ′ and xi the corresponding node in C. As in the binary tree case we replace the
subtrees branching out of the principal path of C ′ with the corresponding trees branching
out of the principal path of C using Lemma 5.7. As in the previous proof, the problem is
that the numbers of children might not match. This is solved exactly as in the proof of
Lemma 5.7.

We now turn to the construction of T and T ′ and prove Proposition 5.6.
The construction is similar to the one we did in the binary tree case. We insert (k, l)-

loops in t and t′ using Lemma 5.10 for obtaining bigger types. However inserting loops only
affects the depth of the types. Therefore we need to do extra work in order to also increase
the width of the types.

Assuming t ≃(k,l) t
′ we first construct two intermediate trees T1 and T ′

1 that have the
following properties:

• t ∈ L iff T1 ∈ L
• t′ ∈ L iff T ′

1 ∈ L
• T1 ≃(κ′,λ) T

′

1

This construction is the same as in the binary tree setting so we only briefly describe
it. Let B = {τ0, ..., τn} be the set of (k, l)-types τ such that there is a loop of (k, l)-type
τ in t or in t′. For each τ ∈ B we fix a context Cτ as follows. Because τ ∈ B there is a
context C in T1 or T ′

1 that is a loop of (k, l)-type τ . For each τ ∈ B, we fix arbitrarily such
a C and set Cτ as C · . . . · C

︸ ︷︷ ︸

κ′

, κ′ concatenations of the context C. Notice that the path from

the root of Cτ to its port is then bigger than κ′.
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T1 is constructed from t as follows (the construction of T ′

1 from t′ is done similarly).
The tree T1 is constructed by simultaneously inserting, for all τ ∈ B, a copy of the context
Cτ at all nodes of t of type τ . By Lemma 5.10 it follows that t ∈ L iff T1 ∈ L and t′ ∈ L
iff T ′

1 ∈ L. Using the same proof as that of Proposition 4.2 for the binary tree setting, we
obtain T1 ≃(κ′,λ) T

′

1.

We now describe the construction of T from T1, the construction of T ′ from T ′

1 is done
similarly. It will be convenient for us to view the nodes of T1 as the union of the nodes of t
plus some extra nodes coming from the loops that were inserted.

Let n be the maximum arity of a node of T1 or of T ′

1. We duplicate subtrees in T1 and
T ′

1 as follows. Let x be a node of T1, that is not in a loop we inserted when constructing T1

from t. For each (κ′−1, λ)-type τ , if x has more than λ children of type τ we duplicate one of
the corresponding subtrees until x has exactly n children of type τ in total. This is possible
without affecting membership in L because λ > m|A|. Indeed, because λ > m|A|, for at
least one state q of A, there exists more than m subtrees of x of type τ for which A assigns
that state q at their root, and by definition of A any of these subtrees can be duplicated
without affecting membership in L. The tree T is constructed from T1 by repeating this
operation for any node x of T1 coming from t. By construction we have T1 ∈ L iff T ∈ L
and therefore t ∈ L iff T ∈ L. The same construction starting from T ′

1 yields a tree T ′ such
that t′ ∈ L iff T ′ ∈ L.

We now show that T ≃κ′ T ′, it follows that T ≃(κ′,λ′) T
′ and this concludes the proof.

Lemma 5.11. T ≃κ′ T ′

Proof. We need to show that T 4κ′ T ′, T ′ 4κ′ T and that the roots of T and T ′ have the
same κ′-type.

Recall that in T1 we distinguished between two kinds of nodes, those coming from t
and those coming from the loops that were inserted during the construction of T1 from t.
We make the same distinction in T by assuming that a node generated after a duplication
gets the same kind as its original copy.

Recall the definition of B and of Cτ for τ ∈ B that was used for defining T1 and T ′

1
from t and t′.

As for the binary tree case it suffices to show that for any node of T coming from t
there is a node of T ′ coming from t′ and having the same κ′-type. Hence the result follows
from the claim below that is an adaptation of Claim 4.8.

Claim 5.12. Take two nodes x in t and x′ in t′, such that x and x′ have the same (κ, λ)-
type. Let z and z′ be the corresponding nodes in T and T ′. Then z and z′ have the same

κ′-type.

Proof. Let x and x′ be two nodes of t and t′ with the same (κ, λ)-type. Let x1 and x′1 be
the corresponding nodes in T1 and T ′

1. The same proof as Claim 4.8 for the binary tree case
shows that x1 and x′1 have the same (κ′, λ)-type.

Let y be a child of x. Let y1 be the node corresponding to y in T1. Notice now that the
(κ′, λ)-type of y1 in T1 is completely determined by the (κ− 1, λ)-type ν of y in t. Indeed,
by choice of κ, during the construction of T1, a loop of type τ ∈ B will be inserted between
y and any descendant of y at distance at most β(k,l) − 1 from y. As κ > β(k,l) + k, the
relative positions below y where such a Cτ is inserted can be read from ν. As the depth of
any Cτ is greater than κ′, from ν we can compute exactly the descendants of y1 in T1 up
to depth κ′. Hence ν determines the (κ′, λ)-type of y1.
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It follows that two children of x1 or of x′1 have the same (κ′, λ)-types iff they had the
same (κ− 1, λ)-types in t or in t′.

We now construct an isomorphism between the κ′-type of z and the one of z′. Let d
be the maximal distance between z and a node that is a descendant of z where a loop was
inserted during the construction of T from t. We construct our isomorphism by induction
on d.

If d = 0 then the (k, l)-type of z is in B and as z and z′ have the same (κ′, λ)-type with
κ′ > k, the (k, l)-type of z′ is the same as the one of z′. Therefore the subtrees rooted at z
and z′ are equal up to depth κ′ as they all start with a copy of Cτ and we are done.

Otherwise, as z and z′ have the same (κ′, λ)-type their roots must have the same labels.
Consider now a (κ′ − 1, λ)-type µ. By construction of T and T ′, z and z′ must have the
same number of occurrences of children of type µ. Indeed from the type these numbers must
match if one of them is smaller than λ and by construction they are equal to n otherwise.
Hence we have a bijection from the children of z of type µ and the children of z′ of type
µ. From the text above we know that the (κ′, λ)-type of these nodes is determined by the
(κ − 1, λ)-type of their copy in t or in t′. Because x and x′ have the same (κ, λ)-type, the
corresponding (κ− 1, λ)-types are all equal and hence all the nodes of type µ actually have
the same (κ′, λ)-type. By induction they are isomorphic up to depth κ′ and we are done.

From Claim 5.11 the lemma follows as in the proof of Lemma 4.7 for binary trees.

This concludes the proof of Proposition 5.6.

5.2. Decision of ILT. In the idempotent case we can completely characterize ILT using
closure properties. We show that membership in ILT corresponds to tameness together with
an extra closure property denoted horizontal stutter reflecting the idempotent behavior. A
tree language L is closed under horizontal stutter iff for any tree t and any node x of t,
replacing t|x with two copies of t|x does not affect membership in L. Theorem 5.1 for ILT
is a consequence of the following theorem.

Theorem 5.13. A regular unordered tree language is in ILT iff it is tame and closed under

horizontal stutter.

Proof. It is simple to see that tameness and closure under horizontal stutter are necessary
conditions. We prove that they are sufficient. Take a regular tree language L and suppose
that L is tame and closed under horizontal stutter. Then there exists k and l such that L
is (k, l)-tame. We show that if t ≃(k+1,1) t

′ then t ∈ L iff t′ ∈ L. It follows that L is in ILT.
We first show a simple lemma stating that if two trees contain the same (k + 1, 1)-types,
then we can pump them without affecting membership in L into two trees that contain the
same (k + 1, l)-types.

Lemma 5.14. Let L closed under horizontal stutter and let s and s′ two trees such that

s ≃(k+1,1) s
′. Then there exist two trees S and S′ such that:

• s ∈ L iff S ∈ L.
• s′ ∈ L iff S′ ∈ L.
• S ≃(k+1,l) S

′
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Proof. S is constructed from s via a bottom-up procedure. Let x be a node of s. For each
subtree rooted at a child of x, we duplicate it l times using horizontal stutter. This does
not affect membership in L. After performing this for all nodes x of s we obtain a tree S
with the desired properties.

Let T and T ′ be constructed from t and t′ using Lemma 5.14. Let T1, . . . , Tn the children
of the root of T and T ′

1, . . . , T
′

n′ the children of the root of T ′. Let T ′′ be the tree whose root
is the same as T and T ′ and whose children is the sequence of trees T1, . . . , Tn, T

′

1, . . . , T
′

n′ .
We show that T ′′ ∈ L iff T ∈ L and T ′′ ∈ L iff T ′ ∈ L. It will follow that T ∈ L iff T ′ ∈ L
and by Lemma 5.14 that t ∈ L iff t′ ∈ L which ends the proof.

To show that T ′′ ∈ L iff T ∈ L we use horizontal stutter and Lemma 5.7. As the roots
of T and T ′ have the same (k + 1, l)-type, for each T ′

i , there exists a tree Tj such that its
root has the same (k, l)-type as T ′

i . Fix such a pair (i, j). Let S be the tree obtained by
duplicating Tj in T . By closure under horizontal stutter T ∈ L iff S ∈ L. But now S = DTj

for some context D such that T 4(k+1,l) D. Altogether we have that: the roots of T ′

i and

Tj have the same (k, l)-type (by choice if i and j), T ′

i 4(k+1,l) D (as T ′

i 4(k+1,l) T ′ and
T ≃(k+1,l) T

′) and Tj 4(k+1,l) D (as Tj is part of T hence of D). We can therefore apply
Lemma 5.7 and DT ′

i ∈ L iff DTj ∈ L.
Repeating this argument for all i eventually yields the tree T ′′. This proves that T ′′ ∈ L

iff T ∈ L. By symmetry we also have T ′′ ∈ L iff T ′ ∈ L which concludes the proof.

6. Tameness is not sufficient

Over strings tameness characterizes exactly LT as vertical swap and vertical stutter are
exactly the extensions to trees of the known equations for LT (recall Section 2). Over trees
this is no longer the case. In this section we provide an example of a language that is tame
but not LT . For simplifying the presentation we assume that nodes may have between 0
and three children; this can easily be turned into a binary tree language. All trees in our
language L have the same structure consisting of a root of label a from which exactly three
sequences of nodes with only one child (strings) are attached. The trees in L have therefore
exactly three leaves, and those must have three distinct labels among {h1, h2, h3}. The
labels of two of the branches, not including the root and the leaf, must form a sequence in
the language b∗cd∗. The third branch must form a sequence in the language b∗c’d∗. We
assume that b, c, c’ and d are distinct labels. Note that the language does not specify
which leaf label among {h1, h2, h3} is attached to the branch containing c’.

The reader can verify that L is 1-tame. We show that L is not in LT. For all integer k,
the two trees t and t′ depicted below are such that t ∈ L, t′ /∈ L, while t ≃k t′.
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7. Discussion

We have shown a decidable characterization for the class of locally testable regular tree
languages both for ranked trees and unranked unordered trees.

Complexity. The decision procedure for deciding membership in LT as described in this
paper requires a time which is a tower of several exponentials in the size of the deterministic
minimal automaton recognizing L. This is most likely not optimal. In comparison, over
strings, membership in LT can be performed in polynomial time [Pin05]. Essentially our
procedure requires two steps. The first step shows that if a regular language L is in LT then
it is κ-locally testable for some κ computable from the minimal deterministic automaton
A recognizing L. The κ obtained in Proposition 4.1 is doubly exponential in the size of A.
In comparison, over strings, this κ can be shown to be polynomial. For trees we did not
manage to get a smaller κ but we have no example where even one exponential would be
necessary.

Our second step tests whether L is κ-locally testable once κ is fixed. This was easy to
do using a brute force algorithm requiring several exponentials in κ. It is likely that this
can be optimized but we didn’t investigate this direction.

However for unranked unordered trees we have seen in Theorem 5.13 that in the case
of ILT it is enough to test for tameness. The naive procedure for deciding tameness is
exponential in the size of A. But the techniques presented in [BS10] for the case of LTT,
easily extend to the closure properties of tameness, and provide an algorithm running in time
polynomial in the size of A. Hence membership in ILT can be tested in time polynomial in
the size of the minimal deterministic bottom-up tree automaton recognizing the language.

Logical characterization. There is a logical characterization of languages that are locally
testable. It corresponds to those languages definable by formulas containing the temporal
predicates G and X whereG stands for “everywhere in the tree” while X stands for “child”.
In the binary tree case, we also require two predicates distinguishing the left child from the
right child. In the unranked unordered setting the logic above is closed under bisimulation
and therefore corresponds to ILT. This shows that in a sense ILT is the natural extension
of LT to the unranked setting.
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Open problem. It would be interesting to obtain a different characterization of LT based
on a finite number of conditions such as the ones characterizing tameness. This would be a
more satisfying result and would most likely provide a more efficient algorithm for deciding
LT.
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[BW06] M. Bojańczyk and I. Walukiewicz. Characterizing EF and EX tree logics. Theoretical Computer
Science, 358(255-272), 2006.
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