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Abstract. Ong has shown that the modal mu-calculus model checking problem (equiv-
alently, the alternating parity tree automaton (APT) acceptance problem) of possibly-
infinite ranked trees generated by order-n recursion schemes is n-EXPTIME complete.
We consider two subclasses of APT and investigate the complexity of the respective accep-
tance problems. The main results are that, for APT with a single priority, the problem is
still n-EXPTIME complete; whereas, for APT with a disjunctive transition function, the
problem is (n− 1)-EXPTIME complete. This study was motivated by Kobayashi’s recent
work showing that the resource usage verification of functional programs can be reduced
to the model checking of recursion schemes. As an application, we show that the resource
usage verification problem is (n− 1)-EXPTIME complete.

1. Introduction

The model checking problem for higher-order recursion schemes has been a topic of active
research in recent years (for motivation as to why the problem is interesting, see e.g. the
introduction of Ong’s paper [15]). This paper studies the complexity of the problem with
respect to certain fragments of the modal µ-calculus. A higher-order recursion scheme
(recursion scheme, for short) is a kind of (deterministic) grammar for generating a possibly-
infinite ranked tree. The model checking problem for recursion schemes is to decide, given
an order-n recursion scheme G and a specification ψ for infinite trees, whether the tree
generated by G satisfies ψ. Ong [15] has shown that if ψ is a modal µ-calculus formula
(or equivalently, an alternating parity tree automaton), then the model checking problem
is n-EXPTIME complete.

Following Ong’s work, Kobayashi [12] has recently applied the decidability result to
the model checking of higher-order functional programs (precisely, programs of the simply-
typed λ-calculus with recursion and resource creation/access primitives). He considered the
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resource usage verification problem [7]—the problem of whether programs access dynami-
cally created resources in a valid manner (e.g. whether every opened file will eventually be
closed, and thereafter never read from or written to before it is reopened). He showed that
the resource usage verification problem reduces to a model checking problem for recursion
schemes by giving a transformation that, given a functional program, constructs a recursion
scheme that generates all possible resource access sequences of the program. From Ong’s
result, it follows that the resource usage verification problem is in n-EXPTIME (where,
roughly, n is the highest order of types in the program). This result also implies that vari-
ous other verification problems, including (the precise verification of) reachability (“Does a
closed program reach the fail command?”) and flow analysis (“Does a sub-term e evaluate
to a value generated at program point l?”), are also in n-EXPTIME, as they can be easily
recast as resource usage verification problems.

It was however unknown whether n-EXPTIME is the tightest upper-bound of the re-
source usage verification problem. Although the model checking of recursion schemes is
n-EXPTIME-hard for the full modal µ-calculus, only a certain fragment of the modal µ-
calculus is used in Kobayashi’s approach to the resource usage verification problem. First,
specifications are restricted to safety properties, which can be described by Büchi tree au-
tomata with a trivial acceptance condition (the class called “trivial automata” by Aehlig [1]).
Secondly, specifications are also restricted to linear-time properties—the branching struc-
ture of trees is ignored, and only the path languages of trees are of interest. Thus, one
may reasonably hope that there is a more tractable model checking algorithm than the
n-EXPTIME algorithm.

The goal of this paper is, therefore, to study the complexity of the model checking
of recursion schemes for various fragments of the modal µ-calculus (or, alternating parity
tree automata) and to apply the result to obtain tighter bounds of the complexity of the
resource usage verification problem.

The main results of this paper are as follows:
(i) The problem of whether a given Büchi tree automaton with a trivial acceptance

condition (or, equivalently, alternating parity tree automaton with a single priority 0) ac-
cepts the tree generated by an order-n recursion scheme is still n-EXPTIME-hard, both
in the size of the recursion scheme and that of the automaton. This follows from the n-
EXPTIME-completeness of the word acceptance problem of higher-order alternating push-
down automata1 [6].

(ii) We introduce a new subclass of alternating parity tree automata (APT) called
disjunctive APT, and show that its acceptance problem for trees generated by order-n
recursion schemes is (n − 1)-EXPTIME complete. From this general result, it follows that
both the linear-time properties (including reachability, which is actually (n−1)-EXPTIME-
complete) and finiteness of the tree generated by a recursion scheme are (n−1)-EXPTIME.

(iii) As an application, we show that the resource usage verification problem [12] is
also (n − 1)-EXPTIME-complete, where n is the highest order of types used in the source
program (written in an appropriate language [12]).

The rest of this section is organized as follows. Section 2 reviews definitions of recursion
schemes and alternating parity tree automata (APT). Section 3 introduces the class of trivial
APT and studies the complexity of model checking recursion schemes. Section 4 introduces
the class of disjunctive APT and studies the complexity of model checking recursion schemes.

1Engelfriet’s proof [6] is for a somewhat different (but equivalent) machine which is called iterated push-
down automaton.



COMPLEXITY OF MODEL CHECKING RECURSION SCHEMES 3

Section 5 applies the result to analyze the complexity of the resource usage verification.
Section 6 discusses related work and concludes the paper.

2. Preliminaries

Let Σ be a ranked alphabet, i.e. a function that maps a terminal symbol to its arity,
which is a non-negative integer. Let N = {1, 2, · · · }. A Σ-labeled (unranked) tree T is a
partial map from N

∗ to dom(Σ), such that s k ∈ dom(T ) (where s ∈ N
∗, k ∈ N) implies

{s} ∪ {sj | 1 ≤ j < k} ⊆ dom(T ). A (possibly infinite) sequence π over N is a path of T
just if every finite prefix of π is in dom(T ). A tree is ranked just if max {j | s j ∈ dom(T )}
is equal to the arity of T (s) for each s ∈ dom(T ).

Higher-Order Recursion Schemes. The set of types is defined by:

κ ::= o | κ1 → κ2

where o is the type of trees. By convention, → associates to the right; thus, for example,
o→ o→ o means o→ (o→ o). The order of κ, written order (κ), is defined by:

order (o) := 0
order (κ1 → κ2) := max (order (κ1) + 1, order (κ2)).

A (deterministic) higher-order recursion scheme (recursion scheme, for short) is a quadruple
G = (Σ,N ,R, S), where

(i) Σ is a ranked alphabet of terminal symbols.
(ii) N is a map from a finite set of symbols called non-terminals to types.
(iii) R is a set of rewrite rules F x̃ → t. Here x̃ = x1, · · · , xn abbreviates a sequence of

variables, and t is an applicative term constructed from non-terminals, terminals, and
variables x1, · · · , xn.

(iv) S is a start symbol.

We require that N (S) = o. The set of (typed) terms is defined in the standard manner: A
non-terminal or variable of type κ is a term of type κ. A terminal of arity k is a term of
type o → · · · → o︸ ︷︷ ︸

k

→ o. If terms t1 and t2 have types κ1 → κ2 and κ1 respectively, then t1 t2

is a term of type κ2. By convention, application associates to the left; thus, for example,
s t u means (s t)u. For each rule F x̃→ t, F x̃ and t must be terms of type o. There must
be exactly one rewrite rule for each non-terminal. The order of a recursion scheme is the
highest order of (the types of) its non-terminals.

A rewrite relation on terms is defined inductively by:

(i) If F x̃→ t ∈ R, then F s̃ −→G [s̃/x̃]t.
(ii) If t −→G t

′, then t s −→G t
′ s and s t −→G s t

′.

The value tree of a recursion scheme G, written [[G]], is the (possibly infinite) tree obtained
by infinite rewriting of the start symbol S. More precisely, let us define t⊥ by:

a⊥ := a F⊥ := ⊥ (t1t2)
⊥ :=

{
⊥ if t1

⊥ = ⊥
t1

⊥ t2
⊥ otherwise

The value tree [[G]] is the Σ ∪ {⊥ 7→ 0}-ranked tree defined by:

[[G]] :=
⊔

{t⊥ | S −→∗
G t}.
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Figure 1: The tree generated by the recursion scheme of Example 1

Here,
⊔
S denotes the least upper bound with respect to the tree order ⊑ defined by

T1 ⊑ T2 ⇐⇒ ∀s ∈ dom(T1) . (T1(s) = T2(s) ∨ T1(s) = ⊥)

Note that [[G]] is always well-defined, as the rewrite relation −→G is confluent.

Example 1. Consider the recursion scheme G = (Σ,N ,R, S) where

Σ = {a 7→ 2, b 7→ 1, c 7→ 1, e 7→ 0}
N = {S 7→ o, F 7→ (o → o) → o → o, I 7→ o → o, C 7→ (o → o) → (o → o) → (o → o)}
R = {
S → F I e,
F f x→ a (f x) (F (C b f) (cx)),
I x→ x,
C f g x→ f(g x)

}

S is reduced as follows.

S −→ F I e
−→ a (I e) (F (C b I) (c e))
−→ a e (a (C b I (c e)) (F (C b (C b I))) (c (c e)))
−→∗ a e (a (b (c e)) (F (C b (C b I))) (c (c e)))
−→∗ a e (a (b (c e))(a (b2(c2 e))(a (b3(c3 e)) · · · )))

The value tree is shown in Figure 2. Each path of the tree is labelled by am+1bmcme. �

Alternating parity tree automata. Given a finite set X, the set B
+(X) of positive Boolean

formulas over X is defined as follows. We let θ range over B+(X).

θ ::= t | f | x | θ ∧ θ | θ ∨ θ
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where x ranges over X. We say that a subset Y of X satisfies θ just if assigning true to
elements in Y and false to elements in X \ Y makes θ true.

An alternating parity tree automaton (or APT for short) over Σ-labelled trees is a tuple
A = (Σ, Q, δ, qI ,Ω) where

(i) Σ is a ranked alphabet; let m be the largest arity of the terminal symbols;
(ii) Q is a finite set of states, and qI ∈ Q is the initial state;
(iii) δ : Q × Σ −→ B

+({1, · · · ,m} × Q) is the transition function where, for each f ∈ Σ
and q ∈ Q, we have δ(q, f) ∈ B

+({1, · · · , arity(f)} ×Q); and
(iv) Ω : Q −→ {0, · · · ,M − 1} is the priority function.

A run-tree of an APT A over a Σ-labelled ranked tree T is a (dom(T ) × Q)-labelled
unranked tree r satisfying:

(i) ǫ ∈ dom(r) and r(ǫ) = (ǫ, qI); and
(ii) for every β ∈ dom(r) with r(β) = (α, q), there is a set S that satisfies δ(q, T (α)); and

for each (i, q′) ∈ S, there is some j such that β j ∈ dom(r) and r(β j) = (α i, q′).

Let π = π1 π2 · · · be an infinite path in r; for each i ≥ 0, let the state label of the
node π1 · · · πi be qni where qn0

, the state label of ǫ, is qI . We say that π satisfies the parity
condition just if the largest priority that occurs infinitely often in Ω(qn0

)Ω(qn1
)Ω(qn2

) · · ·
is even. A run-tree r is accepting if every infinite path in it satisfies the parity condition.
An APT A accepts a (possibly infinite) ranked tree T if there is an accepting run-tree of A
over T .

Ong [15] has shown that there is a procedure that, given a recursion scheme G and an
APT A, decides whether A accepts the value tree of G.

Theorem 2.1 (Ong). Let G be a recursion scheme of order n, and A be an APT. The
problem of deciding whether A accepts [[G]] is n-EXPTIME-complete.

As usual (following [15]), we restrict our attentions to recursion schemes whose value
trees do not contain ⊥ in the rest of the paper. Given a recursion scheme G that may
generate ⊥ and an APT A, one can construct G′ and A′ such that (i) A accepts [[G]] if and
only if A′ accepts [[G′]], and (ii) G′ does not generate ⊥. 2

3. Trivial APT and the Complexity of Model Checking

APT with a trivial acceptance condition, or trivial APT (for short), is an APT that has
exactly one priority which is even. Note that trivial APT are equivalent to Aehlig’s “trivial
automata” [1] (for defining languages of ranked trees).

The first result of this paper is a logical characterization of the class of Σ-labelled ranked
trees accepted by trivial APT. Call S the following fragment of the modal mu-calculus:

φ,ψ ::= t | f | Pf | Z | φ ∧ ψ | φ ∨ ψ | 〈i〉φ | νZ.φ

where f ranges over symbols in a Σ, and i ranges over {1, · · · , arity(Σ)}. (We think of S
as the “safety” fragment.) We give a characterization of trivial APT. A proof is given in
Appendix A.

Proposition 3.1 (Equi-Expressivity). The logic S and trivial APT are equivalent for defin-
ing possibly-infinite ranked trees. I.e. for every closed S-formula, there is a trivial APT that
defines the same tree language, and vice versa.

2Note, however, that the transformation does not preserve the class of trivial APT considered in Section 3.
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We show that the model checking problem for recursion schemes is n-EXPTIME com-
plete for trivial APT. The upper-bound of n-EXPTIME follows immediately from Ong’s

result [15]. To show the lower-bound, we reduce the decision problem of w
?
∈ L(A), where w

is a word and A is an order-n alternating PDA, to the model checking problem for recursion

schemes. n-EXPTIME hardness follows from the reduction, since the problem of w
?
∈ L(A)

is n-EXPTIME hard [6].

Definition 3.2. An order-n alternating PDA (order-n APDA, for short) for finite words is
a 7-tuple:

A = 〈P, λ, p0, Γ, Σ, ∆, F 〉

where P is a set of states, λ : P → {A, E} partitions states into universal and existential,
p0 is the initial state, Γ is a stack alphabet, Σ is an input alphabet, F ⊆ P is the set of
final states, and ∆ ⊆ P × Γ× (Σ ∪ {ǫ})× P ×Opn is a transition relation. A configuration
of an order-n APDA is of the form (p, s) where s is an order-n stack (an order-1 stack is
an ordinary stack, and an order-(k + 1) stack is a stack of order-k stacks). The induced
transition relation on configurations is defined by the rule:

if (p, top1(s), α, p
′, θ) ∈ ∆, then (p, s) −→α (p′, θ(s))

where θ ∈ Opn is an order-n stack operation3 and top1(s) is the stack top of s.
Let w be a word over Σ. We write wi (where 0 ≤ i < |w|) for the i-th element of

w. A run tree of an order-n APDA over a word w is a finite, unranked tree satisfying the
following.

(i) The root is labelled by (p0,⊥n, 0), where ⊥n is the empty order-n stack.
(ii) If a node is labelled by (p, s, i), then one of the following conditions holds, where

Ξ := {(p′, θ(s), i+ 1) | (p, top1(s), wi, p
′, θ) ∈ ∆ ∧ i < |w|}

∪ {(p′, θ(s), i) | (p, top1(s), ǫ, p
′, θ) ∈ ∆}.

• p ∈ F and i = |w|;
• λ(p) = A and the set of labels of the child nodes is Ξ; or
• λ(p) = E and there is exactly one child node, which is labelled by an element of Ξ.
(It follows that the leaves of a run tree are labelled by (p, s, |w|) with p ∈ F , or (p, s, i)
with λ(p) = A and Ξ = ∅.)

An order-n APDA A accepts w if there exists a run tree of A over w.

Engelfriet [6] has shown that the word acceptance problem for order-n APDA is n-
EXPTIME complete.

Theorem 3.3 (Engelfriet). Let A be an order-n APDA and w a finite word over Σ. The

problem of w
?
∈ L(A) is n-EXPTIME complete.

3Assume an order-n stack, where n ≥ 2. An order-1 push operation is just the standard operation that
pushes a symbol onto the top of the top order-1 stack; the order-1 pop operation removes the top symbol
from the top order-1 stack. For 2 ≤ i ≤ n, the order-i push operation duplicates the top order-(i− 1) stack
of the order-n stack; the order-i pop operation removes the top order-(i− 1) stack. The set Opn of order-n
stack operations consists of order-i push and order-i pop for each 1 ≤ i ≤ n. For a formal definition, see, for
example, the FoSSaCS 2002 paper [10] of Knapik et al.
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To reduce the word acceptance problem of order-n APDA to the model checking prob-
lem for recursion schemes, we use the equivalence [10] between order-n safe4 recursion
schemes and order-n PDA as (deterministic) devices for generating trees.

Definition 3.4. An order-n tree-generating PDA is a tuple A = 〈Σ,Γ, Q, δ, q0〉 where Σ
is a ranked alphabet, Γ is a stack alphabet, Q is a finite set of states, q0 ∈ Q is the initial
state, and

δ : Q× Γ −→ (Q×Opn ∪ {(f ; q1, · · · , qarity(f)) | f ∈ Σ, qi ∈ Q})

is the transition function. A configuration is either a pair (q, s) where q ∈ Q and s is an
order-n stack, or a triple of the form (f ; q1 · · · qarity(f); s) where f ∈ Σ and q1 · · · qarity(f) ∈

Q∗. Let Σ be the label-set {(f, i) | f ∈ Σ, 1 ≤ i ≤ arity(f)} ∪ {a ∈ Σ | arity(a) = 0}. We
define the labelled transition relation between configurations induced by δ:

(q, s)
ǫ
→ (q′, θ(s)) if δ(q, top1(s)) = (q′, θ)

(q, s)
ǫ
→ (f ; q; s) if δ(q, top1(s)) = (f ; q) and arity(f) ≥ 1

(q, s)
a
→ (a; ǫ; s) if δ(q, top1(s)) = (a; ǫ) and arity(a) = 0

(f ; q; s)
(f,i)
→ (qi, s) where 1 ≤ i ≤ arity(f)

Let w be a finite or infinite word over the alphabet Σ. We say that w is a trace of A just

if there is a possibly-infinite sequence of transitions (q0,⊥n)
ℓ1→ γ1 · · ·

ℓm→ γm
ℓm+1

→ · · · such
that w = ℓ1ℓ2 · · · . We say that A generates a Σ-labelled tree t just in case the branch
language5 of t coincides with the set of maximal traces of A.

Theorem 3.5 (Knapik et al. [10]). There is an effective transformation that, given an
order-n tree-generating PDA M, returns an order-n safe recursion scheme G that generates
the same tree as M. Moreover, both the running time of the transformation algorithm and
the size of G are polynomial in the size of M.

By Theorems 3.3 and 3.5, it suffices to show that, given a word w and an order-n APDA
A, one can construct an order-n tree-generating PDA MA,w and a trivial APT B such that
w is accepted by A if, and only if, the tree generated by MA,w is accepted by B.

Let w be a word over Σ. From w and A = 〈P, λ, p0,Γ,Σ,∆, F 〉 above, we construct an
order-k PDA MA,w for generating a {A, E, R, T}-labelled tree, which is a kind of run tree of
A over the input word w. The node label A (E, respectively) means that A is in a universal
(existential, respectively) state; T means that A has accepted the word, and R means that
A is stuck (no outgoing transition).

4An order-n recursion scheme is safe if it satisfies a certain condition called safety [11]. We use the
equivalence between safe recursion schemes and higher-order PDA just to prove the lower-bound, so that
the knowledge about the safety constraint is not required. See [11, 2] for details of the safety constraint.

5The branch language of t : dom(t) −→ Σ consists of

(i) infinite words (f1, d1)(f2, d2) · · · just if there exists d1 d2 · · · ∈ {1, 2, · · · ,m}ω (where m is the maximum
arity of the Σ-symbols) such that t(d1 · · · di) = fi+1 for every i ≥ 0; and

(ii) finite words (f1, d1) · · · (fn, dn) fn+1 just if there exists d1 · · · dn ∈ {1, · · · ,m}∗ such that t(d1 · · · di) =
fi+1 for 0 ≤ i ≤ n, and the arity of fn+1 is 0.
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Let N be max q∈P,a∈Σ,γ∈Γ|{(q
′, a′, θ) | (q, γ, a′, q′, θ) ∈ ∆, a′ ∈ {a, ǫ}}|. I.e. N is the

degree of non-determinacy of A. We define

MA,w = 〈{A 7→ N, E 7→ N, T 7→ 0, R 7→ 0},Γ, Q, δ, (p0, 0)〉

where:

− Q = (P × {0, . . . , |w|}) ∪ {q⊤, q⊥} ∪ (P × {0, . . . , |w|} ×Opn)
− δ : Q× Γ −→ (Q×Opn ∪ {(g; q1, . . . , qk) : g ∈ {A, E, T, R}, k ≥ 0, q1, . . . , qk ∈ Q}) is given

by:

(1) δ((p, |w|), γ) = (T; ǫ), if p ∈ F
(2) δ((p, i), γ) = (A; (p1, j1, θ1), . . . , (pm, jm, θm), q⊤, . . . , q⊤︸ ︷︷ ︸

N−m

)

if λ(p) = A and {(p1, j1, θ1), . . . , (pm, jm, θm)} is:
{(p′, i+ 1, θ) | (p, γ, wi, p

′, θ) ∈ ∆ ∧ i < |w|} ∪ {(p′, i, θ) | (p, γ, ǫ, p′, θ) ∈ ∆}
(3) δ((p, i), γ) = (E; (p1, j1, θ1), . . . , (pm, jm, θm), q⊥, . . . , q⊥︸ ︷︷ ︸

N−m

)

if λ(p) = E and {(p1, j1, θ1), . . . , (pm, jm, θm)} is:
{(p′, i+ 1, θ) | (p, γ, wi, p

′, θ) ∈ ∆ ∧ i < |w|} ∪ {(p′, i, θ) | (p, γ, ǫ, p′, θ) ∈ ∆}
(4) δ((p, i, θ), γ) = ((p, i), θ)
(5) δ(q⊤, γ) = (T; ǫ)
(6) δ(q⊥, γ) = (R; ǫ)

Rules (2) and (3) are applied only when rule (1) is inapplicable. MA,w simulates A over
the word w, and constructs a tree representing the computation of A. A state (p, i) ∈
P × {0, . . . , |w| − 1} simulates A in state p reading the letter wi. A state (p, i, θ) simulates
an intermediate transition state of A, where θ is the stack operation to be applied. The
states q⊤ and q⊥ are for creating dummy subtrees of nodes labelled with A or E, so that the
number of children of these nodes adds up to N , the arity of A and E. Rule (1) ensures that
when A has read the input word and reached a final state, MA,w stops simulating A and
outputs T. Rule (2) is used to simulate transitions of A in a universal state, reading the
i-th input: MA,w constructs a node labelled A (to record that A was in a universal state)
and spawns threads to simulate all possible transitions of A. Rule (3) is for simulating A
in an existential state. Note that, if A gets stuck (i.e. if there is no outgoing transition), all
children of the E-node are labelled R; thus failure of the computation can be recognized by
the trivial APT given in the following. Rule (4) is just for intermediate transitions. Note
that a transition of A is simulated by MA,w in two steps: the first for outputting A or E,
and the second for changing the stack.

Now we construct a trivial APT B that accepts the tree generated by MA,w if, and
only if, w is not accepted by A. The trivial APT B is given by:

B := 〈 {A, E, T, R}, {q0}, δ, q0, {q0 7→ 0}〉

where:

δ(q0, A) =
∨N

i=1(i, q0) δ(q0, E) =
∧N

i=1(i, q0) δ(q0, T) = f δ(q0, R) = t

Intuitively, B accepts all trees representing a failure computation tree of A. If the automaton
in state q0 reads T (which corresponds to an accepting state of A), it gets stuck. Upon
reading A, the automaton non-deterministically chooses one of the subtrees, and checks
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whether the subtree represents a failure computation of A. On the other hand, upon
reading E, the automaton checks that all subtrees represent failure computation trees of A.

By the above construction, we have:

Theorem 3.6. Let w be a word, and A an order-n APDA. Then w is not accepted by A
if, and only if, the tree generated by MA,w is accepted by B.

Corollary 3.7. The trivial APT acceptance problem for the tree generated by an order-n
recursion scheme (i.e. whether the tree generated by a given order-n recursion scheme is
accepted by a given trivial APT) is n-EXPTIME hard in the size of the recursion scheme.

By modifying the encoding, we can also show that the model checking problem is n-
EXPTIME-hard in the size of the APT. The idea is to modify MA,w so that it generates a
tree representing computation of A over not just w but all possible input words, and let a
trivial APT check the part of the tree corresponding to the input word w. As a result, the
trivial APT depends on the input word w, but the tree-generating PDA does not.

We make the following two assumptions on A (without loss of generality):

(i) In each state, if A can perform an ǫ-transition, then A cannot perform any input
transition i.e. {(p′, θ) | ∃a ∈ Σ.(p, γ, a, p′, θ) ∈ ∆} 6= ∅ implies {(p′, θ) | (p, γ, ǫ, p′, θ) ∈
∆} = ∅.

(ii) There is no transition from a final state i.e. if p ∈ F then {(p′, θ) | ∃a ∈ Σ ∪
{ǫ}.(p, γ, a, p′, θ) ∈ ∆} = ∅.

Given an order-n APDA A and a word w, we shall construct M′
A and Bw, such that w

is not accepted by A if, and only if, the tree generated by M′
A is accepted by Bw. The

difference from the construction of MA,w and B above is that M′
A does not depend on w.

The idea is to let M′
A generate a tree representing the computations of A over all possible

inputs. We then let Bw traverse the part of the tree corresponding to the computation over
w, and check whether the computation is successful.

We define a tree-generating PDA M′
A = 〈Σ′,Γ, Q, δ, q0〉 where:

- Σ′ = {Read 7→ |Σ|, Accept 7→ 0, Epsilon 7→ 1, A 7→ N, E 7→ N, T 7→ 0, R 7→ 0}
- Q = P ∪ (P × (Σ ∪ {ǫ})) ∪ {q⊤, q⊥} ∪ (P ×Opk)
- q0 = p0
- δ is given by:

δ(p, γ) = (Accept; ǫ) if p ∈ F
δ(p, γ) = (Epsilon; ((p, ǫ), id)) if {(p′, θ) | (p, γ, ǫ, p′, θ) ∈ ∆} 6= ∅.
δ(p, γ) = (Read; ((p, a1), id), . . . , ((p, an), id))

if p 6∈ F , {(p′, θ) | (p, γ, ǫ, p′, θ) ∈ ∆} = ∅ and Σ = {a1, . . . , an}.
δ((p, α), γ) = (A; ((p1, θ1), . . . , (pm, θm), q⊤, . . . , q⊤))

if λ(p) = A and
{(p1, θ1), . . . , (pm, θm)} = {(p′, θ) | (p, γ, α, p′, θ) ∈ ∆}

δ((p, α), γ) = (E; ((p1, θ1), . . . , (pm, θm), q⊥, . . . , q⊥))
if λ(p) = E and

{(p1, θ1), . . . , (pm, θm)} = {(p′, θ) | (p, γ, α, p′, θ) ∈ ∆}
δ((p, θ), γ) = (p, θ)
δ(q⊤, γ) = (T; ǫ)
δ(q⊥, γ) = (R; ǫ)
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In a final state of A, M′
A outputs a node labelled with Accept, to indicate that A has

reached a final state, and stops simulating A (as, by assumption (ii) above, there is no
outgoing transition). In a state where A has ǫ-transitions, M′

A outputs a node labelled
with Epsilon, and then simulates all the possible ǫ-transitions of A. In a state where A
has input transitions, M′

A outputs a node labelled with Read to indicate that A makes an
input transition, and then simulates the input transition for each possible input symbol.
Note that by the assumptions (i) and (ii) above, these three transitions are disjoint. The
remaining transition rules are analogous to those of MA,w.

Define the trivial APT Bw by Bw = 〈Σ′, Q′, δ, q0,Ω〉 where:

Q′ = {q0, . . . , q|w|}
δ(q, Epsilon) = (1, q) for every q ∈ Q′

δ(qi, Read) = (j, qi+1) if 0 ≤ i ≤ |w| − 1 and wi = aj
δ(q|w|, Read) = t

δ(qi, A) = (1, qi) ∨ · · · ∨ (N, qi)
δ(qi, E) = (1, qi) ∧ · · · ∧ (N, qi)
δ(q|w|, Accept) = f

δ(qi, Accept) = t for every 0 ≤ i < |w|
δ(q, T) = f for every q ∈ Q′

δ(q, R) = t for every q ∈ Q′

and Ω is the trivial priority function.
The trivial APT Bw traverses the tree generated by M′

A (which represents transitions
of A for all possible inputs), while keeping track of the position of the input head of A in
its state (qi means that A is reading the i-th letter of the word w). Upon reading Read

in state qi, Bw proceeds to traverse the branch corresponding to the i-th letter (i.e. wi).
Reading Accept in state q|w| means that A accepts the word w, so that the run of Bw fails
(recall that Bw accepts the tree just if A does not accept w). Reading Accept in state qi
(with i < |w|) on the other hand means that A does not accept w, so that the run of Bw

succeeds. The remaining transition rules are analogous to those of B.
By the construction above, w is not accepted by A if, and only if, the tree generated

by M′
A is accepted by Bw. Since only Bw depends on the input word w, we get:

Theorem 3.8. The trivial APT acceptance problem of trees generated by order-n recursion
schemes is n-EXPTIME-hard in the size of the APT.

To our knowledge, the lower bound (of the complexity of model-checking recursion schemes)
in terms of the size of APT for the entire class of APT is new.

4. Disjunctive APT and Complexity of Model Checking

A disjunctive APT is an APT whose transition function δ is disjunctive, i.e. δ maps each
state to a positive boolean formula θ that contains only disjunctions and no conjunctions,
as given by the grammar θ ::= t | f | (i, q) | θ∨θ. Disjunctive APT can be used to describe
path (or linear-time) properties of trees.

First we give a logical characterization of disjunctive APT as follows. Call D the
following “disjunctive fragment” of the modal mu-calculus:

φ,ψ ::= t | f | Pf ∧ φ | Z | φ ∨ ψ | 〈i〉φ | νZ.φ | µZ.φ
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where f ranges over symbols in Σ, and i over {1, · · · ,m} where m is the largest arity of the
symbols in Σ. A proof of the following proposition is given in Appendix A.

Proposition 4.1 (Equi-Expressivity). The logic D and disjunctive APT are equivalent for
defining possibly-infinite ranked trees. I.e. for every closed D-formula, there is a disjunctive
APT that defines the same tree language, and vice versa.

Remark 1. For defining languages of ranked trees, disjunctive APT are a proper subset
of the disjunctive formulas in the sense of Walukiewicz and Janin [8]. For example, the
disjunctive formula (1 → {t}) ∧ (2 → {t}) is not equivalent to any disjunctive APT.

In the rest of the section, we show that the model checking problem for order-n recursion
schemes is (n − 1)-EXPTIME complete for disjunctive APT.

4.1. Upper Bound. Since our proof is based on Kobayashi and Ong’s type system for
recursion schemes [13] and relies heavily on the machinery and techniques developed therein,
we shall just sketch a proof here; a detailed proof will be presented in the journal version
of [13]. An alternative proof, also sketched but based on variable profiles [15], is given in
Appendix B.

Theorem 4.2. Let G be an order-n recursion scheme and B a disjunctive APT. It is
decidable in (n− 1)-EXPTIME whether B accepts the value tree [[G]].

In a recent paper [13], we constructed an intersection type system equivalent to the
modal mu-calculus model checking of recursion schemes, in the sense that for every APT,
there is a type system such that the tree generated by a recursion scheme is accepted by the
APT if, and only if, the recursion scheme is typable in the type system. The model checking
problem is thus reduced to a type checking problem. The main idea of the type system is
to refine the tree type o by the states and priorities of an APT. The type q describes a tree
that is accepted by the APT with q as the start state. The type (θ1,m1) ∧ (θ2,m2) → q,
which refines the type o → o, describes a tree function that takes an argument which has
types θ1 and θ2, and returns a tree of type q.

The type checking algorithm presented in [13] is n-EXPTIME in the combined size of

the order-n recursion scheme and the APT (more precisely,6 O(r1+⌊m/2⌋expn((a |Q|m)1+ǫ))
for n ≥ 2, where r is the number of rules, a is the largest arity of the symbols in the scheme,
m is the largest priority, and |Q| is the number of states). The bottleneck of the algorithm
is the number of (atomic) intersection types, where the set T (κ) of atomic types refining a
simple type κ is inductively defined by:

T (o) := Q
T (κ1 → κ2) := {

∧
S → θ | θ ∈ T (κ2), S ⊆ T (κ1)× P}

where Q and P are the sets of states and priorities respectively.
According to the syntax of atomic types above, the number of atomic types refining a

simple type of order n is n-exponential in general. In the case of disjunctive APT, however,
for each type of the form o → · · · → o → o, we need to consider only atomic types of the
form

∧
S1 → · · · →

∧
Sk → q, where at most one of the Si’s is a singleton set and the

other Sj’s are empty. Intuitively, this is because a run-tree of a disjunctive APT consists

6According to Schewe’s recent result [17] on the complexity of parity games, the part r1+⌊m/2⌋ can be

further reduced to roughly r1+m/3.
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of a single path, so that the run-tree visits only one of the arguments, at most once. In
fact, we can show that, if a recursion scheme is typable in the type system for a disjunctive
APT, the recursion scheme is typable in a restricted type system in which order-1 types
are constrained as described above: this follows from the proof of completeness of the type
system [13], along with the property of the accepting run-tree mentioned above. Thus, the
number of atomic types is k×|Q|×|P |×|Q| (whereas it is exponential for an arbitrary APT).
Therefore, the number of atomic types possibly assigned to a symbol of order n is (n− 1)-
exponential. By running the same type checking algorithm as ibid. (but with order-1 types
constrained as above), order-n recursion schemes can be type-checked (i.e. model-checked)
in (n− 1)-EXPTIME.

4.2. Lower Bound. We show the lower bound by a reduction of the emptiness problem
of the finite-word language accepted by an order-n deterministic PDA, which is (n − 1)-
EXPTIME complete [6].

Let A be an order-n deterministic PDA, given by A = 〈P, p0,Γ,Σ, δ, F 〉 where δ is a
partial function from P × (Σ ∪ {ǫ}) × Γ to P × Opn. We shall construct an order-n tree-
generating PDA MA, which simulates all possible input and ǫ-transitions of A, and outputs
e only when A reaches a final state.

The order-n PDA MA is given by:

MA = 〈{e 7→ 0} ∪ {brm 7→ m | 0 ≤ m ≤ N},Γ, P ∪ (P ×Opn), δ
′, p0〉

N = max p∈P,γ∈Γ|{(p
′, θ′) | ∃α ∈ Σ ∪ {ǫ}.δ(p, α, γ) = (p′, θ′)}|

δ′(p, γ) = (e; ǫ) if p ∈ F
δ′(p, γ) = (brm; (p1, θ1), . . . , (pm, θm))

if p 6∈ F and {(p1, θ1), . . . , (pm, θm)} = {(p′, θ′) | ∃α ∈ Σ ∪ {ǫ}.δ(p, α, γ) = (p′, θ′)}
δ′((p, θ), γ) = (p, θ)

A state of MA is either a state of A (i.e. an element of P ), or a pair (p, θ). In state p ∈ P ,
MA constructs a node labeled by brm, and spawns subtrees for simulating possible input
or ǫ-transitions of A from state p.

By a result of Knapik et al. [10], we can construct an equi-expressive order-n safe
recursion scheme G. Let G′ be the recursion scheme obtained from G by (i) replacing each
terminal symbol brm (m > 2) with a non-terminal Brm of the same arity, and (ii) adding
the rule:

Brm x1 · · · xm → br2 x1 (br2 x2(· · · (br2 xm−1 xm))).

By the construction, the finite word-language accepted by A is non-empty if, and only if,
the value tree of G′ has a node labelled e. The latter property can be expressed by the
following disjunctive APT B. (The purpose of transforming G into G′ was to make the
disjunctive APT independent of A.)

B := 〈 {q0}, {e, br2}, δ, q0, {q0 7→ 1}〉
where δ(q0, br2) = (1, q0) ∨ (2, q0) and δ(q0, e) = t

Thus, we have:

Theorem 4.3. The disjunctive APT acceptance problem for the tree generated by an order-
n recursion scheme is (n− 1)-EXPTIME-hard in the size of the recursion scheme.
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The problem is (n− 1)-EXPTIME hard also in the size of the disjunctive APT.
As above, let A = 〈P, p0,Γ,Σ, δ, F 〉 be an order-n deterministic PDA for words. We

may assume that the stack alphabet is {γ0, γ1} (as we can encode an arbitrary stack symbol
as a sequence of γ0 and γ1).

We first define an order-n tree-generating PDA M by:

M = 〈 {γ0, γ1}, {γ0, γ1}, {q0, θ1, . . . , θk}, q0, δM〉
δM(q0, γi) = (γi; θ1, . . . , θk)
δM(θi, γj) = (q0, θi)

where {θ1, . . . , θk} is the set of order-n stack operations. The role of M is to generate a
tree simulating all the possible changes of the stack top. Note that M is independent of A.

Now let us define a disjunctive APT DA = 〈P, {γ0, γ1}, δ
′, p0,Ω〉 as follows.

δ′(p, γi) =

{ ∨
{(j, p′)|∃α.δ(p, γi, α) = (p′, θj)} if p 6∈ F

t if p ∈ F
Ω(p) = 1

The idea of the above encoding is to let DA simulate transitions of A, while extracting
information about the stack top from the tree generated by M. Let G be an order-n
recursion scheme that generates the same tree as M. By the above construction, the
language of A is non-empty if, and only if, DA accepts the tree generated by G. Since the
size of G does not depend on A, and the size of DA is polynomial in the size of A, we have:

Theorem 4.4. The disjunctive APT acceptance problem for trees generated by order-n
recursion schemes is (n− 1)-EXPTIME hard in the size of the APT.

4.3. Path Properties. Path properties of Σ-labelled trees are relevant to program verifi-
cation, as demonstrated in the application to resource usage analysis in Section 5. The path
language of a Σ-labelled tree t is the image of the map F , which acts on the elements of
the branch language of t by “forgetting the argument positions” i.e.

F :

{
(f1, d1) (f2, d2) · · · 7→ f1 f2 · · ·
(f1, d1) · · · (fn, dn) fn+1 7→ f1 · · · fn f

ω
n+1.

For example {f aω, f f aω, f f bω} is the path language of the term-tree f a (f a b). Let G be
a recursion scheme. We write W (G) for the path language of [[G]]. Thus elements of W (G)
are infinite words over the alphabet Σ which is now considered unranked (i.e. arities of the
symbols are forgotten).

Theorem 4.5. Let G be an order-n recursion scheme. The following problems are (n− 1)-
EXPTIME complete.

(i) W (G) ∩ L(C)
?
= ∅, where C is a non-deterministic parity word automaton.

(ii) W (G)
?
⊆ L(C), where C is a deterministic parity word automaton.

Furthermore, the problem (i) is (n − 1)-EXPTIME hard not only in the size of G but also
in the size of C.

Proof. (i) Let C = 〈Q, Σ, ∆, qI , Ω〉 be a non-deterministic parity word automaton,
where ∆ ⊆ Q×Σ×Q and Ω : Q −→ {0, · · · , p}. Let m be the largest arity of the symbols
in Σ. (Büchi automata are equivalent to parity automata with two priorities.) We have
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W (G) ∩ L(C) 6= ∅ if, and only if, [[G]] is accepted by the APT B = 〈Q, Σ, δ, qI , Ω〉 where
δ : Q× Σ −→ B

+({1, · · · ,m} ×Q) is a disjunctive transition function

δ : (q, f) 7→
∨

{(i, p) : 1 ≤ i ≤ Σ(f), (q, f, p) ∈ ∆}.

It follows from Theorem 4.2 that the problem W (G)∩L(C)
?
= ∅ can be decided in (n− 1)-

EXPTIME.
Let C be a parity word automaton that accepts Σ∗ eω, and G′ be the recursion scheme in

Section 4.2. Then, W (G′) ∩ L(C) 6= ∅ if, and only if, G′ has a node labelled e. Thus, the

problem W (G) ∩ L(C)
?
= ∅ is (n− 1)-EXPTIME-hard in the size of G.

To show the lower bound in the size of C, we modify the construction of M and DA as
follows. Let M′ be the order-n tree-generating PDA given by:

M := 〈 {γ0, γ1, θ1, . . . , θk}, {γ0, γ1}, {q0, q1, . . . , qk, θ1, . . . , θk, }, q0, δ〉
δ(q0, γi) = (γi; q1, . . . , qk) for 0 ≤ i ≤ 1
δ(qj , γi) = (θi; θi) for 0 ≤ i ≤ 1, 1 ≤ j ≤ k
δ(θj , γi) = (q0, θi) for 0 ≤ i ≤ 1, 1 ≤ j ≤ k

The difference from M is that M′ outputs not only stack top symbols but also stack
operations (which were coded as branch information in the case of M). Let CA be the
non-deterministic parity word automaton given by:

CA := 〈P ∪ (P × {0, 1}), {γ0 , γ1}, δ
′, p0,Ω〉

δ′(p, γi) = {(p, i)} if p 6∈ F
δ′((p, i), θj) = {p′ | ∃α.δ(p, γi, α) = (p′, θj)}
δ′(p, γi) = {p} if p ∈ F
δ′(p, θj) = {p}

Ω(p) =

{
2 if p ∈ FA

1 otherwise

Let G be a recursion scheme that generates the same tree as M′. Then, the language of A is

empty if, and only if, W (G)∩L(CA) = ∅. Since G does not depend on A, W (G)∩L(C)
?
= ∅

is (n − 1)-EXPTIME hard also in the size of C.

(ii) Let C be a deterministic parity word automaton C = 〈Q,Σ, δC , q0,Ω〉, where δC : Q×
Σ −→ Q and Ω : Q −→ {0, · · · , p}. Define A = 〈Q,Σ, δC , q0,Ω〉 where Ω : q 7→ (Ω(q) + 1).
Note that because of determinacy, L(C) = Σω \ L(C). Now we have W (G) ⊆ L(C) if, and

only if, W (G) ∩ L(C) = ∅. Thus, the problem W (G)
?
⊆ L(C) is (n − 1)-EXPTIME.

Moreover, since the language Σ∗ eω is accepted by a deterministic parity word automaton,
the problem is also (n− 1)-EXPTIME hard (in the size of G).

The decision problems Reachability (i.e. whether [[G]] has a node labelled by a given
symbol e) and Finiteness (i.e. whether [[G]] is finite) are instances of Problem (i) of Theo-
rem 4.5; hence they are in (n − 1)-EXPTIME (the former is (n − 1)-EXPTIME complete,
by the proof of Section 4.2).

Consider the problem LTL Model-Checking:
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“Given an LTL-formula φ (generated from atomic propositions of the form
Pf with f ∈ Σ) and an order-n recursion scheme G, does every path in [[G]]
satisfy φ? (Precisely, is W (G) ⊆ [[φ]]?)”

As a corollary of Theorem 4.5, we have:

Corollary 4.6. LTL Model-Checking (i.e. given order-n recursion scheme G and LTL-
formula φ, is W (G) ⊆ [[φ]]?) is (n− 1)-EXPTIME complete in the size of G.

Proof. The upper bound follows from Theorem 4.5(i): note that W (G) ⊆ [[φ]] is equivalent
to W (G) ∩ [[¬φ]] = ∅, and because [[¬φ]] is ω-regular, it is recognizable [18] by a parity
automaton.

The lower bound follows from the (n−1)-EXPTIME hardness of Reachability: check-
ing whether a recursion scheme satisfies the formula G(¬e) is (n − 1)-EXPTIME hard in
the size of the recursion scheme.

Note however that LTL Model-Checking is n-EXPTIME in the size of the LTL-formula
φ, as the size of the corresponding parity word automaton is exponential in φ in general [19].

5. Application to Resource Usage Verification

Now we apply the result of the previous section to show that the resource usage verification
problem [7] is (n − 1)-EXPTIME complete. The aim of resource usage verification is to
check whether a program accesses each resource according to a given resource specification.
For example, consider the following program.

let rec g x = if rand() then close(x) else (read(x); g(x)) in

let r = open_in "foo" in g(r)

Here, rand() returns a non-deterministic boolean. The program first defines a recursive
function g that takes a file pointer x as an argument parameter, closes it after some read
operations. The program then opens a read-only file “foo”, and passes it to g. For this
program, the goal of the verification is to statically check that the file is eventually closed
before the program terminates, and after it is closed, it is never read from or written to.

Kobayashi [12] recently showed that the resource usage verification problem is decidable
for the simply-typed λ-calculus with recursion, generated from a base type of booleans,
and augmented by resource creation/access primitives, by reduction to the model checking
problem for recursion schemes. Prior to Kobayashi’s work [12], only sound but incomplete
verification methods have been proposed.

Following [12], we consider below a simply-typed, call-by-name functional language
with only top-level function definitions and resource usage primitives.7 A program is a
triple (D,S, C) where D is a set of function definitions, S is a function name (representing
the main function), and C = (QC ,ΣC , δC , q0,C , FC) is a deterministic word automaton, which
describes how the state of a resource is changed by each access primitive. A function
definition is of the form F x̃ = e, where e is given by:

e ::= ⋆ | x | F | e1e2 | If∗ e1 e2 | Newq e | Acca e1 e2

The term ⋆ is the unit value. The term If∗ e1 e2 is a non-deterministic branch between e1
and e2. The term Newq e creates a fresh resource, and passes it to e (which is a function

7Note that programs in call-by-value languages can be transformed into this language by using the
standard CPS transformation and λ-lifting.
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that takes a resource as an argument). Here, q represents the initial state of a resource; the
automaton C specifies how the resource should be accessed afterwards: see the operational
semantics given later. The term Acca e1 e2 accesses the resource e1 with the primitive of
name a(∈ ΣC) and then executes e2.

Programs must be simply typed; the two base types are unit for unit values and R

for resources. The body of each definition must have type unit (in other words, resources
cannot be used as return values; this requirement can be enforced by the CPS transformation
[16, 5]). The constants If∗, Newq, and Acca are given the following types.

If∗ : unit → unit → unit,Newq : (R → unit) → unit,Acca :R → unit → unit

Example 5.1. The program given at the beginning of this section can be expressed as
(D,S, C) where

D = {S = Newq1 (G ⋆), G k x = If∗ (Accc x k) (Accr x (G k x))}
C = ({q1, q2}, {r, c}, δ, q1, {q2})
δ(q1, r) = q1 δ(q1, c) = q2

Here, G corresponds to the function g in the original program, and the additional parameter
k represents a continuation. The automaton C specifies that the resource should be accessed
according to r∗c.

We introduce the operational semantics to formally define the resource usage verification
problem. A run-time state is either an error state Error or a pair (ρ, e) where ρ is a finite
map from variables to QC , which represents the state of each resource. The reduction
relation −→D,C on run-time states is defined by:

F x̃ = e′ ∈ D

(ρ, F ẽ) −→D,C (ρ, [ẽ/x̃]e′)

(ρ, If∗ e1 e2) −→D,C (ρ, e1)

(ρ, If∗ e1 e2) −→D,C (ρ, e2)

x 6∈ dom(ρ)

(ρ,Newq e) −→D,C (ρ{x 7→ q}, e x)

δC(q, a) = q′

(ρ{x 7→ q},Acca x e) −→D,C (ρ{x 7→ q′}, e)

δC(q, a) is undefined

(ρ{x 7→ q},Acca x e) −→D,C Error
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Example 5.2. Recall the program in Example 5.1. It can be reduced as follows.

(∅, S) −→D,C (∅,Newq1 (G⋆))
−→D,C ({y 7→ q1}, G ⋆ y)
−→D,C ({y 7→ q1}, If∗ (Accc y ⋆) (Accr y (G ⋆ y)))
−→D,C ({y 7→ q1},Accr y (G ⋆ y))
−→D,C ({y 7→ q1}, G ⋆ y)
−→D,C ({y 7→ q1}, If∗ (Accc y ⋆) (Accr y (G ⋆ y)))
−→D,C ({y 7→ q1},Accc y ⋆)
−→D,C ({y 7→ q2}, ⋆)

We can now formally define the resource usage verification problem.

Definition 5.3 (resource usage verification problem). A program (D,S, C) is resource-
safe if (i) (∅, S) 6−→∗

D,C Error, and (ii) if (∅, S) −→∗
D,C (ρ, ⋆) then ρ(x) ∈ FC for every

x ∈ dom(ρ). The resource usage verification is the problem of checking whether a program
is resource-safe.

Example 5.4. The program given in Example 5.1 is resource-safe. The program obtained
by replacing the body of G (i.e. If∗ (Accc x k) (Accr x (G k x))) with Accr x (Gk x) is
also resource-safe; it does not terminate, so that it satisfies condition (ii) of Definition 5.3
vacuously. The program D′ obtained by replacing the definition of G with:

G k x = If∗ k (Accr x (G k x))

is not resource-safe, as (∅, S) −→∗
D′, C ({y 7→ q1}, ⋆) and q1 6∈ FC .

We show below that the resource usage verification is (n− 1)-EXPTIME complete for
n ≥ 3, where n is the largest order of types of terms in the source program. Here, the order
of a type is defined by:

order (unit) = 0 order (R) = 1 order (κ1 → κ2) = max (order (κ1) + 1, order (κ2))

Note that 3 is the lowest order of a closed program that creates a resource, since Newq has
order 3.

The lower-bound can be shown by reduction of the reachability problem for a recur-
sion scheme to the resource usage verification problem: Given a recursion scheme G =
(Σ,N ,R, S), let (D,S, C) be the program given by:

D = {F x̃ = g2p(t) | F x̃→ t ∈ R} ∪ {Fail x = Accfail x ⋆}
g2p(F t1 · · · tm) = F g2p(t1) · · · g2p(tm)
g2p(e) = Newq Fail
g2p(a t1 · · · tm) = If∗ g2p(t1) (· · · (If∗ g2p(tm−1) g2p(tm))) (a 6= e)
C = ({q}, {fail}, ∅, q, {q})

Then, the value tree of G contains e if and only if the program (D,S, C) is not resource-safe.
Since resource primitives occur only in the encoding of e, the order of the program is the
maximum of 3 and the order of the recursion scheme.

To show the upper-bound, we transform a program (D,S, C) into a recursion scheme
G(D,S,C), which generates a tree representing all possible (resource-wise) access sequences of
the program [12], and a disjunctive APT D(D,S,C), which accepts trees containing an invalid
resource access sequence, so that (D,S, C) is resource-safe if, and only if, D(D,S,C) rejects
the value tree of G(D,S,C).
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Figure 2: The tree generated by the recursion scheme of Example 5.5

The recursion scheme G(D,S,C) = (Σ,N ,R, S) is given by:

Σ = {a 7→ 1 | a ∈ A} ∪ {νq 7→ 2 | q ∈ QC} ∪ {⋆ 7→ 0, i 7→ 1, k 7→ 1, br 7→ 2}
N = (the set of function symbols in D)

∪{If∗ 7→ o → o → o} ∪ {Acca 7→ (o → o) → o → o | a ∈ A}
∪{Newq 7→ ((o → o) → o) → o | q ∈ QC}

R = {F x̃→ e | F x̃ = e ∈ D}
∪{If∗ x y → brx y, Acca x k → x (a k), Newq k → νq(k i) (k k)}

Here, A is the set of the names of access primitives that occur in D.
The preceding encoding is slightly different from the one presented in [12]. The terminal

symbol br represents a non-deterministic choice. In the rule for Newq, a fresh resource is
instantiated to either i or k of arity 1. This is a trick used to extract resource-wise access
sequences, by tracking or ignoring the new resource in a non-deterministic manner. In the
first-branch, the resource is instantiated to i, so that all the accesses to the resource are
kept track of. In the second branch, the resource is instantiated to k, so that all the accesses
to the resource should be ignored. The above transformation preserves types, except that
unit and R are replaced by o and o → o respectively.

Example 5.5. The program in Example 5.1 is transformed into the recursion scheme
consisting of the following rules:

S → Newq1 (G ⋆)
G k x → If∗ (Accc x k) (Accr x (G k x))

If∗ x y → brx y
Acca x k → x (a k)
Newq1 k → νq1(k i) (k k)

Figure 2 shows the value tree of the recursion scheme. The root node represents creation
of a new resource (whose initial state is q1). The nodes labeled by c or r express resource
accesses. The left and right children are the same, except that each resource access is
prefixed by i in the left child, while it is prefixed by k in the right child.



COMPLEXITY OF MODEL CHECKING RECURSION SCHEMES 19

νq1

νq1

br

i

c

i

c

⋆

i

r

i

r

br

· · · · · ·

br

i

c

k

c

⋆

i

r

k

r

br

· · · · · ·

νq1

br

k

c

i

c

⋆

k

r

i

r

br

· · · · · ·

br

k

c

k

c

⋆

k

r

k

r

br

· · · · · ·

Figure 3: The tree generated by the recursion scheme of Example 5.6

Example 5.6. Consider the following program, which creates and accesses two resources:

S = Newq1 F
F x = Newq1 (G ⋆ x)
G k x y = If∗ (Accc x (Accc y k)) (Accr x (Accr y (G k x y)))

It is transformed into the recursion scheme consisting of the following rules:

S → Newq1 F
F x → Newq1 (G ⋆ x)

G k x y → If∗ (Accc x (Accc y k)) (Accr x (Accr y (G k x y)))
If∗ x y → brx y

Acca x k → x (a k)
Newq1 k → νq1(k i) (k k)

Figure 3 shows the value tree of the recursion scheme. Of the four subtrees whose roots are
labeled by br, the leftmost subtree represents accesses to both resources x and y; in other
words, all the accesses to x and y are prefixed by i. In the second subtree, only the accesses
to x are prefixed by i. In the third subtree, only the accesses to y are prefixed by i, while
in the rightmost subtree, no accesses are prefixed by i.
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The disjunctive APT D(D,S,C) = (Σ, Q, δ, qI ,Ω), which accepts trees having a path
corresponding to an invalid access sequence, is given by:

Q = QC ∪ {q | q ∈ QC} ∪ {qI}

δ(qI , a) =





(1, qI) ∨ (2, qI) if a = br

(1, q) ∨ (2, qI) if a = νq

f if a = ⋆
(1, qI) otherwise

δ(q, a)(where q ∈ QC) =





(1, q) ∨ (2, q) if a = br

(1, q) if a = i

(1, q) if a = k

(2, q) if a = νq

f if a = ⋆ and q ∈ FC

t if a = ⋆ and q 6∈ FC

(1, q′) if a ∈ A and δC(q, a) = q′

t if a ∈ A and δC(q, a) is undefined
δ(q, a)(where q ∈ QC) = (1, q)
Ω(q) = 1 for every q ∈ Q

Σ is the same as that of G(D,S,C).
The APT reads the root of a tree with state qI , and traverses a tree to find a path

corresponding to an invalid resource access sequence. After reading νq in state qI , the
APT either (i) chooses the left branch and changes its state to q, the initial state of the
new resource, tracking accesses to the resource afterwards; or (ii) chooses the right branch,
ignoring accesses to the new resource. In the mode to track resource accesses (i.e., in state
q ∈ Q), the APT changes its state according to resource accesses, except: (i) upon reading
k, it skips the next symbol, which represents an access to a resource not being tracked, (ii)
upon reading νq, it only reads the right branch, ignoring the resource created by this νq (as
it is already keeping track of another resource), (iii) upon reading a ∈ A such that C(q, a) is
undefined or reading ⋆ when q 6∈ FC , it terminates successfully (as an invalid access sequence
has been found), and (iv) upon reading ⋆ at state q ∈ FC , it aborts (as a path being read
was actually a valid access sequence). The priority function maps every state to 1, so that
no infinite run (that corresponds to an infinite execution sequence of the program without
any invalid resource access) is considered an accepting run.

From the construction above, we have:

Theorem 5.7. (D,S, C) is resource-safe if, and only if, the value tree of G(D,S,C) is not
accepted by D(D,S,C).

The proof is similar to the corresponding theorem in [12], hence omitted.8

Note that the order of G(D,S,C) is the same as that of D. Thus, as a corollary of the
above theorem and Theorem 4.2, we obtain that the resource usage verification is (n − 1)-
EXPTIME.

8As mentioned above, the encoding presented in this article is slightly different from the one in [12], but
the proofs are similar: they are tedious but rather straightforward.
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6. Related Work

Our analysis of the lower bound is based on Engelfriet’s earlier work on the complexity of
the iterated pushdown automata word acceptance and emptiness problems, and the results
of Knapik et al. on the relationship between higher-order PDA and safe recursion schemes.

The model checking of recursion schemes for the class of trivial APT has been studied
by Aehlig [1] (under the name “trivial automata”). He gave a model checking algorithm,
but did not discuss its complexity. For the same class, Kobayashi [12] showed that the
complexity is linear in the size of recursion schemes, if the types and automata are fixed.
For the full modal µ-calculus, Kobayashi and Ong [13] have shown that the complexity is
n-EXPTIME in the largest arity of symbols in the recursion scheme, the number of states of
the APT, and the largest priory, but polynomial in the number of the rules of the recursion
scheme.

Our encoding of the word acceptance problem of an order-n alternating PDA into the
model checking problem of an order-n tree-generating PDA (the construction of MA,w in
Section 3) is similar to Cachat and Walukiewicz’s encoding of the word acceptance problem
into the reachability game on a higher-order pushdown system [3]. In fact, the tree generated
by MA,w seems to correspond to the unravelling of the game graph of the higher-order
pushdown system (where the nodes labelled by E are Player’s positions, and those labelled
by A are Opponent’s positions). Thus, n-EXPTIME-hardness of model checking for trivial
APT (in the size of the recursion scheme) would follow also from n-EXPTIME hardness of
the reachability game on higher-order pushdown systems [3, 4].

7. Conclusion

We have considered two subclasses of APT, and shown that the model checking of an order-n
recursion scheme is n-EXPTIME complete for trivial APT, and (n−1)-EXPTIME complete
for disjunctive APT, both in the size of the recursion scheme and in the size of the APT. As
an application, we showed that the resource usage verification problem is (n−1)-EXPTIME
complete. The lower bound for the finiteness problem (recall Section 4.3) is left as an open
problem.
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Appendix A. Characterizing trivial APT and disjunctive APT as modal

mu-calculus fragments

From Logic to Automata. Consider the following set of modal mu-calculus formulas:

φ,ψ ::= t | f | Pf | Z | φ ∧ ψ | φ ∨ ψ | 〈i〉φ | νZ.φ | µZ.φ

This is a superset of the fragments S and D introduced in Sections 3 and 4, respectively.
We can apply the translation of Kupferman et al. [14] to a modal mu-calculus formula to

get an equivalent alternating parity tree automaton. We just need to modify the definition
of δ ([14, page 339]) by:

δ(Pf , g) =

{
t if g = f
f if g 6= f

δ(〈i〉φ, g) =

{
split(i, φ) if 1 ≤ i ≤ Σ(g)
f otherwise

It is easy to see that the translation maps a S-formula to a trivial automaton, and a D-
formula to a disjunctive automaton.

From Automata to Logic. Our presentation here follows Walukiewicz [20]. Fix an APT A =
〈Σ, Q, δ, q1,Ω〉 where Q = {q1, · · · , qn}. Suppose the ordering q1, · · · , qn satisfies Ω(qi) ≥
Ω(qj) for every i < j. Consider the following n-tuple of modal mu-calculus formulas—call
it χA—simultaneously defined by least and greatest fixpoints:

σ1




Z11
...

Z1n


 . · · · . σn




Zn1
...

Znn


 .




χ1
...
χn




where σi := µ if Ω(qi) is odd, and ν otherwise. For each 1 ≤ i ≤ n

χi :=
∨

f∈Σ

(Pf ∧ pδ(qi, f)q).

We define pδ(qi, f)q by:
p(d, qi)q := 〈d〉Zii

ptq := t

pfq := f

pϕ1 ∧ ϕ2q := pϕ1q ∧ pϕ2q

pϕ1 ∨ ϕ2q := pϕ1q ∨ pϕ2q

Write πi(χA) to be a modal mu-calculus formula (semantically) equivalent to χA pro-
jected onto the i-th component (which is well-defined by an application of the Bekic̆ Prin-
ciple).

Let A be an APT and t a Σ-labelled ranked tree. Walukiewicz [20] has shown that t is
accepted by A if, and only if, it satisfies π1(χA) at the root.

Proposition A.1. (i) If A is a trivial APT, then π1(χA) is a S-formula.
(ii) If A is a disjunctive APT, then π1(χA) is a D-formula.

Proof. (i): If A has only one priority 0, then it follows from the definition that χA is
constructed using only ν-fixpoint operator. (ii) Since δ(qi, f) is a disjunctive formula, it
follows that every conjunction subformula of χA is of the form Pf ∧ φ.
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Appendix B. Alternative Proof of (n− 1)-EXPTIME Upper-Bound for

Disjunctive APT

We sketch an alternative proof of Lemma 4.2, using Ong’s variable profiles [15].
In order to appreciate the proof sketched below, some knowledge of the workings of a

traversal simulating APT is required. In particular it is necessary to know about variable
profiles and how they are employed.

Since B is disjunctive, it has an accepting run-tree on [[G]] just in case it has an accepting
run-tree that does not branch (i.e. each node of the run-tree has at most one child). It
follows that B has an accepting traversal tree if and only if it has an accepting traversal
tree that does not branch.

The key observation is that the traversal-simulating APT C thus need only ‘guess’ one
exit point when it reaches a node labelled by a variable of order one, even if its type has
arity greater than one. It follows that we can simplify the definition of variable profiles.
A profile of a ground-type variable has the shape (x, q,m, ∅) where q is a state and m a
colour, which is the same as the general case. However a profile of a variable φ of a first-
order type o→ · · · → o︸ ︷︷ ︸

k

→ o now has the shape (φ, q,m, c) where c is either empty or a

singleton set consisting of a profile of a ground-type variable, as opposed to a set of such
profiles. The profiles of variables of order two or higher are defined as in the general case.
Thus the number of variable profiles of a given order (at least one) is reduced by one level
of exponentiation compared to the general case. Now viewing VP(A) as denoting the set
of variable profiles of type A (of order at least one) restricted to containing either empty or
singleton interfaces:

∑

A order i type

|VP(A)| = O(expi−1(|GrG| × |Q| × p))

where Q is the state space of B, p is the number of priorities, and GrG is the (finite) graph
that unravels to the computation tree λ(G). The number of nodes in the parity game
induced by the traversal-simulating APT C and the computation tree λ(G) will thus also
have bound O(expn−1(|GrG|× |Q|×p)) and using Jurdziński’s algorithm [9] we have it that
the acceptance parity game can be solved in time O(expn−1(|GrG|× |Q|×p)). The problem
thus lies in (n− 1)-EXPTIME.
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