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Abstract. We consider the class of languages defined in the 2-variable fragment of the
first-order logic of the linear order. Many interesting characterizations of this class are
known, as well as the fact that restricting the number of quantifier alternations yields an
infinite hierarchy whose levels are varieties of languages (and hence admit an algebraic
characterization). Using this algebraic approach, we show that the quantifier alternation
hierarchy inside FO2[<] is decidable within one unit. For this purpose, we relate each level
of the hierarchy with decidable varieties of languages, which can be defined in terms of
iterated deterministic and co-deterministic products. A crucial notion in this process is
that of condensed rankers, a refinement of the rankers of Weis and Immerman and the
turtle languages of Schwentick, Thérien and Vollmer.

Many important properties of systems are modeled by finite automata. Frequently, the
formal languages induced by these systems are definable in first-order logic. Our under-
standing of its expressive power is of direct relevance for a number of application fields,
such as verification.

The first-order logic we are interested in, in this paper, is the first-order logic of the linear
order, written FO[<], interpreted on finite words. It is well-known that the languages that
are definable in this logic are exactly the star-free languages, or equivalently the regular
languages whose syntactic monoid is aperiodic (that is: satisfies an identity of the form
xn+1 = xn for some integer n) [24, 18] (see also [5, 20, 27, 29]); and that deciding whether
a finite automaton accepts such a language is PSPACE-complete [3].

Fragments of first-order logic defined by the limitation of certain resources have been
studied in detail. For instance, the quantifier alternation hierarchy, with its close relation
with the dot-depth hierarchy of star-free languages, offers one of the oldest open problems
in formal language theory: we know that the hierarchy is infinite and that its levels are
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characterized algebraically (by a property of the syntactic monoids), but we do not know
whether these levels (besides levels 0 and 1) are decidable. In contrast, it is known that the
quantifier alternation hierarchy for the first-order logic of the successor, FO[S], collapses at
level 2 [34, 21].

Another natural limitation considers the number of variables in a formula. This lim-
itation has attracted a good deal of attention, as the trade-off between formula size and
number of variables is known to be related with the trade-off between parallel time and
number of processes, see [11, 1, 9].

It is well-known that every first-order formula is equivalent to one using at most three
variables. On the other hand, the first-order formulas using at most two variables, written
FO2[<], are strictly less expressive. The class of languages defined by such formulas admits
many remarkable characterizations [31]. To begin with, a language is FO2[<]-definable if
and only if it is recognized by a monoid in the pseudovariety DA [33] (a precise definition
will be given in Section 2). As with the characterization of FO[<]-definability by aperiodic
monoids, this characterization implies decidability. The FO2[<]-definable languages are also
characterized in terms of unambiguous products of languages (see Section 6.3) and in terms
of the unary fragment of propositional temporal logic [7] (see Section 1.3). For a survey of
these properties, the reader is referred to [31, 6].

In this paper, we consider the quantifier alternation hierarchy within the two-variable
fragment of first-order logic. We denote by FO2

m[<] the fragment of FO2[<] consisting of
formulas using at most 2 variables and at most m alternating blocks of quantifiers. In the
sequel, we omit specifying the predicate < and we write simply FO, FO2 or FO2

m.
Schwentick, Thérien and Vollmer introduced the so-called turtle programs to character-

ize the expressive power of FO2 [26]. These programs are sequences of directional instruc-
tions of the form go to the next a to the right, go to the next b to the left. More details
can be found in Section 1.2 below. Turtle programs were then used, under the name of
rankers, by Weis and Immerman [37] (first published in [36]) to characterize FO2

m in terms
of rankers with m alternations of directions (right vs. left). Their subtle characterization,
Theorem 1.8 below, does not yield a decidability result. It forms however the basis of our
results.

Rankers are actually better suited to the study of a natural alternation hierarchy within
the unary fragment of propositional temporal logic (Sections 1.3 and 4), than to the study of
the quantifier alternation within FO2[<]. For the latter, we define the notion of condensed
rankers, which introduce a notion of efficiency in the path they describe in a word, see
Section 3.

Recent results of Kufleitner and Lauser [16] and Straubing [28] show that FO2
m (the

set of FO2
m-definable languages) forms a variety of languages. We show that the classes

of languages defined by condensed rankers with at most m changes of directions also form
varieties of languages, written Rm and Lm depending on whether the initial move is towards
the right or towards the left (Section 3.3). The meaning of these results is that membership
of a language L in these classes depends only on the syntactic monoid of L. This justifies
using algebraic methods to approach the decidability problem for FO2

m — a technique that
has proved very useful in a number of situations (see for instance [20, 31, 30, 6]).

In fact, we use this algebraic approach to show that the classes Rm and Lm are decid-
able (Section 3.5), and that they admit a neat characterization in terms of closure under
alternated deterministic and co-deterministic products (Section 3.4). Moreover, we show
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(Theorem 5.1) that
Rm ∪ Lm ⊆ FO

2
m ⊆ Rm+1 ∩ Lm+1.

This shows that one can effectively compute, given a language L in FO2, an integer m such
that L is in FO2

m+1, possibly in FO2
m, but not in FO2

m−1. That is, we can compute the
quantifier alternation depth of L within one unit. As indicated above, this is much more
precise than the current level of knowledge on the general quantifier alternation hierarchy
in FO[<].

We conjecture that FO2
m is actually equal to the intersection of Rm+1 and Lm+1. This

would prove that each FO2
m is decidable.

Many of these results were announced in [14], with a few differences. In particular,
the definition of the sets RX

m,n (Section 1.2) in [14] introduced a mistake which is corrected
here. The proof of [14, Theorem 2] contained a gap: we do not have a proof that the classes
defined by the alternation hierarchy within unary temporal logic are varieties. And the
proof of [14, Proposition 2.9] also contained a gap: the correct statement is Theorem 4.3
below.

1. Rankers and logical hierarchies

Let A be a finite alphabet. We denote by A∗ the set of all words over A (that is, of sequences
of elements of A), and by A+ the set of non-empty words. If u is a length n (n > 0) word
over A, we say that an integer 1 ≤ i ≤ n is an a-position of u if the i-th letter of u, written
u[i], is an a. If 1 ≤ i ≤ j ≤ n, we let u[i; j] be the factor u[i] · · · u[j] of u.

FO denotes the set of first-order formulas using the unary predicates a (a ∈ A) and the
binary predicate <, and FO2 denotes the fragment of FO consisting of formulas which use
at most two variable symbols.

If u is a length n (n > 0) word over A, we identify the word u with the logical structure
({1, . . . , n}, (a)a∈A), where a denotes the set of a-positions in u. Formulas from FO are
naturally interpreted over this structure, and we denote by L(ϕ) the language defined by
the formula ϕ ∈ FO, that is, the set of all words which satisfy ϕ.

1.1. Quantifier-alternation within FO2. We now concentrate on FO2-formulas and we
define two important parameters concerning such formulas. To simplify matters, we consider
only formulas where negation is used only on atomic formulas so that, in particular, no
quantifier is negated. This is naturally possible up to logical equivalence. Now, with each
formula ϕ ∈ FO2, we associate in the natural way a parsing tree: each occurence of a
quantification, ∃x or ∀x, yields a unary node, each occurrence of ∨ or ∧ yields a binary
node, and the leaves are labeled with atomic or negated atomic formulas. The quantifier
depth of ϕ is the maximum number of quantifiers along a path in its parsing tree.

With each path from root to leaf in this parsing tree, we also associate its quantifier
label, which is the sequence of quantifier node labels (∃ or ∀) encountered along this path.
A block in this quantifier label is a maximal factor consisting only of ∃ or only of ∀, and
we define the number of blocks of ϕ to be the maximum number of blocks in the quantifier
label of a path in its parsing tree. Naturally, the quantifier depth of ϕ is at least equal to
its number of blocks.



4 M. KUFLEITNER AND P. WEIL

We let FO2
m,n (n ≥ m) denote the set of first-order formulas with quantifier depth at

most n and with at most m blocks and let FO2
m denote the union of the FO2

m,n for all n. We

also denote by FO2 (FO2
m, FO2

m,n) the class of FO2 (FO2
m, FO2

m,n)-definable languages.

Remark 1.1. Recall that a language is piecewise testable if it is a Boolean combination
of languages of the form A∗a1A

∗ · · · akA
∗ (ai ∈ A). It is an elementary observation that

the piecewise testable languages coincide with FO2
1. It is well-known that this class of

languages is decidable (see Section 2 below).

1.2. Rankers. A ranker is a non-empty word on the alphabet {Xa,Ya | a ∈ A}. Rankers
define positions in words: given a word u ∈ A+ and a letter a ∈ A, we denote by Xa(u)
(resp. Ya(u)) the least (resp. greatest) integer 1 ≤ i ≤ |u| such that u[i] = a. If a does not
occur in u, we say that Ya(u) and Xa(u) are not defined. If in addition q is an integer such
that 0 ≤ q ≤ |u|, we let

Xa(u, q) = q + Xa(u[q + 1; |u|])

Ya(u, q) = Ya(u[1; q − 1]).

These definitions are extended to all rankers: if r′ is a ranker, Z ∈ {Xa,Ya | a ∈ A} and
r = r′Z, we let

r(u, q) = Z(u, r′(u, q))

if r′(u, q) and Z(u, r′(u, q)) are defined, and we say that r(u, q) is undefined otherwise. In
particular: rankers are processed from left to right.

Finally, if r starts with an X- (resp. Y-) letter, we say that r defines the position
r(u) = r(u, 0) (resp. r(u) = r(u, |u| + 1)), or that it is undefined on u if this position does
not exist.

Remark 1.2. Rankers were first introduced, under the name of turtle programs, by Schwen-
tick, Thérien and Vollmer [26], as sequences of instructions: go to the next a to the right, go
to the next b to the left, etc. These authors write (→, a) and (←, a) instead of Xa and Ya.
Weis and Immerman [37] write ⊲a and ⊳a instead, and they introduced the term ranker. We
rather follow the notation in [6, 13, 4], where X and Y refer to the future and past operators
of PTL.

Example 1.3. The ranker XaYbXc (go to the first a starting from the left, thence to the
first b towards the left, thence to the first c towards the right) is defined on bac and bca,
but not on abc or cba.

By L(r) we denote the language of all words on which the ranker r is defined. We say
that the words u and v agree on a class R of rankers if exactly the same rankers from R
are defined on u and v. And we say that two rankers r and s coincide on a word u if they
are both defined on u and r(u) = s(u).

Example 1.4. If r = Xa1 · · ·Xak (resp. r = Yak · · ·Ya1), then L(r) is the set of words that
contain a1 · · · ak as a subword, L(r) = A∗a1A

∗ · · · akA
∗.

The depth of a ranker r is defined to be its length as a word. A block in r is a maximal
factor in {Xa | a ∈ A}

+ (an X-block) or in {Ya | a ∈ A}
+ (a Y-block). If n ≥ m, we denote

by RX
m,n (resp. RY

m,n ) the set of m-block, depth n rankers, starting with an X- (resp. Y-)
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block, and we let Rm,n = RX
m,n ∪R

Y
m,n and RX

m,n =
⋃

m′≤m,n′≤nR
X
m′,n′ ∪

⋃
m′<m,n′<nR

Y
m′,n′ .

We define RY
m,n dually and we let RX

m =
⋃

n≥mR
X
m,n, R

Y
m =

⋃
n≥mR

Y
m,n and Rm = RX

m∪R
Y
m.

Remark 1.5. Readers familiar with [37] will notice differences between our RX
m,n and their

analogous R⋆
m⊲,n; introduced for technical reasons, it creates no difference between our Rm,n

and their R⋆
m,n, the classes which intervene in crucial Theorem 1.8 below.

1.3. Rankers and unary temporal logic. Let us depart for a moment from the con-
sideration of FO2-formulas, to observe that rankers are naturally suited to describe the
different levels of a natural class of temporal logic. The symbols Xa and Ya (a ∈ A) can be
seen as modal (temporal) operators, with the future and past semantics respectively. We
denote the resulting temporal logic (known as unary temporal logic) by TL: its only atomic
formula is ⊤, the other formulas are built using Boolean connectives and modal operators.
Let u ∈ A+ and let 0 ≤ i ≤ |u| + 1. We say that ⊤ holds at every position i, (u, i) |= ⊤;
Boolean connectives are interpreted as usual; and (u, i) |= Xaϕ (resp. Yaϕ) if and only
if (u,Xa(u, i)) |= ϕ (resp. (u,Ya(u, i)) |= ϕ). We also say that u |= Xaϕ (resp. Yaϕ) if
(u, 0) |= Xaϕ (resp. (u, 1 + |u|) |= Yaϕ).

TL is a fragment of propositional temporal logic PTL; the latter is expressively equivalent
to FO and TL is expressively equivalent to FO2 [13].

As in the case of FO2-formulas, one may consider the parsing tree of a TL-formula and
define inductively its depth and number of alternations (between past and future operators).

If n ≥ m, the fragment TLXm,n (resp. TLYm,n) consists of the TL-formulas with depth n and
with m alternated blocks, in which every branch (of the parsing tree) with exactly m
alternations starts with future (resp. past) operators. Branches with less alternations may

start with past (resp. future) operators. The fragments TLm,n, TL
X
m,n, TL

Y
m,n, TL

X
m, TLYm

and TLm are defined according to the same pattern as in the definition of Rm,n, R
X
m,n, R

Y
m,n,

RX
m, RY

m and Rm. We also denote by TLXm,n (TLXm, TLm, etc.) the class of TLXm,n (TLXm,
TLm, etc.) -definable languages.

Proposition 1.6. Let 1 ≤ m ≤ n. Two words satisfy the same TLXm,n formulas if and only

if they agree on rankers from RX
m,n. A language is in TLXm,n if and only if it is a Boolean

combination of languages of the form L(r), r ∈ RX
m,n.

Similar statements hold for TLYm,n, TL
X
m, TLYm and TLm, relative to the corresponding

classes of rankers.

Proof. Since every ranker can be viewed as a TL-formula, it is easily verified that if u and
v satisfy the same TLXm,n-formulas, then they agree on rankers from RX

m,n. To prove the

converse, it suffices to show that a TLXm,n-formula is equivalent to a Boolean combination
of formulas that are expressed by a single ranker. That is: we only need to show that
modalities can be brought outside the formula. This follows from the following elementary
logical equivalences:

Xa(ϕ ∧ ψ) ≡ Xaϕ ∧ Xaψ,

Xa(ϕ ∨ ψ) ≡ Xaϕ ∨ Xaψ,

Xa(¬ϕ) ≡ Xa⊤ ∧ ¬Xaϕ.
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Remark 1.7. Together with Example 1.4, this proposition confirms the elementary ob-
servation that a language is TL1 (resp. TLX1 , TL

Y
1 ) definable if and only if it is piecewise

testable (see Remark 1.1). It follows that TL1-definability is decidable.

1.4. Rankers and FO2. The connection established by Weis and Immerman [37, Theorem
4.5] between rankers and formulas in FO2

m,n, Theorem 1.8 below, is much deeper. If x, y
are integers, we let ord(x, y), the order type of x and y, be one of the symbols <, > or =,
depending on whether x < y, x > y or x = y.

Theorem 1.8 (Weis and Immerman [37]). Let u, v ∈ A∗ and let 1 ≤ m ≤ n. Then u and
v satisfy the same formulas in FO2

m,n if and only if

(WI 1) u and v agree on rankers from Rm,n,

(WI 2) if the rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 are defined on u and v, then
ord(r(u), r′(u)) = ord(r(v), r′(v)).

(WI 3) if r ∈ Rm,n and r′ ∈ Rm,n−1 are defined on u and v and end with different

direction letters, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

Corollary 1.9. For each n ≥ m ≥ 1, TLm,n ⊆ FO
2
m,n and TLm ⊆ FO

2
m.

Proof. Let L be a TLm,n-definable language. For each u ∈ L, let ϕu be the conjunction of

the FO2
m,n-sentences satisfied by u and let ϕ be the disjunction of the formulas ϕu (u ∈ L).

Since FO2
m,n is finite (up to logical equivalence), the conjunctions and disjunctions in the

definition of ϕ are all finite. We show that L = L(ϕ).
A word v satisfies ϕ if and only if it satisfies ϕu for some word u ∈ L. Then v satisfies

the same FO2
m,n-sentences as u and, by comparing the statements in Proposition 1.6 and

Theorem 1.8, we see that u and v satisfy the same TLm,n-formulas. Since L is defined
by such a formula, it follows that v ∈ L. Conversely, every word v ∈ L satisfies ϕ since
it satisfies ϕv , which is logically equivalent to a term in the disjunction defining ϕ. This
concludes the proof.

2. On varieties and pseudovarieties

Recent results show that the FO2
m-definability of a language L can be characterized alge-

braically, that is, in terms depending only on the syntactic monoid of L. This justifies ex-
ploring the algebraic path to tackle the decidability of this definability problem. Eilenberg’s
theory of varieties provides the mathematical framework. In this section, we summarize the
information on monoid and variety theory that will be relevant for our purpose. For more
detailed information and proofs, we refer the reader to [20, 2, 31, 32, 30], among other
sources.

A semigroup is a set equipped with a binary associative operation. A monoid is a
semigroup which contains a unit element. The set A∗ of all words on alphabet A, equipped
with the concatenation product, is the free monoid on A: it has the specific property
that, if ϕ : A → M is a map into a monoid, then there exists a unique monoid morphism
ψ : A∗ →M which extends ϕ. Apart from free monoids, the semigroups and monoids which
we will consider in this paper are finite.

If A is a finite alphabet and M is a finite monoid, we say that a language L ⊆ A∗ is
recognized by M if there exists a morphism ϕ : A∗ →M such that L = ϕ−1(ϕ(L)).
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Example 2.1. If u ∈ A∗ and B ⊆ A, let

alph(u) = {a ∈ A | u = vaw for some v,w ∈ A∗},

[B] = {u ∈ A∗ | alph(u) = B}

Let ϕ be the following morphism from A∗ into the direct product of |A| copies of the
2-element monoid {1, 0} (multiplicative): for each letter a ∈ A, ϕ(a) is the A-tuple in
which every component is 1, except for the a-component. It is elementary to show that
[B] = ϕ−1(ϕ([B])) and hence, [B] is accepted by a monoid that is idempotent (every ele-
ment is equal to its own square) and commutative. Conversely, one can show that every
language recognized by an idempotent and commutative monoid is a Boolean combination
of languages of the form [B] (B ⊆ A).

A pseudovariety of monoids is a class of finite monoids which is closed under taking
direct products, homomorphic images and submonoids. A class of languages V is a collection
V = (V(A))A, indexed by all finite alphabets A, such that V(A) is a set of languages in A∗.
If V is a pseudovariety of monoids, we let V(A) be the set of all languages of A∗ which are
recognized by a monoid in V. The class V has important closure properties: each V(A)
is closed under Boolean operations and under taking residuals (if L ∈ V(A) and u ∈ A∗,
then Lu−1 and u−1L are in V(A)); and if ϕ : A∗ → B∗ is a morphism and L ∈ V(B),
then ϕ−1(L) ∈ V(A). Classes of recognizable languages with these properties are called
varieties of languages, and Eilenberg’s theorem (see [20]) states that the correspondence
V 7→ V, from pseudovarieties of monoids to varieties of languages, is one-to-one and onto.
Moreover, the decidability of membership in the pseudovariety V, implies the decidability of
the variety V: indeed, a language is in V if and only if its (effectively computable) syntactic
monoid is in V.

For every finite semigroup S, there exists an integer, usually denoted ω, such that every
element of the form sω in S is idempotent. The Green relations are another important
concept to describe semigroups and monoids: if S is a semigroup and s, t ∈ S, we say that
s ≤J t (resp. s ≤R t, s ≤L t) if s = utv (resp. s = tv, s = ut) for some u, v ∈ S ∪ {1}. We
also say that s J t is s ≤J t and t ≤J s. The relations R and L are defined similarly.

Pseudovarieties that will be important in this paper are the following.
- J1, the pseudovariety of idempotent and commutative monoids; as discussed in Ex-

ample 2.1, the corresponding variety of languages consists of the Boolean combinations of
languages of the form [B].

- R, L and J, the pseudovarieties of R-, L- and J -trivial monoids; a monoid is, say,
R-trivial if each of its R-classes is a singleton. The variety of languages corresponding to
J was described by Simon (see [20]): it is exactly the class of piecewise testable languages,
i.e., the class of FO2

1-definable languages, see Remarks 1.1 and 1.7.
- A, the variety of aperiodic monoids, i.e., monoids in which xω = xω+1 holds for each

x. Celebrated theorems of Schützenberger, McNaughton and Papert and Kamp show that
the corresponding variety of languages consists of the star-free languages, the languages
that are definable in FO, and the languages definable in propositional temporal logic, see
for instance [20, 32, 5, 29, 30].

- DA is the pseudovariety of all monoids in which (xy)ωx(xy)ω = (xy)ω for all x, y. This
pseudovariety has many characterizations in combinatorial, algebraic and logical terms. Of
particular interest to us is the fact that the corresponding variety of languages consists of
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a1 a2 a3 a4
a5a6

a7

Figure 1: The positions defined by r in u, when r = Xa1Xa2Xa3Xa4Ya5Ya6Xa7 is condensed
on u

the languages that are definable in FO2, and equivalently, of the languages that are defined
in unary temporal logic, see [31, 32, 6, 13, 35] among others.

- Straubing showed that, for each m ≥ 1, FO2
m is a variety of languages, and he

described the corresponding pseudovariety of monoids, which we write FO2
m, in terms of

iterated block products [28]. We will not need to discuss the definition of the block product
here, retaining only that this characterization does not imply decidability, and that Straub-
ing gave identities (using products and ω-powers like the identities given above for A and
DA) which he conjectures define each FO2

m. Establishing this conjecture would prove the
decidability of FO2

m-definability.

− Kufleitner and Lauser also showed that, for each n ≥ m ≥ 1, FO2
m,n and FO2

m form
varieties of languages, using a general result on logical fragments [16, Cor. 3.4]. Their
result also does not imply a decidability statement.

− On a given monoid M , we define the congruences ∼K and ∼D as follows.
• u ∼K v if and only if, for each idempotent e in M , we have either eu, ev <J e or
eu = ev,
• u ∼D v if and only if, for each idempotent e in M , we have either have ue, ve <J e or
ue = ve.

If V is a pseudovariety of monoids, we say that the monoid M ∈ K©m V if M/∼K ∈ V,
and M ∈ D©m V if M/∼D ∈ V. The classes K©m V and D©m V are pseudovarieties as well,
which are usually defined in terms of Mal’cev products with the pseudovarieties K and D,
see [23, Thm 4.6.50] or [12, 10].

The following equalities are well-known [20]:

K©m J1 = K©m J = R, D©m J1 = D©m J = L.

3. Condensed rankers

Our main tool to approach the decidability of FO2
m-definability lies in the notion of con-

densed rankers, a variant of rankers which was introduced implicitly by Weis and Immerman
to prove Theorem 6.4 below (see [37, Theorem 4.7]). Recall that a ranker can be seen as a
sequence of directional instructions (see Example 1.3). We say that a ranker r is condensed
on u if it is defined on u, and if the sequence of positions visited zooms in on r(u), never
crossing over a position already visited, see Figure 1. Formally, r = Z1 · · ·Zn is condensed
on u if there exists a chain of open intervals

(0; |u|+ 1) = (i0; j0) ⊃ (i1; j1) ⊃ · · · ⊃ (in−1; jn−1) ∋ r(u)

such that for all 1 ≤ ℓ ≤ n− 1 the following properties are satisfied:

• If ZℓZℓ+1 = XaXb then (iℓ, jℓ) = (Xa(u, iℓ−1), jℓ−1).
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• If ZℓZℓ+1 = YaYb then (iℓ, jℓ) = (iℓ−1,Ya(u, jℓ−1).
• If ZℓZℓ+1 = XaYb then (iℓ, jℓ) = (iℓ−1,Xa(u, iℓ−1)).
• If ZℓZℓ+1 = YaXb then (iℓ, jℓ) = (Ya(u, jℓ−1), jℓ−1).

Remark 3.1. The iℓ and jℓ are either 0 or 1 + |u|, or positions of the form r′(u) for some
prefix of r′ of r. More precisely, if rℓ is the depth ℓ prefix of r (ℓ < n), then rℓ(u) = iℓ if
Zℓ+1 is of the form Xa, and rℓ(u) = jℓ if Zℓ+1 is of the form Ya.

Remark 3.2. If r = r1r2 is condensed on u, then r(u) > r1(u) if r2 starts with an X-letter,
and r(u) < r1(u) if r2 starts with a Y-letter.

Example 3.3. The ranker XaYbXc is defined on the words bac and bca, but it is condensed
only on bca.

Rankers in R1,n and rankers of the form XaYb1 · · ·Ybk or YaXb1 · · ·Xbk are condensed on
all words on which they are defined.

Condensed rankers form a natural notion, which is equally well-suited to the task of
describing FO2

m-definability (see Theorem 3.11 below). With respect to TL, for which Propo-
sition 1.6 shows a perfect match with the notion of rankers, they can be interpreted as adding
a strong notion of unambiguity, see Section 6.3 below and the work of Lodaya, Pandya and
Shah [17].

Let us say that two words u and v agree on condensed rankers from a set R of rankers,
if the same rankers in R are condensed on u and v. We write u ⊲m,n v (resp. u ⊳m,n v) if u

and v agree on condensed rankers in RX
m,n (resp. RY

m,n).
If r is a ranker, let Lc(r) be the language of all words on which r is condensed. We

define Rm (resp. Lm) to be the Boolean algebra generated by the languages of the form
Lc(r), r ∈ R

X
m,n (resp. RY

m,n), n ≥ m.

3.1. Technical properties of condensed rankers. A factorization u = u−au+ of a word
u ∈ A∗ is called the a-left factorization of u if a 6∈ alph(u−). Symmetrically, u = u−au+ is
the a-right factorization of u if a 6∈ alph(u+). Thus, the a-left (resp. a-right) factorization
of a identifies the first occurrence of a when reading u from the left (resp. the right).

Lemmas 3.4 and 3.5 admit an elementary verification.

Lemma 3.4. Let s be a ranker, a ∈ A and r = Xas. Let also u ∈ A+ and let u = u−au+
be its a-left factorization. Then r is condensed on u if and only if

• s is condensed on u+ if s starts with an X-block;
• s is condensed on u− if s starts with a Y-block.

A dual statement holds if r is of the form r = Yas, with respect to the a-right factorization
of u.

Lemma 3.5. Let r be a ranker and a ∈ A. Let also u ∈ A+ and let u = u−au+ be its a-left
factorization.

If r starts with an X-letter, then

• r is defined on u− if and only if r is defined on u, r does not contain Xa or Ya and, for
every prefix p of r ending with an X-letter, pYa is not defined on u.
• r is condensed on u−
− if and only if r is defined on u− and condensed on u,
− if and only if r is condensed on u, r does not contain Xa or Ya and, if p is the maximal

prefix of r consisting only of X-letters, then pYa is not defined on u,
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− if and only if r is condensed on u, r does not contain Xa or Ya and, if p = Xb1 · · ·Xbk

(k ≥ 1) is the initial X-block of r, then XaYbk · · ·Yb1 is defined on u.
• r is defined on u+ if and only if Xar is defined on u and, for every prefix p of r ending
with a Y-letter, XapYa is defined on u.
• r is condensed on u+ if and only if Xar is condensed on u.

If r starts with a Y-letter, then

• r is defined on u− if and only if Xar is defined on u, r does not contain Xa or Ya and,
for every prefix p of r ending with an X-letter, XapYa is not defined on u.
• r is condensed on u− if and only if Xar is condensed on u.
• r is defined on u+ if and only if r is defined on u and, for every prefix p of r ending with
a Y-letter, pYa is defined on u.
• r is condensed on u+
− if and only if r is defined on u+ and condensed on u,
− if and only if r is condensed on u and, if p = Yb1 · · ·Ybk (k ≥ 1) is the initial Y-block

of r, then pYa is defined on u.

We also note the following, very useful characterization of the relations ⊲m,n and ⊳m,n.

Proposition 3.6. The families of relations ⊲m,n and ⊳m,n (n ≥ m ≥ 1) are uniquely
determined by the following properties.

(1) u ⊲1,n v if and only if u ⊳1,n v, if and only if u and v have the same subwords of length
at most n.

(2) If m ≥ 2, then u ⊲m,n v if and only if alph(u) = alph(v), u ⊳m−1,n−1 v and for each letter
a ∈ alph(u), the a-left factorizations u = u−au+ and v = v−av+ satisfy u− ⊳m−1,n−1 v−
and u+ ⊲m,n−1 v+ (u+ ⊲m−1,n−1 v+ if n = m).

(3) If m ≥ 2, then u ⊳m,n v if and only if alph(u) = alph(v), u ⊲m−1,n−1 v and for
each letter a ∈ alph(u), the a-right factorizations u = u−au+ and v = v−av+ satisfy
u+ ⊲m−1,n−1 v+ and u− ⊳m,n−1 v− (u− ⊳m−1,n−1 v− if n = m).

Proof. Statement (1) follows directly from Examples 1.4 and 3.3. Let us now assume that
m ≥ 2.

Suppose that alph(u) = alph(v), u ⊳m−1,n−1 v and for each a ∈ alph(u), the a-left
factorizations u = u−au+ and v = v−av+ satisfy u− ⊳m−1,n−1 v− and u+ ⊲m,n−1 v+ if

n > m (u+ ⊲m−1,n−1 v+ if n = m). Let r ∈ RX
m,n be condensed on u. If r starts with a

Y-letter, then r ∈ RY
m−1,n−1, and hence r is condensed on v since u ⊳m−1,n−1 v. If instead

r starts with an X-letter, say r = Xas, we consider the a-left factorizations of u and v. If s
starts with a Y-letter, then s ∈ RY

m−1,n−1, s is condensed on u− (Lemma 3.4) and hence s is
condensed on v− since u− ⊳m−1,n−1 v−, from which it follows again that r is condensed on
v. Finally, if s starts with an X-letter, then s is condensed on u+ by Lemma 3.4. Moreover,
s ∈ RX

m,n−1 if n > m. If n = m, we have in fact r ∈ RX
m−1,n (since r starts with two

X-letters) and hence s ∈ RX
m−1,n−1. Since u+ ⊲m,n−1 v+ if n > m and u+ ⊲m−1,n−1 v+ if

n = m, it follows that s is condensed on v+, and hence r is condensed on v.
Conversely, let us assume that u ⊲m,n v, that is, u and v agree on condensed rankers

in RX
m,n. Considering rankers in RX

1,1 ⊆ RX
m,n shows that alph(u) = alph(v). Similarly,

considering rankers in RY
m−1,n−1 ⊆ RX

m,n shows that u ⊳m−1,n−1 v. Finally, let a ∈ alph(u)
and let u = u−au+ and v = v−av+ be a-left factorizations.

Let s ∈ RY
m−1,n−1 be condensed on u−. Note that s contains neither Xa nor Ya, since

a 6∈ alph(u−). If s starts with a Y-letter, then r = Xas is condensed on u (Lemma 3.4) and
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since r ∈ RX
m,n, r is condensed on v as well, which implies that s is condensed on v−. If

instead s starts with an X-letter, then s is condensed on u and hence on v. Moreover, if
p = Xb1 · · ·Xbk is the maximal prefix of s consisting only of X-letters, then XaYbk · · ·Yb1 ∈

RX
2,n is condensed on u (Lemma 3.5). Since RX

2,n ⊆ RX
m,n, it is condensed on v as well and

hence, s is condensed on v−.
Finally, assume that s ∈ RX

m,n−1 (RX
m−1,n−1 if n = m) is condensed on u+. The

reasoning is similar: if s starts with an X-letter, then Xas ∈ RX
m,n is condensed on u.

Therefore Xas is condensed on v and s is condensed on v+. If instead s starts with a Y-
letter, then s is condensed on u and s ∈ RY

m−1,n−2 (RX
m−2,n−2 if n = m). In particular

s ∈ RX
m,n and hence, s is condensed on v as well. Moreover, if p is the initial Y-block of s,

then pYa is condensed on u. Note that pYa ∈ R
Y
1,n−1 ⊆ R

X
m,n, so pYa is condensed on v and

s is condensed on v+.

Lemma 3.7. Let n ≥ m ≥ 2, u, v ∈ A∗, a ∈ A and let u = u−au+ and v = v−av+ be a-left
factorizations. If u ⊲m,n v, then u− ⊲m,n−1 v− (u− ⊲m−1,n−1 v− if n = m). And if u ⊳m,n v,
then u+ ⊳m,n−1 v+ (u+ ⊳m−1,n−1 v+ if n = m). Dual statements hold for the factors of the
a-right factorizations of u and v if u ⊳m,n v or u ⊲m,n v.

Proof. We give the proof if n > m; it is easily adapted to the case where n = m.
Assume that u ⊲m,n v and r ∈ RX

m,n−1 is condensed on u−. By Lemma 3.5, we have:
- If r starts with an X-letter, then r is condensed on u, r does not contain occurrences

of Xa or Ya, and if p = Xb1 · · ·Xbk is the initial X-block of r, then q = XaYbk · · ·Yb1 is

condensed on u. Since q ∈ RX
2,k+1 and k < n, we have q ∈ RX

m,n and hence r and q are
condensed on v. Therefore r is condensed on v−.

- If r starts with a Y-letter, then Xar is condensed on u. But r ∈ RY
m−1,n−2, so

Xar ∈ R
X
m,n and hence Xar is condensed on v. It follows that r is condensed on v−.

Assume now that u ⊳m,n v and r ∈ RY
m,n−1 is condensed on u+. Then

- If r starts with an X-letter (which is possible only if m ≥ 2), then r ∈ RX
m−1,n−2 and

Xar is condensed on u. But Xar ∈ R
X
m−1,n−1 ⊆ RY

m,n, so Xar is condensed on v and r is
condensed on v+.

- If instead r starts with a Y-letter, then r is condensed on u and if p is the initial
Y-block of r, then pYa is condensed on u. But r, pYa ∈ R

Y
m,n, so r and pYa are condensed

on v, and r is condensed on v+.

3.2. Condensed rankers, rankers and FO2. We now show that, in the characterization
of FO2

m,n in Theorem 1.8, condensed rankers can be used just as well. This is done in
Theorem 3.11. The first step is to relate agreement on rankers and agreement on condensed
rankers. We start with a technical lemma.

Lemma 3.8. If a ranker r ∈ RZ
m,n (Z ∈ {X,Y}) is defined but not condensed on u, and if

s is the maximal prefix of r which is condensed on u, then one of the following holds, for
some ℓ ≥ 1:

• r = sXbt, s = s0YaXb1 · · ·Xbℓ−1
and s0Ya(u) ≤ s(u) < s0(u) ≤ sXb(u);

• r = sYbt, s = s0XaYb1 · · ·Ybℓ−1
and s0Xa(u) ≥ s(u) > s0(u) > sYb(u) = s0Yb(u).

Moreover s0 is not empty, s0 ∈ R
Z
m−1,n−ℓ; sXb(u) = s0(u) (resp. sYb(u) = s0(u)) if the last

letter of s0 is in {Xb,Yb}; and sXb(u) = s0Xb(u) (resp. sYb(u) = s0Yb(u)) otherwise.
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Proof. Rankers in R1,n are condensed on each word on which they are defined (Example 3.3).
Therefore we have m ≥ 2.

By hypothesis, s 6= r. We consider the case where the first letter after s is an X-letter,
the other case is dual. Then r is of the form r = sXbt, where t may be empty. In view of
Example 3.3, s = s0YaXb1 · · ·Xbℓ−1

for some non-empty s0 and ℓ ≥ 1. Since s is condensed
on u but sXb is not, we have the following (see Remark 3.2):

s0Ya(u) < s0YaXb1(u) · · · < s0YaXb1 · · ·Xbℓ−1
(u) = s(u) < s0(u),

and sXb(u) ≥ s0(u). More precisely, sXb(u) is the first b-position to the right of s(u), so
sXb(u) = s0(u) if s0(u) is a b-position (i.e., if s0 ends with Xb or Yb), and sXb(u) = s0Xb(u)
otherwise.

Proposition 3.9. Let n ≥ m ≥ 1, u, v ∈ A+ and Z ∈ {X,Y}. If u and v agree on condensed
rankers in RZ

m,n and if r ∈ RZ
m,n is defined on both u and v, then there exists r′ ∈ RZ

m,n

which is condensed on u and v and coincides with r on both words.

Proof. The result is trivial if m = 1, since rankers in R1,n are condensed on each word on
which they are defined (Example 3.3). We now assume that m ≥ 2.

Let p and q be positions in u and v and let r ∈ RZ
m,n such that r(u) = p and r(v) = q.

If r is not condensed on u, then r is not condensed on v (since the two words agree on
condensed rankers). With the notation of Lemma 3.8, r coincides on both u and v with
r′ = s0t, s0Xbt or s0Ybt (depending on the last letter of s0 and on the letter following s in
r), which starts with the same letter as r. If r′ is not condensed on u and v, we repeat the
reasoning. This process must terminate since each iteration reduces the depth of r′.

Proposition 3.10. Let n ≥ m ≥ 1, u, v ∈ A+ and Z ∈ {X,Y}. If u and v agree on
condensed rankers in RZ

m,n, then they agree on rankers from the same class.

Proof. If u and v do not agree on rankers from RZ
m,n, let r ∈ R

Z
m,n be a minimum depth

ranker on which u and v disagree. Without loss of generality, we may assume that u ∈ L(r)
and v 6∈ L(r). In particular, r is not condensed on u.

Let s, s0 and t be as in Lemma 3.8. Without loss of generality again, we may assume
that the letter following s in r is Xb. Since s is condensed on u and sXb is not, the ranker
s is condensed on v and sXb is not. Moreover, sXb coincides on u with s′ = s0, or s0Xb,
depending on the last letter of s0. Observe that s′ is shorter than r, so s′ is defined on v.
In particular, there exists a b-position in v to the right of s, which is not to the left of s0
(since sXb is not condensed on v). It follows that sXb(v) = s′(v). Let now r′ = s′t: then r′

is shorter than r, it coincides with r on u, and it is not defined on v since s′ coincides with
s on that word. This contradicts the minimality of r.

We can now prove the following variant of Theorem 1.8.

Theorem 3.11. Let u, v ∈ A∗ and let 1 ≤ m ≤ n. Then u and v satisfy the same formulas
in FO2

m,n if and only if

(WI 1c) u and v agree on condensed rankers from Rm,n,
(WI 2c) if the rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 are condensed on u and v, then

ord(r(u), r′(u)) = ord(r(v), r′(v)).
(WI 3c) if r ∈ Rm,n and r′ ∈ Rm,n−1 are condensed on u and v and end with different

direction letters, then ord(r(u), r′(u)) = ord(r(v), r′(v)).
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Proof. We need to prove that together, Properties (WI 1), (WI 2) and (WI 3) are equiv-
alent to Properties (WI 1c), (WI 2c) and (WI 3c).

Let us first assume that (WI 1), (WI 2) and (WI 3) hold. It is immediate that (WI
2c) and (WI 3c) hold. If (WI 1c) does not hold, let r be a ranker in Rm,n which is
condensed on v and not on u. Since (WI 1) holds, r is defined on u. Let s0, s and t be as
in Lemma 3.8 and let us assume, without loss of generality, that the letter following s in r
is Xb. Then s0 and sXb are defined on both u and v, with s0 ∈ Rm−1,n−1 and sXb ∈ Rm,n.
Since r is condensed on v, we have sXb(v) < s0(v), and since sXb is not condensed on u, we
have s0(v) ≤ sXb(v), contradicting Property (WI 2). Thus (WI 1c) holds.

Conversely, let us assume that (WI 1c), (WI 2c) and (WI 3c) hold. Then (WI 1)
holds by Proposition 3.10. Let us verify Property (WI 2): suppose that r ∈ Rm,n and

r′ ∈ Rm−1,n−1 are defined on u and v. In view of (WI 1c), Proposition 3.9 shows that
there exist rankers s ∈ Rm,n and s′ ∈ Rm−1,n−1 which are condensed on u and v, and which

coincide with r and r′, respectively, on both words. By (WI 2c), we have ord(s(u), s′(u)) =
ord(s(v), s′(v)), and hence ord(r(u), r′(u)) = ord(r(v), r′(v)). Thus Property (WI 2) holds.
The verification of (WI 3) is identical.

These results imply the following statement, which refines Corollary 1.9 and can be
proved like that Corollary, using Propositions 1.6 and 3.10, and Theorem 3.11.

Corollary 3.12. For each m ≥ 1, we have TLXm ⊆ Rm ⊆ FO
2
m and TLYm ⊆ Lm ⊆ FO

2
m.

3.3. Condensed rankers determine a hierarchy of varieties. We now examine the
algebraic properties of the relations ⊲m,n and ⊳m,n.

Lemma 3.13. The relations ⊲m,n and ⊳m,n are finite-index congruences.

Proof. The relations ⊲m,n and ⊳m,n are clearly equivalence relations, of finite index since
Rm,n is finite. We now verify that if b ∈ A and if u and v are ⊲m,n-equivalent, then so are
ub and vb (resp. bu and bv).

The proof is by induction onm+n. The property of having the same subwords of length
n is easily seen to be a congruence (and the proof of this fact can be found in [20] as it is
related to Simon’s theorem on piecewise testable languages). In view of Proposition 3.6 (1),
this shows that ⊲1,n and ⊳1,n are congruences.

Let us now assume that n ≥ m ≥ 2 and u ⊲m,n v. By Proposition 3.6 (2), we have
alph(u) = alph(v) and u ⊳m−1,n−1 v. It follows that alph(ub) = alph(bu) = alph(vb) =
alph(bv), and that ub ⊳m−1,n−1 vb and bu ⊳m−1,n−1 bv by induction.

Let now a ∈ alph(u) ∪ {b}. If a ∈ alph(u) and if u = u−au+ and v = v−av+ are a-left
factorizations, then the a-left factorizations of ub and vb are u− a (u+b) and v− a (v+b).
And the a-left factorizations of bu and bv are (bu−) a u+ and (bv−) a v+ — unless a =
b, in which case these factorizations are εbu and εbv. By Proposition 3.6 (2) we have
u− ⊳m−1,n−1 v− and u+ ⊲m,n−1 v+ (u+ ⊲m−1,n−1 v+ if n = m). By induction, we have
u ⊲m,n−1 v, bu− ⊳m−1,n−1 bv− and u+b ⊲m,n−1 v+b (u+b ⊲m−1,n−1 v+b if n = m).

If a 6∈ alph(u), and hence a = b, the a-left factorizations of ub and vb (resp. bu and
bv) are u b ε and v b ε (resp. ε b u and ε b v), and we do have u ⊳m−1,n−1 v and u ⊲m,n−1 v
(u ⊲m−1,n−1 v if m = n).

Thus all the conditions in Proposition 3.6 (2) are satisfied, whether a occurs in u and v
or not, and we have established that ub ⊲m,n vb and bu ⊲m,n bv. The proof regarding ⊳m,n

is symmetric.
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Lemma 3.14. If ϕ : A∗ → B∗ is a morphism and if u, v ∈ A∗ are ⊲m,n-equivalent (resp.
⊳m,n-equivalent), then so are ϕ(u) and ϕ(v).

Proof. We carry out the proof for the congruence ⊲m,n by induction on m+ n. The proof
for ⊳m,n is symmetrical.

For m = 1, we show that if a ranker r ∈ RX
1,n is condensed on ϕ(u), then it is condensed

on ϕ(v). If u = a1 · · · aℓ, the word ϕ(u) has a natural factorization in blocks, namely the
ϕ(ai) and the sequence of positions in ϕ(u) defined by the prefixes of r visits (some of) the
ϕ(ai)-blocks. This yields a factorization of r, r = r1r2 · · · rk, where all the positions in ϕ(u)
visited while running r1 are in the same block, say, ϕ(aj(1)); then all the positions visited
by the prefixes of r between r1 (excluded) and r1r2 (included) are in the block ϕ(aj(2)) with
j(2) > j(1); and so on. In particular, the ranker Xaj(1) · · ·Xaj(k) is defined on u, and hence

on v. Therefore v = v0aj(1)v1 · · · aj(k)vk+1. By construction, each ri is defined on ϕ(aj(i)),
so r is defined on ϕ(v), and condensed on that word (Example 3.3).

We now let n ≥ m ≥ 2 and u ⊲m,n v. It is immediate that alph(ϕ(u)) = alph(ϕ(v)) since
u and v have the same alphabet. By Proposition 3.6 (2), we have u ⊳m−1,n−1 v, and by
induction it follows that ϕ(u) ⊳m−1,n−1 ϕ(v). Let now b ∈ alph(ϕ(u)) and let ϕ(u) = x−bx+
and ϕ(v) = y−by+ be b-left factorizations. The occurrence of b thus singled out in ϕ(u) sits
in some ϕ(a), a ∈ A, and the corresponding occurrence of a in u is the leftmost one: we
have an a-left factorization u = u−au+ and a b-left factorization ϕ(a) = x′bx′′ such that
x− = ϕ(u−)x

′ and x+ = x′′ϕ(u+). Similarly, the leftmost occurrence of b in ϕ(v) sits in
some ϕ(a′), a′ ∈ A: a′ is the leftmost letter in v such that b occurs in ϕ(a′). If a′ 6= a,
the consideration of the rankers XaYa′ and Xa′Ya, which are simultaneously defined or not
defined on u and v, yields a contradiction. Therefore a′ = a and if v = v−av+ is the a-left
factorization, then y− = ϕ(v−)x

′ and y+ = x′′ϕ(v+). By Proposition 3.6 (2) again, we have
u− ⊳m−1,n−1 v− and u+ ⊲m,n−1 v+ (u+ ⊲m−1,n−1 v+ if n = m). By induction, it follows
that the same relations hold between the ϕ-images of u−, v−, u+ and v+, and we have
x− ⊳m−1,n−1 y− and x+ ⊲m,n−1 y+ (x+ ⊲m−1,n−1 y+ if n = m) by Lemma 3.13. Therefore
ϕ(u) ⊲m,n ϕ(v) by Proposition 3.6 (2).

For each n ≥ m ≥ 1, let Rm,n (resp. Lm,n) be the pseudovariety of monoids generated
respectively by the monoids of the form A∗/⊲m,n (resp. A∗/⊳m,n). Since ⊲m,n′ refines ⊲m,n

when n′ ≥ n, the sequence (Rm,n)n is increasing and we letRm be its union (a pseudovariety
as well). The pseudovariety Lm is defined similarly, as the union of the Lm,n.

Corollary 3.15. If γ : A∗ → M is a morphism into a monoid in Rm,n, then there exists
a morphism β : A∗/ ⊲m,n→ M such that γ = β ◦ πA, where πA : A∗ → A∗/ ⊲m,n is the
projection morphism. The same result holds for Lm,n and the quotient A∗/⊳m,n.

Proof. By definition, there exists an onto morphism δ : N →M , and an injective morphism
ı : N →֒ A∗

1/ ⊲m,n × · · ·×A
∗
k/⊲m,n. Let B be the disjoint union of the Ai, and for each i, let

πi be the morphism from B∗ to A∗
i which erases all the letters not in Ai. By Lemma 3.14,

⊲m,n-equivalent elements have ⊲m,n-equivalent images, so we have a morphism π : B∗/⊲m,n→∏
iA

∗
i /⊲m,n as in Figure 2.

For each letter a ∈ A, we then pick a word ϕ(a) in π−1
B π−1δ−1γ(a) ⊆ B∗: this defines

a morphism ϕ : A∗ → B∗ such that δ ◦ π ◦ πB ◦ ϕ = γ. By Lemma 3.14 again, there exists
a morphism ψ : A∗/⊲m,n→ B∗/⊲m,n such that ψ ◦ πA = πB ◦ ϕ. It follows that if u ⊲m,n v,
then πBϕ(u) = πBϕ(v), and hence γ(u) = γ(v). This concludes the proof.
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B∗ B∗/⊲m,n A∗
1/⊲m,n × · · · ×A

∗
k/⊲m,n

A∗/⊲m,n

N

A∗ M

πB π

ϕ

ψ
ı

πA β δ

γ

Figure 2: A commutative diagram

Corollary 3.16. For each m ≥ 1, Rm and Lm are varieties of languages and the corre-
sponding pseudovarieties of monoids are Rm and Lm.

Proof. Every Lc(r) (r ∈ RX
m,n) is a union of ⊲m,n-classes, and hence it is recognized by

A∗/ ⊲m,n. Therefore every language in Rm is recognized by a monoid in Rm (and indeed,
by πA : A∗ → A∗/⊲m,n for n large enough).

Conversely, suppose that L ⊆ A∗ is recognized by a morphism γ : A∗ → M , into a
monoid M ∈ Rm. Then M ∈ Rm,n for some n ≥ m and by Corollary 3.15, there exists a
morphism β : A∗/⊲m,n→M such that γ = β ◦ πA. It follows that L is also accepted by πA,
L is a union of ⊲m,n-classes, and hence L ∈ Rm.

Example 3.17. It follows from Proposition 3.6 (i) that R1 = L1 is the variety of piecewise
testable languages, and R1 = L1 = J, the pseudovariety of J -trivial monoids.

Remark 3.18. The proof of Corollary 3.16 also establishes that for each n ≥ m ≥ 1, the
Boolean algebra Rm,n generated by the languages of the form Lc(r), r ∈ R

X
m,n, defines a

variety of languages, for which the corresponding pseudovariety of monoids is Rm,n. In
variety-theoretic terms, Corollary 3.15 states that A∗/⊲m,n is the free object of Rm,n over
the alphabet A. The symmetrical statement also holds for Lm,n and the monoids A∗/⊳m,n.

We note the following containments.

Corollary 3.19. For each m ≥ 1, Rm and Lm are contained in DA, and also in Rm+1 ∩
Lm+1.

Proof. Since FO2 is the variety of languages corresponding to DA, Corollary 3.12 yields the
containment of Rm and Lm in DA. Similarly, Rm and Lm are contained in both Rm+1 and
Lm+1 by definition of these classes of languages – and this in turn implies the containment
of the corresponding pseudovarieties.

3.4. Condensed rankers and deterministic products. Recall that a product of lan-
guages L = L0a1L1 · · · akLk (k ≥ 1, ai ∈ A, Li ⊆ A

∗) is deterministic if, for 1 ≤ i ≤ k, each
word u ∈ L has a unique prefix in L0a1L1 · · ·Li−1ai. If for each i, the letter ai does not
occur in Li−1, the product L0a1L1 · · · akLk is called visibly deterministic: this is obviously
a particular case of a deterministic product.

The definition of a co-deterministic or visibly co-deterministic product is dual, in terms
of suffixes instead of prefixes. If V is a class of languages and A is a finite alphabet,
let Vdet(A) (resp. Vvdet(A), Vcodet(A), Vvcodet(A)) be the set of all Boolean combinations of
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A∗ A∗/⊳m,n

M M/∼K

α

βγ

π

Figure 3: M ∈ K©m Lm

languages of V(A) and of deterministic (resp. visibly deterministic, co-deterministic, visibly
co-deterministic) products of languages of V(A).

Pin gave algebraic characterizations of the operations V 7−→ Vdet and V 7−→ Vcodet, see
[19, 22].

Proposition 3.20. If V is a variety of languages and if V is the corresponding pseudova-
riety of monoids, then Vdet and Vcodet are varieties of languages and the corresponding
pseudovarieties are, respectively, K©m V and D©m V.

This leads to the following statement.

Theorem 3.21. For each m ≥ 1, we have Rm+1 = L
vdet
m = Ldetm , Lm+1 = R

vcodet
m = Rcodet

m ,
Rm+1 = K©m Lm and Lm+1 = D©m Rm. In particular, R2 = R and L2 = L.

The proof uses the following technical property of monoids in DA, whose proof can be
found for instance in [6, Lemma 4.2].

Fact 3.22. Let σ : A∗ → S be a morphism into a monoid S ∈ DA. If u, v ∈ A∗, a ∈ alph(v)
and σ(u) R σ(uv), then σ(uva) R σ(u).

Proof of Theorem 3.21. It is immediate from the definition that Lvdetm ⊆ Ldetm .

Let u ∈ A∗ and let B = alph(u). For each a ∈ B, let u = u
(a)
− au

(a)
+ be the a-left

factorization of u. Let [B] be the language of all strings with alphabet B, [B] = {u ∈ A∗ |
alph(u) = B}. Observe that

[B] =
⋂

a∈B

Lc(Xa) \
⋃

a6∈B

Lc(Xa) =
⋂

a∈B

Lc(Ya) \
⋃

a6∈B

Lc(Ya).

This shows that [B] ∈ R1 = L1. (It is also well-known that [B] is piecewise testable, and
hence [B] ∈ R1 = L1.)

Now let n > m ≥ 1. It follows from Proposition 3.6 that the ⊲m+1,n-class of u is the
intersection of [B], the ⊳m,n−1-class of u and the products KaL (a ∈ B) where K is the

⊳m,n−1-class of u
(a)
− and L is the ⊲m+1,n−1-class of u

(a)
+ if n > m+1, the ⊲m,n−1-class of u

(a)
+

if n = m+ 1.
By definition of an a-left factorization, each of these products is visibly deterministic

and, since every ⊳m,n−1-class is a language in Lm, we have shown that the ⊲m+1,n-class of

u is in Lvdetm . Thus Rm+1 ⊆ L
vdet
m .

To establish the last inclusion, namely Ldetm ⊆ Rm+1, we rather show K©m Lm ⊆ Rm+1.
Let γ : A∗ → M be a surjective morphism, onto a monoid M ∈ K©m Lm: we want

to show that there exists a morphism from A∗/ ⊲m+1,n onto M for some n > m. Since
M ∈ K©m Lm, the monoid M/∼K ∈ Lm and by Corollary 3.15, there exists an integer n
and a morphism β : A∗/⊳m,n → M/∼K such that β ◦ α = π ◦ γ, where α is the projection
from A∗ onto A∗/⊳m,n and π is the projection from M onto M/∼K, see Figure 3.
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Let ℓ be the maximal length of a strict R-chain in M , that is: if xk <R . . . <R x1 in
M , then k ≤ ℓ. We show that, for any u, v ∈ A∗,

u ⊲m+1,ℓ|A|+n+1 v =⇒ γ(u) = γ(v). (3.1)

If n′ = ℓ|A|+n+1, this implies the existence of a morphism from A∗/⊲m+1,n′ onto M ,
as announced.

To prove implication (3.1), it suffices to show that we have

u ⊲m+1,ℓ|alph(u)|+n+1 v =⇒ γ(u) = γ(v), (3.2)

which we prove by induction on |alph(u)|. If |alph(u)| = 0, then u = ε, alph(v) = ∅ and
v = ε as well, so that γ(u) = γ(v).

Now suppose that u 6= ε and assume that u ⊲m+1,ℓ|alph(u)|+n+1 v. Let u = u1a1 · · · akuk+1

be the factorization of u such that each ui is a word, each ai is a letter and

1 R γ(u1) >R γ(u1a1) · · · >R γ(u1a1 · · · ukak) R γ(u1a1 · · · akuk+1).

Then k + 1 ≤ ℓ, so k < ℓ. Moreover, by Fact 3.22 (and Corollary 3.19), for each 1 ≤ i ≤ k,
ai 6∈ ui, so that each product uiai(ui+1 · · · akuk+1) is an ai-left factorization (1 ≤ i ≤ k).

An easy induction on k, using Lemma 3.7, shows that v can then be factored as

v = v1a1v2 · · · akvk+1,

where ui ⊲m+1,ℓ|alph(u)|+n−i+1 vi for each 1 ≤ i ≤ k+1. Moreover, for 1 ≤ i ≤ k, |alph(ui)| <
|alph(u)|. Since i ≤ k < ℓ, we have ℓ|alph(u)|+n− i ≥ ℓ|alph(ui)|+n+1, and by induction,
we have γ(ui) = γ(vi). However, it is possible that alph(uk+1) = alph(u), so we cannot
conclude that γ(uk+1) = γ(vk+1).

But we do have the following:

uk+1 ⊲m+1,ℓ|alph(u)|+n−k vk+1 and γ(u′) = γ(v′),

where u′ = u1a1 · · · ukak and v′ = v1a1 · · · vkak. The first relation implies that uk+1 and
vk+1 are ⊳m,ℓ|alph(u)|+n−k−1-equivalent. Since k < ℓ, we have ℓ|alph(u)| + n − k − 1 ≥ n, so
uk+1 ⊳m,n vk+1 and hence, πγ(uk+1) = πγ(vk+1), that is, γ(uk+1) ∼K γ(vk+1).

Moreover, there exists a string x ∈ A∗ such that γ(u′) = γ(u′uk+1x). Let ω be an
integer such that every ω-power is idempotent in M : then γ(u′) = γ(u′)γ(uk+1x)

ω.
Now observe that γ(uk+1x)

ω J γ(uk+1x)
ωγ(uk+1), since γ(uk+1x)

ω = γ(uk+1x)
2ω. It

follows from γ(uk+1) ∼K γ(vk+1) that γ(uk+1x)
ωγ(uk+1) = γ(uk+1x)

ωγ(vk+1). Therefore
we have

γ(u′)γ(uk+1) = γ(u′)γ(vk+1) and hence

γ(u) = γ(u′)γ(uk+1) = γ(u′)γ(vk+1) = γ(v′)γ(vk+1) = γ(v).

This concludes the proof of Formula (3.2), and therefore of Theorem 3.21.

3.5. Structure of the Rm and Lm hierarchies. It turns out that the hierarchies of
pseudovarieties given by the Rm and the Lm were studied in the semigroup-theoretic lit-
erature (Trotter and Weil [35], Kufleitner and Weil [15]). In [15], they are defined as the
hierarchies of pseudovarieties obtained from J by alternated applications of the operations
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X 7→ K©m X and X 7→ D©m X. Theorem 3.21 shows that these are the same hierarchies as
those considered in this paper1. The following results are proved in [15, Section 4].

Proposition 3.23. The hierarchies (Rm)m and (Lm)m are infinite chains of decidable
pseudovarieties, and their unions are equal to DA. Moreover, every m-generated monoid
in DA lies in Rm+1 ∩ Lm+1.

The results in [35, 15] go actually further, and give defining pseudoidentities for the
pseudovarieties Rm and Lm.

Remark 3.24. The way up in the Rm-Lm hierarchy, by means of Mal’cev products with
K and D, is strongly reminiscent of the structure of the lattice of band varieties [8]. This
observation is no coincidence, and forms the basis of the results in [15] which are used here.

4. The Rm hierarchy and unary temporal logic

We have seen in Corollary 3.12 that TLXm ⊆ Rm and TLYm ⊆ Lm. In Theorem 4.3 below,
we prove a weak converse. Let us however make the following observation.

Proposition 4.1. We have

TLX1 = TLY1 = R1 = L1,

TLX2 = R2, TLY2 = L2.

Proof. The statement concerning TL1 was already proved in Remark 1.7. Let us now
establish that R2 ⊆ TL

X
2 . We show, by induction on n ≥ 2, that if u and v agree on

rankers in RX
2,2n, then they agree on condensed rankers in RX

2,n: u ⊲2,n v. We use the
characterization of ⊲2,n in Proposition 3.6.

The consideration of 1-letter rankers shows that alph(u) = alph(v). Moreover, since
RY

1,n−1 is contained in RX
2,2n, and since these rankers are condensed where they are defined,

we find that u ⊳1,n−1 v. Similarly, let u = u−au+ and v = v−av+ be a-left factorizations,

and let s ∈ RY
1,n−1. Then s is condensed on u− if and only if s is defined on u−, if and only

if Xas is defined on u (Lemma 3.5). Since Xas ∈ R
X
2,2n and u and v agree on such rankers,

it follows that Xas is defined on v, and s is condensed on v−. Thus u− ⊳1,n−1 v−.
Now we need to show that u+ ⊲2,n−1 v+ if n ≥ 3, u+ ⊲1,1 v+ if n = 2. Suppose first

that n = 2 and consider s ∈ RX
1,1, condensed on u+. Then s = Xb for some b ∈ A and the

consideration of r = XaXb (in RX
2,2) shows that s is condensed on v+ as well. This settles

the case n = 2.
Let us now assume that n ≥ 3 and let us show that u+ ⊲2,n−1 v+. By induction, it

suffices to show that u+ and v+ agree on rankers in RX
2,2n−2. So let s ∈ RX

2,2n−2 be defined on
u+. Then for every prefix p of s ending with a Y-letter, XapYa is defined on u (Lemma 3.5).
Since XapYa ∈ R

X
2,2n, it follows that XapYa is defined on v, and hence s is defined on v+.

This concludes the proof.

1More precisely, the pseudovarieties Rm and Lm in [15] are pseudovarieties of semigroups, and the Rm

and Lm considered in this paper are the classes of monoids in these pseudovarieties.
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Example 4.2 below shows that the statement of Proposition 4.1 cannot be extended to
the higher levels of the hierarchy.

Example 4.2. We show in this example that TLX3 is properly contained in R3. More
precisely, let r0 = XaYbXc ∈ RX

3,3. We show that Lc(r0), a language in R3, is not TLX3 -
definable.

Let un = (bc)n(a(bc)n)n and vn = (bc)nb(a(bc)n)n (n ≥ 1). It is easily verified that r0
is condensed on un, and that it is defined and not condensed on vn: that is, for each n,
un ∈ Lc(r0) and vn 6∈ Lc(r0).

We now show that un and vn agree on all rankers in RX
3,n, so that any TLX3 -definable

language contains either both un and vn, or neither – and hence Lc(r0) is not TL
X
3 -definable.

Let r ∈ RX
3,n. If r starts with a Y-letter, then any two words ending with (a(bc)n)n

agree on r. In particular, un and vn agree on r. Similarly, if r starts with an X-letter and
does not contain the letters Xa or Ya, then any two words starting with (bc)n agree on r,
so un and vn agree on r.

Finally, assume that r starts with an X-letter and that r = s0Z
(1)
a s1 · · ·Z

(k)
a sk with

k > 0, each Z(i) ∈ {X,Y} and each si a (possibly empty) ranker avoiding the letters Xa and

Ya. We denote by pi the prefix pi = s0Z
(1)
a s1 · · ·Z

(i)
a .

Suppose first that r ∈ RX
1,n. Then pi coincides with Xi

a on un as well as on vn. Therefore

r is defined and coincides with Xk
ask on both words.

Suppose now that r ∈ RX
2,n, say r = r′r′′ with r′ a non-empty string of X-letters and r′′

a non-empty string of Y-letters. If r′ is shorter than p1, then Z(1) = Y and r is not defined
on either un or vn. If Z

(1) = X, let i be maximal such that pi is a prefix of r′, say r′ = pis
′
i.

Then i > 0 and pi coincides with Xi
a on un, as well as on vn.

If i = k, then r is defined on un and vn, and it coincides with Xk
ask on both words.

If 1 ≤ i < k, s′i is non-empty and si is defined on (bc)n, then pi+1 coincides with Xi
a

on un and vn. Thus r is defined on un (resp. vn) if and only i ≥ k − i, and in that case, it
coincides with Xk−2i

a sk.
If 1 < i < k, s′i is non-empty and si is not defined on (bc)n, or if s′i is empty, then pi+1

coincides with Xi−1
a on un and vn. Thus r is defined on un (resp. vn) if and only i > k − i,

and in that case, it coincides with Xk−2i−1
a sk.

Finally, if 1 = i < k, s′i is non-empty and si is not defined on (bc)n, or if s′i is empty,
then r (and even pi+1) is not defined on either un or vn.

Finally, let us assume that r ∈ RX
3,n, say r = r′r′′r′′′ with r′ and r′′′ non-empty strings

of X-letters and r′′ a non-empty string of Y-letters. Again, let i be maximal such that pi is
a prefix of r′ (i = 0 if p1 is not a prefix of r′) and let j be maximal such that pj is a prefix
of r′r′′. Then r′r′′ = pjs

′
j for some prefix s′j of sj . By the previous analysis, if i ≤ 1 < j,

then r′r′′ is not defined on un nor on vn, and hence neither is r. In all other cases, r′r′′ is

defined on both words and coincides with X
2i−j
a s′j or X

2i−j−1
a s′j . Since (k− j)+ (2i− j) ≤ k,

r is defined on un and vn, and coincides on these words with X
k−j+2i−j
a sk or Xk−j+2i−j−1

a sk.
To conclude this example, note that un and vn disagree on rankers inRX

4 . More precisely,
the ranker XaYcXbYa is defined on un but not on vn. Further getting ahead of ourselves, we
note that this example also shows (in view of Theorem 5.1) that TL3 is properly contained
in FO2

3.

Finally we prove a result on the containment of the Rm and Lm hierarchies in the TLm
hierarchy.
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Theorem 4.3. Let m ≥ 1. Then Rm ⊆ TL
X
2m−1 and Lm ⊆ TL

Y
2m−1.

More precisely, for all n ≥ m, Z ∈ {X,Y} and u, v ∈ A∗, if u and v agree on rankers in
RZ

2m−1,2n−1, then they agree on condensed rankers in RZ
m,n.

Proof. Without loss of generality, we may assume Z = X. The proof is by induction on m.
The result is trivial if m = 1, since 2m− 1 = 1 and 2n− 1 ≥ n. We now assume that m ≥ 2
and u, v agree on rankers in RX

2m−1,2n−1.
We use the characterization of ⊲m,n in Proposition 3.6: the consideration of length

1 rankers shows that alph(u) = alph(v). Since RY
2m−3,2n−3 is contained in RX

2m−1,2n−1,
we have u ⊳m−1,n−1 v by induction. Now, for each letter a ∈ alph(u), let u = u−au+
and v = v−av+ be the a-left factorizations. We want to show that u− ⊳m−1,n−1 v− and
u+ ⊲m,n−1 v+ (u+ ⊲m−1,n−1 v+ if m = n). By induction, it suffices to show that u− and v−
agree on rankers in RY

2m−3,2n−3, and u+ and v+ agree on rankers in RX
2m−1,2n−3 (R

X
2m−3,2n−3

if m = n). In the rest of the proof we silently rely on the results of Lemma 3.5.
Let s ∈ RY

2m−3,2n−3 be defined on u−. If s starts with a Y-block, then Xas ∈ R
X
2m−2,2n−2

and Xas is defined on u. Moreover, if p is any prefix of s, then XapYa ∈ R
X
2m−1,2n−1 is not

defined on u. It follows that s is defined on v−.
If instead s starts with an X-block, then s ∈ RX

2m−4,2n−4 and s is defined on u. If p is

any prefix of s, then pYa ∈ R
X
2m−3,2n−3 and pYa is not defined on u. As all these rankers

are in RX
2m−1,2n−1, the same holds on v and s is defined on v−.

Let now s ∈ RX
2m−1,2n−3 (s ∈ RX

2m−3,2n−3 if n = m) be defined on u+. If s starts with

an X-block, then Xas ∈ RX
2m−1,2n−2 (Xas ∈ RX

2m−3,2n−2 if n = m) and Xas is defined on

u. Moreover, for each prefix p of s ending with a Y-letter, XapYa ∈ R
X
2m−1,2n−1 (XapYa ∈

RX
2m−3,2n−1 if n = m) and XapYa is defined on u. As all these rankers are in RX

2m−1,2n−1,
the same holds on v and s is defined on v+.

If instead s starts with a Y-block, then s ∈ RY
2m−2,2n−4 (s ∈ RY

2m−4,2n−4 if n = m) and

s is defined on u. Moreover, if p is any prefix of s ending with a Y-letter, pYa ∈ R
Y
2m−2,2n−3

(pYa ∈ R
Y
2m−4,2n−3 if n = m) and pYa is defined on u. As all these rankers are in RX

2m−1,2n−1,
the same holds on v and s is defined on v+.

The containment of Rm and Lm into TLX2m−1 and TLY2m−1, respectively, is not very
precise, unfortunately, especially in view of Theorem 6.4 below.

5. The Rm hierarchy and FO2
m

The objective of this section is to prove the following theorem.

Theorem 5.1. Let m ≥ 1. Every language in Rm or Lm is FO2
m-definable, and every

FO2
m-definable language is in Rm+1 ∩ Lm+1. Equivalently, we have

Rm ∨ Lm ⊆ FO2
m ⊆ Rm+1 ∩ Lm+1,

where V ∨W denotes the least pseudovariety containing V and W.
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5.1. Are the containments in Theorem 5.1 strict? In the particular case wherem = 1,
we know that R2 ∩ L2 = R ∩ L = J = R1 ∨ L1: this reflects the fact that FO2

1 is the class
the piecewise testable languages. However, we conjecture that this equality does not hold
for larger values of m.

Conjecture 5.2. For m ≥ 2, Rm ∨ Lm is properly contained in Rm+1 ∩ Lm+1.

The following example proves the conjecture for m = 2.

Example 5.3. L = {b, c}∗ca{a, b}∗ is FO2
2-definable, by the following formula:

∃i (c(i) ∧ (∀j (j < i→ ¬a(j))) ∧ (∀j (j > i→ ¬c(j))))

∧ ∃i (a(i) ∧ (∀j (j < i→ ¬a(j))) ∧ (∀j (j > i→ ¬c(j))))

∧ ∀i (b(i)→ (∃j (j < i ∧ a(j)) ∨ (∃j (j > i ∧ c(j)))).

The words un = (bc)n(ab)n are in L, while the words vn = (bc)nb(ca)n are not. Almeida and
Azevedo showed that R2 ∨ L2 is defined by the pseudo-identity (bc)ω(ab)ω = (bc)ωb(ab)ω

[2, Theorem 9.2.13 and Exercise 9.2.15]). In particular, for each language K recognized
by a monoid in R2 ∨ L2, the words un and vn (for n large enough) are all in K, or all in
the complement of K. Therefore L is not recognized by such a monoid, which proves that
R2 ∨ L2 is strictly contained in FO2

2, and hence also in R3 ∩ L3. It also shows that TL2 is
properly contained in FO2

2.

Finally, we formulate the following conjecture.

Conjecture 5.4. For each m ≥ 1, FO2
m = Rm+1 ∩ Lm+1.

5.2. Proof of Theorem 5.1. Corollary 3.12 already established that every language in
Rm or Lm is FO2

m-definable2.
In view of Theorem 3.11, to establish that FO2

m is contained in Rm+1∩Lm+1, it suffices
to prove the following result.

For each n ≥ m ≥ 1, if u ⊲m+1,2n v or u ⊳m+1,2n v, then Properties (WI
1c), (WI 2c) and (WI 3c) hold for m,n.

The result is trivial if m = 1, since in that case, only Property (WI 1c) is non-vacuous.
So we now assume thatm ≥ 2, and u ⊲m+1,2n v or u ⊳m+1,2n v. Property (WI 1c) holds

trivially, by definition of the ⊲m+1,2n and ⊳m+1,2n relations. We now concentrate on proving
that Properties (WI 2c) and (WI 3c) also hold for m,n, a task that will be completed in
Section 5.2.3.

5.2.1. The case where r and r′ start with opposite directions.

Proposition 5.5. Let n ≥ m ≥ 1, r = Ya1s ∈ R
Y
m,n and r′ = Xc. If u, v ∈ A∗, r is con-

densed on u and v and u ⊲m,n+1 v or u ⊳m+1,n+1 v, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

The dual statement (involving r = Xa1s ∈ R
X
m,n and r′ = Yc) holds as well.

2Of course, the same fact can be proved by the direct construction of an FO
2
m-formula for each ⊲m,n-class

(by induction on m and using Proposition 3.6).
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Proof. First suppose that u ⊳m+1,n+1 v, that is, u and v agree on condensed rankers in

RY
m+1,n+1. We are in exactly one of the following three situations:

- rYc is defined on u, in which case r′(u) < r(u);
- rYc is undefined on u and c is the last letter to occur in r, in which case r′(u) = r(u);
- rYc is undefined on u and c is not the last letter to occur in r, in which case r(u) <

r′(u).
The same trichotomy holds for v. Since rYc ∈ R

Y
m+1,n+1, u and v agree on rYc (Propo-

sition 3.10), and hence ord(r(u), r′(u)) = ord(r(v), r′(v)).

Let us now assume that u ⊲m,n+1 v, so that u and v agree on condensed rankers in RX
m,n+1.

If m = 1 then r is of the form r = Ya1 · · ·Yak and we observe again that
- either XcXak · · ·Xa1 ∈ R

X
1,n+1 is defined on u, and we have r′(u) < r(u);

- or XcXak · · ·Xa1 is undefined on u and c = ak, and we have r′(u) = r(u);
- or XcXak · · ·Xa1 is undefined on u and c 6= ak, and we have r′(u) > r(u).

The same holds for v since XcXak · · ·Xa1 ∈ R
X
1,n+1 and such rankers are condensed where

they are defined. Therefore we have ord(r(u), r′(u)) = ord(r(v), r′(v)).
We now assume that m ≥ 2. Let u = u−cu+ and v = v−cv+ be c-left factorizations.

We distinguish two cases depending on the direction of the second letter of r.
First suppose that r = Ya1Ya2s

′. If a1 6∈ alph(u+), then r(u) < r′(u) (because r is
condensed on u). Since u+ ⊲m,n v+, we have alph(u+) = alph(v+), so r(v) < r′(v) as well.
If instead a1 ∈ alph(u+) = alph(v+), let u+ = u0a1u1 and v+ = v0a1v1 be the a1-right
factorizations. Then

ord(r(u), r′(u)) = ord(Ya2s
′(u−cu0), r

′(u−cu0)) and
ord(r(v), r′(v)) = ord(Ya2s

′(v−cv0), r
′(v−cv0)).

Since (u−cu0)a1u1 and (v−cv0)a1u1 are a1-right factorizations as well, we deduce from
Lemma 3.7 that u−cu0 ⊲m,n v−cv0 and it follows by induction on the length of r that

ord(Ya2s
′(u−cu0), r

′(u−cu0)) = ord(Ya2s
′(v−cv0), r

′(v−cv0)).

The other case is r = Ya1Xb1s
′. If a1 ∈ alph(cu+) = alph(cv+) then r′(u) < r(u) and

r′(v) < r(v). If instead a1 6∈ alph(cu+) = alph(cv+), we first consider the case where r has
a single alternation, i.e., r = Ya1Xb1 · · ·Xbk . We have r(u) < r′(u) if and only if r is defined
on u−, and hence condensed (Example 3.3). Since u− ⊲m,n v− (Lemma 3.7), this is the case
if and only if r is defined on v−. Hence, if r is defined on u−, we have r(u) < r′(u) and
r(v) < r′(v). If r is not defined on u−, but Ya1Xb1 · · ·Xbk−1

is defined on u− and bk = c,
then the same holds for v and we have r(u) = r′(u) and r(v) = r′(v). Otherwise, we have
r(u) > r′(u) and r(v) > r′(v).

The last situation arises if r is of the form r = Ya1Xb1 · · ·XbkYds
′′. In particular, m ≥ 3.

If Ya1Xb1 · · ·Xbk is defined on u−c, then it is defined on v−c as well (by the same reasoning
as in the previous paragraph) and we have r(u) < r′(u) and r(v) < r′(v).

Similarly, if Ya1Xb1 · · ·Xbk−1
is not defined on u− and v−, then we have r′(u) < r(u)

and r′(v) < r(v).
Finally, let us assume that Ya1Xb1 · · ·Xbk is not defined on u−c or v−c, but Ya1Xb1 · · ·Xbk−1

is defined on u− and v−. Let u+ = u0bku1 and v+ = v0bkv1 be bk-left factorizations. Then

ord(r(u), r′(u)) = ord(Yds
′′(u−cu0), r

′(u−cu0)) and

ord(r(v), r′(v)) = ord(Yds
′′(v−cv0), r

′(v−cv0)).
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Since u ⊲m,n+1 v, we have u+ ⊲m,n v+, and by Lemma 3.7 , u− ⊲m,n v− and u0 ⊲m,n−1 v0.

Therefore u−cu0 ⊲m,n−1 v−cv0. Since Yds
′′ ∈ RY

m−2,n−2 is condensed on both u−cu0 and

v−cv0, we conclude by induction on the length of r that ord(Yds
′′(u−cu0), r

′(u−cu0)) =
ord(Yds

′′(v−cv0), r
′(v−cv0)) and hence ord(r(u), r′(u)) = ord(r(v), r′(v)).

This concludes the proof.

Proposition 5.6. Let n > m ≥ 1, let r = Xas ∈ RX
m and r′ = Ybs

′ ∈ RY
m such that

|r|+ |r′| ≤ n, and let u, v ∈ A∗ such that r and r′ are condensed on u and v. If u ⊲m+1,n v
or u ⊳m+1,n v, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

Proof. Without loss of generality, we assume that u ⊲m+1,n v. We proceed by induction,
first on m. If m = 1, then r = Xa1 · · ·Xak and r′ = Yb1 · · ·Ybℓ with k + l ≤ n. We observe
that if p = rXbℓ · · ·Xb1 is defined on u, then r(u) < r′(u); if p is not defined on u, but ak = bℓ
and rXbℓ−1

· · ·Xb1 is defined on u, then r(u) = r′(u); and in all other cases, r(u) > r′(u).
The same holds for v, and this completes the proof in case m = 1.

We now assume that m ≥ 2 and proceed by induction on n. We first note that if one of
r, r′ has length 1, then the result was established in Proposition 5.5. We now assume that
|r| , |r′| ≥ 2 (so |r| , |r′| ≤ n− 2).

Suppose that n = m + 1 and let β(r) the number of alternating blocks in r: then
β(r) ≤ |r| ≤ n− |r′| ≤ n− 2 = m− 1. The same inequality holds for r′ and we conclude by
induction on m.

We must now consider the case where n > m+1 > 2. In particular, we have r ∈ RX
m,n−2

and r′ ∈ RX
m+1,n−1.

First case: s starts with an X-block. Let u = u−au+ and v = v−av+ be a-left-factorizations.
Then s is condensed on u+ and v+ and u+ ⊲m+1,n−1 v+, so u+ and v+ agree on rankers

in RX
m+1,n−1 (Proposition 3.10). In particular, u+ and v+ agree on r′. If r′ is defined

on u+, then ord(r(u), r′(u)) = ord(s(u+), r
′(u+)). Moreover, r′ is defined on v+ as well

and ord(r(v), r′(v)) = ord(s(v+), r
′(v+)), so we conclude by induction. If instead r′ is not

defined on u+ or v+, then r
′(u) ≤ Xa(u) < r(u) and r′(v) ≤ Xa(v) < r(v).

Second case: s′ starts with a Y-block. Let u = u−bu+ and v = v−bv+ be b-right factoriza-
tions. Then u− ⊲m+1,n−1 v− by Lemma 3.7 and this case can be handled exactly like the
previous one.

Third case: s starts with a Y-block and s′ starts with an X-block. If Xa(u) ≤ Yb(u), then
Xa(v) ≤ Yb(v) (by Proposition 5.5), we have r(u) < Xa(u) ≤ Yb(u) < r′(u), and the same
inequalities hold for v.

We now assume that Xa(u) > Yb(u) and Xa(v) > Yb(v). In particular, a 6= b. Identifying
the first a and the last b in u and v, we get factorizations u = u−bu0au+ and v = v−bv0av+
such that a 6∈ alph(u−bu0) ∪ alph(v−bv0) and b 6∈ alph(u0au+) ∪ alph(v0av+). In particular,
r(u) = s(u−bu0), r

′(u) is the position s′(u0au+) in the suffix u0au+ of u, and the same
holds in v. Moreover, u = (u−bu0)au+ is an a-left factorization, u = u−b(u0au+) is a
b-right factorization, and the same holds in v. Therefore, and since u ⊲m+1,n v, we have
u−bu0 ⊳m,n−1 v−bv0 by definition and u0 ⊳m,n−2 v0 by Lemma 3.7.

Since s ∈ RY
m−1,n−3 and s′ ∈ RX

m−1,n−3 ⊆ RY
m,n−2, Proposition 3.10 shows that, if s

is not defined on u0, then it is not defined on v0 either, and r(u) ≤ Yb(u) < r′(u) and
similarly, r(v) < r′(v). Symmetrically, if s′ is not defined on u0, then r(u) < Xa(u) ≤ r

′(u)
and r(v) < r′(v).
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Finally, if s and s′ are defined on u0, then

ord(r(u), r′(u)) = ord(s(u0), s
′(u0)) and

ord(r(v), r′(v)) = ord(s(v0), s
′(v0)),

and we conclude by induction.

5.2.2. The case where r and r′ start with the same direction.

Proposition 5.7. Let n ≥ m ≥ 2, r ∈ RX
m,n starting with an X-letter, and r′ = Xc. If

u, v ∈ A∗, r is condensed on u and v and u ⊲m,n+1 v, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

The dual statement (involving r ∈ RY
m,n, r

′ = Yc starting with a Y-letter, and u ⊳m,n+1 v)
holds as well.

Proof. We proceed by induction, first on m. If m = 2, then either r = Xa1 · · ·Xak or
r = Xa1 · · ·XakYb1 · · ·Ybℓ. In the first case, the order type ord(r(u), r′(u)) depends, as in
the proof of Proposition 5.6, on whether XcYak · · ·Ya1 is defined on u, or if it is not defined,

whether ak = c and XcYak−1
· · ·Ya1 is defined. Since these rankers are in RX

2,n+1 and are
condensed where they are defined (Example 3.3), we have ord(r(u), r′(u)) = ord(r(v), r′(v)).

In the second case, where r = Xa1 · · ·XakYb1 · · ·Ybℓ , three cases arise: if rYc is defined
on u, then Xc(u) < r(u); if rYc is not defined and c = bℓ, then Xc(u) = r(u); in all other
cases, r(u) < Xc(u). Since u ⊲2,n+1 v and rYc ∈ R

X
2,n+1, Proposition 3.10 shows that rYc is

defined on u if and only if it is defined on v, and ord(r(u), r′(u)) = ord(r(v), r′(v)).
We now assume that m ≥ 3. If r has less than m alternating blocks, we conclude by

induction on m. Let us suppose now that r has m alternating blocks and let us proceed by
induction on |r| ≥ m.

Let r = Xas. If s starts with a Y-letter (which includes the base case where |r| = m),
then s ∈ RY

m−1,n−1 is condensed on u− and v−. If c 6∈ alph(u−) = alph(v−), then r(u) < r′(u)

and r(v) < r′(v). In all other cases,

ord(r(u), r′(u)) = ord(s(u−), r
′(u−)) and

ord(r(v), r′(v)) = ord(s(v−), r
′(v−)).

Since u− ⊲m,n v− by Lemma 3.7, these two order types are equal by Proposition 5.5.

If instead s starts with an X-letter, then |r| > m, s ∈ RX
m,n−1 is condensed on u+ and v+

(Lemma 3.4) and we distinguish two cases. If c ∈ alph(u−a) = alph(v−a), then r
′(u) < r(u)

and r′(v) < r(v). Otherwise

ord(r(u), r′(u)) = ord(s(u+), r
′(u+)) and

ord(r(v), r′(v)) = ord(s(v+), r
′(v+)).

Since u+ ⊲m,n v+, these two order types are equal by induction on n.

Proposition 5.8. Let n ≥ m ≥ 2, let r = Xas ∈ RX
m and r′ = Xbs

′ ∈ RX
m−1 such that

|r| + |r′| ≤ n, and let u, v ∈ A∗ such that r and r′ are condensed on u and v. If u ⊲m,n v,
then ord(r(u), r′(u)) = ord(r(v), r′(v)). The dual statement (where r, r′ start with Y-blocks
and u ⊳m,n v) holds as well.
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Proof. The proof is by induction on m, and then on n. If one of r and r′ has length 1, then
the result was established in Proposition 5.7. This takes care of the cases where n ≤ 3,
including the base case m = n = 2. We now assume that |r| , |r′| ≥ 2.

Let us observe that under this assumption, if n = m, then the number of alternating
blocks in r is less than or equal to m− 2: indeed it is at most equal to |r| ≤ n− 2 = m− 2.
The same inequality holds for r′, so this situation is handled by induction on m. We can
now assume that n > m.

Let u = u−au+ = u′−bu
′
+ and v = v−av+ = v′−bv

′
+ be a-left and b-left factorizations.

First case: a = b. If s starts with an X-block and s′ starts with a Y-block, then r′(u) < r(u)
and r′(v) < r(v). Dually, if s starts with a Y-block and s′ starts with an X-block, then
r′(u) > r(u) and r′(v) > r(v).

If s and s′ both start with a Y-block (which can happen only if m − 1 ≥ 2), then
s ∈ RY

m−1 and s′ ∈ RY
m−2 are condensed on u− and v− and

ord(r(u), r′(u)) = ord(s(u−), s
′(u−)) and

ord(r(v), r′(v)) = ord(s(v−), s
′(v−)).

Since u− ⊳m−1,n−1 v− and |s| + |s′| ≤ n − 2, we have ord(r(u), r′(u)) = ord(r(v), r′(v)) by
induction on m.

If instead s and s′ both start with an X-block, then s ∈ RX
m and s′ ∈ RX

m−1 are condensed
on u+ and v+, and we have

ord(r(u), r′(u)) = ord(s(u+), s
′(u+)) and

ord(r(v), r′(v)) = ord(s(v+), s
′(v+)).

Since u+ ⊲m,n−1 v+ and |s| + |s′| ≤ n − 2, we have ord(r(u), r′(u)) = ord(r(v), r′(v)) by
induction on n.

Second case: a 6= b, s and s′ start with X-blocks. Then s ∈ RX
m and s′ ∈ RX

m−1 are condensed
on u+ and v+. Without loss of generality, Xb(u) < Xa(u), so we have r(u) = Xas(u) =
XbXas(u) = Xbr(u). In particular, ord(r(u), r′(u)) = ord(r(u′+), s

′(u′+)). By Proposition 5.7,
we also have Xb(v) < Xa(v), and hence ord(r(v), r′(v)) = ord(r(v′+), s

′(v′+)). Since u ⊲m,n v,
we have u′+ ⊲m,n−1 v

′
+ and we conclude by induction on n since |r|+ |s′| ≤ n− 1.

Third case: a 6= b, s and s′ start with Y-blocks. This can occur only if m− 1 ≥ 2. Then s ∈
RY

m−1 and s
′ ∈ RY

m−2 are condensed on u− and v−, r(u) = s(u−) and r
′(u) = s′(u′−), and the

same equalities hold for v. Without loss of generality, we may assume that Xb(u) < Xa(u),
and hence Xb(v) < Xa(v) (Proposition 5.7). Let u0 and v0 be such that u = u′−bu0au+ and
v = v′−bv0av+: then u0 is the left factor in the a-left decomposition of u′+ and the right
factor in the b-left decomposition of u−. An analogous statement is true for v0. There are
two cases, depending on whether s is defined on bu0. If this is the case, then r′(u) < r(u).
Moreover, we have u′+ ⊲m,n−1 v

′
+ and u0 ⊳m−1,n−2 v0, so s is defined on bv0 as well, by

Proposition 3.10.
If instead, s is not defined on bu0 or bv0, let p be the longest prefix of s which is defined

on bu0 (and hence on bv0): then p is either empty or a Y-block and s = pYct, where c has
no occurrence in u[Xb(u);Xap(u)− 1] (so Yc is defined on u′−).

If Yct is defined on u′−, then r(u) = s(u−) = Yct(u
′
−), so that

ord(r(u), r′(u)) = ord(Yct(u−), s
′(u−)).
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Now u ⊲m,n v implies u′− ⊲m,n−1 v
′
− by Proposition 3.7, so Yct is defined on v′− and hence

we have ord(r(v), r′(v)) = ord(Yct(v
′
−), s

′(v′−)) as well. Since |Yct| ≤ |s| < |r|, we conclude
by induction that ord(r(u), r′(u)) = ord(r(v), r′(v)).

If Yct is not defined on u′−, then let Ycq be the longest prefix of Yct which is defined on
u′− (and hence on v′−). Then q is either empty or an X-block and Yct = YcqXdt

′. If d = b,
then qXd(u

′
−b) = Xb(u), so r(u) = Xbt

′(u) and similarly, r(v) = Xbt
′(v). We conclude by

induction on m that ord(r(u), r′(u)) = ord(r(v), r′(v)) since Xbt
′ has 2 blocks less than r.

If d 6= b, then we have Xb(u) < XapYcqXd(u). If Xdt
′ is defined on bu0, then r(u) lies in

u0 and r′(u) lies in u′−, so r(u) > r′(u). Similarly r(v) > r′(v), and we are done. If instead
Xdt

′ is not defined on bu0, then XapYcq(u) < Xb(u) and XapYcqXd(u) = XbXd(u), so the
condensedness of r = XapYcqXdt

′ on u implies that XbXdt
′ is condensed on u as well. The

same holds for v, and we have

ord(r(u), r′(u)) = ord(XbXdt
′(u), r′(u)) and similarly,

ord(r(v), r′(v)) = ord(XbXdt
′(v), r′(v)).

We conclude by induction on m since XbXdt
′ has 2 blocks less than r.

Fourth case: a 6= b, s and s′ start with different directions. Without loss of generality, we
may assume that s starts with an X-block and s′ starts with a Y-block. Since r starts with
2 X-letters, the number of alternating blocks of r is less than |r| − 1 ≤ n− 3. Therefore if
n = m+1, r ∈ RX

m−2 and r′ ∈ RX
m−1, a case that can be decided by induction on m. So we

now assume that n ≥ m− 2.
If Xb(u) < Xa(u), then the same inequality holds in v (by Proposition 5.7) and we have

r′(u) < r(u) and r′(v) < r(v). If instead Xa(u) < Xb(u) and Xa(v) < Xb(v), then the b-left
factorizations of u+ and v+ are of the form u+ = u0bu

′
+ and v+ = v0bv

′
+.

Several cases arise, according to whether s and s′ are defined (and condensed) on u0
or not. We have u+ ⊲m,n−1 v+ and u0 ⊲m,n−2 v0 by Lemma 3.7. It follows as usual that s
and s′ are defined on v0 if and only if they are defined on u0. If s is not defined on u0 then
the order types ord(r(u), r′(u)) and ord(r(v), r′(v)) are both >. Therefore, from now on we
can assume that s is defined on u0 and v0.

If s′ is defined on u0 then we can chop off u−a from u, v−a from v, and Xa from
r: ord(r(u), r′(u)) = ord(s(u+), r

′(u+)) and ord(r(v), r′(v)) = ord(s(v+), r
′(v+)). Since

u+ ⊲m,n−1 v+, ord(s(u+), r
′(u+)) and ord(s(v+), r

′(v+)) are equal by induction on n, and
hence ord(r(u), r′(u)) = ord(r(v), r′(v)).

If s′ is not defined on u0, then, as in the third case, we have to split the ranker s′ at
those points at which it crosses the position Xa(u). Let Xbs

′ = p1q1 · · · pkqk such that all
pi are defined on u0 and all pi are starting with an X-letter followed by a (possibly empty)
Y-block. The sole exception is pk which might contain further blocks. Moreover, each pi is
the maximal prefix of piqi · · · pkqk which is defined on u0. All qi are defined on u−a and all
qi are starting with a Y-letter followed by a (possibly empty) X-block. The sole exception
is qk which might be empty or which might contain further blocks. Each qi is the maximal
prefix of qipi+1 · · · pkqk which is defined on u−a. Since u−a ⊲m,n−1 v−a (Lemma 3.7) and
u0 ⊳m−1,n−2 v0, the same definedness and maximality properties hold on v−a and v0.

If qk is empty, then k ≥ 2 and p1 and q1 are non-empty. We see that ord(r(u), r′(u)) =
ord(s(u0), pk(u0)) and ord(r(v), r′(v)) = ord(s(v0), pk(v0)). By induction on n, we have
ord(s(u0), pk(u0)) = ord(s(v0), pk(v0)), and hence ord(r(u), r′(u)) = ord(r(v), r′(v)).

Finally, if qk is non-empty, then we have r(u) > r′(u) and r(v) > r′(v).
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5.2.3. Completing the proof of Theorem 5.1. Let us (at last!) verify that, if u ⊲m+1,2n v or
u ⊲m+1,2n v, then Properties (WI 2c) and (WI 3c) hold for m,n. By symmetry, we simply
handle the case where u ⊲m+1,2n v.

To verify Property (WI 2c), we consider rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 that are

condensed on u and v. If both start with X-blocks, Proposition 5.8 shows that ord(r(u), r′(u))
and ord(r(v), r′(v)) coincide. If both start with Y-blocks, the same proposition allows us
to conclude, after observing that we have u ⊳m,2n−1 v. And if r and r′ start with different
direction blocks, we conclude by Proposition 5.6.

To verify Property (WI 3c), we consider rankers r ∈ Rm,n and r′ ∈ Rm,n−1 that end

with different directions, and that are condensed on u and v. If r and r′ start with different
direction blocks, we again conclude by Proposition 5.6. If both start with X-blocks, then
they must have different number of alternations, so we have r ∈ RX

m1,n1
and r′ ∈ RX

m2,n2
for

some n1 ≤ n, n2 ≤ n− 1 and for distinct values m1,m2 ≤ m. In particular, one of m1 and
m2 is less than or equal to m− 1, and we can apply Proposition 5.8.

We proceed similarly if r and r′ both start with Y-blocks, after observing that u ⊳m,2n−1

v. This completes the proof of Theorem 5.1.

6. Consequences

6.1. Decidability results. The main consequence we draw of Theorem 5.1 and of the
decidability of the pseudovarieties Rm and Lm is summarized in the next statement.

Theorem 6.1. Given an FO2-definable language L, one can compute an integer m such
that L is FO2

m+1-definable, possibly FO2
m-definable, but not FO2

m−1-definable. That is: we
can decide the quantifier alternation level of L within one unit.

Proof. Let L ∈ FO2 and let M be its syntactic monoid. Since each pseudovariety Rm∩Lm

is decidable (Proposition 3.23), we can compute the largest m such that M 6∈ Rm ∩ Lm.
By Theorem 5.1, M ∈ Rm+1 ∩ Lm+1 ⊆ FO2

m+1 and hence L is FO2
m+1-definable. On the

other hand, M 6∈ FO2
m−1 ⊆ Rm ∩ Lm.

Let us also record the following consequences of Proposition 3.23, Proposition 4.1 and
the decidability of R2 ∨ L2 (discussed in Example 5.3).

Proposition 6.2. The classes TLX1 = TLY1 = TL1 = FO2
1, TL

X
2 , TL

Y
2 and TL2 are decid-

able.

6.2. Infinite and collapsing hierarchies. The fact that the Rm and Lm form strict
hierarchies (Proposition 3.23), together with Theorem 5.1, proves that the FO2

m hierarchy
is infinite. Weis and Immerman had already proved this result by combinatorial means [37,
Theorem 4.11], whereas our proof is algebraic. From that result on the FO2

m hierarchy, it
is also possible to recover the strict hierarchy result on the Rm and Lm and the fact that
their union is equal to DA.

By the same token, Corollary 3.12 and Theorem 4.3 show that the TLm (resp. TLm)
hierarchy is infinite and that its union is all of FO2 (resp. DA).

Theorem 6.3. The hierarchies FO2
m and TLm are infinite, and their union is all of FO2.
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Similarly, the fact (stated in Proposition 3.23) that an m-generated element of DA lies
in Rm+1 ∩ Lm+1, shows that an FO2-definable language in A∗ lies in R|A|+1 ∩ L|A|+1, and

hence in FO2
|A|+1 – a fact that was already established by combinatorial means by Weis

and Immerman [37, Theorem 4.7]. It also shows that such a language is in TL2|A|+1 by
Theorem 4.3.

Theorem 6.4. A language L ⊆ A∗ is FO2-definable if and only if it is FO2
|A|+1-definable.

And it is TL-definable if and only if it is both TLX2|A|+1 and TLY2|A|+1-definable.

Even though we arrived at Theorem 6.4 by algebraic means, it is interesting to note
that its statement reflects the following combinatorial property (an idea that was already
used by Weis and Immerman [37, Theorem 4.7]).

Lemma 6.5. A ranker that is condensed on a word on alphabet A, has at most |A| alter-
nating blocks.

Proof. Let u be a word and let r be a ranker that is condensed on u. Without loss of
generality, we may assume that r ∈ RX

m,n, say

r = Xa1 · · ·Xak1
Yak1+1

· · ·Yak2
· · ·Zakm−1+1

· · · Zakm

with 0 < k1 < k2 < · · · < km = n and Z = X (resp. Y) if m is odd (resp. even). By definition
of condensed rankers (and with the notation in that definition, see Section 3), the interval
Ikh is of the form (ikh−1;Xakh

(u, ikh−1)) if h is odd, of the form (Yakh
(u, jkh−1); jkh−1) if h

is even. In either case, akh+1
occurs in u within the interval Ikh but akh does not. Since

the intervals Ikh are nested, it follows that the letters ak1 , ak2 , . . . , akm are pairwise distinct,
and hence m ≤ |A|.

6.3. Infinite hierarchies and unambiguous polynomials. Finally we note the follow-
ing refinement of [15, Proposition 4.6]. One of the classical (and one of the earliest) results
concerning the languages recognized by monoids in DA is the following: they are exactly
the disjoint unions of unambiguous products of the form B∗

0a1B
∗
1 · · · akB

∗
k, where each Bi is

a subset of A (Schützenberger [25], see also [31, 32, 6]). Recall that such a product is unam-
biguous if each word w ∈ B∗

0a1B
∗
1 · · · akB

∗
k factors in a unique way as w = u0a1u1 · · · akuk

with ui ∈ B∗
i . Deterministic and co-deterministic products (see Section 3.4) are easily

seen to be particular cases of unambiguous products. Propositions 3.21 and 3.23 imply the
following statement.

Proposition 6.6. The least variety of languages containing the languages of the form B∗

(B ⊆ A) and closed under visibly deterministic and visibly co-deterministic products, is
FO2.

More precisely, every unambiguous product of the form B∗
0a1B

∗
1 · · · akB

∗
k, where each Bi

is a subset of A, can be expressed in terms of Boolean operations and at most |A|+1 alter-
nated applications of visibly deterministic and visibly co-deterministic products – starting
with a visibly deterministic (resp. co-deterministic) product.

The analogous, but weaker statement with the word visibly deleted was proved in [15]
by algebraic means, and independently by Lodaya, Pandya and Shah using logical and
combinatorial arguments [17].
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Conclusion. We have related the FO2
m hierarchy with the Rm-Lm hierarchy, a hierarchy of

varieties of languages which is connected with the alternation of closures under deterministic
and co-deterministic products.

The varieties Rm and Lm are decidable, but the link we establish with FO2
m (Theo-

rem 5.1) is not tight enough to prove decidability of the quantifier alternation hierarchy.
We recall the readers of our conjecture (Conjecture 5.4 above), according to which FO2

m is
equal to the intersection Rm+1 ∩Lm+1. Establishing this conjecture would prove that each
level of the quantifier alternation hierarchy FO2

m is decidable.
Finally, we refer the reader to Straubing’s result: he showed [28] that the pseudovariety

FO2
m is the m-th weakly iterated power of the pseudovariety J of J -trivial monoids (more

precisely, FO2
1 = J and FO2

m+1 = FO2
m ⊓⊔ J). This result offers a different avenue to solve

the decidability problem for FO2
m-definability, and our conjecture would show the equality

between two algebraic hierarchies which seem completely unrelated.
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