
Logical Methods in Computer Science
Vol. 8 (3:12) 2012, pp. 1–27
www.lmcs-online.org

Submitted Nov. 6, 2009
Published Aug. 13, 2012

ON CONSTRUCTOR REWRITE SYSTEMS

AND THE LAMBDA-CALCULUS ∗

UGO DAL LAGO AND SIMONE MARTINI

Università di Bologna, and INRIA Sophia Antipolis
e-mail address: {dallago, martini}@cs.unibo.it

Abstract. We prove that orthogonal constructor term rewrite systems and λ-calculus
with weak (i.e., no reduction is allowed under the scope of a λ-abstraction) call-by-value
reduction can simulate each other with a linear overhead. In particular, weak call-by-
value beta-reduction can be simulated by an orthogonal constructor term rewrite system
in the same number of reduction steps. Conversely, each reduction in a term rewrite
system can be simulated by a constant number of beta-reduction steps. This is relevant
to implicit computational complexity, because the number of beta steps to normal form
is polynomially related to the actual cost (that is, as performed on a Turing machine) of
normalization, under weak call-by-value reduction. Orthogonal constructor term rewrite
systems and λ-calculus are thus both polynomially related to Turing machines, taking as
notion of cost their natural parameters.

Introduction

Implicit computational complexity is a young research area, whose main aim is the descrip-
tion of complexity phenomena based on language restrictions, and not on external measure
conditions or on explicit machine models. It borrows techniques and results from math-
ematical logic (model theory, recursion theory, and proof theory) and in doing so it has
allowed the incorporation of aspects of computational complexity into areas such as formal
methods in software development and programming language design. The most developed
area of implicit computational complexity is probably the model theoretic one — finite
model theory being a very successful way to describe complexity classes. In the design
of programming language tools (e.g., type systems), however, syntactical techniques prove
more useful. In the last years we have seen much work restricting recursive schemata and
developing general proof theoretical techniques to enforce resource bounds on programs.
Important achievements have been the characterizations of several complexity classes by
means of limitations of recursive definitions (e.g., [BC92, Lei95]) and, more recently, by
using the “light” fragments of linear logic [Gir98]. Moreover, rewriting techniques such
as recursive path orderings and the interpretation method have been proved useful in the
field [MM00]. By borrowing the terminology from software design technology, we may dub

1998 ACM Subject Classification: F.4.1.
Key words and phrases: lambda calculus, term rewriting, implicit computational complexity.

∗ This paper is an extended version of [DLM09], appeared in the proceedings of ICALP 2009.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (3:12) 2012

c© U. Dal Lago and S. Martini
CC© Creative Commons

http://creativecommons.org/about/licenses

2 U. DAL LAGO AND S. MARTINI

this area as implicit computational complexity in the large, aiming at a broad, global view
on complexity classes. We may have also an implicit computational complexity in the small

— using logic to study single machine-free models of computation. Indeed, many models of
computations do not come with a natural cost model — a definition of cost which is both
intrinsically rooted in the model of computation, and, at the same time, it is polynomi-
ally related to the cost of implementing that model of computation on a standard Turing
machine. The main example is the λ-calculus: the most natural intrinsic parameter of a
computation is its number of beta-reductions, but this very parameter bears no relation, in
general, with the actual cost of performing that computation, since a beta-reduction may
involve the duplication of arbitrarily big subterms1. What we call implicit computational
complexity in the small, therefore, gives complexity significance to notions and results for
computation models where such natural cost measures do not exist, or are not obvious. In
particular, it looks for cost-explicit simulations between such computational models.

The present paper applies this viewpoint to the relation between λ-calculus and orthog-
onal constructor term rewrite systems (OCRSs in the following). We will prove that these
two computational models simulate each other with a linear overhead. That each OCRS
could be simulated by λ-terms and beta-reduction is well known, in view of the availability,
in λ-calculus, of fixed-point operators, which may be used to solve the mutual recursion
expressed by first-order rewrite rules. Here (Section 3) we make explicit the complexity
content of this simulation, by showing that any first-order rewriting of n steps can be sim-
ulated by kn beta steps, where k depends on the specific rewrite system but not on the
size of the involved terms. Crucial to this result is the encoding of constructor terms using
Scott’s schema for numerals [Wad80]. Indeed, Parigot [Par90] (see also [PR93]) shows that
in the pure λ-calculus Church numerals do not admit a predecessor working in a constant
number of beta steps. Moreover, Splawski and Urzyczyn [SU99] show that it is unlikely
that our encoding could work in the typed context of System F.

Section 2 studies the converse – the simulation of (weak) λ-calculus reduction by means
of OCRSs. We give an encoding of λ-terms into a (first-order) constructor term rewrite
system. We write [·]Φ for the map returning a first-order term, given a λ-term; [M]Φ is,
in a sense, a complete defunctionalization of the λ-term M , where any λ-abstraction is
represented by an atomic constructor. This is similar, although not technically the same,
to the use of supercombinators (e.g., [Jon87]). We show that λ-reduction is simulated step
by step by first-order rewriting (Theorem 2.9).

As a consequence, taking the number of beta steps as a cost model for weak λ-calculus
is equivalent (up to a linear function) to taking the number of rewritings in OCRSs systems.
This is relevant to implicit computational complexity “in the small”, because the number of
beta steps to normal form is polynomially related to the actual cost (that is, as performed
on a Turing machine) of normalization, under weak call-by-value reduction. This has been
established by Sands, Gustavsson, and Moran [SGM02], by a fine analysis of a λ-calculus
implementation based on a stack machine. OCRSs and λ-calculus are thus both reasonable

machines (see the “invariance thesis” in [vEB90]), taking as notion of cost their natural,
intrinsic parameters.

1 In full beta-reduction, the size of the duplicated term is indeed arbitrary and does not depend on the
size of the original term the reduction started from. The situation is much different with weak reduction, as
we will see.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 3

As a byproduct, in Section 4 we sketch a different proof of the cited result in [SGM02].
Instead of using a stack machine, we show how we could implement constructor term rewrit-
ing via term graph rewriting. In term graph rewriting we avoid the explicit duplication and
substitution inherent to rewriting (and thus also to beta-reduction) and, moreover, we
exploit the possible sharing of subterms. A more in-depth study of the complexity of (con-
structor) graph rewriting and its relations with (constructor) term rewriting can be found
in another paper by the authors [DLM10].

In Section 5, we show how to obtain the same results of the previous sections when
call-by-name replaces call-by-value as the underlying strategy in the λ-calculus.

1. Preliminaries

The language we study is the pure untyped λ-calculus endowed with weak (that is, we never
reduce under an abstraction) call-by-value reduction.

Definition 1.1. The following definitions are standard:
• Terms are defined as follows:

M ::= x | λx.M | MM,

where x ranges a denumerable set Υ. Λ denotes the set of all λ-terms. We assume
the existence of a fixed, total, order on Υ; this way FV(M) will be a sequence (without
repetitions) of variables, not a set. A term M is said to be closed if FV(M) = ε, where
ε is the empty sequence.

• Values are defined as follows:
V ::= x | λx.M.

• Weak call-by-value reduction is denoted by →v and is obtained by closing call-by-value
reduction under any applicative context:

(λx.M)V →v M{V/x}
M →v N

ML →v NL
M →v N

LM →v LN

Here M,N,L range over terms, while V ranges over values.
• The length |M | of M is defined as follows, by induction on M : |x| = 1, |λx.M | = |M |+1
and |MN | = |M |+ |N |+ 1.

Weak call-by-value reduction enjoys many nice properties. In particular, the one-step dia-
mond property holds and, as a consequence, the number of beta steps to normal form (if
any) is invariant on the reduction order [DLM08] (this justifies the way we defined reduction,
which is slightly more general than Plotkin’s one [Plo75]). It is then meaningful to define
Timev(M) as the number of beta steps to normal form (or ω if such a normal form does not
exist). This cost model will be referred to as the unitary cost model, since each beta (weak
call-by-value) reduction step counts for 1 in the global cost of normalization. Moreover,
notice that α-conversion is not needed during reduction of closed terms: if M →v N and
M is closed, then the reduced redex will be in the form (λx.L)V , where V is a closed value.
As a consequence, arguments are always closed and open variables cannot be captured.
Suppose M has n free variables x1 ≤ . . . ≤ xn, and that N1, . . . , Nn are lambda-terms.
The term M{N1/x1, . . . , Nn/xn} is sometimes denoted simply with M(N1, . . . , Nn), taking
advantage of the implicit order between the variables.

4 U. DAL LAGO AND S. MARTINI

The following lemma gives us a generalization of the fixed-point (call-by-value) com-
binator (but observe the explicit limit k on the reduction length, in the spirit of implicit
computational complexity in the small):

Lemma 1.2 (call-by-value fixpoint combinator). For every natural number n, there are

terms H1, . . . ,Hn and a natural number m such that for any sequence of values V1, . . . , Vn

and for any 1 ≤ i ≤ n:

HiV1 . . . Vn →k
v Vi(λx.H1V1 . . . Vnx) . . . (λx.HnV1 . . . Vnx),

where k ≤ m.

Proof. The terms we are looking for are simply the following:

Hi ≡ MiM1 . . .Mn

where, for every 1 ≤ j ≤ n,

Mj ≡ λx1.λxn.λy1.yn.yj(λz.x1x1 . . . xny1 . . . ynz) . . . (λz.xnx1 . . . xny1 . . . ynz).

The natural number m is simply 2n.

We only consider orthogonal and constructor rewriting in this paper. A constructor

term rewrite system is a pair Ξ = (ΣΞ,RΞ) where:
• Symbols in the signature ΣΞ can be either constructors or function symbols, each with
its arity.
· Terms in C(Ξ) are those built from constructors and are called constructor terms.
· Terms in P(Ξ,Υ) are those built from constructors and variables and are called
patterns.

· Terms in T (Ξ) are those built from constructor and function symbols and are called
closed terms.

· Terms in V(Ξ,Υ) are those built from constructors, functions symbols and variables
in Υ and are dubbed terms.

• Rules in RΞ are in the form f(s1, . . . , sn) →Ξ t where f is a function symbol, s1, . . . , sn ∈
P(Ξ,Υ) and t ∈ V(Ξ,Υ). We here consider orthogonal rewrite systems only, i.e. we
assume that no distinct two rules in RΞ are overlapping and that every variable appears
at most once in the lhs of any rule in RΞ. Moreover, we assume that reduction is call-
by-value, i.e. the substitution triggering any reduction must assign constructor terms to
variables. This restriction is anyway natural in constructor rewriting.

For any term t in a OCRS, |t| denotes the number of symbol occurrences, while |t|f denotes
the number of occurrences of the symbol f in t. Similarly to λ-terms, if t contains instances
of n variables x1 ≤ . . . ≤ xn, the term t{u1/x1, . . . , un/xn} is sometimes denoted simply
with t(u1, . . . , un).

2. From λ-Calculus to Constructor Term Rewriting

In this section, we will prove that the λ-calculus, in the form introduced in Section 1, can
be seen as a OCRS. This result will be spelled out as follows.
• An OCRS Φ on a signature ΣΦ will be defined, together with two maps [·]Φ : Λ →
V(ΣΦ,Υ) and 〈·〉Λ : V(ΣΦ,Υ) → Λ. These two maps are not bijections. However, [·]Φ is
injective, and 〈·〉Λ ◦ [·]Φ is the identity.

• The concept of canonicity for terms in V(Φ,Υ) will be defined. Moreover, the set of
canonical terms will be shown to include [Λ]Φ and to be closed by reduction.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 5

• Reduction of canonical terms will be shown to simulate weak call-by-value reduction on
λ-terms, via 〈·〉Λ. Conversely, the dynamics of λ-terms is proved to simulate rewriting
of constructor terms again through 〈·〉Λ.

Altogether, the three ingredients above implies that Φ is a sound and complete way of
implementing call-by-value β-reduction.

Let us start by defining Φ and the two functions allowing to translate terms Φ into
λ-terms and, conversely, λ-terms back into terms of Φ. Canonicity can already be defined.

Definition 2.1 (The OCRS Φ, Canonicity). The OCRS Φ is defined as a set of rules RΦ

over an infinite signature ΣΦ. In particular:
• The signature ΣΦ includes the binary function symbol app and constructor symbols
cx,M for every M ∈ Λ and every x ∈ Υ. The arity of cx,M is the length of FV(λx.M).
To every term M ∈ Λ we can associate a term [M]Φ ∈ V(Φ,Υ) as follows:

[x]Φ = x;

[λx.M]Φ = cx,M (x1, . . . , xn), where FV(λx.M) = x1, . . . , xn;

[MN]Φ = app([M]Φ, [N]Φ).

Observe that if M is closed, then [M]Φ ∈ T (Φ).
• The rewrite rules in RΦ are all the rules in the following form:

app(cx,M (x1, . . . , xn), x) → [M]Φ,

where FV(λx.M) = x1, . . . , xn.
• To every term t ∈ V(Φ,Υ) we can associate a term 〈t〉Λ ∈ Λ as follows:

〈x〉Λ = x

〈app(u, v)〉Λ = 〈u〉Λ〈v〉Λ

〈cx,M (t1, . . . tn)〉Λ = (λx.M){〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

where FV(λx.M) = x1, . . . , xn.
• A term t ∈ T (Φ) is canonical if either t ∈ C(Φ) or t = app(u, v) where u and v are
themselves canonical.

Notice that the signature ΣΦ contains an infinite number of constructors.

Example 2.2. Consider the λ-term M = (λx.xx)(λy.yy). [M]Φ is t ≡ app(cx,xx, cy,yy).
Moreover, t → app(cy,yy , cy,yy) ≡ u, as expected. We have u → u. Both t and u are
canonical. Finally, 〈u〉Λ = (λy.yy)(λy.yy).

The map [·]Φ is injective, but not surjective. However:

Lemma 2.3. For every λ-term M ∈ Λ, 〈[M]Φ〉Λ = M .

Proof. By induction on M :
• If M = x, then

〈[M]Φ〉Λ = 〈[x]Φ〉Λ = 〈x〉Λ = x.

• If M = NL, then

〈[M]Φ〉Λ = 〈app([N]Φ, [L]Φ)〉Λ = 〈[N]Φ〉Λ〈[L]Φ〉Λ = NL.

• If M = λy.N , then

〈[M]Φ〉Λ = 〈cy,N (x1, . . . , xn)〉Λ = (λy.N){x1/x1, . . . , xn/xn} = λy.N = M.

This concludes the proof.

6 U. DAL LAGO AND S. MARTINI

Canonicity holds for terms in Φ obtained as images of (closed) λ-terms via [·]Φ. More-
over, canonicity is preserved by reduction in Φ:

Lemma 2.4. For every closed M ∈ Λ, [M]Φ is canonical. Moreover, if t is canonical and

t → u, then u is canonical.

Proof. [M]Φ is canonical for any M ∈ Λ by induction on the structure of M (which, by
hypothesis, is either an abstraction or an application NL where both N and L are closed).
We can further prove that v = [M]Φ{t1/x1, . . . tn/xn} is canonical whenever t1, . . . , tn ∈
C(Φ) and x1, . . . , xn includes all the variables in FV(M):
• If M = xi, then v = ti, which is clearly canonical.
• If M = NL, then

v = [NL]Φ{t1/x1, . . . tn/xn}

= app ([N]Φ{t1/x1, . . . tn/xn}, [L]Φ{t1/x1, . . . tn/xn})

which is canonical, by IH.
• If M = λy.N , then

v = [λy.N]Φ{t1/x1, . . . tn/xn}

= cy,N (xi1 , . . . , xim){t1/x1, . . . tn/xn}

= cy,N (ti1 , . . . , tim)

which is canonical, because each ti (and hence also v) is in C(Φ).
This implies the rhs of any instance of a rule in RΦ is canonical. As a consequence, u is
canonical whenever t → u and t is canonical. This concludes the proof.

For canonical terms, being a normal form is equivalent to being mapped to a normal
form via 〈·〉Λ. This is not true, in general: take as a counterexample cx,y(app(cz,z, cz,z)),
which corresponds to λx.(λz.z)(λz.z) via 〈·〉Λ.

Lemma 2.5. A canonical term t is a normal form iff 〈t〉Λ is a normal form.

Proof. If a canonical t is a normal form, then t does not contain the function symbol app
and, as a consequence, 〈t〉Λ is an abstraction, which is always a normal form. Conversely,
if 〈t〉Λ is a normal form, then t is not in the form app(u, v), because otherwise 〈t〉Λ will be
a (closed) application, which cannot be a normal form. But since t is canonical, t ∈ C(Φ),
which only contains terms in normal form.

The following substitution lemma will be useful later.

Lemma 2.6 (Substitution). For every term t ∈ V(Φ,Υ) and every t1, . . . , tn ∈ C(Φ),

〈t{t1/x1, . . . , tn/xn}〉Λ = 〈t〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

whenever x1, . . . , xn includes all the variables in t.

Proof. By induction on t:
• If t = xi, then

〈t{t1/x1, . . . , tn/xn}〉Λ = 〈xi{t1/x1, . . . , tn/xn}〉Λ

= 〈ti〉Λ

= xi{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

= t{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 7

• If t = app(u, v), then

〈t{t1/x1, . . . , tn/xn}〉Λ = 〈app(u, v){t1/x1, . . . , tn/xn}〉Λ

= 〈app(u{t1/x1, . . . , tn/xn}, v{t1/x1, . . . , tn/xn})〉Λ

= 〈u{t1/x1, . . . , tn/xn}〉Λ〈v{t1/x1, . . . , tn/xn}〉Λ

= 〈u〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}〈v〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

= 〈u〉Λ〈v〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

= 〈app(u, v)〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

= 〈t〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}.

• If t = cy,N (u1, . . . , um), then

〈t{t1/x1, . . . , tn/xn}〉Λ = 〈cy,N (u1, . . . , um){t1/x1, . . . , tn/xn}〉Λ

= 〈cy,N (u1{t1/x1, . . . , tn/xn}, . . . , um{t1/x1, . . . , tn/xn})〉Λ

= (λy.N){〈u1{t1/x1, . . . , tn/xn}〉Λ/xi1
, . . . ,

〈um{t1/x1, . . . , tn/xn}〉Λ/xim}

= (λy.N){〈u1〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}/xi1
, . . . ,

〈um〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}/xim}

= ((λy.N){〈u1〉Λ/x1, . . . , um/xi1}){〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

= 〈cy,N (u1, . . . , um)〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

= 〈t〉Λ{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}.

This concludes the proof.

Two of the previous lemmas imply that if M ∈ Λ, t1, . . . , tn ∈ C(Φ) and x1, . . . , xn
includes all the variables in FV(M), then:

〈[M]Φ{t1/x1, . . . , tn/xn}〉Λ = M{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}. (2.1)

Reduction in Φ can be simulated by reduction in the λ-calculus, provided the starting term
is canonical.

Lemma 2.7. If t is canonical and t → u, then 〈t〉Λ →v 〈u〉Λ.

Proof. Consider the (instance of the) rewrite rule which turns t into u. Let it be

app(cy,M (t1, . . . , tn), v) → [M]Φ{t1/x1, . . . , tn/xn, v/y}.

Clearly,

〈app(cy,M (t1, . . . , tn), v)〉Λ = ((λy.M){〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn})〈v〉Λ

while, by (2.1):

〈[M]Φ{t1/x1, . . . , tn/xn, v/y}〉Λ = M{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn, 〈v〉Λ/y}

which implies the thesis.

8 U. DAL LAGO AND S. MARTINI

Conversely, call-by-value reduction in the λ-calculus can be simulated in Φ:

Lemma 2.8. If M →v N , t is canonical and 〈t〉Λ = M , then t → u, where 〈u〉Λ = N .

Proof. Let (λx.L)V be the redex fired in M when rewriting it to N . There must be a
corresponding subterm v of t such that 〈v〉Λ = (λx.L)V . Then

v = app(cx,P (t1, . . . , tn), w),

where 〈cx,P (t1, . . . , tn)〉Λ = λx.L. and 〈w〉Λ = V . Observe that, by definition,

〈cx,P (t1, . . . , tn)〉Λ = (λx.P){〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

where FV(P) = x1, . . . , xn. Since t is canonical, t1, . . . , tn ∈ C(Φ). Moreover, since V is a
value, w itself is in C(Φ). This implies

app(cx,P (t1, . . . , tn), w) → [P]Φ{t1/x1, . . . , tn/xn, w/x}.

By (2.1):

〈[P]Φ{t1/x1, . . . , tn/xn, w/x}〉Λ = P{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn, 〈w〉Λ/x}

= (P{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}){〈w〉Λ/x}

= (λx.L){V/x}.

This concludes the proof.

The previous lemmas together imply the following theorem, by which λ-calculus nor-
malization can be mimicked (step-by-step) by reduction in Φ:

Theorem 2.9 (Term Reducibility). Let M ∈ Λ be a closed term. The following two

conditions are equivalent:

1. M →n
v N where N is in normal form;

2. [M]Φ →n t where 〈t〉Λ = N and t is in normal form.

Proof. Suppose M →n
v N , where N is in normal form. Then, by applying Lemma 2.8, we

obtain a term t such that [M]Φ →n t and 〈t〉Λ = N . By Lemma 2.4, t is canonical and,
by Lemma 2.5, it is in normal form. Now, suppose [M]Φ →n t where 〈t〉Λ = N and t is
in normal form. By applying n times Lemma 2.7, we obtain 〈[M]Φ〉Λ →n

v 〈t〉Λ = N . But
〈[M]Φ〉Λ = M by Lemma 2.3 and N is a normal form by Lemma 2.5, since [M]Φ and t are
canonical by Lemma 2.4.

There is another nice property of Φ, that will be crucial in proving the main result of
this paper:

Proposition 1 (Subterm Property). For every M ∈ Λ, for every t with [M]Φ →∗ t and for
every occurrence of a constructor cx,N in t, N is a subterm of M .

Proof. Assume [M]Φ →n t and proceed by induction on n.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 9

Example 2.10. Let us consider the λ-term M = (λx.(λy.x)x)(λz.z). Notice that

M →v (λy.(λz.z))(λz.z) →v λz.z.

Clearly [M]Φ = app(cx,(λy.x)x, cz,z). Moreover:

app(cx,(λy.x)x, cz,z) → app(cy,x(cz,z), cz,z) → cz,z.

For every constructor cw,N occurring in any term in the previous reduction sequence, N is
a subterm of M .

A remark on Φ is now in order. Φ is an infinite OCRS, since ΣΦ contains an infinite
amount of constructor symbols and, moreover, there are infinitely many rules in RΦ. As
a consequence, what we have presented here is an embedding of the (weak, call-by-value)
λ-calculus into an infinite OCRS. Consider, now, the following scenario: suppose the λ-
calculus is used to write a program M , and suppose that inputs to M form an infinite set
of λ-terms Θ which can anyway be represented by a finite set of constructors in Φ. In this
scenario, Proposition 1 allows to conclude the existence of finite subsets of ΣΦ and RΦ such
that every MN (where N ∈ Θ) can be reduced via Φ by using only constructors and rules
in those finite subsets. As a consequence, we can see the above schema as one that puts any
program M in correspondence to a finite OCRS. Finally, observe that assuming data to be
representable by a finite number of constructors in Φ is reasonable. Scott’s scheme [Wad80],
for example, allows to represent any term in a given free algebra in a finitary way, e.g. the
natural number 0 becomes ⌈0⌉ ≡ cy,λz.z while n + 1 becomes ⌈n + 1⌉ ≡ cy,λz.yx(⌈n⌉).
Church’s scheme, on the other hand, does not have this property.

2.1. An Example. Consider the lambda terms M = λx.λy.xyx and N = λx.λy.yxy. It is
easy to verify that:

L ≡ (MN)M →2
v (NM)N,

P ≡ (NM)N →2
v (MN)M.

Therefore, both L and P diverge. Now:

[L]Φ ≡ app(app(cx,λy.xyx, cx,λy.yxy), cx,λy.xyx)

→ t ≡ app(cy,xyx(cx,λy.yxy), cx,λy.xyx)

→ app(app(cx,λy.yxy, cx,λy.xyx), cx,λy.yxy)

≡ [P]Φ.

Similarly, [P]Φ →2 [L]Φ. Observe that along the computation we reach the term t, which is
not the image of any λ-term. However, all constructor terms in the reduction are canonical
and, moreover, 〈t〉Λ is (λy.NyN)M , the lambda term found along the reduction from L to
P .

3. From Constructor Term Rewriting to the λ-Calculus

In this section, we will show that one rewriting step of any constructor rewrite system can be
simulated by a fixed number of weak call-by-value beta-reductions. As an easy consequence,
λ-calculus will be shown to efficiently simulate any OCRS. During this section we will assume
fixed an OCRS Ξ over a finite signature ΣΞ. Let c1, . . . , cg be the constructors of Ξ and let

10 U. DAL LAGO AND S. MARTINI

f1, . . . , fh be the function symbols of Ξ. We will describe several constructions, which work
independently of Ξ (they only depends on the arity of the symbols).
• A map 〈〈·〉〉Λ : C(Ξ) → Λ can be defined by recursion on the structure of the input. The
map can be extended to constructors of Ξ (which are not terms by themselves), in such
a way that for every ci, the lambda term 〈〈ci〉〉Λ “computes” 〈〈ci(t1 . . . tar(ci))〉〉Λ when
fed with 〈〈t1〉〉Λ . . . 〈〈t

ar(ci)〉〉Λ, for any t1, . . . , tar(ci) ∈ C(Ξ). (See Definition 3.1.)
• Defining a map analogous to 〈〈·〉〉Λ, but acting on closed terms (and not only on con-
structor terms) is more delicate. Indeed, a term fi(t1 . . . tar(ci)) does not necessarily
rewrite to a constructor term, even if it does not diverge — the rewrite rules of Ξ are
not necessarily exhaustive and a deadlock can be reached. To handle this case we define
a lambda term ⊥ ∈ Λ, which will represent any deadlocked term.

• Now a map [·]Λ : T (Ξ) → Λ can be defined, in such a way that [t]Λ reduces to 〈〈u〉〉Λ
(where u ∈ C(Ξ)) if t has normal form u, but [t]Λ reduces to ⊥ if t rewrites to a deadlock.
The map [·]Λ is defined compositionally, that is to say:

[c(t1, . . . , tar(ci))]Λ = [ci]Λ[t1]Λ . . . [t
ar(ci)]Λ;

[fi(t1, . . . , tar(fi))]Λ = [fi]Λ[t1]Λ . . . [t
ar(fi)]Λ.

In other words, [·]Λ is completely specified by its behavior on constructors and function
symbols.

• While defining [c]Λ is relatively easy (Definition 3.2 and Lemma 3.3), [f]Λ requires a form
of pattern matching to be implemented in the λ-calculus (Lemma 3.4 and Definition 3.5).

• The complete simulation is stated in Theorem 3.6. The example in 3.1 may be used
along the section to clarify the definitions.

We will first concentrate on constructor terms, encoding them as λ-terms using Scott’s
schema [Wad80].

Definition 3.1. • Constructor terms can be easily put in correspondence with λ-terms
by way of a map 〈〈·〉〉Λ defined by induction as follows:

〈〈ci(t1 . . . , tn)〉〉Λ ≡ λx1.λxg.λy.xi〈〈t1〉〉Λ . . . 〈〈tn〉〉Λ.

• The function 〈〈·〉〉Λ can be extended to a map on constructors:

〈〈ci〉〉Λ ≡ λx1.λxar(ci).λy1.λyg.λz.yix1 . . . xar(ci).

Trivially, if t1, . . . , tn are in C(Φ), 〈〈ci〉〉Λ〈〈t1〉〉Λ . . . 〈〈tn〉〉Λ rewrites to 〈〈ci(t1 . . . tn)〉〉Λ in
ar(ci) steps.

• To represent an error value, we use the λ-term ⊥ ≡ λx1.λxg.λy.y. A λ-term which
is either ⊥ or in the form 〈〈t〉〉Λ is denoted with metavariables like X or Y .

The map 〈〈·〉〉Λ defines encodings of constructor terms. For function symbols our goal is
defining another map [·]Λ returning a λ-term given any term t in T (Ξ), in such a way that
t →∗ u and u ∈ C(Ξ) implies [t]Λ →∗

v 〈〈u〉〉Λ. Moreover, [t]Λ should rewrite to ⊥ whenever
the rewriting of t causes an error (i.e. t has a normal form containing a function symbol).
First of all, we define the λ-term [ci]Λ corresponding to a constructor ci.

Definition 3.2. • For every 1 ≤ i ≤ g, for every 0 ≤ m ≤ ar (ci), and for every sequence
of variables x1, . . . , xm, define the λ-term CON i

x1,...,xm
by induction on ar (ci)−m:

CON i
x1,...,xar(ci)

≡ λy1.λyg.z.yix1 . . . xar(ci);

∀m : 0 ≤ m < ar (ci) CON i
x1,...,xm

≡ λy.yNm
1,i . . . N

m
g,iL

m
i ;

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 11

where:

Nm
j,i ≡ λz1.λzar (cj).(λxm+1.CON i

x1,...,xm+1
)CON j

z1,...,zar(cj)
;

Lm
i ≡ λzm+2.λzar(ci).⊥.

• For every 1 ≤ i ≤ g, the λ-term [ci]Λ is CON i
ε.

We need to prove that [ci]Λ does what it is supposed to do. We show something slightly
stronger:

Lemma 3.3. There is a constant n ∈ N such that for any i, for any m, and for any

〈〈t1〉〉Λ, . . . , 〈〈tar (ci)〉〉Λ in C(Ξ):

CON i
x1,...,xm

{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm}〈〈tm+1〉〉Λ . . . 〈〈t
ar(ci)〉〉Λ →k 〈〈ci(t1 . . . tar(ci))〉〉Λ

where k ≤ n, and

CON i
x1,...,xm

{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm}Xm+1 . . . Xar(ci) →
l ⊥

where l ≤ n, whenever Xj is either 〈〈tj〉〉Λ or ⊥ but at least one among Xm+1 . . . Xar(ci) is

⊥.

Proof. We proceed by induction on ar (ci)−m:
• If m = ar (ci), then

CON i
x1,...,xar(ci)

{〈〈t1〉〉Λ/x1, . . . , 〈〈tar (ci)〉〉Λ/xar(ci)}

≡ (λy1.λygyix1 . . . xar(ci)){〈〈t1〉〉Λ/x1, . . . , 〈〈tar (ci)〉〉Λ/xar(ci)}

≡ λy1.λyg.yi〈〈t1〉〉Λ . . . 〈〈t
ar(ci)〉〉Λ

≡ 〈〈ci(t1, . . . , tar(ci))〉〉Λ.

• If m < ar (ci), we use the following abbreviations:

Pm
j,i ≡ Nm

j,i{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm};

Qm
j ≡ Lm

j {〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm}.

Let’s distinguish two cases:
· If Xm+1 ≡ ⊥, then:

CON i
x1,...,xm

{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm}Xm+1 . . . Xar(ci)

→v (⊥Pm
1,i . . . P

m
g,iQ

m
i)Xm+2 . . . Xar(ci)

→∗
v Qm

i Xm+2 . . . Xar(ci)

→∗
v ⊥

12 U. DAL LAGO AND S. MARTINI

· Let Xm+1 be 〈〈tm+1〉〉Λ, where tm+1 ≡ cj(u1, . . . , uar (cj)). Then:

CON i
x1,...,xm

{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm}Xm+1 . . . Xar(ci)

→v (〈〈cj(u1, . . . , uar(cj))〉〉ΛP
m
1,i . . . P

m
g,iQ

m
i)Xm+2 . . . Xar(ci)

→∗
v Pm

j,i〈〈u1〉〉Λ . . . 〈〈u
ar(cj)〉〉ΛXm+2 . . . Xar(ci)

→∗
v (λxm+1.CON i

x1,...,xm+1
{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm})

(CON j
z1,...,zar(cj)

{〈〈u1〉〉Λ/y1, . . . , 〈〈tar (cj)〉〉Λ/yar(cj)})Xm+2 . . . Xar(ci)

→∗
v (λxm+1.CON i

x1,...,xm+1
{〈〈t1〉〉Λ/x1, . . . , 〈〈tm〉〉Λ/xm})

(〈〈cj(u1, . . . , uar(cj))〉〉Λ)Xm+2 . . . Xar(ci)

→∗
v CON i

x1,...,xm+1
{〈〈t1〉〉Λ/x1, . . . , 〈〈tm+1〉〉Λ/xm+1}Xm+2 . . . Xar(ci)

and, by the inductive hypothesis, the last term in the reduction sequence reduces to
the correct normal form. The existence of a natural number n with the prescribed
properties is clear by observing that none of the reductions above have a length which
depends on the parameters 〈〈t1〉〉Λ, . . . , 〈〈tm〉〉Λ and Xm+1 . . . Xar(ci).

This concludes the proof.

Interpreting function symbols is more difficult, since we have to “embed” the reduction
rules into the λ-term interpreting the function symbol. To do that, we need a preliminary re-
sult to encode pattern matching. More specifically, suppose α1, . . . , αn are non-overlapping
sequences of patterns of the same length m, i.e. that for every sequence of constructor
terms t1, . . . , tm there is at most one i with 1 ≤ i ≤ m such that t1, . . . , tm unifies with
the patterns in αi. Then, we need to build a λ-term PATm

α1,...,αn
which, when fed with m

(encodings of) constructor terms and n values, perform pattern matching and select the
“right” value, or returns ⊥ if none of α1, . . . , αn unifies with the constructor terms in input.

Lemma 3.4 (Pattern matching). Let α1, . . . , αn be non-overlapping sequences of patterns

of the same length m. Then there are a term PATm
α1,...,αn

and an integer l such that for

every sequence of values V1, . . . , Vn, if αi = s1, . . . , sm then

PATm
α1,...,αn

〈〈s1(t
1
1, . . . , t

k1
1)〉〉Λ . . . 〈〈sm(t1m, . . . , tkmm)〉〉ΛV1 . . . Vn

→k
v Vi〈〈t

1
1〉〉Λ . . . 〈〈tk11 〉〉Λ . . . 〈〈t1m〉〉Λ . . . 〈〈tkmm 〉〉Λ,

where k ≤ l, whenever the tji are constructor terms. Moreover,

PATm
α1,...,αn

X1, . . . ,XmV1 . . . Vn →k
v ⊥,

where k ≤ l, whenever X1, . . . ,Xm do not unify with any of the sequences α1, . . . , αn or any

of the X1, . . . ,Xm is itself ⊥.

Proof. We go by induction on a =
∑n

i=1 ||αi||, where ||αi|| is the number of constructors
occurrences in patterns inside αi:
• If a = 0 and n = 0, then we should always return ⊥:

PATm
ε ≡ λx1.λxm.⊥.

• If a = 0 and n > 0, then n = 1 and α1 is simply a sequence of variables x1, . . . , xm,
because the αi are assumed to be non-overlapping. Then PATm

x1,...,xm
is a term defined

by induction on m which returns ⊥ only if one of its firstm arguments is ⊥ and otherwise
returns its m+ 1-th argument applied to its first m arguments.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 13

• If a ≥ 1, then there must be integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that

αj = s1, . . . , si−1, ck(r1, . . . , rar(ck)), si+1, . . . , sm

for a constructor ck and for some patterns sp and some rq. Now, for every 1 ≤ p ≤ n and

for every 1 ≤ j ≤ g we define sequences of patterns βj
p and values W j

p as follows:
· If

αp = s1, . . . , si−1, cj(q1, . . . , qar(cj)), si+1 . . . sm

then βj
p is defined to be the sequence

s1, . . . , si−1, q1, . . . , qar(cj), si+1, . . . , sm.

Moreover, Wp is simply the indentity λx.x.
· If

αp = s1, . . . , si−1, cs(q1, . . . , qar(cs)), si+1 . . . sm

where s 6= j then βj
p and W j

p are both undefined.
· Finally, if

αp = s1, . . . , si−1, x, si+1 . . . sm

then βj
p is defined to be the sequence

s1, . . . , si−1, x1, . . . , xar(cj), si+1, . . . , sm.

and W j
p is the following λ-term

λx.λy1.λyt.x1.λxar(ck).λz1.λzu.xy1 . . . yt(〈〈cj〉〉Λx1 . . . xar(cj))z1 . . . zu

where t is the number of variables in s1, . . . , si−1 and u is the number of variables in
si+1, . . . , sm.

As a consequence, for every 1 ≤ j ≤ g, we can find a natural number tj and a sequence

of pairwise distinct natural numbers i1, . . . , itj such that βj
i1
, . . . , βj

itj
are exactly the

sequences which can be defined by the above construction. We are now able to formally
define PATm

α1,...,αn
; it is the term

λx1.λxm.λy1.λyn.((xiZ1 . . . ZgZ⊥)x1 . . . xi−1xi+1 . . . xm)y1 . . . yn

where

∀1 ≤ j ≤ g.Zj ≡ λz1.λzar(cj).λx1.λxi−1.λxi+1.λxm.λy1.λyn.

PAT
m−1+ar(cj)

β
j
i1
,...,β

j
itj

x1 . . . xi−1z1 . . . zar(cj)xi+1 . . . xm(W j
i1
yi1) . . . (W

j
itj
yitj)

Z⊥ ≡ λx1.λxi−1.λxi+1.λxm.λy1.λyn.⊥

Notice that, for every j, a >
∑tj

v=1 ||β
j
v ||. Moreover, for every j any βj

v has the same
length m− 1 + ar (cj). This justifies the application of the induction hypothesis above.
Informally, PATm

α1,...,αn
first do some case analysis based on the shape of its i-th argu-

ment. Based on the topmost constructor in it, one between Z1, . . . , Zh, Z⊥ is selected

which itself do the rest of the pattern matching by way of PAT
m−1+ar(cj)

β
j
i1
,...,β

j
itj

.

This concludes the proof.

14 U. DAL LAGO AND S. MARTINI

Once a general form of pattern matching is available in the λ calculus, we may define
the λ-term [fi]Λ interpreting the function symbol fi.

Definition 3.5. For every function symbol fi, let

fi(α
1
i) → t1i , . . . , fi(α

ni

i) → tni

i

be the rules for fi. Moreover, suppose that the variables appearing in the patterns in αj
i are

zj,1i , . . . , z
j,mi,j

i . Observe that the sequences α1
i , . . . , α

ni

i all have the same length m. Recall
that we have a signature with function symbols f1, . . . , fh. For any 1 ≤ i ≤ h the λ-term
[fi]Λ interpreting fi is defined to be:

HiV1 . . . Vh

where

Vi ≡ λx1.λxh.λy1.λyar(fi).PAT
m
α1
i ,...,α

n
i
y1 . . . yar(fi)W

1
i . . .W ni

i ;

W j
i ≡ λz1.λzmi,j

.〈|tji |〉Λ;

whenever 1 ≤ i ≤ h and 1 ≤ j ≤ ni and 〈| · |〉Λ is defined by induction as follows:

〈|x|〉Λ = x;

〈|ci(t1, . . . , tar(ci))|〉Λ = [ci]Λ〈|t1|〉Λ . . . 〈|t
ar(ci)|〉Λ;

〈|fi(t1, . . . , tar(fi))|〉Λ = xi〈|t1|〉Λ . . . 〈|t
ar(fi)|〉Λ.

We have now implicitly defined how the map [·]Λ behaves on any term in V(Ξ,Υ):

[x]Λ = x;

[c(t1, . . . , tar(ci))]Λ = [ci]Λ[t1]Λ . . . [t
ar(ci)]Λ;

[fi(t1, . . . , tar(fi))]Λ = [fi]Λ[t1]Λ . . . [t
ar(fi)]Λ.

Theorem 3.6. There is a natural number k such that for every function symbol f and

for every t1, . . . , tar(f) ∈ C(Ξ), the following three implications hold, where u stands for

f(t1, . . . , tar(f)) and M stands for [f]Λ〈〈t1〉〉Λ . . . 〈〈t
ar(f)〉〉Λ:

• If u rewrites to v ∈ C(Ξ) in n steps, then M rewrites to 〈〈v〉〉Λ in at most kn steps.

• If u rewrites to a normal form v /∈ C(Ξ), then M rewrites to ⊥.

• If u diverges, then M diverges.

Proof. By an easy combinatorial argument following from the definition of [·]Λ. Actually, a
slightly stronger statement should be proved to make the proof formal: there is a natural
number k such that for every u ∈ V(Ξ,Υ), for every t1, . . . , tm ∈ C(Ξ) (where m is the
number of distinct variables in u), the following three implications hold, where M stands
for [u]Λ.
• If u(t1, . . . , tm) rewrites to v ∈ C(Ξ) in n steps, then M(〈〈t1〉〉Λ, . . . , 〈〈tm〉〉Λ) rewrites to
〈〈v〉〉Λ in at most kn|u| steps.

• If u(t1, . . . , tm) rewrites to a normal form v /∈ C(Ξ), then M(〈〈t1〉〉Λ, . . . , 〈〈tm〉〉Λ) rewrites
to ⊥.

• If u(t1, . . . , tm) diverges, then M(〈〈t1〉〉Λ, . . . , 〈〈tm〉〉Λ) diverges.
The first statement can be proved by induction on n. The second and third one are quite
easy.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 15

Clearly, the constant k in Theorem 3.6 depends on Ξ, but is independent on the par-
ticular term u.

3.1. An Example. In this section, we will describe the encoding of a concrete OCRS called
ADD as a set of λ-terms. The signature ΣADD contains two constructor symbols 0 and s,
with arity 0 and 1 (respectively), and a single function symbol add of arity 2. The only
two rules in RADD are the following:

add(0, x) → x;

add(s(x), y) → s(add(x), y).

Let us construct first some λ-terms in the image of 〈〈〉〉Λ:

⊥ = λx.λy.λz.z;

〈〈0〉〉Λ = λx.λy.λz.x;

〈〈s(0)〉〉Λ = λx.λy.λz.y〈〈0〉〉Λ;

〈〈s(s(0))〉〉Λ = λx.λy.λz.y〈〈s(0)〉〉Λ;

...

〈〈s〉〉Λ = λw.λx.λy.λz.yw.

We now take a look at [s]Λ. By definition:

[s]Λ ≡ CON 2
ε ≡ λy.yN0

1,2N
0
2,2L

0
2

≡ λy.y((λx1.CON 2
x1
)CON 1

ε)(λz1.(λx1.CON 2
x1
)(CON 2

z1
))⊥.

This λ-term indeed “simulates” the successor constructor, when fed with an input. Suppose
u ∈ C(ADD), then:

[s]Λ〈〈0〉〉Λ →4 (λx1.CON 2
x1
)CON 1

ε ≡ (λx1.CON 2
x1
)〈〈0〉〉Λ

→ 〈〈s(0)〉〉Λ;

[s]Λ〈〈s(u)〉〉Λ →4 (λz1.(λx1.CON 2
x1
)(CON 2

z1
))〈〈u〉〉Λ → (λz1.(λx1.CON 2

x1
)〈〈s(u)〉〉Λ

→ 〈〈s(s(u))〉〉Λ;

[s]Λ⊥ →4 ⊥.

Finally, consider add, the only function symbol of ΣADD. By definition:

[add]Λ ≡ H1V1 ≡ H1(λx1.λy1.λy2.PAT (0,x),(s(x),y)y1y2W
1
1W

2
i)

It is easy to verify that, by Lemma 3.4,

[add]Λ⊥〈〈t〉〉Λ →∗ ⊥;

[add]Λ〈〈s(0)〉〉Λ〈〈s(s(0))〉〉Λ →∗ 〈〈s(s(s(0)))〉〉Λ .

16 U. DAL LAGO AND S. MARTINI

4. Graph Representation

The previous two sections proved the main simulation result of the paper. To complete the
picture, we show in this section that the unitary cost model for the (weak call-by-value)
λ-calculus (and hence the number of rewriting in a OCRSs) is polynomially related to
the actual cost of implementing those reductions2. We do so by introducing term graph
rewriting, following [BEG+86] but adapting the framework to call-by-value constructor
rewriting. Contrarily to what we did in Section 2, we will stay abstract here: our attention
will not be restricted to the particular graph rewrite system that is needed to implement
reduction in the λ-calculus.

We refer the reader to our [DLM10] for more details on efficient simulations between
term graph rewriting and constructor term rewriting, both under innermost (i.e., call-by-
value) and outermost (i.e., call-by-name) reduction strategies.

Definition 4.1 (Labelled Graph). Given a signature Σ, a labelled graph over Σ consists
of a directed acyclic graph together with an ordering on the outgoing edges of each node
and a (partial) labelling of nodes with symbols from Σ such that the out-degree of each
node matches the arity of the corresponding symbols (and is 0 if the labelling is undefined).
Formally, a labelled graph is a triple G = (V, α, δ) where:
• V is a set of vertices.
• α : V → V ∗ is a (total) ordering function.
• δ : V ⇀ V is a (partial) labelling function such that the length of α(v) is the arity of
δ(v) if δ(v) is defined and is 0 otherwise.

A labelled graph (V, α, δ) is closed iff δ is a total function.

Consider the signature Σ = {f ,g,h,p}, where arities of f ,g,h,p are 2, 1, 0, 2 respec-
tively, and g, h, p are constructors. Examples of labelled graphs over the signature Σ are
the following ones:

f

�� ��
g

��
p

��✞✞
✞✞
✞

��✻
✻✻
✻

g

��

h

⊥

f

��$$

g

��✟✟
✟✟

⊥

f

��

��
g

��
f

��✟✟
✟✟

��✻
✻✻

✻✻

⊥ g

��
⊥

The symbol ⊥ denotes vertices where the underlying labelling function is undefined (and,
as a consequence, no edge departs from such vertices). Their role is similar to the one of
variables in terms.

If one of the vertices of a labelled graph is selected as the root, we obtain a term graph:

Definition 4.2 (Term Graph). A term graph, is a quadrupleG = (V, α, δ, r), where (V, α, δ)
is a labelled graph and r ∈ V is the root of the term graph.

2As mentioned in the introduction, see [SGM02] for another proof of this with other means.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 17

The following are graphic representations of some term graphs.

/.-,()*+f

�� ��
g

��
f

��✟✟
✟✟
✟

��✻
✻✻

✻

g

��

h

⊥

f

��%%

/.-,()*+g

��✞✞
✞✞
✞

⊥

/.-,()*+f

��

��
g

��
f

��✟✟
✟✟

��✻
✻✻

✻✻

⊥ g

��
⊥

The root is the only vertex drawn inside a circle.
There are some classes of paths which are particularly relevant for our purposes.

Definition 4.3 (Path). A path v1, . . . , vn in a labelled graph G = (V, α, δ) is said to
be:
• A constructor path iff for every 1 ≤ i ≤ n, the symbol δ(vi) is a constructor;
• A pattern path iff for every 1 ≤ i ≤ n, δ(vi) is either a constructor symbol or is undefined;
• A left path iff n ≥ 1, the symbol δ(v1) is a function symbol and v2, . . . , vn is a pattern
path.

Definition 4.4 (Homomorphism). A homomorphism between two labelled graphs G =
(VG, αG, δG) and H = (VH , αH , δH) over the same signature Σ is a function ϕ from VG to
VH preserving the term graph structure. In particular

δH(ϕ(v)) = δG(v)

αH(ϕ(v)) = ϕ∗(αG(v))

for any v ∈ dom(δ), where ϕ∗ is the obvious generalization of ϕ to sequences of vertices. An
homomorphism between two term graphs G = (VG, αG, δG, rG) and H = (VH , αH , δH , rH)
is a homomorphism between (VG, αG, δG) and (VH , αH , δH) such that ϕ(rG) = rH . Two
labelled graphs G and H are isomorphic iff there is a bijective homomorphism from G to
H; in this case, we write G ∼= H. Similarly for term graphs.

In the following, we will consider term graphs modulo isomorphism, i.e., G = H iff
G ∼= H. Observe that two isomorphic term graphs have the same graphical representation.

Definition 4.5 (Graph Rewrite Rule). A graph rewrite rule over a signature Σ is a triple
ρ = (G, r, s) such that:
• G is a labelled graph;
• r, s are vertices of G, called the left root and the right root of ρ, respectively.
• Any path starting in r is a left path.

18 U. DAL LAGO AND S. MARTINI

The following are examples of graph rewrite rules, assuming a to be a function symbol
and b, c, d to be constructors:

/.-,()*+f

�� ��
g

��
p

��✞✞
✞✞
✞

��✻
✻✻
✻

g

��

h

⊥

/.-,()*+f

��%%

g

��✞✞
✞✞

⊥

/.-,()*+f

��✞✞
✞✞
✞

��✼
✼✼

✼✼
h

g

��

g

��
⊥ ⊥

Definition 4.6 (Subgraph). Given a labelled graph G = (VG, αG, δG) and any vertex v ∈
VG, the subgraph of G rooted at v, denoted G ↓ v, is the term graph (VG↓v, αG↓v , δG↓v , rG↓v)
where
• VG↓v is the subset of VG whose elements are vertices which are reachable from v in G.
• αG↓v and δG↓v are the appropriate restrictions of αG and δG to VG↓v.
• rG↓v is v.

Definition 4.7 (Redex). Given a labelled graph G, a redex for G is a pair (ρ, ϕ), where ρ
is a rewrite rule (H, r, s) and ϕ is a homomorphism between H ↓ r and G such that for any
vertex v ∈ VH↓r with v /∈ dom(δH↓r), any path starting in ϕ(v) is a constructor path.

The last condition in the definition of a redex is needed to capture the call-by-value
nature of the rewriting process.

Given a term graph G and a redex ((H, r, s), ϕ), the result of firing the redex is another
term graph obtained by successively applying the following three steps to G:

1. The build phase: create an isomorphic copy of the portion of H ↓ s not contained in
H ↓ r, and add it to G, obtaining J . The underlying ordering and labelling functions
are defined in the natural way.

2. The redirection phase: all edges in J pointing to ϕ(r) are replaced by edges pointing to
the copy of s. If ϕ(r) is the root of G, then the root of the newly created graph will be
the newly created copy of s. The graph K is obtained.

3. The garbage collection phase: all vertices which are not accessible from the root of K
are removed. The graph I is obtained.

We will write G
(H,r,s)
−→ I (or simply G → I, if this does not cause ambiguity) in this case.

As an example, consider the term graph G and the rewrite rule ρ = (H, r, s):

/.-,()*+f

��✞✞
✞✞
✞

��✻
✻✻
✻✻

g

��

foo

zz✉✉✉
✉✉
✉✉
✉

h

G

/.-,()*+f

��

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻ g

��
g

��

foo

��
⊥ h

ρ

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 19

There is a homomorphism ϕ from H ↓ r to G. In particular, ϕ maps r to the rightmost
vertex in G. Applying the build phase and the redirection phase we get J and K as follows:

/.-,()*+f

��✠✠
✠✠
✠

��✹
✹✹
✹✹

g

��
g

��

foo

zz✈✈✈
✈✈
✈✈
✈

f

rr

yy

h

J

/.-,()*+f

��✞✞
✞✞
✞✞

// g

��
g

��

foo

zztt
tt
tt
tt

f

rr

xx

h

K

Finally, applying the garbage collection phase, we get the result of firing the redex (ρ, ϕ):

/.-,()*+f

��

��
g

��
f

��✠✠
✠✠
✠

��✻
✻✻

✻

g // h

I

Definition 4.8. A constructor graph rewrite system (CGRS) over a signature Σ consists
of a set G of graph rewrite rules on Σ.

4.1. From Term Rewriting to Graph Rewriting. Any term t over a signature Σ can
be turned into a graph [t] in the obvious way: take as [t] the abstract syntax tree of t, where
vertices are in one-to-one correspondence with symbol occurrences in t. Conversely, any
term graph G over Σ can be turned into a term 〈G〉 over Σ by simply unfolding the graph,
that is applying (the label of) any vertex to (the terms obtained as unfolding of) its sons
(remember: we only consider acyclic graphs here). We omit the boring formal definitions
of both [·] and 〈·〉; it is clear that for any term t, 〈[t]〉 = t, while in general [〈G〉] is not equal
to G, since the sharing present in G is lost during the unfolding.

Definition 4.9. Given a constructor rewriting system R over Σ, the corresponding con-
structor graph rewriting system [R] is defined by translating the terms with [·] and by
translating any term rewrite rule t → u over Σ into a graph rewrite rule (G, r, s) as fol-
lows:
• Take the graphs [t] and [u] (which are trees, in fact).
• From the union of these two trees, share those nodes representing the same variable in
t and u. This is G.

• Take r to be the root of t in G and s to be the root of u in G.

As an example, consider the rewrite rule

f(g(x), y) → g(f(y, f(y, x))).

20 U. DAL LAGO AND S. MARTINI

Its translation as a graph rewrite rule is the following:

/.-,()*+f

��✟✟
✟✟
✟

��✻
✻✻
✻✻

g

��
g

��

⊥ foo

��✺
✺✺

✺

⊥ f

ZZ

gg

Given a constructor rewriting system R, it is easy to realize that the following invariant
is preserved while performing rewriting in [R]: whenever any vertex v can be reached by two
distinct paths starting at the root (i.e., v is shared), any path starting at v is a constructor
path. A term graph satisfying this invariant is said to be constructor-shared.

Constructor-sharedness holds for term graphs coming from terms and is preserved by
graph rewriting:

Lemma 4.10. For every closed term t, [t] is constructor-shared. Moreover, if G is closed

and constructor-shared and G → I in [R], then I is constructor-shared.

Proof. The fact that [t] is constructor-shared for every t follows from the way the [·] map
is defined: it does not introduce any sharing. Now, suppose G is constructor-shared and

G
(H,r,s)
−→ I

where (H, r, s) corresponds to a term rewrite rule t → u. The term graph J obtained
from G by the build phase is itself constructor-shared: it is obtained from G by adding
some new nodes, namely an isomorphic copy of the portion of H ↓ s not contained in
H ↓ r. Notice that J is constructor-shared in a stronger sense: any vertex which can
be reached from the newly created copy of s by two distinct paths must be a constructor
path. This is a consequence of (H, r, s) being a graph rewrite rule corresponding to a term
rewrite rule t → u, where the only shared vertices are those where the labelling function is
undefined. The redirection phase preserves itself constructor-sharedness, because only one
pointer is redirected (the vertex is labelled by a function symbol) and the destination of
this redirection is a vertex (the newly created copy of s) which had no edge incident to it.
Clearly, the garbage collection phase preserves constructor-sharedness.

Lemma 4.11. A closed term graph G in [R] is a normal form iff 〈G〉 is a normal form.

Proof. Clearly, if a closed term graph G is in normal form, then 〈G〉 is a term in normal
form, because each redex in G translates to a redex in 〈G〉. On the other hand, if 〈G〉 is
in normal form, then G is in normal form: each redex in 〈G〉 translates back to a redex in
G.

Reduction at the level of graphs correctly simulates reduction at the level of terms, but
only if the underlying graphs are constructor shared:

Lemma 4.12. If G is closed and constructor-shared, and G → I in [R], then 〈G〉 → 〈I〉
in R.

Proof. The fact that each reduction step starting in G can be mimicked in 〈G〉 is known
from the literature. If G is constructor-shared, then the simulation is done in exactly one
reduction step, because any redex in a constructor-shared term graph cannot be shared.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 21

When G in not constructor-shared, a counterexample can be easily built. Consider the
term rewrite rule f(h,h) → h and the following term graph:

/.-,()*+f

�� 		
f

��✟✟
✟✟

��✻
✻✻

✻

h h

It corresponds to f(f(h,h), f(h,h)), and it is not constructor-shared, since the shared vertex
a is not a constructor. It rewrites in one step to

/.-,()*+f

�� 		
h

while the term f(f(h,h), f(h,h)) rewrites to f(h,h) in two steps.
As can be expected, graph reduction is also complete with respect to term reduction,

with the only proviso that term graphs must be constructor-shared:

Lemma 4.13. If t → u in R, G is constructor-shared and 〈G〉 = t, then G → I in [R],
where 〈I〉 = u.

Theorem 4.14 (Graph Reducibility). For every constructor rewrite system R over Σ and

for every term t over Σ, the following two conditions are equivalent:

1. t →n u in R, where u is in normal form;

2. [t] →n G in [R], where G is in normal form and 〈G〉 = u.

Proof. Suppose t →n u, where u is in normal form. Then, by applying Lemma 4.13, we
obtain a term graph G such that [t] →n G and 〈G〉 = u. By Lemma 4.10, G is constructor-
shared and, by Lemma 4.11, it is in normal form. Now, suppose [t] →n G where 〈G〉 = u and
G is in normal form. By applying n times Lemma 4.12, we obtain that 〈[t]〉 →n 〈G〉 = u.
But 〈[t]〉 = t and u is a normal form by Lemma 4.11, since [t] and G are constructor shared
due to Lemma 4.10.

There are term rewrite systems which are not graph reducible, i.e. for which the two
conditions of Theorem 4.14 are not equivalent (see [BEG+86]). However, any orthogonal

constructor rewrite system is graph reducible, due to the strict constraints on the shape
of rewrite rules [Plu90]. This result can be considered as a by-product of our analysis, for
which graph rewriting is only instrumental.

4.2. Lambda-Terms Can Be Efficiently Reduced by Graph Rewriting. As a corol-
lary of Theorems 4.14 and 2.9, we may reduce λ-terms using term graphs. To this purpose,
we apply the construction of the previous section to the OCRS Φ that we defined in Sec-
tion 2. Let then Θ = [Φ]:

Corollary 4.15. Let M ∈ Λ be a closed λ-term. The following two conditions are equiva-

lent:

1. M →n
v N where N is in normal form;

2. [[M]Φ] →
n G where 〈〈〈G〉〉〉Λ = N and G is in normal form.

22 U. DAL LAGO AND S. MARTINI

Let us now analyze more closely the combinatorics of graph rewriting in Θ, so that we
can obtain information on the efficiency of this simulation.
• Consider a closed λ-term M and a term graph G such that [[M]Φ] →

∗ G. By Proposi-
tion 1 and Lemma 4.12, for every constructor cx,N appearing as a label of a vertex in
G, N is a subterm of M .

• As a consequence, if [[M]Φ] →
∗ G → H, then the difference |H| − |G| cannot be too big:

at most |M |. Therefore, if [[M]Φ] →
n G then |G| ≤ (n + 1)|M |. Here, we exploit in an

essential way the possibility of sharing constructors.
• Whenever [[M]Φ] →

n G, computing a graph H such that G → H takes polynomial time
in |G|, which is itself polynomially bounded by n and |M |.

Hence (recall that Timev(M) is the number of weak call-by-value beta steps to normal
form):

Theorem 4.16. There is a polynomial p : N2 → N such that for every λ-term M , the

normal form of [[M]Φ] can be computed in time at most p(|M |,Timev(M)).

This cannot be achieved when using explicit representations of λ-terms. Moreover,
reading back a λ-term from a term graph can take exponential time.

We can complement Theorem 4.16 with a completeness statement — any universal
computational model with an invariant cost model can be embedded in the λ-calculus with
a polynomial overhead. We can exploit for this the analogous result we proved in [DLM08]
(Section 4, Theorem 1) — the unitary cost model is easily proved to be more parsimonious
than the difference cost model considered in [DLM08].

Theorem 4.17. Let f : Σ∗ → Σ∗ be computed by a Turing machine M in time g. Then,

there are a λ-term NM and a suitable encoding p·q : Σ∗ → Λ such that NMpvq normalizes

to pf(v)q in O(g(|v|)) beta steps.

The encoding p·q mentioned in the theorem depends only on (the cardinality of) Σ (but
not on the Turing machine). Interestingly enough it exploits once again the scheme that we
used in Definition 3.1: encode the empty string ε as a zero-ary constructor, and any symbol
in Σ as a unary constructor (see [DLM08] for details).

5. Variations: Call-by-Name Reduction

In the previous sections, λ-calculus was endowed with weak call-by-value reduction. The
same technique, however, can be applied to weak call-by-name reduction, as we will sketch
in this section. Λ is now endowed with a relation →h defined as follows:

(λx.M)N →h M{N/x}

M →h N

ML →h NL

Similarly to the call-by-value case, Timeh(M) stands for the number of reduction steps to
the normal form of M (if any). Since the relation →h is deterministic (i.e., functional),
Timeh(M) is well-defined.

We need another OCRS, called Ψ, which is similar to Φ but designed to simulate weak
call-by-name reduction:
• The signature ΣΨ includes the binary function symbol app and constructor symbols cx,M
for every M ∈ Λ and every x ∈ Υ, exactly as ΣΦ. Moreover, there is another binary

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 23

constructor symbol capp. To every term M ∈ Λ we can associate terms {M}Ψ, [M]Ψ ∈
V(Ψ,Υ) as follows:

{x}Ψ = x

{λx.M}Ψ = cx,M (x1, . . . , xn), where FV(λx.M) = x1, . . . , xn

{MN}Ψ = capp({M}Ψ, {N}Ψ)

[x]Ψ = x

[λx.M]Ψ = cx,M (x1, . . . , xn), where FV(λx.M) = x1, . . . , xn

[MN]Ψ = app([M]Ψ, {N}Ψ)

Notice that {·}Ψ maps λ-terms to constructor terms, while terms obtained via [·]Ψ can
contain function symbols. The “official” translation of a term M is thus [M]Ψ, where
only the applications “on the spine” of M are encoded with app. All other applications
are frozen by the constructor capp.

• The rewrite rules in RΨ are all the rules in the following form:

app(cz,z, capp(w, f)) → app(w, f)

app(cz,z, cx,M (x1, . . . , xn)) → cx,M (x1, . . . , xn)

app(cz,w(capp(f, g)), h) → app(f, g)

app(cz,w(cx,M (x1, . . . , xn)), h) → cx,M (x1, . . . , xn)

app(cy,N (y1, . . . , ym), y) → [N]Ψ

where M ranges over λ-terms, N ranges over abstractions and applications, FV(λx.M) =
x1, . . . , xn and FV(λy.N) = y1, . . . , ym. These rewrite rules are said to be ordinary rules.
We also need the following administrative rule:

app(capp(x, y), z) → app(app(x, y), z).

The CTRS Ψ is more complicated than Φ, because we need to force reduction to happen only
in head position. The applications app (on the spine) may be fired immediately. Observe,
however, that the main rewriting rule (the last of the ordinary ones) is restricted to those
cy,N where N is not a variable. When N is a single variable, the corresponding beta redex
would be either (λx.x)L or (λz.w)L, with w free. In the former case, an application at the
top level of L (encoded as a capp at this point) would become the top level application of
the spine of the reduct: the first ordinary reduction rule handles this case, unfreezing capp

into app. When, on the other hand, the encoded redex is (λz.w)L, we do not need to worry
for L, which will be discarded, but in the term-reduction we must take care of the eventual
substitution that may occur for w: the term substituted for w may have a top level frozen
application capp that must be converted into an app — this is the role of the third ordinary
reduction rule. The second and fourth reduction rules just handle the remaining cases (they
would be instances of the last ordinary rule if this was not restricted to the non-variable
cases). A last remark on the administrative rule. There are never administrative redexes in
the translation [M]Ψ of a term. During reduction, however, by the effect of the other rules
a frozen application (a capp) may appear on the spine. The administrative rule recognizes
this situation and unfreezes the application.

24 U. DAL LAGO AND S. MARTINI

As usual, to every term t ∈ V(Ψ,Υ) we can associate a term 〈t〉Λ:

〈x〉Λ = x

〈app(u, v)〉Λ = 〈capp(u, v)〉Λ = 〈u〉Λ〈v〉Λ

〈cx,M (t1, . . . tn)〉Λ = (λx.M){〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}

where FV(λx.M) = x1, . . . , xn. A term t ∈ T (Ψ) is canonical if either t = cx,M(t1 . . . , tn) ∈
C(Ψ) or t = app(u, v) where u is canonical and v ∈ C(Ψ).

Lemma 5.1. For every closed M ∈ Λ, [M]Ψ is canonical.

Proof. By a straightforward induction on M .

The obvious variation on Equation (2.1) holds here:

〈[M]Ψ{t1/x1, . . . , tn/xn}〉Λ = M{〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn}. (5.1)

Ψ mimics call-by-name reduction in much the same way Φ mimics call-by-value reduction.
However, one reduction step in the λ-calculus corresponds to n ≥ 1 steps in Ψ, although n
is kept under control:

Lemma 5.2. Suppose that t ∈ T (Ψ) is canonical and that t → u. Then there is a natural

number n such that:

1. 〈t〉Λ →h 〈u〉Λ;
2. There is a canonical term v ∈ T (Ψ) such that u →n v;
3. |w|app = |u|app +m whenever u →m w and m ≤ n;
4. 〈w〉Λ = 〈u〉Λ whenever u →m w and m ≤ n.

Proof. A term t is said to be semi-canonical iff t = app(u, v), where v ∈ C(Ψ) and u is either
semi-canonical or is itself an element of C(Ψ). We now prove that if t is semi-canonical,
there there are a natural number n and a canonical term u such that:
• t →n u;
• |v|app = |t|app +m whenever t →m v and m ≤ n;
• 〈v〉Λ = 〈t〉Λ whenever t →m v and m ≤ n.
We proceed by induction on |t|. By definition t is in the form app(w, d); we have three
cases:
• w is semi-canonical. Then, we get what we want by induction hypothesis.
• w is in C(Ψ) and has the form cx,M (t1, . . . , tm). Then, n = 0 and t is itself canonical.
• w is in C(Ψ) and has the form capp(e, f). Then

t = app(capp(e, f), d) → app(app(e, f), d).

Apply now the induction hypothesis to app(e, f) (since its length is strictly smaller than
|t|).

We can now proceed as in Lemma 2.7, since whenever t rewrites to u by one of the ordinary
rules, u is semi-canonical.

Lemma 5.3. A canonical term t ∈ T (Ψ) is in normal form iff 〈t〉Λ is in normal form.

Proof. We first prove that any canonical normal form t can be written as cx,M (t1, . . . , tn),
where t1, . . . , tn ∈ C(Ψ). We proceed by induction on t:
• If t = cx,M (t1, . . . , tn), then the thesis holds.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 25

• If t = app(u, v), then u is canonical and in normal form, hence in the form cx,M (t1, . . . , tn)
by induction hypothesis. As a consequence, t is not a normal form, which is a contra-
diction.

We can now prove the statement of the lemma, by distinguishing two cases:
• If t = cx,M (t1, . . . , tn), where t1, . . . , tn ∈ C(Ψ), then t is in normal form and 〈t〉Λ is an
abstraction, hence a normal form.

• If t = app(u, v), then t cannot be a normal form, since u is canonical and in normal
form and, as a consequence, it can be written as cx,M(t1, . . . , tn).

This concludes the proof.

Observe that this property holds only if t is canonical: a non-canonical term can reduce
to another one (canonical or not) even if the underlying λ-term is a normal form.

Lemma 5.4. If M →h N , t is canonical and 〈t〉Λ = M , then t → u, where 〈u〉Λ = N and

|u|app + 1 ≥ |t|app.

Proof. Analogous to the one of Lemma 2.8 for the first part of the statement. For the bound
on the number of app, argument similarly to the proof of Lemma 5.2.

The slight mismatch between call-by-name reduction in Λ and reduction in Ψ is anyway
harmless globally. As we now show, the total number of reduction steps in Ψ is at most
two times as large as the total number of call-by-name reduction steps in Λ.

Theorem 5.5 (Term Reducibility). Let M ∈ Λ be a closed term. The following two

conditions are equivalent:

1. M →n
h N where N is in normal form;

2. [M]Ψ →m t where 〈t〉Λ = N and t is in normal form.

Moreover n ≤ m ≤ 2n.

Proof. Suppose M →n
h N , where N is in normal form. M is closed and, by Lemma 5.1,

[M]Ψ is canonical. By iterating over Lemma 5.2 and Lemma 5.4, we obtain the existence
of a term t such that 〈t〉Λ = u, t is in normal form and [M]Ψ →m t, where m ≥ n and

|t|app − |[M]Ψ|app ≥ (m− n)− n.

Since |t|app = 0 (t is in normal form), m ≤ 2n. If [M]Ψ →m t where 〈t〉Λ = N and t is in
normal form, then by iterating over Lemma 5.2 we obtain that M →n

h N where n ≤ m ≤ 2n
and N is in normal form.

Ξ is the graph rewrite system corresponding to Ψ, in the sense of Section 4. Exactly as
for the call-by-value case, computing the normal form of (the graph representation of) any
term takes time polynomial in the number of reduction steps to normal form:

Theorem 5.6. There is a polynomial p : N2 → N such that for every λ-term M , the normal

form of [[M]Ψ]Ξ can be computed in time at most p(|M |,Timeh(M)).

On the other hand, we cannot hope to directly reuse the results in Section 3 when
proving the existence of an embedding of OCRSs into weak call-by-name λ-calculus: the
same λ-term can have distinct normal forms in the two cases. It is widely known, however,
that a continuation-passing translation can be used to simulate call-by-value reduction by
call-by-name reduction [Plo75]. The only missing tale is about the relative performances:
do terms obtained via the CPS translation reduce (in call-by-name) to their normal forms
in a number of steps which is comparable to the number of (call-by-value) steps to normal

26 U. DAL LAGO AND S. MARTINI

form for the original terms? We conjecture the answer is “yes”, but we leave the task of
proving that to a future work.

6. Conclusions

We have shown that the most näıve cost models for weak call-by-value and call-by-name
λ-calculus (each beta-reduction step has unitary cost) and orthogonal constructor term
rewriting (each rule application has unitary cost) are linearly related. Since, in turn, this
cost model for λ-calculus is polynomially related to the actual cost of reducing a λ-term on
a Turing machine, the two machine models we considered are both reasonable machines,
when endowed with their natural, intrinsic cost models (see also Gurevich’s opus on Abstract
State Machine simulation “at the same level of abstraction”, e.g. [Gur01]). This strong (the
embeddings we consider are compositional), complexity-preserving equivalence between a
first-order and a higher-order model is the most important technical result of the paper.

Ongoing and future work includes the investigation of how much of this simulation
could be recovered either in a typed setting (see [SU99] for some of the difficulties), or in
the case of λ-calculus with strong reduction, where we reduce under an abstraction. Novel
techniques have to be developed, since the analysis of the present paper cannot be easily
extended to these cases.

References

[BC92] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the polytime
functions. Computational Complexity, 2:97–110, 1992.

[BEG+86] H. Barendregt, M. Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, and M. Sleep. Term graph
rewriting. In J. de Bakker, A. Nijman, and P. Treleaven, editors, Volume II: Parallel Languages
on PARLE: Parallel Architectures and Languages Europe, pages 141–158. Springer-Verlag, 1986.

[DLM08] Ugo Dal Lago and Simone Martini. The weak lambda-calculus as a reasonable machine. Theo-
retical Computer Science, 398:32–50, 2008.

[DLM09] Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the lambda-calculus.
In Automata, Languages and Programming, 36th International Colloquium, Proceedings, volume
5556 of LNCS, pages 163–174. Springer, 2009.

[DLM10] Ugo Dal Lago and Simone Martini. Derivational complexity is an invariant cost model. In Foun-
dational and Practical Aspects of Resource Analysis, First International Workshop, Proceedings,
volume 6324 of LNCS, pages 88–101. Springer, 2010.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
[Gur01] Yuri Gurevich. The sequential ASM thesis. In Current trends in theoretical computer science,

pages 363–392. World Scientific, 2001.
[Jon87] Simon Peyton Jones. The Implementation of Functional Programming Languages. Prentice Hall,

1987.
[Lei95] Daniel Leivant. Ramified recurrence and computational complexity I: word recurrence and poly-

time. In Feasible Mathematics II, pages 320–343. Birkhäuser, 1995.
[MM00] Jean-Yves Marion and Jean-Yves Moyen. Efficient first order functional program interpreter with

time bound certifications. In Logic for Programming and Automated Reasoning, 7th International
Conference, Proceedings, volume 1955 of LNCS, pages 25–42. Springer, 2000.

[Par90] Michel Parigot. On the representation of data in lambda-calculus. In Computer Science Logic,
3rd International Workshop, Proceedings, volume 440 of LNCS, pages 309–321. Springer, 1990.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer
Science, 1(2):125–159, 1975.

[Plu90] Detlef Plump. Graph-reducible term rewriting systems. In Graph-Grammars and Their Applica-
tion to Computer Science, volume 532 of LNCS, pages 622–636. Springer, 1990.

ON CONSTRUCTOR REWRITE SYSTEMS AND THE LAMBDA-CALCULUS 27

[PR93] Michel Parigot and Paul Rozière. Constant time reductions in lambda-caculus. In Mathematical
Foundations of Computer Science 1993, 18th International Symposium, Proceedings, volume 711
of LNCS, pages 608–617. Springer, 1993.

[SGM02] D. Sands, J. Gustavsson, and A. Moran. Lambda calculi and linear speedups. In The Essence of
Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, number
2566 in LNCS, pages 60–82. Springer, 2002.

[SU99] Zdzislaw Splawski and Pawel Urzyczyn. Type fixpoints: Iteration vs. recursion. In Functional
Programming, 4th International Conference, Proceedings, pages 102–113. ACM, 1999.

[vEB90] Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages 1–66. MIT Press, 1990.

[Wad80] Christopher Wadsworth. Some unusual λ-calculus numeral systems. In J.P. Seldin and J.R. Hind-
ley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.
Academic Press, 1980.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Preliminaries
	2. From -Calculus to Constructor Term Rewriting
	2.1. An Example

	3. From Constructor Term Rewriting to the -Calculus
	3.1. An Example

	4. Graph Representation
	4.1. From Term Rewriting to Graph Rewriting
	4.2. Lambda-Terms Can Be Efficiently Reduced by Graph Rewriting

	5. Variations: Call-by-Name Reduction
	6. Conclusions
	References

