
Logical Methods in Computer Science

Vol. 8(3:18)2012, pp. 1–27

www.lmcs-online.org

Submitted Jul. 19, 2006

Published Sep. 19, 2012

WEAK ALTERNATING TIMED AUTOMATA

PAWE L PARYS a AND IGOR WALUKIEWICZ b

a Warsaw University, Poland

b CNRS and Bordeaux University, France

Abstract. Alternating timed automata on infinite words are considered. The main result
is a characterization of acceptance conditions for which the emptiness problem for these
automata is decidable. This result implies new decidability results for fragments of timed
temporal logics. It is also shown that, unlike for MITL, the characterisation remains the
same even if no punctual constraints are allowed.

1. Introduction

Timed automata [5] are widely used models of real-time systems. They are obtained from
finite automata by adding clocks that can be reset and whose values can be compared with
constants. The crucial property of timed automata is that their emptiness is decidable.
Some other properties, like universality, are undecidable though. Alternating timed au-
tomata have been introduced in [16, 22] following a sequence of results [1, 2, 21] indicating
that a restriction to one clock can influence decidability. Indeed, the emptiness and univer-
sality problems for one clock alternating timed automata are decidable over finite words. On
the contrary, over infinite words both problems remain undecidable even for automata with
one clock [25, 17]. All undecidability arguments rely on the ability to express “infinitely
often” properties. Our main result shows that once these kind of properties are forbidden
the emptiness problem is decidable.

To say formally what are “infinitely often” properties we look at the theory of infinite
sequences. We borrow from that theory the notion of an index of a language. It is known
that the index hierarchy is infinite with “infinitely often” properties almost at its bottom.
From this point of view, the undecidability result mentioned above leaves open the possibil-
ity that safety properties and “almost always” properties can be decidable. This is indeed
what we prove here.

The automata theoretic approach to temporal logics [27] is by now a standard way of
understanding these formalisms. For example, we know that the modal µ-calculus corre-
sponds to all automata, and LTL to very weak alternating automata, or equivalently, to

1998 ACM Subject Classification: F.1.1, F.4.3.
Key words and phrases: verification, timed systems, alternating timed automata.

a Author supported by Polish government grant no. N206 008 32/0810.
b Author supported by project DOTS (ANR-06-SETI-003).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(3:18)2012

c© P. Parys and I. Walukiewicz
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. PARYS AND I. WALUKIEWICZ

counter-free nondeterministic automata [30]. By translating a logic to automata we can
clearly see combinatorial challenges posed by the formalism. We can also abstract from ir-
relevant details, such as a choice of operators for a logic. This approach was very beneficial
for the development of logical formalisms over sequences.

An automata approach has been missing in timed models for an obvious reason: no
standard model of timed automata is closed under boolean operations. Event-clock au-
tomata [7] may be considered as an exception, but the price to pay is a restriction on the
use of clocks. Alternating timed automata seem to be a good model, although the unde-
cidability result over infinite words shows that the situation is more difficult than for finite
sequences.

The idea of restricting to one clock automata dates back at least to [15]. Alternating
timed automata were studied in a number of papers [17, 25, 4, 3]. Our main result is
that the emptiness problem for alternating timed automata with one clock and “almost
always” conditions is decidable. A particular case of such automata is when all the states
are accepting. This case was considered by Ouaknine and Worrell [24] who have shown
decidability of the emptiness problem under some additional restriction on the form of
transitions.

The above mentioned result of Ouaknine and Worrell allowed them to identify a de-
cidable fragment of MTL called Safety MTL. In the present paper we show that our main
theorem allows to get a decidable fragment of TPTL [8] with one variable, that we call
Constrained TPTL. This fragment contains Safety MTL, allows all “eventually” formulas,
and more liberal use of clock constraints. Its syntax has also some similarities with another
recently introduced logic: FlatMTL [12, 13]. We give some elements of comparison between
the logics later in the paper. In brief, the reason why Constrained TPTL is not strictly
more expressive than FlatMTL is that the later includes MITL [6]. This is a sub-logic of
MTL where punctualilty constraints are not allowed.

The case of MITL makes it natural to ask what happens to alternating timed automata
when we disallow punctual constraints. This is an interesting question also because all
known undecidability proofs have used punctual constraints in an essential way. Our second
main result (Theorem 5.2), says that the decidability frontier does not change even if we
only allow to test if the value of a clock is bigger than 1. Put it differently, it is not only the
lack of punctual constraints, but also the very weak syntax of the logic that makes MITL
decidable.

We should also discuss the distinction between continuous and pointwise semantics. In
the latter, the additional restriction is that formulas are evaluated only in positions when an
action happens. So the meaning of F(x=1)α in the continuous semantics is that in one time
unit from now formula α holds, while in the pointwise semantics we additionally require
that there is an action one time unit from now. Pointwise semantics is less natural if one
thinks of encoding properties of monadic predicates over reals. Yet, it seems sufficient for
descriptions of behaviors of devices, like timed automata, over time [26]. Here we consider
the pointwise semantics simply because the emptiness of alternating timed automata in
continuous semantics is undecidable even over finite words. At present it seems that an
approach through compositional methods [14] is more suitable to deal with continuous
semantics.

Our work inserts itself also into the line of research using well-quasi-orders to solve de-
cidability questions. Particularly close are models of lossy counter machines and their duals:
machines with incremental errors. Ouaknine and Worrell have shown the undecidability of

WEAK ALTERNATING TIMED AUTOMATA 3

the emptiness problem for ATA over infinite words by reduction to the repeated reachability
problem for incremental machines with occurrence testing (ICMOT) [23]. While paper [11]
gives a finer analysis of the complexity of several problems for ICMOT, using well-quasi
orders it is easy to show that the existence of a computation satisfying “almost always”
property is decidable for ICMOT. Nevertheless this observation does not imply decidability
of the same problem for ATA, whose structure is more complicated. It is worth to men-
tion that checking the existence of a run satisfying “almost always” property is in general
more difficult than checking reachability. Recall for example that the former problem is not
decidable for lossy counter machines [18], while reachability is decidable for this model.

The depth of nesting of positive and negative conditions of type “infinitely often” is
reflected in the concept of the index of an automaton. Wagner [28], as early as in 1977,
established the strictness of the hierarchy of indices for deterministic automata on infinite
words. Weak conditions were first considered by Staiger and Wagner [29]. There are
several results testifying their relevance. For example Mostowski [19] has shown a direct
correspondence between the index of weak conditions and the alternation depth of weak
second-order quantifiers. For recent results on weak conditions see [20] and references
therein.

The next preliminary section is followed by a presentation of our main decidability
result (Theorem 3.1). Section 4 introduces Constrained TPTL, gives a translation of the
logic into a decidable class of alternating timed automata, and discusses relations with
FlatMTL. The last section presents the accompanying undecidability result (Theorem 5.2).

2. Preliminaries

A timed word over a finite alphabet Σ is a sequence

w = (a1, t1)(a2, t2) . . .

of pairs from Σ × R+. We require that the sequence {ti}i=1,2,... is strictly increasing and
unbounded. If ti describes the time when event ai has occurred then these restrictions
say that there cannot be two actions at the same time instance and that there cannot be
infinitely many actions in a finite time interval (non Zeno behavior).

We will consider alternating timed automata (ATA) with one clock [17]. Let x be this
clock and let Φ denote the set of all comparisons of x with constants, eg. (x < 1 ∧ x ≥ 0).

A one-clock ATA over an alphabet Σ is a tuple

A = 〈Q,Σ, qo, δ,Ω : Q→ N〉,

where Q is a finite set of states and Ω determines the parity acceptance condition. The
transition function of the automaton δ is a finite partial function

δ : Q× Σ× Φ
·
→ B+(Q× {nop, reset}),

where B+(Q×{nop, reset}) is the set of positive boolean formulas over atomic propositions
of the form ⊤, ⊥, and (q, f) with q ∈ Q and f ∈ {nop, reset}.

Intuitively, automaton being in a state q, reading a letter a, and having a clock valuation
satisfying θ can proceed according to the positive boolean formula δ(q, a, θ). It means that if
a formula is a disjunction then it chooses one of the disjuncts to follow, if it is a conjunction
then it makes two copies of itself each following one conjunct. If a formula is “atomic”, i.e.,
of the form (q, reset) or (q, nop) then the automaton changes the state to q and either sets

4 P. PARYS AND I. WALUKIEWICZ

the value of the clock to 0 or leaves it unchanged, respectively. To simplify the definition
of acceptance there is also one more restriction on the transition function:

(Partition) For every q ∈ Q, a ∈ Σ and v ∈ R+, there is at most one θ s.t.
δ(q, a, θ) is defined, and v satisfies θ.

It is easy to transform an automaton to this form.
The acceptance condition of the automaton determines which infinite sequences of states

(runs of the automaton) are accepting. A sequence q1, q2, . . . satisfies:

• weak parity condition if min{Ω(qi) : i = 1, 2, . . . } is even,
• strong parity condition if lim inf i=1,2,...Ω(qi) is even.

Observe that the difference between weak and strong conditions is that in the weak case
we consider all occurrences of states and in the strong case only those that occur infinitely
often. In this paper we will mostly consider automata with weak conditions. Whenever we
will be considering strong conditions we will say it explicitly.

For an alternating timed automaton A and a timed word w = (a1, t1)(a2, t2) . . . we
define the acceptance game GA,w between two players: Adam and Eve. Intuitively, the
objective of Eve is to accept w, while the aim of Adam is the opposite. A play starts at the
initial configuration (q0, 0). It consists of potentially infinitely many phases. The (k+1)-th
phase starts in (qk, vk), ends in some configuration (qk+1, vk+1) and proceeds as follows. Let
v′ := v + tk+1 − tk. Let θ be a unique (by the partition condition) constraint such that v′

satisfies θ and δ(qk, ak+1, θ) is defined; if there is no such θ then Eve is blocked. Now the
outcome of the phase is determined by the formula b = δ(qk, ak+1, θ). There are four cases:

• b = b1∧b2: Adam chooses one of subformulas b1, b2 and the play continues with b replaced
by the chosen subformula;

• b = b1 ∨ b2: dually, Eve chooses one of subformulas;
• b = (q, f) ∈ Q × {nop, reset}: the phase ends with the result (qk+1, vk+1) := (q, f(v′))
and a new phase starts from this configuration;

• b = ⊤,⊥: the play ends.

The winner of such a play is Eve if she is not blocked, and the sequence ends in ⊤, or it
is infinite and the states appearing in the sequence satisfy the acceptance condition of the
automaton.

Formally, a play is a finite sequence of consecutive game positions of the form 〈k, q, v〉
or 〈k, q, v, b〉, where k is the phase number, b a boolean formula, q a location and v a
valuation. A strategy of Eve is a mapping which assigns to each such sequence ending in
Eve’s position a next move of Eve. A strategy is winning if all the plays respecting the
strategy are winning.

Definition 2.1 (Acceptance). An automaton A accepts w iff Eve has a winning strategy
in the game GA,w. By L(A) we denote the language of all timed words w accepted by A.

The Mostowski index of an automaton with the, strong or weak, acceptance con-
dition given by Ω is the pair consisting of the minimal and the maximal value of Ω:
(min(Ω(Q)),max(Ω(Q))). We may assume without a loss of generality that min(Ω(Q)) ∈
{0, 1}. (Otherwise we can scale down the rank by Ω(q) := Ω(q)−2.) Automata with strong
conditions of index (0, 1) are traditionally called Büchi automata and their acceptance con-
dition is given by a set of accepting states Q+ ⊆ Q; in our presentation these are states
with rank 0.

WEAK ALTERNATING TIMED AUTOMATA 5

3. Decidability for one-clock timed automata

We are interested in the emptiness problem for one clock ATA. As it was mentioned in
the introduction, the problem is undecidable for automata with strong Büchi conditions
(strong (0, 1) conditions). Here we will show a decidability result for automata with weak
acceptance conditions of index (0, 1).

Theorem 3.1. It is decidable whether a given one-clock alternating timed automaton with
weak (0, 1) condition accepts some non Zeno timed word. The complexity of the problem is
non-primitive recursive.

The lower bound for the complexity holds already for automata over finite words [17].
So in the rest of this section we give a decidability proof.

Before we start, it will be useful to make a couple of remarks that allow to restrict the
form of automata. A weak (0, 1) automaton can be also presented as an automaton with
a strong (0, 1) condition where all transitions from an accepting state, state of rank 0, go
only to accepting states. Indeed, once the automaton sees a state of priority 0 then any
infinite run is accepting (but there may be runs that get blocked). In the following we will
write Q+ for accepting states and Q− for the other states. For automata presented in this
way the strong (0, 1) condition says simply: there are only finitely many states from Q−

in the run. So the automaton accepts if Eve has a strategy to reach ⊤, or to satisfy this
condition.

We can also make some restrictions on a form of the transition function. We can require
that every boolean formula that appears as a value of the function is in a disjunctive normal
form. Moreover, we can eliminate the⊥ and⊤ propositions. Proposition ⊥ can be simulated
by a state q⊥ from which there is no transition, and ⊤ by an accepting state q⊤ on which
the automaton loops on all letters. Observe that this is fine as we have put no restriction
on transitions going to accepting states. Finally, we can assume that every disjunct of every
transition of A has some pair with reset and some pair with nop. This can be guaranteed
by adding conjuncts (q⊤, nop) and (q⊤, reset).

To fix the notation we take a one clock ATA in a form as described above:

A = 〈Q,Σ, qo, δ,Q+ ⊆ Q〉.

This means that for every q, a, and θ, the formula δ(q, a, θ) is in a disjunctive normal form;
every disjunct contains a pair with nop and a pair with reset; there are no ⊤ or ⊥; if
q ∈ Q+ then only states from Q+ appear in the formula;

Our first step will be to construct some infinite transition system H(A), so that the
existence of an accepting run of A is equivalent to the existence of some good path in H(A).
In the second step we will use some structural properties of this transition system to show
decidability of the problem stated in the theorem.

3.1. An abstract transition system. The goal of this subsection is to define a transition
system H(A) such that existence of an accepting computation of A is reduced to existence
of some special infinite path in H(A) (Corollary 3.9). This system will be some abstraction
of the transition system of configurations of A. While H(A) will be infinite, it will have
some well-order structure and other additional properties that will permit to analyze it.

First, consider an auxiliary labeled transition system S(A) whose states are finite sets
of configurations, i.e., finite sets of pairs (q, v), where q ∈ Q and v ∈ R+. The initial

6 P. PARYS AND I. WALUKIEWICZ

position in S(A) is P0 = {(q0, 0)} and there are transitions of two types P
t
→֒ P ′ and

P
a
→֒ P ′. Transition P

t
→֒ P ′ is in S(A) iff P ′ can be obtained from P by changing every

configuration (q, v) ∈ P to (q, v + t). Transition P
a
→֒ P ′ is in S(A) iff P ′ can be obtained

from P by the following nondeterministic process:

• First, for each (q, v) ∈ P , do the following:
− let b = δ(q, a, θ) for the uniquely determined θ satisfied in v,
− choose one of disjuncts of b, say

(q1, r1) ∧ · · · ∧ (qk, rk) (k > 0),

− let Next(q, v) = {(qi, ri(v)) : i = 1 . . . k}.
• Then, let P ′ :=

⋃
(q,v)∈P Next(q, v).

Observe that there may be no P ′ such that P
a
→֒ P ′ because for some (q, v) ∈ P the value

δ(q, a, θ) required above is not defined.

Definition 3.2. We will call a sequence P0, P1, . . . of the states of S(A) accepting if the
states from Q− appear only in a finite number of Pi.

Lemma 3.3. A accepts an infinite timed word (a0, t0)(a1, t1) . . . iff there is an accepting
sequence in S(A):

P0
t0
→֒ P1

a0
→֒ P2

t1
→֒ P3

a1
→֒ P4 . . .

Proof. The right to left implication is obvious. For the left to right implication, recall that
acceptance of a word by an automaton is defined as existence of a winning strategy for Eve
in the acceptance game. This is a game with Büchi conditions, so if Eve has a winning
strategy, then she has a memoryless winning strategy. This strategy gives a run of the form
required by the lemma.

Our next goal is to remove time labels on transitions. But we cannot just erase them,
as then we will not be able to say if a word is Zeno or not. We start by introducing regions.

Let dmax denote the biggest constant appearing in δ, i.e., the transition function of the
automaton. Let set reg of regions be a partition of R+ into 2 · (dmax + 1) sets as follows:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (dmax − 1, dmax), {dmax}, (dmax,+∞)}.

There are three kinds of regions: bounded intervals (denoted regI), one-point regions (de-
noted regP), and one unbounded interval (dmax,+∞). We will use the notation Ii for the
region (i − 1, i). In a similar way, I∞ will stand for (dmax,+∞). For v ∈ R+, let reg(v)
denote the region v belongs to; and let fract(v) denote the fractional part of v.

Let us try to give an intuition behind the way time information will be eliminated.
Recall that a state P is a finite set of pairs (q, v). If v ∈ I∞ then the precise value of v
does not matter from the point of view of the automaton. For other values it is important
to look at their fractional parts. Among all v 6∈ I∞ appearing in P take the one with the
biggest fractional part. Then, by making the time pass we can get v to a new region without
changing the regions of valuations with smaller, but positive, fractional parts. Intuitively
this is the smallest delay that makes a visible change to P . We will introduce a special label
to signal when time progresses in this way. As integer valuation would force us to introduce
a cumbersome case distinction we will set things so that they can be avoided.

These remarks lead us to consider a new alphabet:

Σ = Σ ∪ {(delay, ε)} ∪ ({delay} × Σ),

WEAK ALTERNATING TIMED AUTOMATA 7

and three new kinds of transitions.
Transition on a will do the action and make some time pass without any valuation

changing the region.

P
a

−→ P ′ if P
a
→֒ P1

t1
→֒ P ′ for some P1, and t1 > 0 such that for every

(q, v) ∈ P , the value v + t1 is in the same region as v.

For a transition on a letter (delay, ε), pick a valuation v among these with reg(v) 6= I∞
with a maximal fract(v). The transition will make the time pass so that v goes to the next
interval region but all valuations with smaller fractional parts do not change their regions:

P
(delay,ε)
−→ P ′ if P

t1
→֒ P ′

1

t2
→֒ P ′ for some P ′

1 and t1, t2 > 0 such that there
is (q, v) ∈ P , with v + t1 being an integer and v + t1 + t2 in the following
interval region. Moreover, for all (q′, v′) ∈ P if fract(v) 6= fract(v′) then
the value v′ + t1 + t2 is in the same region as v′.

Finally, we come to the most complex (delay, a) transition. Even though we did not
allow transitions (delay, ε) to reach one-point regions, it is still important to be able to
execute actions in those regions. A transition on (delay, a) permits to reach a one-point
region, execute the action, and leave the region.

P
(delay,a)
−→ P ′ if P

t1
→֒ P1

a
→֒ P2

t2
→֒ P ′ for some P1, P2 and t1, t2 > 0 such that

there is (q, v) ∈ P , with v+t1 being an integer and v+t1+t2 in the following
interval region. Moreover for all (q′, v′) ∈ P if fract(v) 6= fract(v′) then
the value v′ + t1 + t2 is in the same region as v′.

The following lemma shows that with a new alphabet we can replace non Zeno condition
by a simple infinitary condition.

Lemma 3.4. There is a non Zeno accepting sequence in S(A):

P0
t0
→֒ P1

a0
→֒ P2

t1
→֒ P3

a1
→֒ P4 . . .

iff there is an accepting sequence

P0
σ0−→ P ′

1
σ1−→ P ′

2 . . . ,

where σ0, σ1, · · · ∈ Σ and (delay, ·) letters appear infinitely often in the sequence.

The next step in the construction is to abstract from valuations in the states of the
transition system. Intuitively, we will replace every valuation by its region. To compensate
for erasing fractional parts, we will also keep information about the relative order between
them. With the construction described in the definition below the states become words
from

Λ∗
I · Λ∞,

where ΛI = P(Q× regI) and Λ∞ = P(Q× {∞}).

Definition 3.5. For a state P of S(A) we define a word H(P) from Λ∗
I · Λ∞ as the one

obtained by the following procedure:

• replace each (q, v) ∈ P by a triple 〈q, reg(v), fract(v)〉 if v ≤ dmax (this yields a finite
set of triples)

• sort all these triples w.r.t. fract(v) (this yields a finite sequence of triples)
• group together triples having the same value of fract(v) (this yields a finite sequence of
finite sets of triples)

8 P. PARYS AND I. WALUKIEWICZ

• forget fract(v), that is, change every triple 〈q, reg(v), fract(v)〉 into a pair (q, reg(v))
(this yields a finite sequence of finite sets of pairs, a word in Λ∗

I).
• Add at the end the letter ({q : (q, v) ∈ P, v > dmax},I∞) ∈ Λ∞.

Finally, we can define H(A).

Definition 3.6. H(A) is a transition system which has Λ∗
I ×Λ∞ as a set of configurations,

and for every letter σ ∈ Σ there is a transition c
σ

−→ c′ if there are states P,P ′ of S(A)

such that P
a

−→ P ′ and H(P) = c, H(P ′) = c′.

Direct examination of the definition gives us the following.

Lemma 3.7. If H(P1) = H(P2) and P1
σ

−→ P ′
1 then P2

σ
−→ P ′

2 with H(P ′
1) = H(P ′

2).

Definition 3.8. We say that a path (equivalently: run, computation) in H(A) is good, if it
passes through infinitely many transitions labeled by letters (delay, ·). We say that a path
(equivalently: run, computation) in H(A) is accepting, if it is good and passes through only
finitely many configurations containing states from Q−.

Corollary 3.9. A accepts an infinite non Zeno timed word iff there is an accepting path in
H(A) starting in configuration ({(q0,I1)}, {∅, I∞}).

Proof. A accepts a non Zeno word iff there is a path in S(A) satisfying the acceptance
condition. By Lemma 3.4 it is equivalent to having a good path in S(A) with transitions
from the alphabet Σ satisfying the acceptance conditions. Lemma 3.7 implies that this is
equivalent to having an accepting path in H(A).

We finish the section with a more explicit characterization of transitions in H(A) that
will be used extensively in the decidability proof. The characterisation is spelled out in the
next three lemmas whose proofs are obtained directly from the definitions.

Lemma 3.10. Consider a state (λ1 . . . λk, λ∞) of H(A). If k = 0 then there is no (delay, ·)
transition from this state. Otherwise let λ′k = {(q,Id+1) : d < dmax, (q,Id) ∈ λk} and
λ′∞ = λ∞∪{(q,I∞) : (q,Idmax

) ∈ λk}. In H(A) there is exactly one transition on (delay, ǫ):

(λ1 . . . λk, λ∞)
(delay,ǫ)
−→ (λ′kλ1 . . . λk−1, λ

′
∞) if λ′k 6= ∅,

(λ1 . . . λk, λ∞)
(delay,ǫ)
−→ (λ1 . . . λk−1, λ

′
∞) otherwise.

In order to describe transitions of H(A) on an action a, we define an auxiliary notion of
a transition from λ ∈ P(Q × reg). By the partition condition, for every (q, r) ∈ λ there is
at most one constraint θ such that every valuation in r satisfies this constraint and δ(q, a, θ)
is defined. We choose a conjunct from δ(q, a, θ):

(q1, nop) ∧ · · · ∧ (ql, nop) ∧ (q′1, reset) ∧ · · · ∧ (q′m, reset).

From this choice we can obtain two sets: Next(q, r) = {(q1, r), . . . , (ql, r)} and Next0(q, r) =
{(q′1,I1), . . . , (q

′
m,I1)}. We put

λ
a

−→A (λ′, γ′), where

λ′ =
⋃

(q,r)∈λ

Next(q, r) and γ′ =
⋃

(q,r)∈λ

Next0(q, r).

Observe that there are as many transitions
a

−→ from λ as there are choices of different
conjuncts for each pair (q, r) in λ. In particular there is no transition if for some pair

WEAK ALTERNATING TIMED AUTOMATA 9

the transition function of the automaton is not defined. Notice also that the clock after
reseting, described by elements of γ′, is in interval I1, not in {0}; this is because we describe
a transition of the original automaton followed by a small time elapse.

Lemma 3.11. In H(A) transitions on an action a have the form

(λ1 . . . λk, λ∞)
a

−→ (γ′λ′1 . . . λ
′
k, λ

′
∞),

where λi
a

−→A (λ′i, γ
′
i) and γ

′ =
⋃
γ′i (for i = 1, . . . , k,∞).

Note that neither γ′ nor any of λ′i may be empty.
Finally, we have the most complicated case of (delay, a) action.

Lemma 3.12. In H(A) the transitions on an action (delay, a) have the form

(λ1 . . . λk, λ∞)
(delay,a)
−→ (γ′λ′1 . . . λ

′
k−1, λ

′′
∞),

where the elements on the right are obtained by preforming the following steps:

• First, we change regions in λk. Every pair (q,Id) ∈ λk becomes (q, {d}). Let us denote
the result by λ1k.

• For i = 1, . . . , k,∞ we take λ′i, γ
′
i such that: λ1k

a
−→A (λ′k, γ

′
k) and λi

a
−→A (λ′i, γ

′
i) for

i 6= k.
• We again increase regions in λ′k: from {d} they become Id+1, or I∞ if d = dmax.
• We put γ′ =

⋃
γ′i ∪ {(q,Id) : (q, {d}) ∈ λ′k, d < dmax} and λ′′∞ = λ′∞ ∪ {(q,I∞) :

(q, {dmax}) ∈ λ′k}.

We write c→ c′, c
(delay,·)
−→ c′, c։ c′, c

Σ∗

։ c′ to denote that we may go from a configuration c
to c′ using one transition, one transition reading a letter of the form (delay, ·), any number
of transitions or any number of transitions reading only letters from Σ, respectively.

3.2. Finding an accepting path in H(A). Here we overview the decision procedure,
which is described in details in the next subsections. By Corollary 3.9, our problem reduces
to deciding if in H(A) there is a good path with only finitely many appearances of states
from Q−. The decision procedure works in two steps. In the first step we compute the

set Ĝ of all configurations of H(A) from which there exists a good path. Observe that if a

configuration from Ĝ has only states from Q+ then there exists an accepting run from this
configuration. So, in the second step it remains to consider configurations that have states
from both Q− and Q+. This is relatively easy as an accepting run from such a configuration
consists of a finite prefix ending in a configuration without states from Q− and a good run
from that configuration. Hence, there is an accepting run from a configuration iff it is

possible to reach from it a configuration from Ĝ that has only Q+ states. Once we know

Ĝ, the later problem can be solved using the standard reachability tree technique.

3.3. Computing accepting configurations. We start with the second step of our pro-
cedure as it is much easier than the first one. We need to decide if from an initial state
one can reach a configuration from Ĝ having only Q+ states. We can assume that we are

given Ĝ but we need to discuss a little how it is represented. It turns out that there are

useful well-quasi-orders on configurations that allow to represent Ĝ in a finitary way (Corol-
lary 3.15)

10 P. PARYS AND I. WALUKIEWICZ

A well-quasi-order is a relation with a property that for every infinite sequence c1, c2, . . .
there exist indexes i < j such that the pair (ci, cj) is in the relation.

The order we need is the relation, denoted �, over configurations of H(A): we put
(λ1 . . . λk, λ∞) � (λ′1 . . . λ

′
k′ , λ

′
∞) if λ∞ ⊆ λ′∞ and there exists a strictly increasing function

f : {1, . . . , k} → {1, . . . , k′} such that λi ⊆ λ′
f(i) for each i. Observe that here we use the fact

that each λi is a set so we can compare them by inclusion. This relation is somehow similar
to the relation of being a subsequence, but we do not require that the corresponding letters
are equal, only that the one from the smaller word is included in the one from the greater
word. The first property of this order is proved by a standard application of Higman’s
lemma.

Lemma 3.13. The relation � is a well-quasi-order.

The following shows an important interplay between � relation and transitions of H(A).

Lemma 3.14. Let c1, c
′
1, c2 be configurations of H(A) such that c′1 � c1. Whenever c1 ։ c2,

then there exist c′2 � c2 such that c′1 ։ c′2 and the second computation has the length not
greater than the first one. Similarly, when from c1 there exists a good computation, then
from c′1 such a computation exists.

Proof. For the first statement of the lemma we will simulate one transition from c1 by at

most one transition from c′1. If c1
a

−→ c2 then directly from Lemma 3.11 it follows that

there is c′2 � c2 such that c2
a

−→ c′2. When c1
(delay,ε)
−→ c2 we have two cases depending on

the relation between one before last element of the two configurations. To be more precise,
suppose that c1 = (λ1 . . . λk, λ∞) and c′1 = (λ′1 . . . λ

′
k′ , λ

′
∞). If λ′k′ ⊆ λk then we may do

(delay, ǫ) from c′1 and we get c′2 � c2. Otherwise already c′1 � c2, we do not do any action
and take c′2 = c′1. Similarly for (delay, a): either we match it with (delay, a) or just with
a. An obvious induction gives a proof of the first statement.

For the second statement we need to show that the computation from c′1 obtained by
matching steps as described above is good (if the one from c1 has been good). This is not
immediate as we remove some (delay, ·) letters in the matching computation.

Fix a good computation from c1. Let c2 be a configuration in a computation starting
from c1, and let c′2 be the corresponding configuration in the matching computation from
c′1. To arrive at a contradiction assume that there are no delays after c′2. Let us denote
c′2 = (λ′1 . . . λ

′
k′ , λ

′
∞) and c2 = (λ1 . . . λk, λ∞). Because c′2 � c2, we know that λ′k′ is covered

by some λi, i.e., λ
′
k′ ⊆ λi. Let us take the biggest possible i. If some a-action is done

from c2 then it is matched by an a-action from c′2, and for the resulting configurations
the inclusion is preserved. This can happen only finitely many times though, as there are
infinitely many (delay, ·) actions after c2. If a (delay, ·) action is done from c2 and i = k
then it is matched by a (delay, ·) action from c′2, a contradiction with the choice of ci. If
i < k then the element λ′k′ is left on its position in c′2, while in c2 we remove λk, hence λi
covering λ′k′ gets closer to the end of the sequence. Repeating this argument, we get that
the covering λi finally becomes the last element and the previous case applies.

Corollary 3.15. The set Ĝ is downward closed, so it can be described by the finite set of
minimal elements that do not belong to it.

As we have mentioned before, there is a good accepting computation from a configura-

tion iff it is possible to reach from it a configuration from Ĝ that has only Q+ states. The
following lemma says that this property is decidable.

WEAK ALTERNATING TIMED AUTOMATA 11

Lemma 3.16. Let X be a downward closed set of configurations of H(A), represented by
the (finite) set of all its minimal elements. It is decidable whether from a given configuration
one can reach a configuration in a given set X that has only states from Q+.

Proof. We will use a standard reachability tree argument. The reachability tree is a tree
in which the initial configuration is in the root, and every configuration has as children
all configurations that may be reached by reading one letter. The algorithm constructs a
portion t of the tree according to the following rule: do not add a node c′ to t in a situation
when among its ancestors there is some c � c′. Each path of t is finite because � is a
well-quasi-order. Furthermore, since the degree of every node is finite, t is a finite tree.
Then we check t for a configuration from X without states from Q−.

We only need to prove that, if in the whole reachability tree there is a configuration as
above (which means that H(A) may accept), then there is also some in t. Let c be such a
configuration reachable from the initial configuration of H(A) by a path π of the shortest
length. Assume that c is not in t, i.e. there are two nodes on π, say c1 and c2, such that c1
is an ancestor of c2 and c1 � c2 (i.e. c2 was not added to t). Then from Lemma 3.14, there
exists c′ � c that may be reached from c1 and the path from c1 to c′ will be not longer than
that from c2 to c. So the path leading to c′ from the initial configuration is strictly shorter
than π. Moreover, as c′ � c and X is downward closed, we immediately deduce that c′ ∈ X,
and c′ does not contain states from Q− which is a contradiction.

3.4. Computing Ĝ. In this subsection we deal with the main technical problem of the

proof that is computing the set Ĝ of all configurations from which there exist a good

computation. We will actually compute the complement of Ĝ. While we will use well-
orderings in the proof, standard termination arguments do not work in this case. We will
need to examine more closely the definition of H(A) an in particular the mechanics of its
transition as described in Lemmas 3.10, 3.11, and 3.12.

We write X↑ for an upward closure of set X,

X↑= {c : ∃c′∈Xc
′ � c}.

Observe that by Corollary 3.15 the complement of Ĝ is upward closed.
Let set pre∀delay (respectively pre

∀
Σ∗) contain all configurations, from which after reading

any letter (delay, ·) (any number of letters from Σ), we have to reach a configuration from
X,

pre∀delay(X) = {c : ∀c′(c
(delay,·)
−→ c′ ⇒ c′ ∈ X)},

pre∀Σ∗(X) = {c : ∀c′(c
Σ∗

։ c′ ⇒ c′ ∈ X)}.

Now we can use these pre operations to compute a sequence of sets of configurations

Z−1 = ∅, Zi = pre∀Σ∗(pre∀delay(Zi−1↑)).

It is important that we may effectively represent and compare all the sets Zi↑. Because
the relation � is a well-quasi-order, any upward closed set X↑ may be represented by finitely
many elements c1, . . . , ck (called generators) such that X ↑= {c1, . . . , ck}↑. Moreover, an
easy induction shows that Zi−1↑⊆ Zi↑ for every i (because both pre∀ operations preserve
inclusion). Once again, because relation � is a well-quasi-order, there has to be i such that
Zi−1↑= Zi↑. Let us write Z∞ for this Zi.

12 P. PARYS AND I. WALUKIEWICZ

First, we show that Z∞ is indeed the complement of Ĝ.

Lemma 3.17. There is a good computation from a configuration c iff c 6∈ Z∞↑.

Proof. (⇒) We show by induction that c 6∈ Zi for i = −1, 0, 1 For i = −1 it is obvious.
Assume for contradiction that there exists a good computation from c, but c ∈ Zi↑. Then
there exists c′ � c with c′ ∈ Zi. From Lemma 3.14 we know that a good infinite computation
exists also from c′. This computation may first read some letters from Σ, but finally it has
to read a letter (delay, ·), that results in a configuration c2. Definition of Zi tells us that
c2 ∈ Zi−1↑. But from c2 there is also a good infinite computation, a contradiction.

(⇐) Assume that every computation (finite or infinite) from c reads at most k letters
(delay, ·). An easy induction on k shows that c ∈ Zk.

To compute Z∞ it is enough to show how to compute Zi↑ from Zi−1↑. This is the most
difficult part of the proof that will occupy the rest of the subsection. Once this is done we
will calculate all the sets Zi↑, starting with Z−1 = ∅ and ending when Zi−1↑= Zi↑.

The main idea in calculating pre∀Σ∗(pre∀delay(X)) is that the length of its generators
may be bounded by some function in the length of generators of X. This is expressed by
the following lemma.

Lemma 3.18. Given an upward closed set X we can compute a constant D(X) (which
depends also on our fixed automaton A) such that the size of every minimal element of
pre∀Σ∗(pre∀delay(X)) is bounded by D(X)

Once we know the bound on the size of generators, we can try all potential candidates.
The following lemma shows that it is possible.

Lemma 3.19. For every upper-closed set X, the membership in pre∀Σ∗(pre∀delay(X)) is
decidable.

Together Lemmas 3.18 and 3.19 allow us to compute the sequence Z0, Z1, . . . , Z∞ and

hence also Ĝ.
To finish the proof of the theorem, it remains to give proofs of the two lemmas. The

first is substantially more complicated, and will occupy most of the space, while the second
we will get as a rather simple corollary. In the first proof, we will calculate separately
bounds for pre∀delay(X) and for pre∀Σ∗(X). In the sequel we will need to use some special
representation for sets of configurations.

Definition 3.20. A compressed configuration has a form

ĉ = (λ1 . . . λl, f, λ∞),

where λi ∈ ΛI , λ∞ ∈ Λ∞ and f : ΛI → P(ΛI) (values of f are subsets of ΛI).

On compressed configurations we introduce an expansion operation parametrized by
words from Λ∗

I .

Definition 3.21. A compressed configuration ĉ = (λ1 . . . λl, f, λ∞) may be expanded
in a context of some word λ01 . . . λ

0
k ∈ Λ∗

I , giving as a result the set of configurations
(λ1 . . . λlλ

′
l+1 . . . λ

′
l+k, λ∞) such that λ′l+i ∈ f(λ0i) for 1 ≤ i ≤ k. We will use exp(ĉ, λ01 . . . λ

0
k)

to denote the set of obtained configurations. Similarly, if Ĉ is a set of compressed configu-

rations we write Exp(Ĉ, λ01 . . . λ
0
k) for

⋃
{exp(ĉ, λ01 . . . λ

0
k) : ĉ ∈ Ĉ}.

WEAK ALTERNATING TIMED AUTOMATA 13

Observe that the value f(λ) for λ not appearing in λ01 . . . λ
0
k does not matter; moreover

if some f(λ0i) = ∅ then the result of expanding is the empty set.
We use compressed configurations, because the set of successors of a configuration may

be described by a bounded number of compressed configurations. This is not true for
ordinary configurations due to nondeterminism. For example, when there is more than one
choice of a transition on action a form a letter λ then every occurrence of λ in a configuration
may make a choice independently, so the number of successor configurations grows with the
number of occurrences of λ in a configuration.

Let us see how to calculate pre∀delay(X). Some care is needed as this set is not upward

closed with respect to the � relation. This is because the a (delay, ·) action treats the
one before the last element of a configuration in a special way. So if something is inserted
after λk in (λ1 . . . λk, λ∞) then the delay operation uses this inserted element instead of
λk. As a side remark let us mention that using the upward closure of pre∀delay(Zi−1↑) in the
definition of Zi would be incorrect (Lemma 3.17 would not be true).

To remedy this problem we use a refined relation �r. Given two configurations c′ =
(λ′1 . . . λ

′
k′ , λ

′
∞) and c = (λ1 . . . λk, λ∞) we set

c′ �r c iff k′ > 0, c′ � c and λ′k′ ⊆ λk

Note that the set pre∀delay(X) is upward closed with respect to relation �r, when X is

upward closed with respect to �. This is because if c′1 �r c1 and c1
(delay,·)
−→ c2 then also

c′1
(delay,·)
−→ c′2 with some c′2 � c2. Hence, if c1 6∈ pre∀delay(X) then c′1 6∈ pre

∀
delay(X).

The following lemma tells us that successors of a configuration may be described using
compressed configurations and that there are not too many of them.

Lemma 3.22. For every configuration c0 = (λ1 . . . λk, λ∞), k > 0 there exists a finite set

of compressed configurations Ĉ(λk, λ∞) (depending only on λk and λ∞) such that:

• if c0
(delay,·)
−→ c then c ∈ Exp(Ĉ(λk, λ∞), λ1 . . . λk−1);

• if c ∈ Exp(Ĉ(λk, λ∞), λ1 . . . λk−1) then c0
(delay,·)
−→ c′ for some c′ � c.

Proof. The transition on (delay, ǫ) is deterministic. If c0
(delay,ǫ)
−→ c′ then we either have

c′ = (λ′kλ1 . . . λk−1, λ
′
∞) or c′ = (λ1 . . . λk−1, λ

′
∞) depending on λk. In the first case we add

ĉ = (λ′k, sgl, λ
′
∞) to Ĉ(λk, λ∞), in the second case ĉ = (ǫ, sgl, λ′∞), where sgl(λ) = {λ}. In

both cases exp(ĉ, λ1 . . . λk−1) = {c′}.
Now consider transitions reading (delay, a). A result of this transition is not unique and

depends on the choice of a transition for each element of the configuration. We fix a set T of

transitions λ
a

−→A (λ′, γ′); intuitively these are allowed transitions from λ1, . . . , λk−1. We

also fix transitions λ1k
a

−→A (λ′k, γ
′
k) and λ∞

a
−→A (λ′∞, γ

′
∞) (where λ1k is λk with increased

regions as in Lemma 3.12). This choice of transitions gives us a compressed configuration
ĉ = (γ, f, λ′′∞), where

γ = γ′k ∪ γ
′
∞ ∪ {(q,Id+1) : (q, {d}) ∈ λ′k, d < dmax}

∪
⋃

{γ′ : (λ
a

−→A (λ′, γ′)) ∈ T , λ ∈ ΛI},

f(λ) =
⋃

{λ′ : (λ
a

−→A (λ′, γ′)) ∈ T },

λ′′∞ =λ′∞ ∪ {(q,I∞) : (q, {dmax}) ∈ λ
′
k}.

14 P. PARYS AND I. WALUKIEWICZ

We add ĉ into Ĉ(λk, λ∞).

We now show that the constructed Ĉ(λk, λ∞) has the required properties. Consider a
successor c of c0 that is reached using the transitions we have fixed. In particular, we require
that each transition from T is used at least once. Take ĉ as calculated above. Directly from
the definition we get c ∈ exp(ĉ, λ1 . . . λk−1). As the choice of transitions was arbitrary, this
gives the first statement of the lemma.

Now consider c = (γλ′1 . . . λ
′
k−1, λ

′′
∞) ∈ exp(ĉ, λ1 . . . λk−1) where ĉ = (γ, f, λ′′∞) is ob-

tained by a choice of some T and some transitions from λ1k and λ∞. For every i let us

choose some transition λi
a

−→A (λ′i, γ
′
i) from T (there is at least one such transition in T

because λ′i ∈ f(λi)). Take c
′ = (γ′λ′1 . . . λ

′
k−1, λ

′′
∞) where

γ′ = γ′k ∪ γ
′
∞ ∪ {(q,Id+1) : (q, {d}) ∈ λ′k, d < dmax} ∪

⋃

1≤i≤k−1

γ′i

Then γ′ ⊆ γ so c′ � c. It is easy to check that there is a transition c0
(delay,a)
−→ c′.

We need to find all minimal elements of pre∀delay(Zi−1 ↑). The following lemma will
allow us to get a bound on their size.

Lemma 3.23. For a given Ĉ and a set X upward closed with respect to the �r relation

there exists a constant B(X, Ĉ) (and we may compute it) such that if for some λ01 . . . λ
0
k

Exp(Ĉ, λ01 . . . λ
0
k) ⊆ X

then there exist 1 ≤ i1 < · · · < im ≤ k, m < B(X, Ĉ) with

Exp(Ĉ, λ0i1 . . . λ
0
im) ⊆ X.

Proof. First suppose that Ĉ is a singleton {ĉ}; where ĉ = (λ1 . . . λl, f, λ∞). We describe a
construction of a finite automaton AX

ĉ accepting the language

LX
ĉ = {λ′1 . . . λ

′
k : exp(ĉ, λ′1 . . . λ

′
k) ⊆ X}.

Recall that X is an upward closed set with respect to �r relation. This implies that LX
ĉ is

upward closed with respect to the standard subsequence relation ⊑. It is easy to check that
for every letter λ ∈ ΛI , if L ⊆ Λ∗

I is ⊑-upward closed then the quotient L/λ is also ⊑-upward
closed. Moreover L ⊆ L/λ, as if w ∈ L then aw ∈ L that implies w ∈ L/λ. Because ⊑ is a
well-quasi-order, this last property implies that the set of all possible quotients of LX

ĉ , i.e.

the languages LX
ĉ /w for w ∈ Λ∗

I , is finite. These quotients are the states of AX
ĉ we were

looking for. Indeed AX
ĉ is the minimal deterministic automaton for LX

ĉ . Take B(X, {ĉ}) to
be the size of the automaton. From the pumping lemma it follows that if the word λ01 . . . λ

0
k

is accepted by AX
ĉ then there is a subsequence of length ≤ B(X, {ĉ}) accepted by AX

ĉ .

Now consider a general situation. For every ĉ ∈ Ĉ from above we have some subse-
quence λ0i1 . . . λ

0
im

of length m ≤ B(X, {ĉ}), such that exp(ĉ, λ0i1 . . . λ
0
im
) ⊆ X. We take all

the elements from all these subsequences, getting a subsequence of length ≤ B(X, Ĉ) :=∑
ĉ∈Ĉ

B(X, {ĉ}) such that all the inclusions hold.

WEAK ALTERNATING TIMED AUTOMATA 15

The above two lemmas allow to compute a bound on the size of minimal elements in
pre∀delay(Zi−1↑).

Lemma 3.24. There is an algorithm that given X↑ computes a constant Mdelay(X↑) such

that the size of every minimal element of pre∀delay(X↑) is bounded by Mdelay(X↑).

Proof. There are only finitely many different Ĉ(λk, λ∞) as constructed in Lemma 3.22. Let

Mdelay be the maximal possible value of B(X↑, Ĉ(λk, λ∞)).

Suppose c0 = (λ01 . . . λ
0
k, λ

0
∞) is a minimal element of pre∀delay(X ↑). Take the set

Ĉ(λ0k, λ
0
∞) as given by Lemma 3.22. We have that Exp(Ĉ(λ0k, λ

0
∞), λ01 . . . λ

0
k−1) ⊆ X↑ by

the second statement of this lemma. From Lemma 3.23 we get a subsequence λ′1 . . . λ
′
l

of λ01 . . . λ
0
k−1 whose length is bounded by B(X ↑, Ĉ(λ0k, λ

0
∞)) ≤ Mdelay and such that

Exp(Ĉ(λ0k, λ
0
∞), λ′1 . . . λ

′
l) ⊆ X ↑. By the first statement of Lemma 3.22 we get that

(λ′1 . . . λ
′
lλ

0
k, λ

0
∞) ∈ pre∀delay(X↑). By the minimality of c0, we get that c0 = (λ′1 . . . λ

′
lλ

0
k, λ

0
∞),

so its length is bounded by Mdelay + 2.

Now we describe how to calculate pre∀Σ∗(Y)↑ for any set Y upward closed with respect
to �r relation. The first lemma says that we may represent successors using compressed
configurations.

Lemma 3.25. For every compressed configuration ĉ0 there is a set of compressed configu-

rations Ĉ(ĉ0) (and we may compute it) such that for every λ01 . . . λ
0
k

• if c0 ∈ exp(ĉ0, λ
0
1 . . . λ

0
k) and c0

a
−→ c for some a ∈ Σ, then c ∈ Exp(Ĉ(ĉ0), λ

0
1 . . . λ

0
k);

• if c ∈ Exp(Ĉ(ĉ0), λ
0
1 . . . λ

0
k), then c0

a
−→ c′ for some c′ �r c, a ∈ Σ and some c0 ∈

exp(ĉ0, λ
0
1 . . . λ

0
k).

Proof. Let ĉ0 = (λ1 . . . λl, f, λ∞). Fix a letter a ∈ Σ. We fix a set T of transitions

λ
a

−→A (λ′, γ′); intuitively these are allowed transitions from λ ∈ f(λ0i). We also fix tran-

sitions λi
a

−→A (λ′i, γ
′
i) for i = 1, . . . , l,∞. This choice of transitions gives us a compressed

configuration ĉ = (γλ′1 . . . λ
′
l, f

′, λ′∞), where

γ =
⋃

i=1...,l,∞

γ′i ∪
⋃

{γ′ : (λ
a

−→A (λ′, γ′)) ∈ T , λ ∈ ΛI},

f ′(λ0) ={λ′ : (λ
a

−→A (λ′, γ′)) ∈ T , λ ∈ f(λ0)}.

We add ĉ into Ĉ(ĉ0).
For the first statement of the lemma, take c0 ∈ exp(ĉ0, λ

0
1 . . . λ

0
k) and consider any

successor c of c0 that is reached using the transitions we have fixed. In particular we
require that each transition from T is used at least once. Take ĉ as calculated above. Then
directly from the definition we get c ∈ exp(ĉ, λ01 . . . λ

0
k). As the choice of transitions was

arbitrary this gives the first statement of the lemma.

Now consider some ĉ ∈ Ĉ(ĉ0). It is of the form (γλ′1 . . . λ
′
l, f

′, λ′∞). According to

the above, it was constructed from ĉ0 using some transitions λi
a

−→A (λ′i, γ
′
i) for i =

1, . . . , l,∞ and some set of transitions T . Take c ∈ exp(ĉ, λ01 . . . λ
0
k). We have that c is

of the form (γ′λ′1 . . . λ
′
lλ

′
l+1 . . . λ

′
l+k, λ

′
∞) where λ′1 . . . λ

′
l are as in ĉ and for i = 1, . . . , k

we can choose from T transitions λl+i
a

−→A (λ′l+i, γ
′
l+i) such that λl+i ∈ f(λ0i). Take

c0 = (λ1 . . . λlλl+1, . . . , λl+k, λ∞), i.e. a configuration whose components are predecessors of
transitions we have selected. We have c0 ∈ exp(ĉ0, λ

0
1 . . . λ

0
k) by the definition of expansion.

16 P. PARYS AND I. WALUKIEWICZ

Let c′ = (γ′λ′1 . . . λ
′
l+k, λ

′
∞) with γ′ =

⋃
i=1,...,l+k,∞ γ′i. Observe that γ′ may be a proper

subset of γ if not all transitions from T have been used. Then c′ �r c and there is a

transition c0
a

−→ c′.

The following lemma says that we may list a big enough portion of all configurations
reachable from some c0 (similarly like in step two of the decision procedure, Lemma 3.16)
and moreover that size of this portion is bounded by a constant.

Lemma 3.26. For every λ∞ ∈ Λ∞ we can construct a set ĈΣ∗(λ∞) such that for every
λ1 . . . λk ∈ Λ∗

I

• if (λ1 . . . λk, λ∞)
Σ∗

։ c for some c then there is c′ �r c such that

c′ ∈ Exp(ĈΣ∗(λ∞), λ1 . . . λk);

• if c ∈ Exp(ĈΣ∗(λ∞), λ1 . . . λk) then there is c′ �r c with (λ1 . . . λk, λ∞)
Σ∗

։ c′.

Proof. Take the compressed configuration ĉ0 = (ǫ, sgl, λ∞), where, as before, sgl(λ) = {λ}.

We define a set Ĉ of compressed configurations as a closure of {ĉ0} on the operation defined
in Lemma 3.25. This set may be infinite but we do not worry about it for the moment. We
show first that it satisfies the requirements of the lemma.

Take some λ1 . . . λk ∈ Λ∗
I and c such that (λ1 . . . λk, λ∞)

Σ∗

։ c. We need to show that

we can find an extended configuration ĉ ∈ Ĉ such that c ∈ exp(ĉ, λ1 . . . λk). The proof is
by easy induction on the number of transitions. For the base step we have (λ1 . . . λk, λ∞) ∈
exp(ĉ0, λ1 . . . λk), and the induction step is given by the first statement of Lemma 3.25.

Now, suppose that ĉ ∈ Ĉ and c ∈ exp(ĉ, λ1 . . . λk). An induction using the second

statement of Lemma 3.25 shows that there is c′ �r c such that (λ1 . . . λk, λ∞)
Σ∗

։ c′.

In order to reduce Ĉ to a finite set we once again use well-quasi-orders. We define a
relation ⊑ on compressed configurations:

(λ′1 . . . λ
′
l′ , f

′, λ′∞) ⊑ (λ1 . . . λl, f, λ∞) ⇐⇒

(λ′1 . . . λ
′
l′ , λ

′
∞) �r (λ1 . . . λl, λ∞) and f = f ′.

This relation is a well-quasi-order. We take ĈΣ∗(λ∞) to be the set of minimal elements in

this quasi-order. It is clear that Exp(ĈΣ∗(λ∞), λ1 . . . λk) ⊆ Exp(Ĉ, λ1 . . . λk) for arbitrary
λ1 . . . λk. So, by the above observations the second property of the lemma holds. For
the first property observe that whenever ĉ′ ⊑ ĉ and c ∈ exp(ĉ, λ1 . . . λk) then there is
c′ ∈ exp(ĉ′, λ1 . . . λk) with c

′ �r c.

Lemma 3.27. There is an algorithm that given a set Y upward closed with respect to the
�r relation computes a constant MΣ∗(Y) such that the size of every minimal element of
pre∀Σ∗(Y) is bounded by MΣ∗(Y).

Proof. There are only finitely many different Ĉ(λ∞) constructed in the above lemma. Let

MΣ∗ be the maximal possible value of B(Y, Ĉ(λ∞)) (cf. Lemma 3.23)

Suppose c0 = (λ01 . . . λ
0
k, λ

0
∞) is a minimal element of pre∀Σ∗(Y). Take the set Ĉ(λ0∞) as

given by Lemma 3.26. We have that Exp(ĈΣ∗(λ0∞), λ01 . . . λ
0
k) ⊆ Y by the second statement

of this lemma. From Lemma 3.23 we get a subsequence λ′1 . . . λ
′
l of λ

0
1 . . . λ

0
k whose length is

bounded by B(X, Ĉ(λ0∞)) ≤MΣ∗ and such that Exp(ĈΣ∗(λ0∞), λ′1 . . . λ
′
l) ⊆ Y . By the first

WEAK ALTERNATING TIMED AUTOMATA 17

statement of Lemma 3.26 we get that (λ′1 . . . λ
′
l, λ

0
∞) ∈ pre∀Σ∗(Y). By the minimality of c0,

we have that c0 = (λ′1 . . . λ
′
l, λ

0
∞), so its length is bounded by MΣ∗ + 1.

The last step before proving Lemmas 3.18 and 3.19 consists of two simple observations.

Lemma 3.28. For every set X upward closed with respect to � relation, the membership
in Y = pre∀delay(X) is decidable. Moreover Y is a �r-upward closed set.

Proof. The first part of the lemma is obvious, it suffices to test all possible transitions that
are explicitly characterized in Lemmas 3.10 and 3.12. The second part follows from the

property that we have already noticed before (page 13): if c′1 �r c1 and c1
(delay,·)
−→ c2 then

also c′1
(delay,·)
−→ c′2 with some c′2 � c2.

Lemma 3.29. For every set Y upward closed with respect of �r relation, the membership
in pre∀Σ∗(Y) is decidable.

Proof. Given a configuration c we need to decide if c ∈ pre∀Σ∗(Y). We apply successively
a

−→ transitions to c constructing a part of the reachability tree. We stop the development in
a node if it has an ancestor smaller with respect to �r-relation. As �r is a well-quasi-order,
and the branching at each node is finite, we get a finite tree t.

It remains to argue that this construction is correct. If in the above process we find a
configuration that is not in Y then clearly c is not in pre∀Σ∗(Y). For the other direction,

assume conversely that there is c′ /∈ Y with c
Σ∗

։ c′. Choose c′ /∈ Y so that the length of a

derivation c
Σ∗

։ c′ is the smallest possible. We show that c′ ∈ t. Recall that Lemma 3.11
characterizes transitions on letters. Directly from this characterization we obtain that if

c′1 �r c1 and c1
a

−→ c2 then also c′1
a

−→ c′2 with some c′2 �r c2. Using this fact, we get that

if c′ is not in t then there is d′ � c′ such that the derivation c
Σ∗

։ d′ is shorter than c
Σ∗

։ c′.
This is impossible by the choice of c′.

Proof (of Lemma 3.18)
Take an upward closed set X. By Lemma 3.24 we can compute a constant Mdelay that

bounds the size of minimal elements in Y = pre∀delay(X). Using Lemma 3.28 we can find
the minimal elements of Y by enumerating all configurations of size bounded by Mdelay.
Observe that Y is �r upward closed.

Once we have computed Y , Lemma 3.27 gives us a constant MΣ∗(Y) bounding the size
of minimal elements in pre∀Σ∗(Y) = pre∀Σ∗(pre∀delay(X)).

�

Proof (of Lemma 3.19)
We first compute the set Y = pre∀delay(X) as described above. We can then use Lemma 3.29

to test for the membership in pre∀Σ∗(Y) = pre∀Σ∗(pre∀delay(X)).
�

4. Constrained TPTL

In this section we present a fragment of TPTL (timed propositional temporal logic) that
can be translated to automata whose emptiness problem is decidable by Theorem 3.1. We

18 P. PARYS AND I. WALUKIEWICZ

compare this fragment with other known logics for real time. We will be rather brief in
presentations of different formalisms, and refer the reader to recent surveys [9, 26].

TPTL[8] is a timed extension of linear time temporal logic that allows to explicitly set
and compare clock variables. We will consider the logic with only one clock variable that
we denote TPTL1. The syntax of the logic is:

p | x.α | x ∼ c | α ∧ β | α ∨ β | αUβ | αŨβ,

where p ranges over action letters, x is the unique clock variable, and x ∼ c is a comparison
of x with a constant with ∼ being one of =, 6=, <,≤, >,≥. We do not have negation in the
syntax, but from the semantics it will be clear that negation is definable.

The logic is evaluated over timed sequences w = (a1, t1)(a2, t2) . . . We define a satis-
faction relation w, i, v � α saying that a formula α is true at a position i of a timed word w
with a valuation v of the unique clock variable:

w, i, v � p if ai = p,
w, i, v � x ∼ c if ti − v ∼ c,
w, i, v � x.α if w, i, ti � α,
w, i, v � αUβ if ∃j>i (w, j, v � β and ∀k∈(i,j) w, k, v � α),

w, i, v � αŨβ if ∀j>i (w, j, v � β or ∃k∈(i,j)w, k, v � α).
As usual, “until” operators permit us to introduce “sometimes” and “always” operators:

Fα ≡ ttUα, Gα ≡ ff Ũα.

For the following it will be interesting to note that the two “until” operators are inter-
definable once we have “always” and “sometimes” operators:

αŨβ ≡ Gβ ∨ βUα, αUβ ≡ Fβ ∧ βŨα.

Observe that TPTL1 subsumes metric temporal logic (MTL). For example: αU(0,j)β of
MTL is equivalent to x.(αU((x < j) ∧ β)). We will not present MTL here, but rather refer
the reader to [10] where it is also shown that the following TPTL1 formula is not expressible
in MTL (when considered in the pointwise semantics):

x.(F (b ∧ F (c ∧ x ≤ 2))). (4.1)

The satisfiability problem over infinite timed sequences is undecidable for MTL [22],
hence also for TPTL1. Using our decidability result for alternating timed automata, we can
nevertheless find a decidable fragment that we call Constrained TPTL. The definition of
this fragment will use an auxiliary notion of positive TPTL1 formulas. These formulas can
be translated into alternating automata where all states are accepting. The set of positive
formulas is given by the following grammar:

p | x.ϕ | x ∼ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕŨψ | F ((x ≤ c) ∧ ψ)

The set of formulas of Constrained TPTL is:

p | x.α | x ∼ c | α ∨ β | α ∧ β |αUβ | ϕ ϕ positive.

Observe that the formula (4.1) belongs to the positive fragment if we add redundant (x ≤ 2)
after b.

Theorem 4.1. For a given Constrained TPTL formula α it is decidable whether there is a
non Zeno timed word that is a model of α. The complexity of the problem cannot be bounded
by a primitive recursive function.

WEAK ALTERNATING TIMED AUTOMATA 19

Proof. It is enough to give a translation from formulas to automata in the class from The-
orem 3.1. The translation is on the syntax of the formula.

We start with the automaton for positive formulas. The set of states of an automaton
for a formula will consists of all subformulas of the formula. A state associated to a formula
α will be denoted by [α]. The intended semantics is that a timed word w is accepted from
[α] iff w, 1, 0 � α.

The transition relation of the automaton is given in the following table.

[p]
p

−→ ⊤ [x ∼ c]
∗

−→
x∼c

⊤

[α ∨ β]
ε

−→ [α] ∨ [β] [α ∧ β]
ε

−→ [α] ∧ [β]

[x.α]
ε

−→
x:=0

[α]

[αŨβ]
∗

−→ [α] ∨ ([β] ∧ [αŨβ])

[Fβ]
∗

−→ [β] ∨ [Fβ]

The transitions follow directly the semantics of formulas; state ⊤ is a special state from
which every timed word is accepted. As our automaton is alternating, on the right hand
side of the transition we can write a boolean expression on successor states. We should also

explain labels ∗ and ε over transitions. Transition
∗

−→ is just a shorthand for transitions

on all letters of the alphabet. Transitions
ε

−→ and
ε

−→
x:=0

can be seen as eager ε-transitions of

the automaton: they are executed as soon as they are enabled. The other way is to consider
them as rewrite rules where the real transition of the automaton is obtained at the end of
the rewriting, i.e., reaching a transition on a letter. In this interpretation we should not
forget to accumulate resets. For example, the above rules give

[x.(αŨβ)]
∗

−→
x:=0

[α] ∨ ([β] ∧ [αŨβ])

as a “real” transition of the automaton.
All the states are accepting. Notice that in the case of positive formulas we will have

a state [Fβ] only when β is of the form (x ≤ c) ∧ β′. As we consider only non Zeno words,
this assures that the language accepted from this state is correct even if the state [Fβ] is
accepting.

For other formulas of Constrained TPTL we first assume that for every positive formula
we have already an automaton constructed by the above procedure. We then use the clauses
above and the clause for the U operator

[αUβ] −→ [β] ∨ ([α] ∧ [αUβ])

to construct the part of the automaton corresponding the remaining formulas. The ac-
cepting states are all those corresponding to positive formulas. All the other states are
rejecting.

A standard argument based on induction on the size of the formula shows that the
translation is correct. For the complexity bound announced in the statement of the theorem,
it is enough to check that the proof of the same complexity bound for alternating timed
automata over finite words [17] can be translated into Constrained TPTL.

20 P. PARYS AND I. WALUKIEWICZ

4.1. Relation with other logics. Safety MTL [24] can be seen as an MTL fragment of
positive TPTL. Indeed, both formalisms can be translated to automata with only accepting
states, but the automata obtained from MTL formulas also have the locality property
(cf. [24]). This property ensures that the clock is always reset when changing state. The
example (4.1) shows that this is not the case for positive TPTL. The satisfiability problem
for both logics is non-elementary [25].

Using equivalences mentioned above FlatMTL[12] with pointwise non Zeno semantics
can be defined as a set of formulas of the grammar:

p | α ∨ β | α ∧ β | αUJβ | χUIβ| χ J bounded and χ ∈MITL,

where MITL is a version of MTL in which we do not allow equality constraints [6]. The
original definition admits more constructs, but they are redundant in the semantics we
consider.

Both FlatMTL and Constrained TPTL use two different sets of formulas. The MTL
part of the later logic would look like

p | α ∨ β | α ∧ β | αUIβ | ϕ ϕ positive.

From this presentation it can be seen that there are at least two important differences: (i)
constrained TPTL does not have restrictions on the left hand side of “until”, and (ii) it
uses the positive fragment instead of MITL. We comment on these two aspects below.

Allowing unrestricted “until” makes the logic more expressive but also more difficult
algorithmically. For example, to get the non primitive recursive bound it is enough to use
the formulas generated by the later grammar without the clause for positive formulas. This
should be contrasted with the Expspace-completeness result for FlatMTL [12].

The use of positive fragment instead of MITL is also important. The two formalisms
are very different in expressive power. The crucial technical property of MITL is that a
formula of the form αUIβ can change its value at most three times in every unit interval.
This is used in the proof of decidability of FlatMTL, as the MITL part can be described in
a “finitary” way. The crucial property of the positive fragment is that it can express only
safety properties (and all such properties). We can remark that by reusing the construction
of [22] we get undecidability of the positive fragment extended with a formula expressing
that some action appears infinitely often. Theorem 5.2 presented in the next section implies
that this is true even if we do not use punctual constraints in the positive fragment. In
conclusion, we cannot add MITL to the positive fragment without losing decidability.

5. Undecidability without testing for equality

Ouaknine and Worrell [22] have proved undecidability of MTL over infinite words in the
case of pointwise semantics. Their construction immediately implies that the decidability
result from the last section is optimal if classes of accepting conditions are concerned.

Theorem 5.1 (Ouaknine, Worrell). It is undecidable whether a given one-clock universal
timed automaton A with weak (1, 2) conditions accepts some non Zeno word.

Recall that weak parity conditions were defined on page 4; weak (1, 2) condition means
that each accepting run contains only accepting states, or reaches ⊤. The construction in
op. cit. relies on equality constraints. Indeed, if we do not allow equality constraints in
MTL then we get a fragment called MITL, and the satisfiability problem for MITL over
infinite words is decidable [6].

WEAK ALTERNATING TIMED AUTOMATA 21

In this section we would like to show that a similar phenomenon is very particular to
MTL and does not occur in the context of automata. We show that the undecidability
result holds even when automata are only allowed to test if the clock is bigger than 1.

Theorem 5.2. It is undecidable if a given one-clock universal timed automaton A with
weak (1, 2) conditions accepts some non Zeno word, even when A does not use tests for
equality.

Remark: The above theorems stay true if we replace “non Zeno word” by “any word”.
This is because we can restrict the language of an automaton to non Zeno words: the set
of non Zeno words is accepted by an automaton with weak (1, 1) conditions.

To prove Theorem 5.2 we encode a problem of deciding whether there is a run of a
counter machine with insertion errors satisfying a (strong) Büchi condition. This section
is split in two parts. In the first we introduce counter machines with insertion errors, and
show undecidability of the problem in question. In the second we give an encoding of this
problem into the emptiness problem for automata with weak (1, 2) conditions.

Machines with insertion errors. A k-counter machine with insertion errors Mg has
configurations (q, c1, . . . , ck) consisting of a control state q ∈ Q and values of the counters
ci ∈ N. There are three kinds of transitions: (q : ci := ci + 1; goto q′) or (q : if ci =
0 then goto q′) or (q : if ci > 0 then ci := ci − 1; goto q′). The set of transitions δ of Mg

gives rise to a relation between configurations, describing a single step of Mg. The machine
has insertion errors, which means that before and after every step it may increase any of
its counters by any value. We will denote this by (q, c1, . . . , ck) −→ (q′, c′1, . . . , c′k), to say
that we may reach configuration (q′, c′1, . . . , c′k) from (q, c1, . . . , ck) using some transition
from δ and possibly increasing some counters before and after the transition. The initial
configuration of the machine Mg is (q0, 0, . . . , 0). Together with the machine there is given
some subset of states Qacc ⊆ Q. We say that a run of Mg satisfies the Büchi condition if
in infinitely many of its configurations there appears a state from Qacc.

Theorem 5.3 (Ouaknine, Worrell [22]). It is undecidable whether a given 5-counter ma-
chine with insertion errors Mg has a run satisfying the Büchi condition.

For completeness, we give a short proof of Theorem 5.3 by reduction to boundedness
of a lossy 4-counter machine. The principle of lossy k-counter machine is similar to that
with insertion errors, with a difference that before or after every step it may decrease any
of its counters by any value (instead of increasing). We say that a run of such a machine
is bounded, iff there is a common bound for values of all counters in all configurations
throughout the run. We will use the following result.

Theorem 5.4 (Mayr [18]). It is undecidable whether every run of a given lossy 4-counter
machine Ml is bounded.

Proof of Theorem 5.3. Coming back to insertion errors, first note that a counter machine
with insertion errors is exactly the same as lossy counter machine working backward. Let
Ml be a given lossy 4-counter machine. We construct a 5-counter machine Mg that can
simulate in a backward fashion a computation ofMl on the first four counters. This machine
is able to go from a configuration (q, c1, c2, c3, c4, c5) to a configuration (q0, 0, 0, 0, 0, c

5) iffMl

can go from (q0, 0, 0, 0, 0), that is the initial configuration, to (q, c1, c2, c3, c4). Additionally
to the states of Ml, the machine has some auxiliary states, among them an accepting state

22 P. PARYS AND I. WALUKIEWICZ

qacc. The machine will start in the state qacc, and this state will be reachable only from
a configuration (q0, 0, 0, 0, 0, c

5). In the state qacc, the machine increases c5 by 1 and then
(in a nondeterministic way) increases counters c1, c2, c3, c4, so that c1 + c2 + c3 + c4 ≥ c5.
To do that it may the move value of c5 simultaneously into c1 and c2, then move value
from c2 back to c5 and finally while decreasing c1 increase c2, c3, c4. After that it chooses
a state of Ml and starts computing backward (using only the first four counters). When
configuration (q0, 0, 0, 0, 0, c

5) is reached we make the machine to go to (qacc, 0, 0, 0, 0, c
5).

Assume that Ml has an unbounded computation. We will show that Mg has a run
visiting qacc infinitely often. Suppose that some initial fragment of this run is already
constructed and we are in a configuration (qacc, 0, 0, 0, 0, c

5) for some value of c5. As Ml

has an unbounded computation, it can reach a configuration (q, c1, c2, c3, c4) with the sum
of the counters bigger than c5 + 1. We increase c5 by 1, distribute c5 into other counters
to get the values c1, c2, c3, c4, we choose the state q and then execute the computation of
Ml backwards, starting from (q, c1, c2, c3, c4). When reaching (q0, 0, 0, 0, 0, c

5 + 1) we go to
(qacc, 0, 0, 0, 0, c

5 +1) and repeat this process. This gives the required infinite computation.
For the opposite direction, assume that there is a computation of Mg satisfying the

Büchi condition. Every appearance of qacc is followed by some initialization, and by a
backward computation of Ml, starting in a configuration of size bigger than the value of c5

and ending in (q0, 0, 0, 0, 0). However, every time this happens the value of c5 increases by
at least one. So we get computations of Ml ending in bigger and bigger configurations. By
König’s lemma, there exists also an unbounded computation of Ml.

Encoding machines into alternating automata. Now we return to the proof of Theo-
rem 5.2, which occupies the rest of this section. For given 5-counter machine with insertion
errors Mg we will construct an alternating one-clock timed automaton A that accepts some
infinite word iff Mg has a run satisfying the Büchi condition. The input alphabet of A will
consist of the instructions of Mg and some auxiliary letters whose use will be explained
later,

Σ = δ ∪ {shc, sh$, new, init}.

As states of A we take

Q+ = QM ∪ {1, 2, 3, 4, 5, $, q∞ , qinit} and Q− = {q−}.

States QM ∪ {1, 2, 3, 4, 5} will be used to represent configurations of Mg: the current state
and the values of the five counters. States q∞ and q− will encode the condition on successful
runs. State $ is important for technical reasons explained later. State qinit is just the initial
state that will not be reachable from other states.

In our description below we will consider the characterization of acceptance given by
Lemma 3.3. In this presentation a run of A is a sequence

P1
a1,t1
→֒ P2

a2,t2
→֒ P3 . . . ,

where each Pi ⊆ P(QA×R
+) is a set of pairs (q, v) consisting of a state of A and a valuation

of the clock. We call such a set an extended configuration of A, or an e-configuration for
short. Compared with Lemma 3.3 we have joined together a transition letting the time pass

with an action transition and write just
a,t
→֒ transitions. In what follows we will use only

two regions: I1 = [0, 1] and I∞ = (1,∞).

Definition 5.5. An e-configuration P of A is well-formed if:

WEAK ALTERNATING TIMED AUTOMATA 23

• For every (q, v) ∈ P : if q ∈ {1, . . . , 5, $} then v ∈ I1, and v ∈ I∞ otherwise.
• For every v ∈ I1 there is at most one q with (q, v) ∈ P .
• In P there is exactly one pair with a state from QM, exactly one pair with the state q∞,
and no pairs with qinit.

• Suppose (q, v) is in P where q ∈ {1, . . . , 5}. Then this pair is immediately preceded by
some ($, v′) (there is no pair (q′′, v′′) in P with v′ < v′′ < v).

Intuitively, a well-formed e-configuration is divided into two parts: the set of pairs with
the clock value in I1 and those in I∞. The first part can be seen as representing a word
over {1, . . . , 5, $} that is obtained by using the standard order on clock values. From the
conditions above it follows that this word is of the form $+qi1$

+qi2 . . . $
+qin$

∗; where qik ∈
{1, . . . , 5}. Such a word represents values of the counters when the value of the counter cj

is equal to the number of j in the word. The clock values of pairs in I∞ will not matter, so
this part can be seen as a multiset of states. In this multiset there will be exactly one state
from QM representing the state of the simulated machine. State q∞ plus some number of
states q− will be there to encode a condition on a successful run.

The automaton A will pass also through e-configurations that are not well-formed, but
in its accepting run it will have to repeatedly return to well-formed e-configurations.

Example 5.6. Consider an e-configuration

{$0.1, 10.2, $0.3, $0.4, 20.6, $0.8, 10.9, q5, q5−, q
5
∞}

where for readability we write a pair ($, 0.1) as $0.1; and similarly for all other elements
of the set. This e-configuration is well-formed and encodes the configuration (q, 2, 1, 0, 0, 0)
of Mg. Observe that there are infinitely many well-formed e-configurations encoding this
configuration of M.

Now we describe transitions of the automaton. In order to have an intuition for reading
the rules below it is important to observe that if the automaton reads a letter σ then all
states in its current e-configuration have to make a transition according to some rule labeled
σ. In consequence, if there is a state in the e-configuration that does not have a rule for σ
then the automaton cannot read σ.

The automaton starts in the state qinit and waits at least one time unit to start its two
copies: one in a state q0 and another in q∞ (where q0 is the initial state of Mg),

qinit,I∞
init
−→ q0 ∧ q∞.

This means that the e-configuration becomes {(q0, v), (q∞, v)} with v ∈ I∞.
States $ for clock values ≤ 1 are preserved by any transition,

$,I1
σ

−→ $, ∀σ ∈ Σ.

Similarly states 1, . . . , 5, with the exception that a transition checking for zero should not
be possible if the corresponding counter is non-zero,

i,I1
σ

−→ i ∀i = 1, . . . , 5 ∀σ 6= (q : if ci = 0 then goto q′).

When the clock value for a pair with $ or i becomes greater than 1, it may be reset,

$,I∞
sh$
−→ ($, reset),

i,I∞
shc
−→ $ ∧ (i, reset) ∀i = 1, . . . , 5,

q,I∞
σ

−→ q q ∈ QM ∪ {q∞, q−}, σ = sh$ or σ = shc.

24 P. PARYS AND I. WALUKIEWICZ

Note that the transition on $ reads a different letter than that on i. In consequence, if in
a e-configuration there are pairs with both $ and i having clock values in I∞ then neither
sh$ nor shc are possible. As we will have no more transitions from ($,I∞) this means that
the automaton will be blocked in such e-configuration.

Now we consider moves on transitions of the machine Mg. For σ = (q : if ci =
0 then goto q′) we just do

q,I∞
σ

−→ q′.

Note that, thanks to earlier restriction, the transition is possible only when there are no i
states in the e-configuration. For σ = (q : if ci > 0 then ci := ci − 1; goto q′) we do

q,I∞
σ

−→q′,

i,I∞
σ

−→⊤.

For σ = (q : ci := ci + 1; goto q′) we do

q,I∞
σ

−→ q′ ∧ $ ∧ (i, reset).

As the machine should allow insertion errors, we add a transition

q,I∞
new
−→ q ∧ $ ∧ (i, reset).

Finally, we have special states q∞ and q−, that are used to ensure that states from Qacc

appear infinitely often. The state q∞ produces repeatedly new q− states,

q∞,I∞
σ

−→ q∞ ∧ q− ∀σ ∈ Σ.

The state q− is the only one, which is in Q−, so in the accepting run every q− state has
to disappear after some time. States q− disappear, when there is a transition ending in a
state from Qacc,

q−,I∞
σ

−→ ⊤ ∀σ = (. . . goto q′), q′ ∈ Qacc,

q−,I∞
σ

−→ q− for all other σ.

Example 5.7. Let us see how a transition σ = (q : if c2 > 0 then c2 := c2 − 1; goto q2)
is simulated from the e-configuration in Example 5.6. One possibility is to immediately
execute a transition reading σ. We get the e-configuration

{$0.1, 10.2, $0.3, $0.4, 20.6, $0.8, 10.9, q52, q
5
−, q

5
∞}

which is well-formed and encodes the configuration (q2, 2, 1, 0, 0, 0) of Mg. The second
counter has not been decreased, but this is correct as the machine is allowed to do incre-
mental errors.

If we really want to decrease the second counter, we have to ensure that a pair with 2
is in the I∞ region. If we let pass, say, 0.2 units of time we get e-configuration

{$0.3, 10.4, $0.5, $0.6, 20.8, $1, 11.1, q5.2, q5.2− , q5.2∞ } .

Then we execute a transition shc and we get

{10, $0.3, 10.4, $0.5, $0.6, 20.8, $1, q5.2, q5.2− , q5.2∞ } .

After time 0.1 we can execute a transition sh$, getting

{$0, 10.1, $0.4, 10.5, $0.6, $0.7, 20.9, q5.3, q5.3− , q5.3∞ } .

WEAK ALTERNATING TIMED AUTOMATA 25

Then after 0.2 we execute a transition σ, getting a well-formed e-configuration corresponding
to (q2, 2, 0, 0, 0, 0):

{$0.2, 10.3, $0.6, 10.7, $0.8, $0.9, q5.52 , q5.5− , q5.5∞ } .

Now consider the transition σ′ = (q2 : c3 := c3 + 1; goto q3) of Mg. We execute
a transition σ′ from the above e-configuration after time 0.1 (recall that executing two
transitions at the same time is forbidden), getting

{30, $0.3, 10.4, $0.7, 10.8, $0.9, $1, q5.63 , q5.6− , q5.6∞ } .

After additional time 0.1 we execute the transition sh$, getting a well-formed e-configuration
corresponding to (q3, 2, 0, 1, 0, 0):

{$0, 30.1, $0.4, 10.5, $0.8, 10.9, $1, q5.73 , q5.7− , q5.7∞ } .

Lemma 5.8. There exists a run of Mg satisfying the Büchi condition iff A accepts some
infinite word.

Proof. Assume that Mg has a run satisfying the Büchi condition. From the initial state, A
may go to a well-formed e-configuration corresponding to the initial configuration of Mg.
Then every step of Mg may be simulated by A: When Mg increases some of its counters,
we may do the same using transitions on letters new and then sh$. When Mg executes
a transition σ = (q : if ci = 0 then goto q′) we may do the same in A reading letter σ.
When Mg does σ = (q : ci := ci+1; goto q′), we do the same reading letter σ and then sh$.
It is easy to check, that after each step the resulting e-configuration remains well-formed.

The only complicated transition is σ = (q : if ci > 0 then ci := ci − 1; goto q′).
Suppose that the automaton is in a well-formed e-configuration P . Let us look at the biggest
valuation v ≤ 1 appearing in P . By the conditions of well-formedness (c.f. Definition 5.5)
there is exactly one state q ∈ Q+ such that (q, v) ∈ P . This state can be one of 1, . . . , 5, $.
The automaton lets the time pass so that v becomes greater than 1, but all other valuations
from I1 stay in I1. If q = i then the automaton does σ. Otherwise, it does sh$ or shc

followed by sh$ that has an effect of putting $ or $ followed by q at the beginning of the
e-configuration. After this we obtain a well-formed e-configuration where the one but the
maximal valuation before became the maximal one. These operations are repeated until
q = i. We are sure that this process ends, as there is a state i in P .

To ensure that the obtained word is nonZeno, we have to wait some time after every
transition of Mg, doing shc and sh$ if necessary. Observe that every state q− would
disappear when in the computation of Mg there is a transition ending in a state from Qacc.
As this computation satisfies the Büchi condition, this will happen infinitely often.

For the other direction, consider an accepting run of A on some word. In the first step,
A has to reach a well-formed e-configuration corresponding to the initial configuration of
Mg. Let us see what may happen from any well-formed e-configuration. Suppose that time
passes and the clock value for some states 1, . . . , 5, $ becomes greater than 1. If it happens
simultaneously for state $ and some state i, then from the obtained e-configuration there
will be no more transitions. If it happens only for state $, then the only possible transition is
the one reading sh$ after which we go back to a well-formed e-configuration corresponding
to the same configuration of Mg. If it happens just for some state i, then the automaton can
read either shc or some (q : if ci > 0 then ci := ci − 1; goto q′). If it reads shc, then after
that it has to read sh$, and we also are back in a well-formed e-configuration corresponding
to the same configuration of Mg. If it reads σ = (q : if ci > 0 then ci := ci − 1; goto q′),
then we immediately get a well-formed e-configuration.

26 P. PARYS AND I. WALUKIEWICZ

Transitions reading shc or sh$ when no state of 1, . . . , 5, $ has the clock value above
1 does not change the configuration. A transition reading new has to be followed by a
transition sh$ and we get a well-formed e-configuration with one of the counters increased.
A transition reading σ = (q : if ci = 0 then goto q′) is possible only when counter ci is zero.
After a transition reading σ = (q : ci := ci +1; goto q′) there has to be a transition reading
sh$ and we get a well-formed e-configuration that corresponds to a correct configuration
of Mg. A transition reading σ = (q : if ci > 0 then ci := ci − 1; goto q′) always gives us
a well-formed e-configuration. The obtained e-configuration correctly represents the result
but for the fact that the counter i may not be decremented. This is not a problem as we
are simulating a machine with insertion errors, so we can suppose that the incrementation
error has occurred immediately after execution of this instruction.

The above argument gives some computation of Mg constructed from an accepting
computation of A. So every q− disappears after some time on that computation of A. This
is only possible when reading a letter of the form (. . . goto q′) with q′ an accepting state
of Mg. As q− needs to disappear infinitely often, the obtained computation of Mg is an
infinite computation satisfying the Büchi condition.

As the choice of counter machine Mg was arbitrary and the construction of A from
Mg was effective, Lemma 5.8 implies Theorem 5.2.

6. Conclusions

This paper presents a study of the emptiness problem for alternating timed automata. It
gives a characterization of decidable cases of this problem in terms of the complexity of
acceptance conditions. The main result shows that all the classes whose decidability has
been left open are indeed decidable. This result gives new decidability results for logics for
real-time.

Given this characterization, in order to find other, bigger, classes of alternating timed
automata with decidable emptiness problem we need to look closer at the structure of
automata. In this paper one case has been studied, namely when no punctual constraints are
used. This case was motivated by the phenomenon observed for metric temporal logic: while
the logic is undecidable, it becomes decidable when punctual constraints are disallowed. The
second main result of the paper shows that in the case of automata such a simple restriction
does not work: one does not get a bigger decidable class even if one restricts to extremely
simple constraints. This indicates that in order to obtain larger decidable classes, the
structure of resets should be also examined more closely.

References

[1] P. Abdulla and B. Jonsson. Veryfying networks of timed processes. In Proc. TACAS’98, volume 1384
of LNCS, pages 298–312, 1998.

[2] P. Abdulla and B. Jonsson. Timed Petri nets and BQOs. In Proc. ICATPN’01, pages 53–70, 2001.
[3] P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Worrell. Universality analysis for one-clock

timed automata. Fundam. Inform., 89(4):419–450, 2008.
[4] P. A. Abdulla, J. Ouaknine, K. Quaas, and J. Worrell. Zone-based universality analysis for single-clock

timed automata. In FSEN’07, number 4767 in LNCS, pages 98–112, 2007.
[5] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.
[6] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM, 43(1):116–146,

1996.

WEAK ALTERNATING TIMED AUTOMATA 27

[7] R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable class of timed automata.
Theoretical Computer Science, 204, 1997.

[8] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.
[9] P. Bouyer. Model-checking timed temporal logics. In Workshop on Methods for Modalities (M4M-5),

Electronic Notes in Theoretical Computer Science, Cachan, France, 2009. Elsevier Science Publishers.
To appear.

[10] P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL. In FSTTCS’05,
volume 3821 of LNCS, pages 432–443, 2005.

[11] P. Bouyer, N. Markey, J. Ouaknine, P. Schnoebelen, and J. Worrell. On termination for faulty channel
machines. In STACS’08, volume 08001 of Dagstuhl Seminar Proceedings, pages 121–132, 2008.

[12] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality. In LICS’07, pages 109–120,
2007.

[13] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and complexity in real-time
model checking. In ICALP’08, volume 5126 of LNCS, pages 124–135, 2008.

[14] Y. Hirshfeld and A. M. Rabinovich. Logics for real time: Decidability and complexity. Fundam. Inform.,
62(1):1–28, 2004.

[15] D. V. Hung and W. Ji. On the design of hybrid control systems using automata models. In FSTTCS’96,
number 1180 in LNCS, pages 156–167, 1996.

[16] S. Lasota and I. Walukiewicz. Alternating timed automata. In FOSSACS’05, number 3441 in Lecture
Notes in Computer Science, pages 250–265, 2005.

[17] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput. Log., 9(2), 2008.
[18] R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer Science, 1-

3(297):337–354, 2003.
[19] A. W. Mostowski. Hierarchies of weak automata and week monadic formulas. Theoretical Computer

Science, 83:323–335, 1991.
[20] F. Murlak. Weak index versus borel rank. In STACS’08, Dagstuhl Seminar Proceedings, pages 573–584.

Dagsr, 2008.
[21] J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata: Closing a decid-

ability gap. In Proc. LICS’04, pages 54–63, 2004.
[22] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS’05, pages 188–197,

2005.
[23] J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines. In FoSSaCS, volume

3921 of LNCS, pages 217–230, 2006.
[24] J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable. In TACAS’06, number 3920

in LNCS, pages 411–425, 2006.
[25] J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal logic over finite

words. Logical Methods in Computer Science, 3(1), 2007.
[26] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In FORMATS’08, number

5215 in LNCS, pages 1–13, 2008.
[27] M. Y. Vardi and P.Wolper. Automata theoretic techniques for modal logics of programs. In Sixteenth

ACM Symposium on the Theoretical Computer Science, 1984.
[28] K. Wagner. Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen. J. Inf. Pro-

cess. Cybern. EIK, 13:473–487, 1977.
[29] K. Wagner and L. Staiger. Automatentheoretische und automatenfreie charakterisierungen topologischer

klassen regularer folgenmengen. EIK, 10:379–392, 1974.
[30] T. Wilke. Classifying discrete temporal properties. Habilitation thesis, Kiel, Germany, 1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Decidability for one-clock timed automata
	3.1. An abstract transition system
	3.2. Finding an accepting path in H(A).
	3.3. Computing accepting configurations
	3.4. Computing G"0362G

	4. Constrained TPTL
	4.1. Relation with other logics

	5. Undecidability without testing for equality
	Machines with insertion errors
	Encoding machines into alternating automata

	6. Conclusions
	References

