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c LaBRI (Université de Bordeaux - CNRS)
e-mail address: igw@labri.fr

Abstract. We use the recently developed theory of forest algebras to find algebraic char-
acterizations of the languages of unranked trees and forests definable in various logics.
These include the temporal logics CTL and EF, and first-order logic over the ancestor
relation. While the characterizations are in general non-effective, we are able to use them
to formulate necessary conditions for definability and provide new proofs that a number
of languages are not definable in these logics.

1. Introduction

Logics for specifying properties of labeled trees play an important role in several areas of
Computer Science. We say that a class of regular languages of trees L has an effective
characterization if there is an algorithm which decides if a given regular language of trees
belongs to L . Effective characterizations are known only for a few logics. In particular, we
do not know if such characterizations exist for the classes of languages defined by the most
common logics such as : CTL, CTL*, PDL, or first-order logic with the ancestor relation.

In this paper we consider logics for unranked trees, in which there is no a priori bound
on the number of children a node may have. Many such logics, including all the logics that
are considered in this paper, are no more expressive than monadic second-order logic, and
thus the properties they define can be described using automata. Barcelo and Libkin [1]
and Libkin [15] catalogue a number of such logics and contrast their expressive power. We
use recently developed theory of forest algebras to find algebraic characterisations of the
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languages of unranked trees definable in some most common logics. While the characteriza-
tions are in general non-effective, we are able to use them to formulate necessary conditions
for definability and provide new proofs that a number of languages are not definable in
these logics.

For properties of words, such questions have been fruitfully studied by algebraic means.
Whether or not a regular word language L can be defined in a given logic can often be
determined by verifying some property of the syntactic monoid of L—the transition monoid
of the minimal automaton of L. The earliest work in this direction is due to McNaughton
and Papert [20] who studied first-order logic with linear order, and showed that a language
is definable in this logic if and only if its syntactic monoid is aperiodic—that is, contains no
nontrivial groups. A comprehensive survey treating many different predicate logics is given
in Straubing [23]; temporal logics are studied by Cohen, Perrin and Pin [8] and Wilke [24],
among others.

Algebraic techniques provide a striking alternative to purely model-theoretic methods
for studying the expressive power of logics over words. In many cases they have led to
effective characterizations of certain logics, and actually to reasonably efficient algorithms.
Even in the absence of effective characterizations, it is frequently possible to obtain effective
necessary conditions for expressibility in a logic and use these to show the non-expressibility
of certain languages. For instance, the strictness of the Σk-hierarchy in first-order logic on
words–the dot-depth hierarchy– was first proved by such algebraic means (Brzozowski and
Knast [7], Straubing [22]), while effective characterization of the levels of the hierarchy
remains an open problem.

There have been a number of efforts to extend this algebraic theory to trees; a notable
recent instance is in the work of Ésik and Weil on preclones [9, 10]. Recently, Bojańczyk and
Walukiewicz [3] introduced forest algebras, and along with it the syntactic forest algebra,
which generalize monoids and the syntactic monoid for languages of forests of unranked
trees. This algebraic model is rather simple, and in contrast to others studied in the
literature, has already yielded effective criteria for definability in a number of logics: see
Bojańczyk [4], Bojańczyk-Segoufin-Straubing [6], Bojańczyk-Segoufin [5]. Forest algebras
are also implicit in the work of Benedikt and Segoufin [2] on first-order logic with successor
and of Place and Segoufin [18] on locally testable tree languages.

In the present paper we continue the study of forest algebras, by developing a theory of
composition of forest algebras, using the wreath product. The wreath product of transforma-
tion monoids plays an important role in the theory for words. In particular, it is connected
to a composition operation on languages and to generalized temporal operators. This paper
is concerned with describing the connection between formula composition and the wreath
product of forest algebras, in the case of unranked trees. Here is a brief summary of our
results:

(1) To each logic L among EF, CTL, CTL*, first-order logic with ancestor, PDL and
graded PDL, we associate a class of forest algebras, called the base of L . We show
that a language of forests is definable in the logic L if and only if it is recognized by
an iterated wreath product of the forest algebras from the base of L . (Theorem 5.2.)

(2) In the cases of EF and CTL, the base has a single forest algebra. For the other cases
we show that there is no finite base. As a consequence, none of these logics can be
generated by a finite collection of generalized temporal operators. Using our algebraic
framework, we give a simple and general proof of this fact. (Theorem 5.5.)
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(3) For the logics that do not have a finite base, we give an effective characterization of the
base. (Theorems 5.3 and 5.4.) Note that an effective characterization of a base does
not imply an effective characterization for wreath products of the base, so this result
does not give an effective characterization of any of the logics mentioned in item (1).

(4) Going one step further, we provide an effective characterization for the path languages
(Theorem 5.4): boolean combinations of languages from the base of graded PDL.

(5) We give a new proof, based on the wreath product, of an effective characterization
of the logic EF. This result was proved earlier by other means. (Bojanczyk and
Walukiewicz [3].) Our argument here computes a decomposition based on the ideal
structure of the underlying forest algebra.

(6) Although we do not find effective characterizations for other prominent logics from our
list, we are able to use our framework to establish necessary conditions for definability
in these logics, and consequently to prove that a number of specific languages are not
definable in them. (Theorem 8.2.)

(7) We give an effective characterization of CTL* languages within first-order definable
languages. Similarly for PDL languages within languages definable in graded PDL
(Theorem 9.2.)

Plan of the paper. In Sections 2-4 we present the basic terminology concerning, respectively,
trees, logic, and forest algebras. Our treatment of temporal logics is somewhat unorthodox,
since our algebraic theory requires us to interpret formulas in forests as well as in trees,
therefore the precise syntax and semantics are different in the two cases. Section 4 includes
a detailed treatment of the wreath product of forest algebras. In Section 5 we establish
the first of our main results, giving wreath product characterizations of all the logics under
consideration. In Section 6 we give the effective characterization of EF, and in Section 7 the
necessary conditions for definability in the other logics. Section 8 is devoted to applications
of these conditions.

We note that Ésik and Ivan [11, 12] have done work of a similar flavor for CTL (for
trees of bounded rank). Our work here is of considerably larger scope, both in the number
of different logics considered, and the concrete consequences our algebraic theory permits
us to deduce.

The present article is the complete version of an extended abstract presented at the
2009 IEEE Symposium on Logic in Computer Science.

2. Trees, Forests and Contexts

Let A be a finite alphabet. Formally, forests and trees over A are expressions generated by
the following rules: (i) if s is a forest and a ∈ A then as is a tree; (ii) if (t1, . . . , tk) is a
finite sequence of trees, then t1 + · · · + tk is a forest. We permit this summation to take
place over an empty sequence, yielding the empty forest, which we denote by 0, and which
gets the recursion started. So, for example, the following forest with two roots

b b

b

b

a

aa

c c

is described by the expression

a(a0 + b(c0 + b0 + c0)) + b(a0 + b0).
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Normally, when we write such expressions, we delete the zeros. We denote the set of forests
over A by HA. This set forms a monoid with respect to forest concatenation s+ t, with the
empty forest 0 being the identity. We denote the set of trees over A by TA.

If x is a node in a forest, then the subtree of x is simply the tree rooted at x, and the
subforest of x is the forest consisting of all subtrees of the children of x. In other words, if
the subtree of x is as, with a ∈ A and s ∈ HA, then the subforest of x is s. Note that the
subforest of x does not include the node x itself, and is empty if x is a leaf.

A forest language over A is any subset of HA.
A context p over A is formed by replacing a leaf of a nonempty forest by a special

symbol �. Think of � as a kind of place-holder, or hole. Given a context p and a forest s,
we form a forest ps upon substituting s for the hole in p. In the interpretation of forests as
expressions, this really is just substitution of the expression s for the hole of p; the graphical
interpretation of this operation is depicted below.

?

p s ps

In a similar manner, we can substitute another context q for the hole, and obtain a
new context pq. We obtain in this way a composition operation on contexts. We denote the
set of contexts over A by VA. This set forms a monoid, with respect to this composition
operation, with the empty context � as the identity.

Note that for any s, t ∈ HA, VA contains a context s+�+ t, in which the hole has no
parent, such that (s+�+ t)u = s+ u+ t for all u ∈ HA.

Our trees, forests and contexts are ordered, so that s + t is a different forest from
t + s unless s = t or one of s, t is 0. This noncommutativity is important in a number of
applications. However the present article really deals with unordered trees, so there is no
harm in thinking of + as a commutative operation on forests.

3. Logics for Forest Languages

We can define regular forest languages by means of an automaton model that is a minor
modification of the standard bottom-up tree automaton. The transition function has to
be altered to cope with unbounded branching, and the acceptance condition needs to take
account of the sequence of states in the roots of all the trees in the forest. See [3] for a
precise definition of such an automaton model. The usual equivalence between monadic
second-order logic and regularity holds in this setting.

For a general treatment of predicate and temporal logics for unranked trees, we refer
the reader to Libkin [15] and Barceló-Libkin [1]. We will have to give a somewhat different
description of similar logics in order to express properties of forests as well as of trees. In
all cases the logics that we describe are fragments of monadic second-order logic, and thus
the languages they define are all regular forest languages.
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3.1. First-order logic for trees and forests. Let A be a finite alphabet. Consider first-
order logic equipped with unary predicates Qa for each a ∈ A, and a single binary predicate
≺ . Variables are interpreted as nodes in forests over A. Formula Qax is interpreted to mean
that node x is labeled a, and x ≺ y to mean that node x is a (non-strict) ancestor of node
y. A sentence φ—that is, a formula without free variables—consequently defines a language
Lφ ⊆ HA consisting of forests over A that satisfy φ. For example, the sentence

∃x∃y(Qax ∧Qay ∧ ¬(x ≺ y) ∧ ¬(y ≺ x))

defines the set of forests containing two incomparable occurrences of a. We denote this
logic by FO[≺]. Note that this logic has no predicates to access the order of siblings. In
particular, any language defined by the logic will be horizontally commutative, i.e. closed
under reordering sibling trees.

It is more traditional to consider logics over trees rather than over forests. For FO[≺]
we need not worry too much about this distinction, since we can express in first-order logic
the property that a forest has exactly one root (by the sentence ∃x∀y(x ≺ y)). Thus the
question of whether a given set of trees is first-order definable does not depend on whether
we choose to interpret sentences in trees or in forests.

3.2. Temporal logics. We describe here a general framework for temporal logics inter-
preted in trees and forests. By setting appropriate parameters in the framework we generate
all sorts of temporal logics that are traditionally studied.

The general framework is called graded propositional dynamic logic (graded PDL).
Syntax of temporal formulas. We distinguish between two kinds of formulas: tree formulas
and forest formulas. The syntax of these formulas is defined by mutual recursion, as follows:

• T and F are forest formulas.
• If a ∈ A, then a is a tree formula. (Such formulas are called label formulas.)
• Finite boolean combinations of tree formulas are tree formulas, and finite boolean com-
binations of forest formulas are forest formulas.

• Every forest formula is a tree formula.
• Before defining the key construction we need to introduce the concept of an unambiguous
set of formulas. Such a set Φ = {φ1, . . . , φn+1} is constructed from a sequence of tree
formulas ψ1, . . . , ψn by a simple syntactic operation ensuring that every tree satisfies
exactly one formula from Φ:

φi = ψi ∧
∧

j≤i−1

¬ψj for i = 1, . . . , n and φn+1 =
∧

j≤n

¬ψj.

• If Φ is a finite unambiguous set of tree formulas, k > 0 is an integer, and L ⊆ Φ∗ is a
regular language then E

kL is a forest formula.

Semantics of temporal formulas. We define two notions of satisfaction: tree satisfaction
t |=t φ, where t is a tree and φ is a tree formula, which coincides with the usual notion of
satisfaction; and forest satisfaction t |=f ϕ, where t is a forest and φ is a forest formula,
which is somewhat unusual. Again, these relations are defined by mutual recursion.

• If t ∈ HA then t |=f T and t 6|=f F.
• If t ∈ TA and a ∈ A, then t |=t a if and only if the root node of t is labeled a.
• Boolean operations have their usual meaning; e.g., if t ∈ HA and φ1, φ2 are forest
formulas, then t |=f φ1 ∧ φ2 if and only if t |=f φ1 and t |=f φ2.
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• Let φ be a forest formula and t ∈ TA, so that t = as for a unique s ∈ HA, a ∈ A. Then
t |=t φ if and only if s |=f φ.

• Let k > 0, and let Φ be a finite unambiguous set of tree formulas, with L ⊆ Φ∗ a regular
language. Let s ∈ HA. If x is a node of s, then we label the node by φi if tx |=t φi,
where tx is the subtree of x. Note that because of the unambiguity requirement, there is
exactly one such label. A path x1, . . . , xn of consecutive nodes of s beginning at a root,
but not necessarily extending to a leaf, thus yields a unique word φi1 . . . φin ∈ Φ∗, which
we call the Φ-path of xn. We say s |=f E

kL if there are at least k nodes in the forest
whose Φ-path belongs to L.

We stress that in counting paths, we do not require the paths to be disjoint, and we do not
require them to extend all the way to the leaves. For example, the forest aa + a contains
three different nonempty paths from the root, so this forest satisfies the formula E

3a+.
Given a temporal formula ψ, we write Lψ for the set of forests that forest satisfy ψ:

Lψ = {s ∈ Ha : s |=f ψ}

We specialize the above framework by restricting either the value of k or the language
L in the application of the operator EkL, or both. This leads, in the case of trees, to some
logics that have been widely studied. We catalogue these below:

EF. As a first example, we show how to implement the operator “there exists a descendant”,
often denoted by EF. This example also highlights the difference between tree satisfaction
and forest satisfaction. Consider the special case of EkL where, for some tree formula ψ,

Φ = {ψ,¬ψ} k = 1 L = (¬ψ)∗ψ. (3.1)

In this special case, we write EFψ instead of EkL. It is easy to see that EFψ is forest satisfied
by a forest s if and only if ψ is satisfied by some subtree of s. In the special case when
s is a tree, this subtree may be s itself. The semantics shows how to interpret EFψ as a
tree formula. If t is a tree, then t tree satisfies EFψ if and only if t has a proper subtree
that satisfies ψ. In other words, tree satisfaction of Eψ corresponds to the so called strict
semantics, while forest satisfaction of Eψ corresponds to the non strict semantics. We will
use the term EF for the fragment of graded PDL where the operator E

kL is only used in
the special case of EFψ.

CTL. As a second example, we show how to implement the operator EψUφ of CTL. Consider
the special case of EkL where, for some tree formulas ψ and φ,

Φ = {ψ ∧ ¬φ,¬ψ ∧ ¬φ, φ} k = 1 L = (ψ ∧ ¬φ)∗φ. (3.2)

In this special case, we write EψUφ instead of EkL. It is easy to see that EψUφ is forest
satisfied by a forest s if and only if the subtree of some node x tree satisfies the formula
φ, and the subtree at every proper ancestor of x tree satisfies ψ. Let us look now at the
tree semantics of the formula EψUφ. If t is a tree, then t tree satisfies EψUφ if and only
if the subtree of some non-root node x tree satisfies φ, and every non-root proper ancestor
of x tree satisfies ψ. As was the case with the operator EF, tree satisfaction corresponds
to strict semantics and forest satisfaction corresponds to non strict semantics. We will use
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the term CTL for the fragment of graded PDL where the operator EkL is only used in the
special case of EψUφ. 1

First-order logic. We use our temporal framework to characterize the languages definable
in FO[≺].

Theorem 3.1. A forest language is definable in FO[≺] if and only if it is definable by a
forest formula in which the operator EkL is restricted to word languages L that are first-order
definable over an unambiguous finite alphabet Φ of tree formulas.

Proof. The theorem is very similar to the result of Hafer and Thomas [14] who show that
first-order logic coincides with CTL* on finite binary trees. The theorem is even closer to
the result Moller and Rabinovich [17] who show that over infinite unranked trees Counting-
CTL* is equivalent to Monadic Path Logic (MPL). To deduce our theorem from their result
it is enough to clarify the relations between different logics.

The logics considered by Moller and Rabinovich express properties of infinite unranked
trees, which can have both infinite branches and finite branches that end in leaves. A
maximal path is therefore defined as a path that begins in any node, is directed away from
the root, and either continues infinitely or ends in a leaf. Monadic Path Logic (MPL) is
the restriction of monadic second-order logic over the predicate ≺ in which second-order
quantification is restricted to maximal paths. In other words, MPL is the extension of FO[≺]
that allows quantification over maximal paths. Over infinite trees, MPL is more expressive
than first-order logic, since it can define the property “some path contains infinitely many
a’s ”, which cannot be defined in FO[≺]. However, over finite unranked trees, FO[≺] has
the same expressive power as MPL. This is because a maximal path in a finite tree can be
described by its first node and the leaf where it ends.

The logic counting-CTL* can be interpreted as the the fragment of graded PDL where
the operator EkL is only allowed in the following two restricted forms:

• A next operator X
k. This formula holds in a tree if subtrees of at least k children of

the root satisfy φ. If Xkφ is a formula of counting-CTL* and φ̂ is a translation of φ into

graded-PDL then X
kφ is translated into a tree formula E

kLφ where Lφ = {φ̂}. Indeed,
such a formula requires existence of k different paths of length 1 whose labellings belong

to φ̂.
• An existential path operator, which we denote here by E

′ (the original paper uses E, but
we use E

′ to highlight the slight change in semantics). This operator works like our EL,
but with the the difference that E′L is a tree formula, and the path begins in the unique
root of the tree. Rabinovich and Moller require that L is definable in LTL, which is
equivalent to first-order definability.

So counting-CTL* can be translated to a fragment of graded-PDL using only first-order
definable word languages in quantification. Hence, by the result of Moller and Rabinovich
we get a translation of FO[≺] to this fragment. The translation in the opposite direction
is straightforward.

1In most presentations CTL also has the “next” operator EXφ, as well as the dual operator E¬(ψUφ).
The next operator is redundant thanks to the strict semantics, and the dual operator is redundant in finite
trees.
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Note that Theorem 3.1 fails without the restriction on unambiguity of the alphabet
Φ. For instance, if we took A = {a, b, c}, Φ = {φ1, φ2}, where φ1 = a ∨ c, φ2 = b ∨ c,
then L = (φ1φ2)

+ is first-order definable as a word language. One can imagine what the
semantics of EL should be in the case of such Φ: a node labelled with c can be labelled
either with φ1 or with φ2. With this semantics however, the language defined by EL is not
first-order definable. (If it were, we would be able to define in first-order logic the set of
forests consisting of a single path with an even number of occurrences of c.)

Actually, one can show, using composition theorems similar to those used by Hafer and
Thomas, or Moller and Rabinovich, that graded PDL has the same expressive power as
chain logic, which is the fragment of monadic second order logic where set quantification is
restricted to chains, i.e. subsets of paths.

CTL* and PDL. Finally, we define two more temporal logics by modifying the definitions
above. CTL* is like the fragment of temporal logic in Theorem 3.1, except that we only
allow k = 1 in E

kL. In particular, CTL* is a subset of FO[≺].We also consider PDL, which
is obtained by restricting the temporal formulas EkL to k = 1, but without the requirement
that L be first-order definable. If we place no restriction on either the multiplicity k or the
regular language L, we obtain graded PDL.

3.3. Language composition and bases. In this section we provide a more general notion
of temporal logic, where the operators are given by regular forest languages. This is similar
to notions introduced by Ésik in [11]. The benefit of the general framework is twofold.
First, it corresponds nicely with the algebraic notion of wreath product presented later in
the paper. Second, it allows us to state and prove negative results, for instance our infinite
base theorem, which says that the number of operators needed to obtain first-order logic is
necessarily large.

We introduce a composition operation on forest languages. Fix an alphabet A, and
let {L1, . . . , Lk} be a partition of HA. Let B = {b1, . . . , bk} be another alphabet, with one
letter bi for each block Li of the partition. The partition and alphabet are used to define a
relabeling

t ∈ HA 7→ t[L1, . . . , Lk] ∈ HA×B

in the following manner. The nodes in the forest t[L1, . . . , Lk] are the same as in the forest
t, but the labels are different. A node x that had label a in t gets label (a, bi) in the new
forest, where bi corresponds to the unique language Li that contains the subforest of x in
t. For the partition and B as above, and L a language of forests over A × B, we define
L[L1, . . . , Lk] ⊆ HA to be the set of all forests t over A for which t[L1, . . . , Lk] ∈ L.

The operation of language composition is similar to formula composition. The defi-
nitions below use this intuition, in order to define a “temporal logic” based on operators
given as forest languages. Formally, we will define the closure of a language class under
language composition. First however, we need to comment on a technical detail concerning
alphabets. In the discussion below, a forest language is given by two pieces of information:
the forests it contains, and the input alphabet. For instance, we distinguish between the set
L1 of all forests over alphabet {a}, and the set L2 of all forests the alphabet {a, b} where b
does not appear. The idea is that sometimes it is relevant to consider a language class L

that contains L1 but does not contain L2, such as the class of definite languages that only
look at a bounded prefix of the input forest (such classes will not appear in this particular
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Logic Languages in the language base for alphabet A
EF {“some node with a” : a ∈ A}
CTL {“some path in B∗b” : B ⊆ A, b ∈ A}
FO[≺] {“at least k paths in L” : k ∈ N, L ∈ FOA[<]}
CTL* {“some path in L” : L ∈ FOA[<]}
PDL {“some path in L ⊆ A+” : L regular}
graded PDL {“at least k paths in L ⊆ A+” : k ∈ N, L regular}

Figure 1: Language bases for temporal logics

paper). This distinction will be captured by our notion of language class: a language class
is actually a mapping L , which associates to each finite alphabet a class of languages over
this alphabet.

Let L be a class of forest languages, which will be called the language base. The tempo-
ral logic with language base L is defined to be the smallest class TL[L ] of forest languages
that contains L and is closed under boolean combinations and language composition, i.e.

L1, . . . , Lk, L ∈ TL[L ] ⇒ L[L1, . . . , Lk] ∈ TL[L ].

Formally speaking, in the above we should highlight the alphabets (the languages L1, . . . , Lk
and L[L1, . . . , Lk] belong to the part of TL[L ] for alphabet A, while the language L belongs
to the part of TL[L ] for alphabet A×B, as in the definition of the composition operation).

We can translate the definitions of the temporal logics we have considered in terms of
language composition. This gives the following theorem.

Theorem 3.2. The logics EF, CTL, FO[≺], CTL* , PDL and graded PDL have language
bases as depicted in Figure 1.

Note that the assertion about FO[≺] depends on Theorem 3.1.

4. Forest Algebras

4.1. Definition of forest algebras. Forest algebras, introduced in [3] by Bojańczyk and
Walukiewicz, extend the algebraic theory of syntactic monoid and syntactic morphism for
regular languages of words to the setting of unranked trees and forests. A forest algebra is
a pair (H,V ) of monoids together with a faithful monoidal left action of V on the set H.
This means that for all h ∈ H, v ∈ V, there exists vh ∈ H such that (i) (vw)h = v(wh) for
all v,w ∈ V and h ∈ H, (ii) if 1 ∈ V is the identity element, then 1h = h for all h ∈ H,
and (iii) if vh = v′h for all h ∈ H, then v = v′. We write the operation in H additively, and
denote the identity of H by 0. We call H and V, respectively, the horizontal and vertical
components of the forest algebra. The idea is that H represents forests and V represents
contexts. As was the case with the addition in HA, this is not meant to suggest that H is
a commutative monoid, although in all the applications in the present paper H will indeed
be commutative. We require one additional condition: For each h ∈ H there are elements
1 + h, h + 1 ∈ V such that for all g ∈ H, (1 + h)g = g + h, and (h + 1)g = h + g. A
consequence is that every element h ∈ H can be written as h = v0 for some v ∈ V , namely
v = h+1. A homomorphism of forest algebras consists of a pair of monoid homomorphisms
(αH , αV ) : (H,V ) → (H ′, V ′) such that αH(vh) = αV (v)αH(h) for all v ∈ V and h ∈ H.



10 M. BOJAŃCZYK, H. STRAUBING, AND I. WALUKIEWICZ

We usually drop the subscripts on the component morphisms and simply write α for both
these maps.

Of course, if A is a finite alphabet, then (HA, VA) is a forest algebra. The empty forest
0 is the identity of HA, and the empty context � is the identity of VA. This is the free forest
algebra on A, and we denote it A∆. It has the property that if (H,V ) is any forest algebra
and f : A→ V is a map, then there is a unique homomorphism α from A∆ to (H,V ) such
that α(a�) = f(a) for all a ∈ A.

4.2. Recognition and syntactic forest algebra. Given a homomorphism α : A∆ →
(H,V ), and a subset X of H, we say that α recognizes the language L = α−1(X), and also
that (H,V ) recognizes L. A forest language is regular if and only if it is recognized in this
fashion by a finite forest algebra. Moreover, for every forest language L ⊆ HA, there is
a special homomorphism αL : (HA, VA) → (HL, VL) recognizing L that is minimal in the
sense that αL is surjective, and factors through every homomorphism that recognizes L.
We call αL the syntactic morphism of L, and (HL, VL) the syntactic forest algebra of L.
If s, s′ ∈ HA, then αL(s) = αL(s

′) if and only if for all v ∈ VA, vh ∈ L ⇔ vh′ ∈ L. This
equivalence is called the syntactic congruence of L. An important fact in applications of this
theory is that one can effectively compute the syntactic morphism and algebra of a regular
forest language L from any automaton that recognizes L. (See [3].)

We say that a forest algebra (H1, V1) divides (H2, V2), in symbols (H1, V1) ≺ (H2, V2)
if (H1, V1) is a quotient of a subalgebra of (H2, V2). In particular, (HL, VL) divides every
forest algebra that recognizes L.

There is a subtle point in the definition of division of forest algebras given above that
we will need to address. We have defined this in a way that directly generalizes the standard
notion of division of monoids: A divisor of a monoid M is a quotient of a submonoid of M.
But a forest algebra, is, in particular, a transformation monoid, and there is a second notion
of division, which comes from the theory of transformation monoids, that will be particularly
useful when we deal with wreath products: We say that (H,V ) tm-divides (H ′, V ′) if there
is a submonoid K of H ′, and a surjective monoid homomorphism Ψ : K → H such that for
each v ∈ V there exists v̂ ∈ V ′ with v̂K ⊆ K, and for all k ∈ K,

Ψ(v̂k) = vΨ(k).

Fortunately, the two notions of division coincide, as shown in the following Lemma.

Lemma 4.1. Let (H1, V1) and (H2, V2) be forest algebras. (H1, V1) ≺ (H2, V2) if and only
if (H1, V1) tm-divides (H2, V2).

Proof. First suppose (H1, V1) divides (H2, V2). Then there is a submonoid V ′ of V2 and a
forest algebra homomorphism

α : (V ′ · 0, V ′) → (H1, V1).

(Strictly speaking, we should reduce V ′ to the quotient that acts faithfully on V ′ · 0, but
leaving this reduction out does not change the argument.) Let v ∈ V1, and set v̂ to be any
element of V ′ such that α(v̂) = v. We then have for h ∈ V ′ · 0,

α(v̂h) = α(v̂)α(h) = vα(h),

so (H1, V1) tm-divides (H2, V2).
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Conversely, suppose (H1, V1) tm-divides (H2, V2), with underlying homomorphism α :
H ′ → H1. Let A be an alphabet at least as large as V1, and let γ : A→ V1 be an onto map.
This extends, because of the universal property of the free forest algebra, to a (surjective)
forest algebra homomorphism γ : A∆ → (H1, V1). We define δ : A→ V2 by setting

δ(a) = γ̂(a)

for all a ∈ A, and consider its extension δ to a forest algebra homomorphism. It is enough
to show that for x, y ∈ VA, δ(x) = δ(y) implies γ(x) = γ(y). This will imply that γ factors
through δ and give the required division.

Observe that if s ∈ HA, then δ(s) is in the domain H ′ of α, because s = x · 0 for some
x ∈ V1, and thus

γ(s) = γ(x)γ(0)

= γ(x)α(δ(0))

= α(γ̂(x)δ(0))

= α(δ(x)δ(0))

= α(δ(x · 0))

= α(δ(s)).

So by assumption, we have
γ(a)α(δ(s)) = α(δ(a)δ(s))

for all s ∈ HA, a ∈ A. A straightforward induction on the number of nodes in x implies
that for any x ∈ VA,

γ(x)α(δ(s)) = α(δ(x)δ(s)).

Now suppose h ∈ H1 and δ(x) = δ(y). As noted above, h = α(δ(s)) for some s ∈ HA, and
consequently

γ(x) · h = γ(x)α(δ(s))

= α(δ(x)δ(s))

= α(δ(y)δ(s))

= γ(y)α(δ(s))

= γ(y) · h.

Since h was arbitrary, we get γ(x) = γ(y), by faithfulness.

4.3. Wreath product. Here we introduce the wreath product of forest algebras. We first
try to give some intuition behind the construction. The wreath product originally arose in
the theory of permutation groups, but it was subsequently adapted to provide an algebraic
model of serial composition of automata. The idea is that the first automaton reads an
input word a1 · · · an beginning in state q0. The second automaton sees both the run of the
first automaton on this input string, as well as the original input string—that is, it reads
the sequence

(q0, a1), (q0a1, a2), . . . , (q0a1 · · · an−1, an)
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as an input word, beginning in its initial state p0. This defines a composite action of words
over the original input alphabet A on pairs of states (p, q). The wreath product is, essentially,
the transition monoid of this action.

The idea behind the wreath product of two forest algebras is also to model sequential
composition. The first algebra ‘runs’ on an input forest, and then a second automaton runs
on the same forest, but also gets to see to see the run of the first automaton. We will make
this composition precise by defining the sequential composition of two homomorphisms.
Assume that

α : A∆ → (G,W )

is a forest algebra homomorphism. For a forest t over A, let tα be the forest over A × G
obtained from t by changing the label of each node x from a to the pair (a, g), where g ∈ G
is the value assigned by α to the subforest of x. In other words, tα is the forest t[L1, . . . , Lk],
where G = {g1, . . . , gk} and Li = α−1(gi). The sequential composition, will use a second
homomorphism that reads the relabeling tα and yields a value in a second forest algebra;
that is,

β : (A×G)∆ → (H,V ) .

The sequential composition of α and β is the function α⊗ β : HA → G×H defined by

t 7→ (α(t), β(tα)) .

The wreath product (G,W ) ◦ (H,V ) of forest algebras is defined to capture this notion of
sequential composition. While it is hardly surprising that there is an algebraic construction
that models sequential composition for forests, just as there is such a construction for words,
it is rather remarkable that the construction for forest algebras is identical to the one used
for transformation monoids. (In fact, one could even argue that the wreath product is
better suited to forest languages, since it works directly on the forest algebra, while for
word languages one goes from monoids to transformation monoids.)

We now present the definition of the wreath product of two forest algebras (H1, V1) and
(H2, V2). This wreath product denoted by (H1, V1) ◦ (H2, V2).

Note that forest algebras are transformation monoids, for which the wreath product is
a classical operation. We will apply the classical definition without changes in this setting,
yielding some of the ingredients of a forest algebra, namely: 1) the carriers of the horizontal
and vertical monoid; 2) the action of the vertical monoid on the horizontal monoid; and 3)
the composition operation in the vertical monoid. The missing ingredient, not given by the
classical definition, will be 4) the monoid operation in the horizontal monoid.

We describe below the classical definition of wreath product of transformation monoids,
as applied to the special case of forest algebras. The states that are transformed, which in
the case of forest algebras correspond to the horizontal monoid, are the cartesian product
H1 × H2 with component-wise addition. The transforming monoid, which in the case of
forest algebra corresponds to the vertical monoid, is more sophisticated, its carrier set is
V1 × V H1

2 . The action of the transforming monoid V1 × V H1
2 on the transformed states

H1 ×H2 is defined by
(v1, f)(h1, h2) = (v1h1, f(h1)h2).

The composition operation in the transforming monoid V1 × V H1
2 is defined by

(v, f) · (v′, f ′) = (vv′, f ′′) f ′′(h) = (f(v′h)) · (f ′(h)).
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As is well known, this definition turns V1×V
H1
2 into a monoid of faithful transformations on

H1×H2. (Observe that since we define forest algebras using a left action of V on H, rather
than a right action, our definition of the wreath product is the reverse of the customary
one, with the first algebra in the composition written as the left-hand factor in the wreath
product, rather than as the right-hand factor.)

By applying the definition of wreath product for transformation monoids, we have
obtained most of the ingredients of forest algebra. We are missing the monoid operation on
the horizontal monoid; for this we use the usual direct product.

The last missing condition is that for every element h of the horizontal monoid, a forest
algebra should have elements 1 + h and h+ 1 of the vertical monoid that satisfy

(1 + h)g = g + h and (h+ 1)g = h+ g.

We show that these elements exist in the wreath product. Let then h = (h1, h2) ∈ H1×H2.
Consider the map f : H1 → V2 that sends every element to (1 + h2). Then for any g =
(g1, g2) ∈ H1 ×H2, we have

(1 + h1, f)(g1, g2) = ((1 + h1)g1, (1 + h2)g2)

= (g1 + h1, g2 + h2)

= (g1, g2) + (h1, h2).

Therefore, the element (1+ h1, f) plays the role of 1+ (h1, h2). Similarly, we find V1 ×V H1
2

contains the transformation (h1, h2) + 1.
Thus the wreath product of two forest algebras is a forest algebra.
Well-known properties of the wreath product of transformation semigroups and monoids

carry over unchanged to this setting. In particular, the wreath product is associative, so
we can talk about the wreath product of any sequence of forest algebras, and about the
iterated wreath product of an arbitrary number of copies of a single forest algebra. Likewise,
the direct product of two forest algebras embeds in their wreath product in either direction.
As a consequence, if L1, L2 are recognized by forest algebras (H1, V1), (H2, V2) respectively,
then their union and intersection are both recognized by (H1, V1) ◦ (H2, V2).

The connection with sequential composition is given by:

Theorem 4.2. For every pair of forest algebra homomorphisms

α : A∆ → (G,W ) β : (A×G)∆ → (H,V ) .

there is a homomorphism into the wreath product (G,W ) ◦ (H,V ) that, when restricted to
forests, is equal to the sequential composition

α⊗ β : HA → G×H.

Conversely, every homomorphism from a free forest algebra A∆ into the wreath product of
two forest algebras is realized in this manner by the sequential composition of two homo-
morphisms.

Proof. Given homomorphisms α, β as above, consider the map from A into the vertical
monoid of (G,W ) ◦ (H,V ) given by

a 7→ (α(a�), fa),

where for all a ∈ A, g ∈ G,
fa(g) = β((a, g)�).
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By the universal property of A∆, this map extends to a unique homomorphism γ with
domain A∆. A straightforward induction on the construction of a forest t ∈ HA shows that
γ(t) = (α(t), β(tα)): The crucial step is when t = as for some a ∈ A, s ∈ HA. We then have
tα = (a, α(s)) · sα, so that

γ(t) = γ(a) · γ(s)

= (α(a�), fa) · (α(s), β(s
α))

= (α(a�) · α(s), β(fa(α(s))) · β(s
α))

= (α(as), β((a, α(s)) · β(sα))

= (α(t), β(tα)).

Conversely, if γ : A∆ → (G,W ) ◦ (H,V ) is a homomorphism, then for each a ∈ A,
γ(a�)) has the form (wa, fa) for some wa ∈W, fa : G→ V. We define homomorphisms

α : A∆ → (G,W ) β : (A×G)∆ → (H,V ) .

by setting, for each a ∈ A, g ∈ G,

α(a�) = wa β((a, g)�) = fa(g) .

As we saw above, α⊗β is the unique homomorphism mapping a� to (wa, fa), so γ = α⊗β.

5. Wreath Product Characterizations of Language Classes

When A is a class of forest algebras, we write TL[A ] for the class of languages recognized by
iterated wreath products of forest algebras from A . The following corollary to Theorem 4.2
justifies this notation.

Corollary 5.1. Let L be the class of languages recognized by a class of forest algebras A .
Then TL[L ] = TL[A ].

We also say that A is an algebraic base of the language class TL[A ] (note that there
may be several algebraic bases, just as there may be several language bases). We will now
exhibit algebraic bases for the logics discussed in Section 3. By the above corollary, all we
need to do is to provide, for each logic, a class of forest algebras that captures the language
base. We could, of course, simply say that an algebraic base consists of the syntactic
forest algebras of the members of the language base, but we prefer more explicit algebraic
descriptions. These are given in the following theorem; the algebras used in the statement
are described immediately afterwards, while the detailed proofs are not given until Section
7.

Theorem 5.2. The logics EF, CTL, FO[≺], CTL*, PDL and graded PDL have algebraic
bases as depicted in Figure 2.

We now proceed to describe the algebras mentioned in Figure 2. The bases have been
chosen so that each base is either finite, or in the case it is an infinite class of algebras, then
it has an effective characterization, i.e. there is an algorithm that checks if the syntactic
algebra of a given forest language belongs to the base. Furthermore, the infinite algebraic
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Logic Algebraic base
EF U1

CTL U2

FO[≺] aperiodic path algebras
CTL* distributive aperiodic algebras
PDL distributive algebras
graded PDL path algebras

Figure 2: Algebraic bases for temporal logics

bases are given by identities in the forest algebra, and therefore the algorithm reduces to
checking if the identities hold.

First, we recall that an aperiodic finite monoid S is one that contains no nontrivial
groups. Equivalently, there exists m > 0 such that sm = sm+1 for all s ∈ S. When we say
that a forest algebra (H,V ) is aperiodic, we mean that the vertical monoid V is aperiodic
(which implies that H is aperiodic).

U1 is the forest algebra ({0,∞}, {1, 0}), with 0 · ∞ = 0 · 0 = ∞. Note that since we use
additive notation in the horizontal monoid, the additive absorbing element is denoted ∞,
while the multiplicative absorbing element is 0. The vertical monoid of U1 is the unique
smallest nontrivial aperiodic monoid, denoted U1 in the literature. Another description of
U1 is that it is the syntactic forest algebra of the forest language “some node with a” over an
alphabet A ∋ a with at least two letters. If follows that every language in the language base
of EF is recognized by U1, and every language recognized by U1 is a boolean combination
of members of the language base of EF, so this algebra forms an algebraic base for EF.

U2 is the forest algebra ({0,∞}, {1, c0 , c∞}) with ch · h
′ = h for all horizontal elements

h, h′. If one reverses the action from left to right and ignores the additive structure, U2 is
the aperiodic unit in the Krohn-Rhodes Theorem. The underlying monoid of this trans-
formation semigroup is usually denoted U2. Every language recognized by U2 is a boolean
combination of members of the language base of CTL, and all languages recognized by U2

are in CTL, so U2 forms an algebraic base for CTL.
So much for the singleton bases. We now describe the infinite bases.
A distributive algebra is a forest algebra (H,V ) such that H is commutative and such

that the action of V on H is distributive: v(h1 + h2) = vh1 + vh2 for all v ∈ V, h1, h2 ∈ H.
The assertion that distributive algebras form algebraic bases for the given language classes
is a consequence of the following theorem:

Theorem 5.3. A forest language is a boolean combination of languages EL (respectively,
languages EL with L first-order definable) if and only if it is recognized by a distributive
forest algebra (respectively, an aperiodic distributive forest algebra).

Let us define a path language to be any boolean combination of members of the language
base of graded PDL, and an fo path language to be a boolean combination of members of
the language base of FO[≺]. We have the following analogue to Theorem 5.3.

Theorem 5.4. A finite forest algebra (H,V ) recognizes only path languages if and only if
H is aperiodic and commutative and

vg + vh = v(g + h) + v0 (5.1)
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u(g + h) = u(g + uh) (5.2)

hold for all g, h ∈ H and u, v ∈ V with u2 = u. (H,V ) recognizes only fo-path languages
if and only if H is aperiodic and commutative, V is aperiodic, and (H,V ) satisfies the two
identities above.

We define a path algebra to be a forest algebra (H,V ) satisfying identities 5.1 and 5.2
with H aperiodic and commutative. We will give the proofs of Theorems 5.3 and 5.4 in
Section 7.

Because of the connection with logic, we will call divisors of the six kinds of iterated
wreath products described above EF-algebras, CTL-algebras, CTL*-algebras, FO-algebras,
PDL-algebras, and graded PDL-algebras, respectively.

Note that for EF and CTL, the algebraic base has one algebra, while our other bases
contain infinitely many algebras. This turns out to be optimal, as stated below.

Theorem 5.5 (Infinite base theorem). None of the language classes CTL*, FO[≺], PDL,
or graded PDL has a finite algebraic base.

Proof. If a language class has an algebraic base consisting of a finite set of forest algebras

(H1, V1), . . . , (Hk, Vk),

then it has a base containing just the single algebra

(H,V ) = (H1, V1)× · · · × (Hk, Vk).

This is because each of the (Hi, Vi) divides (H,V ), and (H,V ) embeds into the wreath
product of the (Hi, Vi), in any order. Consequently, iterated wreath products of the (Hi, Vi)
and iterated wreath products of (H,V ) have the same divisors, and so recognize the same
languages.

By these observations, it suffices to show that none of the classes in the statement of
the theorem has an algebraic base consisting of a single forest algebra (H,V ). We will give
two different arguments for this, one applicable to the aperiodic classes CTL* and FO[≺],
and the other for the nonaperiodic classes.

Suppose the language class FO[≺] is generated by a single algebra (H,V ). Since (H,V )
is required to recognize only languages in this class, V is aperiodic, and thus there is an
integer n such that vn = vn+1 for all v ∈ V.We will show that no iterated wreath product of
copies of (H,V ) can recognize the language Ln consisting of all forests over A = {a, b, c} in
which there is a path from the root with the label in (anb)∗c. Since Ln is in CTL∗ ⊆ FO[≺],
this will give the desired conclusion also for CTL∗.

We prove this by induction on the number of factors k in the wreath product, showing
that there are forests sk ∈ Ln and tk /∈ Ln, such that φ(sk) = φ(tk) is satisfied for every
homomorphism φ from A∆ into the k-fold wreath product of (H,V ). For k = 1, we can
simply take s1 = anbc and t1 = an+1bc. For the inductive step we suppose the claim holds
for some k ≥ 1, and let (G,W ) denote the k-fold wreath product of the (H,V ). Consider a
homomorphism φ from A∆ into the (k+1)-fold wreath product (G,W ) ◦ (H,V ). Recalling
the definition of the wreath product we have φ : A∆ → (G ×H,W × V G). If we compose
φ with the projection onto the left coordinate we obtain a homomorphism ψ into (G,W ).
Note that since aperiodicity is preserved under wreath products, there is an m such that
wm = wm+1 for all w ∈W.
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We first claim that if p and q are contexts in VA such that ψ(p) = ψ(q), then

φ(pnqm+1) = φ(pn+1qm+1).

To see this, first take (g0, h0) in G×H. We have

ψ(qm)g0 = ψ(qm+1)g0 = ψ(p)ψ(qm)g0,

so we have
φ(qm+1)(g0, h0) = (g1, h1),

where ψ(p)g1 = g1. Let us write φ(p) as (ψ(p), f), where f : G→ V. We then have

φ(pn)(g1, h1) = (g1, f(g1)
nh1) = (g1, f(g1)

n+1h1) = φ(pn+1)(g1, h1).

Since g0, h0 are arbitrary, this proves φ(pnqm+1) = φ(pn+1qm+1), as claimed. We now make
particular choices for p and q, namely

p = a�+ btk, q = a�+ bsk.

Since ψ(sk) = ψ(tk), we have ψ(p) = ψ(q), and thus by our claim above, φ(pnqm+1) =
φ(pn+1qm+1). Set sk+1 = pnqm+1 · 0, and tk+1 = pn+1qm+1 · 0. So φ(sk+1) = φ(tk+1). For
every path w from the root in sk, there is a path in sk+1 with label anbw. On the other
hand, for every path with a label anbv from the root of tk+1 we have v ∈ tk. Thus sk+1 ∈ Ln
and tk+1 /∈ Ln, as claimed.

We now turn to the nonaperiodic case. Let p be a prime that does not divide the
order of any group in (H,V ), and let L be the set of forests over {a, b} in which there is a
path from the root of the form amb, where p divides m. We will show that (H,V ) cannot
recognize L. Since L has the form EK for a regular word language K, L is in PDL, so this
will complete the proof.

It is easy to see that the vertical monoid of the syntactic forest algebra of L contains a
group of order p: Let 0 ≤ r < p, and let Hr be the set of forests in which every path from
the root has an initial segment of the form ajb, where r = j mod p. Each Hr is a class of
the syntactic congruence, all p of these classes are distinct, and the context a� cyclically
permutes them. On the other hand, the set of simple groups dividing a transformation
monoid is preserved under wreath product, so no iterated wreath product of copies of
(H,V ) can contain a group of order p, and thus cannot recognize L.

6. EF

The logic EF was one of the first logics over trees to have a decidable characterization [3].
The result has been since then reproved several times with different methods [25, 13]. Here
we give a new proof based on wreath product. Our argument is purely algebraic. It
computes a decomposition based on the ideal structure of the underlying forest algebra.

The following theorem is proved in [3].

Theorem 6.1. A forest language L ⊆ HA is defined by a forest formula of EF if and only
if (i) HL is idempotent and commutative, and (ii) for every v ∈ VL, h ∈ HL, we have
vh+ h = vh.
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Because this property can be effectively verified from the multiplication tables of HL

and VL, we have an effective characterization of EF. More specifically, there is a decision
procedure for determining whether or not a forest language given, say, by an automaton
that recognizes it, is definable by a forest formula of EF. This procedure can also be adapted
to testing whether a tree language is EF-definable with tree semantics.

In light of Theorem 5.2, Theorem 6.1 can be formulated as follows.

Theorem 6.2. A forest algebra (H,V ) divides an iterated wreath product of copies of U1 if
and only if H is idempotent and commutative, and vh+ h = vh for all h ∈ H, v ∈ V.

Note that Theorem 6.2 is purely algebraic. It makes no mention of trees, forests,
languages or logic. This suggests that it might be proved reasoning solely from the structure
of the forest algebra.

Here we present such a proof. The easy direction is to show that every divisor of an
iterated wreath product of copies of U1 is horizontally idempotent and commutative and
satisfies the identity vh + h = vh. Identities are always preserved under division, and
obviously U1 itself satisfies the properties, so we just need to show that the properties are
preserved under wreath product. Let (G,W ) and (H,V ) be forest algebras satisfying the
identity, with G,H idempotent and commutative. The horizontal monoid of the wreath
product is just G ×H, which is idempotent and commutative. Let h = (h0, h1) ∈ (G,W ),
v = (v0, f) ∈W × V G be horizontal and vertical elements of the wreath product. We have

vh+ h = (v0, f)(h0, h1) + (h0, h1)

= (v0h0 + h0, f(h0)h1 + h1)

= (v0h0, f(h0)h1)

= (v0, f)(h0, h1)

= vh.

For the converse, we suppose (H,V ) is horizontally idempotent and commutative and
satisfies the identity. We prove by induction on |H| that (H,V ) divides an iterated wreath
product of copies of U1.

SinceH is idempotent and commutative, it is partially ordered by the relation ≤ defined
by h1 ≤ h2 if and only if h1 = h2 + h for some h ∈ H. Transitivity and reflexivity of this
relation are obvious. Antisymmetry follows from the observation that if h1 = h2 + h ≤ h2,
then h1 + h2 = h2 + h+ h2 = h2 + h = h1. Thus if we have both h1 ≤ h2 and h2 ≤ h1, then
h1 = h1 + h2 = h2. This is just the standard J -ordering, one of the Green relations, on the
monoid H. Thus our identity vh+ h = vh implies vh ≤ h for all v ∈ V, h ∈ H. Conversely,
if vh ≤ h, then there is some h′ ∈ H such that vh = h+ h′, and thus vh+ h = h+ h′ + h =
h+ h′ = vh. So we can replace the identity by the inequality vh ≤ h for all v ∈ V, h ∈ H.

The sum of all the elements of H is the (necessarily unique) absorbing element, which,
following our usual practice, we denote ∞. This is the unique ≤-minimal element, since
obviously ∞+ h = ∞ for all h ∈ H. If |H| ≤ 2, then (H,V ) is either trivial, or isomorphic
to U1, so we can assume |H| > 2. Thus there is at least one minimal element h 6= 0 in
H \ {∞}. We call such an element a subminimal element. It has the property that for all
v ∈ V, vh = h or vh = ∞.

For each subminimal h, we define Hh to be the set {∞} ∪ {g : h ∈ V g}. Observe that
Hh is a submonoid of H, because if v1h1 = h and v2h2 = h, then

h = h+ h = v1h1 + v2h2 + h1 + h2 = u(h1 + h2) where u = v1h1 + v2h2 + 1.
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For v ∈ V and g ∈ Hh we set v ∗ g = vg if vg ∈ Hh, and otherwise set v ∗ g = ∞. It is
straightforward to verify that for all v1, v2 ∈ V, g ∈ Hh,

v1 ∗ g + g = v1 ∗ g,

(v1v2) ∗ g = v1 ∗ (v2 ∗ g),

so we get a well-defined action of V on Hh.We can collapse this action to make this faithful,
and thus we get a well-defined forest algebra (Hh, Vh), that satisfies the hypotheses of the
theorem. If there is more than one subminimal element, then each Hh has strictly smaller
cardinality than H. Further, consider the map

ι : (H,V ) →
∏

(Hh, Vh),

where the direct product is over all subminimal elements h, defined by setting the h-
component of ι(g) to be g if g ∈ Hh, and ∞ otherwise. It is straightforward to verify
that ι is a homomorphism embedding (H,V ) into the direct product. Since the direct prod-
uct in turn embeds into the wreath product, we get the result by the inductive hypothesis.

It remains to consider the case where there is just one subminimal element h. In this
case (Hh, Vh) is identical to (H,V ). The elements of H different from ∞ form a submonoid
G of H. We get a well-defined action ∗∗ of V on G by setting v∗∗g = vg if g ∈ G, and
v∗∗g = h otherwise. Once again, the resulting forest algebra (G,W ) satisfies the necessary
identities, so by the inductive hypothesis (G,W ) divides a wreath product of copies of U1.
We complete the proof by showing that (H,V ) embeds in the wreath product (G,W ) ◦ U1.
We map g ∈ H −{∞} to α(g) = (g, 0) and ∞ to α(∞) = (h,∞). We further map v ∈ V to
(v, fv), where fv(g) = 0 if vg = ∞, and fv(g) = 1, otherwise. This is obviously an injective
homomorphism on the additive structure. To show that it is a homomorphism on the
multiplicative structure, it suffices to show that for all v ∈ V, g ∈ H, α(vg) = (v, fv)α(g).
There are several cases to consider. First, if g = ∞, then vg = ∞, so we have

α(vg) = (h,∞) = (v∗∗h, fv(h)∞) = (v, fv)(h,∞) = (v, fv)α(g).

If g 6= ∞ but vg = ∞, we have

α(vg) = (h,∞) = (v∗∗g, 0 · 0) = (v∗∗g, fv(g) · 0) = (v, fv)(g, 0) = (v, fv)α(g).

Finally, if neither g nor vg is ∞, we have

α(vg) = (vg, 0) = (v∗∗g, 1 · 0) = (v, fv)(g, 0) = (v, fv)α(g).

Theorem 6.2 is the exact analogue for forest algebras of a Theorem of Stiffler [21]
showing that a finite monoid is R-trivial if and only if it divides a wreath product of copies
of U1. Because of our conventions on the direction of the action, all our EF-algebras have
L-trivial, rather than R-trivial vertical monoids.

7. Path Algebras and Distributive Algebras

In this section we prove Theorems 5.3 and 5.4.
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7.1. Distributive algebras. We begin with Theorem 5.3, whose proof is significantly sim-
pler than the proof of Theorem 5.4. Recall that a distributive algebra is a forest algebra
(H,V ) where H is commutative and which satisfies

v(h1 + h2) = vh1 + vh2 .

Note that instead of the two requirements, horizontal commutativity and the above identity,
we could use a single identity

v(h1 + h2) = vh2 + vh1 ,

which, when v = 1, gives also horizontal commutativity. Nevertheless, we prefer separating
the two conditions.

Theorem 5.3 says that a forest language is a boolean combination of languages EL
(respectively, languages EL with L first-order definable) if and only if it is recognized by a
distributive forest algebra (respectively, an aperiodic distributive forest algebra).

The “only if”part is fairly straightforward, applying any of the identities required from
a distributive algebra does not change the set of paths in a tree. For the “if” part, only a
little bit of effort is needed. The idea is that by applying the conditions on distributivity,
one can show that if α is a homomorphism into a distributive algebra, then a forest is equal
to the sum of its paths. More precisely, if t is a forest with nodes x1, . . . , xn then

α(t) = α(t1 + · · ·+ tn) (7.1)

where each tree ti is obtained by taking the node xi and removing all nodes from t that are
not ancestors of xi. This is depicted in the picture below.

a

a

b

b

b

a

b

b

a

bb

b

b

b

b

b

t t1 t2 t3 t4 t5

Note that H, apart from being a commutative monoid, is also idempotent, by

h = (h+ 1)(0 + 0) = (h+ 1)0 + (h+ 1)0 = h+ h .

In particular, the value of

α(t) = α(t1 + · · ·+ tn) = α(t1) + · · ·+ α(tn)

does not depend on the order or multiplicity of types in the sequence α(t1), . . . , α(tn), and
only on the set of values {α(t1), . . . , α(tn)}. For each g ∈ H, we define the word language

Lg = {a1 · · · ai ∈ A∗ : α(a1 · · · ai0) = g}.

It is not difficult to see that a forest t from (7.1) satisfies the formula ELh if and only if one
of the types α(t1), . . . , α(tn) is g. Combining the observations above, we conclude that for
every h ∈ H

α(t) = g iff
∨

G⊆H
h=

∑
g∈G g

( ∧

g∈G

ELg ∧
∧

g∈H−G

¬ELg
)
.

Furthermore, if the monoid V is aperiodic, each word language Lh, as a word language
recognized by V , is first-order definable by the McNaughton-Papert theorem.
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7.2. Path algebras. We now proceed to prove Theorem 5.4. We use the term path algebra
for a forest algebra that satisfies the conditions in the theorem, namely that the horizontal
monoid is aperiodic and commutative, along with identities identities (5.1) and (5.2), which
we recall here

vg + vh = v(g + h) + v0 (5.1)

u(g + h) = u(g + uh) for u s.t. u2 = u (5.2)

Recall that a path language is a boolean combination of the languages from the base of
graded PDL: languages of the form “at least k paths in L, for some regular L. A first-order
definable path language is defined similarly but L is required to be definable in FOA[<].

Theorem 5.4 says that a forest language is a path language (respectively, a first-order
definable path language) if and only if it is recognized by a path algebra (respectively, a
vertically aperiodic path algebra).

The “only if” part is simple; the identities are designed to hold in any syntactic algebra
of a path language (respectively, a first-order definable path language). The rest of this
section is devoted to showing the “if” implication of the theorem.

For the moment, we concentrate on path algebras, as opposed to aperiodic path alge-
bras. After doing the proof, we show how it can be modified to obtain the case for aperiodic
path algebras.

We begin with the following lemma, which illustrates the significance of identity (5.1).
When speaking of paths, we refer to paths that begin in one of the roots of a forest, but
that end in any node, not necessarily a leaf.

Lemma 7.1. Forests with the same multisets of paths have the same image under any
homomorphism into an algebra satisfying (5.1) and horizontal commutativity.

Proof. We will show that two forests with the same multisets of paths are equal in the
quotient of the free forest algebra under the identities (5.1) and h + g = g + h. In other
words, we show that if (5.1) and h+ g = g+ h are treated as rewriting rules on real forests
(and not elements of the forest algebra), then each two forests with the same multisets of
paths can be rewritten into each other. The idea is to transform each forest into a normal
form, such that the normal form is uniquely determined by the multiset of paths. The
transformation into normal form works as follows. Let t be a forest. Let a1, . . . , an be the
labels that appear in the roots of t. By applying horizontal commutativity, the forest t is
rewritten into a forest ∑

i

aiti,1 + aiti,2 + · · ·+ aiti,ni
.

By applying the identity (5.1) and horizontal commutativity, the above is rewritten into

∑

i

ai(ti,1 + ti,2 + · · · + ti,ni
) +

(ni−1) times︷ ︸︸ ︷
ai0 + · · ·+ ai0

Finally, for each i, we rewrite the forest ti,1+ ti,2+ · · ·+ ti,ni
into normal form. The result of

this rewriting is a forest where every two different non-leaf nodes have a different sequence
of labels on their paths. Such a forest, modulo commutativity, is uniquely determined by
the multiset of paths.
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The above lemma shows membership in a language L recognized by an algebra satisfy-
ing (5.1) is uniquely determined by the multiset of paths in a forest. However, this on its
own does not mean that L is a path language (otherwise, we would not need identity (5.2)),
as witnessed by the following example.

Example. Consider the language a∗(a+ a). A forest belongs to this language if and only
if for some n ∈ N, the multiset of paths is

ǫ, a, a2, . . . , an, an+1, an+1

This language is not a path language. It does not even belong to a quite general class
defined below. Let α : A∗ → M be a morphism from words into a finite monoid. The
α-profile of a forest s is a vector in NM that says, for each m ∈ M , how many times a
path with value m appears in the forest s. A language is called path-profile testable if for
some morphism α, membership in the language is uniquely determined by the α-profile of a
forest. It is not difficult to see that the language a∗(a+ a) is not even path-profile testable,
since a path-profile testable language will confuse an(a+ ana) with anan(a+ a) for certain
large values of n (more precisely for n = ω, the notion of ω will be defined below).

We now return to proving the “if” implication in Theorem 5.4. The theorem follows
immediately from the proposition below, by taking v to be the empty context.

Proposition 7.2. Let (H,V ) be a path algebra. For any v ∈ V and h ∈ H, the forest
language {t : vα(t) = h} is a path language.

For the rest of this section we fix a path algebra (H,V ) and a homomorphism α : A∆ →
(H,V ). For a tree t we will often refer to α(t) as type of t. Similarly for contexts.

We will prove the proposition by induction on the size of the set vV ⊆ V . We write
v ∼ w if vV = wV (this is Green’s R-equivalence in the context monoid).

Apart from Green’s relations, we will also use the ω power from monoid theory. For a
finite monoid – in this case, the monoid is V – we define ω to be a number such that vω

is idempotent for any v ∈ V . Such a number always exists in a finite monoid, it suffices to
take ω to be the factorial of the size of V .

The induction base is when the set vV is minimal.

Lemma 7.3. If vV is minimal, then the context v is constant, which means that vg = vh
holds for every g, h ∈ H

Proof. Let h1, . . . , hn be all elements of H. Consider the context

w = v(h1 + . . . + hn + 1).

We show that the context w is constant. It suffices to show that wh = w0 for every h ∈ H.
Because h1, . . . , hn contains all elements of H, then there must be some i such that hi is
ω · h, which is defined by

ω · h =

ω times︷ ︸︸ ︷
h+ · · · + h .

By aperiodicity of H, we know that hi + h = hi. By commutativity of H, we see that

h1 + · · ·+ hn = h1 + · · ·+ hn + h

and therefore wh = w0. We have thus established that w is constant. Since w is constant,
one can easily see that wu = w holds for every u ∈ V , and therefore wV = {w}. Since
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w ∈ vV , it follows that wV ⊆ vV . By minimality of vV , we infer that vV = {w}. Because
V contains an identity context, it follows that v ∈ vV and therefore w = v, and therefore v
is constant.

When the context v is constant, the language in the proposition is either empty, or all
forests, in either case it is a path language.

We now proceed to the induction step. We fix v and h as in the statement of the
proposition.

A path context is a context of the form a1 · · · an�. A preserving context is a context
p whose type satisfies vα(p) = v, for our fixed v. A forest is called negligible if it is a
concatenation of trees of the form p0, where p is a preserving context.

Lemma 7.4. If vu ∼ v then v = v(1 + u0). In particular, if g is the type of a negligible
forest, then v = v(g + 1).

Proof. In the proof, we will use the identity

vω = vω(1 + vω0) . (7.2)

Note that by iterating the above ω times, we get

vω = vω(1 + ω · vω0) . (7.3)

In the above, ω · vω0, or more generally n · h for any number n and forest type h, denotes
the n-fold sum h + · · · + h. The proof of (7.2) is by applying the identity (5.2) from the
definition of path algebras:

vωg = vω(g + 0) = vω(g + vω0) .

We now proceed to prove the lemma. If vu ∼ v then vuw = v for some w. We can
assume that uw is idempotent, by replacing uw with (uw)ω. By the identity (7.3), we get

v = vuw = v(uw)(uw + ωuw0) = v(uw + ωuw0) .

Let x = (uw + ωuw0). We know that x = x+ ωuw0, and therefore also xω = xω + ωuw0.

v = vxω = vxω(xω + ωuw0) .

By applying (5.2) the above becomes

vxω(1 + ωuw0) = v(1 + ωuw0).

If we can show that ωuw0 = ωuw0 + u0, then we would be done, by

v = v(1 + ωuw0) = v(1 + ωuw0 + u0) = v(1 + u0).

It remains to show ωuw0 = ωuw0 + u0:

ωuw0 = ωuw0 + ωuw0
(5.1)
= ωu(w0 + w0) + ωu0

and the last expression is clearly invariant under adding u0.
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A guarded context is a path context pa� where the prefix p� is preserving, but the
whole context pa� is not. A forest is in guarded form if it is a concatenation of trees of
the form pat, where pa� is a guarded context. The following lemma shows that, up to
negligible forests, each forest has the same multiset of types as some guarded context.

We say two forests t, t′ are negligibly equivalent if for some negligible forests s and s′,
the forests t+ s and t′ + s′ have the same multiset of paths. This is indeed an equivalence
relation (it is transitive since a concatenation of negligible forests is also negligible).

Lemma 7.5. Each forest is negligibly equivalent to a guarded forest.

Proof. Let t be a forest. For each node x in t, let qx be the path context a1 · · · am� obtained
by reading the path that leads to x inside t, including the node x (which has the last label
am). Let X be the set of nodes x for which the context qx is a guarded context, in particular,
qx = pxax�, with px a preserving path context and ax ∈ A. Note that the set X is an
antichain: a node x ∈ X is chosen as the first time when the path leading to x stops
preserving v. For each x ∈ X, let t|x be the subtree of the node x, the subtree includes x.
Let t′ be the forest obtained from t by removing all subtrees t|x, for x ∈ X. The forests

t+
∑

x∈X

px0 and t′ +
∑

x∈X

pxt|x

clearly have the same multisets of paths. Since
∑

x∈X px0 is a negligible forest, and∑
x∈X pxt|x is a guarded forest, it remains to prove that t′ is negligibly equivalent to the

empty forest. But this follows since all paths inside t′ correspond to preserving contexts,
by construction of t′

A path language L is called guarded if it is invariant under concatenation with negligible
forests, i.e.

t+ s ∈ L iff t ∈ L

holds for any negligible forest s.

Lemma 7.6. For any h ∈ H there is a guarded path language Lh such that for any guarded
forest t,

t ∈ Lh iff vα(t) = vh . (7.4)

Before showing the lemma above, we show in the lemma below that it concludes the
proof of Proposition 7.2.

Lemma 7.7. Let h and Lh be as in Lemma 7.6. Then the equivalence (7.4) holds for all
forests t, and not only guarded forests.

Proof. Let t be a forest. By applying Lemma 7.5, we can find negligible forests s, s′ and a
guarded forest t′ such that t+ s and t′ + s′ have the same multiset of paths.

We begin with the left to right implication in (7.4). Assume that t ∈ Lh. Since s
is negligible and the language Lh is guarded, Lh also contains t + s. Since Lh is a path
language, and the forests t + s and t′ + s′ have the same multiset of paths, then Lh also
contains t′ + s′. We now apply Lemma 7.6 to conclude that vα(t′ + s′) = vh. Since t′ + s′

and t+s have the same multiset of paths, they have the same value under α by Lemma 7.1.
This gives us

vh = vα(t′ + s′) = vα(t+ s) = vα(t) ,

where the last equality is by Lemma 7.4.
The right to left implication is by reversing the above reasoning.
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7.3. The path language Lh. We are only left with proving Lemma 7.6.
We say that two types g, h are v+-equivalent if vug = vuh holds for any context vu 6∼ v.

Lemma 7.8. For every h ∈ H, there is a path language Mh that contains all forests whose
type is v+-equivalent to h.

Proof. Define

W = {w ∈ vV : w 6∼ v}

By definition, a forest type g ∈ H is v+-equivalent to h if and only if wg = wh holds for all
w ∈ W . By the induction assumption in Proposition 7.2, we know that for every w ∈ W
and g ∈ H, the forest language

Lw,g = {t : w · α(t) = g}

is a path language. The type of a forest t is v+-equivalent to h if for every context w ∈W ,
the result of placing t in a context of type w is the same as the result of placing h in w. In
other words, the set of forests whose type is v+-equivalent to h is

⋂

w∈W

Lw,wh,

which is a path language, as an intersection of path languages.

Below, we write guard for the set of pairs (w, a) ∈ V × A such that vw ∼ v but
vwα(a) 6∼ v. In other words, a pair (w, a) ∈ guard describes a guarded context pa. Consider
a forest in guarded form

t = p1a1t1 + · · ·+ pnantn .

For each (w, a) ∈ guard, let Iw,a be the set of indexes i such that α(pi) = w and ai = a.
The guarded profile of this forest is the function

τt : guard → {0, 1, . . . , ω} × [H]≡v+

which maps a pair (w, a) to the pair (n, h), where n is the size of Iw,a (up to threshold ω)
and h is the equivalence class

[α(
∑

i∈Iw,a

ti)]≡v+ .

Lemma 7.6, and thus also Proposition 7.2 and Theorem 5.4, will follow from the two
lemmas below.

Lemma 7.9. For a guarded forest t, the guarded profile determines the value vα(t). In
other words, if s, t are guarded forests with the same guarded profile, then vα(s) = vα(t).

Lemma 7.10. For a guarded forest, the guarded profile can be determined by a path lan-
guage. In other words, for each guarded profile τ , there is a path language Lτ such that
t ∈ Lτ ⇔ τt = τ holds for all guarded forests t.

The above two lemmas give us Lemma 7.6, by taking Lh to be the union of all Lτ , for
profiles τ of the form τ = τt where t is a guarded forest with vα(t) = h. We begin with the
proof of Lemma 7.9.
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Proof. (of Lemma 7.9) Let s, t be guarded forests with the same guarded profile. Our goal
is to show that vα(s) = vα(t).

Let τ be the guarded profile of s and t. Let (w1, a1), . . . , (wm, am) be all elements of
guard, and let (ki, xi) be the value τ(wi, ai). Recall that ki is the number of times a path of
the form pai appears in the forest with α(p) = wi. By repeatedly applying (5.1), horizontal
commutativity and aperiodicity, we know that the type of s is

α(s) =
∑

i:ki≥1

wiα(ai)hi +
∑

i

(ki − 1) · wiα(ai)0 ,

for some h1, . . . , hn ∈ H such that each hi belongs to the v+-equivalence class xi. Likewise,
we can decompose

α(t) =
∑

i:ki≥1

wiα(ai)gi +
∑

i

(ki − 1) · wiα(ai)0 .

So the only difference between the types of s and t is that the first type uses h1, . . . , hn
and the second type uses g1, . . . , gn. However, we know that the types hi and gi are v+-
equivalent, for any i. We will conclude the proof by showing that

v(wiα(ai)hi + h) = v(wiα(ai)gi + h)

holds for any h ∈ H. By applying the equality above for all i = 1, . . . , n, we get the
desired vα(s) = vα(t). By definition of v+-equivalence, the above equality would follow if
we showed that v(viα(ai)� + h) 6∼ v. This will be shown in Lemma 7.11.

Lemma 7.11. If vu 6∼ v then v(u+ h) 6∼ v.

Proof. Toward a contradiction, assume that w is such that

v(uw + h) = v

We assume that (uw + h) is idempotent. By (7.3), we get

v = v(uw + h)(uw + h+ ω(uw0 + h))

v(uw + h+ ω(uw0 + h)) = v(uw + ω(uw0 + h))

Let x = uw+ ω(uw0 + h). By the above we know that vx = v. By definition of x we know
that x = x+ h, and in particular xω = xω + h. By identity (5.2), we get

xω = xω(xω + h) = xω(1 + h)

Therefore,

v = vx = vxω = vxω(1 + h) = v(1 + h)
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Now we proceed to prove Lemma 7.10.

Proof. We will show that for each

(w, a) ∈ guard and (i, x) ∈ {0, 1, . . . , ω} × [H]≡v+

there is a path language L(w,a),(i,x) such that

t ∈ L(w,a),(i,x) ⇔ τt(w, a) = (i, x)

holds for any guarded forest t. This gives Lemma 7.10 by setting

Lτ =
⋂

(w,a)∈guard

L(w,a),τ(w,a) .

Fix (w, a) and (i, x). The easier part is to enforce that the first coordinate of τt(w, a) is i:
we just have to say that the forest t has i paths in the word language

Kw,a = {a1 · · · ana ∈ A+ : α(a1 · · · an�) = w} .

Only slightly more effort is required in enforcing that the second coordinate of τt(w, a) is
x. By Lemma 7.8, we know that the set Mx of forests whose type is in the v+-equivalence
class x is defined by a boolean combination of path formulas. To enforce that the second
coordinate of τt(w, a) is x, we use the same boolean combination, except that every word
language is prefixed by Kw,a.

As we promised before, we now prove that if the path algebra (H,V ) in the statement
of Theorem 5.4 is vertically aperiodic, then the path language only needs to use first-
order definable word languages. It suffices to look at the only place where we actually
wrote word languages: in the lemma above. The word language Kw,a is a word language
obtained by concatenating a to a word language that is recognized by the vertical monoid
V , via the morphism a 7→ α(a�). Since V is aperiodic, we can use the Schützenberger and
McNaughton-Papert theorem to conclude that Kw,a is first-order definable.

Actually, the argument above can be further generalized to any variety of word lan-
guages given by monoids such that the corresponding language class is closed under con-
catenation and contains the one letter languages {a}. Note that any such language class
necessarily contains all first-order logic, since it captures all star-free expressions.

8. Multicontexts and Confusion

Here we find necessary conditions for a forest algebra to be a CTL-algebra, an FO-algebra
or a graded PDL-algebra. We use these conditions to show that certain languages cannot
be expressed in CTL, FO, or PDL. The conditions we find are essentially the absence of
certain kinds of configurations in the forest algebra, analogous to the ‘forbidden patterns’
of Cohen-Perrin-Pin [8] and Wilke [24].

Let A be a finite alphabet. A multicontext p over A is a forest in which some of the
leaves have been replaced by a special symbol �, each occurrence of which is called a hole
of the multicontext. A special kind of multicontext, called a uniform multicontext, is one in
which every leaf node is a hole, and all subtrees at the same level are identical. For example

a(b(c� + c�)) + a(b(c� + c�))

is a uniform multicontext.
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The holes are used for substitution. The holes are independent in the sense that different
forests can be substituted into different holes. The set of holes of a multicontext p is denoted
holes(p). A valuation on p is a map µ : holes(p) → X, where X can be a set of forests, or of
multicontexts, or elements of H, where (H,V ) is a forest algebra. The resulting value, p[µ],
found by substituting µ(x) for each hole x, is consequently either a multicontext, a forest,
or an element of H. In the last case, we are assuming the existence of a homomorphism
α : A∆ → (H,V ), evaluated at the nodes of p.

Given a set G ⊆ H we write p[G] for the set of all possible values of p[µ] where
µ : holes(p) → G. When G = {g} is a singleton, we just write p[g]. For g ∈ G and
x ∈ holes(p) we define p[g/x] to be the multicontext that results from p by putting a tree
that evaluates to g in the hole x. (In particular, p[g/x] has one less hole than p.)

We now define the various type of forbidden patterns for forest algebra.

8.1. Horizontal confusion. Let (H,V ) be a forest algebra. As above, we assume the
existence of a homomorphism from A∆ into (H,V ) in order to define the valuations on p
with values inH. We say that (H,V ) has horizontal confusion with respect to a multicontext
p and a set G ⊆ H with |G| > 1 if for every g ∈ G and x ∈ holes(p):

G ⊆ p[g/x][G].

Intuitively, this means that fixing the value of one of the holes of p still allows us to obtain
any element of G by putting suitable elements of G into the remaining holes.

8.2. k-ary horizontal confusion. We can define a stronger version of confusion, which
seems to be satisfied by fewer forest algebras. In the stronger version, we are allowed to fix
the value in not just one, but in k ≥ 1 holes: We say that the forest algebra (H,V ) has
k-ary horizontal confusion with respect to a multicontext p and a set G ⊆ H, with |G| > 1,
if for all g1, . . . , gk ∈ G and x1, . . . , xk ∈ holes(p),

G = p[g1/x1, · · · , gk/xk][G].

The following lemma shows that the stronger notion is in fact equivalent to horizontal
confusion, because we can always amplify horizontal confusion to k-ary horizontal confusion
for arbitrary k.

Lemma 8.1. Suppose (H,V ) has horizontal confusion with respect to a multicontext p and
a subset G of H, with underlying homomorphism φ : A∆ → (H,V ). Let k > 0. Then there
is a multicontext pk such that (H,V ) has k-ary horizontal confusion with respect to pk, G
and φ.

Proof. We prove this by induction on k. We have p1 = p, by hypothesis. If k > 1, we define
pk by placing a copy of pk−1 in each of the holes of p. To see that this works, fix the values
in G of k of the holes holes of pk. If the k holes do not all belong to the same copy of
pk−1, then each copy has fewer than k − 1 holes fixed, and thus we can set the values in
the remaining holes to get any elements of G we want in the holes of p, and consequently
any element of G as a value of pk. If the k holes all belong to the same copy of pk−1, then
the resulting value g ∈ G produced by this copy might be determined, but this will only
constrain the value in one of the holes of p. Since p has horizontal confusion, we can set the
remaining holes of p to values g1, . . . , gr to obtain any desired value as output, and we can
in turn set the values of the other copies of pk−1 to obtain these values g1, . . . , gr.
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8.3. Vertical confusion. We say that the forest algebra (H,V ) has vertical confusion
with respect to a multicontext p and a set {g0, . . . , gk−1} ⊆ H with k > 1 if for every
i = 0, . . . , k − 1:

p[gi] = gj where j = (i+ 1) (mod k).

This condition is weaker than periodicity of vertical monoid, because p is a multicontext, and
not just a context. For instance, consider the syntactic forest algebra of the tree language
L, which consists of trees where every node has two or zero children, and where every leaf
is at even depth.

8.4. Confusion Theorem. The next theorem shows how the various types of confusion
are forbidden in CTL-, FO- and PDL-algebras.

Theorem 8.2 (Confusion Theorem).

• If (H,V ) is a CTL-algebra, it does not have vertical confusion with respect to any multi-
context.

• If (H,V ) is an FO-algebra, it does not have vertical confusion with respect to any uniform
multicontext.

• If (H,V ) is a graded PDL-algebra, it does not have horizontal confusion with respect to
any multicontext.

Proof. For each of the three kinds of confusion and each of the corresponding language
classes, we will show that the nonconfusing property (a) holds for the elements of the
algebraic base of the class, (b) is preserved by wreath products, and (c) is preserved by
quotients and subalgebras.

We begin with vertical confusion and the class CTL which has U2 as an algebraic base.
Let φ : A∆ → U2 be a homomorphism, and suppose p is a multicontext over A such that
U2 has vertical confusion with respect to p and φ. Since U2 is distributive, we have

p[g] =
∑

u∈π

φ(u)g +
∑

v∈ρ

φ(v) · 0,

where the first sum ranges over the set π of paths in p from a root to the parent of a hole,
and the second over the set ρ of paths from the root to a leaf. We claim that for g ∈ {0,∞},
p[p[g]] = p[g]. This follows easily from an enumeration of the possible cases: If g = p[g],
then the claim is trivial, so we can assume that either g = ∞ and p[g] = 0, or g = 0 and
p[g] = ∞. In the first case, every path in π has a prefix wa with a ∈ A, φ(a) = c0, and
φ(b) = 1 for every letter b of w, and every path in ρ has either this form or has φ(b) = 1 for
every letter b. It follows that p[0] = 0. In the second case, some path in p has a prefix wa
with φ(a) = c∞ and φ(b) = 1 for every letter b of w, and thus p[∞] = ∞. Since p[p[g]] = p[g]
for all g in the horizontal monoid of U2, we cannot have vertical confusion.

We now consider the base algebras for FO[≺]. Suppose that φ : A∆ → (H,V ) is a
homomorphism into an aperiodic path algebra. Then, by Theorem 5.4, every language
recognized by φ is an fo path language—that is, a boolean combination of languages of
the form EkL, where L ⊆ A∗ is a first-order definable word language. Let p be a uniform
multicontext over A. Since p is uniform, every maximal path in p has the same label u ∈ A∗.
We can dispense with the case where p has a single hole, because then p[g] reduces to φ(u)·g,
and by aperiodicity of the vertical monoid we have, for some n ≥ 0, pn+1[g] = φ(un+1)g =
φ(un)g = pn[g], so there is no vertical confusion. We thus suppose that p has at least two
holes, so that pn is a multicontext with at least 2n holes. Since every language recognized
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by φ is an fo path language, there exists a congruence ∼ of finite index on A∗ and an
integer k > 0 such that A∗/ ∼ is aperiodic, with the following property: If s, t ∈ HA are
such that for every ∼-class κ, the number of paths from the root of s in κ is equal, up to
threshold k, to the number of paths from the root of t in κ, then φ(s) = φ(t). (‘Equal up
to threshold k’ means either equal, or both at least k.) Since A∗/ ∼ is aperiodic, there is
an integer r such that ur ∼ ur+1. Let g ∈ H, and let s be any forest such that φ(s) = g.
Choose q such that both q > r and 2q > k. Now consider the forests pq+1[s] and pq+2[s].
Suppose that a word occurs as the label of a path from the root in pq+2[s] more times than
it does in pq+1[s]. Then, since p is uniform, the word must have the form uq+1v, and since
uq+1v ∼ uqv, a word in the same ∼-class occurs at least 2q > k times in pq+1[s]. It follows
that pq+1[g] = φ(pq+1[s]) = φ(pq+2[s]) = pq+2[g], so there is no vertical confusion.

We now consider the base algebras for graded PDL, so we suppose φ : A∆ → (H,V ) is
a homomorphism onto a path algebra (H,V ) which has horizontal confusion with respect
to a multicontext p and a set G ⊆ H, with |G| > 1. Let G = {g1, . . . , gn}, and let s1, . . . , sn
be forests such that φ(si) = gi for all 1 ≤ i ≤ n. As above, there is a congruence ∼ of
finite index on A∗ and an integer k, such that if two forests agree on the number of paths
threshold k and modulo ∼, then they have the same image under φ. Let m be the index of
∼ . (The only difference from the previous case is that we no longer have A∗/ ∼ aperiodic.)
By Lemma 8.1, there is a context q such that (H,V ) has km-ary horizontal confusion with
respect to q.We order the classes of ∼ arbitrarily as κ1, . . . , κm.We proceed to insert forests
from s1, . . . , sn into the holes of q according to the following algorithm: For each κi in turn,
we ask if there is a way to substitute copies of the sj into the holes we have not yet filled
in order to obtain at least k paths in κi. If so, we perform the necessary insertions; if not
we insert enough copies of the sj to obtain the maximum possible number of paths in κi.
At the end of the process, we will have filled no more than km holes. However, no further
substitution of forests sj for the remaining holes can increase the number, threshold k of
paths in any class of ∼, and thus no matter how we fill the remaining holes, the value under
φ will be the same. But because of the km-ary confusion, we should be able to obtain
any value in G by appropriately filling the remaining holes. Thus |G| = 1, so there is no
horizontal confusion.

We now show closure under wreath product. Suppose first that neither (H1, V1) nor
(H2, V2) has vertical confusion with respect to any multicontext. Let γ be a homomorphism
from A∆ into the wreath product (H,V ) = (H1, V1) ◦ (H2, V2). Suppose (H,V ) has vertical
confusion with respect to some multicontext p with underlying homomorphism γ. There thus

exist gi = (g
(1)
i , g

(2)
i ) ∈ H = H1×H2, with i = 0, . . . , n−1, such that pγ [gi] = pγ [g(i+1) mod n]

for 0 ≤ i < n. (Note that here we explicitly indicate the homomorphism γ, since we will
be shortly be applying the multicontext p with respect to other homomorphisms.) By
Theorem 4.2, γ = α ⊗ β, where α : A∆ → (H1, V1) and β : (A × H1)

∆ → (H2, V2) are
homomorphisms. When we project onto the left co-ordinate, we obtain

pα[g
(1)
i ] = g

(1)
(i+1) mod n.

Since (H1, V1) does not have vertical confusion, all the g
(1)
i must be equal. We will denote

their common value by g(1). We now form a new multicontext p(α,g
(1)) by first substituting

any forest evaluating to g(1) for the holes in p, which gives a forest t, then forming the
forest tα, and finally restoring the original holes. The resulting multicontext has the same
shape as p, but its nodes are now labeled by elements of A×H1. Because the value g(1) is
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stable after each application of pα, we find that p
(α,g(1))
β [g

(2)
i ] is identical to the right-hand

coordinate of pγ(gi), and thus we have

p
(α,g(1))
β [g

(2)
i ] = g

(2)
(i+1) mod n

for all 0 ≤ i < n. Since (H2, V2) does not have vertical confusion, we find that all the g
(2)
i ,

and consequently all the gi, are identical. So (H,V ) does not have vertical confusion.
In the case of vertical confusion with respect to uniform multicontexts, the proof is the

same; we simply note that the multicontext p(α,g
(1)) defined above is uniform whenever p is.

In the case of horizontal confusion with respect to some G ⊆ H1 ×H2, we use essentially
the same argument: absence of confusion in the left coordinate permits us to reduce G to
a set of the form {g(1)} ×G2, and we find that H2 has horizontal confusion with respect to

p(α,g
(1)) and G2, so that |G2| = 1, and hence |G| = 1.
We now show that in each case the non-confusing property is preserved under division.

For subalgebras, this is trivial, but for quotients, there is something to prove. Accordingly,
suppose that ψ : (H1, V1) → (H2, V2) is a surjective homomorphism of forest algebras. Let
φ : A∆ → (H2, V2) be a homomorphism. We can lift this to a homomorphism π : A∆ →
(H1, V1) such that ψπ = φ. First suppose (H2, V2) has vertical confusion with respect to
some multicontext p and φ. We will show (H1, V1) has vertical confusion with respect to
p and π. Vertical confusion in (H2, V2) gives us a sequence g0, . . . , gn−1 of elements of H2

with n > 1 such that pφ[gi] = g(i+1) mod n for all 0 ≤ i < n. Choose an element h0 ∈ H1

such that ψ(h0) = g0, and define h1, h2, . . . by hi+1 = pπ[hi]. By finiteness, there exist j < k
such that hj = hk. Since ψ(hj) = gj mod n and ψ(hk) = gk mod n, we have k− j is a multiple
of n, and in particular, k − j > 1. We thus have

pπ[hj+i] = hj+(i+1) mod (k−j),

which gives vertical confusion in (H1, V1).
Now suppose that we have horizontal confusion in (H2, V2) with respect to φ. We will

show how to obtain horizontal confusion in (H1, V1). Let m = |H1|. By Lemma 8.1, there
is a multicontext p such that (H2, V2) has m-ary horizontal confusion with respect to φ
and some set G′ ⊆ H2. Let G = ψ−1(G′). For k > 0, set Gk1 = pk[G]. Since p[G′] = G′,
we have ψ(Gk1) = G′ for all k. In particular, G1

1 ⊆ G, and by repeatedly applying p to

both sides of this inclusion we obtain Gk+1
1 ⊆ Gk1 for all k. Thus this sequence eventually

stabilizes, so we have some n for which p[Gn1 ] = Gn1 . Let us set G1 = Gn1 . Now it may be
that (H1, V1) has horizontal confusion with respect to p, π, and G1. If not, there is some
hole x of p and g1 ∈ G1 such that p[g1/x][G1] ( G1. So we let p′ be the multicontext that
results from substituting a forest that evaluates under π to g1 for x, and set G1

2 = p′[G1].
Note that (H2, V2) has (m− 1)-ary horizontal confusion with respect to p′ and φ, so we still
have ψ(G1

2) = G′, as well as G1
2 = p′[G1] =( G1, so that |G1

2| < |G|. We now repeat the
procedure above, applying p′ to G1

2 until the sequence stabilizes at a set G2, then checking
if the result is a horizontal confusion for (H1, V1), and filling a hole of p′ if it is not. We
have

|G′| ≤ · · · |Gk| < |Gk−1 < · · · |G1| ≤ |G|,

so the process will terminate after no more than |G| − |G′| generations, giving a horizontal
confusion in (H1, V1).
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Theorem 8.3. It is decidable if a given forest algebra has horizontal confusion, vertical
confusion, or vertical confusion with respect to a uniform context.

Proof. Confusion in a forest algebra (H,V ) appears to depend on the choice of alphabet A,
a multicontext p over A, and a morphism from A∆ into (H,V ). Observe, however, that we
can restrict attention to a single alphabet and morphism: Consider V as a finite alphabet,
and the morphism β : V ∆ → (H,V ) induced by the identity map on V . If (H,V ) has a
confusion with respect to a multicontext p over A and morphism α : A∆ → (H,V ), then we
can transform it into a confusion of the same type with respect to V and β in the obvious
fashion, replacing each node label a ∈ A of p labeled by α(a) ∈ V . Thus in the argument
below, we suppress explicit mention of an alphabet and morphism and work simply with
the elements of V .

Vertical confusion. Testing whether (H,V ) has vertical confusion with respect to some
multicontext reduces to verifying whether a certain monoid containing V is aperiodic. If
v,w ∈ V, we define v + w to be the transformation on H given by

(v + w)h = vh+ wh

for all h ∈ H. Let V̂ be the collection of all maps on H containing V and closed under
composition and addition. V̂ then consists of all multicontexts over (H,V ). Furthermore,

V̂ is effectively computable from V, since whenever we have a set U of transformations on
H, we can check for each v,w ∈ U whether v + w and vw belong to U, and if not, adjoin
them to U. Since there are only finitely many transformations on H, we eventually reach a
stage at which we can add no new elements to U, at which point the algorithm terminates.

V̂ is a monoid under composition, and (H,V ) is free of vertical confusion if and only if

this monoid is aperiodic; i.e., if and only if pk = pk+1 for all p ∈ V̂ and sufficiently large k,
which we can determine effectively.

Vertical confusion with respect to a uniform multicontext. The argument is the same as
above, however now we must build a monoid containing V that consists of exactly all the
uniform multicontexts. We accordingly close V under composition and the operations

v 7→ v + v + · · ·+ v.

Observe that the number of summands in this expression can be bounded above by the size
of H, so we can compute this closure effectively as well. Let us denote the resulting monoid
Ṽ . (H,V ) does not have vertical confusion with respect to any uniform multicontext if and

only if Ṽ is aperiodic.

Horizontal confusion. We now test if (H,V ) has horizontal confusion. The algorithm first
guesses the set G. For a multicontext p, we define its profile to be the set

π(p) = {p[g/x][G] : g ∈ G,x ∈ holes(p)} × p[G] ∈ P (P (H)) × P (H).

The forest algebra has horizontal confusion with respect to a multicontext p and G if and
only if the profile π(p) only has supersets of G on the first coordinate. Therefore, to
determine if the forest algebra has horizontal confusion, it suffices to compute the set

Y = {π(p) : p is a multicontext}.
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This set is computed using a fix-point algorithm, since it is the least set that satisfies the
properties listed below. (In the implications, we lift the forest algebra operations to sets
F ⊆ H and families of sets F ⊆ P (H) in the natural way.)

({{g} : g ∈ G}, G) ∈ Y

(F , F ) ∈ Y ⇒ (vF , vF ) ∈ Y for every v ∈ V

(F1, F1), (F2, F2) ∈ Y ⇒ (F1 + F2 ∪ F1 + F2, F1 + F2)

9. Applications

Here we apply the results of the preceding section to exhibit a forest language in CTL* that
is not in CTL, a language in PDL that is not in FO[≺], and a language that is not in graded
PDL. All of our examples have syntactic forest algebras with aperiodic vertical monoids, and
all the classes in question contain languages with arbitrarily complicated aperiodic vertical
monoids, so we really do need machinery of forest algebras to give algebraic proofs of these
separations.

9.1. Forests with a maximal path in (ab)∗. Consider the set L1 of forests over A = {a, b}
in which there is a maximal path—that is, a path from a root to a leaf— in (ab)∗. This
language is in CTL*. To see this, note that φ = E(A+) is a forest formula in CTL* defining
the set of nonempty forests. Consider the formally disjoint formulas

φ1 = b ∧ φ φ2 = b ∧ ¬φ1 φ3 = ¬φ1 ∧ ¬φ2.

The formula φ1 holds in non-leaf nodes with label b, the formula φ2 holds in leaves with label
b, and the formula φ3 holds in nodes with label a. Then L1 is defined by the CTL* forest
formula E((φ3φ1)

∗(φ3φ2)). We claim that L1 is not in CTL. To do this, by Theorem 8.2, we
need only exhibit a multicontext p with respect to which the syntactic forest algebra of L1

has vertical confusion. Let p = a� + b�. Let h0 be the class of the tree b in the syntactic
congruence of L1, and let h1 be the class of the tree ab. Observe that h0 and h1 are distinct
horizontal elements of the syntactic algebra, since h1 contains elements of L1 and h0 does
not. We have vertical confusion, because p[h0] is then the class of ab+ bb, which is h1, and
p[h1] is the class of aab+ bab, which is h0.

9.2. Binary trees with even path length. This example uses unlabeled binary trees,
which are trees over a one-letter alphabet {a} where every node has zero or two children.
Let L2 be the set of unlabeled binary trees where every path from the root to a leaf has
even length. Let p be the uniform multicontext a(� + �). Let h0 denote the set of binary
trees in which every maximal path has even length, and h1 the set of binary trees in which
every maximal path has odd length. These are distinct classes in the syntactic congruence
of L2. Obviously p[h0] = h1 and p[h1] = h0, so we have vertical confusion with respect to a
uniform multicontext, and thus by Theorem 8.2, L2 is not in FO[≺].

An argument due to Potthoff [19] can be used to show that L2 is definable in first-order
logic in which there is both the ancestor and the next-sibling relations. Languages definable
in FO[≺] are obviously in the intersection of the class of languages definable in FO with
≺ and the next-sibling relationship, and the class of languages L with commutative HL.
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This example shows that the containment is strict. Note that L2 is expressible in graded
PDL so we have also established that the languages in graded PDL with aperiodic forest
algebras need not be definable in FO[≺] (there is even an example, also due to Potthoff,
which shows that languages definable in graded PDL with aperiodic forest algebras need
not be definable in FO with ≺ and the next-sibling relationship).

9.3. (Boolean expressions). Consider the set L3 of trees over the alphabet {0, 1,∨,∧} that
are well-formed boolean expressions (i.e., all the leaf nodes are labeled 0 or 1, and all the
interior nodes are labeled ∨ or ∧) that evaluate to 1. L3 is contained in a single equivalence
class of the syntactic congruence, as is the set of well-formed trees that evaluate to 0. We
denote the corresponding elements of HL3 by h1 and h0.

Now consider the multicontext p = ∨(∧(� + �) + ∧(� + �)). We can fix a value 1 or
0 in any single hole, and then set the remaining holes to obtain either a tree evaluating to
1 or a tree evaluating to 0. Thus the syntactic algebra of L3 has horizontal confusion with
respect to the multicontext p and the set {h0, h1}, and so is not in graded PDL. Observe
that the vertical component of the syntactic algebra of L3 is aperiodic: In contrast to the
word case, languages recognized by aperiodic algebras are not necessarily expressible in
first-order logic, or even in graded PDL.

9.4. Horizontally idempotent and commutative algebras. Obviously, we can sep-
arate CTL∗ and PDL from FO[≺] and graded PDL, respectively, because the syntactic
algebras for the former classes have idempotent and commutative horizontal parts, while
for the latter the horizontal components need only be aperiodic and commutative. Thus,
for example, any language in FO[≺] that fails to satisfy the idempotency condition is not
in CTL∗. We can use our algebraic methods to show that this is in fact the only distinction:

Theorem 9.1. Let (H,V ), (Hj , Vj), j = 1, . . . , k be forest algebras such that H is idem-
potent and commutative, each (Hi, Vi) is a path algebra, and such that (H,V ) divides
(H1, V1) ◦ · · · ◦ (Hk, Vk). Then each (Hi, Vi) has a distributive homomorphic image (H ′

i, V
′
i )

such that (H,V ) divides (H ′
1, V

′
1) ◦ · · · ◦ (H

′
k, V

′
k).

Proof. Let (H,V ) be a path algebra. We define e(H) to be the set of idempotents of
H. By the commutativity of H, the sum of two idempotents is idempotent. Thus e(H)
is an idempotent and commutative submonoid of H. If h ∈ H and k is a nonnegative
integer, we denote by k · h the sum of k copies of h. We also denote by ωh the unique
idempotent in {k · h : k ∈ N}. Since H is aperiodic and commutative, there exists k such
that ω · h = k · h = (k + 1) · h for all h ∈ H.

For every v ∈ V, we define a function v : e(H) → e(H) by

v · e = ω(ve).

We define a forest algebra (e(H), V ) as follows. The horizontal monoid is e(H). The
vertical monoid is V = {v : v ∈ V }, with function composition. The action is by applying
the function v to an argument e ∈ e(H). To prove that this is a forest algebra, we need to
show that for any element e ∈ e(H), there is an element v ∈ V such that vf = e+ f holds
for any f ∈ e(H). This element is simply e+�. Indeed,

(e+�) · f = ω((e+�)f) = ω(e+ f) = e+ f.
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This concludes the proof that (e(H), V ) is a forest algebra.
We now show that (e(H), V ) is distributive. In other words, the following identity holds

for any v ∈ V and e1, e2 ∈ e(H).

v(e1 + e2) = ve1 + ve2 (9.1)

Using the first identity in the definition of path algebras (5.1), we obtain

v(e1 + e2) = ωv(e1 + e2)

= ω(v(e1 + e2) + v(e1 + e2))

= ω(v(e1 + e2 + e1 + e2) + v · 0)

= ω(v(e1 + e2) + v · 0)

= ω(ve1 + ve2)

= ωve1 + ω · ve2

= ve1 + ve2.

Finally, we prove that the function

α(h) = ω · h α(v) = v

is a forest algebra homomorphism

α : (H,V ) → (e(H), V ).

Clearly α preserves +. It remains to show that it preserves the remaining two operations
of forest algebra, namely inserting a forest into a context and composition of two contexts.
For inserting a forest into a context, we have

α(vh) = ω · vh = vh = α(v)α(h).

For composition of two contexts we need to show α(v1)α(v2) = α(v1v2). Since V is defined
as a set of functions on e(H), we need to show that both sides of the equality describe the
same function on e(H). In other words, we have to prove that for every e ∈ e(H),

v1(v2e) = v1v2e (9.2)

First note that the path algebras property (5.1) implies that for all h ∈ H, v ∈ V, m ∈
{1, 2, . . .}, we have

m · (vh) = v(m · h) + (m− 1) · (v0).

Thus by aperiodicity of H,
ω(vh) = v(ωh) + ω(v0).

If e ∈ H is idempotent, this becomes

ω(ve) = ve+ ω(v0).

Consequently we have
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v1v2e = ω(v1v2e)

= v1ω(v2e) + ω(v1 · 0)

= v1(v2e+ ω(v2 · 0)) + ω(v1 · 0)

= v1(v2e+ ω(v2 · 0) + ω(v2 · 0)) + ω(v1 · 0)

= v1(ω(v2e) + ω(v2 · 0)) + ω(v1 · 0)

= v1ω(v2e+ ω(v2 · 0)) + ω(v1 · 0)

= ωv1(v2e+ ω(v2 · 0))

= ωv1(ωv2e)

= v1(v2e).

Summing up: We have defined a forest algebra homomorphism

α : (H,V ) → (e(H), V )

where the target forest algebra is distributive and horizontally commutative and idempotent.
Suppose now that (H,V ) is a forest algebra with idempotent and commutative H that

divides a wreath product
(H1, V1) ◦ · · · ◦ (Hk, Vk),

where each (Hi, Vi) is a path algebra. To complete the proof of the theorem, we will show
that (H,V ) divides

(e(H1), V1) ◦ · · · ◦ (e(Hk), Vk).

We now apply Lemma 4.1 on the equivalence of the two definitions of division. The
hypothesis is then that there is a submonoid H ′ of H1 × · · · × Hk, and a homomorphism
f from H ′ onto H with the following property: For each v ∈ V there is v̂ in the vertical
monoid of (H1, V1) ◦ · · · ◦ (Hk, Vk) such that for all h ∈ H ′,

f(v̂h) = vf(h).

Note that h has the form (h1, . . . , hk), where hi ∈ Hi for i = 1, . . . , k, and

v̂ = (u, g2, . . . , gk),

where u ∈ V1 and each
gj : H1 × · · · ×Hj−1 → Vj

is a map. Since H is idempotent, f(ωh) = f(h) for all h ∈ H ′. We consider the restriction
of f to e(H ′), which is a subset of e(H1) × · · · × e(Hk). We will show that for each v ∈ V
there is an element ṽ of the vertical monoid of (e(H1), V1) ◦ · · · ◦ (e(Hk), Vk) such that for
all e ∈ e(H),

f(ṽe) = vf(e).

To do this, we simply alter v̂ = (u, g2, . . . , gk) in the obvious fashion:

ṽ = (u, g2, . . . , gk),

where by definition
gj(x) = gj(x).
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Set e = (e1, . . . , ek) ∈ e(H ′). We have

f(ṽe) = f(ue1, g2(e1)e2, . . . , gk(e1, . . . , ek−1)ek)

= f(ue1, g2(e1)e2, . . . , gk(e1, . . . , ek−1)ek)

= f(ω(ue1), ωg2(e1)e2, . . . , ωgk(e1, . . . , ek−1)ek)

= f(ue1, g2(e1)e2, . . . , gk(e1, . . . , ek−1)ek)

= f(v̂e)

= vf(e),

which completes the proof.

Theorem 5.2 immediately yields the following corollary:

Theorem 9.2. A forest language is definable in CTL∗ (respectively PDL) if and only if
it is definable in FO[≺] (respectively graded PDL) and its syntactic algebra is horizontally
idempotent.

The first of these facts follows from a result of Moller and Rabinovich [16] who show
that over infinite trees properties expressible in CTL∗ are exactly the bisimulation-invariant
properties expressible in monadic path logic.

10. Conclusion and further research

Results like those in Section 9 are typically proved by model-theoretic methods. Here we
have demonstrated a fruitful and fundamentally new way, based on algebra, to study the
expressive power of these logics.

Of course, the big question left unanswered is whether we can establish effective neces-
sary and sufficient conditions for membership in any of these classes. We do not expect that
the conditions established in Theorem 8.2 are sufficient. The approach outlined in Section 6
may constitute a model for how to proceed: a deeper understanding of the ideal structure
of forest algebras can lead to new wreath product decomposition theorems.

In a sense, we are searching for the right generalization of aperiodicity. For regular lan-
guages of words, aperiodicity of the syntactic monoid, expressibility in first-order logic with
linear ordering, expressibility in linear temporal logic, and recognizability by an iterated
wreath product of copies of the aperiodic unit U2 are all equivalent. For forest algebras, the
obvious analogues are, respectively, aperiodicity of the vertical component of the syntactic
algebra, expressibility in FO[≺], expressibility in CTL, and recognizability by an iterated
wreath product of copies of U2. As we have seen, only the last two coincide. Understanding
the precise relationship among these different formulations of aperiodicity for forest algebras
is an important goal of this research.

Another way of looking at this research is that it sets the scene for a Krohn-Rhodes
theorem for trees. The Krohn-Rhodes theorem states that every transition monoid divides
an iterated wreath product of transition monoids which are either U2 or groups that divide
the original monoid. The ingredients of the theorem are therefore: a notion of wreath
product, a notion of an easy transition monoid U2, and a notion of a difficult transition
monoid (a group). For our purposes here, we are particularly interested in the (already
quite difficult) version of the theorem which states that every aperiodic transition monoid
divides a wreath product of copies of U2. In this paper, we have provided some of the
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ingredients: the wreath product and the easy objects. (There are several candidates for the
easy objects, e.g. simply U2 or maybe path algebras. There are probably several Krohn-
Rhodes theorems). We have provided examples of properties one expects from the difficult
objects (the various types of confusion), but we still have no clear idea what they are (in
other words, what is a tree group?). We have also shown that the wreath product is strongly
related to logics and composition. Finding (at least one) Krohn-Rhodes theorem for trees
is probably the most ambitious goal of this research.
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