
Logical Methods in Computer Science

Vol. 9(1:12)2013, pp. 1–56

www.lmcs-online.org

Submitted Aug. 2, 2011

Published Mar. 20, 2013

COLLAPSIBLE PUSHDOWN GRAPHS OF LEVEL 2 ARE

TREE-AUTOMATIC ∗

ALEXANDER KARTZOW

Universität Leipzig, Institut für Informatik, Augustusplatz 10, 04103 Leipzig, Germany
e-mail address: kartzow@informatik.uni-leipzig.de

Abstract. We show that graphs generated by collapsible pushdown systems of level 2 are
tree-automatic. Even if we allow ε-contractions and reachability predicates (with regular
constraints) for pairs of configurations, the structures remain tree-automatic whence their
first-order logic theories are decidable. As a corollary we obtain the tree-automaticity of
the second level of the Caucal-hierarchy.

Contents

1. Introduction 2
1.1. Main Result 3
1.2. Outline of the Paper 3
2. Preliminaries and Basic Definitions 3
2.1. Logics 4
2.2. Words and Trees 4
2.3. Collapsible Pushdown Graphs 4
2.4. Finite Automata and Automatic Structures 9
3. Collapsible Pushdown Graphs are Tree-Automatic 10
3.1. Encoding of Level 2 Stacks in Trees 11
3.2. Tree-automaticity of Collapsible Pushdown Graphs 14
3.3. Lower Bound for FO Model-Checking 14
4. Decomposition of Runs 15
4.1. Decomposition of General Runs 15
4.2. Milestones, Loops and Increasing Runs 16
4.3. Returns, 1-Loops and Decreasing Runs 19
4.4. Decompositions for Runs in R⇓ or R⇑ 23
4.5. Computing Returns 23
4.6. Computing (1-) Loops 26

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Tree languages;
Logic—Higher order logic.

Key words and phrases: tree-automatic structures, collapsible pushdown graphs, collapsible pushdown
systems, first-order logic, decidability, reachability.
∗ A preliminary version of this paper has been presented at STACS’10 [12].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:12)2013

c© A. Kartzow
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. KARTZOW

5. Regularity of the Reachability Predicate via Enc 28
5.1. Connection between Milestones and Enc 28
5.2. Tree-Automaticity of Reachability 32
5.3. Regularity of ReachL 36
6. Conclusion 37
Acknowledgement 37
References 37
Appendix A. Proof of Bijectivity of Enc 39
Appendix B. Automaton for Relation R⇐ 44
Appendix C. Automaton for Relation R⇓ 49
Appendix D. Automaton for Relation R⇒ 51
Appendix E. Modifications for the Proof of Proposition 3.9 (cf. page 36) 56

1. Introduction

Higher-order pushdown systems were first introduced by Maslov [14, 15] as accepting devices
for word languages. Later, Knapik et al. [13] studied them as generators for trees. They
obtained an equi-expressivity result for higher-order pushdown systems and for higher-order
recursion schemes that satisfy the constraint of safety, which is a rather unnatural syntactic
condition. Hague et al. [10] introduced collapsible pushdown systems as extensions of higher-
order pushdown systems and proved that these have exactly the same power as higher-order
recursion schemes as methods for generating trees.

Both higher-order and collapsible pushdown systems also form interesting devices for
generating graphs. Carayol and Wöhrle [6] showed that the graphs generated by higher-
order pushdown systems of level l coincide with the graphs in the l-th level of the Caucal-
hierarchy, a class of graphs introduced by Caucal [7]. Every level of this hierarchy is
obtained from the preceding level by applying graph unfoldings and monadic second-order
interpretations. Both operations preserve the decidability of the monadic second-order
theory whence the Caucal-hierarchy forms a large class of graphs with decidable monadic
second-order theories. If we use collapsible pushdown systems as generators for graphs we
obtain a different situation. Hague et al. showed that even the second level of the hierarchy
contains a graph with undecidable monadic second-order theory. Furthermore, they showed
the decidability of the modal µ-calculus theories of all graphs in the hierarchy. These results
turn graphs generated by collapsible pushdown systems into an interesting class. The author
only knows one further natural class of graphs which shares these two properties, viz. the
class of nested pushdown trees (cf. [1]). Moreover this class can be seen as a subclass of
that of collapsible pushdown graphs (cf. [11]).

This paper is the long version of [12] and studies the first-order model-checking prob-
lem on collapsible pushdown graphs. We show that the graphs in the second level of the
collapsible pushdown hierarchy are tree-automatic. Tree-automatic structures were intro-
duced by Blumensath [2]. These structures enjoy decidable first-order theories due to the
good closure properties of finite automata. Since the translation from collapsible pushdown
systems into tree-automata presentations of the generated graphs is uniform, our result im-
plies that first-order model-checking on collapsible pushdown graphs of level 2 is decidable:

TREE-AUTOMATICITY OF 2-CPG 3

given a pushdown system, first compute the tree-automata representing its graph, then
apply classical model-checking for tree-automatic structures.

Moreover, the result still holds if regular reachability predicates are added to the graphs.

1.1. Main Result.

Theorem 1.1. Let S be a collapsible pushdown system of level 2 with configuration graph
G. Let G/ε be the ε-contraction of G. Any expansion of G/ε by regular reachability relations
is tree-automatic.1

A regular reachability relation is of the form ReachL for some regular language L. For
nodes a, b of some graph G with labelled edges, G |= ReachL(a, b) if there is a path from
a to b which is labelled by some word w ∈ L. The translation from collapsible pushdown
systems to tree-automatic presentations is uniform, i.e., there is a uniform way of computing,
given a collapsible pushdown system (and finite automata representing regular languages
over the edge-alphabet of the system), the tree-automata presentation of the ε-contraction
of the generated graph (expanded by the regular reachability predicates). Once we have
obtained tree-automata representing some graph, first-order model-checking on this graph
is decidable. Combining these results we obtain the following corollary.

Corollary 1.2. The following problem is decidable:
Input: a collapsible pushdown system S (of level 2), finite automata A1, . . . ,An representing
regular languages L1, . . . , Ln, and a formula ϕ in first-order logic extended by the relations
ReachL1

, . . . ,ReachLn

Output: G/ε |= ϕ? (G/ε denotes the ε-contraction of the graph generated by S.)

We also show that the decision procedure is necessarily nonelementary in the size of
the formula.

1.2. Outline of the Paper. Sections 2.1 and 2.2 introduce basic notation. In Section 2.3
we introduce collapsible pushdown graphs (of level 2) and we show basic properties of these
graphs. We recall the notion of tree-automaticity in Section 2.4. We present our encoding
of configurations of collapsible pushdown graphs as trees in Section 3. We also show that,
once we have proved that regular reachability is tree-automatic via this encoding, collapsible
pushdown graphs are tree-automatic. The final part of that Section discusses the optimality
of the first-order model-checking algorithm obtained from this tree-automata approach.
Sections 4 and 5 complete the proof by showing that regular reachability is actually tree-
automatic via our encoding. In Section 4 we develop the technical machinery for proving
the regularity of the reachability relation. We analyse how arbitrary runs of collapsible
pushdown systems decompose as sequences of simpler runs. Afterwards, in Section 5 we
apply these results and show that the encoding turns the regular reachability relations into
tree-automatic relations. Finally, Section 6 contains concluding remarks.

2. Preliminaries and Basic Definitions

For a function f , we denote by dom(f) its domain.

1 Due to Broadbent et al. [4], the result still holds if we expand the graph by Lµ definable predicates.

4 A. KARTZOW

2.1. Logics. We denote by FO first-order logic. Given some graph G = (V,E1, E2, . . . , En)
with labelled edge relations E1, . . . , En ⊆ V × V we denote by Reach the reachability
predicate, defined by

Reach :=

{

(a, b) : there is a (
n
⋃

i=1

Ei)-path from a to b

}

.

Given some regular language L, we denote by

ReachL :=

{

(a, b) : there is a (
n
⋃

i=1

Ei)-path from a to b labelled by some word w ∈ L

}

the reachability predicate with respect to L.

2.2. Words and Trees. For words w1, w2 ∈ Σ∗ we write w1 ≤ w2 if w1 is a prefix of w2.
w1 ⊓ w2 denotes the greatest common prefix of w1 and w2. The concatenation of w1 and
w2 is denoted by w1w2.

We call a finite set D ⊆ {0, 1}∗ a tree domain, if D is prefix closed. A Σ-labelled tree is
a mapping T : D → Σ for D some tree domain. For d ∈ D we denote the subtree rooted at
d by Td. This is the tree defined by Td(e) := T (de). We will usually write d ∈ T instead of
d ∈ dom(T). We denote the depth of the tree T by dpt(T) := max {|t| : t ∈ dom(T)}.

For T some tree with domain D, let D+ denote the set of minimal elements of the
complement of D, i.e.,

D+ = {e ∈ {0, 1}∗ \D : all proper ancestors of e are contained in D}.

We write D⊕ for D∪D+. Note that D
⊕ is the extension of the tree domain D by one layer.

Sometimes it is useful to define trees inductively by describing the subtrees rooted at
0 and 1. For this purpose we fix the following notation. Let T̂0 and T̂1 be Σ-labelled trees

and σ ∈ Σ. Then we write T := σ
〈

T̂0; T̂1

〉

for the Σ-labelled tree T with the following

three properties

1. T (ε) = σ, 2. T0 = T̂0, and 3. T1 = T̂1.

We denote by TΣ the set of all Σ-labelled trees.

2.3. Collapsible Pushdown Graphs. Before we introduce collapsible pushdown graphs
(CPG) in detail, we fix some notation. Then we informally explain collapsible pushdown
systems. Afterwards we formally introduce these systems and the graphs generated by
them. We conclude this section with some basic results on runs of collapsible pushdown
systems.

We set Σ+2 := (Σ+)
+
and Σ∗2 := (Σ∗)∗. Each element of Σ∗2 is called a 2-word. Stacks

of a collapsible pushdown system are certain 2-words from Σ+2 over a special alphabet. In
analogy, we will call words also 1-words.

Let us fix a 2-word s ∈ Σ∗2. s consists of an ordered list w1, w2, . . . , wm of words. If
we want to state this list of words explicitly, we write s = w1 : w2 : · · · : wm. Let |s| := m
denote the width of s. The height of s is hgt(s) := max{|wi| : 1 ≤ i ≤ m} which is the
length of the longest word occurring in s.

Let s′ be another 2-word with s′ = w′
1 : w

′
2 : · · · : w

′
l. We write s : s′ for the concatena-

tion w1 : w2 : · · · : wm : w′
1 : w

′
2 : · · · : w

′
l.

TREE-AUTOMATICITY OF 2-CPG 5

For some word w, let [w] be the 2-word that only consists of w. We regularly omit the
brackets if no confusion arises.

A level 2 stack s over some alphabet Σ is a 2-word over Σ where each letter additionally
carries a link to some i-word for 1 ≤ i ≤ 2. We call i the level of the link. The idea is
that the linked i-word contains some information about what the stack looked like when
the letter was created.

We first define the initial level 2 stack; afterwards we describe the stack operations that
are used to generate all level 2 stacks from the initial one.

Definition 2.1. Let Σ be some finite alphabet with a distinguished bottom-of-stack symbol
⊥ ∈ Σ. The initial stack of level 1 is the word ⊥1 := ⊥. The initial stack of level 2 is the
2-word ⊥2 := [⊥1].

We informally describe the stack operations that can be applied to a level 2 stack.

• The push operation of level 1, denoted by pushσ,k for σ ∈ Σ and 1 ≤ k ≤ 2, writes the
symbol σ onto the topmost level 1 stack and attaches a link of level k. This link points
to a copy of the topmost k-word of the resulting stack without the topmost k − 1 stack.
For k = 2 this means that the link points to the current stack where the topmost word
is removed. For k = 1 the link points to the topmost word of the stack before the push
operation was performed.

• The push operation of level 2 is denoted by clone2. It duplicates the topmost word. Since
this also copies the values of the links stored in the topmost word, the copy of each symbol
in the newly created word still contains information what did the stack look like when
the corresponding original symbol was pushed onto the stack.

• The level i pop operation popi for 1 ≤ i ≤ 2 removes the topmost entry of the topmost
i-word.

• The last operation is collapse. The result of collapse is determined by the link attached
to the topmost letter of the stack. If we apply collapse to a stack s where the link level
of the topmost letter is i, then collapse replaces the topmost level i stack of s by the
level i stack to which the link points. Due to how push operations create these links, the
application of a collapse is equivalent to the application of a sequence of popi operations
where the link of the topmost letter controls how long this sequence is.

In the following, we formally introduce collapsible pushdown stacks and the stack op-
erations. We represent such a stack of letters with links as 2-words over the alphabet
(Σ ∪ (Σ× {2} × N))+2. We consider elements from Σ as elements with a link of level 1 and
elements (σ, 2, k) as letters with a link of level 2. In the latter case, the third component
specifies the width of the substack to which the link points. For letters with link of level 1,
the position of this letter within the stack already determines the stack to which the link
points. Thus, we need not explicitly specify the link in this case.

Remark 2.2. Other equivalent definitions, for instance in [10], use a different way of storing
the links: they also store symbols (σ, i, n) on the stack, but here n denotes the number of
popi transitions that are equivalent to performing the collapse operation at a stack with
topmost element (σ, i, n). The disadvantage of that approach is that the clonei operation
cannot copy stacks. Instead, it can only copy the symbols stored in the topmost stack and
has to alter the links in the new copy. A clone of level i must replace all links (σ, i, n) by
(σ, i, n + 1) in order to preserve the links stored in the stack.

We introduce some auxiliary functions which are useful for defining the stack operations.

6 A. KARTZOW

Definition 2.3. For s = w1 : w2 : · · · : wn ∈ (Σ ∪ (Σ × {2} × N))+2, and wn = a1a2 . . . am
we define the following auxiliary functions:

• top2(s) := wn and top1(s) := am.
• The topmost symbol is Sym(s) := σ for top1(s) = σ ∈ Σ or top1(s) = (σ, 2, k) ∈ Σ×{2}×
N.

• The collapse level of the topmost element is CLvl(s) :=

{

1 if top1(s) ∈ Σ,

2 otherwise.

• Set CLnk(s) :=

{

j if top1(s) ∈ Σ× {2} × {j},

m− 1 if top1(s) ∈ Σ.

CLnk(s) is called the collapse link of the topmost element.
• Set pσ,2,k(wm) := wm(σ, 2, k) and pσ,2,k(s) := w1 : w2 : · · · : wn−1 : pσ,2,k(wn) for all
k ∈ N.

These auxiliary function are useful for the formalisation of the stack operations.

Definition 2.4. For s = w1 : w2 : · · · : wn ∈ (Σ ∪ (Σ × {2} × N))+2 and wn = a1a2 . . . am,
for σ ∈ Σ \ {⊥} and for 1 ≤ k ≤ 2, we define the stack operations

clone2(s) :=w1 : w2 : · · · : wn−1 : wn : wn,

pushσ,k(s) :=

{

w1 : w2 : · · · : wn−1 : wnσ if k = 1,

pσ,k,n−1(s) if k = 2,

popk(s) :=

w1 : w2 : · · · : wn−1 if k = 2, n > 1,

w1 : w2 : · · · : wn−1 : [a1a2 . . . am−1] if k = 1,m > 1,

undefined otherwise,

collapse(s) :=

w1 : w2 : · · · : wk if CLvl(s) = 2,CLnk(s) = k > 0,

pop1(s) if CLvl(s) = 1,m > 1,

undefined otherwise.

The set of level 2 operations is

OP := {(pushσ,k)σ∈Σ,1≤k≤2, clone2, (popk)1≤k≤2, collapse}.

The set of (level 2) stacks Stck(Σ) is the smallest set that contains ⊥2 and is closed under
application of operations from OP.

Note that we defined collapse and popk in such a way that the the resulting stack is
always nonempty and does not contain empty words. This avoids the special treatment of
empty stacks. Note that there is no clone1 operation. Thus, any collapse that works on level
1 is equivalent to one pop1 operation because level 1 links always point to the preceding
letter. Every collapse that works on level 2 is equivalent to a sequence of pop2 operations.
Next, we introduce the substack relation.

Definition 2.5. Let s, s′ ∈ Stck(Σ). We say that s′ is a substack of s (denoted as s′ ≤ s)
if there are n,m ∈ N such that s′ = pop1

n(pop2
m(s)).

Having concluded the definitions concerning stacks and stack operations, it is time to
introduce collapsible pushdown systems.

TREE-AUTOMATICITY OF 2-CPG 7

Definition 2.6. A collapsible pushdown system of level 2 (CPS) is a tuple

S = (Q,Σ,Γ,∆, q0)

where Q is a finite set of states, Σ a finite stack alphabet with a distinguished bottom-of-
stack symbol ⊥ ∈ Σ, Γ a finite input alphabet, q0 ∈ Q the initial state, and

∆ ⊆ Q× Σ× Γ×Q×OP

the transition relation.
Every (q, s) ∈ Cnf(Q,Σ) := Q × Stck(Σ) is called a configuration and Cnf(Q,Σ) is

called the set of configurations.2 We define γ-labelled transitions ⊢γ⊆ Cnf×Cnf as follows:
(q1, s) ⊢

γ (q2, t) if there is a (q1, σ, γ, q2, op) ∈ ∆ such that op(s) = t and Sym(s) = σ.
We call ⊢:=

⋃

γ∈Γ ⊢γ the transition relation of S. We set C(S) to be the set of

all configurations that are reachable from (q0,⊥2) via ⊢. These configurations are called
reachable. The collapsible pushdown graph (CPG) generated by S is

CPG(S) :=
(

C(S), (C(S)2∩ ⊢γ)γ∈Γ
)

.

Example 2.7. The following example (Figure 1) of a collapsible pushdown graph G of
level 2 is taken from [10]. Let Q := {0, 1, 2},Σ := {⊥, a}, Γ := {Cl, A,A′, P,Co}. ∆ is
given by (0,−,Cl, 1, clone2), (1,−, A, 0,pusha,2), (1,−, A′, 2,pusha,2), (2, a, P, 2,pop1), and
(2, a,Co, 0, collapse), where − denotes any letter from Σ.

0⊥
Cl // 1⊥ : ⊥

A //

A′��

0⊥ : ⊥a
Cl // 1⊥ : ⊥a : ⊥a

A //

A′
��

0⊥ : ⊥a : ⊥aa
Cl // 1⊥ : ⊥a : ⊥aa : ⊥aa

A′��

. . .

2⊥ : ⊥a
P��

Co

ee❑
❑

❑

❑

❑

2⊥ : ⊥a : ⊥aa
P��

Co

ii❙
❙

❙

❙

❙

❙

❙

2⊥ : ⊥a : ⊥aa : ⊥aaa
P��

Co

kk❲
❲

❲

❲

❲

❲

❲

❲

❲

❲

. . .

2⊥ : ⊥ 2⊥ : ⊥a : ⊥a
P��

Co

jj❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

2⊥ : ⊥a : ⊥aa : ⊥aa
P��

Co

ll❳
❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

. . .

2⊥ : ⊥a : ⊥ 2⊥ : ⊥a : ⊥aa : ⊥a
P��

Co

kk❳
❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

. . .

2⊥ : ⊥a : ⊥aa : ⊥ . . .

Figure 1: Example of the 2-CPG G (the level 2 links of the letters a are omitted in the
representation of the stacks).

Hague et al. [10] already noted that the previous example has undecidable MSO theory
because the half grid {(n,m) ∈ N

2 : n > m} is MSO interpretable in this graph (note that
the collapse edges of two vertices point to the same target if and only if the vertices are on
the same diagonal of the grid).

Next we define the ε-contraction of a given collapsible pushdown graph. From now on,
we always assume that the input alphabet Γ contains the symbol ε.

Definition 2.8. Let Γ be some alphabet. Let L and Lγ be the regular languages de-
fined by the expressions ({ε}∗(Γ \ {ε}))∗ and {ε}∗γ, respectively. Given a collapsible
pushdown graph G, the ε-contraction G/ε of G is the graph (M, (ReachLγ)γ∈Γ\ε) where
M := {g ∈ G : G |= ReachL((q0,⊥2), g)}.

2We write Cnf instead of Cnf(Q,Σ) if Q and Σ are clear from the context.

8 A. KARTZOW

Remark 2.9. This is the usual definition of ε-contraction. An edge in the new graph
consists of a sequence of ε-edges followed by one non-ε-edge. The set of configurations is
then restricted to those configurations that are reachable via the new edges from the initial
configuration.

Now we come to the notion of a run of a collapsible pushdown system.

Definition 2.10. Let S be a collapsible pushdown system. A run ρ of S is a sequence of
configurations that are connected by transitions, i.e., a sequence

c0 ⊢
γ1 c1 ⊢

γ2 c2 ⊢
γ3 · · · ⊢γn cn.

We denote by ρ(i) := ci the i-th configuration of ρ. Moreover, we denote by length(ρ) := n
the length of ρ. For 0 ≤ i ≤ j ≤ length(ρ), we write ρ↾[i,j] for the subrun

ci ⊢
γi+1 ci+1 ⊢

γi+2 . . . ⊢γj cj.

We write Runs(c, c′) for the set of runs starting at c and ending in c′. For s, s′ stacks, we
also write Runs(s, s′) :=

⋃

q,q′∈QRuns((q, s), (q′, s′)).

Consider some configuration (q, s) of a CPS. If |s| = n then a pushσ,2 transition applied
to (q, s) creates a letter with a link to the substack of width n−1. Thus, links to the substack
of width n − 1 in some word above the n-th one are always created by a clone2 operation.
A direct consequence of this fact is the following lemma.

Lemma 2.11. Let s be some level 2 stack with top1(s) = (σ, 2, k). Let ρ ∈ Runs(s, s) be a
run that passes pop1(s). If k < |s| − 1 then ρ passes pop2(s).

The proof is left to the reader. Later we often use the contraposition: if CLvl(s) = 2
and CLnk(s) < |s| − 1, then any run not passing pop2(s) does not pass pop1(s).

Following the ideas of Blumensath [3] for higher-order pushdown systems, we introduce
a prefix replacement for collapsible pushdown systems. This replacement allows to copy
runs starting in one configuration into a run starting at another configuration.

Definition 2.12. For t ∈ Stck(Σ) and some substack s ≤ t we say that s is a prefix of
t and write sE t, if there are n ≤ m ∈ N such that s = w1 : w2 : · · · : wn−1 : wn and
t = w1 : w2 · · · : wn−1 : vn : vn+1 : · · · : vm such that wn ≤ vj for all n ≤ j ≤ m.

For a configuration c = (q, t), we write sE c as an abbreviation for sE t. For some run
ρ, we write sE ρ if sE ρ(i) for all i ∈ dom(ρ).

Definition 2.13. Let s, t, u be level 2 stacks such that sE t. Assume that

s = w1 : w2 : · · · : wn−1 : wn,

t = w1 : w2 · · · : wn−1 : vn : vn+1 : · · · : vm, and

u = x1 : x2 : · · · : xn−1 : xn

for numbers n,m ∈ N such that n ≤ m. For each n ≤ i ≤ m, let v̂i be the unique word
such that vi = wnv̂i. We define

t[s/u] := x1 : x2 : · · · : xn−1 : (xnv̂n) : (xnv̂n+1) : · · · : (xnv̂m)

and call t[s/u] the stack obtained from t by replacing the prefix s by u.

TREE-AUTOMATICITY OF 2-CPG 9

Remark 2.14. Note that for t some stack with level 2 links, the resulting object t[s/u]
may be no stack. Take for example the stacks

s = ⊥(a, 2, 0) : ⊥,

t = ⊥(a, 2, 0) : ⊥(a, 2, 0) and

u = ⊥ : ⊥.

Then t[s/u] = ⊥ : ⊥(a, 2, 0). This list of words cannot be created from the initial stack
using the stack operation because an element (a, 2, 0) in the second word has to be a clone
of some element in the first one. But (a, 2, 0) does not occur in the first word. Note that
t[s/u] is always a stack if s = pop2

k(t) for some k ∈ N.

Lemma 2.15. Let ρ be a run of some collapsible pushdown system S of level 2 and let s
and u be stacks such that the following conditions are satisfied:

(1) sE ρ,
(2) top1(u) = top1(s),
(3) |s| = |u|, and
(4) for ρ(0) = (q, t), t[s/u] is a stack.

Under these conditions the function ρ[s/u] defined by ρ[s/u](i) := ρ(i)[s/u] is a run of S.

Proof (sketch). The proof is by induction on the length of ρ. It is tedious but straightforward
to prove that ρ(i)[s/u] and ρ(i) share the same topmost element. Thus, the transition δ
connecting ρ(i) with ρ(i+1) is also applicable to ρ(i)[s/u]. By case distinction on the stack
operation one concludes that δ connects ρ(i)[s/u] with ρ(i+ 1)[s/u].

2.4. Finite Automata and Automatic Structures. In this section, we present the
basic theory of finite bottom-up tree-automata and tree-automatic structures. For a more
detailed introduction, we refer the reader to [8].

Definition 2.16. A (finite tree-)automaton is a tuple A = (Q,Σ, qI , F,∆) where Q is a
finite nonempty set of states, Σ is a finite alphabet, qI ∈ Q is the initial state, F ⊆ Q is the
set of final states, and ∆ ⊆ Q× Σ×Q×Q is the transition relation.

We next define the concept of a run of an automaton on a tree.

Definition 2.17. A run of A on a binary Σ-labelled tree t is a map ρ : dom(t)⊕ → Q such
that

• ρ(d) = qI for all d ∈ dom(t)+, and
•
(

ρ(d), t(d), ρ(d0), ρ(d1)
)

∈ ∆ for all d ∈ dom(t).

ρ is accepting if ρ(ε) ∈ F . We say t is accepted by A if there is an accepting run of A on t.
With each automaton A, we associate the language

L(A) := {t : t is accepted by A}

recognised (or accepted) by A. The class of languages accepted by automata is called the
class of regular languages.

Automata can be used to represent infinite structures. Such representations have good
computational behaviour. In the following we recall the definitions and important results
on tree-automatic structures.

10 A. KARTZOW

We first introduce the convolution of trees. This is a tool for representing an n-tuple of
Σ-trees as a single tree over the alphabet (Σ∪{�})n where � is a padding symbol satisfying
� /∈ Σ.

Definition 2.18. The convolution of two Σ-labelled trees t and s is given by a function

t⊗ s : dom(t) ∪ dom(s) → (Σ ∪ {�})2

where � is some new padding symbol, and

(t⊗ s)(d) :=

(t(d), s(d)) if d ∈ dom(t) ∩ dom(s),

(t(d),�) if d ∈ dom(t) \ dom(s),

(�, s(d)) if d ∈ dom(s) \ dom(t).

We also use the notation
⊗

(t1, t2, . . . , tn) for t1 ⊗ t2 ⊗ · · · ⊗ tn.

Using convolutions of trees we can use a single automaton for defining n-ary relations
on a set of trees. Thus, we can then use automata to represent a set and a tuple of n-ary
relations on this set. If we can represent the domain of some structure and all its relations
by automata, we call the structure automatic.

Definition 2.19. We say a relation R ⊆ TΣ
n is automatic if there is an automaton A such

that L(A) = {
⊗

(t1, t2, . . . , tn) ∈ TΣ
n : (t1, t2, . . . , tn) ∈ R}.

A structureB = (B,E1, E2, . . . , En) with relations Ei is automatic if there are automata
AB,AE1

,AE2
, . . . ,AEn and a bijection f : L(AB) → B such that for c1, c2, . . . , cn ∈ L(AB),

the automaton AEi
accepts

⊗

(c1, c2, . . . , cn) if and only if (f(c1), f(c2), . . . , f(cn)) ∈ Ei.
In other words, f is a bijection between L(AB) and B and the automata AEi

witness
that the relations Ei are automatic via f . We call f a tree presentation of B.

Automatic structures form a nice class because automata theoretic techniques may be
used to decide first-order formulas on these structures:

Theorem 2.20 ([2], [16], [11]). If B is automatic, then its FO(∃mod,Ram)-theory is decid-
able.3

3. Collapsible Pushdown Graphs are Tree-Automatic

In Section 3.1 we present a bijection Enc between Cnf and a regular set of trees. Moreover,
Enc translates the reachability predicates ReachL ⊆ Cnf × Cnf for each regular language
L into a tree-automatic relation. The proof of this claim which is the technical core of this
paper is developed in Sections 4 and 5. Before we present this proof, we show in Section 3.2
how this result can be used to prove our main theorem. Moreover, in Section 3.3 we discuss
the optimality of the first-order model-checking algorithm derived from this construction.

Regularity of the regular reachability predicates implies that Enc↾dom(CPG(S)/ε) is an

automatic presentation of CPG(S)/ε because its domain and its transition relation can be
defined as reachability relations ReachL for certain regular languages L. Note that for the
definition of the domain, we need the encoding of the initial configuration as parameter.
This parameter can be hard-coded because its encoding is a fixed tree.

3 FO(∃mod,Ram) is the extension of FO by modulo counting quantifiers and by Ramsey-Quantifiers.

TREE-AUTOMATICITY OF 2-CPG 11

f

e g i

b d d d h j l

a c c c c c c c k

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 2: A stack with blocks forming a c-blockline.

3.1. Encoding of Level 2 Stacks in Trees. In this section we present an encoding of
level 2 stacks in trees. The idea is to divide a stack into blocks and to encode different blocks
in different subtrees. The crucial observation is that every stack is a list of words that share
the same first letter. A block is a maximal list of words occurring in the stack which share
the same two first letters. If we remove the first letter of every word of such a block, the
resulting 2-word decomposes again as a list of blocks. Thus, we can inductively carry on to
decompose parts of a stack into blocks and encode every block in a different subtree. The
roots of these subtrees are labelled with the first letter of the block. This results in a tree
where every initial left-closed path in the tree represents one word of the stack. A path of
a tree is left-closed if its last element has no left successor (i.e., no 0-successor).

The following notation is useful for the formal definition of blocks. Let w ∈ Σ∗ be some
word and s = w1 : w2 : · · · : wn ∈ Σ∗2 some 2-word. We write s′ := w \ s for s′ = ww1 :
ww2 : · · · : wwn. Note that [w]E(w \ s), i.e., [w] is a prefix of s′. We say that s′ is s prefixed
by w.

Definition 3.1. Let σ ∈ Σ and b ∈ Σ+2. We call b a σ-block if b = [σ] or b = στ \ s′ for
some τ ∈ Σ and some s′ ∈ Σ∗2. If b1, b2, . . . , bn are σ-blocks, then we call b1 : b2 : · · · : bn a
σ-blockline.

Note that every stack in Stck(Σ) forms a ⊥-blockline. Furthermore, every blockline l
decomposes uniquely as l = b1 : b2 : · · · : bn of maximal blocks bi in l.

Another crucial observation is that a σ-block b ∈ Σ∗2 \ Σ decomposes as b = σ \ l for
some blockline l and we call l the blockline induced by b. For a block of the form [b] with
b ∈ Σ, we define the blockline induced by [b] to be ε.

Definition 3.2. Let l be a σ-blockline such that l = b1 : b2 : · · · : bn is its decomposition
into maximal blocks. Let i1, i2, . . . , im be those indices such that for all 1 ≤ j ≤ n we have
bj 6= [σ] if and only if j = ik for some 1 ≤ k ≤ m. For 1 ≤ k ≤ m, let b′ik be the 2-word such

that bik = σ \ b′ik . We recursively define the blocks of l to be the minimal set containing

b1, b2, . . . , bn and the blocks of each of the bik (1 ≤ k ≤ m) seen as τ -blockline for some
letter τ .

See Figure 2 for an example of a stack with one of its blocklines.
Recall that the symbols of a collapsible pushdown stack (of level 2) come from the set

Σ ∪ (Σ× {2} × N) where Σ is the stack alphabet. For τ ∈ Σ ∪ (Σ× {2} × N), we encode a
τ -blockline l in a tree as follows. The root of the tree is labelled by (Sym(τ),CLvl(τ)). The
blockline induced by the first maximal block of l is encoded in the left subtree and the rest
of l is encoded in the right subtree. This means that we only encode explicitly the symbol
and the collapse level of each element of the stack, but not the collapse link. We will later
see how to decode the collapse links from the encoding of a stack. When we encode a part of

12 A. KARTZOW

(c, 2, 1) e

(b, 2, 0) (b, 2, 0) c (d, 2, 3)

(a, 2, 0) (a, 2, 0) (a, 2, 2) (a, 2, 2) (a, 2, 2)

⊥ ⊥ ⊥ ⊥ ⊥

c, 2 e, 1

b, 2 // ε

OO

c, 1 d, 2

OO

a, 2

OO

a, 2 //

OO

ε //

OO

ε

⊥, 1 //

OO

ε

OO

Figure 3: A stack s and its Encoding Enc(s): right arrows lead to 1-successors (right suc-
cessors), upward arrows lead to 0-successors (left successors).

a blockline in the right subtree, we do not repeat the label (Sym(τ),CLvl(τ)), but replace
it by the empty word ε.

Definition 3.3. Let τ ∈ Σ ∪ (Σ× {2} × N). Furthermore, let

s = w1 : w2 : · · · : wn ∈ (Σ ∪ (Σ× {2} × N))+2

be some τ -blockline. Let w′
i be a word for each 1 ≤ i ≤ n such that s = τ \ [w′

1 : w
′
2 : · · · : w

′
n]

and set s′ := w′
1 : w

′
2 : · · · : w

′
n. As an abbreviation we write isk := wi : wi+1 : · · · : wk. Let

1sj be a maximal block of s. Note that j > 1 implies that there is some τ ′ ∈ Σ∪(Σ×{2}×N)
and there are words w′′

j′ for each j′ ≤ j such that wj′ = ττ ′w′′
j′ .

For arbitrary σ ∈ (Σ×{1, 2})∪{ε}, we define recursively the (Σ×{1, 2})∪{ε}-labelled
tree Enc(s, σ) via

Enc(s, σ) :=

σ if |w1| = 1, n = 1

σ 〈∅; Enc(2sn, ε)〉 if |w1| = 1, n > 1

σ 〈Enc(1s
′
n, (Sym(τ ′),CLvl(τ ′))); ∅〉 if |w1| > 1, j = n

σ
〈

Enc(1s
′
j, (Sym(τ ′),CLvl(τ ′))); Enc(j+1sn, ε)

〉

otherwise

For every s ∈ Stck(Σ), Enc(s) := Enc(s, (⊥, 1)) is called the encoding of the stack s.

Figure 3 shows a configuration and its encoding.

Remark 3.4. Fix some stack s. For σ ∈ Σ and k ∈ N, every (σ, 2, k)-block of s is encoded in
a subtree whose root d is labelled (σ, 2). We can restore k from the position of d ∈ {0, 1}∗0
in the tree Enc(s) as follows.

k = |{d′ ∈ Enc(s) ∩ {0, 1}∗1 : d′ ≤lex d}|,

where ≤lex is the lexicographic order. This is due to the fact that every right-successor
corresponds to the separation of some block from some other.

This correspondence can be seen as a bijection. Let s = w1 : w2 : · · · : wn be some
stack. We define the set R := dom(Enc(s)) ∩ ({ε} ∪ {0, 1}∗1). Then there is a bijection
f : {1, 2, 3, . . . , n} → R such that i is mapped to the i-th element of R in lexicographic
order. Each 1 ≤ i ≤ n represents the i-th word of s. f maps the first word of s to the root
of Enc(s) and every other word in s to the element of Enc(s) that separates this word from
its left neighbour in s.

If we interpret ε as empty word, the word from the root to f(i) in Enc(s) is the
greatest common prefix of wi−1 and wi. More precisely, the word read along this path is
the projection onto the letters and collapse levels of wi−1 ⊓ wi.

TREE-AUTOMATICITY OF 2-CPG 13

Furthermore, set f ′(i) := f(i)0m ∈ Enc(s) such that m is maximal with this property,
i.e., f ′(i) is the leftmost descendant of f(i). Then the path from f(i) to f ′(i) is the suffix
w′
i such that wi = (wi−1 ⊓wi)w

′
i (here we set w0 := ε). More precisely, the word read along

this path is the projection onto the symbols and collapse levels of w′
i.

Having defined the encoding of a stack, we want to encode whole configurations, i.e., a
stack together with a state. To this end, we just add the state as a new root of the tree and
attach the encoding of the stack as left subtree, i.e., for some configuration (q, s) we set

Enc(q, s) := q 〈Enc(s); ∅〉 .

The image of this encoding function contains only trees of a very specific type. We call
this class TEnc. In the next definition we state the characterising properties of TEnc.

Definition 3.5. Let TEnc be the class of trees T that satisfy the following conditions.

(1) The root of T is labelled by some element of Q (T (ε) ∈ Q).
(2) 1 /∈ dom(T), 0 ∈ dom(T).
(3) T (0) = (⊥, 1).
(4) Every element of the form 0{0, 1}∗0 is labelled by some (σ, l) ∈ (Σ \ {⊥}) × {1, 2},
(5) Every element of the form {0, 1}∗1 is labelled by ε.
(6) There is no t ∈ T such that T (t0) = (σ, 1) and T (t10) = (σ, 1).

Remark 3.6. Note that all trees in the image of Enc satisfy condition 6 due to the following.
T (t0) = T (t10) = (σ, 1) would imply that the subtree rooted at t encodes a blockline l such
that the first block b1 of l induces a σ-blockline and the second block b2 induces also a
σ-blockline. This contradicts the maximality of the blocks used in the encoding because
all words of b1 and b2 have σ as second letter whence b1 : b2 forms a larger block. Note
that for letters with links of level 2 the analogous restriction does not hold. In Figure 3 one
sees the encoding of a stack s where Enc(s)(0) = Enc(s)(10) = (a, 2). Here, the label (a, 2)
represents two different letters. Enc(s)(0) encodes the element (a, 2, 0), while Enc(s)(10)
encodes the element (a, 2, 2), i.e., the first element encodes a letter a with undefined link
and the second encodes the letter a with a link to the substack of width 2.

Lemma 3.7. There is a finite automaton ATEnc with 2 + 3|Σ| many states that recognises
T
Enc.

Proof. Set ATEnc := (QA, Q∪ (Σ×{1, 2})∪{ε},⊥, {qI },∆A) where QA and ∆A are defined
as follows. Let QA := {⊥, qI} ∪ (Σ × {1, 2}) ∪ {Pσ : σ ∈ Σ}. The states of the form (σ, i)
are used to guess that a node of the tree is labelled by (σ, i) while the states Pσ are used to
prohibit that the left successor of a node is labelled by (σ, 1) (P⊥ is used if no restriction
applies). The transitions ensure that whenever we guess that d0 is labelled by (σ, 1) then
d1 is reached in state Pσ ensuring that d10 cannot be labelled by (σ, 1). For the definition
of ∆A we use the following conventions. q ranges over Q, i, j range over {1, 2}, σ over Σ,
τ over Σ \ {⊥} and τ 6σ over Σ \ {⊥, σ} whenever σ is fixed. Set ∆A := {(qI , q, (⊥, 1),⊥),
((σ, i), (σ, i), (τ, 1), Pτ), ((σ, i), (σ, i), (τ, 2), P⊥), ((σ, i), (σ, i), (τ, j),⊥), ((σ, i), (σ, i),⊥, P⊥),
((σ, i), (σ, i),⊥,⊥), (Pσ, ε, (τ 6σ , 1), Pτ), (Pσ, ε, (τ, 2), P⊥), (Pσ, ε, (τ 6σ , 1),⊥), (Pσ , ε, (τ, 2),⊥),
(Pσ , ε,⊥, P⊥), (Pσ, ε,⊥,⊥)}.

Lemma 3.8. Enc : Q× Stck(Σ) → T
Enc is a bijection. We denote its inverse by Dec.

The proof of this lemma is tedious. It can be found in Appendix A.

14 A. KARTZOW

3.2. Tree-automaticity of Collapsible Pushdown Graphs. Our main technical con-
tribution in this paper is stated in the next proposition. It concerns the regularity of the
regular reachability predicates ReachL with respect to our encoding of configurations. We
postpone the proof of this proposition to Section 5.

Proposition 3.9. There are polynomials p1 and p2 such that the following holds. Let
S = (Q,Σ,Γ, q0,∆) be some collapsible pushdown system of level 2 and let L be some
regular language over Γ recognised by some nondeterministic finite automaton with state set
P . ReachL is tree-automatic via Enc and there is a nondeterministic finite tree-automaton
with p1(|Σ|) · exp(p2(|Q| · |P |)) many states recognising ReachL in this encoding.

Remark 3.10. In the proposition, ReachL has to be understood with respect to all possible
configurations of a level 2 collapsible pushdown system as opposed to those occurring in
the configuration graph of S, i.e., those reachable via the transitions of S from the initial
configuration of S.

We obtain the automaticity of the ε-contractions of all level 2 collapsible pushdown
graphs as a direct corollary of the previous result.

Corollary 3.11. There are polynomials p and q such that the following holds. Given a
CPS S = (Q,Σ,Γ, q0,∆), the ε-contraction CPG(S)/ε is regular via Enc. Moreover, there
is a presentation such that each automaton in the presentation of CPG(S)/ε has at most
p(|Σ|) · exp(q(|Q|)) many states.

Proof. The domain of CPG(S)/ε is
{

c : CPG(S) |= Reach(Γ∗(Γ\{ε}))∗ ((q0,⊥2), c)
}

. Note
that ({ε}∗(Γ \ {ε}))∗ is accepted by an automaton with 2 states. Furthermore, hard-coding
Enc(q0,⊥2) as first argument to the automaton from Proposition 3.9 increases the number of
states by a at most a factor 3 (because dom(Enc(q0,⊥2)) = {ε, 0}). Thus, the corresponding
automaton has 3 · p1(|Σ|) · exp(p2(2 · |Q|)) many states where p1 and p2 are the polynomials
from Proposition 3.9.

Similarly, ⊢γ in CPG(S)/ε is exactly the same as Reach{ε}∗γ . Again 2 states suffice to
recognise {ε}∗γ.

3.3. Lower Bound for FO Model-Checking. Since CPG are tree-automatic, their FO
model-checking problem is decidable. The algorithm obtained this way has nonelementary
complexity. In this section we prove that we cannot do better: there is a fixed collapsible
pushdown graph of level 2 whose FO theory has nonelementary complexity. We present a
reduction of FO model-checking on the full infinite binary tree to FO model-checking on this
collapsible pushdown graph. Recall that FO model-checking on the full infinite binary tree
T := (T,�, S1, S2) with prefix order � and successor relations S1, S2 has a nonelementary
lower bound (cf. Example 8.3 in [9]).

Theorem 3.12. The expression complexity of any FO model-checking algorithm for level
2 collapsible pushdown graphs is nonelementary.

Remark 3.13. Note that this is a statement about plain collapsible pushdown graphs and
not about the ε-contractions. In contrast to the theorem, the first-order model-checking
problem on non-ε-contracted level 1 pushdown graphs is complete for alternating exponen-
tial time [17].

TREE-AUTOMATICITY OF 2-CPG 15

Proof. We modify the CPS of Example 2.7. We add the transition (2, a,P2,pop2, 0). Note
that the ordinal (ω,�) is first order definable in this graph: restrict the domain to all
elements with state 0. The order � is then defined via ϕ�(x, y) := ∃z z ⊢P2 y ∧ z ⊢Co x.

Now, we obtain the binary tree (T,�) by use of the stack alphabet {⊥, a, b}. For each
occurrence of a in a transition δ, we make a copy of δ where we replace a by b. Then,
each configuration c with state 0 is determined by top2(c) and these are in bijection to the
set {a, b}∗. Furthermore, ϕ� defines the prefix relation on this set. Thus, (T,�, S1, S2) is
FO-interpretable in this graph whence its FO theory has nonelementary complexity.

4. Decomposition of Runs

In this section we develop the technical background for the proof that the regular reacha-
bility predicates are tree-automatic via Enc. We investigate the structure of runs of CPS.
We prove that any run is composed from subruns which can be classified as returns, loops,
or 1-loops. Forgetting about technical details, one can say that returns are runs from some
stack s to pop2(s), loops are runs that start and end in the same stack and 1-loops are runs
from some stack s to a stack s′ such that s and s′ share the same topmost word and s is a
substack of s′. Every run decomposes as a sequence of the form λ0 ◦ρ1 ◦λ1 ◦ρ2 ◦ · · · ◦ρn ◦λn

where the ρi only perform one operation each and the λi are returns, loops or 1-loops of
maximal length in a certain sense. Let us explain this idea precisely in the case of a run
ρ from some stack s1 to a stack s2 such that s1 = pop2

k(s2). In this special case, the λi

are all loops and the sequence of operations induced by ρ1, . . . , ρn is a sequence of minimal
length transforming s1 into s2. This sequence of minimal length is in fact unique up to
replacement of pop1 and collapse operations of level 1. As a direct consequence, the loops
λi occurring in the decomposition cover the largest possible part of ρ in terms of loops,
returns and 1-loops. This is also the key to understanding our decomposition result for
general runs: we identify maximal subruns of an arbitrary run which are returns, loops and
1-loops and we prove that the parts not contained in one of these subruns form a short
sequence of operations.

Hence, understanding the existence of returns, loops and 1-loops allows to clarify
whether runs between certain configurations exist. It turns out that our decomposition
is very suitable for the analysis with finite automata because such automata can be used to
decide whether returns, loops and 1-loops starting in a given stack exist.

We next start with a general decomposition of any run into four parts. Afterwards we
prove decomposition results for each of the parts where returns, loops and 1-loops are the
central pieces of the decomposition. Finally, we show how finite automata acting on the
topmost word of a stack can be used to compute the existence of returns, loops and 1-loops
starting at this stack.

4.1. Decomposition of General Runs. We introduce a decomposition of an arbitrary
run ρ into four parts. The idea is that every run from a stack s1 to a stack s2 passes a
minimal common substack t of s1 and s2. Any run from s1 to t decomposes into a first part
from s1 to a stack of the form t1 := pop2

k(s1) such that |t1| = |t| and a second part from
t1 to t. Similarly, for the unique stack t2 := pop2

j(s2) such that |t2| = |t| the run from t
to s2 decomposes into a run from t to t2 and a run from t2 to s2. In the following sections

16 A. KARTZOW

we prove that every part of this decomposition again decomposes into returns, loops, and
1-loops.

Lemma 4.1. Let c1 = (q1, s1) and c2 = (q2, s2) be configurations and ρ ∈ Runs(c1, c2). Let

t be the minimal substack of s1 such that ρ visits t. Furthermore, let m1 := pop2
|s1|−|t|(s1)

and m2 := pop2
|s2|−|t|(s2). ρ decomposes as ρ = ρ1 ◦ ρ2 ◦ ρ3 ◦ ρ4 where

• ρ1 ∈ Runs(s1,m1) does not visit any substack of m1 before its final configuration,
• ρ2 ∈ Runs(m1, t) does not visit any substack of t before its final configuration,
• ρ3 ∈ Runs(t,m2) does not visit a substack of pop1(t), and
• ρ4 ∈ Runs(m2, s2) does not visit any substack of m2 after its initial configuration.

Proof. Let i2 ∈ dom(ρ) be minimal such that ρ(i2) = t. If t = m1 then set i1 := i2.
Otherwise there is some minimal i1 < i2 such that ρ(i1) = m1: note that a stack operation
alters either the width of the stack or the content of the topmost word. Thus, before
reaching t, ρ must visit some stack m̂ of width at most |t| and of the form m̂ = pop2

k(s1)
for some k ∈ N. Since m̂ cannot be a substack of t, m̂ = m1. Thus, we set ρ1 := ρ↾[0,i1] and
ρ2 := ρ↾[i1,i2].

For the definition of ρ3 and ρ4, note that |m2| = |t|. Let i2 < i3 ∈ dom(ρ) be maximal
such that |ρ(i3)| = |t|. Since the first |t| words of the stack are not changed by ρ after i3,
ρ(i3) = m2 and i3 is the last occurrence of m2. Setting ρ3 := ρ↾[i2,i3] and ρ4 := ρ↾[i3,length(ρ)]
we are done.

This decomposition motivates the following definition.

Definition 4.2. Given a collapsible pushdown system S, we define the following four rela-
tions on the configurations of S:

R⇐ := {(c1, c2) ∈ Cnf2 : c2 = pop2
k(c1) and ∃ρ ∈ Runs(c1, c2)∀i < length(ρ) ρ(i) 6≤ c2}

R⇓ := {(c1, c2) ∈ Cnf2 : c2 = pop1
k(c1) and ∃ρ ∈ Runs(c1, c2)∀i < length(ρ) ρ(i) 6≤ c2}

R⇑ := {(c1, c2) ∈ Cnf2 : c1 = pop1
k(c2) and ∃ρ ∈ Runs(c1, c2)∀i ≤ length(ρ) ρ(i) 6< c1}

R⇒ := {(c1, c2) ∈ Cnf2 : c1 = pop2
k(c2) and ∃ρ ∈ Runs(c1, c2)∀i > 0 ρ(i) 6≤ c1}.

Remark 4.3. Since we allow runs of length 0, the relations R⇐, R⇓, R⇑ and R⇒ are
reflexive. Lemma 4.1 states that

(c1, c2) ∈ Reach ⇔ ∃d, e, f (c1, d) ∈ R⇐ ∧ (d, e) ∈ R⇓ ∧ (e, f) ∈ R⇑ ∧ (f, c2) ∈ R⇒.

In Section 5.2 we show that the relations R⇐, R⇓, R⇑ and R⇒ are automatic whence
Reach is also automatic. In the next section, we prove a decomposition result that especially
applies to all runs in R⇒. Afterwards, in Section 4.3 we provide a corresponding decompo-
sition result for all runs in R⇐. Finally, we provide (much simpler) decompositions for R⇓

and R⇑ in Section 4.4.

4.2. Milestones, Loops and Increasing Runs. In this section we aim at a decomposi-
tion result for all runs in R⇒. For this purpose we first introduce the notion of generalised
milestones of some stack s. The underlying idea is as follows. Some stack m is a generalised
milestone of s if any run from the initial configuration to s of any collapsible pushdown sys-
tem also passes m. Moreover, if some run ending in s passes some generalised milestone
m of s, then it passes all generalised milestones of s that are not generalised milestones of

TREE-AUTOMATICITY OF 2-CPG 17

m. From the definition of generalised milestones it will be obvious that every run ρ in R⇒

starts at a generalised milestone of its final stack. Thus, a run in R⇒ can be decomposed
into parts that connect one generalised milestone of its final stack with the next generalised
milestone. After introducing the precise notion of a loop we will see that each of these parts
consists of such a loop plus one further transition. At a first glance, the formal definition
of a generalised milestone has nothing to do with our informal description. The connection
between the intended meaning and the formal definition is that in order to create some
stack s from the initial stack ⊥2, we have to create it word-by-word and each word letter-
by-letter in the following sense. If we want to create s = w1 : w2 : · · · : wk, we have to
use push operations in order to create the first word, i.e., the stack [w1]. Then we have to
apply clone2 and obtain w1 : w1. In order to generate s from this stack, we first have to
generate w1 : w2 and then we can proceed generating the other words of s. But for this
purpose, we first have to remove every letter from the second copy of w1 until we reach the
greatest common prefix of w1 and w2. This can only be done by iteratively applying pop1
or collapse operations of level 1. Having reached w1 : (w1 ⊓ w2), we again start to create
w1 : w2 by using push operations of level 1.

This way of creating s from ⊥2 is the shortest method to create s which is unique up to
replacements of pop1 operations by collapse of level 1 and vice versa. At the same time any
other method contains this pattern as a (scattered) subsequence (again up to replacement of
pop1 by collapse of level 1 and vice versa). If we deviate from the described way of creating
s, then we just insert some loops where we first create some different stack and then return
to the position where we started to deviate. At the end of this section, Corollary 4.10 will
show that our intuition is correct. Let us now formally define generalised milestones.

Definition 4.4. Let s = w1 : w2 : · · · : wk be a stack and let w0 = ⊥. We call a stack m a
generalised milestone of s if m is of the form

m = w1 : w2 : · · · : wi : vi+1 where 0 ≤ i < k,

wi ⊓ wi+1 ≤ vi+1 and

vi+1 ≤ wi or vi+1 ≤ wi+1.

We denote by GMS(s) the set of all generalised milestones of s.
For a generalised milestone m of s, we call m a milestone of s if m is a substack of s,

i.e., if vi+1 ≤ wi+1 in the above definition. We write MS(s) for the set of all milestones of s.

We next define a partial order that turns out to be linear when restricted to the set
GMS(s).

Definition 4.5. We define a partial order ≪ on all stacks as follows. ≪ is the smallest re-
flexive and transitive relation that satisfies the following conditions. Let s = w1 : w2 : · · · : wk

and t = v1 : v2 : · · · : vl be stacks. s ≪ t holds if

(1) |s| < |t|, or
(2) l = k, wi = vi for i < k and vk < wk ≤ wk−1 = vk−1, or
(3) l = k, wi = vi for i < k and wk < vk 6≤ wk−1 = vk−1.

For each stack s, we now characterise ≪ restricted to GMS(s). The straightforward
proofs of the following lemmas are left to the reader.

Lemma 4.6. Let s = w1 : w2 : · · · : wk be a stack and m1,m2 ∈ GMS(s). Then m1 ≪ m2

if one of the following holds:

18 A. KARTZOW

(1) |m1| < |m2|,
(2) |m1| = |m2| = i, wi−1 ⊓ wi < top2(m1) ≤ wi−1 and wi−1 ⊓ wi ≤ top2(m2) ≤ wi,
(3) |m1| = |m2| = i and wi−1 ⊓wi < top2(m2) ≤ top2(m1) ≤ wi−1, or
(4) |m1| = |m2| = i and wi−1 ⊓wi ≤ top2(m1) ≤ top2(m2) ≤ wi.

Lemma 4.7. For each stack s, ≪ induces a finite linear order on GMS(s). Moreover, if
m ∈ GMS(s) then (GMS(m),≪) is the initial segment of (GMS(s),≪) up to m.

We call some m ∈ GMS(s) the i-th generalised milestone if it is the i-th element of
GMS(s) with respect to ≪. Later we will see that ≪ corresponds to the order in which the
generalised milestones appear in any run from the initial configuration to s. Note that the
restriction of ≪ to MS(s) coincides with the substack relation ≤.

Now we introduce loops formally and characterise runs connecting generalised mile-
stones in terms of loops. Later we will see that there is a close correspondence between the
milestones of some stack s and the nodes of our encoding Enc(s). This correspondence is
one of the key observation in proving that Enc(s) yields a tree-automatic encoding of the
relation R⇒.

Definition 4.8. Let s be a stack and q, q′ states. A loop from (q, s) to (q′, s) is a run
λ ∈ Runs((q, s), (q′, s)) that does not pass a substack of pop2(s) and that may pass pop1

k(s)
only if the k topmost elements of top2(s) are letters with links of level 1. This means that

for all i ∈ dom(λ), if λ(i) = (qi,pop1
k(s)) then CLvl(pop1

k′(s)) = 1 for all 0 ≤ k′ < k.
If λ is a loop from (q, s) to (q′, s) such that λ(1) = pop1(s) = λ(length(λ)− 1), then we

call λ a low loop. If λ is a loop from (q, s) to (q′, s) that never passes pop1(s), then we call
λ a high loop.

For s some stack, we sometimes write λ is a loop of s. By this we express that λ is a
loop and its initial (and final) stack is s. We now characterise runs connecting milestones
of some stack in terms of loops.

Lemma 4.9. Let ρ be a run ending in stack s = w1 : w2 : · · · : wk. Furthermore, let
m ∈ GMS(s) \ {s} be such that ρ visits m. Let i ∈ dom(ρ) be maximal such that ρ visits
m at i, i.e., the stack at ρ(i) is m. Then ρ also visits the ≪-minimal generalised milestone
m′ ∈ GMS(s) \ GMS(m) and for i′ ∈ dom(ρ) maximal such that ρ(i′) = m′, ρ↾[i+1,i′] is a

loop of m′.

Proof. We distinguish the following cases.

• Assume that m′ = clone2(m). In this case m = w1 : w2 : · · · : w|m|. Thus, at the last
position j ∈ dom(ρ) where |ρ(j)| = |m|, the stack at ρ(j) is m (because ρ never changes
the first |m| many words after passing ρ(j)). Hence, i = j by definition. Since |s| > |m|,
it follows directly that the operation at i is a clone2 leading to m′. Note that ρ never
passes a stack of width |m| again. Thus, it follows from Lemma 2.11 that for i′ maximal
with ρ(i′) = m′ the run ρ↾[i+1,i′] never visits pop1

k(m′) if CLvl(pop1
k−1(m′)) = 2. Thus,

we conclude that ρ↾[i+1,i′] is a loop.

• Assume that m′ = pop1(m). In this case, m = w1 : w2 : · · · : w|m|−1 : w for some w such
that w|m|−1 ⊓ w|m| < w ≤ w|m|−1. Thus, w 6≤ w|m| and creating w|m| as the |m|-th word
on the stack requires passing w1 : w2 : · · · : w|m|−1 : w|m|−1 ⊓ w|m|. This is only possible
via applying pop1 or collapse of level 1 to m. Since we assumed i to be maximal, the
operation at i must be pop1 or collapse of level 1 and leads to m′.

TREE-AUTOMATICITY OF 2-CPG 19

We still have to show that ρ↾[i+1,i′] is a loop. By definition of i, ρ↾[i+1,i′] starts and ends

in m′. Due to the maximality of i, ρ↾[i+1,i′] does not visit the stack pop2(m) = pop2(m
′).

Furthermore, top1(m
′) is a cloned element. Due to Lemma 2.11, if ρ↾[i+1,i′] visits pop1

k(m′)

then CLvl(pop1
k−1(m′)) = 1. Thus, ρ↾[i+1,i′] is a loop.

• The last case is m′ = pushσ,l(m) for (σ, l) ∈ Σ× {1, 2}. In this case,

m = w1 : w2 : · · · : w|m|−1 : w

for some w such that w|m|−1 ⊓ w|m| ≤ w < w|m|. Creating w|m| on the stack requires
pushing the missing symbols onto the stack as they cannot be obtained via clone operation
from the previous word. Since i is maximal, the operation at i is some pushσ,l leading
to m′. ρ↾[i,i′] is a high loop due to the maximality of i (this part of ρ never visits

m = pop1(m
′) or any other proper substack of m′).

As a corollary of the lemma, we obtain that ≪ coincides with the order in which the gener-
alised milestones appear for the last time in a given run starting in the initial configuration.

Corollary 4.10. Let s be some stack and m1 ∈ MS(s). Some run ρ ∈ Runs(m1, s) that
does not visit substacks of m1 (after the initial configuration) decomposes as

ρ = ρ1 ◦ λ1 ◦ · · · ◦ ρn ◦ λn

where the λi are loops and the ρi are runs of length 1 that connect one generalised milestone
of s with its ≪-successor (in GMS(s)).

In particular, for t = pop2
k(s) and configurations c = (q, t) and c′ = (q′, s) a run

ρ ∈ Runs(c, c′) witnesses (c, c′) ∈ R⇒ if and only if it decomposes as given above.

For the direction from right to left of the last claim note that, if t = pop2
k(s) and

ρ ∈ Runs(t, s) decomposes as above, then ρ1 performs a clone2. This implies that the run
λ1 ◦ ρ2 ◦ · · · ◦ ρn ◦ λn cannot visit t again.

This corollary shows that it is sufficient to understand loops of generalised milestones
of a given stack s in order to understand runs in R⇒ ending in s. In Section 4.6 we show
that the loops of a given stack s can be computed by a finite automaton on input top2(s).

4.3. Returns, 1-Loops and Decreasing Runs. Having analysed the form of runs in
R⇒, we now analyse runs in the converse direction: how can we decompose a run in R⇐?
We need the notion of returns and of level-1-loops in order to answer this question.

Definition 4.11. Let t = s : w be some stack with topmost word w. A return from t to
s is a run ρ ∈ Runs(t, s) such that ρ never visits a substack of s before length(ρ) and such
that one of the following holds:

(1) the last operation in ρ is pop2, or
(2) the last operation in ρ is a collapse and w < top2(ρ(length(ρ) − 1)), i.e., ρ pushes at

first some new letters onto t and then performs a collapse of one of these new letters,
or

(3) there is some i ∈ dom(ρ) such that ρ↾[i,length(ρ)] is a return from pop1(t) to s.

Remark 4.12. The technical restrictions in the second condition have the following inten-
tion. A return from t to pop2(t) is a run ρ from t to pop2(t) that does not use the level 2
links stored in top2(t) (cf. [11] for a detailed discussion).

20 A. KARTZOW

It is useful to note that any return from some stack s that visits pop1(s) in fact satisfies
the last condition in the definition of return.

Lemma 4.13. Let ρ be some return from a stack s to pop2(s). If 0 < i < length(ρ) is the
first position such that ρ visits pop1(s) at i, then ρ↾[i,length(ρ)] is a return from pop1(s) to

pop2(s), i.e., i witnesses that ρ satisfies the third condition in the definition of a return.

In the case that the topmost word of the initial stack only contains cloned elements,
then there is an easy condition to verify that a run starting at this stack is a return.

Lemma 4.14. Let s and t be stacks. Assume that |t| < |s| and that top2(s) ≤ top2(t). For
ρ some run of length l starting at stack s, ρ is a return if

(1) for all 0 ≤ i < l, |ρ(i)| ≥ |s| and
(2) |t| ≤ |ρ(l)| < |s|.

Proof. The proof is by induction on the length of top2(s). Note that the operation at ρ(l−1)
is either pop2 or a collapse of level 2. If it is a pop2, then it is immediate that ρ is a return.
If it is a collapse of level 2, then there is a prefix w ≤ top2(s) and some word v such that
top2(ρ(l − 1)) = wv. Since all level 2 links in top2(s) point to stacks of width smaller than
t, v must be nonempty by assumption (2). Thus, if w = top2(s) we conclude immediately
that ρ is a return. if w < top2(s) then the only way to create a word wv on a stack of width
at least |s| with a link to a stack of smaller width requires to visit pop2(s) : w. But this
implies that ρ visits pop1(s) and we conclude by application of the induction hypothesis to
the final part of ρ starting at the first occurrence of pop1(s).

Definition 4.15. Let s be some stack and w some word. A run λ of length n is called a
level-1-loop (or 1-loop) of s : w if the following conditions are satisfied.

(1) λ ∈ Runs(s : w, s : s′ : w) for some 2-word s′,
(2) for every i ∈ dom(λ), |λ(i)| > |s|, and
(3) for every i ∈ dom(λ) such that top2(λ(i)) = pop1(w), there is some j > i such that

λ↾[i,j] is a return.

Before we analyse the form of runs in R⇐, we prove an auxiliary lemma.

Lemma 4.16. Let ρ be a run of length l starting in some stack s with topmost word w such
that

(1) ρ does not visit a substack of pop2(s) before its final configuration,
(2) top2(ρ(l − 1)) is a proper prefix of w, and
(3) the last stack operation in ρ is a collapse of level 2.

If ρ is not a return, then there is some 0 < i < l such that

(1) top2(ρ(i)) = pop1(w),
(2) for all i ≤ j ≤ l the subrun ρ↾[i,j] is not a return, and

(3) for all 0 < j < i such that top2(ρ(j)) = pop1(w) there is a j < k < i such that ρ↾[j,k] is
a return.

Proof. Assume that ρ is such a run and that it is not a return. We first prove that there is
some 0 < i < l such that

• top2(ρ(i)) = pop1(w) and
• for all i ≤ j ≤ l the subrun ρ↾[i,j] is not a return.

Afterwards we show that the minimal such i also satisfies claim (3).

TREE-AUTOMATICITY OF 2-CPG 21

(1) Assume that the stack at ρ(l − 1) decomposes as w1 : w2 : · · · : wk such that w 6≤ w|s|.
In this case let i ≤ l − 1 be minimal such that |ρ(i)| = |s| and w 6≤ top2(ρ(i)). Since ρ
does not visit a substack of pop2(s) before i, we conclude immediately that the stack
at i − 1 is s and the stack at i is pop1(s). We show that i witnesses the claim. Note
that top2(ρ(i)) = pop1(w). Heading for a contradiction, assume that there is some
i ≤ j ≤ l such that ρ′ := ρ↾[i,j] is a return. This assumption implies directly that

|ρ(j)| < |ρ(i)| = |s| whence ρ′ visits a substack of pop2(s). Since ρ does not do so
before l, we conclude that l = j. But this implies that ρ is a run that starts in s, passes
pop1(s) and continues with a return from pop1(s). By definition, this implies that ρ is
a return contradicting our assumptions. Thus, we conclude that there is no j ≥ i such
that ρ↾[i,j] is a return.

(2) Otherwise, the stack at ρ(l − 1) decomposes as w1 : w2 : · · · : wk for some k > |s| and
there is some n > |s| such that w ≤ wi for all |s| ≤ i < n and w 6≤ wn. Let i0 ≤ l − 1
be maximal such that |ρ(i0 − 1)| < n. Then the stack at ρ(i0 − 1) is w1 : w2 : · · · : wn−1

and the operation at i0 − 1 is clone2. Thus, w ≤ top2(ρ(i0)). Let i0 < i1 < l − 1 be
minimal such that |ρ(i1)| = n and top2(ρ(i1)) < w. By minimality of i1, we conclude
that |ρ(i1 − 1)| = n whence top2(ρ(i1 − 1)) = w and top2(ρ(i1)) = pop1(w). In order to
prove that i1 witnesses the claim of the lemma, we have to prove that for all i1 ≤ j ≤ l,
ρ↾[i1,j] is not a return. But note that |ρ(i1)| = n ≤ |ρ(j)| for all i1 ≤ j < l whence
ρ↾[i1,j] is not a return for i1 ≤ j < l. Moreover, since ρ ends in a collapse on a prefix of

w = top2(ρ(0)), we conclude that |ρ(l)| < |ρ(0)| = |s| < n. Thus, |ρ(i1)| − |(ρ(l)| ≥ 2
and ρ↾[i1,l] is not a return because it does not end in pop2(ρ(i1)).

This completes the first part of our proof. We still have to deal with claim (3). For this
purpose let 0 < i < l be minimal such that

• top2(ρ(i)) = pop1(w) and
• for all i ≤ j ≤ l the subrun ρ↾[i,j] is not a return.

Heading for a contradiction, assume that there is some 0 < j < i with top2(ρ(j)) = pop1(w)
such that there is no j < k ≤ i such that ρ↾[j,k] is a return.

By minimality of i there is some k > i such that ρj := ρ↾[j,k] is a return. Since ρ is no

return, we directly conclude that ρ(j) 6= pop1(s) whence |ρ(j)| > |s|. We distinguish two
cases.

(1) If |ρ(j)| > |ρ(i)| then the minimal k0 ≥ j such that |ρ(k0)| < |ρ(j)| satisfies k0 ≤ i. But
by definition, k0 is the only candidate for ρ↾[j,k0] being a return. Thus, k = k0 which
contradicts the assumption that k > i.

(2) If |ρ(j)| ≤ |ρ(i)|, we conclude that |s| ≤ |ρ(k)| < |ρ(i)|. Thus, there is also a minimal
k0 ≥ i such that |s| ≤ |ρ(k0)| < |ρ(i)|. Since top2(ρ(i)) ≤ top2(s) = w, we conclude
with Lemma 4.14 that ρ↾[i,k0] is a return contradicting our choice of i.

With this lemma we are prepared to prove our decomposition result.

Lemma 4.17. Let s, s′ ∈ Stck(Σ) such that s′ = pop2
k(s) for some k ∈ N and let ρ be some

run. ρ is a run in Runs(s, s′) that does not visit a substack of s′ before its final configuration
if and only if ρ ∈ Runs(s, s′) and ρ decomposes as ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρn where each ρi is of
one of the following forms.

F1. ρi is a return,

22 A. KARTZOW

F2. ρi is a 1-loop followed by a collapse of collapse level 2,
F3. ρi is a 1-loop followed by a pop1 (or a collapse of collapse level 1), there is a j > i such

that ρj is of the form F2 and for all i < k < j ρk is of the form F3.

Proof. First of all, note that the case length(ρ) = 0 is solved by setting n := 0.
We proceed by induction on the length of ρ. Assume that ρ ∈ Runs(s, s′) and that it

does not visit s′ before the final configuration. We write (qi, si) for the configuration ρ(i).
Firstly, consider the case that there is some m ∈ dom(ρ) such that ρ1 := ρ↾[0,m] is a return.
Then ρ1 is of the form F1. By induction hypothesis, ρ↾[m,length(ρ)] decomposes as desired.

Otherwise, assume that there is no m ∈ dom(ρ) such that ρ↾[0,m] is a return.

Nevertheless, there is a minimal m ∈ dom(ρ) such that |sm| < |s|. The last operation
of ρ̂ := ρ↾[0,m] is a collapse such that top2(sm−1) ≤ top2(s) (otherwise ρ̂ would be a return).

Writing w := top2(sm−1), we distinguish two cases.

(1) First consider the case that w = top2(s). Note that this implies CLvl(s) = 2 because
the last operation of ρ̂ is a collapse of level 2.

Furthermore, we claim that ρ̂ does not visit pop1(s). Heading for a contradiction,
assume that ρ̂(i) = pop1(s) for some i ∈ dom(ρ̂). Since ρ̂ does not visit pop2(s) between
i and m−1, top2(ρ̂(m−1)) = w is only possible if CLnk(w) = |s|−1 (cf. Lemma 2.11).
But then ρ̂↾[i,m] is a return of pop1(s) whence by definition ρ̂ is a return of s. This
contradicts our assumption.

We claim that ρ̂ is a 1-loop plus a collapse operation: we have already seen that ρ̂
does not visit any proper substack of s. Thus, it suffices to show that ρ̂ reaches a stack
with topmost word pop1(w) only at positions where a return starts.

Let i be a position such that top2(ρ̂(i)) = pop1(w). Recall that top2(sm−1) = w,
CLvl(w) = 2 and CLnk(w) ≤ |s| − 1. Since ρ̂ does not visit pop1(s), |ρ̂(i)| > |s| and
we cannot restore top1(w) by a push operation. Thus, there is some minimal position
m > j > i such that |ρ̂(j)| < |ρ̂(i)|. Lemma 4.14 implies that ρ̂↾[i,j] is a return.

Thus, ρ1 := ρ̂ is of the form F2.
(2) For the other case, assume that w < top2(s). Since ρ̂ is not a return, we may apply the

previous lemma. We conclude that there is some i ∈ dom(ρ̂) such that ρ1 := ρ̂↾[0,i] is a
1-loop followed by a pop1 or a collapse of level 1 and such that there is no j > i such
that ρ̂↾[i,j] is a return. In order to show that ρ̂ is of the form F3 we have to check the
side conditions on the segments following in the decomposition of ρ. For this purpose
set ρ′ := ρ↾[i,length(ρ)]. By induction hypothesis ρ′ decomposes as ρ′ = ρ2 ◦ ρ3 ◦ · · · ◦ ρn
where the ρi satisfy the claim of the lemma.

Now, by definition of i, ρ′ does not start with a return. Thus, ρ2 is of one of the
forms F2 or F3. But these forms require that there is some j ≥ 2 such that ρj is of form
F2 and for all 2 ≤ k < j, ρk is of the form F3. From this condition it follows directly
that ρ = ρ1 ◦ ρ

′ = ρ1 ◦ ρ2 ◦ ρ3 ◦ · · · ◦ ρn and ρ1 is of the form F3.

For the other direction, assume that ρ ∈ Runs(s, s′) decomposes as ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρn
where each ρi is of one of the forms F1-F3. Let i1 < i2 < · · · < ik = n be the subsequence
of subruns of the forms F1 or F2. Let sij be the stack of the final configuration of ρij . A
straightforward induction shows that |si1 | > |si2 | > · · · > |sik | and that all stacks that occur
after the final configuration of ρij and before the final configuration of ρij+1

have width at
least |sij |. Analogously, all stacks occurring before the final configuration of ρi1 have width

TREE-AUTOMATICITY OF 2-CPG 23

at least |s|. Thus, we conclude immediately that substacks of s′ cannot be visited before
the final configuration of ρ.

4.4. Decompositions for Runs in R⇓ or R⇑. The decomposition of runs witnessing
that (c1, c2) ∈ R⇐ or (c1, c2) ∈ R⇒, respectively, turns out to be very useful for proving
tree-automaticity of R⇐ and R⇒. We use similar characterisations for runs witnessing
that certain pairs of configurations are contained in R⇓ or R⇑. The proofs of the following
characterisations are straightforward inductions.

Lemma 4.18. Let c1, c2 ∈ Cnf and ρ some run.

(1) ρ witnesses (c1, c2) ∈ R⇓ if and only if ρ ∈ Runs(c1, c2) and ρ decomposes as

ρ = λ1 ◦ ρ1 ◦ λ2 ◦ ρ2 ◦ · · · ◦ λn ◦ ρn

where each λi is a high loop and each ρi is a run performing exactly one transition which
is pop1 or a collapse of level 1.

(2) Analogously, ρ witnesses (c1, c2) ∈ R⇑ if and only if ρ ∈ Runs(c1, c2) and ρ decomposes
as ρ = λ0 ◦ ρ1 ◦ λ1 ◦ ρ2 ◦ · · · ◦ λn−1 ◦ ρn ◦ λn where the λi are high loops and each ρi
performs exactly one push operation.

4.5. Computing Returns. In this section, we prove that the existence of returns starting
at a given stack s inductively depend on the returns starting at pop1(s). Later we use this
result in order to show that there is a similar dependence of loops starting in s from loops
and returns starting in pop1(s). Let us fix a CPS S. For some word w occurring in a level
2 stack, let w↓0 denote the word where each level 2 link is replaced by 0, i.e., each (σ, 2, i)
is replaced by (σ, 2, 0).

Definition 4.19. Set Rt(w) := {(q, q′) : there is a return from (q, w↓0 : w↓0) to (q′, w↓0)}.
We also set Rt(s) := Rt(top2(s)).

The main goal of this section is the proof of the following proposition.

Proposition 4.20. There is a finite automaton with 2|Q×Q| many states that computes
Rt(w) on input w↓0.

Remark 4.21. In fact, the automaton can be effectively constructed from a given CPS
(cf. [11]). The same holds analogously for Proposition 4.29 and Corollary 4.38.

This proposition relies on the observation that returns of a stack s with topmost word
w are composed by runs that are prefixed by s and by runs that are returns of stacks with
topmost word pop1(w). Furthermore, it relies on the observation that stacks with equal
topmost word share the same returns. The reader who is not interested in the proof details
may safely skip these and continue reading Section 4.6.

Lemma 4.22. Let s be a stack with |s| ≥ 2. There is a return from (q, s) to (q′,pop2(s))
if and only if (q, q′) ∈ Rt(top2(s)).

Proof. Let w := top2(s)↓0. A tedious but straightforward induction on the length of the
return provides a transition-by-transition copy of a return starting at (q, s) to a return
starting at (q, w : w) and vice versa.

24 A. KARTZOW

The following auxiliary lemmas prepare the decomposition of returns into subparts that
are returns starting at stacks with smaller topmost words and subparts that are prefixed
by the first stack of the return.

Lemma 4.23. Let ρ be a return starting at some stack s with top2(s) = w. If ρ visits
pop1(s), let k be the first occurrence of pop1(s) in ρ, otherwise let k := length(ρ). If
0 < i < k is a position such that sE ρ(i − 1) and top2(ρ(i)) = pop1(w) then there is some
i < j < k such that ρ↾[i,j] is a return.

Proof. Since i < k, the stack at ρ(i) is not pop1(s). Thus, the stack at ρ(i) is of the form
s′ : pop1(w) with sE s′, in particular |s| < |ρ(i)|. There is a minimal i < j ≤ k such that
|ρ(j)| < |ρ(i)|.

If j < length(ρ), we conclude by application of Lemma 4.14. Otherwise, j = length(ρ)
and ρ does not visit pop1(s). Since ρ is a return, the operation at j − 1 is pop2 (whence
ρ↾[i,j] is a return) or there is a nonempty word v such that top2(ρ(j − 1)) = wv and the
operation at j−1 is a collapse of level 2. Since v was created between i and j−1 its topmost
link points to a stack of width at least |ρ(i)| − 1 and we conclude again with Lemma 4.14
that ρ↾[i,j] is a return.

Lemma 4.24. Let ρ be some run, s some stack with topmost word w := top2(s) such that
the following holds.

(1) sE ρ(0),
(2) ρ(i) 6< s for all 0 ≤ i ≤ length(ρ), and
(3) for all 0 < i ≤ length(ρ) such that sE ρ(i − 1) and w 6≤ top2(ρ(i)), there is some

i < j ≤ length(ρ) such that ρ↾[i,j] is a return.

There is a well-defined sequence

0 := j0 ≤ i1 < j1 ≤ i2 < j2 ≤ · · · ≤ in < jn ≤ in+1 := length(ρ)

with the following properties.

(1) For 1 ≤ k ≤ n+ 1, sE ρ↾[jk−1,ik]
.

(2) For each 1 ≤ k ≤ n, there is a stack sk with top2(sk) = pop1(w) such that ρ↾[ik+1,jk]
is

a return from sk to pop2(sk).
(3) For all 1 ≤ k ≤ n, top2(ρ(ik)) = w and the operation at ik in ρ is a pop1 or a collapse

of level 1.

Proof. The proof is by induction on length(ρ). If sE ρ (in particular, if length(ρ) = 0), set
n := 0 and we are done. Otherwise, let j0 := 0 and let i1 ∈ dom(ρ) be the minimal position
such that sE ρ(i1) but s 6E ρ(i1 + 1). Since ρ(i1 + 1) 6< s, the stack at ρ(i1 + 1) must be
of the form s′ : pop1(w) for some s′ such that sE s′. This requires that the stack at ρ(i1)
is s′ : w and the operation at i1 is pop1 or collapse of level 1. By assumption on ρ, there
is some i1 + 1 < j1 ≤ length(ρ) such that ρ↾[i1+1,j1] is a return. Thus, the stack at ρ(j1)

is s′ whence sE ρ(j1). Thus, we can apply the induction hypothesis to ρ↾[j1,length(ρ)] which
settles the claim.

The previous lemma allows to classify returns as follows.

Corollary 4.25. Let ρ be a run starting in some stack s with topmost word w = top2(s). ρ
is a return from s to pop2(s) that does not pass pop1(s) if and only if ρ ∈ Runs(s,pop2(s))

TREE-AUTOMATICITY OF 2-CPG 25

and there is a uniquely defined sequence

0 := j0 ≤ i1 < j1 ≤ i2 < j2 ≤ · · · ≤ in < jn ≤ in+1 := length(ρ)− 1

with the following properties.

(1) For 1 ≤ k ≤ n+ 1, sE ρ↾[jk−1,ik]
.

(2) For each 1 ≤ k ≤ n, there is a stack sk with top2(sk) = pop1(w) such that ρ↾[ik+1,jk]
is

a return from sk to pop2(sk).
(3) For all 1 ≤ k ≤ n, top2(ρ(ik)) = w and the operation at ik in ρ is a pop1 or a collapse

of level 1.
(4) Either w is a proper prefix of top2(ρ(in+1)) and the operation at in+1 is a collapse of

level 2 or w is a prefix of top2(ρ(in+1)) and the operation at in+1 is a pop2.

Proof. First assume that ρ is such a return. Due to Lemma 4.23, we can apply Lemma 4.24
to ρ↾[0,length(ρ)−1]. This gives immediately the first three items. The last item is a direct
consequence of the definition of a return.

Now assume that ρ is a run from s to pop2(s) that satisfies conditions (1)-(4). Heading
for a contradiction assume that ρ visits pop1(s). Due to (1) this happens at some position
ik + 1 ≤ j ≤ jk − 1. Due to (2) we conclude that the width of the stack at ρ(jk) is smaller
than the width at j. But this contradicts condition 1. because sE ρ(jk).

For similar reasons ρ does not visit a substack of pop2(s) before the final configuration.
Thus, condition (4) implies that ρ is a return.

Corollary 4.26. Let ρ be a run starting in some stack s with topmost word w = top2(s).
ρ is a return from s to pop2(s) that passes pop1(s) if and only if ρ ∈ Runs(s,pop2(s)) and
there is a uniquely defined sequence

0 := j0 ≤ i1 < j1 ≤ i2 < j2 ≤ · · · ≤ in < jn = length(ρ)

with the following properties.

(1) For 1 ≤ k ≤ n, sE ρ↾[jk−1,ik].

(2) For each 1 ≤ k ≤ n, there is a stack sk with top2(sk) = pop1(w) such that ρ↾[ik+1,jk] is

a return from sk to pop2(sk).
(3) For all 1 ≤ k ≤ n, top2(ρ(ik)) = w and the operation at ik in ρ is a pop1 or a collapse

of level 1.

Proof. First assume that ρ is such a return. Let 0 < k < length(ρ) be the first occurrence of
pop1(s) in ρ. Application of Lemma 4.24 to ρ↾[0,k−1] yields a decomposition into s-prefixed

parts and returns (ending with an s-prefixed part). Finally, due to Lemma 4.13 ρ↾[k,length(ρ)]
is also a return.

Now assume that ρ is a run from s to pop2(s) that satisfies conditions (1)-(3). As in
the previous corollary, we conclude that ρ does not visit substacks of pop2(s) before the
final configuration. Due to condition (2), ρ(in+1) = pop1(s) and ρ↾[in+1,length(ρ)] is a return
whence ρ is also a return.

In the following corollary, we assume that Rt(ε) = ∅.

Corollary 4.27. For each stack s, Rt(s) is determined by Rt(pop1(s)),Sym(s) and CLvl(s).

Proof. Let w and w′ be words such that Sym(w) = Sym(w′), CLvl(w) = CLvl(w′) and
Rt(pop1(w)) = Rt(pop1(w

′)). Fix a return ρ starting in (q1, s) for s := w↓0 : w↓0 and

26 A. KARTZOW

ending in (q2, w↓0). We have to prove that there is a return ρ′ from (q1, s
′) to (q2, w

′↓0) for
s′ := w′↓0 : w

′↓0.
The proof is by induction on |w|. Assume that ρ does not visit pop1(s) and let

0 := j0 ≤ i1 < j1 ≤ i2 < j2 ≤ · · · ≤ in < jn ≤ in+1 := length(ρ)− 1

be the sequence according to Corollary 4.25. If ρ visits pop1(s), use the sequence ac-
cording to Corollary 4.26 and proceed analogously. For all k ≤ n + 1, sE ρ↾[jk−1,ik]

. Set

ρk := ρ↾[jk−1,ik]
[s/s′] (cf. Lemma 2.15). This settles the claim if n = 0.

For the case n > 0, note that ρ↾[ik+1,jk]
is a return starting at some stack with topmost

word pop1(w). Thus, Rt(pop1(w)) = Rt(pop1(w
′)) 6= ∅ whence w and w′ are words of length

at least 2. Let δk be the transition connecting ρ(ik) with ρ(ik +1). Note that δk is either a
pop1 transition or a collapse transition and CLvl(ρ(ik)) = 1. Note that top2(ρ(ik)) = w↓0
whence top2(ρk(length(ρk))[s/s

′] = w′↓0. Hence, δk is applicable to the last configuration
of ρk and leads to a configuration ck with topmost word pop1(w

′↓0).
Recall that ρ↾[ik+1,jk] is a return starting at some stack with topmost word pop1(w↓0).

Since Rt(pop1(w)) = Rt(pop1(w
′)), Lemma 4.22 provides a return ρ′k from ck to ρk+1(0).

Finally, let γ be the transition connecting ρ(in+1) with ρ(in+1 + 1) = ρ(length(ρ)).
γ connects the last configuration of ρn+1 with (q2, w

′↓0) = (q2,pop2(s
′)): either γ is a

pop2 transition and |ρ(in+1)| = 2 = |ρn+1(length(ρn+1))| or γ is a collapse transition and
top1(ρ(in+1)) = (σ, 2, 1) = top1(ρ(in+1))[s/s

′] = top1(ρn+1(length(ρn+1))). Thus,

ρ′ := ρ1 ◦ δ1 ◦ ρ
′
1 ◦ ρ2 ◦ · · · ◦ ρn ◦ δn ◦ ρ′n ◦ ρn+1 ◦ γ

is a return from (q1, s
′) to (q2,pop2(s

′)).

Proposition 4.20, which states that Rt(w) can be computed by a finite automaton, is a
direct corollary of the previous lemma: Rt(w) is a subset of Q×Q. An automaton in state
Rt(pop1(w)) can change to state Rt(w) on input Sym(w) and CLvl(w).

4.6. Computing (1-) Loops. In analogy to the results of the previous section, we now
investigate the existence of loops. We follow exactly the same ideas except for the fact that
a loop of some stack s depends on the loops and returns of pop1(s). At the end of this
section, we provide a similar result for 1-loops.

Definition 4.28. Set Lp(w) := {(q, q′) : there is a loop from (q, w↓0) to (q′, w↓0)}. Simi-
larly, let hLp(w) and ℓLp(w) be the analogous sets for high loops and low loops, respectively.
Set 1Lp(w) := {(q, q′) : there is a stack s and a 1-loop from (q, w↓0) to (q′, s : w↓0)}. We
also set Lp(s) := Lp(top2(s)) and analogous for hLp, ℓLp and 1Lp.

Extending the result of the previous section, our main goal is the following automaticity
result for Lp and 1Lp.

Proposition 4.29. There is a finite automaton A with 2|Q×Q| · 2|Q×Q| · |Σ|2 · 2 many states
that computes Rt(w), Lp(w), hLp(w), ℓLp(w), 1Lp(w), Sym(w) and CLvl(w) on input w↓0
(where w is a word occurring as topmost word of some stack s, i.e., for w = top2(s)).

The reader who is not interested in the proof details, can safely skip the rest of this
section and continue with Section 5. In the following, we mainly use the same arguments as
in the return case, but we have to consider loops of the stack pop1(s) because those occur
as subruns of low loops of s. We omit proofs whenever they are analogous to the return
case.

TREE-AUTOMATICITY OF 2-CPG 27

Lemma 4.30. Let s be some stack. There is a loop from (q, s) to (q′, s) if and only if
(q1, q2) ∈ Lp(top2(s)). The analogous statement holds for hLp, ℓLp, and 1Lp.

The next step towards the proof of our main proposition is a characterisation of Lp(w)
in terms of Lp(pop1(w)) and Rt(pop1(w)) analogously to the result of Corollary 4.25 for
returns. We do this in the following three lemmas. First, we present a unique decomposition
of loops into high and low loops. Afterwards, we characterise low loops and high loops.

Lemma 4.31. Let λ be a loop from (q, s) to (q′, s). λ is either a high loop or it has a unique
decomposition as λ = λ0 ◦ λ1 ◦ λ2 where λ0 and λ2 are high loops and λ1 is a low loop.

Proof. If λ is not a high loop, let i ∈ dom(λ) be the minimal position just before the first
occurrence of pop1(s) and j ∈ dom(λ) be the position directly after the last occurrence of
pop1(s). By definition, λ↾[0,i] and λ↾[j,length(λ)] are high loops and λ↾[i,j] is a low loop.

Corollary 4.32. The set Lp(s) can be computed from the sets hLp(s) and ℓLp(s) via
Lp(s) := hLp(s) ∪ {(q, q′) : ∃q1, q2(q, q1) ∈ hLp(s), (q1, q2) ∈ ℓLp(s), and (q2, q

′) ∈ hLp(s)}.

In the following, we first explain how low loops depend on the loops of smaller stacks,
afterwards we explain how high loops depend on returns of smaller stacks.

Lemma 4.33. Let λ be a low loop starting and ending in stack s. Then λ↾[1,length(λ)−1] is

a loop starting and ending in pop1(s). The operation at 0 is a pop1 or a collapse of level
1. The operation at length(λ)− 1 is a pushσ where top1(s) = σ ∈ Σ.

Proof. Note that each low loop λ satisfies λ(1) = pop1(s) = λ(length(λ) − 1). Since
pop2(pop1(s)) = pop2(s), it follows directly that the run in between satisfies the defini-
tion of a loop.

Corollary 4.34. ℓLp(s) depends on Sym(s),CLvl(s),Sym(pop1(s)) and Lp(pop1(s)).

Note that Sym(s) and CLvl(s) determine whether the first transition of a low loop can
be applied to the stack and that Sym(pop1(s)) determines whether the last transition of a
low loop can be applied.

In analogy to the return case, we provide a decomposition of high loops which shows
that hLp(s) is determined by the returns of pop1(s) and by the topmost symbol and link
level of s.

Lemma 4.35 (cf. Corollary 4.25). Let λ be some run starting in some stack s with topmost
word w = top2(s). λ is a high loop from s to s if and only if λ ∈ Runs(s, s) and there is a
sequence 0 =: j0 ≤ i1 < j1 ≤ i2 < j2 ≤ · · · ≤ in < jn ≤ in+1 := length(λ) such that

(1) for 1 ≤ k ≤ n+ 1, sEλ↾[jk−1,ik]
and

(2) for each 1 ≤ k ≤ n, there is a stack sk with top2(sk) = pop1(w) such that λ↾[ik+1,jk]
is

a return of sk.

Corollary 4.36 (cf. Corollary 4.27). Rt(pop1(s)), Sym(s), and CLvl(s) determine hLp(s).

We conclude the proof of Proposition 4.29 by showing that 1Lp(s) is determined by
Rt(s), Sym(s) and CLvl(s).

Lemma 4.37. Let ρ be some run. ρ is a 1-loop from some stack s to some stack s′

with top2(s) = top2(s
′) if and only if ρ is a run from some stack s to some stack s′ with

top2(s) = top2(s
′) and ρ decomposes as

ρ = λ0 ◦ ρ1 ◦ λ1 ◦ ρ2 ◦ · · · ◦ ρn ◦ λn

28 A. KARTZOW

where sEλi and each ρi is a return of a stack si with top2(si) = top2(s).

Proof. First assume that ρ is a 1-loop. If sE ρ, set n = 0. Otherwise, let j be minimal
such that s 6E ρ(j + 1). Set λ0 := ρ↾[0,j]. Note that λ0 is s prefixed. Since ρ does not visit

substacks of pop2(s), top2(ρ(j+1)) = pop1(top2(s)). This implies that top2(ρ(j)) = top2(s).
By definition of a 1-loop, there is some k > j + 1 such that ρ↾[j+1,k] is a return. It follows

directly that ρ1 := ρ↾[j,k] is a return of the stack s1 := ρ(j) and top2(s1) = top2(s).
The first direction of the lemma follows by iterating this construction.
Now assume that ρ is a run from s to s′ with top2(s

′) = top2(s) that decomposes as
specified above. We show that ρ is a 1-loop. ρ cannot visit a stack t with |t| < |s| because
then it especially visits such a stack at λj(0) for some 1 ≤ j ≤ n which contradicts sEλj(0).
Moreover, if it visits some stack t with top2(t) = top2(pop1(s)) then t occurs within some
return ρj before the final configuration of ρj . Assume that this position is k, i.e., the stack
at ρj(k) is t. Since ρj is a return, there is a minimal k′ such that the stack at ρj(k

′) is
narrower than t. Since |s| ≤ |ρj(k

′)| < |t|, we conclude by Lemma 4.14 that ρ↾[k,k′] is a
return.

Corollary 4.38. 1Lp(s) is determined by Rt(s), Sym(s) and CLvl(s).

Proof. By definition, it suffices to consider stacks of width 1. Thus, let w and w′ be words
with Sym(w) = Sym(w′), CLvl(w) = CLvl(w′) and Rt(w) = Rt(w′). Set s = [w] and
s′ = [w′]. If sE ρ, then s′E ρ[s/s′]. Moreover if ρ′ is a return from (q, ŝ : w) to (q′, ŝ) for
some ŝ ∈ Stck(Σ) then there is a return from (q, ŝ′ : w′) to (q′, ŝ′) for all ŝ′ ∈ Stck(Σ).
Using the decomposition from the previous lemma, we can apply stack replacement and the
existence of similar returns in order to show that 1Lp(w) = 1Lp(w′).

Proposition 4.29 now follows from Corollaries 4.36, 4.34, 4.32, 4.38 and from Proposition
4.20: we can store Rt(pop1(w)), Lp(pop1(w)), Sym(pop1(w)), Sym(w) and CLvl(w) in
2 · (2|Q×Q|)2 · |Σ|2 many states and update the information during a transition reading
the next letter of some word. Of course, Sym(pop1(w)) and Sym(w) are only defined
for words of length at least 2. Note that we are only interested in words occurring as
topmost words of stacks. In such words, the combination Sym(w) = ⊥ and Sym(pop1(w)) ∈
Σ does never occur because ⊥ is the bottom of stack symbol. Thus, some states from
2Q×Q × 2Q×Q × Σ × {⊥} × {1, 2} can be used to deal with the cases of words of length at
most 1 separately.

5. Regularity of the Reachability Predicate via Enc

Using the decomposition and automaticity results from the previous Section, we show that
for each CPS S the encoding Enc translates the relation Reach (on all possible configura-
tions, not only those occurring in the graph) into an automatic relation. Using the closure
of CPS under products with finite automata, we then extend this result to all reachability
relations ReachL where L is some regular language over the transition labels.

5.1. Connection between Milestones and Enc. We want to show the regularity of the
regular reachability relations on collapsible pushdown graphs. As a preparation, we develop
two correspondences between the nodes of the encoding of some stack s and the (generalised)
milestones MS(s) (GMS(s), respectively). Taking a node d ∈ Enc(s) to the stack encoded
by Enc(s)↾{e:e≤lexd}

is an order isomorphism between (Enc(s),≤lex) and (MS(s),≪). We

TREE-AUTOMATICITY OF 2-CPG 29

denote the image of a node d under this isomorphism by LStck(d, s). After the discussion
of this isomorphism we develop another correspondence between nodes of Enc(s) and the
generalised milestones of s. For each d ∈ Enc(s), we define the induced general milestone
IgM(d, s) ∈ GMS(s). This is the ≪-maximal m ∈ GMS(s) such that LStck(d, s)Em.
Apparently, if LStck(d, s)E s, then the induced general milestone is s. This occurs if and
only if d is in the rightmost path of Enc(s). In all other cases IgM(d, s) is the ≪-maximal
generalised milestone of s whose topmost word is a copy of the topmost word of LStck(d, s).
In this case top2(LStck(d, s)) is not a prefix of top2(s) and IgM(d, s) is not a milestone.

LStck and IgM are useful concepts for the analysis of runs from some milestone m of s
to s due to the fact that any generalised milestone of s occurs in the image of LStck or in
the image of IgM. Furthermore, the generalised milestones associated to some node d are
closely connected to those associated to its successors. Assume that d, d0, d1 ∈ Enc(s). Then
LStck(d0, s) is the ≪-successor of LStck(d, s), LStck(d1, s) is the ≪-successor of IgM(d0, s)
and IgM(d, s) = IgM(d1, s). If m ≪ LStck(d, s), Corollary 4.10 implies that a run from m
to s which does not visit substacks of m visits LStck(d, s),LStck(d0, s), IgM(d0, s), etc. It
also implies that ≪-successors are connected by one operation followed by some loop.

We will later show that the combination of these observations is the key to the regularity
of the reachability relations. A finite automaton may guess at each node d the last states
in which LStck(d, s) and IgM(d, s) are visited by some run from some milestone m to s.
Since the direct ≪-successors of these stacks are encoded in the successor or predecessor
of d, the automaton can check that these guesses are locally consistent, i.e., that there is a
single transitions followed by a loop connecting (q1, s1) to (q2, s2) where s1 and s2 are the
generalised milestones represented by d and its successor (or predecessor). If the guess of
the automaton is locally consistent at all nodes, it witnesses the existence of a run from m
to s.

Definition 5.1. Let T ∈ T
Enc be a tree and d ∈ T \ {ε}. Then the left and down-

ward closed tree of d is LT (d, T) := T ↾D where D := {d′ ∈ T : d′ ≤lex d}. We denote by
LStck(d, T) := π2(Dec(LT (d, T))) the left stack induced by d. π2 denotes the projection to
the stack of Dec(LT (d, T)). If T is clear from the context, we omit it.

Remark 5.2. We exclude the case d = ε from the definition because the root encodes the
state of the configuration and not a part of the stack. In order to simplify notation, we use
the following conventions. Let c = (q, s) be a configuration. For arbitrary d ∈ {0, 1}∗, we
set LStck(d, s) := LStck(0d, c) := LStck(0d,Enc(c)).

Recall that w := top2(LStck(d, s))↓0 is top2(LStck(d, s)) where all level 2 links are set
to 0. Due to the definition of the encoding, for every d ∈ Enc(s), w is determined by the
path from the root to d: interpreting ε as empty word, the word along this path contains
the pairs of stack symbols and collapse levels of the letters of top2(LStck(d, s)). Since all
level 2 links in w are 0, w is determined by this path. Thus, Proposition 4.29 implies that
there is an automaton that calculates at each position d ∈ Enc(q, s) the existence of loops
of LStck(d,Enc(q, s)) with given initial and final state.

LStck(d,Enc(q, s)) is a substack of s for all d ∈ Enc(q, s). This observation follows from
Remark 3.4 combined with the fact that the left stack is induced by a lexicographically
downward closed subset.

Lemma 5.3. Let s ∈ Stck(Σ). For each d ∈ Enc(s) we have LStck(d, s) ∈ MS(s). Further-
more, for each s′ ∈ MS(s) there is some d ∈ Enc(s) such that s′ = LStck(d, s).

30 A. KARTZOW

Proof. For the first claim, let d ∈ Enc(s). We know that sd := LStck(d, s) is a substack of
s. Recall that the path from the root to sd encodes top2(sd). Furthermore, by definition
of Enc, d corresponds to some maximal block b occurring in s in the following sense: there
are 2-words s1, s2 and a word w such that s = s1 : (w \ b) : s2 and such that the subtree
rooted at d encodes b. Moreover, d encodes the first letter of b, i.e., if b is a τ -block, then
the path from the root to d encodes wτ .

Note that by maximality of b, the greatest common prefix of the last word of s1 and the
first word of w \ b is a prefix of wτ . Since the elements that are lexicographically smaller
than d encode the blocks to the left of b, one sees that sd = s1 : wτ . Setting k := |sd|, we
conclude that sd is a substack of s such that the greatest common prefix of the (k − 1)-st
and the k-th word of s is a prefix of top2(sd). Recall that this matches exactly the definition
of a milestone of s. Thus, sd is a milestone of s and we completed the proof of the first
claim.

Now we turn to the second claim. The fact that every milestone s′ ∈ MS(s) is indeed
represented by some node of Enc(s) can be seen by induction on the block structure of
s′. Assume that s′ ∈ MS(s) and that s′ decomposes as s′ = b0 : b1 : · · · : bm−1 : b′m into
maximal blocks. We claim that s then decomposes as s = b0 : b1 : · · · : bm−1 : bm : · · · : bn
into maximal blocks. In order to verify this claim, we have to prove that bm−1 cannot be
the initial segment of a larger block bm−1 : bm in s. Note that if b′m only contains one letter,
then by definition of a milestone the last word of bm−1 and the first word occurring in s
after bm−1, which is the first word of bm, can only have a common prefix of length at most
1. Hence, their composition does not form a block. Otherwise, the first word of b′m contains
two letters which do not coincide with the first two letters of the words in bm−1. Since this
word is by definition a prefix of the first word in bm, we can conclude again that bm−1 : bm
does not form a block.

Note that all words in the blocks bi for 1 ≤ i ≤ n and in the block b′m share the same
first letter which is encoded at the position ε in Enc(s) and in Enc(s′). By the definition of
Enc(s) the blockline induced by bi is encoded in the subtree rooted at 1i0 in Enc(s). For
i < m the same holds in Enc(s′). We set d := 1m. Note that Enc(s′) and Enc(s) coincide
on all elements that are lexicographically smaller than d (because these elements encode
the blocks b1 : b2 : . . . bm−1.

Now, we distinguish the following cases.

(1) Assume that b′m = [τ] for τ ∈ Σ∪ (Σ×{2}×N). Then the block b′m consists of only
one letter. In this case d is the lexicographically largest element of Enc(s′) whence
s′ = LStck(d,Enc(s′)) = LStck(d,Enc(s)).

(2) Otherwise, there is a τ ∈ Σ ∪ (Σ× {2} × N) such that

bm = τ \ (c0 : c1 : · · · : cm′−1 : cm′ : · · · : cn′) and

b′m = τ \ (c0 : c1 : · · · : cm′−1 : c
′
m′)

for some m′ ≤ n′ such that c0 : c1 : · · · : cn′ are the maximal blocks of the blockline
induced by bm and c0 : c1 : . . . cm′−1 : c

′
m′ are the maximal blocks of the blockline

induced by b′m. Now, c1 : c2 : · · · : cm′−1 are encoded in the subtrees rooted at d01i0
for 0 ≤ i ≤ m′ − 1 in Enc(s) as well as in Enc(s′). cm′+1 : cm′+2 : · · · : cn′

is encoded in the subtree rooted at d01m
′+1 in Enc(s) and these elements are all

lexicographically larger than d01m
′
0. Hence, we can set d′ := d01m

′
and repeat this

case distinction on d′, c′m′ and cm′ instead of d, b′m and bm.

TREE-AUTOMATICITY OF 2-CPG 31

Since s′ is finite, by repeated application of the case distinction, we will eventually end up
in the first case where we find a d ∈ Enc(s) such that s′ = LStck(d,Enc(s)).

The next lemma states the tight connection between milestones of a stack (with substack
relation) and elements in the encoding of this stack (with lexicographic order).

Lemma 5.4. LStck(·, s) is an isomorphism between (dom(Enc(s)),≤lex) and (MS(s),≪).

Proof. If the successor of d in lexicographic order is d0, then the left stack of the latter
extends the former by just one letter. Otherwise, the left and downward closed tree of the
successor of d contains more elements ending in 1, whence it encodes a stack of larger width.
Since each left and downward closed tree induces a milestone, it follows that g is an order
isomorphism.

Recall that by Corollary 4.10, each run to a configuration (q, s) visits the milestones of
s in the order given by the substack relation. With the previous lemma, this translates into
the fact that the left stacks induced by the elements of Enc(q, s) are visited by the run in
lexicographical order of the elements of Enc(q, s).

Beside the tight correspondence of milestones and nodes of the encoding, there is an-
other correspondence between generalised milestones and nodes. Using both correspon-
dences, each generalised milestone is represented by a node of the encoding. The following
definition describes the second correspondence. Recall that ≤ denotes the prefix relation
on trees.

Definition 5.5. Let T ∈ T
Enc be the encoding of a configuration. Let d ∈ T \ {ε}. Set

D := LT (d, T) ∪ {d′ ∈ T : d ≤ d′}. Let exLStck(d, T) := π2(Dec(T ↾D)) where π2(c) is the
projection to the stack of the configuration c.

By case distinction on the rightmost branch of T , we define the generalised milestone
induced by d as follows.

(1) If d is in the rightmost branch of T , then IgM(d, T) := exLStck(d, T) = π2(Dec(T)),
(2) otherwise, set IgM(d, T) := exLStck(d, T) : top2(LStck(d, T)).

Remark 5.6. As the name indicates, IgM(d, T) is a always a generalised milestone of
Dec(T). For some d in the rightmost branch of T this holds trivially. For all d ∈ T that are
not in the rightmost branch, note the following:

• If d1 ∈ T , then IgM(d, T) = IgM(d1, T).
• If d is a leaf, then IgM(d, T) = clone2(LStck(d, T)). Since LStck(d, T) is the maximal
milestone of Dec(T) of width |LStck(d, T)|, IgM(d, T) is a generalised milestone of Dec(T)
(since d is not in the rightmost branch, |Dec(T)| > |LStck(d, T)|).

• If d, e ∈ T such that e = d0 and d1 /∈ T , then IgM(d, T) = pop1(IgM(e, T)).
• If d, e ∈ T such that e = d0 and d1 ∈ T , then LStck(d1, T) = pop1(IgM(e, T)).

By induction from the leaves to the inner nodes one concludes that IgM(d, T) is a generalised
milestone of Dec(T) for each d ∈ T . One also shows that, for each generalised milestone
m of Dec(T) that is not a milestone, there is some d such that m = IgM(d, T) as follows.
For s = w1 : w2 : · · · : wn, let wik be the k-th word occurring in s such that wik is not
a prefix of wik+1. Then w1 : w2 : · · · : wik−1 : wik = LStck(d, T) for the k-th leaf d and
IgM(d, T) = w1 : w2 : · · · : wik−1 : wik : wik is the k-th generalised milestone of the form
w1 : w2 : · · · : wj−1 : wj : wj for some j ≤ n which is not a milestone. Now one can show the
following. If IgM(d, T) is not a milestone (but a generalised one) and pop1(IgM(d, T)) is
not a milestone, then pop1(IgM(d, T)) is a generalised milestone, there is a node e such that

32 A. KARTZOW

d = e01k for some k ∈ N, and pop1(IgM(d, T)) = IgM(e, T). Apparently, every generalised
milestone that is not a milestone is of the form pop1

k(w1 : w2 : · · · : wi−1 : wi : wi) for some
i ≤ n. Thus, this proves the claim.

5.2. Tree-Automaticity of Reachability. In this section we show that the reachability
relation Reach is automatic via Enc. In the next section we extend this result to the regular
reachability predicates. Recall that due to Remark 4.3, a proof of the regularity of the
relations R⇐, R⇓, R⇑ and R⇒ implies the regularity of Reach.

5.2.1. Regularity of the Relation R⇐. Recall that a pair of configurations (c1, c2) is in R⇐

if and only if they are connected by a run ρ that decomposes as explained in Lemma
4.17. In the Appendix B we construct an automaton AR⇐ recognising R⇐ based on the
following idea. AR⇐ guesses the decomposition according to Lemma 4.17 and identifies
a node representing the stack reached after each part of the decomposition. AR⇐ labels
this node by the initial and final state of the segment of the decomposition starting at the
corresponding stack and checks whether the labelling of all the representatives fit together.
The fact that AR⇐ can check the correctness of its guess relies heavily on the computability
of the returns and 1-loops of the stack LStck(d,Enc(q, s)) along the path from the root of
Enc(q, s) to d. We next explain how AR⇐ processes two configurations c1 = (q1, s1) and
c2 = (q2, s2). Let us assume that s2 = pop2

k(s1) and let ρ be a run from c1 to c2 witnessing
(c1, c2) ∈ R⇐. Let us first assume that ρ is a sequence of returns ρ = ρ1 ◦ · · · ◦ ρk. Due
to the special form of s2, Enc(s1) and Enc(s2) agree on the domain of Enc(s2). Moreover
Enc(s1) extends Enc(s2) by k paths to nodes d1, . . . , dk such that each di does not have a
0-successor. Moreover, all di are lexicographically larger than all nodes in Enc(s2). There
is a close correspondence between the ρi and the di: LStck(di,Enc(s1)) = pop2

k−i(s1) and
ρi starts in LStck(dk+1−i,Enc(s1)) and ends in LStck(dk−i,Enc(s1)) (where we set d0 to
be the rightmost leaf of Enc(s2)). AR⇐ guesses the existence of the run ρ as follows: at
first, it checks that Enc(s1) and Enc(s2) agree on the domain of Enc(s2). Secondly, along
the common prefix it propagates the initial and final state of ρ, i.e., the states q1 an q2
and it computes at each node d the possible returns at the corresponding milestone. Now
assume that at some node e there starts a left and a right branch such that the left branch
is a prefix of d1, . . . , di and the right branch is a prefix of di+1, . . . , dk. At this position
the automaton guesses that LStck(di+1,Enc(c1)) and LStck(di,Enc(c1)) are connected via
a return and guesses the initial and final state qi, qe. Now the automaton propagates along
the left branch starting at e the state information qe and q2 (trying to find a run from
(qe,LStck(di,Enc(c1)) to c2) and along the right branch the information q1, (R, qi, qe) (trying
to find a run from c1 to c′ = (qi,LStck(di+1,Enc(c1))) such that there is a return starting
in c′ and ending in state qe). Doing the same at each splitting points of the prefixes of the
d1, . . . , dk, the automaton finally reaches each node di with a tuple (R, qi, q

′
i) of states such

that it has to check whether there is a return starting in (qi,LStck(di,Enc(c1))) and ending
in state q′i. But since the returns of LStck(di,Enc(c1)) are computable with an automaton
reading the path to di, this can be easily checked with a tree-automaton.

The case that ρ decomposes as a sequence of returns is the easiest one because all parts
of the decomposition then start and end in stacks that are milestones of c1. Now assume
that in the decomposition of ρ according to Lemma 4.17 1-loops followed by pop1 or collapse
operations occur. For simplicity of the explanation assume that ρ = λ1 ◦ λ2 ◦ λ3 such that

TREE-AUTOMATICITY OF 2-CPG 33

λ1 and λ3 decompose as sequences of returns and λ2 = ρ1 ◦ · · · ◦ ρn decomposes such that
ρi is a sequence of 1-loops followed by pop1 and collapse where only ρn ends in a collapse
of level 2. Using the notation from the previous case, we find di and dj (i < j) among
d1, . . . , dk such that λ2 starts in stack LStck(dj ,Enc(c1)) and ends in LStck(di,Enc(c1)).
We would like to treat this case similar to the return case, but note that the final stacks
of ρ1, . . . , ρn−1 do not necessarily appear as milestones of s1: in general, these stack can
be wider than s1! The key observation that allows to represent these stack by certain
milestones is the following: let t0 := LStck(dj ,Enc(c1)) be the stack in which ρ1 starts.
By definition of a 1-loop followed by a pop1 operation, the final stack of ρ1 is some stack
t1 such that top2(t1) = top2(pop1(t0)). In particular, each level 2 collapse link in top2(t1)
points to the same substack as the corresponding element of top2(t0). If e1 is the unique
ancestor of dj such that dj = e101

x for some x ∈ N, one sees that t1 and LStck(e1,Enc(c1))
agree on their topmost words including the targets of their level 2 collapse links. Note
that λ2 (modulo widening the stack during 1-loops) basically performs pop1/collapse of
level 1 on top2(t0) and finally a collapse of level 2 on a prefix of top2(t0). Thus, with
respect to the stack operations induced by the run ρ2 ◦ · · · ◦ ρn, m1 := LStck(e1,Enc(c1))
and t1 agree and e1 can serve as representative of t1. Iterating this argument, we find
nodes e2, . . . , en−1 such that mx := LStck(ex,Enc(c1)) agrees with the final stack tx of
ρx on the topmost word including the targets of all level 2 collapse links for all x < n.
Moreover, collapse(tn−1) = collapse(mn−1) = LStck(di,Enc(c1)). The automaton AR⇐

uses this observation as follows. Processing the encodings of c1 and c2 from the root to the
leaves it arrives at the greatest common prefix f of di and dj with a guess (qi, qe) of the
initial and final state of the subrun of ρ which decomposes as λ′

1 ◦λ2 ◦λ
′
3 where λ2 is defined

as before and λ′
1 is a suffix of λ1 and λ′

3 a prefix of λ3. Now the automaton guesses the
initial and final state (q1, q2) of the run λ2 and propagates along the left branch the guess
that λ′

3 is a run from q2 to qe and along the right branch a guess of the form (C, q1, q2)
meaning that the last part of λ′

1 ◦ λ2 is a 1-loop followed by collapse (hence the “C”) from
state q1 to state q2. It then nondeterministically guesses the path to dj and updates a guess
(X, q1, q2) with X ∈ {C,P} at node ex as follows. From ex (x ∈ N) on it propagates a guess
(P, q1, q

′
2) towards dj meaning that the part of λ2 connecting the corresponding nodes of

ex−1 and ex is a 1-loop followed by a pop1/collapse of level 1 (“P” for pop) from state q1 to
state q′2. It verifies the compatibility of the guess (X, q1, q2) at ex and the guess (P, q1, q

′
2)

by checking that for any stack with the same topmost word as mx = LStck(ex,Enc(c1))
there is a 1-loop followed by an operation induced by X from state q′2 to state q1 (induced
operation means collapse of level 2 if X = C and pop1 or collapse of level 1 if X = P). This
way the automaton reaches dj with a guess (X, q1, q2) and needs to verify that there is a
1-loop followed by an operation induced by X starting in (q1, t0) and ending in q2. Since an
automaton can keep track of the possible 1-loops at each node of the tree this is possible.
The automaton can guess states and successfully verify its assumptions if and only if there
is a run from LStck(dj ,Enc(c1)) to LStck(di,Enc(c1)) with initial and final state as guessed
at the node f that decomposes into 1-loops followed by one pop1 or collapse operation each.
Combining this idea with the verification of guesses on parts of the run ρ that are returns,
the tree-automaton accepts the encodings of two configurations if and only if this pair of
configurations is in R⇐.

In Appendix B we show that the described automaton works correctly and can be
implemented with exponentially many states in the number of states of the collapsible
pushdown system. Thus, we obtain the following result.

34 A. KARTZOW

Lemma 5.7. There are two polynomials p1, p2 such that the following holds. Let S be a
level 2 collapsible pushdown system with stack alphabet Σ and state space Q. There is an
automaton with p1(|Σ|) · exp(p2(|Q|)) many states that accepts the convolution of two trees
if and only if this convolution is of the form Enc(c1)⊗Enc(c2) for c1, c2 configurations with
(c1, c2) ∈ R⇐.

5.2.2. Regularity of the Relation R⇓. Recall that the relation R⇓ from Definition 4.2 con-
tains pairs (c1, c2) if c2 = pop1

m(c1) and there is some run from c1 to c2 not visiting any
substack of c2 before its final configuration. A simple induction on the blocks in c1 and c2
yields the following characterisation of Enc(c1)⊗ Enc(c2). For d ∈ {0, 1}∗, |d|0 denotes the
number of 0’s in d.

Lemma 5.8. Let s1, s2 be stacks and d the rightmost leaf of Enc(s2). s2 = pop1
m(s1) for

some m ∈ N if and only if Enc(s1)⊗ Enc(s2) is of one of the following forms.

(1) If d ∈ Enc(s1), then dom(Enc(s1)) = dom(Enc(s2)) ∪ {d0k : k ≤ m} and Enc(s1) and
Enc(s2) agree on dom(Enc(s2)).

(2) If d /∈ Enc(s1), then d ∈ {0, 1}∗1. Let c ∈ {0, 1}∗ be the predecessor of d. There is some
e ∈ {0, 1}∗ such that ce is the rightmost leaf of Enc(s1). Then |e|0 = m,

dom(Enc(s1)) =
(

dom(Enc(s2)) ∪ {x : c ≤ x ≤ e}
)

\ {d}

and Enc(s1) and Enc(s2) agree on dom(Enc(s2)) \ {d}. Moreover, there exists some
f ∈ {0, 1}∗1 such that
• ce = f0k for some k ≤ m and
• dom(Enc(s1)) \ dom(Enc(s2)) = {f ≤ x ≤ ce}.

In Remark 5.2 we pointed out that the path from the root to the rightmost leaf of
Enc(s1) encodes top2(s1). If the first case of the characterisation applies, then the k-th
predecessor xk of the rightmost leaf of Enc(s1) satisfies LStck(xk, s1) = pop1

k(s1) for all
k < m. If the second case applies, for all c ≤ x ≤ e with |x|0 − |c|0 = k ≤ m, the path to x
encodes wk := top2(pop1

m−k(s1)) and top2(LStck(x, s1)) = wk. Thus, the elements on the
path from d (or c, respectively) to the rightmost leaf of Enc(s1) may serve as representatives
of the stacks that a run from s1 to s2 passes.

Recall the decomposition into high loops of witnessing runs for (c1, c2) ∈ R⇓ from
Lemma 4.18. We describe informally the automaton AR⇓ that recognises the relation R⇓.
AR⇓ guesses the path to the rightmost leaf of Enc(c2) and keeps track of hLp(d) at each node
d on this path. Each node d on the path from the rightmost leaf of Enc(c2) to the rightmost
leaf of Enc(c1) is labelled by the state of c1, by Rt(pop1(LStck(d, c1))), by Sym(LStck(d, c1)),
by CLvl(LStck(d, c1)) and by a guess qd ∈ Q of a final state of some run from Enc(c1) to
pop1

m−k(s1) for k appropriate such that top2(LStck(d, c1)) = top2(pop1
m−k(c1)). Recall

that such a state determines the set hLp(LStck(d, c1)). The automaton can verify that the
guesses of the qd are consistent in the following sense. If it has labelled some node d with a
state qd such that there is a run from c1 to (qd,pop1

m−k(s1)), then there is also a run from

c1 to (qc,pop1
m−k−(1−i)(s1)) for c the node such that ci = d. If i = 1, qc = qd and if i = 0

then the run to s′ := pop1
m−k−(1−i)(s1) is extended by a high loop of s′ followed by a pop1

or collapse of level 1. Since the automaton “knows” the possible high loops, the topmost
symbol and the link level of the stack, this check is trivial. Since it also stores the state
of c1, AR⇓ can verify that its guess at the rightmost leaf of Enc(c1) is a state q such that

TREE-AUTOMATICITY OF 2-CPG 35

there is a high loop starting in c1 and ending in state q. We postpone the formal definition
of AR⇓ and the proof of the following lemma to Appendix C.

Lemma 5.9. There are polynomials p1, p2 such that the following holds. Let S be a level 2
collapsible pushdown system with stack alphabet Σ and state space Q. There is an automaton
with p1(|Σ|) ·exp(p2(|Q|)) many states that accepts the convolution of two trees if and only if
this convolution is of the form Enc(c1)⊗Enc(c2) for c1, c2 configurations with (c1, c2) ∈ R⇓.

5.2.3. Regularity of the Relation R⇑. Recall that the relation R⇑ is in some sense the back-
ward version of the relation R⇓. (c1, c2) ∈ R⇓ holds if there is a sequence of high loops, pop1
and collapse of level 1 connecting c1 with c2. Analogously, (c1, c2) ∈ R⇑ holds if there is a
sequence of high loops and pushσ,l operations that generates c2 from c1. Since (c1, c2) ∈ R⇑

implies that c1 = pop1
k(c2) for some k ∈ N, Lemma 5.8 applies analogously. There is just

one further condition: if (c1, c2) ∈ R⇑ and top2(c1) < top2(c2) ⊓ top2(pop2(c2)), then there
is some word w such that top2(c2)⊓top2(pop2(c2)) = top2(c1)w and w only contains links of
level 1 (otherwise, the stack of c2 cannot be generated from the stack of c1 without passing
pop2(c1)).

The automaton AR⇑ recognising the relation R⇑ via Enc does the following. Due to
Lemma 5.8, the path from the rightmost leaf of Enc(c1) to the rightmost leaf of Enc(c2) has
the following form: For each |top2(c1)| ≤ m ≤ |top2(c2)| it contains nodes d, d1, . . . , d1km

with |d|0 = m such that top2(LStck(d,Enc(c2)) is the prefix of top2(c2) of length m. Recall
that AR⇓ tries to label d with a state qe and e = d1km0 with a state q′e such that q′e and qe
are connected by a high loop of LStck(e,Enc(c1)) plus a pop1 or collapse of level 1. Since
AR⇑ works in the other direction, it labels d with a state qi and d1km0 with a state q′i
such that qi and q′i are connected by a high loop of LStck(d,Enc(c2)) followed by a pushσ,l.
Furthermore, it checks that l = 1 as long as the path to d encodes a proper prefix of
top2(c2)⊓ top2(pop2(c2)) which is not a prefix of top2(c1). With these remarks, the formal
construction of AR⇑ from AR⇓ (cf. Appendix C) is left to the reader.

Lemma 5.10. There are two polynomials p1, p2 such that the following holds. Let S be a
level 2 collapsible pushdown system with stack alphabet Σ and state space Q. There is an
automaton with p1(|Σ|) · exp(p2(|Q|)) many states that accepts the convolution of two trees
if and only if this convolution is of the form Enc(c1)⊗Enc(c2) for c1, c2 configurations with
(c1, c2) ∈ R⇑.

5.2.4. Regularity of the Relation R⇒. Given a CPS S = (Q,Σ,Γ,∆S , q0), we define an
automaton AR⇒ that recognises the relation R⇒ in the following sense. Given configurations
c1 = (q1, s1) and c2 = (q2, s2), AR⇒ accepts Enc(c1)⊗Enc(c2) if and only if s1 = pop2

k(s2)
for some k ∈ N and there is a run ρ of S from c1 to c2 witnessing (c1, c2) ∈ R⇒.

We informally explain how AR⇒ processes the encoding Enc(c1)⊗ Enc(c2) of two con-
figurations c1, c2 in order to verify (c1, c2) ∈ R⇒. First of all the automaton guarantees
that s1 = pop2

k(s2) for some k ∈ N (this is the case if and only if Enc(s1) is a subtree of
Enc(s2), the rightmost leaf l of Enc(s1) does not have a 0-successor in Enc(s2) and for each
d ≤lex l, d ∈ Enc(s2) ⇔ d ∈ Enc(s1)).

Assume that c1 = (q1, s1) and c2 = (q2, s2) with s1 = pop2
k(s2). If there is a run from

c1 to c2 its form is described in Corollary 4.10: it is a sequence of loops followed by one oper-
ation each that starts in some generalised milestone of s2 and leads to the next generalised

36 A. KARTZOW

milestone (with respect to ≪). Recall the following: each node in Enc(s2) which is not
contained in Enc(s1) corresponds to a milestone in MS(s2) \MS(s1) via LStck(d,Enc(s2)).
Moreover, each node in the rightmost branch of Enc(s1) or in Enc(s2)\Enc(s1) corresponds
to a generalised milestone in GMS(s2) \ GMS(s1) via IgM. The essence of Remark 5.6 is
that for each generalised milestones represented by a node d the node representing the ≪-
successor of this generalised milestone can be found locally around d. Since we can compute
the possible loops of the stack LStck(d,Enc(c2)) and IgM(d,Enc(c2)) along the path from
the root to d, a tree-automaton may guess the initial and final states of each part of the
decomposition of a run according to Corollary 4.10 and check the local compatibility of each
of the guesses.

The detailed definition of AR⇒ as well as a proof of the following lemma can be found
in appendix D.

Lemma 5.11. There are two polynomials p1, p2 such that the following holds. Let S be a
level 2 collapsible pushdown system with stack alphabet Σ and state space Q. There is an
automaton with p1(|Σ|) · exp(p2(|Q|)) many states that accepts the convolution of two trees
if and only if this convolution is of the form Enc(c1)⊗Enc(c2) for c1, c2 configurations with
(c1, c2) ∈ R⇒.

5.3. Regularity of ReachL. In this part, we use the closure of collapsible pushdown sys-
tems under products with finite automata in order to provide a proof of the automaticity
of all regular reachability predicates (Proposition 3.9): we reduce regular reachability to
reachability in a product of the collapsible pushdown system with the automaton for the
regular language.

Recall that for L ⊆ Γ∗ some (string-) language, ReachL is the binary relation that
contains configurations (c, ĉ) if and only if there is a run ρ from c to ĉ such that the labels
of the transitions used in ρ form a word w ∈ L.

Let L be some regular language and AL an automaton recognising L. We construct the
product S×AL. ReachL on CPG(S) is expressible via the relation Reach on CPG(S×AL).
As a corollary of this result, we obtain the tree-automaticity of ReachL.

Definition 5.12. Let S = (Q,Σ,Γ, qi,∆) be a 2-CPS and let AL = (QL,Γ, i0, F,∆L) be a
finite word-automaton. We define the product of S and AL to be the collapsible pushdown
system

S × AL := (Q×QL,Σ,Γ, (qi, i0), ∆̄) where

∆̄ := {((q, ql), σ, γ, (q
′, q′l), op) : (q, σ, γ, q

′, op) ∈ ∆ and (ql, γ, q
′
l) ∈ ∆L}.

A straightforward induction shows that there is a run of S × AL from ((q, i0), s) to
((q′, qf), s

′) for q, q′ ∈ Q, and qf ∈ F if and only if there is a run of S from (q, s) to (q′, s′)
such that the labels of the run form a word in L. Since Reach is a tree-automatic relation,
we obtain the proof of Proposition 3.9.

Proof of Proposition 3.9. Recall Remark 4.3. It says that there is a positive existential first-
order formula defining Reach in terms of R⇐, R⇓, R⇑ and R⇒. Due to Lemmas 3.7, 5.7,
5.9, 5.10 and 5.11, there are polynomials p and p′ such that there is a (nondeterministic)
tree-automaton A corresponding to Reach on S × AL with p(|Σ|) · exp(p′(|Q| · |P |)) many
states. We obtain that for states q, q′ and stacks s, s′ there is a final state qf ∈ F of AL

TREE-AUTOMATICITY OF 2-CPG 37

such that A accepts (Enc((q, i0), s),Enc((q
′, qf), s

′)) if and only if ((q, s), (q′, s′)) ∈ ReachL
holds in S.

This almost completes the proof. We only have to modify A in such a way that it
guesses qf and treats the configuration (q, s) as if it was ((q, i0), s). This can easily be
done without increasing the number of states of the automaton because the states of the
configurations are encoded in the roots of the trees. We explain in Appendix E the detailed
modification.

6. Conclusion

We have shown that level 2 collapsible pushdown graphs are uniformly tree-automatic.
Thus, their first-order theories are decidable with nonelementary complexity. Moreover,
even first-order extended by regular reachability is decidable because of the automaticity
of the regular reachability relations. Our result is sharp in several directions. First, we
have also shown a nonelementary lower bound for the complexity of the first-order model-
checking problem on collapsible pushdown graphs. Furthermore, Broadbent [5] showed
that the first-order theories of collapsible pushdown graphs are undecidable from level 3 on
(which implies that they are not tree-automatic).

Acknowledgement

The content of this paper and its presentation developed during the last 3 years and many
people contributed to it with valuable comments. I am afraid I cannot remember all people
with whom I had discussions on this topic but I surely have to give thanks to Dietrich
Kuske, who initiated my interest in tree-automaticity. I also thank Martin Otto and Achim
Blumensath. They surely had the greatest influence on me during this time. I also want
to thank the referees of the various versions that appeared of this work, i.e., the referees of
[12], of [11] and of this paper itself, who had very valuable comments on my work. Finally,
I acknowledge funding from the DFG first via the project ’Model Constructions and Model-
Theoretic Games in Special Classes of Structures’ and later via the project ’GELO’.

References

[1] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In Proc. 18th International

Conference on Computer-Aided Verification, volume 4144 of LNCS, pages 329–342. Springer, 2006.
[2] A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
[3] A. Blumensath. On the structure of graphs in the Caucal hierarchy. Theoretical Computer Science,

400:19–45, 2008.
[4] C. H. Broadbent, A. Carayol, C.-H. Luke Ong, and O. Serre. Recursion schemes and logical reflection. In

LICS, Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, pages 120–129,
2010.

[5] Christopher H. Broadbent. The limits of decidability for first-order logic on cpda graphs. In Christoph
Dürr and Thomas Wilke, editors, STACS, volume 14 of LIPIcs, pages 589–600. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

[6] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order
pushdown automata. In Proceedings of the 23rd Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2003, volume 2914 of LNCS, pages 112–123. Springer, 2003.
[7] D. Caucal. On infinite terms having a decidable monadic theory. In MFCS 02, pages 165–176, 2002.

38 A. KARTZOW

[8] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 2007.
release October, 12th 2007.

[9] Kevin J. Compton and C. Ward Henson. A uniform method for proving lower bounds on the computa-
tional complexity of logical theories. Ann. Pure Appl. Logic, 48(1):1–79, 1990.

[10] M. Hague, A. S. Murawski, C-H. L. Ong, and O. Serre. Collapsible pushdown automata and recursion
schemes. In LICS ’08: Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in Computer

Science, pages 452–461, 2008.
[11] A. Kartzow. First-Order Model Checking On Generalisations of Pushdown Graphs. PhD thesis, Tech-

nische Universität Darmstadt, Fachbereich Mathematik, 2011.
[12] Alexander Kartzow. Collapsible pushdown graphs of level 2 are tree-automatic. In Jean-Yves Marion and

Thomas Schwentick, editors, STACS, volume 5 of LIPIcs, pages 501–512. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2010.

[13] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In Proceedings of

FOSSACS’02, volume 2303 of LNCS, pages 205–222. Springer, 2002.
[14] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Sov. Math., Dokl., 15:1170–1174,

1974.
[15] A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12:38–43, 1976.
[16] S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic,

14(2):169–209, 2008.
[17] Hugo Volger. Turing machines with linear alternation, theories of bounded concatenation and the deci-

sion problem of first order theories. Theor. Comput. Sci., 23:333–337, 1983.

TREE-AUTOMATICITY OF 2-CPG 39

Appendix A. Proof of Bijectivity of Enc

We start by explicitly constructing the inverse of Enc. This inverse is called Dec. Since
Enc removes the collapse links of the elements in a stack, we have to restore these now. In
order to restore the collapse links we use the following auxiliary functions for each g ∈ N

fg : {ε} ∪ (Σ× {1, 2}) → {ε} ∪Σ ∪ (Σ× {2} × N)

which map labels of trees to 1-words of length up to 1. We set

fg(τ) :=

σ if τ = (σ, 1),

(σ, 2, g) if τ = (σ, 2),

ε if τ = ε.

In the next definition g is the width of the stack decoded so far.

Definition A.1. Let Γ := (Σ× {1, 2}) ∪ {ε}. Recall that encodings of stacks are trees in
TΓ. We define the function Dec : TΓ × N → (Σ ∪ (Σ× {2} × N))∗2 as follows. Let

Dec(T, g) =

fg(T (ε)) if dom(T) = {ε},

fg(T (ε)) \ Dec(T0, g) if 1 /∈ dom(T), 0 ∈ dom(T),

fg(T (ε)) \ (ε : Dec(T1, g + 1)) if 0 /∈ dom(T), 1 ∈ dom(T),

fg(T (ε)) \ (Dec(T0, g) : Dec(T1, g +G(T0))) otherwise,

where G(T0) := |Dec(T0, 0)| is the width of the stack encoded in T0. For a tree T ∈ T
Enc,

the decoding of T is

Dec(T) := (T (ε),Dec(T0, 0)) ∈ Q× (Σ ∪ (Σ× {2} × N))+2.

Remark A.2. Obviously, for each T ∈ T
Enc, Dec(T) ∈ Q× (Σ∪ (Σ×{2}×N))+2. In fact,

the image of Dec is contained in Cnf, i.e., Dec(T) = (q, s) such that s is a level 2 stack.
The verification of this claim relies on two important observations.

Firstly, T (0) = (⊥, 1) due to condition 2 of Definition 3.5. Thus, all words in s start
with letter ⊥. s is a stack if and only if the link structure of s can be created using the
push, clone and pop1 operations. The proof of this claim can be done by a tedious but
straightforward induction. We only sketch the most important observations for this fact.

Every letter a of the form (σ, 2, g) occurring in s is either a clone or can be created by
the pushσ,2 operation. We call a a clone if a occurs in s in some word waw′ such that the
word to the left of this word has wa as prefix. Note that cloned elements are those that can
be created by use of the clone2 and pop1 operations from a certain substack of s.

If a is not a clone in this sense, then Dec creates the letter a because there is some
(σ, 2)-labelled node in T corresponding to a. Now, the important observation is that Dec
defines a = fg((σ, 2)) where g+1 is the width of the stack decoded from the lexicographically
smaller nodes. Hence, the letter a occurs in the (g + 1)-st word of s and points to the g-th
word. Such a letter a can clearly be created by a pushσ,2 operation. Thus, all 2-words in the
image of Dec can be generated by stack operations from the initial stack. A reformulation
of this observation is that the image of Dec only contains configurations.

Now, we prove that Dec is injective on T
Enc. Afterwards, we show that Dec ◦ Enc is

the identity on the set of all configurations. This implies that Dec is a surjective map from
T
Enc to Cnf. Putting both facts together, we obtain that Dec is the inverse of Enc whence,

of course, Enc is bijective.

40 A. KARTZOW

Lemma A.3. Dec is injective on T
Enc.

Proof. Assume that there are trees T ′, U ′ ∈ T
Enc with Dec(T ′) = Dec(U ′) = (q, s). Then

by definition T ′(ε) = U ′(ε) = q. Thus, we only have to compare the subtrees rooted at 0,
i.e., T := T ′

0 and U := U ′
0. From our assumption it follows that Dec(T, 0) = Dec(U, 0).

Note that the roots of T and of U are both labelled by (⊥, 1). The lemma follows from
the following claim.

Claim. Let T and U be trees such that there are T ′, U ′ ∈ T
Enc and d ∈ dom(T ′) \ {ε},

e ∈ dom(U ′) \ {ε} such that T = T ′
d and U = U ′

e. If Dec(T,m) = Dec(U,m) and either
T (ε) = U(ε) = ε or T (ε) ∈ Σ× {1, 2} and U(ε) ∈ Σ× {1, 2}, then U = T .4

The proof is by induction on the depth of the trees U and T . If dpt(U) = dpt(T) = 0,
Dec(U,m) and Dec(T,m) are uniquely determined by the label of their roots. A straight-
forward consequence of the definition of Dec is that U(ε) = T (ε) whence U = T .

Now, assume that the claim is true for all trees of depth at most k for some fixed k ∈ N.
Let U and T be trees of depth at most k + 1.

We proceed by a case distinction on whether the left or right subtree of T and U are
defined. In fact, we will later prove that Dec(T,m) = Dec(U,m) implies that

(1) T0 6= ∅ if and only if U0 6= ∅ and
(2) T1 6= ∅ if and only if U1 6= ∅.

We first prove that Dec(T,m) = Dec(U,m) and conditions (1) and (2) imply that U = T .
Afterwards we show that all possible combinations that do not satisfy these conditions
imply Dec(T,m) 6= Dec(U,m).

(1) Assume that U0 = U1 = T0 = T1 = ∅. Then dpt(T) = dpt(U) = 0. For trees of depth 0
we have already shown that Dec(U, 0) = Dec(T, 0) implies U = T .

(2) Assume that U0 = ∅, U1 6= ∅, T0 = ∅ and T1 6= ∅. In this case

Dec(U,m) = fm(U(ε)) \ (ε : Dec(U1,m+ 1)) and

Dec(T,m) = fm(T (ε)) \ (ε : Dec(T1,m+ 1)).

Since U(ε) = ε if and only if T (ε) = ε, we can directly conclude that U(ε) = T (ε).
But then Dec(T,m) = Dec(U,m) implies that Dec(T1,m+ 1) = Dec(U1,m+ 1). Since
dpt(T1) ≤ k and dpt(U1) ≤ k, the induction hypothesis implies that T1 = U1. We
conclude that T = U .

(3) Assume that U0 6= ∅, U1 = ∅, T0 6= ∅, and T1 = ∅. In this case,

Dec(U,m) = fm(U(ε)) \ Dec(U0,m) and

Dec(T,m) = fm(T (ε)) \ Dec(T0,m).

Since U(ε) = ε if and only if T (ε) = ε, we conclude that U(ε) = T (ε) and Dec(U0,m) =
Dec(T0,m). Since the depths of U0 and of T0 are at most k, the induction hypothesis
implies U0 = T0 whence U = T .

(4) Assume that U0 6= ∅, U1 6= ∅, T0 6= ∅, and T1 6= ∅. Then we have

Dec(U,m) = fm(U(ε)) \
(

Dec(U0,m) : Dec(U1,m+m′)
)

and

Dec(T,m) = fm(T (ε)) \
(

Dec(T0,m) : Dec(T1,m+m′′)
)

for some natural numbers m′,m′′ > 0.

4Since a node d of a tree in T
Enc is labelled by ε iff d ∈ {0, 1}∗1, the pair of subtrees Ti and Ui inherit

this condition for all i ∈ {0, 1}.

TREE-AUTOMATICITY OF 2-CPG 41

Since U(ε) = ε if and only if T (ε) = ε this implies that the roots of U and T coincide.
Hence,

Dec(U0,m) : Dec(U1,m+m′) = Dec(T0,m) : Dec(T1,m+m′′)

If Dec(U0,m) = Dec(T0,m), then the induction hypothesis yields U0 = T0. Further-
more, this implies Dec(U1,m+m′) = Dec(T1,m+m′′) andm′ = m′′ whence by induction
hypothesis U1 = T1. In this case we conclude immediately that T = U .

The other case is that Dec(U0,m) 6= Dec(T0,m). We conclude immediately that the
width of Dec(U0,m) and the width of Dec(T0,m) do not coincide. We prove that this
case contradicts the assumption that Dec(U,m) = Dec(T,m).

Let us assume that Dec(U0,m) = pop2
z (Dec(T0,m)) for some z ∈ N\{0}. Note that

this implies that the first word of Dec(U1,m+m′) is a word in Dec(T0,m).
Since U(0) is a left successor in some tree belonging to T

Enc, it is labelled by some
(σ, l) ∈ Σ× {1, 2}. We make a case distinction on l.
(a) Assume that U(0) = (σ, 2) for some σ ∈ Σ. Then all words in Dec(T0,m) start with

the letter (σ, 2,m). Thus, the first word of Dec(U1,m + m′) must also start with
(σ, 2,m). But all collapse links of level 2 in Dec(U1,m+m′) are at least m+m′ > m.
This is a contradiction.

(b) Otherwise, U(1) = (σ, 1) for some σ ∈ Σ. Thus, all words in Dec(T0,m) start with
the letter σ. Thus, the first word of Dec(U0,m) and the first word of Dec(U1,m+m′)
have to start with σ. But this implies U(0) = U(10) = (σ, 1). This contradicts
the assumption that U is a proper subtree of a tree from T

Enc (cf. condition 6 of
Definition 3.5).

Both cases result in contradictions. Thus, it is not the fact that there is some z ∈ N\{0}
such that

Dec(U0,m) = pop2
z (Dec(T0,m))

By symmetry, we obtain that there is no z ∈ N \ {0} such that

Dec(T0,m) = pop2
z (Dec(U0,m)) .

Thus, we conclude that Dec(T0,m) = Dec(U0,m) whence U = T as shown above.

If Dec(T,m) = Dec(U,m), one of the previous cases applies because the following case
distinction shows that all other cases for the defined or undefined subtrees of T and U
imply Dec(T,m) 6= Dec(U,m).

(1) Assume that U0 = U1 = T0 = ∅ and T1 6= ∅. In this case, Dec(U,m) is [ε] or [τ] for
some τ ∈ Σ ∪ (Σ× {2} × N). Furthermore,

Dec(T,m) = fm(T (ε)) \ (ε : Dec(T1,m+ 1)).

It follows that |Dec(T,m)| ≥ 2 > |Dec(U,m)| = 1 whence Dec(T,m) 6= Dec(U,m).
(2) Assume that U0 = U1 = ∅, T0 6= ∅, and T1 = ∅. In this case, Dec(U,m) is again [ε] or

[τ] for some τ ∈ Σ∪ (Σ×{2}×N). Since U(ε) = ε if and only if T (ε) = ε, we conclude
that |fm(T (ε)| = |Dec(U,m)|. Moreover,

Dec(T,m) = fm(T (ε)) \ fm(T (0)) \ s

for some 2-word s. Since T is a subtree of a tree in T
Enc, T (0) ∈ Σ × {1, 2}.

Thus, fm(T (0)) ∈ Σ ∪ (Σ × {1, 2} × N). We conclude that the length of the first
word of Dec(T,m) is greater than the length of the first word of Dec(U,m). Thus,
Dec(T,m) 6= Dec(U,m).

42 A. KARTZOW

(3) Assume that U0 = U1 = ∅, T0 6= ∅, and T1 6= ∅. Completely analogous to case 1, we
conclude that |Dec(T,m)| ≥ 2 > |Dec(U,m)| = 1 whence Dec(T,m) 6= Dec(U,m).

(4) Assume that U0 = ∅, U1 6= ∅, and T0 = T1 = ∅. Exchanging the roles of U and T , this
is exactly the same as case 1.

(5) Assume that U0 = ∅, U1 6= ∅, T0 6= ∅, and T1 = ∅. Analogously to case 2, we derive
that the length of the first word of Dec(T,m) is greater than the length of the first
word of Dec(U,m). Thus, Dec(T,m) 6= Dec(U,m).

(6) Assume that U0 = ∅, U1 6= ∅, T0 6= ∅, and T1 6= ∅. Analogously to case 2, we derive
that the length of the first word of Dec(T,m) is greater than the length of the first
word of Dec(U,m). Thus, Dec(T,m) 6= Dec(U,m).

(7) Assume that U0 6= ∅, and U1 = T0 = T1 = ∅. Exchanging the roles of U and T , this is
exactly the case 2.

(8) Assume that U0 6= ∅, U1 = T0 = ∅, and T1 6= ∅. Exchanging the roles of U and T , this
is exactly the case 5.

(9) Assume that U0 6= ∅, U1 = ∅, T0 6= ∅, and T1 6= ∅. In this case,

Dec(U,m) = fm(U(ε)) \ Dec(U0,m)

and Dec(T,m) = fm(T (ε)) \
(

Dec(T0,m) : Dec(T1,m+m′)
)

for some m′ ∈ N \ {0}. Since U(ε) = ε if and only if T (ε) = ε, we conclude that
U(ε) = T (ε). Now,

Dec(U0,m) = τ \ u′

for τ = fm(U(0)) ∈ Σ∪ (Σ×{2}×{m}) and u′ some level 2-word. We distinguish the
following cases.

First assume that τ = (σ, 2,m). For all letters in T ′ := Dec(T1,m+m′) of collapse
level 2, the collapse link is greater or equal to m +m′. Hence, T ′ does not contain a
symbol (σ, 2,m) whence Dec(U,m) 6= Dec(T,m).

Otherwise, τ ∈ Σ. But then Dec(U,m) = Dec(T,m) would imply that

Dec(T0,m) = τ \ T ′

and Dec(T1,m+m′) = τ \ T ′′

for certain nonempty level 2-words T ′ and T ′′. Since T (1) = ε, it follows that
T (0) = T (10) = (τ, 1) which contradicts the fact that T is a subtree of some tree
from T

Enc.
Thus, we conclude that Dec(T,m) 6= Dec(U,m).

(10) Assume that U0 6= ∅, U1 6= ∅, and T0 = T1 = ∅. Exchanging the roles of U and T , this
is the same as case 3.

(11) Assume that U0 6= ∅, U1 6= ∅, T0 = ∅, and T1 6= ∅. Exchanging the roles of U and T ,
this is the same as case 6.

(12) Assume that U0 6= ∅, U1 6= ∅, T0 6= ∅, and T1 = ∅. Exchanging the roles of U and T ,
this is the same as case 9.

Hence, we have seen that Dec(T,m) = Dec(U,m) implies that each of the subtrees of T is
defined if and only if the corresponding subtree of U is defined. Under this condition, we
concluded that U = T . Thus, the claim holds and the lemma follows as indicated above.

TREE-AUTOMATICITY OF 2-CPG 43

Next, we prove that Dec is a surjective map from T
Enc to Cnf. This is done by induction

on the size of blocklines used to encode a stack. In this proof we use the notion of left-
maximal blocks and good blocklines. Let

s :
(

w \ (w′ : b)
)

: s′

be a stack where s and s′ are 2-words, w, and w′ are words, and b is a τ -block.5 We call b
left maximal in this stack if either b = [τ] or b = ττ ′ \ b′ such that w′ does not start with
ττ ′ for some τ ′ ∈ Σ∪ (Σ×{2}×N). We call a blockline in some stack good, if its first block
is left maximal. Furthermore, we call the blockline starting with the block b left maximal if
w′ does not start with τ . Recall that the encoding of stacks works on left maximal blocks
and good blocklines.

Lemma A.4. Dec ◦ Enc is the identity, i.e., Dec(Enc(c)) = c, for all c ∈ Cnf.

Corollary A.5. Dec : TEnc → Cnf is surjective.

Proof of Lemma A.4. Let c = (q, s) be a configuration. Since Dec and Enc encode and
decode the state of c in the root of Enc(c), it suffices to show that

Dec(Enc(s, (⊥, 1)), 0) = s

for all stacks s ∈ Stck(Σ). We proceed by induction on blocklines of the stack s. For this
purpose we reformulate the lemma in the following claim.

Claim. Let s′ be some stack which decomposes as s′ = s′′ : (w \ b) : s′′′ such that
b ∈ (Σ ∪ (Σ× {2} × N))+2 is a good τ -blockline for some τ ∈ Σ ∪ (Σ× {2} × N). Then

(1) Dec(Enc(b, ε), |s′′|) = b′ for the unique 2-word b′ such that b = τ \ b′ and
(2) if b is left maximal, then Dec(Enc(b, (σ, l)), |s′′|) = b where σ = Sym(τ) and l = CLvl(τ).

Note that the conditions in the second part require that either τ ∈ Σ or τ = (σ, 2, |s′′|) for
some σ ∈ Σ.

The lemma follows from the second part of the claim because every stack is a left
maximal ⊥-blockline.

We prove both claims by parallel induction on the size of b. As an abbreviation we

set g := |s′′|. We write
(1)
=(

(2)
=, respectively) when some equality is due to the induction

hypothesis of the first claim (the second claim , respectively). The arguments for the first
claim are as follows.

• If b = [τ] for τ ∈ Σ ∪ (Σ× {2} ×N), the claim is true because

Dec(Enc(b, ε), g) = Dec(ε, g) = ε.

• If there are b1, b
′
1 ∈ (Σ ∪ (Σ× {2} × N))∗2 such that

b = [τ] : b1 = [τ] :
(

τ \ b′1
)

then

Dec(Enc(b, ε), g) = Dec(ε 〈∅; Enc(b1, ε)〉 , g)

=fg(ε) \ (ε : Dec(Enc(b1, ε), g + 1))

(1)
=ε \ (ε : b′1) = ε : b′1 = b′.

5In this definition, we explicitly allow the case s = w′ = ∅, i.e., a stack of the form (w \ b) : s′.

44 A. KARTZOW

• Assume that there is some τ ′ ∈ Σ ∪ (Σ× {2} × N) and some b1 ∈ (Σ ∪ (Σ × {2} × N))∗2

such that

b = ττ ′ \ b1.

The assumption that b is good implies that the blockline τ ′ \ b1 is left maximal whence

Dec(Enc(b, ε), g) = Dec(ε
〈

Enc(τ ′ \ b1, (Sym(τ ′),CLvl(τ ′))); ∅
〉

, g)

=fg(ε) \ Dec(Enc(τ ′ \ b1, (Sym(τ ′),CLvl(τ ′)), g))

(2)
=τ ′ \ b1 = b′.

• The last case is that

b = τ \
(

(τ ′ \ b1) : b2
)

for b2 a blockline of s not starting with τ ′. By this we mean that b2 6= τ ′w′ : b′2 for
any word w′ and any 2-word b′2. Since b is good, τ ′ \ b1 is a left maximal blockline.
Furthermore, τ \ b2 is a good blockline. Thus,

Dec(Enc(b, ε), g)

=Dec
(

ε
〈

Enc
(

τ ′ \ b1, (Sym(τ ′),CLvl(τ ′))
)

; Enc(τ \ b2, ε)
〉

, g
)

=fg(ε) \
(

Dec(Enc(τ ′ \ b1, (Sym(τ ′),CLvl(τ ′))), g) : Dec(Enc(τ \ b2, ε), g + f)
)

,

where

f = |Dec(Enc(τ ′ \ b1, (Sym(τ ′),CLvl(τ ′))), g)|
(2)
= |b1|.

From this, we obtain that

Dec(Enc(b, ε), g)

(2)
=ε \

(

(τ ′ \ b1) : Dec(Enc(τ \ b2, ε), g + f)
)

(1)
=(τ ′ \ b1) : b2 = b′.

For the proof of the second claim, note that the calculations are basically the same, but
fg(ε) is replaced by fg(σ, l). Thus, if l = 1 then fg(σ, l) = σ = τ . For the case l = 2,
recall that g = |s′′| whence fg(σ, l) = (σ, 2, |s′′|). Note that CLnk(τ) = |s′′| due to the left
maximality of b.

Thus, one proves the second case using the same calculations, but replacing ε by τ .

From the previous lemmas, we directly obtain Lemma 3.8, i.e., we obtain that Enc is
bijective.

Appendix B. Automaton for Relation R⇐

Given a CPS S, there is an automaton AR⇐ that accepts the tree Enc(c1) ⊗ Enc(c2) for
arbitrary configurations c1 and c2 if and only if c2 = pop2

k(c1) and there is a run ρ from c1
to c2 such that ρ(j) 6≤ c2 for all j < length(ρ), i.e., if and only if (c1, c2) ∈ R⇐. The states
of AR⇐ come from the set

{⊥, qI , q∅, q=} ∪M with M := {S,R, P,C} ×Q×Q× Σ× {1, 2} × 2Q×Q.

Before giving a definition of AR⇐ , we informally describe how AR⇐ processes some tree
T := Enc(c1)⊗ Enc(c2). An accepting run on T labels d ∈ {0, 1}∗

TREE-AUTOMATICITY OF 2-CPG 45

C1. by ⊥ if d ∈ T+;
C2. by qI if d = ε; it is the initial state in which the automaton reads the states of c1 and

c2, before it processes the encodings of the stacks,
C3. by q= if d ∈ Enc(c2) but not in the rightmost branch of Enc(c2); this state is used

to check equality of the parts of Enc(c1) and Enc(c2) that are left of the rightmost
branch of Enc(c2),

C4. by some element from {S}×Q×Q×Σ×{1, 2}×2Q×Q if d is in the rightmost branch
of Enc(c2); S stands for searching the node encoding the final configuration of the
run.

C5. by some element from the set {q∅} ∪ ({R,P,C} × Q × Q × Σ × {1, 2} × 2Q×Q) if
d ∈ Enc(c1) \ Enc(c2).

Those labels that come from M are used to check the existence of some run from c1 to c2
as follows. For all d ∈ Enc(c1), let d

ր be the rightmost leaf of the subtree induced by d in

Enc(c1). Set sրd := LStck(dր,Enc(c1)). Let q̄ ∈ M be the label of some node d. By πi(q̄)
we denote the projection of q̄ to the i-th component. Depending on π1(q̄) we define a stack
sd as follows.

(1) If π1(q̄) = S, set sd to be the stack of c2.
(2) If π1(q̄) = R, set sd := pop2(LStck(d,Enc(c1))).
(3) If π1(q̄) = C, set sd := collapse(LStck(d,Enc(c1))).
(4) If π1(q̄) = P , set sd := pop1(LStck(d,Enc(c1))).

An accepting run ρ of AR⇐ will label some node d by q̄ ∈ M such that

C6. π4(q̄) = Sym(LStck(d,Enc(c1))),
C7. π5(q̄) = CLvl(LStck(d,Enc(c1))), and
C8. π6(q̄) = Rt(LStck(d,Enc(c1))).

C9. Moreover, if π1(q̄) 6= P then there is a run ρ from (π2(q̄), s
ր
d) to (π3(q̄), sd) (which

is an infix of some run witnessing (c1, c2) ∈ R⇐). The meaning of the labels R and
C is as follows. If π1(q̄) = R then ρ ends in pop2(LStck(d,Enc(c1))). If π1(q̄) = C
then ρ ends in collapse(LStck(d,Enc(c1))) and the collapse level is 2 (moreover, ρ
actually performs as the last operation a collapse on a copy of the topmost element
of LStck(d, c1)). Thus, in both cases the run will end in the stack sd. To be more
precise, the run ends in sd and does not visit any substack of sd before its final
configuration.

C10. If π1(q̄) = P then there is some stack s′ with sd ≤ s′ and top2(sd) = top2(s
′) such

that there is a run from (π2(q̄), s
ր
d) to (π3(q̄), s

′) (which is again an infix of some run
witnessing (c1, c2) ∈ R⇐).

C11. ρ will label d by q∅ if there is a run from c1 to c2 not passing sրe for all d ≤ e.

Let us fix some notation. In this section, γ ranges over Γ, y ranges over (Σ× {1, 2}) ∪ {ε}
and w ranges over all words of the form w = top2(s)↓0. Whenever w is fixed, we write
σ := Sym(w) and l = CLvl(w). Furthermore, x ranges over {(σ, l), ε}. The variables
q1, q2, q

′
1, q

′
2, q, q

′ range over Q. τ ranges over Σ \ {⊥} and k over {1, 2}. We use the abbre-
viation “(q, σ, q′,ColPopk) ∈ ∆” for “∃γ such that

(1) (q, σ, γ, q′,pop1) ∈ ∆ or
(2) (q, σ, γ, q′, collapse) ∈ ∆ and k = 1”.

46 A. KARTZOW

If w, τ and k are fixed, we write wτk for the word wθ where θ =

{

(τ, 2, 0) if k = 2,

τ if k = 1.

Definition B.1. Fix some CPS S = (Q,Σ,Γ,∆, q0). Define AR⇐ := (QA,ΣA,⊥, F,∆A)

with QA := {⊥, qI , q∅, q=}∪M , ΣA = ({ε,�} ∪ {Σ× {1, 2}} ∪Q)2, F = {qI}. ∆A contains
the following transitions.

T1. (qI , (q1, q2), (S, q1, q2,⊥, 1,Rt(⊥2)),⊥),
T2. (q∅, (y,�), Y, Z) for Y,Z ∈ {⊥, q∅}, and
T3. (q=, (y, y), Y, Z) for Y,Z ∈ {⊥, q=},

Fix some q̄ := (S, q1, q2, σ, l,Rt(w)). We add the following transitions to ∆A:

T4. (q̄, (x, x),⊥,⊥) if q1 = q2;
T5. (q̄, (x, x),⊥, q̄1) for q̄1 = (R, q1, q2, σ, l,Rt(w)) ;
T6. (q̄, (x, x),X, q̄) for X ∈ {⊥, q=};
T7. (q̄, (x, x), q̄0,⊥) for q̄0 = (S, q1, q2, τ, k,Rt(wτk));
T8. (q̄, (x, x), q̄0, q̄1) for q̄1 = (R, q1, q

′
2, σ, l,Rt(w)) and q̄0 = (S, q′2, q2, τ, k,Rt(wτk)).

Fix some q̄ := (R, q1, q2, σ, l,Rt(w)). We add the following transitions to ∆A:

T9. (q̄, (x,�),⊥,⊥) if (q1, q2) ∈ Rt(w);
T10. (q̄, (x,�),⊥, q̄1) for q̄1 = (R, q1, q

′
2, σ, l,Rt(w)) such that (q′2, q2) ∈ Rt(w);

T11. (q̄, (x,�), q̄0,⊥) for q̄0 = (R, q1, q2, τ, i,Rt(wτi)) for i ∈ {1, 2};
T12. (q̄, (x,�), q̄0, q̄1) for

q̄1 = (R, q1, q
′
2, σ, l,Rt(w)),

q̄0 = (R, q′2, q2, τ, i,Rt(wτi)) and

i ∈ {1, 2};

T13. (q̄, (x,�), q̄0,⊥) for q̄0 = (C, q1, q2, τ, 2,Rt(wτ2));
T14. (q̄, (x,�), q̄0, q̄1) for q̄1 = (R, q1, q

′
2, σ, l,Rt(w)) and q̄0 = (C, q′2, q2, τ, 2,Rt(wτ2)).

Fix some q̄ := (P, q1, q2, σ, l,Rt(w)). We add the following transitions to ∆A:

T15. (q̄, (x,�),⊥,⊥) if there is a q with (q1, q) ∈ 1Lp(w) and (q, σ, q2,ColPopl) ∈ ∆;
T16. (q̄, (x,�),X, q̄) for X ∈ {⊥, q∅};
T17. (q̄, (x,�), q̄0,⊥) for

q̄0 = (P, q1, q
′
2, τ, k,Rt(wτk)),

(q′2, q) ∈ 1Lp(w) and

(q, σ, q2,ColPopl) ∈ ∆;

T18. (q̄, (x,�), q̄0, q̄1) for

q̄1 = (R, q1, q
′
1, σ, l,Rt(w)),

q̄0 = (P, q′1, q
′
2, τ, k,Rt(wτk)),

(q′2, q) ∈ 1Lp(w) and

(q, σ, q2,ColPopl) ∈ ∆.

Fix some q̄ := (C, q1, q2, σ, l,Rt(w)) with l = 2 (whence x ranges here over {(σ, 2), ε}). We
add the following transitions to ∆A:

T19. (q̄, (x,�),⊥,⊥) if there is a q with (q1, q) ∈ 1Lp(w) and (q, σ, γ, q2, collapse) ∈ ∆;
T20. (q̄, (x,�),X, q̄) for X ∈ {⊥, q∅};

TREE-AUTOMATICITY OF 2-CPG 47

T21. (q̄, (x,�),⊥, q̄1) for

q̄1 = (R, q1, q
′
2, σ, 2,Rt(w)),

(q′2, q) ∈ 1Lp(w) and

(q, σ, γ, q2, collapse) ∈ ∆;

T22. (q̄, (x,�), q̄0,⊥) for

q̄0 = (P, q1, q
′
2, τ, k,Rt(wτk)),

(q′2, q) ∈ 1Lp(w) and

(q, σ, γ, q2, collapse) ∈ ∆;

T23. (q̄, (x,�), q̄0, q̄1) for

q̄1 = (R, q1, q
′
1, σ, 2,Rt(w)),

q̄0 = (P, q′1, q
′
2, τ, k,Rt(wτk)),

(q′2, q) ∈ 1Lp(w) and

(q, σ, γ, q2, collapse) ∈ ∆.

Lemma B.2. If AR⇐ accepts a tree Enc(c1) ⊗ Enc(c2) for configurations c1, c2, then
c2 = pop2

k(c1) and there is some run from c1 to c2 that does not reach a substack of c2
before the final configuration, i.e., (c1, c2) ∈ R⇐.

Proof. Assume that ρR⇐ is an accepting run of AR⇐ on T := Enc(c1)⊗Enc(c2). A straight-
forward induction from the root to the leaves shows that c1 = pop2

k(c2), that Conditions C1
– C8 hold and that the rightmost leaf of T is labelled by some element of M . Furthermore,
ρR⇐(0) ∈ M and (π1(ρR⇐(0)), π2(ρR⇐(0)), π3(ρR⇐(0))) = (S, q1, q2) for ci = (qi, si). More-
over, note that ρR⇐(d) ∈ M and π1(ρR⇐(d)) = C implies CLvl(LStck(d, c1)) = 2: if a tran-
sition at some node d labels the 0-successor d0 by C, then we always have π5(ρR⇐(d0)) = 2.
By construction, the transition of ρR⇐ applied at d0 enforces that π5(ρR⇐(d0)) is the link
level encoded in the tree at d0. Thus, the claim holds for all 0 successors. Moreover, a 1-
successor is labelled by C only if its predecessor is also labelled by C. Thus, by induction on
the distance to the first ancestor which is a 0-successor the claim holds also for 1-successors.

By induction from the leaves to the root, we show that Conditions C9 and C10 hold.
This completes the proof, because ρR⇐(0) then witnesses that there is a run from c1 to c2
not passing a substack of c2 before its final configuration. For the base case, assume that
d ∈ T is a leaf labelled by some q̄ ∈ M . Depending on π1(q̄) we have the following cases.

• If π1(q̄) = S, then d is the rightmost leaf of Enc(c2). Thus, sրd = sd = s2. Since ρ is an
accepting run, it uses a transition of the form T4. Thus, π2(q̄) = π3(q̄) and Condition C9
is trivially satisfied.

• If π1(q̄) = R, ρ applies a transition of the form T9. Recall that d is a leaf whence

sd = pop2(LStck(d, c1)), s
ր
d = LStck(d, c1), and π6(q̄) = Rt(LStck(d, c1)). Thus, the con-

dition in T9 ensures that there is a run from (π2(q̄), s
ր
d) to (π3(q̄), sd), i.e., Condition C9

holds.
• If π1(q̄) = C, then ρ applies a transition of the form T19. Since the collapse level of sրd
is 2, we conclude analogously to the previous case that Condition C9 holds.

• If π1(q̄) = P , the transition of ρR⇐ at d is of the form T15. Since sրd = LStck(d, c1) the

conditions of T15 ensure there exists some stack s′ with sրd ≤ s′ and top2(s
′) = top2(s

ր
d)

48 A. KARTZOW

such that there is a 1-loop from sրd to s′ followed by a pop1 operation or a collapse of
level 1. Note that sd ≤ pop1(s

′) and top2(sd) = top2(pop1(s
′)). Thus, Condition C10 is

satisfied.

A tedious but easy case distinction shows that Conditions C9 and C10 carry over to all
nodes of T . Instead of giving the full case distinction, we mention briefly the underlying
ideas.

(1) If d0 ∈ Enc(c1) \ Enc(c2), d1 ∈ Enc(c1) \ Enc(c2) and ρR⇐(d0) ∈ M , then also

ρR⇐(d1) ∈ M and π1 (ρR⇐(d1)) = R whence sd1 = sրd0. Thus, we can compose the
run associated to d1 with the run associated to d0 and obtain a run associated to d.

(2) If i ∈ {0, 1} minimal such that di ∈ Enc(c1), then either sdi = sd such that the final
part of the run associated to sdi can serve as final part of the run associated to sd or
sdi = LStck(d, c1) and the conditions on the transition at d ensure that this run can
be extended to a run to sd if π1 (ρR⇐(d)) 6= P . If π1 (ρR⇐(d)) = P , this run can be
extended to some stack s′ with sd ≤ s′ and top2(sd) = top2(s

′).

(3) If i ∈ {0, 1} is maximal such that di ∈ Enc(c1) then sրd = sրdi and the run associated
to di may serve as initial part of the run associated to d.

Lemma B.3. Let c1 = (q, s1), c2 = (q′, s2) be configurations such that s2 = pop2
k(s1) and

there is a run from c1 to c2 that passes a substack of s2 only in its final configuration. Then
there is an accepting run of AR⇐ on Enc(c1)⊗ Enc(c2).

Proof. Let ρ be some run from c1 to c2. Recall the decomposition ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρn
provided by Lemma 4.17. Let ρ0 := ρ↾[0,0] and let qi denote the final state of ρi for all

0 ≤ i ≤ n. In the following, we will use the notation d̂ := LStck(d, c1) for all d ∈ {0, 1}∗.
Let d be the rightmost leaf of Enc(c1)⊗ Enc(c2). Note that

d̂ = s1 = ρ(0) = ρ0(0) = ρ0(length(ρ0))

whence ρ0 ends in (q0, d̂). We define an accepting run ρR⇐ ofAR⇐ on T := Enc(c1)⊗ Enc(c2)
by induction as follows. Let d ∈ T be the lexicographically maximal node of Enc(c1) such
that ρR⇐ has not been defined yet at d. Assume that there is some maximal i ≥ 1 such
that ρi(0) = (qi−1, s) for some stack s satisfying pop2(d̂) ≤ pop2(s) and top2(d̂) = top2(s).

Furthermore, assume that s = d̂ if ρi−1 is not of the form F3. Depending on the form of ρi,
we proceed as follows.

(1) If ρi is of the Form F1, let d′ be the minimal element such that d = d′0m for some

m ∈ N. We set ρR⇐(d) := (R, qi−1, qi,Sym(d̂),CLvl(d̂),Rt(d̂)) and for d′ ≤ e < d we set
ρR⇐(e) := (R, qe, qi,Sym(ê),CLvl(ê),Rt(ê)) where qe = π2 (ρR⇐(ej)) for j = max{i ∈
{0, 1} : di ∈ Enc(c1)}.

(2) If ρi is of the Form F2, let e′ be minimal such that d = e′0m01m1 for some m0,m1 ∈ N.
For each e satisfying e′0m0 ≤ e ≤ d and for all e0 ≤ f ∈ Enc(c1) we set ρR⇐(e) :=
(C, qi−1, qi,Sym(ê),CLvl(ê),Rt(ê)) and ρR⇐(f) := q∅.

For all e with e′ ≤ e < e′0m0 we define ρR⇐(e) := (R, qe, qi,Sym(ê),CLvl(ê),Rt(ê))
where qe is defined as in the previous case.

(3) If ρi is of the Form F3, then we proceed as follows.

• If d is a leaf of Enc(c1), set ρR⇐(d) := (P, qi−1, qi,Sym(d̂),CLvl(d̂),Rt(d̂));
• otherwise, let j ∈ {0, 1} be maximal such that dj ∈ Enc(c1). Then we set ρR⇐(d) :=
(

P, π2 (ρR⇐(ej)) , qi,Sym(d̂),CLvl(d̂),Rt(d̂)
)

.

TREE-AUTOMATICITY OF 2-CPG 49

In case that there is some e ∈ {0, 1}∗ such that d = e1, then define ρR⇐(e0f) := q∅ for
all f ∈ {0, 1}∗ such that e0f ∈ Enc(c1).

These rules define ρR⇐ on Enc(c1) \ Enc(c2). Let d be the rightmost leaf of Enc(c2), and

set ρR⇐(d) :=
(

S, qn, qn,Sym(d̂),CLvl(d̂),Rt(d̂)
)

. Let 0 ≤ d be the maximal element in

the rightmost branch of Enc(c2) such that ρR⇐(d) is undefined. Let j ∈ {0, 1} be maximal

such that dj ∈ Enc(c1). We set ρR⇐(d) :=
(

S, π2(ρR⇐(dj)), qn,Sym(d̂),CLvl(d̂),Rt(d̂)
)

.

We complete the definition by ρR⇐(ε) = qI and ρR⇐(d) := q= for all d ∈ Enc(c2) that are
not in the rightmost branch of Enc(c2). A tedious, but straightforward induction shows
that ρR⇐ is an accepting run of AR⇐ on Enc(c1)⊗ Enc(c2).

Appendix C. Automaton for Relation R⇓

In the following definition, w ranges over words, τ over letters from Σ \ {⊥}, k over {1, 2},
qi, qe, q

′
e over Q and z, z′ over {q=,⊥}. Whenever we have fixed a word w, then σ := Sym(w),

l := CLvl(w) and x ranges over {(σ, l), ε}.

Definition C.1. A := (QA,ΣA,⊥, {qI},∆A) where

• ΣA := (Q ∪ (Σ× {1, 2}) ∪ {ε,�})2,
• QA := {qI ,⊥, q=, (�, ε)} ∪ (Q×Q× 2Q×Q × Σ× {1, 2} × {S,P1, P2}), and
• ∆A contains the following transitions:

(a) (qI , (q1, q2), (q1, q2, ∅,⊥, 1, S),⊥);
(b) (q=, (y, y), z, z

′) for all y ∈ (Σ× {1, 2}) ∪ {ε};
(c) ((�, ε), (�, ε),⊥,⊥);
now fix an arbitrary q̄ = (qi, qe,Rt(pop1(w)),Sym(w),CLvl(w), S). ∆A contains
(a) (q̄, (x, x), q̄0,⊥) for each q̄0 = (qi, qe,Rt(w), τ, k, S);
(b) (q̄, (x, x), z, q̄);
(c) (q̄, (x, x),⊥,⊥) if qi = qe;

(d) (q̄, (x, x), q̄20 ,⊥) and (q̄, (x, x), q̄10 , (�, ε)) for q̄j0 = (qi, q
′
e,Rt(w), τ, k, Pj) such that

there is some q ∈ Q with (q′e, q) ∈ hLp(wτk) and (q, τ, qe,ColPopk) ∈ ∆;
now fix an arbitrary q̄ = (qi, qe,Rt(pop1(w)),Sym(w),CLvl(w), P2). ∆A contains
(a) (q̄, (x,�),⊥,⊥) if qi = qe;
(b) (q̄, (x,�), q̄0,⊥) for q̄0 = (qi, q

′
e,Rt(w), τ, k, P2) such that there is a q ∈ Q with

(q′e, q) ∈ hLp(wτk) and (q, τ, qe,ColPopk) ∈ ∆;
now fix an arbitrary q̄ = (qi, qe,Rt(pop1(w)),Sym(w),CLvl(w), P1). ∆A contains
(a) (q̄, (x, x), q̄0,⊥) for q̄0 = (qi, q

′
e,Rt(w), τ, k, P1) such that there is a q ∈ Q with

(q′e, q) ∈ hLp(wτk) and (q, τ, qe,ColPopk) ∈ ∆;
(b) (q̄, (x, x), z, q̄);
(c) (q̄, (x, x), z, q̄1) for q̄1 = (qi, qe,Rt(pop1(w)), σ, l, P2).

Let us explain the use of the flags S (’Searching the rightmost leaf of the second input’),
P1 and P2 (’Pop sequence’). Let c = (q, s) and c′ = (p, t) be configurations such that
t = pop1

k(s). Then we can always define nodes d1, d2, d3 (and an auxiliary node e3) in the
convolution of Enc(c)⊗Enc(c′) as follows. Let d3 be the rightmost leaf of Enc(c), let e3 be
the rightmost leaf of Enc(c′), let d2 be the minimal node of the rightmost path of Enc(c)
which is not in Enc(c′)\{e3} and let d1 be the maximal node of the rightmost path of Enc(c)
which is on the rightmost path of Enc(c′). See Figure 4 for an example. By definition one

50 A. KARTZOW

f,�;3

d, d e,�

OO

c, c d, d

OO

// ε,�;2

OO

c, c

OO

// ε

OO

b, b;1

OO

// �, ε

a, a

OO

Figure 4: Nodes d1, d2, d3 in case of s = abcc : abcdd : abcdef and t = abcc : abcdd : ab are
marked by boldface numbers 1,2,3, respectively.

concludes that d1 ≤ d2 ≤ d3. An accepting run of A labels all nodes up to d1 with flag
S, the nodes strictly between d1 and d2 with P1 and the nodes between d2 and d3 by P2.
Using these flags the automaton guarantees that t = pop1

k(s) for some s. Furthermore the
transitions used at the nodes labelled by P1 or P2 guarantee that there is a sequence of
loops and pop operations connecting the two configurations.

Lemma C.2. Let c1 and c2 be configurations. AR⇓ accepts Enc(c1)⊗ Enc(c2) if and only
if c2 = pop1

m(c1) such that (c1, c2) ∈ R⇓.

Proof (sketch). Assume that ρ is an accepting run of AR⇓ on Enc(c1)⊗ Enc(c2).
Every accepting run labels the root by qI . Now an easy induction shows that there are

nodes 0 ≤ d1 ≤ d2 ≤ d3 such that the following holds.

• d3 is the rightmost leaf of Enc(c1).
• All nodes 0 ≤ e ≤ d3 are labelled by elements in

M := Q×Q× 2Q×Q × Σ× {1, 2} × {S,P1, P2}

such that π6(e) =

S if 0 ≤ e ≤ d1,

P1 if d1 < e ≤ d2,

P2 if d2 < e ≤ d3.

Furthermore, all nodes in Enc(c1) ⊗ Enc(c2) to the left of this branch are labelled by q=
which ensures that the two configurations agree on these nodes. We distinguish the following
cases:

d1 = d2 = d3 In this case, no transition of the form (?d) is used in the run. One easily
concludes that c1 = c2 and (c1, c2) ∈ R⇓ is witnessed by the run of length 0
connecting c1 with c2.

d1 = d2 < d3 In this case, we prove by induction from d1 to d3 that the automaton uses at
d1 a transition of the first form of (?d), between d1 and d3 it uses transitions
from (?b), and at d3 it uses a transition from (?a). Due to Lemma 5.8 (first
case) this implies that c2 = pop1

m(c1) for some m ∈ N and LStck(d1, c1) is the
stack of c2. Now, by induction from d3 to d1 one proves for each d1 ≤ e ≤ d3
that π1(e) is the state of c1 and π2(e) is a state such that there is a run
witnessing (c1, (π2(e),LStck(e, c1))) ∈ R⇓. We conclude by another induction
showing that π2(e) is the state of c2.

TREE-AUTOMATICITY OF 2-CPG 51

d1 < d2 < d3 Analogously to the previous case, we use Lemma 5.8 (second case) to show
that c2 = pop1

m(c1) for some m ∈ N. Induction from d3 to d1 shows that for
each d1 ≤ e ≤ d3 there is some number k(e) ≤ m such that

top2(LStck(e, c1)) = top2(pop1
k(e)(c1))

and the label of e is such that there is a run from c1 to (π2(e),pop1
k(e)(c1))

witnessing that this pair is in R⇓. Moreover, k(d1) = m and π2(d1) is the
state of c2 whence (c1, c2) ∈ R⇓.

For the other direction let c1 = (q1, s1), c2 = (q2, s2) be configurations and ρ a run that
witnesses (c1, c2) ∈ R⇓. We only consider the case that Enc(c1) ⊗ Enc(c2) is as described
in (2) of Lemma 5.8. The other case is similar. Let b ∈ Enc(c2) be such that b1 is the
rightmost leaf of Enc(c2). Let c be maximal in Enc(c2) such that c1 ∈ Enc(c1) \ Enc(c2).
Let d be the rightmost leaf of Enc(c1). Due to Lemma 5.8, b < c < d.

For all x ≤ d, let wx := top2(LStck(x,Enc(c1))). For b ≤ x ≤ d let ix ∈ dom(ρ) be
minimal such that ρ(ix) = (q,pop2(s1) : wx). Let qx ∈ Q be the state at ρ(ix). We define
an accepting run λ of AR⇓ on Enc(c1)⊗ Enc(c2) as follows. For all ε < x ≤ d let

λ(x) := (q1, fx,Rt(pop1(wx)),Sym(wx),CLvl(wx), Yx) where

fx =

{

q2 if x ≤ b,

qx if b < x ≤ d,
and

Yx =

S if x ≤ b,

P1 if b < x ≤ c,

P2 if c < x ≤ d.

Furthermore, we set λ(b1) := (�, ε), λ(ε) := qI and λ(x) := q= for all other nodes
x ∈ Enc(c1)⊗ Enc(c2).

Since ρ decomposes as a sequence of loops, pop1 operations and collapse operations of
level 1, it is straightforward to show that λ is an accepting run of AR⇓ .

Appendix D. Automaton for Relation R⇒

In the following definition, we use the same convention regarding ranges of variables as in
Appendix B.

Before we define the automaton recognising the relation R⇒ formally, we explain how
a successful run of it will process a tree Enc(q1, s1)⊗ Enc(q2, s2). The states of AR⇒ come
from the set {qI , q=,⊥} ∪M where

M := Q×Q× Σ× {1, 2} × (2Q×Q)× (2Q×Q)× {R,L} × {S,N}.

qI is the final state that is exclusively used to label the root. q= is the state for all nodes
in Enc(q1, s1) that do not belong to the rightmost branch of this tree. This state is used to
check that Enc(q1, s1) and Enc(q2, s2) agree on this part of the convolution. The state ⊥ is
the initial state only used for marking the end of the tree, i.e., ⊥ is the label for the nodes
in (Enc(q1, s1)⊗ Enc(q2, s2))+. The rest of the nodes are labelled by elements from M .

For some q̄ ∈ M we write πi(q̄) for the projection to the i-th component. In an accepting
run, a node d is labelled by q̄ ∈ M if the following is satisfied.

52 A. KARTZOW

C1. π8(q̄) = S iff d is in the rightmost branch of Enc(q1, s1). S stands for “searching the
rightmost leaf of (q1, s1)” while N stands for “normal reachability”. We ensure that
π8(q̄) = N iff d is in Enc(q2, s2) \ Enc(q1, s1).

C2. π7(q̄) = R iff d is in the rightmost branch of Enc(q2, s2) (by definition this is also the
rightmost branch of Enc(q1, s1) ⊗ Enc(q2, s2). R stands for “rightmost branch” while
L stands for “left”.

C3. π6(q̄) = Lp(LStck(d,Enc(q2, s2))). Since s1 ∈ MS(s2), d ∈ Enc(q1, s1) implies that
π6(q̄) = Lp(LStck(d,Enc(q1, s1))).

C4. π5(q̄) = Rt(LStck(d,Enc(q2, s2))). Since s1 ∈ MS(s2), d ∈ Enc(q1, s1) implies that
π5(q̄) = Rt(LStck(d,Enc(q1, s1))).

C5. π4(q̄) = CLvl(LStck(d,Enc(q2, s2))).
C6. π3(q̄) = Sym(LStck(d,Enc(q2, s2))).
C7. Let qi := π1(q̄) and qe := π2(q̄). For d ∈ Enc(q2, s2) \ Enc(q1, s1) there is a run from

(qi,LStck(d,Enc(q2, s2))) to (qe, IgM(d,Enc(q2, s2))). If d is in the rightmost path of
Enc(q1, s1), qi = q1 and there is a run from (q1, s1) to (qe, IgM(d,Enc(q2, s2))).

Definition D.1. Let S = (Q,Σ,Γ,∆S , q0) be some CPS. Define the automaton AR⇒ as
follows. The set of states is contained in {qI , q=,⊥} ∪M where

M := Q×Q× Σ× {1, 2} × (2Q×Q)× (2Q×Q)× {R,L} × {S,N}.

⊥ is the initial state and qI is the only final state. The transition relation ∆A of A contains
the following transitions.

T1. (qI , (q1, q2), (q1, q2,⊥, 1,Rt(⊥),Lp(⊥), R, S),⊥) ∈ ∆A for all pairs (q1, q2) ∈ Q2, and
T2. (q=, (y, y),X, Y) for X,Y ∈ {q=,⊥} and y ∈ (Σ × {1, 2}) ∪ {ε}.

Fix some q̄ := (q1, q2, σ, l,Rt(w),Lp(w), R, S). Then we add the following transitions.

T3. (q̄, (x, x),⊥,⊥) if q1 = q2;
T4. (q̄, (x, x),⊥, q̄1) for

(q1, σ, γ, q, clone2) ∈ ∆S ,

(q, q′1) ∈ Lp(w), and

q̄1 = (q′1, q2, σ, l,Rt(w),Lp(w), R,N);

T5. (q̄, (x, x),X, q̄) for X ∈ {q=,⊥};
T6. (q̄, (x, x), q̄0,⊥) for q̄0 := (q1, q2, τ, k,Rt(wτk),Lp(wτk), R, S);
T7. (q̄, (x, x), q̄0, q̄1) for

q̄0 := (q1, q
′
2, τ, k,Rt(wτk),Lp(wτk), L, S),

(q′2, τ, γ, q,ColPopk) ∈ ∆S ,

(q, q′1) ∈ Lp(w), and

q̄1 := (q′1, q2, σ, l,Rt(w),Lp(w), R,N);

Fix some q̄ := (q1, q2, σ, l,Rt(w),Lp(w), L, S). Then we add the following transitions.

T8. (q̄, (x, x),⊥,⊥) for (q1, σ, γ, q, clone2) ∈ ∆S and (q, q2) ∈ Lp(w);

TREE-AUTOMATICITY OF 2-CPG 53

T9. (q̄, (x, x), q̄0,⊥) for

q̄0 := (q1, q
′
2, τ, k,Rt(wτk),Lp(wτk), L, S),

(q′2, τ, q,ColPopk) ∈ ∆S and

(q, q2) ∈ Lp(w);

T10. (q̄, (x, x),X, q̄) for X ∈ {q=,⊥};
T11. (q̄, (x, x),⊥, q̄1) for

(q1, σ, γ, q, clone2) ∈ ∆S ,

(q, q′1) ∈ Lp(w) and

q̄1 := (q′1, q2, σ, l,Rt(w),Lp(w), L,N);

T12. (q̄, (x, x), q̄0, q̄1) for

q̄0 := (q1, q
′
2, τ, k,Rt(wτk),Lp(wτk), L, S),

(q′2, τ, q,ColPopk) ∈ ∆S ,

(q, q′1) ∈ Lp(w) and

q̄1 := (q′1, q2, σ, l,Rt(w),Lp(w), L,N).

Fix some q̄ := (q1, q2, σ, l,Rt(w),Lp(w), R,N). Then we add the following transitions.

T13. (q̄, (�, x),⊥,⊥) if q1 = q2;
T14. (q̄, (�, x), q̄0,⊥) for

(q1, σ, γ, q,pushτ,k) ∈ ∆S ,

(q, q′1) ∈ Lp(wτk) and

q̄0 := (q′1, q2, τ, k,Rt(wτk),Lp(wτk), R,N);

T15. (q̄, (�, x),⊥, q̄1) for

(q1, σ, γ, q, clone2) ∈ ∆S ,

(q, q′1) ∈ Lp(w) and

q̄1 := (q′1, q2, σ, l,Rt(w),Lp(w), R,N);

T16. (q̄, (�, x), q̄0, q̄1) for

(q1, σ, γ, q,pushτ,k) ∈ ∆S ,

(q, q′1) ∈ Lp(wτk),

q̄0 := (q′1, q
′
2, τ, k,Rt(wτk),Lp(wτk), L,N),

(q′2, τ, q
′,ColPopk) ∈ ∆S ,

(q′, q′′1) ∈ Lp(w) and

q̄1 := (q′′1 , q2, σ, l,Rt(w),Lp(w), R,N).

Fix some q̄ := (q1, q2, σ, l,Rt(w),Lp(w), L,N). Then we add the following transitions.

T17. (q̄, (�, x),⊥,⊥) for (q1, σ, γ, q, clone2) ∈ ∆S and (q, q2) ∈ Lp(w);

54 A. KARTZOW

T18. (q̄, (�, x), q̄0,⊥) for

(q1, σ, γ, q,pushτ,k) ∈ ∆S ,

(q, q′1) ∈ Lp(wτk),

q̄0 := (q′1, q
′
2, τ, k,Rt(wτk),Lp(wτk), L,N),

(q′2, τ, q
′,ColPopk) ∈ ∆S and

(q′, q2) ∈ Lp(w);

T19. (q̄, (�, x),⊥, q̄1) for

(q1, σ, γ, q, clone2) ∈ ∆S ,

(q, q′1) ∈ Lp(w), and

q̄1 := (q′1, q2, σ, l,Rt(w),Lp(w), L,N);

T20. (q̄, (�, x), q̄0, q̄1) for

(q1, σ, γ, q,pushτ,k) ∈ ∆S ,

(q, q′1) ∈ Lp(wτk),

q̄0 := (q′1, q
′
2, τ, k,Rt(wτk),Lp(wτk)), L,N),

(q′2, τ, q
′,ColPopk) ∈ ∆S ,

(q′, q′′1) ∈ Lp(w) and

q̄1 := (q′′1 , q2, σ, l,Rt(w),Lp(w), L,N).

The next lemma is a first step towards the proof that any accepting run of AR⇒ on a tree
Enc(c1)⊗ Enc(c2) witnesses the existence of some run from c1 to c2.

Lemma D.2. Let S be some CPS. Let (q1, s1), (q2, s2) be configurations and let ρ be an
accepting run on T := Enc(q1, s1) ⊗ Enc(q2, s2). Then Conditions C1–C6 of the beginning
of this section hold and s1 ∈ MS(s2).

The proof consists of straightforward inductions.

Lemma D.3. Let S be some CPS. Let (q1, s1), (q2, s2) be configurations and let ρ be an
accepting run on T := Enc(q1, s1) ⊗ Enc(q2, s2). Let T1 := dom(T) \ dom(Enc(q1, s1)) and
T2 be the rightmost branch of Enc(q1, s1) without the root. Furthermore, for all d ∈ T1, let
sd := LStck(d,Enc(q2, s2)) and for each d ∈ T2, let sd := s1. For each d ∈ T1 ∪ T2 we have
ρ(d) ∈ M and there is a run ρS of S from (π1(ρ(d)), sd) to (π2(ρ(d)), IgM(d,Enc(q2, s2)))
such that for all 0 < i ≤ length(ρS), ρS(i) 6= s1.

Proof. The proof is by induction starting at the leaves. The base cases are the following.

• Assume that s1 = s2. Due to C1 and C2, the rightmost leaf d of T satisfies (π7(d), π8(d)) =
(R,S). Thus, ρ applies at d some transition of the form T3. Due to the existence of this
transition, we conclude that π1(ρ(d)) = π2(ρ(d))). Since sd = IgM(d,Enc(q2, s2)) = s1, we
conclude there is a loop of length 0 from (π1(ρ(d)), sd) to (π2(ρ(d)), IgM(d,Enc(q2, s2))).

• Assume that s1 6= s2. Let d be the rightmost leaf of T , i.e., d is the rightmost leaf
of Enc(q2, s2). Due to C1 and C2, (π7(d), π8(d)) = (R,N). Thus, ρ applies a tran-
sition of the form T13 whence π1(ρ(d)) = π2(ρ(d)). As in the previous case we ob-
tain sd = IgM(d,Enc(q2, s2)) = s2 and a run of length 0 connects (π1(ρ(d)), sd) with
(π2(ρ(d)), IgM(d,Enc(q2, s2))) because the two configurations agree.

TREE-AUTOMATICITY OF 2-CPG 55

Now let d ∈ T1 be a leaf of T that is not in the rightmost branch. Due to C1 and
C2, (π7(d), π8(d)) = (L,N). Thus, ρ applies a transition of the form T17. Note that
sd = LStck(d,Enc(q2, s2)) and IgM(d,Enc(q2, s2)) = clone2(sd). Due to the conditions on
the existence of a transition of form T17 one immediately concludes that there is a run
from (π1(ρ(d)), sd) to (π2(ρ(d)), IgM(d,Enc(q2, s2))).

Now let d be the rightmost leaf in T that is in Enc(q1, s1). Since d is not in the rightmost
branch of T and due to C1 and C2, (π7(d), π8(d)) = (L,S). Thus, ρ applies a transition of
the form T8. Note that sd = LStck(d,Enc(q2, s2)) and IgM(d,Enc(q2, s2)) = clone2(sd).
Due to the conditions on the existence of a transition of form T8 one immediately con-
cludes that there is a run from (π1(ρ(d)), sd) to (π2(ρ(d)), IgM(d,Enc(q2, s2))).

Note that all the runs obtained in the base cases do not visit the stack s1 except for the
first configuration in the run associated to the rightmost leaf of Enc(q1, s1).

Analogously to the base case, the inductive step consists of a lengthy but rather straight-
forward case distinction. Instead of stating all cases, we mention the crucial ideas underlying
the proof.

• For d ∈ {0, 1}∗ and i ∈ {0, 1} such that di is in the rightmost branch of Enc(q1, s1), then
sd = sdi = s1. Thus, the run associated to di serves as initial part of the run associated
to d.

• For d ∈ Enc(q2, s2) \ Enc(q1, s1) or d the rightmost leaf of Enc(q1, s1), let i ∈ {0, 1}
minimal such that di ∈ Enc(q2, s2). Then LStck(d, (q2, s2)) and LStck(di, (q2, s2)) differ
in one stack operation op. The transition of AR⇒ used at d ensures that there is a
run from (π1(ρ(d)),LStck(d, (q2, s2)) to (π1(ρ(di)),LStck(di, (q2, s2))) that performs this
operation op followed by a loop. The composition of this run with the run associated to
di serves as initial part of the run associated to d.

• If d is in the rightmost branch of Enc(q2, s2) and i ∈ {0, 1} is maximal such that di ∈
Enc(q2, s2), then IgM(d,Enc(q2, s2)) = IgM(di,Enc(q2, s2)) whence the run associated to
di serves as final part of the run associated to d.

• If d1 ∈ Enc(q2, s2), then IgM(d,Enc(q2, s2)) = IgM(d1,Enc(q2, s2)) whence the run asso-
ciated to d1 serves as final part of the run associated to d.

• If d is not in the rightmost branch of Enc(q2, s2) and d1 /∈ Enc(q2, s2), then we have
IgM(d,Enc(q2, s2)) = pop1(IgM(d0,Enc(q2, s2))). Furthermore, the transition of AR⇒

used at d ensures that there exists a run from (π2(ρ(d0)), IgM(d0,Enc(q2, s2)) to (π2(ρ(d)),
IgM(d,Enc(q2, s2))). This run serves as final part of the run associated to d.

• If d0, d1 ∈ Enc(q2, s2), then LStck(d1, (q2, s2)) = pop1(IgM(d0,Enc(q2, s2))). Further-
more, the existence of the transition of AR⇒ used at d ensures that there is a run from
(π2(ρ(d0)), IgM(d0,Enc(q2, s2))) to (π1(ρ(d1)),LStck(d1, (q2, s2))). This run is used to
connect the initial part induced by d0 with the final part induced by d1 in order to obtain
the run associated to d.

Remark D.4. Due to the transitions of the form T1 any accepting run of AR⇒ on a
tree Enc(q1, s1) ⊗ Enc(q2, s2) satisfies (π1(ρ(0)), π2(ρ(0))) = (q1, q2). Moreover, recall that
IgM(0,Enc(q2, s2)) = s2. Thus, the lemma implies that ((q1, s1), (q2, s2)) ∈ R⇒ if there is
an accepting run of AR⇒ on Enc(q1, s1)⊗ Enc(q2, s2).

Lemma D.5. Let S be some CPS. Let c1 := (q1, s1), c2 := (q2, s2) be configurations such
that s1 = pop2

k(s2) for some k ∈ N. Let ρS be a run from (q1, s1) to (q2, s2) witnessing
(c1, c2) ∈ R⇒. Then there is an accepting run of A on T := Enc(q1, s1)⊗ Enc(q2, s2).

56 A. KARTZOW

Proof. We define the accepting run ρ as follows. Set ρ(ε) := qI , ρ(d) := ⊥ for all d ∈ T+,
ρ(d) := q= for all d ∈ Enc(q1, s1) \ B where B is the rightmost branch of Enc(q1, s1), and
for all other d ∈ dom(T), set

ρ(d) := (qdi , q
d
e ,Sym(s′),CLvl(s′),Rt(s′),Lp(s′),X, Y)

where s′ := LStck(d,Enc(q2, s2)) if d /∈ B and s′ = s1 if d ∈ B and qdi , q
d
e ,X and Y are

defined as follows.

• qdi = q1 if d ∈ Enc(q1, s1). Otherwise let j ∈ dom(ρS) be maximal such that ρS(j) =
(q,LStck(d,Enc(q2, s2))) for some q ∈ Q. Set qdi := q.

• Let j ∈ dom(ρS) be maximal such that ρS(j) = (q, IgM(d,Enc(q2, s2))) for some q ∈ Q.
Set qde := q.

• Set X = R if d is in the rightmost branch of T and set X = L otherwise.
• Set Y = S if d is in the rightmost branch of Enc(q1, s1) and set Y = N otherwise.

A straightforward, but tedious induction shows that ρ is accepting on T . It relies on the
decomposition result for runs witnessing (c1, c2) ∈ R⇒ from Corollary 4.10.

Appendix E. Modifications for the Proof of Proposition 3.9 (cf. page 36)

We replace the automaton AR⇐ in the construction of Reach on the product of the pushdown
system with the automaton for the regular language L with the following version AR⇐′ . Let
QL be the states of a finite automaton recognising L, i0 ∈ QL be its initial state and F ⊆ QL

be its final states. We replace transitions of the form (qI , (q1, q2), (S, q1, q2,⊥, 1,Rt(⊥2)),⊥)
by transitions of the form (qI , (q1, q2), (S, (q1, i0), (q2, q̂),⊥, 1,Rt(⊥2)),⊥) for q1, q2 ∈ Q and
q̂ ∈ QL. Constructing ϕ with AR⇐′ instead of AR⇐ ensures that T1 encodes some configu-
ration (q, s) where the state q is in Q, but it checks for runs starting in ((q, i0), s).

Furthermore, we replace the automaton AR⇒ with the version AR⇒′ where we replace
the transitions of the form (qI , (q1, q2), (q1, q2,⊥, 1,Rt(⊥),Lp(⊥), R, S),⊥) ∈ ∆A with the
transitions (qI , (q1, q2), ((q1, q̂), (q2, qf),⊥, 1,Rt(⊥),Lp(⊥), R, S),⊥) ∈ ∆A for q1, q2 ∈ Q,
q̂ ∈ QL and qf ∈ F . Constructing ϕ with AR⇒′ instead of AR⇒ ensures that T2 encodes
some configuration (q, s) where the state q is in Q, but it checks for runs ending in ((q, qf), s)
for some final state qf of AL.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Main Result
	1.2. Outline of the Paper

	2. Preliminaries and Basic Definitions
	2.1. Logics
	2.2. Words and Trees
	2.3. Collapsible Pushdown Graphs
	2.4. Finite Automata and Automatic Structures

	3. Collapsible Pushdown Graphs are Tree-Automatic
	3.1. Encoding of Level 2 Stacks in Trees
	3.2. Tree-automaticity of Collapsible Pushdown Graphs
	3.3. Lower Bound for FO Model-Checking

	4. Decomposition of Runs
	4.1. Decomposition of General Runs
	4.2. Milestones, Loops and Increasing Runs
	4.3. Returns, 1-Loops and Decreasing Runs
	4.4. Decompositions for Runs in Relations R Down and R Up
	4.5. Computing Returns
	4.6. Computing (1-) Loops

	5. Regularity of the Reachability Predicate via Enc
	5.1. Connection between Milestones and
	5.2. Tree-Automaticity of Reachability
	5.3. Regularity of regular reachability

	6. Conclusion
	Acknowledgement
	References
	Appendix A. Proof of Bijectivity of Enc
	Appendix B. Automaton for Relation R-Leftarrow
	Appendix C. Automaton for Relation R-Downarrow
	Appendix D. Automaton for Relation R-Rightarrow
	Appendix E. Modifications for the Proof of Proposition 3.9 (cf. page 36)

