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Abstract. The uniform first-order theory of ground tree rewrite graphs is the set of all
pairs consisting of a ground tree rewrite system and a first-order sentence that holds in
the graph defined by the ground tree rewrite system. We prove that the complexity of

the uniform first-order theory of ground tree rewrite graphs is in ATIME(22
poly(n)

, O(n)).
Providing a matching lower bound, we show that there is some fixed ground tree rewrite

graph whose first-order theory is hard for ATIME(22
poly(n)

, poly(n)) with respect to logspace
reductions. Finally, we prove that there exists a fixed ground tree rewrite graph together
with a single unary predicate in form of a regular tree language such that the resulting
structure has a non-elementary first-order theory.

1. Introduction

A ground tree rewrite system is a term rewrite system where rules do not contain variables
(neither on the left-hand side nor on the right-hand side). So, rules replace subtrees by
subtrees. Ground tree rewrite systems were first studied in the term rewriting community
[7, 12, 13], where they are also known as ground term rewrite systems.

Recently, ground tree rewrite systems were also studied in the context of verification of
infinite state systems [30]. The main motivation for this is that ground tree rewrite systems
can be seen as a generalization of pushdown systems. These are a natural abstraction
of sequential recursive programs. Rules of a ground tree rewrite system can be applied
concurrently at different positions of a tree. This allows to model recursive progams with
the additional ability to spawn new subthreads that are hierarchically structured, which in
turn may terminate and return some values to their parents.

One of the most important and oldest decidability results for ground tree rewrite sys-
tems was shown more than 20 years ago by Dauchet and Tison [13]: The transition graph
of a ground tree rewrite system (called a ground tree rewrite graph in the following) has a
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decidable first-order theory. Actually, Dauchet and Tison even showed that the first-order
theory of a ground tree rewrite graph extended by the transitive closure of the edge relation
is decidable (one also says that first-order logic with reachability is decidable for ground
tree rewrite graphs). The proof of Dauchet and Tison uses a tree automata construction,
which yields a non-elementary algorithm. This leads to the question of complexity. While
the first-order theory of a ground tree rewrite graph extended by the transitive closure of
the edge relation may have non-elementary complexity (this holds already for the infinite
binary tree, which is a pushdown graph [42]), the precise complexity of the first-order the-
ories of ground tree rewrite graphs remained open. As the main contribution of this paper
we solve this problem. We prove the following:

• The first-order theory of every ground tree rewrite graph belongs to the complexity class

ATIME(22
poly(n)

, O(n)) (doubly exponential alternating time, where the number of alterna-
tions is bounded linearly), where n is the length of the input formula.

• There exists a fixed ground tree rewrite graph with an ATIME(22
poly(n)

, poly(n))-complete
first-order theory.

The upper bound of ATIME(22
poly(n)

, O(n)) even holds uniformly, which means that the
ground tree rewrite system may be part of the input, i.e., n is the sum of the length of the
input formula and the length of the description of the ground tree rewrite system. Let us

remark that the complexity class ATIME(22
poly(n)

, poly(n)) appears also in other contexts. For
instance, Presburger Arithmetic (the first-order theory of (N,+)) is known to be complete

for ATIME(22
poly(n)

, poly(n)) [2], see [11] for similar results.

The upper bound of ATIME(22
poly(n)

, O(n)) is shown by the method of Ferrante and
Rackoff [16]. Basically, the idea is to show the existence of a winning strategy of the
duplicator in an Ehrenfeucht-Fräıssé game, where the duplicator chooses “small” (w.r.t. to
a predefined norm) elements. This method is one of the main tools for proving upper bounds
for FO-theories. We divide the upper bound proof into two steps. In a first step, we will
reduce the FO-theory for a ground tree rewrite graph to the FO-theory for a very simple
word rewrite graph, where all word rewrite rules replace one symbol by another symbol. The
alphabet will consist of all trees, whose size is bounded by a singly exponential function
in the input size (hence, the alphabet size is doubly exponential in the input size; this is
the reason for the doubly exponential time bound). Basically, we obtain a word over this
alphabet from a tree t by cutting off some upward-closed set C in the tree and taking the
resulting sequence of trees. Intuitively, the set C consists of all nodes u of t such that the
subtree rooted in u is “large”. Here, “large” has to be replaced by a concrete value m ∈ N

such that a sequence of n rewrite steps applied to a tree t cannot touch a node from the
upward-closed set C. Clearly, m depends on n. In our context, n will be exponential in the
input size and so will m. In a second step, we provide an upper bound for the FO-theory
of a word rewrite graph of the above form.

Perhaps it is worth mentioning that for proving our upper bound result one cannot
make use of Gaifman’s locality theorem [18] since the resulting formulas in Gaifman normal
form can become non-elementary in the size of the original first-order formula [14]. An
elementary upper bound on the size of Gaifman normal formulas was shown for structures
of bounded degree in [14]. However, ground tree rewrite graphs have unbounded degree.
This also the reason why Hanf’s theorem [23] does not seem to be of any use for our problem.

For the lower bound, we prove in a first step hardness for 2NEXP (doubly exponential
nondeterministic time). This is achieved by an encoding of a (22

n
× 22

n
) tiling problem.



THE COMPLEXITY OF THE FIRST-ORDER THEORY OF GROUND TREE REWRITE GRAPHS 3

In this tiling problem, we are given a word w of length n over some fixed set of tiles, and
it is asked, whether this word can be completed to a tiling of an array of size (22

n
× 22

n
),

where the word w is an initial part of the first row. There exists a fixed set of tiles, for
which this problem is 2NEXP-complete. From this fixed set of tiles, we construct a fixed
ground tree rewrite graph such that the following holds: From a given word w of length n
over the tiles, one can construct (in logspace) a first-order formula that evaluates to true in
our fixed ground tree rewrite graph if and only if the word w is a positive instance of the
(22

n
× 22

n
) tiling problem. Our construction is inspired by [20], where it is shown that the

model checking problem for a fragment of the logic EF (consisting of those EF-formulas,
where on every path of the syntax tree at most one EF-operator occurs) over ground tree
rewrite graphs is complete for the class PNEXP. In a second step, we show that our 2NEXP

lower bound can easily be lifted to ATIME(22
poly(n)

, poly(n)). For this, we have to consider
an alternating version of the (22

n

× 22
n

) tiling problem.
We conclude the paper with a proof sketch for the following result: There exists a fixed

ground tree rewrite graph together with a single unary predicate in form of a regular tree
language such that the resulting structure has a non-elementary first-order theory. This
result is shown by a reduction from first-order satisfiability of finite binary words, which is
non-elementary [42]. It should be noted that the first-order theory of a pushdown graph
extended by regular unary predicates still has an elementary first-order theory (it is an
automatic structure of bounded degree, hence its first-order theory belongs to 2EXPSPACE
by a result from [27]).

A short version of this paper appeared in [22].

2. Related work

2.1. Other decidability and complexity results for ground tree rewrite systems.

Other important algorithmic problems that are decidable for ground tree rewrite systems
are:

• confluence [12, 37], which in fact can be decided in polynomial time [10, 19],
• reachability [7, 15],1 recurrent reachability [30, 31], and recurrent reachability with mul-
tiple regular fairness constraints [44],

• fair termination [43], and
• model checking certain fragments of LTL [45, 44].

The decidability of first-order logic with reachability for ground tree rewrite graphs implies
that model checking of the CTL-fragment EF is decidable for ground tree rewrite graphs;
the precise complexity was recently shown to be non-elementary [20].

1Actually, Brainerd [7] showed that a set of trees is regular if and only if it is the set of trees that can
be reached from a single tree via a ground tree rewriting system, where both translations are effective. This
generalizes a result of Büchi for strings.
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2.2. Pushdown graphs. As remarked above, ground tree rewrite systems generalize push-
down systems. Muller and Schupp proved that every pushdown graph (the transition graph
of a pushdown system) has a decidable monadic second-order (MSO) theory [36]. MSO ex-
tends first-order logic by the ability to quantify over subsets of the universe. Most temporal
logics (e.g. LTL, CTL, modal µ-calculus) can be translated into MSO and are therefore
decidable over pushdown graphs. Precise complexity results can be found in [5, 36, 49, 50].

Löding proved in [29] that a ground tree rewrite graph has bounded tree width if and
only if it is a pushdown graph.

2.3. Algorithmic limitations. Ground tree rewrite graphs do not share all the nice al-
gorithmic properties of pushdown graphs. For instance, the infinite grid is easily seen to
be (embeddable into) a ground tree rewrite graph, which implies that ground tree rewrite
graphs with an undecidable MSO-theory exist. In fact, most linear-time and branching-
time temporal logics such as LTL and CTL have undecidable model checking problems over
ground tree rewrite graphs (cf. [30, 44]).

Concerning the first-order theory, mild generalizations of ground tree rewrite systems
lead to undecidable first-order theories. Undecidability holds for linear and non-erasing
term rewrite systems [46], right ground Noetherian rewrite systems [33], and linear canonical
rewrite systems [48]. In all these papers, undecidability is shown for fragments of first-order
logic with only one quantifier alternation.

2.4. Formalisms related to ground tree rewrite systems. Several other extensions of
pushdown systems with multithreading capabilities have been considered in [6, 24, 34, 39].
Among these extensions, the class of process rewrite systems [34], which generalize both
Petri nets and pushdown systems by providing hierarchical structures to threads, seem to
have tight connections with ground tree rewrite systems. Lugiez and Schnoebelen proved
decidability of various first-order logics on PA-processes by using tree-automata techniques
[32]. Mayr’s process rewrite systems hierarchy [35] was recently refined via ground tree
rewrite systems [21].

Recently, Lin extended ground-tree rewrite systems with a finite control unit that is
acyclic but with possible self-loops, so called weakly-extended ground tree rewrite systems
[28]. It is shown that reachability, recurrent reachability and (the complement of) model
checking deterministic LTL is NP-complete for this extension.

The class of ground tree rewrite graphs is contained in the class of tree automatic
structures [3], whose FO-theories are (non-elementarily) decidable. In [27], it is shown that
(i) for every tree automatic structure of bounded degree (which means that the Gaifman-
graph has bounded degree) the FO-theory belongs to 3EXPTIME and that there is a fixed
tree automatic structure of bounded degree with a 3EXPTIME-complete FO-theory. Note
that in general, ground tree rewrite graphs are not of bounded degree.

2.5. Applications of the method of Ferrante and Rackoff. Recall that the method
of Ferrante and Rackoff is the main technical tool in our proof that the first-order theory

of every ground tree rewrite graph belongs to the complexity class ATIME(22
poly(n)

, O(n)).
Further applications of this technique in computer science can be found in [40] (for the
theory of queues) and in [25] (for nested pushdown trees).
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3. Preliminaries

By Z we denote the integers and by N = {0, 1, . . .} the set of non-negative integers. For
i, j ∈ Z we define the interval [i, j] = {i, i + 1, . . . , j} and [j] = [0, j].

For an alphabet A (possibly infinite), we denote with A+ = A∗ \ {ε} the set of all
non-empty words over A. The length of the word w ∈ A∗ is denoted by |w|. For B ⊆ A, we
denote with |w|B the number of occurrences of symbols from B in the word w.

Let f : A → B be a mapping. For A′ ⊆ A, we denote with f↾A′ : A′ → B the
restriction of f to A′. For sets A,B,C (where A and B may have a non-empty intersection)
and two mappings f : A → C and g : B → C, we say that f and g are compatible if
f↾(A ∩ B) = g↾(A ∩ B). Finally, for mappings f : A → C and g : B → C with A ∩ B = ∅,
we define f ⊎ g : A ∪ B → C as the mapping with (f ⊎ g)(a) = f(a) for a ∈ A and
(f ⊎ g)(b) = g(b) for b ∈ B.

3.1. Complexity theory. We will deal with alternating complexity classes, see [8, 38] for
more details. An alternating Turing-machine is a nondeterministic Turing-machine, where
the set of states is partitioned into existential and universal states. A configuration with a
universal (resp. existential) state is accepting if every (resp. some) successor configuration is
accepting. An alternation in a computation of an alternating Turing-machine is a transition
from a universal state to an existential state or vice versa. For functions t(n) and a(n) with
a(n) ≤ t(n) for all n ≥ 0 let ATIME(t(n), a(n)) denote the class of all problems that can be
decided on an alternating Turing-machine in time t(n) with at most a(n) alternations. It
is known that ATIME(t(n), t(n)) is contained in DSPACE(t(n)) if t(n) ≥ n [8].

3.2. Labelled graphs. A (directed) graph is a pair (V,→), where V is a set of nodes and

→ ⊆ V ×V is a binary relation. A labelled graph is a tuple G = (V,Σ, {
a
−→| a ∈ Σ}), where V

is a set of nodes, Σ is a finite set of actions, and
a
−→ is a binary relation on V for all a ∈ Σ. We

note that (labelled) graphs may have infinitely many nodes. For u, v ∈ V , we define dG(u, v)

as the length of a shortest undirected path between u and v in the graph (V,
⋃

a∈Σ
a
−→). For

n ∈ N and u ∈ V let Sn(G, u) = {v ∈ V | dG(u, v) ≤ n} be the sphere of radius n around
u. Moreover, for u1, . . . , uk ∈ V let Sn(G, u1, . . . , uk) =

⋃

1≤i≤k Sn(G, ui). We identify

Sn(G, u1, . . . , uk) with the substructure of G induced by the set Sn(G, u1, . . . , uk), where in
addition every ui (1 ≤ i ≤ k) is added as a constant. For two labelled graphsG1 and G2 with
node set V1 and V2, respectively, and nodes u1, . . . , uk ∈ V1, v1, . . . , vk ∈ V2, we will consider
isomorphisms f : Sn(G1, u1, . . . , uk) → Sn(G2, v1, . . . , vk). Such an isomorphism has to
map ui to vi. We write Sn(G1, u1, . . . , uk) ∼= Sn(G2, v1, . . . , vk) if there is an isomorphism
f : Sn(G1, u1, . . . , uk) → Sn(G2, v1, . . . , vk).

Lemma 3.1. Let G1,G2 be labelled graphs with the same set of actions and node sets V1
and V2, respectively. Let u ∈ V k

1 , v ∈ V k
2 , u ∈ V1, and v ∈ V2 such that u 6∈ S2n+1(G1, u)

and v 6∈ S2n+1(G2, v). Finally, let f : Sn(G1, u) → Sn(G2, v) and f
′ : Sn(G1, u) → Sn(G2, v)

be isomorphisms. Then f ⊎ f ′ : Sn(G1, u, u) → Sn(G2, v, v) is an isomorphism as well.

Proof. The lemma is obvious, once one realizes that the condition u 6∈ S2n+1(G1, u) implies
that the spheres Sn(G1, u) and Sn(G1, u) are disjoint and that there is no edge between the
two spheres (and similarly for the spheres Sn(G2, v) and Sn(G2, v)).
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Figure 1: A finite portion of the relation → from Example 3.2 extended to {a, b}+.

Later, we have to lift a relation → on a set A to a larger set. We will denote this new
relation again by →. Two constructions will be needed. Assume that → is a binary relation
on a set A and let A ⊆ B. We lift → to the set B+ of non-empty words over B as follows:
For all u, v ∈ B+, we have u → v if and only if there are x, y ∈ B∗ and a, b ∈ A such that
a→ b and u = xay, v = xby. Note that this implies |u| = |v|. The second construction lifts
→ ⊆ A × A from A to N × A as follows: For a, b ∈ A and m,n ∈ N let (m,a) → (n, b) if
and only if m = n and a→ b. Note that (N ×A,→) consists of ℵ0 many disjoint copies of
(A,→). Moreover, ((A ∪ {$})+ \ {$}+,→) (where $ 6∈ A is a new symbol) is isomorphic to
(N ×A+,→).

Example 3.2. For the relation → = {(a, b), (b, a)} the corresponding relation on {a, b}+

is shown in Figure 1. The relation → lifted to N × {a, b} is simply the disjoint union of all
2-cycles

(a, n) (b, n)

for all n ∈ N.

For a labelled graph G = (V,Σ, {
a
−→| a ∈ Σ}), we define the labelled graph

G
+ = (V +,Σ, {

a
−→| a ∈ Σ}). (3.1)

Note that by the above definition,
a
−→ is lifted to a relation on V +.

3.3. First-order logic. We will consider first-order logic (briefly FO) with equality over
labelled graphs. Thus, for a set Σ of actions, we have for each a ∈ Σ a binary relation symbol

a(x, y) in our signature. The meaning of a(x, y) is of course x
a

−→ y. If ϕ(x1, . . . , xn) is

a first-order formula with free variables x1, . . . , xn, G = (V,Σ, {
a
−→| a ∈ Σ}) is a labelled

graph, and v1, . . . , vn ∈ V , then we write G |= ϕ(v1, . . . , vn) if ϕ evaluates to true in G, when
variable xi is instantiated by vi (1 ≤ i ≤ n). The first-order theory (briefly FO-theory) of
a labelled transition graph G is the set of all first-order sentences (i.e., first-order formulas
without free variables) ϕ with G |= ϕ. In the final Section 6, we will consider the first-order
theory of a labelled graph with an additional unary predicate. The quantifier rank of a
first-order formula is the maximal number of nested quantifiers in ϕ. We will need the
following well known lemma, which goes back to work of Fischer and Rabin [17].

Lemma 3.3. Let Σ be a set of actions. Given a first-order formula θ(x, y) of quantifier rank
qr(θ) and a binary-coded integer j (let m be the number of 1-bits in the binary representation
of j), one can compute in logspace a first-order formula θj(x, y) of quantifier rank O(log(j)+

qr(θ)) and size O(m·log(j)+m·|θ|) such that for every labelled graph G = (V,Σ, {
a
−→| a ∈ Σ})

and all nodes u, v ∈ V we have: G |= θj(u, v) if and only if there is a directed path of length
j from u to v in the graph (V, {(s, t) | G |= θ(s, t)}).
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Proof. Before we define θj(x, y), let us inductively define for each k ∈ N a formula ψk(x, y)
such that for all u, v ∈ V we have G |= ψk(u, v) if and only if there is a directed path of
length 2k from u to v in the graph (V, {(s, t) | G |= θ(s, t)}). We define

ψ0(x, y) = θ(x, y), and

ψk(x, y) = ∃z∀u, v

(

(

(u = x ∧ v = z) ∨ (u = z ∧ v = y)
)

→ ψk−1(u, v)

)

for k ≥ 1.

Note that the size of ψk(x, y) is O(k + |θ|) and the quantifier rank is 3k + qr(θ).
Let U ⊆ N be the set of all positions of the binary representation of j whose bit is set

to 1, i.e., j =
∑

i∈U 2i. Let m = |U | and let h1, . . . , hm be some enumeration of U . We can

now define θj(x, y) as

θj(x, y) = ∃x1, . . . , xm+1

(

x1 = x ∧ xm+1 = y ∧
∧

i∈[1,m]

ψhi
(xi, xi+1)

)

.

From the binary representation of j, we can easily compute θj(x, y). Moreover, the size
of θj(x, y) is bounded by O(m · log(j) + m · |θ|) and the quantifier rank is bounded by
O(log(j) + qr(θ)).

One of most successful techniques for proving upper bounds for the complexity of first-
order theories is the method of Ferrante and Rackoff [16]. We will apply this method in
Section 4.2. The following result is shown in [16].2

Theorem 3.4. Let G be a labelled graph, and let V be the set of nodes of G. Assume that
for every node v ∈ V we have a norm |v| ∈ N (in our application, V will be a set of words
and the norm of a word will be its length). Let Vn = {v ∈ V | |v| ≤ n}. Moreover, for
k, ℓ ≥ 0, let ≡k,ℓ be an equivalence relation on the set V k and let H : N2 → N be a function

such that the following properties hold for all k, ℓ ∈ N, u, v ∈ V k:

(a) If u ≡k,0 v, then u and v satisfy the same quantifier-free formulas in the structure G.
(b) If u ≡k,ℓ v and ℓ > 0, then for all u ∈ V there exists v ∈ VH(k,ℓ) with (u, u) ≡k+1,ℓ−1

(v, v).

Then, for every quantifier-free formula ψ(x0, . . . , xℓ) and all quantifiers Q0, . . . , Qℓ ∈ {∃,∀}
we have that G |= Q0x0 · · ·Qℓxℓ : ψ(x0, . . . , xℓ) if and only if

G |= Q0x0 ∈ VH(0,ℓ)Q1x1 ∈ VH(1,ℓ−1) · · ·Qℓxℓ ∈ VH(ℓ,0) : ψ(x0, . . . , xℓ).

We will use Theorem 3.4 in Section 4.2, where the function H(k, ℓ) will be exponential
in k + ℓ.

3.4. Trees. Let � denote the prefix order on N∗, i.e., x � y for x, y ∈ N∗ if there is some
z ∈ N∗ such that y = xz. A set D ⊆ N∗ is called prefix-closed if for all x, y ∈ N∗, x � y ∈ D
implies x ∈ D. A ranked alphabet is a collection of finite and pairwise disjoint alphabets
A = (Ai)i∈[k] for some k ≥ 0 such that A0 6= ∅. For simplicity we identify A with

⋃

i∈[k]Ai.

A ranked tree (over the ranked alphabet A) is a mapping t : Dt → A, where Dt ⊆ [1, k]∗

satisfies the following:

• Dt is non-empty, finite, and prefix-closed, and

2The actual statement in [16] is stronger, but for our purpose the weaker statement in Theorem 3.4 is
sufficient.
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f

f f

g g a g

a g

b

a

Figure 2: A tree s

• for each x ∈ Dt with t(x) ∈ Ai we have x1, . . . , xi ∈ Dt and xj 6∈ Dt for each j > i.

We say that Dt is the domain of t and call its elements nodes. In case t(x) ∈ A2 for some
node x, then x1 is the left child and x2 the right child of x. A leaf of t is a node x with
t(x) ∈ A0. An internal node of t is a node, which is not a leaf. We also refer to ε ∈ Dt as
the root of t. By TreesA we denote the set of all ranked trees over the ranked alphabet A.
Define size(t) as the number of nodes in a tree t. It is easy to show that the number of all
trees from TreesA of size at most n is bounded by |A|n.

Example 3.5. Assume A0 = {a, b}, A1 = {g}, and A2 = {f}. Figure 2 shows a tree
s ∈ TreesA with size(s) = 11. The domain Ds of this tree is

{ε, 1, 2, 11, 12, 21, 22, 111, 121, 1211, 221}.

Let t be a ranked tree and let x be a node of t. For each x ∈ [1, k]∗ we define xDt =
{xy ∈ [1, k]∗ | y ∈ Dt} and x−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we denote the subtree
of t with root x, i.e., the tree with domain Dt↓x = x−1Dt defined as t↓x(y) = t(xy). Let
s, t ∈ TreesA and let x be a node of t. We define t[x/s] to be the tree that is obtained by
replacing t↓x in t by s, more formally Dt[x/s] = (Dt \ xDt↓x) ∪ xDs with

t[x/s](y) =

{

t(y) if y ∈ Dt \ xDt↓x

s(z) if y = xz with z ∈ Ds.

For two ranked trees s and t, let diff(s, t) = |Ds \Dt|. Thus diff(s, t) is the number of nodes
that belong to the tree s but not to the tree t.

Example 3.6. Consider the tree s from Figure 2 and the tree t from Figure 3. We have

Ds \Dt = {11, 12, 22, 111, 121, 1211, 221}

and hence diff(s, t) = 7.

Let C be a prefix-closed subset of Dt. We define the string of subtrees t \C as follows:
If C = ∅, then t \ C = t. If C 6= ∅, then t \C = t↓v1 · · · t↓vm , where v1, . . . , vm is a list of all
nodes from ((C ·N)∩Dt) \C in lexicographic order. Intuitively, we remove from the tree t
the prefix-closed subset C and list all remaining maximal subtrees. For n ∈ N and a tree t
we define the prefix-closed subset up(t, n) ⊆ Dt as

up(t, n) = {v ∈ Dt | size(t
↓v) > n}.

Note that t \ up(t, n) is a list of all maximal subtrees of size at most n in t, listed in
lexicographic order.
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f

a g

f

g a

g

b

Figure 3: A chain t

Example 3.7. Consider the tree s from Figure 2. Then

C = {ε, 1, 2, 12} ⊆ Ds

is prefix-closed. We have
s \ C = g(a), g(b), a, g(a)

(here, we denote trees by their corresponding term expressions, and we separate the trees
in the sequence s \ C with the symbol “,”). Moreover, we have C = up(s, 2).

A tree t ∈ TreesA is a chain if Dt 6= {ε} and for every internal node u ∈ Dt, there is
at most one child ui of u such that ui is internal. Hence, a chain t has a unique maximal
(with respect to the prefix relation) internal node max(t) ∈ N∗. Note that a chain consists
of at least two nodes.

Example 3.8. The tree t in Figure 3 is a chain with max(t) = 2111.

Lemma 3.9. Let A be a ranked alphabet and let ranks = {m ∈ N | m ≥ 1, Am 6= ∅}. Then,
for all n ≥ 1, the following are equivalent:

(a) There is a chain t ∈ TreesA with exactly n leaves.
(b) There is a tree t ∈ TreesA with exactly n leaves.
(c) There exist numbers dm ∈ N (for each m ∈ ranks) such that n = 1+

∑

m∈ranks dm·(m−1).

Proof. Implication (a) ⇒ (b) is trivial. Now, assume (b) and let t ∈ TreesA has exactly
n leaves. We show (c) by induction on the size of t. We distinguish two cases. The case
n = 1 is clear; set dm = 0 for all m ∈ ranks. Now, assume that t has n ≥ 2 leaves.
Then, there must exist an internal node u ∈ Dt such that all children of u are leaves. Let
1 ≤ a ≤ n be the rank of the symbol t(u). By replacing u by a leaf (labelled with an
arbitrary constant from A0), we get a strictly smaller tree with n − (a − 1) many leaves
(note that a = 1 is possible). Since a ≤ n we have n − (a − 1) ≥ 1. By induction, there
exist dm ∈ N (m ∈ ranks) such that n− (a− 1) = 1 +

∑

m∈M dm · (m− 1). Thus, we have
n = 1 + (da + 1) · (a− 1) +

∑

m∈ranks\{a} dm · (m− 1).

Finally, for the implication (c) ⇒ (a), assume that n = 1 +
∑

m∈ranks dm · (m − 1).
Take a chain t that consists of

∑

m∈ranks dm internal nodes, dm of which are labelled with a
symbol of rank m. All other nodes are leaves. It is a simple observation that t has exactly
n leaves.
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f(a,b) f(a,g(b)) f(a,g(g(b)))

f(g(a),b) f(g(a),g(b)) f(g(a),g(g(b)))

f(g(g(a)),b) f(g(g(a)),g(b)) f(g(g(a)),g(g(b)))

b

b

b

b

b

b

a a a

a a a

Figure 4: A finite part of the graph G(R)

The following lemma follows directly from Lemma 3.9.

Lemma 3.10. Let A be a ranked alphabet and let ranks = {m ∈ N | m ≥ 1, Am 6= ∅}. Then,
for every tree t ∈ TreesA and every prefix-closed subset C of Dt the following holds, where
n is the length of the string t \ C: There exist numbers dm ∈ N (for each m ∈ ranks) such
that n = 1 +

∑

m∈ranks dm · (m− 1).

3.5. Ground tree rewrite graphs. A ground tree rewrite system (GTRS) is tuple R =
(A,Σ, R), where A is a ranked alphabet, Σ is finite set of actions, andR ⊆ TreesA×Σ×TreesA

is a finite set of rewrite rules. A rule (s, a, s′) is also written as s
a

7−→ s′. The ground tree
rewrite graph defined by R is

G(R) = (TreesA,Σ, {
a

−→| a ∈ Σ}),

where for each a ∈ Σ, we have t
a

−→ t′ if and only if there exist a rule (s
a

7−→ s′) ∈ R and
x ∈ Dt such that t↓x = s and t′ = t[x/s′].

Example 3.11. We define a GTRS R = (A,Σ, R) as follows. Let A0 = {a, b}, A1 = {g},
and A2 = {f}, Σ = {a, b}, and let R consist of the following two rules:

a
a

7−→ g(a), b
b

7−→ g(b).

Take a tree t(a1, a2, . . . , an), where a1, . . . , an ∈ {a, b}, that does not contain a subtree
of the form g(a) or g(b). Then, the (weakly) connected component of G(R) that contains
t(a1, a2, . . . , an) consists of all trees of the form t(gi1(a1), g

i2(a2), . . . , g
in(an)) for i1, . . . , in ≥

0. These trees form an n-dimensional grid, where edges in dimension 1 ≤ j ≤ k are labelled
with aj. Figure 4 shows the connected component of G(R) that contains f(a, b).

The next two lemmas are obvious:

Lemma 3.12. Let R = (A,Σ, R) be a GTRS and let r be the maximal size of a tree
that appears in R. Let s and t be ranked trees such that dG(R)(s, t) ≤ n. Then size(t) ≤
size(s) + r · n.
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Lemma 3.13. Let R = (A,Σ, R) be a GTRS and let r be the maximal size of a tree that
appears in R. Let s and t be ranked trees such that diff(s, t) > r · n. Then dG(R)(s, t) > n.

Recall the definition of the graph G+ from (3.1).

Lemma 3.14. Let R = (A,Σ, R) be a GTRS and let r be the maximal size of a tree that
appears in R. Let t be a ranked tree, n ∈ N, and let C ⊆ up(t, r · n) be prefix-closed. Then
we have

Sn(G(R), t) ∼= Sn(G(R)+, t \ C).

Proof. Let t \ C = t1 · · · tm. Hence, there is a tree s with m leaves such that t results from
s by replacing the ith leaf of s by ti (1 ≤ i ≤ m), let us write t = s[t1, t2, . . . , tm] for this.
Recall that the subtree rooted in a node from C ⊆ up(t, r · n) has size strictly larger than
r ·n. Therefore, a node from C cannot be accessed by doing at most n rewrite steps. Hence,
every tree t′ ∈ Sn(G(R), t) can be written (uniquely) as t′ = s[t′1, t

′
2, . . . , t

′
m]. Moreover, the

mapping t′ 7→ t′1t
′
2 · · · t

′
m defines an isomorphism from Sn(G(R), t) to Sn(G(R)+, t \ C).

Remark 3.15. Note that if the word w ∈ Trees+A results from the string t\C by permuting
the trees in the string, then we still have Sn(G(R), t) ∼= Sn(G(R)+, w).

The main goal of this paper is to study the complexity of the following set that we call
the uniform first-order theory of ground tree rewrite graphs:

{(R, ϕ) | R = (A,Σ, R) is a GTRS, ϕ is an FO-sentence over the signature of G(R),

G(R) |= ϕ}.

4. An ATIME(22
poly(n)

, O(n)) upper bound

In this section we will prove the following result:

Theorem 4.1. The uniform first-order theory of ground tree rewrite graphs belongs to the

complexity class ATIME(22
poly(n)

, O(n)).

It suffices to prove Theorem 4.1 for the case that the underlying ranked alphabet A
contains a symbol of rank at least two. A ground tree rewrite graph, where all symbols
have rank at most 1 is in fact a suffix rewrite graph on words. Such a graph is first-order
interpretable in a full |Γ|-ary tree Γ∗ (with Γ finite), where the defining first-order formulas
can be easily computed from the suffix rewrite system. Finally, the first-order theory of
a full tree Γ∗ (with |Γ| ≥ 2) is complete for the class ATIME(2O(n), O(n)) (under log-lin
reductions) [11, 47].

The proof of Theorem 4.1 will be divided into two steps. In a first step, we will reduce
the FO-theory for a given ground tree rewrite graph to the FO-theory for a very simple
word rewrite graph of the form G+, where G is a finite labelled graph. Note that if V is the
set of nodes of G, then V + is the set of nodes of G+. Moreover, every edge in G+ replaces
a single symbol in a word by another symbol. In our reduction, the size of the set V will be
doubly exponential in the input size (which is the size of the input formula plus the size of
the input GTRS). In a second step, we will solve the FO-theory of a simple word structure
G+ on an alternating Turing machine. More precisely, we will show the following result:
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Theorem 4.2. There exists an alternating Turing-machineM , which accepts precisely those
pairs (G, ϕ), where G is a finite labelled graph and ϕ is an FO-sentence over the signature
of G with G+ |= ϕ. Moreover, M runs in time O(nℓ+1 · |ϕ|), where n is the number of nodes
of G and ℓ is the quantifier rank of ϕ. Finally, the number of alternations is bounded by
O(ℓ).

We prove Theorem 4.2 in Section 4.2. Together with our first reduction, Theorem 4.2
yields Theorem 4.1.

4.1. Proof of Theorem 4.1. In this section, we will prove Theorem 4.1. LetR = (A,Σ, R)
be a GTRS over the ranked alphabet A and let r be the maximal size of a tree that appears
in R. Let G = G(R) and let ϕ be an FO-sentence of quantifier rank ℓ+1 over the signature
of G. We want to check, whether G |= ϕ. Define the sets

ranks = {m ∈ N | m ≥ 1, Am 6= ∅},

M = {1 +
∑

m∈ranks

dm · (m− 1) | dm ∈ N for m ∈ ranks}.

Note that by Lemma 3.9, we have n ∈ M if and only if there exists a tree (or chain)
t ∈ TreesA with exactly n leaves. Also note that M = N \ {0} in case A2 6= ∅. Let

p = max(ranks) ≥ 2

denote the maximal rank of a symbol from A. We define a function

int :M → N ∪ {∞}

as follows: Letm ∈M . If A1 6= ∅ (i.e., there exists a unary symbol), then we set int(m) = ∞.
If A1 = ∅, then let int(m) be the maximal number of internal nodes in a tree t ∈ TreesA with
exactly m leaves (this maximum exists if A1 = ∅; in fact int(m) ≤ m − 1). The intuition
behind setting int(m) = ∞ in case A1 6= ∅ is that there exist arbitrarily large trees with m
leaves. Note that int(1) = 0.

Lemma 4.3. For every m ∈M we have int(m) ≥ m−1
p−1 .

Proof. It suffices to show the lemma for the case A1 = ∅. In this case, the lemma can be
shown by induction on m. The case m = 1 is clear. Let m ∈ M \ {1} and let t ∈ TreesA
be a tree with m leaves and int(m) many internal nodes. Let u ∈ Dt be an internal node
such that all children of u are leaves. Let t(u) ∈ Aq with q ≥ 2. If we replace u by a leaf,
we obtain a tree with int(m) − 1 many internal nodes and m − q + 1 ∈ M many leaves.
We must have int(m− q + 1) = int(m) − 1 (if there would be a tree with m− q + 1 leaves
and more than int(m)− 1 many internal nodes, then we would obtain a tree with m leaves
and more than int(m) many internal nodes by replacing an arbitrary leaf by a node with q
children). Moreover, by induction (note that q ≥ 2), we have int(m− q+1) ≥ m−q

p−1 . Hence,

we get int(m) ≥ m−q
p−1 + 1 = m−q+p−1

p−1 ≥ m−1
p−1 (since p ≥ q).
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Lemma 4.4. Assume that A1 = ∅. For every m ∈ M there exists a chain with m leaves
and int(m) many internal nodes.

Proof. Let m ∈ M . By definition, there exists a tree t ∈ TreesA with m leaves and int(m)
internal nodes. It is easy to restructure t into a chain so that the number of leaves and the
number of internal nodes is not changed. More precisely, take a tree t = f(t1, . . . , tn) (in
term notation) with m leaves and int(m) internal nodes, which is not a chain. By induction,
we can assume that every ti (1 ≤ i ≤ n) is either a chain or the constant a ∈ A0 (for some
arbitrarily chosen a ∈ A0). Since t is not a chain there exist 1 ≤ i < j ≤ n such that ti and
tj are chains. Choose an arbitrary child x of the the maximal internal node max(ti) of the
chain ti; hence x is a leaf of ti. Take the tree

t′ = f(t1, . . . , ti−1, ti[x/tj ], ti+1, . . . , tj−1, a, tj+1, . . . , tn).

This tree has the same number of leaves and internal nodes as t. Continuing this way, we
finally obtain a chain.

For numbers 1 ≤ i ≤ j let

T [i, j] = {t ∈ TreesA | i ≤ size(t) ≤ j}.

For 0 ≤ i ≤ ℓ let

σ(i) = ℓ · r · 7 · 4i ·
(

(p − 1) · r · 4i + 1
)

+ p · r · 4i ≤ r2 · p · 2O(ℓ). (4.1)

Note that we have

σ(i+ 1) ≥ σ(i) + p · r · 3 · 4i ≥ σ(i) + r · 3 · 4i (4.2)

for all 0 ≤ i ≤ ℓ. Let
U = T [1, σ(ℓ) + r · p · 4ℓ].

Moreover, for every 0 ≤ i ≤ ℓ let

Ui = T [1, σ(i)] ⊆ U,

Vi = T [1, r · 4i] ⊆ U, (4.3)

Wi = {α(u1, . . . , uq) | q ≥ 1, α ∈ Aq, u1, . . . , uq ∈ Vi} \ Vi ⊆ U. (4.4)

Note that size(t) ≤ r · p · 4i + 1 for all t ∈ Wi and Vi ∩Wi = ∅. We consider the set U as a
finite alphabet and the sets Ui, Vi, and Wi as subalphabets. Note that

|U | ≤ |A|σ(ℓ)+r·p·4ℓ . (4.5)

Define the language
Z = {w ∈ U+ | |w| ∈M} (4.6)

over the alphabet U . Note that Z = U+ in case A2 6= ∅. On the set (N × Z) ∪ U we define
a labelled graph S1 with label set Σ as follows: Take an action σ ∈ Σ. By our general

lifting constructions from Section 3.2, the binary relation
σ
−→ on TreesA is implicitly lifted

to a binary relation on Trees+A and N×Trees+A. Since (N×Z)∩U = ∅,
σ
−→ can be viewed as

a binary relation on (N×Z)∪U ; simply take the disjoint union of the relations on (N×Z)
and U . Finally, we define the Σ-labelled graph

S1 = ((N × Z) ∪ U, Σ, {
σ
−→| σ ∈ Σ}). (4.7)



14 S. GÖLLER AND M. LOHREY

For a word w = u1u2 · · · un ∈ U∗ with u1, . . . , un ∈ U we define

||w|| =
n
∑

i=1

size(ui).

We define the sets

Zi = {w ∈ V ∗
i WiV

∗
i ∩ Z | ||w||+ int(|w|) > σ(i)}, (4.8)

Li = (N × Zi) ∪ Ui.

Note that Zi = V ∗
i WiV

∗
i ∩ Z in case A1 6= ∅ (clearly, we set n+∞ = ∞ for every number

n). Assume that the first-order sentence ϕ is of the form Qℓxℓ · · · Q1x1 Q0x0 : ψ, where
Q0, . . . , Qℓ ∈ {∀,∃} and ψ is quantifier-free. For 0 ≤ i ≤ ℓ − 1 and elements si+1, . . . , sℓ ∈
(N × Z) ∪ U let us define the set

Li(si+1, . . . , sℓ) = Li ∪ S3·4i(S1, si+1, . . . , sℓ).

We define a first-order sentence ϕ1 (with quantifiers relativized to the sets Li(si+1, . . . , sℓ))
over the signature of S1 as

ϕ1 = Qℓxℓ ∈ Lℓ Qℓ−1xℓ−1 ∈ Lℓ−1(xℓ) · · · Q0x0 ∈ L0(x1, . . . , xℓ) : ψ. (4.9)

We want to show that G |= ϕ if and only if S1 |= ϕ1. For this, we need the following lemma,
which is the main technical contribution in this section. The reader might skip the proof at
first reading.

Lemma 4.5. Assume that

• 0 ≤ i ≤ ℓ,
• s = (si+1, . . . , sℓ) ∈ ((N × Z) ∪ U)ℓ−i with sj ∈ Lj ∪ S3·4j (S1, sj+1, . . . , sℓ) for all j ∈
[i+ 1, ℓ],

• t = (ti+1, . . . , tℓ) ∈ Treesℓ−i
A , and

• f : S4i+1(S1, s) → S4i+1(G, t) is an isomorphism such that f↾S4i+1(S1, sj) is the identity
for all j ∈ [i+ 1, ℓ] with tj ∈ Ui+1 or sj ∈ Ui+1.

Then, the following holds:

(a) For all ti ∈ TreesA there exists si ∈ Li ∪ S3·4i(S1, s) and an isomorphism

g : S4i(S1, si, s) → S4i(G, ti, t)

such that f and g are compatible3 and g↾S4i(S1, sj) is the identity for all j ∈ [i, ℓ] with
tj ∈ Ui or sj ∈ Ui.

(b) For all si ∈ Li ∪ S3·4i(S1, s) there exists ti ∈ TreesA and an isomorphism

g : S4i(S1, si, s) → S4i(G, ti, t)

such that f and g are compatible and g↾S4i(S1, sj) is the identity for all j ∈ [i, ℓ] with
tj ∈ Ui or sj ∈ Ui.

Before we prove the lemma, let us provide some intuition. For case (a) we will basically
distinguish two cases: In case ti is “close” to some tree in the tuple t, then the simulating
si can safely be chosen as ti itself. In case ti is “far” to all trees in t, we distinguish two
cases: Either the size of ti exceeds σ(i) from (4.1) or not. If |ti| > σ(i), then si will be
chosen as a pair from {n} × Zi for some fresh number n that does not appear as a first
component of any element in s, and where the second component of si consists basically

3Recall the definition of compatible functions from the beginning of Section 3.
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of ti \ C for some prefix-closed subset C of ti’s nodes. Intuitively, this means that si does
not have to be “too big” in order to simulate ti: only “small” subtrees of ti have to be
accounted for. Lemma 3.14 will be crucial. In case |ti| ≤ σ(i), we can prove that we can
set si = ti ∈ Ui. For case (b) we can proceed similarly, but the main crux is that for each
element si ∈ N×Zi we can build a tree ti ∈ TreesA such that the spheres of radius 4i around
si and ti are isomorphic. For building the latter trees, we have to distinguish the case when
A1 6= ∅ and the case when A1 = ∅.

Proof. Let f : S4i+1(S1, s) → S4i+1(G, t) be an isomorphism such that f↾S4i+1(S1, sj) is
the identity for all i + 1 ≤ j ≤ ℓ with tj ∈ Ui+1 or sj ∈ Ui+1. Let us first prove statement
(a). Let ti ∈ TreesA. We distinguish two cases:

Case 1. ti ∈ S3·4i(G, t). Note that this implies that ti belongs to the range of the isomor-
phism f and that

S4i(G, ti, t) ⊆ S4i+1(G, t).

Then, we set si = f−1(ti) ∈ S3·4i(S1, s). We define g as the restriction of f to the set
S4i(S1, si, s) ⊆ S4i+1(S1, s). Now, assume that ti ∈ Ui, i.e., size(ti) ≤ σ(i). We have to
show that f↾S4i(S1, si) is the identity. Let tj (i + 1 ≤ j ≤ ℓ) such that dG(ti, tj) ≤ 3 · 4i.
With Lemma 3.12 it follows

size(tj) ≤ size(ti) + r · 3 · 4i ≤ σ(i) + r · 3 · 4i
(4.2)

≤ σ(i+ 1).

Hence, tj ∈ Ui+1 and f↾S4i+1(S1, sj) is the identity. Since dS1(si, sj) = dG(ti, tj) ≤ 3 · 4i,
we have S4i(S1, si) ⊆ S4i+1(S1, sj). It follows that f↾S4i(S1, si) is the identity. If si ∈ Ui,
then we can argue analogously.

Case 2. ti 6∈ S3·4i(G, t). We will find si ∈ Li and an isomorphism f ′ : S4i(S1, si) → S4i(G, ti)
such that si 6∈ S3·4i(S1, s). Then, Lemma 3.1 implies that g = (f↾S4i(S1, s)) ⊎ f ′ is an
isomorphism from S4i(S1, si, s) to S4i(G, ti, t), which is compatible with f . Moreover, we
will show that if ti ∈ Ui or si ∈ Ui, then f

′ is the identity.
In order to find si, let ti \ up(ti, r · 4

i) = u1 · · · um. Recall that the latter string is
the lexicographic order of all maximal subtrees of ti whose size is at most r · 4i. Hence,
size(uj) ≤ r · 4i for each j, i.e., uj ∈ Vi (see (4.3)).

Case 2.1. size(ti) > σ(i). We must have ti 6= u1, because otherwise size(ti) ≤ r · 4i ≤ σ(i),
which is a contradiction. Therefore, there must exist 1 ≤ j ≤ m, a symbol α ∈ A of rank
q ≥ 1, and a prefix-closed subset C ⊆ up(ti, r · 4

i) such that α(uj , . . . , uj+q−1) ∈ Wi (see
(4.4)) and

ti \ C = u1 · · · uj−1α(uj , . . . , uj+q−1)uj+q · · · um.

Let w = ti \C. By Lemma 3.10, we have |w| ∈M . By the definition of the mapping int, we
have ||w||+ int(|w|) ≥ size(ti) and hence ||w|| + int(|w|) > σ(i) by assumption. Thus, we get
w ∈ Zi by definition of Zi in (4.8). Choose a number n ∈ N such that n does not appear as
a first component of a pair from {si+1, . . . , sℓ} ∩ (N × Z). Finally, we set

si = (n,w) ∈ N × Zi ⊆ Li.

Due to the choice of n, we have si 6∈ Sρ(S1, s) for all ρ. Moreover, with Lemma 3.14 we get
S4i(S1, si) ∼= S4i(G, ti). Finally, size(ti) > σ(i), i.e., ti 6∈ Ui, and si 6∈ U .

Case 2.2. size(ti) ≤ σ(i), i.e., ti ∈ Ui. We set si = ti ∈ Ui. Note that S4i(G, ti) ⊆ U ,
which implies S4i(S1, si) = S4i(G, ti). Assume that si ∈ S3·4i(S1, s). We will deduce a
contradiction. Let i+ 1 ≤ j ≤ ℓ such that dS1(si, sj) ≤ 3 · 4i. Since si ∈ U , we must have
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sj ∈ U as well (there is no path in S1 between the sets U and N × Z). Moreover, with
Lemma 3.12 we get

size(sj) ≤ size(si) + r · 3 · 4i ≤ σ(i) + r · 3 · 4i
(4.2)

≤ σ(i+ 1),

i.e., sj ∈ Ui+1. This implies that f↾S4i+1(S1, sj) is the identity. Hence, ti ∈ S3·4i(G, tj),
a contradiction. We can finally choose for f ′ the identity isomorphism on S4i(S1, si) =
S4i(G, ti). This proves (a).

Let us now prove (b). Let si ∈ Li ∪ S3·4i(S1, s). Again, we distinguish two cases.

Case 1. si ∈ S3·4i(S1, s). This implies

S4i(S1, si, s) ⊆ S4i+1(S1, s).

We set ti = f(si) ∈ S3·4i(G, t). We can conclude as in Case 1 for the proof of point (a)
above.

Case 2. si 6∈ S3·4i(S1, s). Hence, si ∈ Li. We will find ti ∈ TreesA and an isomorphism
f ′ : S4i(S1, si) → S4i(G, ti) such that ti 6∈ S3·4i(G, t). Then, Lemma 3.1 implies that the
mapping g = (f↾S4i(S1, s))⊎ f

′ is an isomorphism from S4i(S1, si, s) to S4i(G, ti, t), which
is compatible with f . Moreover, we will show that if ti ∈ Ui or si ∈ Ui, then f ′ is the
identity.

Case 2.1. si ∈ Ui ⊆ TreesA. We set ti = si ∈ Ui, which implies S4i(G, ti) ⊆ U . Thus,
S4i(S1, si) = S4i(G, ti). Assume that ti ∈ S3·4i(G, t). We will deduce a contradiction. Let
i+ 1 ≤ j ≤ ℓ such that dG(ti, tj) ≤ 3 · 4i. Lemma 3.12 implies

size(tj) ≤ size(ti) + r · 3 · 4i ≤ σ(i) + r · 3 · 4i
(4.2)

≤ σ(i+ 1).

This implies that f↾S4i+1(S1, sj) is the identity. Hence, si ∈ S3·4i(S1, sj), a contradiction.
We can finally choose for f ′ the identity isomorphism on S4i(S1, si) = S4i(G, ti).

Case 2.2. si ∈ N × Zi. Let si = (n, u1 · · · um) with u1, . . . , um ∈ Vi ∪ Wi, m ∈ M ,
and ||u1 · · · um|| + int(m) > σ(i). There is exactly one 1 ≤ j ≤ m with uj ∈ Wi. Let
uj = α(v1, . . . , vq) with q ≥ 1, α ∈ Aq, and v1, . . . , vq ∈ Vi. Define the string

w = u1 · · · uj−1v1 · · · vquj+1 · · · um (4.10)

of length m+ q − 1. Since m ∈M , we also have m+ q − 1 ∈M .

Case 2.2.1. A1 6= ∅. Then, we can choose for ti a tree with the following properties:

• ti \ up(ti, r · 4
i) = w. For this, we connect all trees u1, . . . , um to one tree using a chain

of symbols of rank at least 2, starting from uj ∈ Wi. Since m ∈ M , this is possible by
Lemma 4.4 (applied to the ranked alphabet A \ A1).

• ti 6∈ S3·4i(G, t) and size(ti) > σ(i). This can be enforced by adding a long enough chain
of unary symbols to the root.

With Lemma 3.14, the first point implies S4i(S1, si) ∼= S4i(G, ti). Moreover, since size(ti) >
σ(i), we have ti 6∈ Ui.

Case 2.2.2. A1 = ∅ and thus int(m) <∞. Note that ||w|| = ||u1 · · · um|| − 1, i.e.,

||w|| + int(m) = ||u1 · · · um||+ int(m)− 1 ≥ σ(i).

Every tree in the string w has size at most r · 4i. Hence, we have ||w|| ≤ (m+ q − 1) · r · 4i.
We get

(m+ q − 1) · r · 4i + int(m) ≥ σ(i).
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Moreover, since int(m) ≥ m−1
p−1 by Lemma 4.3, we have m+ q − 1 ≤ int(m) · (p − 1) + q ≤

int(m) · (p− 1) + p. We get

(int(m) · (p − 1) + p) · r · 4i + int(m) ≥ σ(i).

Solving this inequality for int(m) yields

int(m) ≥
σ(i)− p · r · 4i

(p− 1) · r · 4i + 1
.

Plugging in the definition of σ(i) from (4.1) yields

int(m) ≥ ℓ · r · 7 · 4i. (4.11)

We now define ℓ+ 1 different trees t′1, . . . , t
′
ℓ+1 as follows.

We first fix a sequence α1, . . . , αint(m) of symbols from A\A0 such that that every chain,

where the jth internal node is labelled with αj has exactly m leaves. By Lemma 4.4 such a
sequence exists. In the following, we consider chains with int(m) + 1 many internal nodes
such that the following hold:

• The jth internal node (1 ≤ j ≤ int(m)) is labelled with αj and the maximal internal node
is labelled with α ∈ Aq (thus, such a chain has m+ q − 1 leaves).

• Every internal node belongs to {1, 2}∗ (thus, every internal node, which is not the root,
is either the first or the second child of its parent node).

• All leaves in the chain are labelled with some fixed constant ✷ ∈ A0.

This means that such a chain is uniquely determined by its maximal internal node u =
max(t) ∈ {1, 2}int(m). We write t = chain(u).

Let u, v ∈ {1, 2}int(m) such that u = xay and v = xbz with x, y, z ∈ {1, 2}∗, a, b ∈ {1, 2},
a 6= b. Define diff(u, v) = |y| + 1 (= |z| + 1). Recall also the definition of the diff-value for
two trees from Section 3.4. Then, we have

diff(chain(u), chain(v)) > diff(u, v). (4.12)

In fact, diff(chain(u), chain(v)) ≥ 2 · diff(u, v) holds.
Since int(m) ≥ ℓ · r · 7 · 4i by (4.11), we can find ℓ+1 strings w1, . . . , wℓ+1 ∈ {1, 2}int(m)

such that for all k 6= k′ we have

diff(wk, wk′) ≥ r · 7 · 4i. (4.13)

We may for instance set

wk = 1int(m)−ℓ·r·7·4i1(k−1)·r·7·4i2(ℓ−k+1)·r·7·4i .

Let us define the chain ck = chain(wk) for all 1 ≤ k ≤ ℓ+1. Hence, (4.12) and (4.13) imply

diff(ck, ck′) > r · 7 · 4i (4.14)

for all k 6= k′. Moreover, every chain ck has exactly m + q − 1 leaves. Finally, the tree t′k
is obtained from the chain ck as follows: We replace the q children of the maximal internal
node max(ck) (which is labelled with α ∈ Aq) by v1, . . . , vq (in this order). All other m− 1
leaves are replaced by the trees u1, . . . , uj−1, uj+1, . . . , um (the order does not matter). It
follows that the string t′k \ up(t

′
k, r · 4

i) is a permutation of the string w from (4.10). With
Lemma 3.14 and Remark 3.15 this ensures that

S4i(S1, si) ∼= S4i(G, t
′
k)
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for all 1 ≤ k ≤ ℓ+1. Moreover, since each of the trees u1, . . . , uj−1, v1, . . . , vq, uj+1, . . . , um ∈
Vi has size at most r · 4i, the number of nodes in the subtree of t′k rooted at a leaf of ck may
grow by at most r · 4i, when we replace the leaf by one of the trees u1, . . . , uj−1, v1, . . . , vq,
uj+1, . . . , um. This implies

diff(t′k, t
′
k′) ≥ diff(ck, ck′)− r · 4i

(4.14)
> r · 6 · 4i,

provided k 6= k′. Hence, Lemma 3.13 implies

dG(t
′
k, t

′
k′) > 6 · 4i (4.15)

for all k 6= k′. We claim that there is at least one 1 ≤ k ≤ ℓ+ 1 such that t′k 6∈ S3·4i(G, t).
In order to obtain a contradiction, assume that for each 1 ≤ k ≤ ℓ + 1 there exists some
th (i + 1 ≤ h ≤ ℓ) such that dG(t

′
k, th) ≤ 3 · 4i. Since there are only ℓ − i ≤ ℓ such trees

th, the pigeon hole principle implies that there exist k 6= k′ and h with dG(t
′
k, th) ≤ 3 · 4i

and dG(t
′
k′ , th) ≤ 3 · 4i. Hence, dG(t

′
k, t

′
k′) ≤ 6 · 4i, which contradicts (4.15). We finally

set ti = t′k, where k is chosen such that t′k 6∈ S3·4i(G, t). Finally, note that size(ti) =
||u1 · · · um|| + int(m) > σ(i) (i.e., ti 6∈ Ui) and si 6∈ U . This concludes the proof of the
lemma.

Lemma 4.5 allows us to prove the following lemma:

Lemma 4.6. Assume that

• −1 ≤ i ≤ ℓ,
• s = (si+1, . . . , sℓ) ∈ ((N×Z)∪U)ℓ−i with sj ∈ Lj ∪S3·4j(sj+1, . . . , sℓ) for all j ∈ [i+1, ℓ],

• t = (ti+1, . . . , tℓ) ∈ Treesℓ−i
A , and

• f : S4i+1(S1, s) → S4i+1(G, t) is an isomorphism such that f↾S4i+1(S1, sj) is the identity
for all j ∈ [i+ 1, ℓ] with tj ∈ Ui+1 or sj ∈ Ui+1.

Then, for every quantifier-free first-order formula ψ over the signature of G and all quanti-
fiers Q0, . . . , Qi ∈ {∀,∃} we have

S1 |= Qixi ∈ Li(s) · · ·Q0x0 ∈ L0(x1, . . . , xi, s) : ψ(x0, . . . , xi, s)

⇐⇒

G |= Qixi · · ·Q0x0 : ψ(x0, . . . , xi, t).

Proof. The lemma can be shown by induction on i, starting with i = −1. For the induction
base (i = −1), note that the existence of the isomorphism f ensures that s and t satisfy
the same quantifier-free formulas. The induction step uses Lemma 4.5 and the classical
back-and-forth argument from the proof of the Ehrenfeucht-Fräıssé-Theorem.

Setting i = ℓ in Lemma 4.6, it follows G |= ϕ if and only if S1 |= ϕ1, where ϕ1 is from
(4.9).

For the remainder of the poof of Theorem 4.1, we proceed as follows: We simplify the
sentence ϕ1 (which is not an ordinary first-order sentence due to the additional constraints
for the variables x0, . . . , xℓ) and the structure S1 further, so that we can finally apply
Theorem 4.2. In a first step (Step 1 below), we eliminate in the formula ϕ1 the relativation of
the variables xi to the spheres S3·4i(S1, xi+1, . . . , xℓ) ⊆ Li(xi+1, . . . , xℓ). Then, the structure
S1 will be freplaced by an isomorphic structure S3 (using an intermediate isomorphic copy
S2). These is done in Step 2 and Step 3 below. The structure S3 will be almost of the
form T+ for a finite labelled graph T (these are the structures appearing in Theorem 4.2).
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The only difference is that the universe of S3 is a regular language of the form ∆∗Θ∆∗ (for
finite alphabets ∆ and Θ) instead of the set of all non-empty finite words (as it is the case
for T+). Also the constraint sets Li ⊆ Li(xi+1, . . . , xℓ) from S1 will be mapped to simple
regular languages in S3. We finally transform S3 into a structure S4 = T+ by enlarging
the finite alphabet over which words from S3 are defined (Step 4).

Step 1. Recall that quantifiers in ϕ1 are relativized to the sets

Li(xi+1, . . . , xℓ) = Li ∪ S3·4i(S1, xi+1, . . . , xℓ).

Note that xi ∈ S3·4i(S1, xi+1, . . . , xℓ) means that
∨ℓ

j=i+1 dS1(xi, xj) ≤ 3 · 4i holds. By

Lemma 3.3 we can find an equivalent first-order formula of size O((ℓ− i) · i+(ℓ− i) · |Σ|) ≤
O(ℓ2 + ℓ · |Σ|) and quantifier rank O(i) ≤ O(ℓ) (we take the formula θ(x, y) = (x =
y ∨

∨

σ∈Σ σ(x, y) ∨ σ(y, x)) in Lemma 3.3; note that the binary representation of 3 · 4i has
only 2 1-bits). After replacing the constraints xi ∈ S3·4i(S1, xi+1, . . . , xℓ) for 1 ≤ i ≤ ℓ, the
resulting equivalent sentence has size |ϕ|+O(ℓ3 + ℓ2 · |Σ|) and quantifier rank O(ℓ).

Step 2. It remains to eliminate constraints of the form xi ∈ Li = (N×Zi)∪Ui. In order to
do this, we will change the labelled graph S1 to a labelled graph of the form T+ for a finite
labelled graph T. The basic idea will be to change the alphbet U by taking words over of U
of some bounded length as the new symbols; the resulting alphabet will be the set U ′ ∪U ′′

below.
In the following, we assume that A1 = ∅ (and hence int(m) < ∞ for all m); the case

A1 6= ∅ is the simpler one.
In order to cope with the length constraint |w| ∈M in the definition of the set Zi from

(4.8), we define for 0 ≤ i ≤ ℓ the sets

U ′ = {w ∈ U+ | |w| + 1 ∈ ranks},

V ′
i = {w ∈ V +

i | |w|+ 1 ∈ ranks} ⊆ U ′.

We have

|U ′| ≤ (|U |+ 1)p−1
(4.5)

≤ (|A| + 1)(p−1)·(σ(ℓ)+p·r·4ℓ)
(4.1)

≤ |A|2
O(ℓ)p2·r2 . (4.16)

Moreover, for 0 ≤ i ≤ ℓ let us define W ′
i as the set of all minimal words (with respect to

the factor relation on words) w ∈ V ∗
i WiV

∗
i with |w| ∈ M (and hence w ∈ Z by (4.6)) and

||w||+ int(|w|) > σ(i) (and hence w ∈ Zi by (4.8)). It follows that for such a word w we have

||w||+ int(|w|) − (p − 1) · r · 4i − 1 ≤ σ(i).

Since |w| ≤ ||w|| and int(|w|) ≥ |w|−1
p−1 by Lemma 4.3, we have

|w| +
|w| − 1

p− 1
− (p− 1) · r · 4i − 1 ≤ σ(i)

or equivalently

|w| ≤
p− 1

p
· σ(i) +

(p − 1)2

p
· r · 4i + 1.

Hence, for all w ∈W ′
i we have

|w| ≤ σ(i) + p · r · 4i + 1. (4.17)

Let us set

γ = σ(ℓ) + p · r · 4ℓ + 1
(4.1)

≤ p · r2 · 2O(ℓ) + p · r · 4ℓ + 1 = p · r2 · 2O(ℓ), (4.18)
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which is an upper bound for the right-hand side of (4.17). Note that γ is exponential in our
input size. Let

U ′′ = {w ∈ Z | |w| ≤ γ},

which contains all alphabets W ′
i (0 ≤ i ≤ ℓ) as well as U . We have

|U ′′| ≤ (|U |+ 1)γ
(4.5)

≤ (|A|+ 1)γ·(σ(ℓ)+p·r·4ℓ)
(4.1)

≤ |A|2
O(ℓ)p2·r4 (4.19)

which is doubly exponential in our input size.
For the further discussion, it is important that elements of U ′ ∪ U ′′ are viewed as

single symbols. For a word w ∈ (U ′ ∪ U ′′)∗ we can define an expanded word exp(w) ∈ U∗

in the natural way (e.g. exp((a)(abba)(b)(ba)) = aabbabba). Note that for every word
w ∈ U ′∗U ′′U ′∗ we have |exp(w)| ∈ M (i.e., exp(w) ∈ Z). Vice versa, for every word w ∈ Z
there exists at least one word w′ ∈ U ′∗U ′′U ′∗ with exp(w′) = w. Moreover, for every word
w ∈ V ′

i
∗W ′

iV
′
i
∗ we have |exp(w)| ∈ M and ||exp(w)|| + int(|exp(w)|) > σ(i). Vice versa,

if w ∈ V ∗
i WiV

∗
i ∩ Z with ||w|| + int(|w|) > σ(i) (i.e., w ∈ Zi), then there exists at least

one word w′ ∈ V ′
i
∗W ′

iV
′
i
∗ with exp(w′) = w. This allows us to replace the constraint set

Zi = {w ∈ V ∗
i WiV

∗
i ∩ Z | ||w|| + int(|w|) > σ(i)} by the set V ′

i
∗W ′

iV
′
i
∗. Note that for a

word w ∈ Zi there may exist several words w′ ∈ V ′
i
∗W ′

iV
′
i
∗ with exp(w′) = w. This is not a

problem: by taking the set N×Zi in the structure S1, we basically take ℵ0 many copies of
w.

By our lifting construction from Section 3.2, every binary relation
σ
−→ (σ ∈ Σ) on TreesA

is defined on U ′∪U ′′ ⊆ Trees+A and hence on (N×U ′∗U ′′U ′∗)∪U . Using this, it follows that

our labelled graph S1 = ((N×Z)∪U, Σ, {
σ
−→| σ ∈ Σ}) is isomorphic to the labelled graph

S2 = ((N × U ′∗U ′′U ′∗) ∪ U, Σ, {
σ
−→| σ ∈ Σ}).

The isomorphism maps the constraint set Li = (N × Zi) ∪ Ui to (N × V ′
i
∗W ′

iV
′
i
∗) ∪ Ui.

Step 3. In order to get rid of the direct product with N in N × V ′
i
∗W ′

iV
′
i
∗ we add a new

symbol $ to the alphabet U ′∪U ′′. We lift the relations
σ
−→ (σ ∈ Σ) from U ′′∗ to (U ′′ ∪{$})∗

in the standard way ($ does not occur in the left-hand and right-hand sides of the relations
σ
−→). Then, the labelled graph S2 (and hence S1) is isomorphic to the graph

S3 = ((U ′ ∪ {$})∗U ′′(U ′ ∪ {$})∗ ∪ U, Σ, {
σ
−→| σ ∈ Σ}).

The isomorphism maps U identically to U and the set N × {w} (for w ∈ U ′∗U ′′U ′∗) is
mapped bijectively onto the set of those words from (U ′ ∪ {$})∗U ′′(U ′ ∪ {$})∗ \ U , whose
projection onto the subalphabet U ′′ is w. Hence, the constraint set N×V ′

i
∗W ′

iV
′
i
∗ is mapped

to the set
(V ′

i ∪ {$})∗W ′
i (V

′
i ∪ {$})∗ \ U. (4.20)

Step 4. In order to express in first-order logic that a word belongs to the above constaint
set (4.20), we introduce another symbol #. Hence, our final alphabet is

Γ = U ′ ∪ U ′′ ∪ {$,#}.

With (4.16) and (4.19), the size of Γ can be estimated as

|Γ| = 2 + |U ′|+ |U ′′| ≤ |A|2
O(ℓ)p2·r4 . (4.21)

Next, we define a finite labelled graph T = (Γ,Σ′, {
a
−→| a ∈ Σ′}) with node set Γ as follows.

The set of actions is
Σ′ = Σ ∪ Γ.
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The set of transitions is defined as follows. By our lifting construction from Section 3.2,

every binary relation
σ
−→ (σ ∈ Σ) on TreesA is defined on Γ ($ and # do not occur in the

left-hand and right-hand sides of the relations
σ
−→). Moreover, for a ∈ Γ we define the

relation
a
−→ = {(a,#)}.

Finally, using the construction from Section 3.2, we define the labelled graph

S4 = T
+.

We will construct a sentence ϕ4 over the signature of S4 such that S1 |= ϕ1 if and only if

S4 |= ϕ4. Using the edge relations
a
−→ (a ∈ Γ), we can express x ∈ Ω+ (for Ω ⊆ Γ) as
∧

a∈Γ\Ω

¬∃y : a(x, y).

Moreover, a constraint |x|Ω ≥ k (saying that there are at least k occurrences of symbols
from Ω in the word x) can be expressed as

∃y1, . . . , yk

(

∧

j 6=j′

yj 6= yj′ ∧
∧

j∈[1,k]

∨

a∈Ω

a(x, yi)

)

.

This allows us to express e.g. |x|Ω = k or x ∈ Ω. Hence, a constraint x ∈ Li = (N×Zi)∪Ui

in ϕ1 can be replaced by the formula
(

x ∈ (V ′
i ∪W

′
i ∪ {$})+ ∧ |x|W ′

i
= 1 ∧ x 6∈ U

)

∨ x ∈ Ui

of size O(|Γ|). (for the correctness of this formula it is important that V ′
i ∩W

′
i = ∅ which

follows from Vi ∩ Wi = ∅). The size of the resulting sentence ϕ4 can be bounded by
|ϕ|+O(ℓ3 + ℓ2 · |Σ|+ ℓ · |Γ|) and its quantifier rank is still O(ℓ).

We can now conclude the proof of Theorem 4.1. Recall that our overall goal is to check,
whether G |= ϕ holds. By the above constructions, this is equivalent to S4 |= ϕ4. By
Theorem 4.2, this can be decided on an alternating Turing machine in time

O(|Γ|O(ℓ) · |ϕ4|) ≤ poly(|Γ|O(ℓ) + |ϕ|+ |Σ|)

using O(ℓ) ≤ O(|ϕ|) many alternations. Recall from (4.21) that |Γ| ≤ |A|2
O(ℓ)p2·r4 . Hence,

we can bound the running time by poly(|A|2
O(ℓ)p2·r4 + |ϕ|+ |Σ|), which is doubly exponential

in the input size. This concludes the proof of Theorem 4.1.

4.2. Proof of Theorem 4.2. Let us fix a finite labelled graph G = (V,Σ, {
σ
−→| σ ∈ Σ}) and

let n = |V |. We want to decide the first-order theory of G+. For this we can w.l.o.g. assume
that n ≥ 2. Moreover, we can assume that Σ = V ×V and that the edge from a ∈ V to b ∈ V
is labelled with (a, b) (the original edge relations are definable by disjunctions in this new
graph). Our decision procedure for the first-order theory of G+ uses the method of Ferrante
and Rackoff from Section 3.3 for the function H(k, ℓ) = nk+ℓ+2 + k. For this, we define a
suitable equivalence relation ≡k,ℓ on k-tuples over V ∗. The definition of this equivalence
relation uses a simpler equivalence relation ≡d defined on words, which corresponds to
counting and comparing symbols up to the threshold d. The main combinatorial lemma for
the equivalence ≡k,ℓ is Lemma 4.8. It rougly says that if u ≡k,ℓ v and u ∈ V ∗, then one
can always find a “short” word v such that (u, u) ≡k,ℓ (v, v). This corresponds to point (b)
in Theorem 3.4. To apply the method of Ferrante and Rackoff, we also have to show that
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u ≡k,0 v implies that u and v satisfy the same quantifer-free formulas in G+ (point (a) in
Theorem 3.4). This is stated in Lemma 4.9.

Recall that for a word u ∈ A∗ over a finite alphabet A and a ∈ A, |u|a denotes the
number of occurrences of a in u. For d ≥ 1 and u, v ∈ A∗, we write u ≡d v if for all a ∈ A
the following holds:

• |u|a = |v|a or
• (|u|a ≥ d and |v|a ≥ d)

Note that ≡d is an equivalence relation and that u ≡d+1 v implies u ≡d v.
Let A and B be finite alphabets. For two words u = a1a2 · · · ak ∈ A∗ and v =

b1b2 · · · bk ∈ B∗ of the same length k we define the convolution

u⊗ v = (a1, b1)(a2, b2) · · · (ak, bk) ∈ (A×B)k.

Lemma 4.7. Let α ∈ N, u, v ∈ Γ∗ (where Γ is a finite alphabet), u′ ∈ V ∗ with |u| = |u′|,
u ≡α·n v, and |v| ≥ α ·n · |Γ|. Then there exists v′ ∈ V ∗ with |v| = |v′| and u⊗ u′ ≡α v⊗ v′.

Proof. Let a ∈ Γ and b ∈ V . Consider the values ma,b = |u⊗ u′|(a,b) and na = |v|a. Finding
a word v′ ∈ V ∗ such that |v′| = |v| and u ⊗ u′ ≡α v ⊗ v′ is equivalent to finding numbers
na,b (which will be |v ⊗ v′|(a,b)) such that

•
∑

b∈V na,b = na for all a ∈ Γ and
• ma,b = na,b or (ma,b ≥ α and na,b ≥ α) for all a ∈ Γ, b ∈ V .

Note that u ≡α·n v implies
∑

b∈V

ma,b = na or (
∑

b∈V

ma,b ≥ α · n and na ≥ α · n)

for all a ∈ Γ. Also recall that |V | = n. We choose the numbers na,b as follows, where a ∈ Γ:

• If
∑

b∈V ma,b = na, then we set na,b = ma,b for all b ∈ V .
• If

∑

b∈V ma,b ≥ α ·n and na ≥ α ·n, then (since |V | = n) there must be at least one b ∈ V
with ma,b ≥ α. We first set na,b = ma,b for all b ∈ V with ma,b < α. For all remaining
b ∈ V (which satisfy ma,b ≥ α) we set na,b to some value ≥ α such that the total sum
∑

b∈V na,b becomes na. Since na ≥ α · n this is possible.

For all k, ℓ ∈ N we define an equivalence relation ≡k,ℓ on the set (V ∗)k of k-tuples

of words over V as follows: Let (u1, . . . , uk), (v1, . . . , vk) ∈ (V ∗)k. Then (u1, . . . , uk) ≡k,ℓ

(v1, . . . , vk) if and only if the following conditions hold:

(a) For all 1 ≤ i, j ≤ k, |ui| = |uj | if and only if |vi| = |vj |.
(b) For all 1 ≤ i ≤ k, ui = vi or |ui| ≥ nk+ℓ+1 and |vi| ≥ nk+ℓ+1.
(c) For all 1 ≤ i ≤ k the following holds: Let 1 ≤ i1 < i2 · · · < im ≤ k be exactly those

indices such that |ui| = |ui1 | = · · · = |uim |. Hence, |vi| = |vi1 | = · · · = |vim | due to (a).
Then ui1 ⊗ ui2 ⊗ · · · ⊗ uim ≡α vi1 ⊗ vi2 ⊗ · · · ⊗ vim, where α = nℓ+1.

Lemma 4.8. Let k ≥ 0, ℓ > 0, (u1, . . . , uk) ≡k,ℓ (v1, . . . , vk), and let uk+1 ∈ V ∗. Then

there exists vk+1 ∈ V ∗ such that |vk+1| ≤ nk+ℓ+1 + k and (u1, . . . , uk, uk+1) ≡k+1,ℓ−1

(v1, . . . , vk, vk+1).

Proof. Assume that (u1, . . . , uk) ≡k,ℓ (v1, . . . , vk) and let uk+1 ∈ V ∗. We distinguish several
cases:

Case 1. |uk+1| 6= |ui| for all 1 ≤ i ≤ k.
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Case 1.1. |uk+1| < nk+ℓ+1. Then, we must have |uk+1| 6= |vi| for all 1 ≤ i ≤ k (if
|vi| = |uk+1| < nk+ℓ+1, then we must have ui = vi by (b) and hence |uk+1| = |ui|). We set
vk+1 = uk+1.

Case 1.2. |uk+1| ≥ nk+ℓ+1. Choose a number λ with nk+ℓ+1 ≤ λ ≤ nk+ℓ+1 + k and |vi| 6= λ
for all 1 ≤ i ≤ k. We will find a word vk+1 such that |vk+1| = λ and uk+1 ≡α vk+1 for α = nℓ.
Since |uk+1| ≥ nk+ℓ+1, there exists a symbol a ∈ V such that |uk+1|a ≥ nk+ℓ ≥ nℓ = α. If
λ ≥ |uk+1|, then we simply increase the number of occurrences of a in uk+1 until a word of
length λ is reached. If λ < |uk+1|, then |uk+1| > nℓ+1. Hence, there even exists a ∈ V with
|uk+1|a > nℓ. We remove one of the occurrences of a in uk+1. We can repeat this step until
a word of length λ is reached.

Case 2. |uk+1| = |ui| for some 1 ≤ i ≤ k. Let 1 ≤ i1 < i2 · · · < im ≤ k be exactly
those indices such that |uk+1| = |ui1 | = · · · = |uim |. Let u = ui1 ⊗ ui2 ⊗ · · · ⊗ uim and
v = vi1 ⊗ vi2 ⊗ · · · ⊗ vim. Point (c) implies u ≡nℓ+1 v.

Case 2.1. |uk+1| < nk+ℓ+1. Hence, we have |ui| < nk+ℓ+1. This implies |ui| = |vi| < nk+ℓ+1

by (b). We set uk+1 = vk+1. Note that vi1 = ui1 , . . . , vim = uim by (b). This implies

ui1 ⊗ ui2 ⊗ · · · ⊗ uim ⊗ uk+1 ≡α vi1 ⊗ vi2 ⊗ · · · ⊗ vim ⊗ vk+1

for all α.

Case 2.2. |uk+1| ≥ nk+ℓ+1. Hence, we have |u| = |ui| ≥ nk+ℓ+1. This implies |v| = |vi| ≥
nk+ℓ+1 by (b). We have to choose a word vk+1 with |vk+1| = |vi| and u⊗ uk+1 ≡α v⊗ vk+1

for α = nℓ. This is possible by Lemma 4.7: Note that α · n = nℓ+1 and thus u ≡α·n v. In
order to apply Lemma 4.7 we set in addition u′ = uk+1, v

′ = vk+1, and Γ = V m. This
implies

|v| ≥ nk+ℓ+1 = nℓ · n · nk ≥ nℓ · n · nm = α · n · |Γ|.

Hence, Lemma 4.7 can be applied indeed.

Recall the definition of the infinite graph G+ from (3.1).

Lemma 4.9. If (u1, . . . , uk) ≡k,0 (v1, . . . , vk), then the tuples (u1, . . . , uk) and (v1, . . . , vk)
satisfy the same quantifier-free formulas in the graph G+.

Proof. By symmetry, it suffices to prove the following two points:

(a) If ui = uj then also vi = vj.

(b) If ui
(a,b)
−−−→ uj for some (a, b) ∈ V × V then also vi

(a,b)
−−−→ vj.

Let us first prove (a). W.l.o.g. assume that i = 1 and j = 2. Let 2 < i1 < i2 < · · · < im be
those indices such that |u1| = |u2| = |ui1 | = · · · = |uim |. Since (u1, . . . , uk) ≡k,0 (v1, . . . , vk),
we get |v1| = |v2| = |vi1 | = · · · = |vim | and u1⊗u2⊗ui1⊗· · ·⊗uim ≡α v1⊗v2⊗vi1⊗· · ·⊗vim
for α = n ≥ 2. Since u1 = u2, all symbols that occur in u1 ⊗ u2 ⊗ ui1 ⊗ · · · ⊗ uim are of the
form (a, a, · · · ) for some a ∈ V . Hence, the same has to hold for v1 ⊗ v2 ⊗ vi1 ⊗ · · · ⊗ vim.
But this means that v1 = v2.

For point (b), assume first that a = b. Thus, ui = uj and |ui|a > 0. By point (a),
we already know that vi = vj . If i = j, then we can w.l.o.g. assume that i = j = 1.
Let 1 < i1 < i2 < · · · < im be those indices such that |u1| = |ui1 | = · · · = |uim |. Since
(u1, . . . , uk) ≡k,0 (v1, . . . , vk), we get |v1| = |vi1 | = · · · = |vim | and u1 ⊗ ui1 ⊗ · · · ⊗ uim ≡α

v1⊗vi1⊗· · ·⊗vim for α = n ≥ 2. Since |u1|a > 0, the word u1⊗ui1⊗· · ·⊗uim contains at least
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one occurrence of a symbol of the form (a, . . .). Hence, the same holds for v1⊗vi1⊗· · ·⊗vim.

But this means that v1
(a,a)
−−−→ v1. If i 6= j, then we can argue similarly.

Finally, let us assume that a 6= b. We must have i 6= j. W.l.o.g. assume that i = 1 and
j = 2. Let us choose the indices 2 < i1 < i2 < · · · < im as for the proof of point (a) above.

Since u1
(a,b)
−−−→ u2, the following holds for the word u = u1 ⊗ u2 ⊗ui1 ⊗ · · · ⊗uim : u contains

exactly one occurrence of a symbol of the form (a, b, . . .) and all other symbols in u are of
the form (c, c, . . .) for c ∈ V . Again, the same has to be true for v1 ⊗ v2 ⊗ vi1 ⊗ · · · ⊗ vim

(only here it is important that n ≥ 2 and not just n ≥ 1). Hence, v1
(a,b)
−−−→ v2.

We can now prove Theorem 4.2. Let ϕ = Q0x0 · · ·Qℓxℓ : ψ(x0, . . . , xℓ) be a first-order
formula of quantifier rank ℓ+ 1 over the signature of G+, where Q0, . . . , Qℓ ∈ {∀,∃} and ψ
is quantifier-free. For 0 ≤ i ≤ ℓ let Li = {w ∈ V + | |w| ≤ nℓ+2 + i}. Theorem 3.4 (with
H(k, ℓ) = nk+ℓ+2 + k), Lemma 4.8, and 4.9 imply that G+ |= ϕ if and only if

G
+ |= Q1x0 ∈ L0 · · ·Qℓxℓ ∈ Lℓ : ψ(x0, . . . , xℓ).

This can be decided on an alternating Turing machine in timeO(nℓ+2·|ϕ|) with ℓ alternations
by guessing words vi ∈ Li either existentially (if Qi = ∃) or universally (if Qi = ∀) and then
verifying the statement ψ(x0, . . . , xℓ).

5. An ATIME(22
poly(n)

, poly(n)) lower bound

In this section, we will prove that there exists a fixed GTRS such that the corresponding

ground tree rewrite graph has an ATIME(22
poly(n)

, poly(n))-complete first-order theory. This
will be achieved using a suitable tiling problem. Tiling problems turned out to be an
important tool for proving hardness and undecidability results in logic, see e.g. [4]. In a
first step we will prove hardness for 2NEXP (doubly exponential non-deterministic time) in

Section 5.2. In Section 5.3, we will finally push the lower bound to ATIME(22
poly(n)

, poly(n)).

5.1. Tiling systems. A tiling system is a tuple S = (Θ,H,V), where Θ is a finite set of tile
types, H ⊆ Θ × Θ is a horizontal matching relation, and V ⊆ Θ × Θ is a vertical matching
relation. A mapping σ : [0, k − 1]× [0, k − 1] → Θ (where k ≥ 0) is a k-solution for S if for
all (x, y) ∈ [0, k − 1]× [0, k − 1] the following holds:

• if x < k − 1, σ(x, y) = θ, and σ(x+ 1, y) = θ′, then (θ, θ′) ∈ H, and
• if y < k − 1, σ(x, y) = θ, and σ(x, y + 1) = θ′, then (θ, θ′) ∈ V.

Let Solk(S) denote the set of all k-solutions for S. Let w = w0 · · ·wn−1 ∈ Θn be a word and
let k ≥ n. With Solk(S,w) we denote the set of all σ ∈ Solk(S) such that σ(x, 0) = wx for
all x ∈ [0, n − 1]. For a tiling system S we define its (22

n

× 22
n

) tiling problem as follows:

(22
n
× 22

n
) tiling problem for tiling system S = (Θ,H,V)

INPUT: A word w ∈ Θn.
QUESTION: Does Sol22n (S,w) 6= ∅ hold?

The following proposition is folklore, see also [4, 9].

Proposition 5.1. [4, 9] There is some fixed tiling system S0 whose (22
n

×22
n

) tiling problem
is 2NEXP-hard under logspace reductions.
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5.2. Hardness for 2NEXP. Let us fix the tiling system S0 = (Θ0,H0,V0) of Proposition
5.1 whose tiling problem is hard for 2NEXP. We now define a fixed GTRS R0 = (A,Σ, R)
and prove that the first-order theory of G(R0) is 2NEXP-hard under logspace reductions.
We define

A0 = {♥,1,1†,1‡,O,O†,O‡},

A1 = Θ0,

A2 = {•}, and

Σ = {ℓ, r, h, u,m†,m‡, } ∪Θ0 ∪A0.

The set of rewrite rules R is given as follows:

(1) X
X
7−→ X for each X ∈ A0,

(2) X
m†
7−→ X† for each X ∈ {1,O} (this will correspond to marking a leaf),

(3) X†
m‡
7−→ X‡ for each X ∈ {1,O} (this will correspond to selecting a leaf),

(4) X†
h

7−→ ♥ for each X ∈ {1,O},

(5) •(♥,♥)
u

7−→ ♥,

(6) θ(X‡)
θ

7−→ θ(X‡) for all θ ∈ Θ0, X ∈ {1,O},

(7) •(♥,X‡)
r

7−→ X‡ for each X ∈ {1,O}, and

(8) •(X‡,♥)
ℓ

7−→ X‡ for each X ∈ {1,O}.

For the rest of this section we fix G0 = G(R0). Let us fix an input w = θ0 · · · θn−1 ∈ Θn of
the (22

n
×22

n
) tiling problem for S0. Our goal is to compute in logspace from w a first-order

sentence ϕ over Σ such that

Sol22n (S0, w) 6= ∅ ⇐⇒ G0 |= ϕ.

For each subset Γ ⊆ Σ, we define
Γ

−→=
⋃

γ∈Γ
γ

−→. The following lemma follows immediately

from Lemma 3.3 (take the formula θ(x, y) =
∨

γ∈Γ γ(x, y)).

Lemma 5.2. Given a subset of actions Γ ⊆ Σ and j ∈ [0, 2n+1] (in binary) one can
compute in logspace a first-order formula Γj(x, y) such that for all t, t′ ∈ TreesA we have

G0 |= Γj(t, t′) if and only if t (
Γ

−→)j t′ in G0.

In case Γ = {γ} is a singleton, we also write γj(x, y) for the formula Γj(x, y) of Lemma

5.2. Moreover, for subsets Γ1, . . . ,Γk ⊆ Σ and j1, . . . , jk ∈ N, we write [Γj1
1 · · ·Γjk

k ](x, y) for
the formula

∃x0, . . . , xk :
(

x0 = x ∧ xk = y ∧
k
∧

i=1

Γji
i (xi−1, xi)

)

.

A tree t ∈ TreesA is a tile tree if t = θ(t′) for some t′ ∈ TreesA such that the following holds:

• θ ∈ Θ0,
• The label of every leaf of t′ is from {O,1}.
• The distance of every leaf of t′ to the root of t′ is n+ 1.
• Every internal node of t′ is labeled with •.
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Example 5.3. This is a tile tree in case n+ 1 = 3:

θ

•

•

•

1 O

•

O O

•

•

1 O

•

1 1

Let us fix a tile tree t. Note that t has precisely 2n+1 = 2 · 2n leaves. Hence, there
is a one-to-one correspondence between [0, 2n+1 − 1] and leaves of t by means of their
lexicographic order in t. For each leaf λ let lex(λ) ∈ [0, 2n+1−1] be the position of λ among
all leaves w.r.t. the lexicographic order (starting with 0). The intention is that t represents
the θ-labeled grid element (M,N) ∈ [0, 22

n
− 1]2, where each leaf λ that is a left (resp.

right) child represents the ⌊ lex(λ)2 ⌋th least significant bit of the 2n-bit binary presentation of
M (resp. of N): In case λ is a left child, then t(λ) = O (resp. t(λ) = 1) if and only if the

⌊ lex(λ)2 ⌋th least significant bit of M equals 0 (resp. 1) and analogously if λ is a right child
this corresponds to N . For the tile tree t from Example 5.3 we have M = 1 + 4 + 8 = 13
and N = 8.

We say a leaf λ of a tree t is marked if t(λ) = X† for some X ∈ {O,1}. We say a leaf
λ of a tree t is selected if t(λ) = X‡ for some X ∈ {O,1}. A marked tile tree is a tree that
can be obtained from a tile tree t by marking every leaf of t. For the rest of this section, let
D = 2n+1 − (n+ 2).

Lemma 5.4. One can compute in logspace a first-order formula marked(x) such that for
every tree t ∈ TreesA\{O‡,1‡,♥} with precisely 2n+1 marked leaves we have: G0 |= marked(t)

if and only if the marked leaves of t are the leaves of some (unique) marked tile subtree of
t.

Proof. The idea is to express the following: Whenever we select any of the 2n+1 marked
leaves, we can execute from the resulting tree some sequence from the language

h2
n+1−1uD{ℓ, r}n+1Θ0.

Let us explain the intuition behind this. Assume we have selected exactly one of the 2n+1

marked leaves of t, and let t′ be the resulting tree. First, note that after executing the

sequence h2
n+1−1 from t′, we have replaced each of the marked leaves of t′ with the symbol

♥, reaching some tree t′′. Second, when executing uD from t′′ we have reached, in case t
contained a marked tile subtree, some tree t′′′ that has a chain of the following form as a
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subtree, where X ∈ {O,1} and θ ∈ Θ0:

θ

•

♥ •

•

•

♥ •

♥ X‡

♥

♥

Finally, from t′′′ we can now “shrink” this subtree to the tree θ(X‡) by executing some
sequence from {ℓ, r}n+1 followed by executing θ. Formally, we define marked(x) as follows:

∀y
(

m‡(x, y) → ∃z : [h2
n+1−1uD{ℓ, r}n+1Θ0](y, z)

)

Note that in this formula, y runs over all trees that can be obtained by selecting a marked
leaf of x. Basically, in this way we quantify over all marked leaves of x. Note that the
formula marked(x) ensures that the marked leaves of x are all at the same depth in x.

A grid tree is a tree t for which every leaf is inside a subtree of t that is a tile tree.

Lemma 5.5. One can compute in logspace a first-order formula grid(x) such that for all
t ∈ TreesA we have G0 |= grid(t) if and only if t is a grid tree.

Proof. The formula grid will be a conjunction of the following two statements: (i) every leaf
is either labeled with O or 1, (ii) for each leaf of t that we can mark via the action m†, we
can mark 2n+1 − 1 further leaves reaching some tree t′ with G0 |= marked(t′). Formally,
grid(x) is the conjunction of

∧

a∈A0\{O ,1}

¬a(x, x),

which realizes (i), and the formula

∀y
(

m†(x, y) → ∃z
(

m2n+1−1
† (y, z) ∧marked(z)

)

)

,

which realizes (ii).

A marked grid tree is a tree that can be obtained from a grid tree t by replacing exactly
one tile subtree of t by some marked tile tree. A selected grid tree is a tree that can be
obtained from some marked grid tree t by selecting precisely one marked leaf λ of t. In that
case, lex(λ) ∈ [0, 2n+1 − 1] is the lexicographical position of λ within the marked tile tree.

Lemma 5.6. One can compute in logspace for each i ∈ [1, n + 1] a first-order formula
biti(x) such that for every selected grid tree t with selected leaf λ we have that the ith least
significant bit of lex(λ) is 1 if and only if G0 |= biti(t).

Proof. We define biti(x) = ∃y : [h2
n+1−1uD{ℓ, r}i−1r](x, y).
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Lemma 5.7. One can compute for each ◦ ∈ {<,=} in logspace a first-order formula ϕ◦(x, y)
such that for every two selected grid trees t1 and t2 with selected leaves λ1 and λ2 we have
G0 |= ϕ◦(t1, t2) if and only if lex(λ1) ◦ lex(λ2).

Proof. We only treat the case when ◦ equals <; its definition should be self-explanatory:
∨

j∈[1,n+1]

(

(¬bitj(x) ∧ bitj(y)) ∧
∧

1≤i<j

(biti(x) ↔ biti(y))

)

Recall that the unique marked tile subtree of a marked grid tree t represents a θ-labeled
grid element (M,N) ∈ [0, 22

n
− 1]2 for some θ ∈ Θ0. Therefore, let us define M(t) = M ,

N(t) = N , and Θ0(t) = θ.

Lemma 5.8. One can compute in logspace FO-formulas ϕθ(x), ϕi,M (x, x′), ϕi,N (x, x′),
where θ ∈ Θ0 and i ∈ {0, 1} such that for all marked grid trees t and t′ the following holds:

(1) G0 |= ϕθ(t) if and only if Θ0(t) = θ,
(2) G0 |= ϕi,M (t, t′) if and only if M(t) + i =M(t′), and
(3) G0 |= ϕi,N (t, t′) if and only if N(t) + i = N(t′).

Proof. For point (1) we define ϕθ(x) as follows:

∃y : [m‡h
2n+1−1uD{ℓ, r}n+1θ](x, y)

For the remaining points (2) and (3), we only give the formula ϕ1,M (x, x′), i.e., we wish to
express that for any two marked grid trees t and t′ we have G0 |= ϕ1,M (t, t′) if and only
if M(t) + 1 = M(t′). Let us fix two marked grid trees t and t′. Assume we have selected
among the 2n+1 marked leaves of t some leaf λ. Recall that λ represents one of the 2n bit
positions of M(t) if and only if λ is a left child, otherwise it would represent a bit position
of N(t). Hence we will only be interested in leaves of t and t′ which are left children. For
this sake, let us express that the selected leaf of a selected grid tree z is a left child via the
formula left(z):

left(z) = ∃z′, z′′
(

h(z, z′) ∧ ℓ(z′, z′′)
)

Our formula ϕ1,M (x, y) is defined as follows:

∃x′, y′
(

m‡(x, x
′) ∧m‡(y, y

′) ∧ ϕ=(x
′, y′) ∧ O‡(x

′, x′) ∧ 1‡(y
′, y′) ∧ left(x′) ∧ ψ1 ∧ ψ2

)

.

Thus, we select a position p ∈ [0, 2n−1] that is set to 0 (resp. 1) in the binary representation
of M(t) (resp. M(t′)). The formula ψ1(x, y, x

′, y′) is defined as

∀z

(

(

m‡(x, z) ∧ ϕ<(z, x
′) ∧ left(z)

)

→ 1‡(z, z)

)

∧

∀z

(

(

m‡(y, z) ∧ ϕ<(z, y
′) ∧ left(z)

)

→ O‡(z, z)

)

.

It expresses that each bit at some position that is smaller than p is set to 1 (resp. 0) in
the binary representation of M(t) (resp. M(t′)). The formula ψ2 expresses that the binary
representations of M(t) and M(t′) agree on each position that is bigger than p. Formally,
ψ2(x, y, x

′, y′) is defined as

∀u, v

(

(

m‡(x, u) ∧m‡(y, v) ∧ ϕ=(u, v) ∧ ϕ<(x
′, u) ∧ left(u)

)

→ (1‡(u, u) ↔ 1‡(v, v))

)

.
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We define the FO-formula sol(x) as the conjunction of the following formulas, where

mark(z1, z2) is an abbreviation for m2n+1

† (z1, z2) ∧marked(z2):

• x is a grid tree:
grid(x)

• Whenever we mark two tile subtrees of x that represent the same grid element, their
Θ-labels agree:

∀y, z

(

(mark(x, y) ∧mark(x, z) ∧ ϕ0,M (y, z) ∧ ϕ0,N (y, z)) →
∧

θ∈Θ0

(ϕθ(y) ↔ ϕθ(z))

)

• Whenever we mark a tile subtree of x that corresponds to the grid element (M,N) and
M < 22

n
− 1 there exists some tile subtree of x that corresponds to the grid element

(M + 1, N) and the horizontal matching relation is satisfied:

∀y

(

(

mark(x, y) ∧ ∃z(m‡(y, z) ∧ O‡(z, z) ∧ left(z))
)

→

∃y′
(

mark(x, y′) ∧ ϕ1,M (y, y′) ∧ ϕ0,N (y, y′) ∧
∨

(θ,θ′)∈H 0

(ϕθ(y) ∧ ϕθ′(y
′))

)

)

• Analogously to the previous formula, we can express that whenever we mark a tile subtree
of x that corresponds to the grid element (M,N) and N < 22

n

− 1 there exists some tile
subtree of x that corresponds to the grid element (M,N + 1) and the vertical matching
relation is satisfied.

Finally we can construct a formula ϕw(x) that guarantees that grid element (j, 0) is labeled
by θj (recall that w = θ0 · · · θn−1) for each j ∈ [0, n − 1]:

∃y0, . . . , yn−1

(

∧

j∈[0,n−1]

(mark(x, yj) ∧ ϕθj (yj)) ∧ ∀z(m‡(y0, z) → O‡(z, z)) ∧

∧

j∈[1,n−1]

(ϕ1,M (yj−1, yj) ∧ ϕ0,N (yj−1, yj))

)

Our final formula ϕ is defined as ϕ = ∃x(sol(x) ∧ ϕw(x)). It follows by construction that

Sol22n (S0, w) 6= ∅ ⇐⇒ G0 |= ϕ.

With Proposition 5.1 we get:

Theorem 5.9. The first-order theory of G0 is 2NEXP-hard under logspace reductions.

5.3. Pushing hardness to ATIME(22
poly(n)

, poly(n)). Let us fix a tiling system

S = (Θ,H,V).

Given σ, σ′ ∈ Solk(S) we say σ′ extends σ vertically if σ′(x, 0) = σ(x, k − 1) for each
x ∈ [0, k − 1]. Let Solk(S, σ) be the set of all σ′ ∈ Solk(S) such that σ′ extends σ ver-
tically. The standard encoding of Turing machine computations into tilings shows that
there is a fixed tiling system S1 = (Θ1,H1,V1) such that the following problem is hard for

ATIME(22
poly(n)

, poly(n)) under logspace reductions.
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Linearly alternating (22
n

× 22
n

) tiling problem (for S1)

INPUT: A word w = θ0θ1 · · · θn−1 ∈ Θn
1 , where n is odd.

QUESTION: Does ∃σ1 ∈ Sol22n (S1, w)∀σ2 ∈ Sol22n (S1, σ1) · · · ∃σn ∈ Sol22n (S1, σn−1) :
true hold?

The idea is that the quantified solutions σi represent subcomputations of an alternating
Turing-machine, where all states in the subcomputation are either existential (if i is odd) or
universal (if i is even). Our definition of vertical extension of solutions ensures that these
subcomputations can be combined into on single computation of the alternating Turing-
machine. A similar encoding of alternating Turing machines by tiling systems can be found
in [9].

Let G1 be the fixed GTRS graph that is obtained from G0 of Section 5.2 when we
replace the tiling system S0 by S1.

Corollary 5.10. The first-order theory of G1 is hard for ATIME(22
poly(n)

, poly(n)) under
logspace reductions.

Proof. We recycle the proof presented in Section 5.2. We adapt the formulas constructed
in Section 5.2 to the fixed tiling system S1 (instead of S0). Recall that we can compute in
logspace a formula sol(x) such that for every tree t we have that G1 |= sol(t) if and only
if t corresponds to a 22

n

-solution for S1. It is an easy exercise to construct in logspace a
formula ext such that for any two trees t and t′ each satisfying sol we have G1 |= ext(t, t′)
if and only if the solution corresponding to t′ extends that of t vertically. We obtain that
a word w (with n = |w| odd) is a positive instance of the linearly alternating (22

n
× 22

n
)

tiling problem if and only if G1 is a model of the sentence

∃x1

(

sol(x) ∧ ϕw(x) ∧ ∀x2

(

(sol(x2) ∧ ext(x1, x2)) → · · · ∃xn (sol(xn) ∧ ext(xn−1, xn))

))

.

We should remark that hardness for ATIME(22
poly(n)

, poly(n)) can be also proved using
the method of Compton and Henson [11] (monadic interpretation of addition on large
numbers). The use of tilings has the advantage of giving an almost generic reduction. On
the other hand, the method of [11] yields completeness under the slightly stronger log-lin
reductions.

6. The first-order theory with regular unary predicates

For a GTRS R = (A,Σ, R) and a set of trees L ⊆ TreesA, we denote with (G(R), L) the
structure that results from the labelled graph G(R) by adding the set L as an additional
unary predicate. Note that if L is a regular set of trees, then (G(R), L) is a tree automatic
structure, and hence has a decidable first-order theory.

By the following result, our ATIME(22
poly(n)

, O(n)) upper bound for the first-order theory
of a ground tree rewrite graph does not carry over to ground tree rewrite graphs expanded
by a regular unary predicate.

Theorem 6.1. There exists a fixed GTRS R2 = (A,Σ, R) and a fixed regular tree language
L ⊆ TreesA such that the first-order theory of (G(R2), L) is non-elementary.
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Proof sketch. The proof idea is an adaption of the proof of Theorem 2 in [20] and is hence
only shortly sketched. We reduce from the satisfiability problem for first-order logic over
binary words. Binary words are considered as structures over the signature (P0, P1,≤),
where P0 and P1 are unary relations (representing those positions, where the letter is 0 and
1, respectively), and where ≤ is the natural order relation on positions. The idea is that
a tree t ∈ TreesA (where A2 = {•} and A0 = {0, 1}) corresponds to the unique word over
{0, 1} that one obtains by simply reading the yield string (the sequence of node labels when
traversing the leaves in lexicographic order) of t. Let yield(t) denote the yield string of t.

We translate a given first-order sentence ϕ over the signature (P0, P1,≤) into a first-
order formula ψ(x) over the signature of (G(R2), L) such that for every tree t ∈ TreesA
we have: yield(t) |= ϕ if and only if (G(R2), L) |= ψ(t). Assume that x1, . . . , xn are the
variables that occur in ϕ. Bounding a variable xi (1 ≤ i ≤ n) of ϕ to a certain position in
the word yield(t) is simulated by labelling the corresponding leaf of the tree t by a chain
of unary symbols of length i. In order to keep the GTRS R2 fixed, this chain has to be
built up in i rewrite steps that are controlled by the formula ψ(x). In order to verify an
atomic predicate xi < xj in the tree t one has to check, whether the i-labelled node of t is
lexicographically smaller than the j-labelled node. To do this using a fixed GTRS, one first
replaces the chain of length i (resp., j) that identifies the position to which xi (resp., xj)
is bound by a special constant a (resp. b). Again, this process has to be controlled by the
formula ψ(x). Finally, we can check xi < xj using the regular set of trees that contain a
unique a-labelled leaf and a unique b-labelled leaf, and the a-labelled leaf is lexicographically
smaller than the b-labelled leaf. This regular set will be the set L in the theorem.

7. Open problems

We proved that the uniform first-order theory of ground tree rewrite graphs belongs to the

complexity class ATIME(22
poly(n)

, O(n)) and that there exists a fixed ground tree rewritie

graph with an ATIME(22
poly(n)

, O(n))-complete first-order theory.
A complexity gap in this context exists for the first-order theory of the one-step rewrite

graph of a semi-Thue system (word rewrite system): It is known to be 2EXPSPACE-hard
and decidable but it is not known to be elementary [26]. One may try to tackle this problem
using techniques similar to those used in this paper.

An important open problem concerning ground tree rewrite graph concerns bisimulation
equivalence. It is not known whether the following problem is decidable: Given a ground
tree rewrite system R and two trees s and t, are s and t are bisimilar in the graph G(R)?
For pushdown graphs this problem is decidable [41] but not elementary, as was recently
shown in [1]. A further question is the complexity of deciding bisimilarity between a ground
tree rewrite system and a finite system, lying between PSPACE and coNEXP [20].
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[20] S. Göller and A. W. Lin. The complexity of verifying ground tree rewrite systems. In Proc. of LICS

2011, pages 279–288. IEEE Computer Society, 2011.
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