
Logical Methods in Computer Science
Vol. 7 (2:15) 2011, pp. 1–20
www.lmcs-online.org

Submitted Oct. 30, 2010
Published May 24, 2011

NONCOMPUTABLE FUNCTIONS

IN THE BLUM-SHUB-SMALE MODEL ∗

WESLEY CALVERT a, KEN KRAMER b, AND RUSSELL MILLER c

a Department of Mathematics, Mail Code 4408, Southern Illinois University, 1245 Lincoln Drive,
Carbondale, Illinois 62901
e-mail address: wcalvert@siu.edu
URL: http://www.math.siu.edu/calvert

b Department of Mathematics, Queens College – C.U.N.Y., 65-30 Kissena Blvd., Flushing, New York
11367 U.S.A.; Ph.D. Program in Mathematics, C.U.N.Y. Graduate Center, 365 Fifth Avenue, New
York, New York 10016 U.S.A.
e-mail address: kkramer@qc.cuny.edu

c Department of Mathematics, Queens College – C.U.N.Y., 65-30 Kissena Blvd., Flushing, New
York 11367 U.S.A.; Ph.D. Programs in Mathematics & Computer Science, C.U.N.Y. Graduate
Center, 365 Fifth Avenue, New York, New York 10016 U.S.A.
e-mail address: Russell.Miller@qc.cuny.edu
URL: http://qc.edu/~rmiller

Abstract. Working in the Blum-Shub-Smale model of computation on the real numbers,
we answer several questions of Meer and Ziegler. First, we show that, for each natural
number d, an oracle for the set of algebraic real numbers of degree at most d is insufficient
to allow an oracle BSS-machine to decide membership in the set of algebraic numbers of
degree d + 1. We add a number of further results on relative computability of these sets
and their unions. Then we show that the halting problem for BSS-computation is not
decidable below any countable oracle set, and give a more specific condition, related to
the cardinalities of the sets, necessary for relative BSS-computability. Most of our results
involve the technique of using as input a tuple of real numbers which is algebraically
independent over both the parameters and the oracle of the machine.

1998 ACM Subject Classification: F.1.1, F.1.3, I.1.2.
Key words and phrases: algebraic real numbers, Blum-Shub-Smale computation, BSS machine, oracle

computation, relative computability.
∗ Portions of this article describe results which appeared as [4] in the conference proceedings volume of

the meeting Computability and Complexity in Analysis in Zhenjiang, China, 21-25 June 2010, and other
results which were presented at the meeting Logical Approaches to Barriers in Computing and Complexity
in Greifswald, Germany, 17-20 February 2010.
a Partially supported by Grant #13397 from the Templeton Foundation.
b Partially supported by NSF grant # DMS-0739346.
c Partially supported by Grant #13397 from the Templeton Foundation, by NSF grant # DMS-1001306,

by grants numbered 61467-00 39, 62632-00 40, and 63286-00 41 from The City University of New York
PSC-CUNY Research Award Program, and by Queens College Research Enhancement Program award #
90927-08 08.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:15) 2011
c© W. Calvert, K. Kramer, and R. Miller
CC© Creative Commons

http://creativecommons.org/about/licenses

2 W. CALVERT, K. KRAMER, AND R. MILLER

1. Introduction

Blum, Shub, and Smale introduced in [2] a notion of computation with full-precision real
arithmetic, in which the ordered field operations are axiomatically computable, and the
computable functions are closed under the usual operations. A complete account of this
model is given in [1]. A program for such a machine consists of a finite set of instructions as
described there, and the instructions are allowed to contain finitely many real parameters,
since a single real number is viewed as a finite object. The program can add, multiply,
subtract, or divide real numbers in its cells, can copy cell, can overwrite the contents of a
cell with 0, and can use the relations = and < to compare the contents of two cells, forking
according to whether the contents of those cells satisfy that relation. For our purposes, it
will be convenient to assume that the forking instructions in the program compare the real
number in a single given cell to 0, under either = or < or >. Such a machine has equivalent
computing power to machines which can compare the contents of two different cells to each
other.

Of course, the BSS model is not the only concept of computation on R, nor should
it be considered the dominant model. It corresponds to a view of the real numbers as a
fixed structure, perhaps given axiomatically – defined, for instance, as the unique complete
Archimedean ordered field, with field operations vouchsafed unto us mathematicians; as
opposed to a view of real numbers as objects defined by Cauchy sequences or by Dedekind
cuts in the rational numbers Q, with operations derived from the analogous operations
on Q. There is no obvious method of implementing BSS machines by means of digital
computers. More typically, as in [2, 1], one envisions BSS machines as a model for numerical
computation in which features of approximation, rounding, and error analysis are treated
as a separate posterior analysis. This failure invites a contrast with computable analysis,
which treats real numbers as quantities approximated by rational numbers and is intended
to reflect the capabilities of digital computers. However, the BSS model is of interest both
for the analogy between it and the Turing model, which can be seen as BSS computation
on the ring Z/(2), and because it reflects the intuitions of many mathematicians – dating
back to the nineteenth century, and mostly outside of computer science – about the notion
of algorithmic computation on R. Some useful further discussion of these questions appears
in [14].

This paper will consider sets of algebraic real numbers, and other sets of tuples from R,
as oracles for BSS machines, and will examine the relative difficulty of deciding membership
in such sets under the BSS model of computation. Several sections compare various sets
of algebraic numbers under BSS-oracle computation, using these sets to demonstrate that
there exists a rich structure of BSS-semidecidable degrees under BSS reducibility. Later
sections consider questions about cardinality: to what extent the complexity of a subset of
R (or C) allows us to draw conclusions about its cardinality. The previous paper [11] by Meer
and Ziegler focused attention on these issues, and here we answer several of the questions
raised there. Our method adapts a known technique from BSS computability, and should be
comprehensible to casual readers as well as to logicians and computer scientists. It requires
significant use of algebraic properties of the real numbers, in addition to computability,
reinforcing the general perception of the BSS model as an essentially algebraic approach to
computation on R, treating real numbers as indivisible finite items. In contrast, the use of
computable analysis normally results in a more analytic approach to computation on R. We
the present authors comprise a number theorist and two computable model theorists with

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 3

experience in algorithms on (countable) Turing-computable fields, and thus we are more
familiar with the algebraic side.

Our notation generally follows that of [11]. The set of all finite tuples of real numbers
is denoted R∞; the inputs and outputs of BSS machines on R all lie in this set, and the
collective content of the cells of a BSS machine at a given stage in a computation may also
be regarded as an element of R∞. We use A to denote the set of all real numbers which are
algebraic over the subfield Q of rational numbers. A is partitioned into subsets A=d, for each
natural number d, so that A=d contains those algebraic real numbers of degree exactly d
over Q. (Recall that the degree of x over Q is the vector space dimension over Q of the field
Q(x) generated by x; equivalently, it is the degree of the minimal polynomial of x in Q[X].)
We also write A≤d = ∪c≤dA=c, the set of algebraic real numbers of degree ≤ d. (In [11], this
set was called Ad; our notation is intended to distinguish A=d from A≤d.) By the definition
of degree, A=0 is empty, and A=1 contains exactly the rational numbers themselves. We
mention [13] as an excellent source for these and other algebraic preliminaries, and [5] for
more advanced questions about algorithms on fields.

The following lemma is well known, and clear by induction on stages. It reflects the
fact that the four field operations are the only operations which a BSS machine is able to
perform.

Lemma 1.1. If M is a BSS machine using only the real parameters ~z in its program, then
at every stage of the run of M on any input ~x, the content of every cell lies in the field
Q(~z, ~x).

It is immediate from this lemma that the set A cannot be the image of N under any
BSS-computable function, as it is not contained within any finitely generated field. (We
will tend to use N to denote the subset of R consisting of the nonnegative integers, as here,
whereas ω will denote the same set when not sitting inside of R.) We say that A is not
BSS-countable. On the other hand, A does satisfy the definition of BSS semidecidability,
which is the best analogue of Turing-computable enumerability and has been studied more
closely in the literature.

Definition 1.2. A set S ⊆ R∞ is BSS-semidecidable if there exists a (partial) BSS-
computable function with domain S, and BSS-countable if there exists a partial BSS-
computable function mapping N onto S. A set S is BSS-decidable if its characteristic
function χS is BSS-computable.

It is immediate that S is BSS-decidable if and only if both S and (R∞ − S) are BSS-
semidecidable. This justifies the analogy between BSS-semidecidability in R∞ and com-
putable enumerability in ω, and also dictates the use of the prefix “semi.” The term BSS-
countable, on the other hand, suggests that the set can be listed out, element by element,
by a BSS machine, which is precisely the content of the definition above. (The related
term BSS-enumerable has been used by other authors to denote the image of R∞ under
a BSS-computable partial function.) In the context of Turing computation, computable
enumerability and semidecidability are equivalent, but in the BSS context, the set A dis-
tinguishes the two notions, being BSS-semidecidable but not BSS-countable. (On the other
hand, every BSS-countable set is readily seen to be BSS-semidecidable.) The semidecision
procedure for A is well-known: take any input x, and go through all nonzero polynomials
p(X) ∈ Q[X], computing p(x) for each. If ever p(x) = 0, the machine halts. The ability
to go through the polynomials in Q[X] follows from the BSS-countability of Q[X], which

4 W. CALVERT, K. KRAMER, AND R. MILLER

in turn follows from the BSS-countability of Q. (A similar result applies to the set of
algebraically dependent tuples in R∞; see for instance [7].)

The two questions which gave rise to this paper were posed by Meer and Ziegler in [11].
Both use the notion of a BSS reduction, analogous to Turing reductions. An oracle BSS
machine is essentially a BSS machine with the additional ability to take any finite tuple
(which it has already assembled on the cells of its tape), ask an oracle set A whether that
tuple lies in A, and fork according to whether the answer is positive or negative. The oracle
A should be a subset of R∞, of course, and we will write MA to represent an oracle BSS
program (or machine) equipped with an oracle set A. More precisely,

Definition 1.3. An oracle BSS machine using an oracle set B ⊆ R∞ is a BSS machine
with an additional type of node called an oracle node. This node branches according as
x ∈ B, where x is some previously computed element.

(This is exactly the definition given in [11], and is equivalent to any reasonable formal-
ization of the implicit definition given in Problem 10.2 of [2].) Oracle BSS programs can
be enumerated (by tuples from R∞) in much the same manner as regular BSS programs. If
B ⊆ R∞ and the characteristic function χB can be computed by an oracle BSS machine MA

with oracle A, then we write B ≤BSS A, and say that B is BSS-reducible to A, calling M the
BSS reduction of B to A. Should B ≤BSS A and also A ≤BSS B, we write A ≡BSS B and
call the two sets BSS-equivalent. All this is exactly analogous to oracle Turing computation
on subsets of ω. The first question regards the connection of this reducibility with algebra.

Question 1. Let A≤d be the set of algebraic numbers with degree (over Q) at most d.
Then is it true that

A≤0 <BSS A≤1 <BSS · · ·A≤n <BSS · · ·?
That A≤d−1 ≤BSS A≤d is immediate for all d; see Lemma 5.2 below. The focus of the

question is on the lack of any reduction in the opposite direction.
Meer and Ziegler credit the second question to an anonymous referee of [11].

Question 2. Let A be the set of algebraic numbers in R, i.e. those which are roots of a
nonzero polynomial in Q[X]. Also, let H be the Halting Problem for BSS computation on
R, as described in [11] (Actually, a passing implicit reference is made to this set in [2, §8],
in the guise of the halting set of a universal machine). Is it true that H 6≤BSS A? And more
generally, could any countable subset of R∞ contain enough information to decide H?

That A ≤BSS H is immediate. Let P be the BSS program which, on input x ∈ R,
plugs x successively into each nonzero polynomial p(X) in (the BSS-countable set) Q[X]
and halts if ever p(x) = 0. Then x ∈ A iff the program P halts on input x. (Similarly,
every BSS-semidecidable set is BSS-decidable in H, and indeed 1-reducible to H in the BSS
model.) Again, the question focusses on the lack of any reduction in the opposite direction.

Section 2 gives the basic technical lemma used in this paper to address such questions,
and Section 4 applies it to give a positive answer to Question 1. To aid the reader’s
comprehension, Section 3 describes the solution to Question 1 in the specific case A≤2 <BSS

A≤1. Section 5 considers other possible reductions among the sets A=d for different values
of d, and among unions of these sets. As a corollary, we define a new embedding of the
partial order (P(ω),⊆) into the partial order of the BSS-semidecidable degrees under BSS
reducibility. Such embeddings, including the similar one already derived in [11], reveal
a high level of complexity within the latter structure. In Section 6, we answer Question

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 5

2 by showing that no countable subset of R∞ contains enough information to decide the
halting problem in the BSS model. We also prove there a theorem relating BSS degrees to
cardinality, showing that for infinite subsets S ⊆ R and C ⊆ R∞, if S ≤BSS C, then the
local cardinality (in a technical sense defined in that section) of S cannot be greater than
the (global, i.e. usual) cardinality of C. Finally, in Section 8, we offer analogies of these
observations for BSS computation on the complex numbers, where the situation is far less
messy.

2. BSS-Computable Functions At Transcendentals

Here we introduce our basic method for showing that various functions on the real numbers
fail to be BSS-computable. In Sections 3 and 4, this method will be extended to give answers
about BSS-computability below certain oracles. However, even the non-relativized version
yields straightforward proofs of several well-known results about BSS-decidable sets, as we
will see shortly after describing the method.

In many respects, our method is equivalent to the method, used by many others, of
considering BSS computations as paths through a finite-branching tree of height ω, branch-
ing whenever there is a forking instruction in the program. However, we think that the
intuition for our method can be more readily explained to a mathematician unfamiliar with
computability theory. Our main lemma says that near any transcendental input in its do-
main, the values in a BSS-machine computation must be defined by rational functions of
the input. Where previous proofs usually made arguments about countable sets of terminal
nodes in the tree of possible computations, we simply use the transcendence of this element.

Lemma 2.1. Let M be a BSS-machine, and ~z the finite tuple of real parameters mentioned
in the program for M . Suppose that ~y ∈ Rm+1 is a tuple of real numbers algebraically
independent over the field Q = Q(~z), such that M converges on input ~y. Then there exists

ǫ > 0 and rational functions f0, . . . , fn ∈ Q(~Y), (that is, rational functions of the variables
~Y with coefficients from Q) such that for all ~x ∈ Rm+1 with |~x− ~y| < ǫ, M also converges
on input ~x with output 〈f0(~x), . . . , fn(~x)〉 ∈ Rn+1.

Proof. The intuition is that by choosing ~x sufficiently close to ~y, we can ensure that the
computation on ~x branches in exactly the same way as the computation on ~y, at each of the
(finitely many) branch points in the computation on ~y. More formally, say that the run of
M on input ~y halts at stage t, and that at each stage s ≤ t, the non-zero cells contain the
reals 〈f0,s(~y), . . . , fns,s(~y)〉. Lemma 1.1 shows that all fi,s(~y) lie in the field Q(~y), so each
fi,s may be viewed as a rational function of ~y with coefficients in Q. Indeed, each rational

function fi,s is uniquely determined in Q(~Y), since ~y is algebraically independent over Q.

Let F be the finite set {fi,s(~Y) : s ≤ t & i ≤ ns & fi,s /∈ Q} of nonconstant rational

functions used in the computation. The union U of all preimages f−1
i,s (0) with fi,s ∈ F is

closed in Rm+1, and by algebraic independence, ~y does not lie in U , so there exists an ǫ > 0
such that the ǫ-ball Bǫ(~y) = {~x ∈ Rm+1 : |~x−~y| < ǫ}, does not intersect U , and is contained
within the domain of each fi,s ∈ F . Indeed, for all fi,s ∈ F and all ~x ∈ Bǫ(~y), fi,s(~x) and
fi,s(~y) must have the same sign, since Bǫ(~y) is a path-connected set.

Now fix any ~x ∈ Bǫ(~y). We claim that in the run of M on input ~x, at each stage
s ≤ t, the cells will contain precisely 〈f0,s(~x), . . . , fns,s(~x)〉 and the machine will be in the
same state in which it was at stage s on input ~y. This is clear for stage 0, and we continue

6 W. CALVERT, K. KRAMER, AND R. MILLER

by induction, going from each stage s < t to stage s + 1. If the machine executed a copy
instruction or a field operation in this step, then the result is clear, by inductive hypothesis.
Otherwise, the machine executed a fork instruction, comparing some fi,s(~x) with 0. But
we saw above that fi,s(~x) and fi,s(~y) have the same sign (or else fi,s(y) = 0, in which case
fi,s is the constant function 0), so in both runs the machine entered the same state at stage
s + 1, leaving the contents of all cells intact. This completes the induction, and leaves us
only to remark that therefore, at stage t, the run of M on input ~x must also have halted,
with 〈f0,t(~x), . . . , fn,s(~x)〉 in its cells as the output.

(If our BSS machines were allowed to compare the contents of two cells under = or <, as
is standard, then our set F would have to consist of all nonconstant differences (fi,s− fj,s).
The proof would still work, but the method above is simpler.)

Lemma 2.1 provides quick proofs of several known results, including the undecidability
of every proper subfield F ⊂ R.

Corollary 2.2. No BSS-decidable subset S ⊆ Rn can be both dense and co-dense in Rn.

Proof. Since the characteristic function χS is BSS-computable, say by a machine with
parameters ~z, Lemma 2.1 shows that for every ~y ∈ Rn with coordinates algebraically inde-
pendent over ~z, χS is constant in some neighborhood of ~y.

Indeed, the same proof shows that any BSS-computable total function with discrete
image must be constant on each of the ǫ-balls given by Lemma 2.1.

Corollary 2.3. Define the boundary of a subset S ⊆ Rn to be the intersection of the closure
of S with the closure of its complement. If S is BSS-decidable, then there is a finite tuple ~z
such that every point on the boundary of S has coordinates algebraically dependent over ~z.
In particular, if M computes χS, then its parameters may serve as ~z.

Proof. This is immediate from Lemma 2.1.

Of course, Corollaries 2.2 and 2.3 have been deduced long since from other known
results, in particular from the Path Decomposition Theorem described in [1]. We include
them here because of the simplicity of these proofs, and because they introduce the methods
to be used in the following sections.

3. Application to Algebraic Numbers of Degree 2

We know that A≤1 6≤BSS A≤0, since A≤0 = ∅ and A≤1 = Q and it is already known
(and seen again in Corollary 2.2 above) that Q is BSS-undecidable. To introduce our main
result, we prove the corresponding result one level further up. The proof constitutes a
simple introduction to the method we used in the abstract [3] to prove the full Theorem
4.1. In the next section, we will give a separate new proof of Theorem 4.1, more elegant
than the first one but less transparent, especially for readers not expert in field theory, who
may prefer to look up the proof in [3].

Theorem 3.1. A≤2 6≤BSS A≤1.

Proof. Suppose that M is an oracle BSS machine with real parameters ~z, such that MQ

computes the characteristic function of A≤2. (Of course A≤1 is just Q itself.) Fix any y ∈ R

which is transcendental over the field Q = Q(~z), and run MQ on input y. Of course, this
computation must halt after finitely many steps and output 0. As in the proof of Lemma

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 7

2.1, we set F to be the finite set of all nonconstant rational functions f ∈ Q(Y) such that
f(y) appears in some cell during this computation. Again, there is an ǫ > 0 such that all x
within ǫ of y satisfy f(x) ·f(y) > 0 for all f ∈ F . However, it is no longer sufficient for us to
run MQ on an arbitrary x ∈ Bǫ(y) ∩ A≤2, because such an x might lie in Q, or might have
f(x) ∈ Q for some f ∈ F , and in this case the computation on input x might ask its oracle
whether f(x) ∈ Q and would then branch differently from the computation on input y. (Of
course, for all f ∈ F , f(y) /∈ Q, since f(y) must be transcendental over Q for nonconstant
f .) So we must establish the existence of some x ∈ Bǫ(y) ∩ A≤2 with f(x) /∈ Q for all of
the (finitely many) f ∈ F . Of course, we do not need to give any effective procedure which
produces this x; its existence is sufficient.

For each f ∈ F , choose g, h ∈ Q[Y] with f = g
h
. Thus f(x) = a iff g(x)− ah(x) = 0. In

game-theoretic terms, the opponent first chooses the functions in F , after which we choose
x, and then his functions pick out the value of a, based on our x. So we must ensure that
our choice of x makes 0 6= g(x)− ah(x) for every a ∈ Q.

We need the following lemma from calculus.

Lemma 3.2. If f ∈ R(X) with b ∈ dom(f), and there are positive values of v arbitrarily
close to 0 such that f(b+ v) = f(b− v), then f ′(b) = 0.

Given the collection F , we fix some b ∈ Q such that |y − b| < ǫ
2 and such that b lies

in the domain of every f ∈ F and all f ′(b) 6= 0. Since each f ∈ F is differentiable and
nonconstant, each f rules out only finitely many values, and F is finite, so such a b must
exist. Now Lemma 3.2 makes it clear that for some sufficiently small δ > 0, every u ∈ Q

with 0 <
√
u < δ satisfies f(b+

√
u) 6= f(b− √

u) for every f ∈ F . So fix x = b +
√
u for

some u ∈ Q with 0 <
√
u < min(δ, ǫ

2), for which
√
u /∈ Q. (The finitely generated field Q

cannot contain every
√
u in this interval, as every subfield of a finitely generated field is

itself finitely generated. For a proof, see [12, Thm. 3.1.4, p. 82].) Thus |x − y| < ǫ and all
f ∈ F satisfy f(b+

√
u) 6= f(b−√

u). We write x = b−√
u for the conjugate of x over Q.

Now let p(X) = X2 − 2bX + (b2 − u), which is the minimal polynomial of x and of x,
over Q as well as over Q. For each f ∈ F , we apply the division algorithm:

f(X) =
g(X)

h(X)
=

qg(X) · p(X) + rg(X)

qh(X) · p(X) + rh(X)

with rg(X) and rh(X) both linear polynomials. We write rg(X) = g1X + g0 and rh(X) =

h1X + h0, with all coefficients in Q. Now f(x) =
qg(x)·0+rg(x)
qh(x)·0+rh(x)

=
rg(x)
rh(x)

, and likewise f(x) =
rg(x)
rh(x)

. Since f(x) 6= f(x), this shows that
rg(X)
rh(X) cannot be constant, so rg(X) is not a scalar

multiple of rh(X).

Suppose that a = f(x) = g(x)
h(x) lies in Q. Then

g1 · (b+
√
u) + g0 = rg(x) = g(x) = ah(x) = arh(x) = ah1 · (b+

√
u) + ah0,

and this equation can be re-expressed as

(g1b+ g0 − ah1b− ah0) +
√
u(g1 − ah1) = 0.

Here both expressions in parentheses lie in Q, but we chose u with
√
u /∈ Q, and so

g1b+ g0 = a(h1b+ h0) and g1 = ah1.

But this immediately shows that rg(X) = g1X + g0 = ah1X + ah0 = arh(X), contradicting
the statement above that rg(X) is not a scalar multiple of rh(X).

8 W. CALVERT, K. KRAMER, AND R. MILLER

With this contradiction, we see that f(x) /∈ Q (and indeed f(x) /∈ Q). Since this
holds for all f ∈ F , and since |x − y| < ǫ, it is now clear (just as in Lemma 2.1) that the
computation MQ(x) follows the exact same path as MQ(y), and outputs the same answer.
However, y /∈ A≤2 since y was transcendental over Q, whereas x = b+

√
u ∈ A≤2. Thus the

machine M with oracle Q did not compute the characteristic function of A≤2.

4. Application to Algebraic Numbers in General

Theorem 4.1. For every d > 0, A≤d 6≤BSS A≤d−1. In particular, A=d 6≤BSS A≤d−1.

Proof. The two statements in the theorem are equivalent, because A≤d ≡BSS A≤d−1⊕A=d

(where A⊕B = {〈0,~a〉 : ~a ∈ A} ∪ {〈1,~b〉 : ~b ∈ B}). We prove the latter.
As usual, suppose thatM is an oracle BSS machine which, given oracle A≤d−1, computes

A=d. Let ~z be the finite tuple of real parameters used by M , and set Q = Q(~z), the field
generated by these parameters. Then its algebraic portion Q ∩Q is also finitely generated,
since subfields of finitely generated fields are finitely generated, (see [12, Thm. 3.1.4, p. 82]).
Being an algebraic extension, Q ∩Q thus has finite dimension over Q, so Q cannot contain
d-th roots of all prime numbers. Theorem 9.1 from Chapter 6 of [9] shows that there exists
a prime whose real d-th root α satisfies [Q(α) : Q] = d. We also fix any real number y
transcendental over Q, and let F be the set of all nonconstant rational functions f ∈ Q(X)
such that f(y) appears in some cell during the run of M on input y with oracle A≤d−1. By
assumption this run halts and outputs 0, so F is a finite set. As before, we fix ǫ > 0 such
that f(x) · f(y) > 0 for all x ∈ Bǫ(y). Fix any b ∈ Q with |b− y| < ǫ

2 and with f ′(b) 6= 0 for
all f ∈ F . (Each such f is a nonconstant rational function, and so f ′(X), being rational
and nonzero, can only have finitely many roots.)

Now there exist d distinct embeddings σj : Q(α) → Q, with j = 1, . . . , d. With Q and

Q(α) linearly disjoint, each σj extends to an embedding σj : Q(α) → Q(α), with σj ↾ Q
being the identity, and these are all the embeddings (over Q) of Q(α) into its algebraic
closure.

Lemma 4.2. In this situation, let S be the set of rational numbers c such that βc = f(b+cα)
has degree < d over Q. Then S is finite.

Proof. For any c ∈ S, we have Q(βc) (Q(α), with inclusion because βc = f(b+ cα) and
f ∈ Q(X), and without equality because [Q(βc) : Q] < d = [Q(α) : Q]. Hence some σj(c)

embeds Q(α) into its algebraic closure and equals the identity on Q(βc) but not on Q(α).
But α has only d conjugates over Q, so if S were infinite, it would contain an infinite subset
S′ for which one particular embedding σ = σj would have σ(βc) = βc for all c ∈ S′, but
σ(α) 6= α.

Let γ = σ(α)
α

6= 1. Now for c ∈ S′,

f(b+ cα) = βc = σ(βc) = σ(f(b+ cα)) = f(b+ c · σ(α)).
So the equation f(b + X) = f(b + γX) holds whenever X = cα with c ∈ S′. Since S′ is
infinite, this must be an identity of rational functions, and by differentiating it (and recalling
that γ 6= 1), we see that f ′(b) = 0, contradicting our choice of b.

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 9

So we may fix some positive rational c < ǫ
|2α| such that for all f ∈ F , f(b + cα) has

degree ≥ d over Q. (In fact, this degree must then equal d, since f(b + cα) ∈ Q(α).) Let
x = b+ cα. Then |y−x| ≤ |y− b|+ |b−x| < ǫ

2 +
ǫ
2 = ǫ, so that for all f ∈ F , f(x) and f(y)

have the same sign and both lie outside of the oracle set A≤d−1. Therefore the computation
of M on input x with oracle A≤d−1 halts and outputs 0, yet x ∈ A=d, so this machine does
not decide the set A=d.

Thus we have a positive answer to Problem 1. Meer and Ziegler also posed a similar
problem: whether A≤d ≡BSS A=d for every d. They had noted that this holds when d ≤ 2,
but in fact it holds for no other d than those. Since A≤d ≡BSS A≤d−1 ⊕ A=d, the problem
essentially asks whether A≤d−1 ≤BSS A=d. In the next section, Theorem 5.3 will use the
same technique as Theorem 4.1 to show that for d − 1 > 0, A=d−1 ≤BSS A=d iff (d − 1)
divides d.

5. Results on Sets of Degrees

Now we create more general versions, mostly along the same lines as Theorem 4.1. To make
the notation as powerful as possible, we extend it: for any subset S ⊆ ω, we will write
AS = ∪d∈SA=d, the set of all algebraic real numbers whose degrees over Q lie in S.

Lemma 5.1. For every S ⊆ ω, AS is a BSS-semidecidable set, and the semidecision proce-
dure is uniform in one real parameter for S.

Proof. The BSS machine M with range AS has one real parameter zS =
∑

n∈S 2−n, whose
binary representation forms a code for the set S ⊆ ω. From this parameter, given any n, the
machine can determine whether or not n ∈ S. On input x, the machine searches through all
irreducible h(X) ∈ Q[x] until it finds one with h(x) = 0. Then it uses zS to decide whether
deg(h) ∈ S, and halts only on a positive answer. (It was known as far back as 1882, in the
work [8] of Kronecker, that there is a decision procedure for irreducibility of polynomials in
Q[X].)

Our first result on these BSS-semidecidable sets is immediate.

Lemma 5.2. If S ⊆ T ⊆ ω, then AS ≤BSS AT .

Proof. With an AT oracle, a BSS machine can decide whether an input x lies in AT . If it
does not (and S ⊆ T), then x /∈ AS; whereas if it does, then one merely searches for the
minimal polynomial of x in Q, and checks whether its degree lies in S. (For this purpose,
the machine needs the parameter zS from Lemma 5.1.)

Theorem 5.3. For every d > 0 in ω and every set S ⊂ ω with S ∩ dZ = ∅, A=d 6≤BSS AS.

Proof. Essentially the same construction as in Theorem 4.1 applies, and we use the same
notation. In addition to the argument given there, we must show that for every f ∈ F ,
f(x) cannot lie in the new oracle set AS, as opposed to A≤d−1, which was the oracle used
in Theorem 4.1. For this purpose, a few revisions are needed. First, with Q still denoting
the field generated by the parameters of M , we let K = Q ∩ Q, and let FK = F ∩K(X)
be the set of nonconstant functions in K(X) appearing in the computation by MAS on the
transcendental input y. Now K is a finite algebraic extension of Q within R, and we let L
be the Galois extension of Q generated by K within the complex field C. Moreover, we will

10 W. CALVERT, K. KRAMER, AND R. MILLER

choose our x to have degree d not only over Q, and not only over Q, but also over L. Since
L and Q are both finitely generated, this can be done.

Now let f ∈ F and consider a = f(x). First, if f /∈ FK , then every expression of
f(X) involves transcendentals over Q. Suppose that f(X) = f∗(t1, . . . , tm,X), where f∗ =
g∗

h∗ ∈ K(T1 . . . , Tm,X) and {t1, . . . , tm} (which we write as {~t}) is algebraically independent

over Q. If a = f(x) = f∗(~t, x) lies in A, then g∗(~t, x) = ah∗(~t, x), so all coefficients in

g∗(~T , x)− ah∗(~T , x) are zero, which can happen for only finitely many values of x (since f
is nonconstant). So, in the revised proof, we make sure to avoid those finitely many values
of x (for each f ∈ F − FK) when making our choice of x close to y.

Next we suppose that a = f(x) for an f ∈ FK . The same proof as in Theorem 4.1 shows
that L(a) cannot be a proper subfield of L(x). (The argument there for Q goes through now
with Q replaced by L.) Now, however, it is not guaranteed that a has degree < d over L, and
so it is possible that L(a) = L(x). In this case, we know that [L(a) : L] = [L(x) : L] = d,
and so a has minimal polynomial q(X) ∈ L[X] of degree d. If a is transcendental over
Q, then of course a /∈ AS; so assume a is algebraic, and let p(X) ∈ Q[X] be the minimal
polynomial of a over Q. Then p(X) is just the product of q(X) with several images of
q(X) under automorphisms of L. Specifically, if E is the subfield of L generated by the
coefficients of q(X), then

p(X) = Πσ∈G qσ(X),

where G is a set of representatives for the right cosets of Gal(L/E) in Gal(L/Q), and
where qσ(X) is the image of q(X) under the map σ on its coefficients. (This formula for the
minimal polynomial p(X) of the roots of q over the smaller subfield Q requires the extension
Q ⊆ L to be Galois. This is why we used the Galois extension L, rather than just the fields
K or Q.) It follows that deg(p(X)) = d · [E : Q]. Since S contains no nonzero multiples
of d, we see that deg(p(X)) /∈ S, and hence a /∈ AS. The rest of the proof then proceeds
exactly as in Theorem 4.1.

For reference in Theorem 5.14, we note that in the above proof, when L(a) = L(x), we
showed that [Q(a) : Q] = d · [E : Q] is a multiple of d by a factor ≤ [L : Q]. Here all that
was needed was for [Q(a) : Q] to be a multiple of d, but there we will need uniformity in
the size of the multiple.

We will see below that the converse of Lemma 5.2 fails. However, we can prove a
substitute for it, which yields the same principal results (Corollaries 5.5 and 5.7, below)
that one would have derived from the converse.

Theorem 5.4. Let P be the set of all prime numbers in ω. Then for all S and T in the
power set P(P), AS ≤BSS AT if and only if S ⊆ T .

Proof. The backward direction follows from Lemma 5.2, and the forward from Theorem
5.3, since no element of P divides any other element of P .

This allows us to show that the BSS-semidecidable degrees, which form the analogue
for BSS computation of the computably enumerable Turing degrees, are a structure of
significant complexity. In [11, Theorem 16], Meer and Ziegler showed that there exist
uncountably many BSS-semidecidable degrees, pairwise incomparable with each other, and
Corollary 5.5 (below) could also be proven using their sets Q√

p, and unions of those sets, in
place of the sets A=p and their unions. In the case of additive BSS-machines, some related
results appear in [6].

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 11

Corollary 5.5. There exists a subset L of the BSS-semidecidable degrees such that as partial
orders, (L,≤BSS) is isomorphic to (P(ω),⊆).

Proof. We have (P(ω),⊆) ∼= (P(P),⊆), and Theorem 5.4 shows that the latter partial
order embeds into the BSS-semidecidable degrees via the map S 7→ AS .

In Corollary 5.5, the isomorphism respects partial orders, but it is open whether it maps
meets and joins within the lattice (P(ω),⊆) to meets and joins within the upper semilattice
of the BSS degrees, or within the sub-upper semilattice of the BSS-semidecidable degrees.

By adding the following elementary set-theoretic fact to Corollary 5.5 we create a
different proof of [11, Thm. 16].

Lemma 5.6 (Folklore). There exists a collection D ⊆ P(ω) of cardinality 2ω satisfying:

(∀A ∈ D)(∀B ∈ D)[A ⊆ B =⇒ A = B].

Proof. Recall that for A,B ⊆ ω, A ⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}. Let
D = {S ⊕ SC : S ∈ P(ω)}, where SC is the complement of S.

Corollary 5.7 (first shown in [11]). There exists an antichain (under ≤BSS) of cardinality
2ω within the BSS-semidecidable degrees.

The remainder of this section is devoted to the question of when we can have AS ≤BSS

AT without having S ⊆ T . The restriction on S in Theorem 5.3 is that it does not contain
any multiples of d. This leaves open the full converse of Lemma 5.2, and it is natural to
conjecture that AS ≤BSS AT if and only if S ⊆ T . The authors were surprised to find that
this conjecture fails, and moreover, that it can fail even for finite sets S. To introduce this
failure, we give a specific example, which builds on a technique introduced by Meer and
Ziegler in [11, Lemma 17], in which they proved that A=1 ≤BSS A=2.

Proposition 5.8. A=2 ≤BSS A=6.

Proof. The machine for this reduction, with oracle A=6, is simple. It has 3
√
2 as a param-

eter, and on input x, it asks its oracle whether x+ 3
√
2 ∈ A=6. If not, then it outputs “No”

immediately; while if so, then it searches through the irreducible polynomials in Q[X] until
it finds the minimal polynomial h(X) of x, and then outputs “Yes” if h has degree 2 and
“No” otherwise.

To see that this procedure computes A=2 correctly, we consider the algebraicity of
the input x. If x /∈ A, then x + 3

√
2 is certainly also transcendental, hence /∈ A=6, and

the machine outputs “No.” If x ∈ A(ω−{2}), then the machine must output “No”: either

immediately, if x+ 3
√
2 /∈ A=6, or else after finding the minimal polynomial of x. Finally, if

x ∈ A=2, then we claim that x+ 3
√
2 ∈ A=6, and so the machine goes into its search for the

minimal polynomial of x, and finds that x ∈ A=2.
To see that x + 3

√
2 ∈ A=6 when x ∈ A=2, let F be the field Q(x + 3

√
2). Then

F ⊆ Q(x, 3
√
2), and we show that indeed equality holds. First, F (x) = Q(x, 3

√
2), and so

Q(x, 3
√
2) must have degree either 1 or 2 over F . But also F (3

√
2) = Q(x, 3

√
2), so Q(x, 3

√
2)

must have degree either 1 or 3 over F . The only consistent solution is that F = Q(x, 3
√
2),

so [F : Q] = 6. Thus x+ 3
√
2 ∈ A=6 as required.

12 W. CALVERT, K. KRAMER, AND R. MILLER

The only special aspect of the numbers 2 and 6 here was that 6
2 is an integer relatively

prime to 2.

Proposition 5.9. Let p and q be any positive, relatively prime integers. Then A=p ≤BSS

A=pq.

Proof. The exact same proof as in Proposition 5.8, with 2 replaced by p, 6 by pq, and 3
√
2

by any element of A=q one may choose.

The preceding argument can be uniformized, via a specific effective version of the The-
orem of the Primitive Element. The basic result was proven by Kronecker; we suggest [5,
Lemma 17.12] for a description. Here we simply adapt that proof to the BSS setting.

Theorem 5.10 (Effective Theorem of the Primitive Element, after Kronecker). There is
a BSS-computable function which, given any two finite (possibly empty) tuples 〈x1, . . . , xn〉
and 〈y1, . . . , ym〉 of real numbers such that {x1, . . . , xn} is algebraically independent over
Q and all yi are algebraic over Q(x1, . . . , xn), outputs a single real number z such that
Q(~x, ~y) = Q(~x, z). (This z is called a primitive element for the field Q(~x, ~y) over Q(~x).)

Proof. We use the procedure from [5, Lemma 17.12], with K = Q(~x), noting that this
K has a (Turing-computable) splitting algorithm, uniformly in n, so that our machine can
begin by finding the minimal polynomial of each yi over K(y1, . . . , yi−1), for i = 1, . . . ,m.
It can also find the minimal polynomial f(Y) of the element y = T1y1 + · · · + Tmym over

the function field K(T1, . . . , Tm), clearing denominators so that f ∈ K[~T , Y]. As argued in

[5], for any a1, . . . , am ∈ K such that ∂f
∂Y

(a1, . . . , am, a1y1 + · · · + amym) 6= 0, the element
z = a1y1 + · · ·+ amym generates K(~y) = Q(~x, ~y) over K, and our machine will output such
a z.

For BSS machines, finding an appropriate tuple 〈a1, . . . , am〉 requires the machine to
enumerate the elements of K, searching for such a tuple. Recall that a set S ⊆ R∞ is
BSS-countable if there exists a BSS machine M such that S is the image of the set N under
M . Uniform BSS-countability in an input is then defined in the natural way: a collection
S~x of sets, indexed by elements ~x of R∞, is uniformly BSS-countable in these tuples if there
is a BSS machine M ′ such that for all indices ~x, S~x = {outputs M ′(~x, j) : j ∈ N}. It is clear
that the fields K = Q(~x) above are BSS-countable uniformly in ~x, and so our machine can
search through elements of Km to find the requisite tuple.

Proposition 5.11. Let S and T be subsets of the positive integers. Suppose that for some
absolute constant N and each d ∈ S, there is a positive integer nd ≤ N and prime to d such
that dnd ∈ T . Then AS ≤BSS AT .

Proof. For n = 1, . . . , N , fix parameters zn = n
√
2 ∈ R, so each Q(zn) is an extension of

degree n over Q. On input x, our machine computes a primitive element an for each of the
fields Q(x, zn), using Theorem 5.10, and checks whether any of the N elements an lies in
the oracle set AT . If any one does, we know x is algebraic, so we search for the minimal
polynomial of x over Q and output “yes” or “no” depending on whether or not its degree
is in S.

Suppose that no an lies in AT . In this case the machine program outputs “no.” Since
this clearly is the correct answer when x is transcendental, we consider x algebraic of some
degree d over Q. If d ∈ S, let m = nd. By assumption, gcd(m,d) = 1, so Q(x)∩Q(zm) = Q,
forcing [Q(am) : Q] = [Q(x, zm) : Q] = dm ∈ T , and therefore am ∈ AT .

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 13

Next we show how to remove the assumption of relative primality for a finite set S.

Proposition 5.12. Let p and r be any positive integers. Then A=p ≤BSS A=r if and only
if p divides r.

Proof. The “only if” direction follows from Theorem 5.3. For the “if” direction, let q = r
p
.

We start with parameters z0, . . . , zn, where n = 2p − 2 and zi is the positive real q-th root
of the i-th prime number: z0 = q

√
2, z1 = q

√
3, Notice that then Q(zi) ∩ Q(zj) = Q for

all i 6= j.
On input x, this machine asks its A=r-oracle whether any of the elements aij = zi + jx

lies in A=r, where i and j are integers satisfying 0 ≤ i ≤ n and 1 ≤ j ≤ q(p− 1) + 1. If not,
it outputs “No,” while if (zi + x) ∈ A=r, it finds the minimal polynomial of x over Q and
outputs “Yes” or “No” depending on whether that polynomial has degree p.

Once again, this machine clearly outputs “No” whenever x (and hence all aij) are
transcendental, and clearly outputs the correct answer whenever it actually searches for
the minimal polynomial of x (because it only does so when x is algebraic). The crucial
situation is that in which x is algebraic and no aij lies in A=r, so that the output “No”
comes immediately. We must show that no such x can lie in A=p.

So suppose x ∈ A=p. Then the minimal polynomial h(X) ∈ Q[X] of x has exactly

2p − 2 nontrivial factors in Q[X], corresponding to the proper nonempty subsets of the
set of all p roots of h(X) in the algebraic closure Q. Now h has no proper factors in
Q[X], hence any proper factor of h in one Q(zi)[X] cannot lie in any other Q(zj)[X], (since
Q(zi)∩Q(zj) = Q), leaving at least one i ≤ n such that Q(zi)[X] contains no proper factors
of h at all. We fix this i, and note that then the field Q(x, zi) has degree p over Q(zi) (since
h(X) remains irreducible in Q(zi)[X]), hence has degree pq = r over Q.

Now we claim that for this i, there exists at least one j ∈ ω with 1 ≤ j ≤ q(p − 1) + 1
such that aij = zi + jx is a primitive generator of Q(x, zi). This aij must then lie in A=r,
so this will complete the proof. The necessary result follows from the proof given in [13,
§6.10] of the Theorem of the Primitive Element. Specifically, it is shown there (with ∆ = Q

being separable) that Q(x, zi) has a primitive generator of the form zi + cx, with c ∈ Q,
and indeed that there are at most q(p − 1) values of c in Q for which zi + cx fails to be a
primitive generator. Since we tested q(p− 1) + 1 different values of j, at least one aij does
generate Q(x, zi), hence has degree r over Q as required.

We can generalize Proposition 5.12 to finitely many degrees.

Proposition 5.13. For any subsets S and T of ω, if (S−T) is finite and for every p ∈ S−T ,
there exists an integer q > 0 such that pq ∈ T , then AS ≤BSS AT .

Proof. Let S − T = {p1, . . . , pk}, so that

AS ≡BSS AS∩T ⊕ A=p1 ⊕ · · · ⊕A=pk = {〈i, x〉 : (i = 0 & x ∈ AS∩T) or (x ∈ A=pi)}.
(The set on the right is clearly the least upper bound under ≤BSS of AS∩T and the sets
A=pi .) Now AS∩T ≤BSS AT by Lemma 5.2, and by assumption, for each pi, there is some
qi > 0 with piqi ∈ T , so that A=pi ≤BSS A=piqi ≤BSS AT , using Proposition 5.12 and
Lemma 5.2. Hence AS ≤BSS AT .

In the preceding construction, each element of (S − T) requires its own parameters
in the given BSS reduction. However, Proposition 5.11 showed that in certain cases the
reduction can be done uniformly, and so (S−T) need not be finite. Next we show here that
the uniformity in Proposition 5.11 was essential.

14 W. CALVERT, K. KRAMER, AND R. MILLER

Theorem 5.14. For sets S, T ⊆ ω, if AS ≤BSS AT , then there exists N ∈ ω such that all
p ∈ S satisfy {p, 2p, 3p, . . . ,Np} ∩ T 6= ∅.
Proof. We prove the contrapositive, assuming that there is no such N . Suppose an oracle
BSS machine M with parameters ~z computes χAS

from oracle AT . Let Q = Q(~z) as usual,
and let L be the normal closure of Q ∩ A within C. Thus L is a Galois extension of Q.
By assumption we may fix some d ∈ S such that {d, 2d, . . . , [L : Q] · d} ∩ T = ∅. Running
our usual argument with any y ∈ R transcendental over Q, we get an ǫ and a finite set
F ⊂ Q(Y). Now suppose x ∈ A=d lies in Bǫ(y) and has degree d over L as well as over Q.
Then for every f ∈ F , either f(x) /∈ A (so f(x) /∈ AT), or L(f(x)) = L(x), or L(f(x)) is a
proper subfield of L(x). But now, using the same argument as in Theorem 5.3 for the choice
of x, and referring to the note at the end of the proof of that theorem, we see that the case
of a proper subfield may be avoided, and that when L(f(x)) = L(x), the degree of f(x)
over Q equals d · [E : Q]. Recall that E was the subfield of L generated by the coefficients
of the minimal polynomial of f(x) over L. Therefore [E : Q] ≤ [L : Q], and so d · [E : Q],
the degree of f(x) over Q, does not lie in T , by our choice of d. Hence f(x) /∈ AT , and the
usual argument then shows that the computation MAT (x) proceeds along the same path as
for y, hence outputs 0, even though x ∈ A=d ⊆ AS .

For the converse of Theorem 5.14, one would need to uniformize the construction in
Proposition 5.12, along the lines of Proposition 5.11. We leave this question for another
time.

6. Countable Oracle Sets

It is natural to think of countability of a subset S ⊆ R∞ as a limit on the amount of
information which can be encoded into S. This intuition requires significant restating before
it can be made into a coherent (let alone true) statement, but we will give a reasonable
version in this section. So far, all our oracle sets have been of the form AS, for various
S ⊆ ω, and so they have all been countable. In [11], it was asked whether there could
exist a countable set C ⊆ R∞ such that the halting problem H for BSS computation on
R satisfies H ≤BSS C. We will show that the answer to this question is negative. For a
definition of H in this context, we refer the reader to [11]. Since it is equiconsistent with
ZFC for the Continuum Hypothesis to be false, we will make our arguments applicable to
all infinite cardinals κ < 2ω, countable or otherwise. Many of the results of the present and
subsequent sections were first announced in [4].

First, of course, every subset of R∞ is BSS-equivalent to its complement, and so count-
ability and co-countability impose the same restriction on information content. Of course,
many sets of size continuum, with equally large complements, are quite simple: the set of
positive real numbers, for example, is BSS-decidable, hence less complex than the countable
set A. So it is not possible to prove absolute results relating cardinality and co-cardinality
(within R∞) to BSS reducibility, but nevertheless, we can produce theorems expressing the
intuition that countable sets are not highly complex in the BSS model. This process will
culminate in Theorem 6.4 below, but first we show that with a countable oracle, one cannot
decide the BSS halting problem H. We conjecture that H is not an upper bound on the
degree of a countable set, i.e. that such a set can still be BSS-incomparable with H, but it
certainly constitutes progress just to know that the upper cone of sets above H contains no
countable sets.

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 15

Theorem 6.1. If C ⊆ R∞ is a set such that H ≤BSS C, then |C| = 2ω.

We note that by BSS-equivalence, these conditions also ensure |R∞ − C| = 2ω, and
ensure |Rm − C| = 2ω whenever C ⊆ Rm.

Proof. Let C ⊆ R∞ have cardinality < 2ω, and suppose that M is an oracle BSS machine
such that MC computes the characteristic function of H. We fix a program code number p
for the program which takes inputs 〈x1, x2〉 ∈ R2, searches through nonzero polynomials q in
Q[Y1, Y2], and halts iff it finds one with q(x1, x2) = 0. Since the program coded by p uses no
real parameters, p may be regarded as a natural number, but in our argument it can equally
well be a tuple ~p from R∞, with one or several real numbers coding program parameters.
Then the elements of C, the finitely many parameters ~z of M , and the parameters, if any,
in the program coded by ~p together generate a field E ⊆ R which also has cardinality < 2ω,
and so R is an extension of infinite transcendence degree (indeed of degree 2ω) over this E.
(Since C ⊆ R∞, we need to be precise: E is generated by the coordinates p1, . . . , pj and
z1, . . . , zk of the tuples ~p and ~z, and the coordinates of each tuple in C.)

Now fix a pair 〈y1, y2〉 of real numbers algebraically independent over E. Hence
〈~p, y1, y2〉 /∈ H, so MC on this input halts after finitely many steps and outputs 0. We

fix the finitely many functions fi,s(~Y) ∈ E(Y1, Y2) such that fi,s(y1, y2) appears in the i-th
cell at stage s during this computation. (The program code ~p ∈ E∞ will stay fixed through-
out this proof, so we may treat it as part of the function fi,s, rather than as a variable.)
As usual, F will be the set of those functions fi,s which are not constants in E, and we fix
an ǫ > 0 such that whenever 〈x1, x2〉 ∈ R2 with x1 ∈ Bǫ(y1) and x2 ∈ Bǫ(y2), every f ∈ F
satisfies f(x1, x2) ·f(y1, y2) > 0. Write each f ∈ F as a quotient f = g

h
with g, h ∈ E[Y1, Y2],

and let n be the greatest degree of Y2 in all of these finitely many polynomials g and h.
Now choose x1 ∈ R to be transcendental over E and within ǫ of y1, and pick x2 within

ǫ of y2 such that x2 is algebraic over Q(x1) but has degree > n over E(x1). For instance, let
x1 = y1 and x2 = m

√
x1+b, where m > n is prime and b ∈ Q is selected to place x2 ∈ Bǫ(y2).

The subfield E(x1) of R contains no nontrivial m-th roots of unity, nor any m-th roots of
x1 (by our choices), so the Galois group of the splitting field of (Y m − x1) over E(x1) is
just the Galois group of its splitting field over Q(x1), which acts transitively on the roots.
Thus this polynomial is irreducible over E(x1), and so x2 has degree m over E(x1).

Thus, for any f ∈ F , if a = f(x1, x2) ∈ E, then 0 = g(x1, x2) − ah(x1, x2). Since f
is nonconstant, g is not a scalar multiple of h, and so (g − ah) would then be a nonzero
polynomial in E[Y1, Y2] of degree ≤ n, contradicting our choice of x2. Hence f(x1, x2) /∈ E
for every f ∈ F . But then the oracle computation MC(~p, x1, x2) must follow the same path
as MC(~p, y1, y2) and give the same output, namely 0. Since 〈~p, x1, x2〉 ∈ H, this proves that
MC does not compute the characteristic function of H.

Indeed the preceding proof shows slightly more than was stated.

Corollary 6.2. If C ⊆ R∞ is a set such that H ≤BSS C, then R has finite transcendence
degree over the field K generated by (the coordinates of the tuples in) C, and also has finite
transcendence degree over the field generated by the complement of C.

Proof. Given an oracle BSS machine M which computes H from oracle C, let E be the
extension field K(~z, ~p), with K as defined in the corollary. If R had transcendence degree
≥ 2 over this E, then the proof of Theorem 6.1 would go through: we could choose y1, y2 ∈ R

algebraically independent over E, say with y1 > 0, and then let x1 = y1 and x2 = b+ m
√
x1,

with m > n prime, as in the proof, and with b ∈ Q selected to put x2 ∈ Bǫ(y2). But this

16 W. CALVERT, K. KRAMER, AND R. MILLER

would show that MC does not compute H. So R has transcendence degree ≤ 1 over this E,
and therefore is algebraic over E(t) = K(t, ~z, ~p) for some t ∈ R.

Since C is BSS-equivalent to its complement, the same proof applies to (R∞ −C), and
also to (Rm − C) if C ⊆ Rm.

As we consider the general case of a BSS computation of the characteristic function χS

of a set S ⊆ R using an oracle C of infinite cardinality κ < 2ω, the following definition will
be useful.

Definition 6.3. A set S ⊆ R is locally of bicardinality ≤ κ if there exist two open subsets
U and V of R with |R− (U ∪ V)| ≤ κ and |U ∩ S| ≤ κ and |V ∩ SC | ≤ κ.

If κ < 2ω, then such U and V must be disjoint, since (U ∩ V) is open with |U ∩ V | ≤
|U ∩ S| + |V ∩ S| ≤ κ. So the definition roughly says that up to sets of size κ, each of
S and S is equal to an open subset of R. It is not equivalent to weaken the requirement
|R − (U ∪ V)| ≤ κ in Definition 6.3, for instance by requiring that |U ∩ V | < 2ω. For a
counterexample, let V = ∅ and let U be the complement SC of the Cantor middle-thirds
set S, which contains all real numbers x whose non-integer part x − ⌊x⌋ has a ternary
expansion in only 0’s and 2’s. Thus U ∩ S = V ∩ §C = U ∩ V = ∅, yet this S is not locally
of bicardinality ≤ ω (nor ≤ any other κ < 2ω), as shown in full in Lemma 7.3 below.

The local bicardinality of S is the least cardinal κ such that S is locally of bicardinality
≤ κ.

The property of having local bicardinality ≤ κ does not appear to us to be equivalent
to any more easily stated property, and we are not aware of it having been used (or even
stated) elsewhere in the literature. The same definition in higher dimensions completely
loses its power: any connected component U0 of U must have boundary ∂U0 with U0∩∂U =
V ∩ ∂U0 = ∅, since U and V are open and disjoint. But then |∂U0| ≤ |Rn − (U ∪ V)| ≤ κ,
which is feasible in R1 but not in higher dimensions, unless U or V were empty or κ = 2ω.
Thus, in Rn with n > 1, every set of local bicardinality < 2ω has either cardinality < 2ω

or co-cardinality < 2ω. Nevertheless, within R1, this is exactly the condition needed in our
general theorem on cardinalities.

Theorem 6.4. If C ⊆ R∞ is an oracle set of infinite cardinality κ < 2ω, and S ⊆ R is a
set with S ≤BSS C, then S must be locally of bicardinality ≤ κ. The same holds for oracles
C of infinite co-cardinality κ < 2ω.

Proof. Again let ~z be the parameters used by the oracle BSS machine M which, given
oracle C, computes χS. Then for any input y ∈ R transcendental over the subfield E of
cardinality κ generated by ~z and the individual coordinates of all elements of C, there will
again exist a finite set Fy ⊆ E(X) as above, and an ǫ > 0 such that f(x) · f(y) > 0 for all
x ∈ Bǫ(y) and f ∈ Fy. For each such y, let B(y) be an open interval of length less than the
corresponding ǫ, such that B(y) contains y and has rational end points. Now if x ∈ B(y)
is also transcendental over E, then the computation of χS(x) using this machine and the
C-oracle proceeds along the same path as the computation for y, since f(x) /∈ E for all
f ∈ Fy. (Indeed, this would hold whenever x ∈ B(y) has degree > n over E, where n is the
maximum degree of all numerators and denominators of elements of Fy.) This shows that
χS(x) = χS(y) for all such x. Since only κ-many elements of B(y) can be algebraic over
the size-κ field E, it follows that either S ∩B(y) or SC ∩B(y) has size ≤ κ.

Now if t ∈ B(y0)∩B(y1) is transcendental over E, then t follows the same computation
path as both y0 and y1, implying that χS(y0) = χS(y1) whenever B(y0) ∩ B(y1) 6= ∅, and

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 17

therefore that either B(y0) ∩ S and B(y1) ∩ S both have size ≤ κ, or else B(y0) ∩ §C and
B(y1) ∩ §C both have size ≤ κ. So when we set

U =
⋃

{B(y) : |S ∩B(y)| ≤ κ} and V =
⋃

{B(y) : B(y) 6⊆ U},
we will have U ∩ V = ∅. Here the unions are over those y ∈ R transcendental over E (as
B(y) is not defined for any other y), and so the complement R− (U ∪ V) is a subset of the
algebraic closure of E, which has size κ. Moreover, being a union of open intervals B(y)
with rational end points, U in fact equals the union of countably many such intervals, say
U = ∪i∈ωB(yi) for some sequence y0, y1, Since each B(yi) has intersection of size ≤ κ
with S (and since κ ≥ ω), so does the entire union U . Likewise |§C ∩ V | ≤ κ, proving the
theorem.

The claim about oracles of co-cardinality κ follows from applying the same argument
to the oracle (R∞ − C), which is BSS-equivalent to C. If C ⊆ Rm for some m, then the
same holds of (Rm − C).

Notice that the set S of smaller complexity must be a subset of R, whereas C is allowed
to contain tuples from R∞. We conjecture that to extend the theorem to sets S ⊆ R∞,
we would need to allow R∞ − (U ∪ V) to be a size-κ union of proper algebraic varieties
defined over the field generated by C. It is an open question (of interest only under ¬CH)
whether it is equivalent, for the purposes of this conjecture and Theorem 6.4, to replace
|R∞ − (U ∪ V)| ≤ κ by |R∞ − (U ∪ V)| ≤ ω here or in Definition 6.3.

To understand that this theorem cannot readily be stated using a simpler property than
Definition 6.3, consider the BSS-computable set

S = {x ∈ (0, 1) : (∃m ∈ ω) 2−(2m+1) ≤ x− ⌊x⌋ ≤ 2−(2m)},
containing those x ∈ (0, 1) which have a binary expansion with an even number of zeroes
following the decimal point, along with all translations of this set by integers. The closure
of S is just S ∪ Z, but any open set containing any integer z would intersect each of S and
§C in 2ω-many points. So the theorem cannot require the complement R∞ − (U ∪ V) to be
finite, let alone empty. With such tricks one can create examples defying most conceivable
simplifications of Theorem 6.4.

In the next section we discuss the Cantor set, which is often another useful counterex-
ample in this vein.

7. The Cantor Set

As an example of a set of local bicardinality 2ω, we consider the Cantor set C, well known as
a set of measure 0 within R which nevertheless has cardinality 2ω. By definition, C contains
all real numbers x ∈ [0, 1] having ternary expansions in only 0’s and 2’s. One usually views
C as the set of numbers in the unit interval [0, 1] which remain after ω-many iterations of
deleting the open “middle third” of each interval (starting with the middle third (13 ,

2
3) of

[0, 1]). It is clear from this description that C is co-semidecidable in the BSS model: even
a Turing machine could enumerate the end points of all those middle-third intervals to be
deleted. Hence fC is 1-reducible to the complement HC , forcing C ≤BSS H. The natural
next question, whether H ≤BSS C, was settled by Yonezawa in [15], and we thank the
anonymous referee of [4] who pointed out the necessary result there.

Theorem 7.1 (Corollary 2.5 in [15]). The sets Q and C are BSS-incomparable.

18 W. CALVERT, K. KRAMER, AND R. MILLER

Since the BSS-semidecidable set Q must be ≤BSS H, this immediately answers the
question: H ≤BSS C would imply Q ≤BSS C, contradicting Theorem 7.1.

Corollary 7.2. H 6≤BSS C.

Now we consider the local bicardinality of C. The next lemma, combined with Theorem
6.4, immediately proves that C is not BSS-decidable, nor even BSS-semidecidable, in any
oracle of size < 2ω.

Lemma 7.3. The Cantor set C has local bicardinality 2ω.

Proof. Suppose C were locally of bicardinality ≤ κ < 2ω. Then we would have open disjoint
sets U and V satisfying Definition 6.3, and C, having size 2ω, would have to intersect V in
some point x, since

C− V ⊆ (U ∩ C) ∪ (U ∪ V)C

and the right-hand side has size ≤ κ. The open set V would then contain an ǫ-ball around x.
However, every open interval around x intersects each of C and C

C in 2ω-many points. (To
see this, just consider all y whose ternary expansions match that of x for sufficiently many
places to lie within that interval.) Therefore |V ∩ C

C | = 2ω, yielding a contradiction.

Corollary 7.4. The Cantor set C is not BSS-semidecidable below A, or below any other
oracle of cardinality < 2ω.

Proof. This simply means that no function which is BSS-computable in the oracle A can
have C as its domain. Indeed, if it did, then C ≤BSS A, since C and C

C would both be
A-semidecidable. By Lemma 7.3, we know that C has local bicardinality 2ω, so that by
Theorem 6.4 we have |A| ≥ 2ω, contrary to the assumption. The same holds for any other
oracle of size < 2ω.

Corollary 6.2, our natural hope for reproving Yonezawa’s result that H 6≤BSS C by
the methods of this paper, fails to do so, for the field generated by C does not satisfy the
hypothesis there. It seems counterintuitive that a set of measure 0 could generate such a
large field, so we prove it here. (The authors assume that this fact has been proven long
since, and would appreciate a reference for it.)

Lemma 7.5 (Folklore). The Cantor set C generates the entire field R. Indeed, it generates
R as a ring.

Proof. The argument is best understood by seeing an example. Here we begin with an
element of [0, 1], chosen arbitrarily, in ternary form:

0.2201020001211 . . .

= 0.2200020000200 . . .

+0.0001000001011 . . .

= 0.2200020000200 . . .

+(0.0002000002022 . . .) · 1
2

Since 1
2 lies in every subfield of R, this shows that this number is generated from C by

field operations. Indeed, since 1
2 = 2 · 1

4 = 2 · (0.020202 . . .), the number is generated from
elements of C by ring operations. The same process can be applied to any element of [0, 1],
so C generates the entire unit interval, and hence all of R. (In particular, let x ∈ [0, 1], and

NONCOMPUTABLE FUNCTIONS IN THE BLUM-SHUB-SMALE MODEL 19

write x as x1 + x2, where each non-zero ternary digit of xi is equal to i. Now x′1 = 2x1 is
in C, and 1

4 is in C. Thus, x = x2 + (14 +
1
4)x

′
1 is in the subring generated by C.)

8. A Nicer Situation: the Complex Numbers

BSS computation has also been widely considered on the field C of complex numbers.
The principal differences are the algebraic closure of C and the consequent impossibility
of any order on C compatible with the field operations. Of these, the second is probably
the more significant difference. With no order available, BSS machines on C can only make
comparisons of cell contents under = (and can compute the four field operations, of course).
To help show the importance of this difference, we demonstrate here how much easier the
questions of Section 6 become when considered on C. The following is the analogue in C of
Theorem 6.4.

Theorem 8.1. If C ⊆ C∞ is an oracle set of infinite cardinality κ < 2ω, and S ⊆ R is a
set with S ≤BSS C, then either S or its complement must have cardinality ≤ κ. The same
holds for oracles C of infinite co-cardinality κ < 2ω.

Proof. If the machine M with parameters ~z computes χS from oracle C, consider any
two inputs x, y ∈ C which are both transcendental over the field F generated by ~z and
all components of tuples in C. One immediately sees that the computations of MC on
each of these inputs follow the same path, with the cell contents at each stage given by
rational functions f with coefficients in Q(~z). With x transcendental over F , the only
way for f(x) to lie in F is for f to be constant, in which case f(y) is the same constant.
Thus the oracle questions in the two computations always yield the same answers, and so
χS(x) = MC(x) = MC(y) = χS(y), since the possible output values for MC are just 0 and
1, which are both in the field F . So S contains either all such transcendentals, or else none
of them. Since there are only κ-many elements of C algebraic over the size-κ field F , the
theorem follows.

So, without the order < requiring inputs to be chosen within ǫ of other inputs, the
result involves no local bicardinality whatsoever. We consider this theorem on C to be
the best starting point for a generalization to sets S ⊆ C∞ BSS-decidable below oracles
of cardinalities < 2ω. As stated above, the theorem is false for such S; indeed, in C2, the
zero set of any finite collection of polynomials in C[X,Y] is decidable, and even when the
collection contains just a single nontrivial polynomial, this set has both cardinality and
co-cardinality 2ω. The correct analogy should be that points in C should be considered as
varieties there (after all, the singletons are exactly the irreducible affine varieties in C1),
and that the generalization of Theorem 8.1 to Cn should not concern the cardinality of S,
but rather the least possible cardinality of a set of irreducible varieties such that S is a
Boolean combination of those varieties.

References

[1] L. Blum, F. Cucker, M. Shub, and S. Smale; Complexity and real computation (Berlin: Springer-Verlag,
1998).

[2] L. Blum, M. Shub, and S. Smale; On a theory of computation and complexity over the real numbers,
Bulletin of the American Mathematical Society (New Series) 21 (1989), 1–46.

20 W. CALVERT, K. KRAMER, AND R. MILLER

[3] W. Calvert, K. Kramer, & R. Miller; Noncomputable functions in the Blum-Shub-Smale model, avail-
able at qcpages.qc.cuny.edu/∼rmiller/BSSabstract.pdf and in the abstract booklet for the confer-
ence Logical Approaches to Barriers in Computing and Complexity (17-20 February 2010, Greifswald,
Germany).

[4] W. Calvert, K. Kramer, & R. Miller; The Cardinality of an Oracle in Blum-Shub-Smale Computation,
Computability and Complexity in Analysis (CCA 2010) Electronic Proceedings in Theoretical Computer
Science 24 (2010), 56–66.

[5] M.D. Fried & M. Jarden; Field Arithmetic (Berlin: Springer-Verlag, 1986).
[6] C. Gassner; A hierarchy below the halting problem for additive machines, Theory of Computing Systems

43 (2008) 3–4, 464–470.
[7] W. Koolen & M. Ziegler; Kolmogorov complexity theory over the reals, in Proceedings of the Fifth

International Conference on Computability and Complexity in Analysis, CCA ’08, Electronic Notes in
Theoretical Computer Science 221 (Elsevier, 2008), 153-169.

[8] L. Kronecker; Grundzüge einer arithmetischen Theorie der algebraischen Größen, J. f. Math. 92 (1882),
1-122.

[9] S. Lang; Algebra, third edition (Addison-Wesley Publishing Co., Inc., 1993).
[10] S. Lang; Algebraic Number Theory, second edition (Springer, 2000).
[11] K. Meer and M. Ziegler; An explicit solution to Post’s Problem over the reals, Journal of Complexity

24 (2008) 3–15.
[12] M. Nagata; Theory of Commutative Fields, English trans. (American Mathematical Society, 1993).
[13] B.L. van der Waerden; Algebra, volume I, trans. F. Blum & J.R. Schulenberger (New York: Springer-

Verlag, 1970 hardcover, 2003 softcover).
[14] H. Wozniakowski; Why does information-based complexity use the real number model? Theoretical

Computer Science 219 1-2 (1999), 451–465.
[15] Y. Yonezawa; The Turing degrees for some computation model with the real parameter, J. Math. Soc.

Japan 60 2 (2008), 311–324.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. BSS-Computable Functions At Transcendentals
	3. Application to Algebraic Numbers of Degree 2
	4. Application to Algebraic Numbers in General
	5. Results on Sets of Degrees
	6. Countable Oracle Sets
	7. The Cantor Set
	8. A Nicer Situation: the Complex Numbers
	References

