
Logical Methods in Computer Science

Vol. 3 (3:1) 2007, pp. 1–23

www.lmcs-online.org

Submitted Nov. 24, 2006

Published Jul. 4, 2007

A FINITE SEMANTICS OF SIMPLY-TYPED LAMBDA TERMS

FOR INFINITE RUNS OF AUTOMATA

KLAUS AEHLIG

Department of Computer Science, University of Wales Swansea, Swansea SA2 8PP, United King-
dom
e-mail address: k.t.aehlig@swan.ac.uk

Abstract. Model checking properties are often described by means of finite automata.
Any particular such automaton divides the set of infinite trees into finitely many classes,
according to which state has an infinite run. Building the full type hierarchy upon this
interpretation of the base type gives a finite semantics for simply-typed lambda-trees.

A calculus based on this semantics is proven sound and complete. In particular, for
regular infinite lambda-trees it is decidable whether a given automaton has a run or not.
As regular lambda-trees are precisely recursion schemes, this decidability result holds for
arbitrary recursion schemes of arbitrary level, without any syntactical restriction.

1. Introduction and Related Work

The lambda calculus [5] has long been used as model of computation. In its untyped
form it is Turing complete. Even though models of the untyped lambda calculus are known,
restricting it to a typing discipline allows for more specific models. The simply-typed lambda
calculus has a straight forward set-theoretic semantics.

Quite early on, not only finite but also infinite lambda-terms have been considered. For
example, Barendregt [5] introduced the concept of “Böhm trees” as a generalised concept
of normal forms for lambda-terms where normalisation does not necessarily terminate, but
still might produce a growing normal prefix; for example the term Y (λzx.xz) has the Böhm
tree λx.x(λx.x(λx.x . . .)).

Since Rabin [16] showed the decidability of the monadic second order (MSO) theory of
the infinite binary tree this result has been applied and extended to various mathematical
structures, including algebraic trees [8] and a hierarchy of graphs [7] obtained by iterated
unfolding and inverse rational mappings from finite graphs. The interest in these kind of
structures arose in recent years in the context of verification of infinite state systems [13, 18].

2000 ACM Subject Classification: F.3.2.
Key words and phrases: Recursion Schemes, infinitary lambda calculus, automata.
Partially supported by grant EP/D03809X/1 of the British Engineering and Physical Sciences Research

Council (EPSRC). Part of this article was written while Klaus Aehlig was affiliated with the University of
Toronto and supported by grant Ae 102-1/1 of the “Deutsche Forschungsgemeinschaft” (DFG).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (3:1) 2007

c© K. Aehlig
CC© Creative Commons

http://creativecommons.org/about/licenses

2 K. AEHLIG

Recently Knapik, Niwiński and Urzyczyn [10] showed that the monadic second order
theory of any infinite tree generated by a level-2 grammar satisfying a certain “safety”
condition is decidable. Later they generalised [11] this result to grammars of arbitrary
levels, but still requiring the “safety” condition. In particular, the question was left open
whether a “safety” constraint is necessary to obtain decidability. In this article we will give
a partial answer.

It should be noted that trees given by higher-order grammars can also be understood
as trees given by simply-typed infinite, but regular, lambda terms. The “safety” condition
guarantees that beta-reduction can be carried out in such a way that variables never have to
be renamed in the process of substitution. This obviously is a property related to operational
aspects of computation. Our approach to avoid the need for such a restriction is therefore
to search for a denotational semantics. Denotational approaches tend to be less vulnerable
to the need of requiring specific operational properties.

To obtain effective constructions, like an effective semantics, it is useful to have a
concrete representation of the properties to be verified. Finite automata are a standard
tool to do so. In this article we concentrate on automata with trivial acceptance condition.
These automata do not exhaust the full of MSO but, as we shall see, are able to express a
reasonable set of safety properties.

Their advantage, however, is that they seem particularly suited for a denotational
approach. The reason is, that the “interface” is particularly simple. In order to combine
two partial runs into a longer run, the only thing we have to look at is the state in which
the automaton arrives.

Based on this intuition we construct a semantics for the simple types. Actually, we
use the standard set-theoretic semantics. Hence the only thing we have to specify is the
interpretation of the base type. Following the discussion above, we describe a term of base
type by the set of states a given automaton can start a run on the tree denoted by that
term.

More precisely, we consider the following problem.

Given a, possibly infinite, simply-typed lambda-tree t of base type, and given
a non-deterministic tree automaton A. Does A have a run on the normal
form of t?

The idea is to provide a “proof” of a run of A on the normal form of t by annotating each
subterm of t with a semantical value describing how this subterm “looks, as seen by A”.
Since, in the end, all the annotations come from a fixed finite set, the existence of such a
proof is decidable.

The idea of a “proof” that a given automaton has a run on a tree is used, at least im-
plicitly, in the work by Aehlig, de Miranda and Ong [4]. This work also gives an affirmative
answer to the question of the decidability for the full MSO theory for trees generated by
level-two recursion schemes.

Very recently, simultaneously and independently, Luke Ong could give an affirmative
answer [15] for trees generated by recursion schemes of arbitrary level, still deciding the full
MSO theory; he thus obtained a stronger result in what concerns decidability. His result is
based on game semantics [9] and is technically quite involved. Therefore the author believes
that his conceptually more simple approach still is of worth. Moreover, the novel finitary
semantics for the simple types introduced in this article, and the sound and complete proof

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 3

system to show the existence of a run of an automaton seem to be of independent interest.
An extended abstract [1] of this article appeared in the proceedings of CSL ’06.

This article is organised as follows. In Section 2 we formally introduce automata with
trivial acceptance condition and study their languages. We also prove the closure of these
languages under the modality “globally”. We also show that properties based on the modal-
ity “eventually” are not expressible. In Section 3 we introduce infinitary simply-typed
lambda trees and in Section 4 we introduce recursion schemes as a means to describe regu-
lar lambda trees. This also shows that some lambda trees have a representation that is not
only effective, but also quite natural. In Section 5 we explain continuous normalisation for
the lambda calculus. The use of continuous normalisation is twofold. On the one hand, it
allows simpler definitions and proofs, as one layer of input corresponds precisely to one layer
of output. On the other hand, it is simply a necessity in order to have a well-defined normal
form in the presence of non-terminating computations due to the infinitary nature of our
lambda trees. Section 6 introduces the finitary semantics and the proof system; Sections 7
and 8 are devoted to the proofs of its soundness and completeness. Finally, in Section 9,
we put the results together to obtain the mentioned decidability result.

2. Automata with Trivial Acceptance Condition

We assume a set of letters or terminals be given to us as a primitive notion. We use f

to range over letters. Each letter f is associated an arity ♯(f) ∈ N.

Definition 2.1. For Σ a set of terminals, a Σ-term is a, not necessarily well-founded, tree
labelled with elements of Σ where every node labelled with f has ♯(f) many children.

A Σ-language is any subset of the set of all Σ-terms. We use the term language if Σ is
understood.

Example 2.2. Let Σ′ = {f, g, a} with f, g and a of arities 2, 1, and 0, respectively. Figure 1
shows two Σ′-terms.

Definition 2.3 (Trivial Automata). A non-deterministic tree automaton with trivial ac-
ceptance condition over the alphabet Σ, or a “trivial automaton” for short, is given by

• a finite set Q of “states”,
• a set I ⊂ Q of “initial states”, and
• a transition function δ : Q× Σ → P((Q ∪ {∗})N).

Here N = max{♯(g) | g ∈ Σ} is the maximal arity and we require δ(q, g) ⊂ Q♯(g)×{∗}N−♯(g)

whenever q ∈ Q and g ∈ Σ.

Definition 2.4 (Run of a Trivial Automaton). If t is Σ-term, and A a trivial automaton
over Σ, then a run (also “an infinite run”) of A on t starting in state q is a mapping r from
the nodes of t to Q, such that the root is mapped to q, and, whenever p is a f-labelled node
in t and p1, . . . , p♯(f) are the children of p, then (r(p1), . . . , r(p♯(f)), ∗, . . . , ∗) ∈ δ(r(p), f).

A run up to level n starting in state q is a mapping from all nodes of t with distance
at most n to Q such that the above condition holds for all nodes p,−→p in the domain of r,
i.e., whenever a node p is f-labelled and its children p1, . . . , p♯(f) have distance at most n to
the root, then (r(p1), . . . , r(p♯(f)), ∗, . . . , ∗) ∈ δ(r(p), f).

A run or a run up to level n, is a run or a run up to level n starting in some initial
state.

4 K. AEHLIG

f
�� ❅❅
a f

�� ❅❅
g f

a
�� ❅❅
g

g

a

...

f
�� ❅❅
g

g

a

f
�� ❅❅
g

g

g

g

a

f
�� ❅❅
g

g

g

g

g

g

g

g

a

...

Figure 1: Two {f, g, a}-terms.

We write A, q |=n t to denote that A has a run on t up to level n starting in state q.
We write A, q |=∞ t to denote that A has a run on t starting in state q. We write A |=n t
to denote that A has a run up to level n on t and we write A |=∞ t to denote that A has a
run on t.

Remark 2.5. Trivially, every automaton has a run up to level 0 on every term starting in
every state. Also immediate from the definition we see that, if A has a run up to level n on
t and m ≤ n then A has a run up to level m on t.

Remark 2.6. By König’s Lemma A has a run on t if and only if A has a run up to level n
on t for every n ∈ N.

Example 2.7. Continuing Example 2.2 consider the property

“Every maximal chain of letters g has even length”.

It can be expressed by an automaton with two states Q = {q2, q1} where q2 means that
an even number of gs has been passed on the path so far, and q1 means that the maximal
chain of gs passed has odd length. Then the initial state is q2 and the transition function
is as follows.

δ(f, q2) = {(q2, q2)} δ(f, q1) = ∅
δ(g, q2) = {(q1, ∗)} δ(g, q1) = {(q2, ∗)}
δ(a, q2) = {(∗, ∗)} δ(a, q1) = ∅

Note that this automaton has an infinite run on the second tree in Figure 1, whereas it has
a run only up to level 3 on the first one.

Definition 2.8 (L(A)). If A is a trivial automaton over the alphabet Σ then by L(A) we
denote the language of A, that is, the set

L(A) = {t | A |=∞ t}

of all terms t such that A has a run on t.

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 5

Proposition 2.9. There exists a trivial automaton that accepts a tree if and only if its root
is labelled by the terminal f.

Proof. Let q1 be an all-accepting state, i.e., δ(q1, g) = {(q1, . . . , q1, ∗, . . . , ∗)} for all g ∈ Σ.
Let q0 be the only initial state, and set δ(q0, f) = {(q1, . . . , q1, ∗, . . . , ∗)} and δ(q0, g) = ∅ for
g 6= f.

Lemma 2.10. If A0 and A1 are trivial automata, then there is a trivial automaton A with
L(A) = L(A0) ∪ L(A1).

Proof. Let Ai have state set Qi, initial states Ii and transition δi. Assume, without loss of
generality, that Q0 and Q1 are disjoint. Then A is given by the following data. State set
is Q = Q0 ∪ Q1, initial states are I = I0 ∪ I1 and the transition function δ is defined by
δ(q, f) = δi(q, f) for q ∈ Qi.

Lemma 2.11. If A0 and A1 are trivial automata, then there is a trivial automaton A with
L(A) = L(A0) ∩ L(A1).

Proof. Let Ai have state set Qi, initial states Ii and transition δi. Set Q = Q0 × Q1,
I = I0 × I1 and define δ : (Q0 × Q1) × Σ → P((Q0 ×Q1 ∪ {∗})N) by δ((q, q′), f) =
{((q0, q

′
0), . . . , (q♯(f), q

′
♯(f)), ∗, . . . , ∗) | (q0, . . . , q♯(f), . . .) ∈ δ0(q, f)∧(q′0, . . . , q

′
♯(f), . . .) ∈ δ1(q, f)}.

Then Q, I and δ define an automaton A as desired.

Non-determinism immediately provides us with closure under projection of the alpha-
bet; we’ll give a precise definition of this property.

Definition 2.12. If Σ and Σ are sets of terminals, a projection from Σ to Σ, is a mapping
π : Σ → Σ such that ♯(π(f)) = ♯(f) for all f ∈ Σ. If t is a Σ-term and π is a projection from
Σ to Σ, then by π(t) we denote the Σ-term that is obtained from t by replacing every label
f by π(f).

Remark 2.13. In Definition 2.12 the condition on the arity is necessary to ensure that
π(t) is a well-formed Σ-tree, i.e., every node g-labelled node has ♯(g) many children.

Lemma 2.14. If Σ and Σ are sets of terminals, π is a projection from Σ to Σ, and A is a
trivial automaton Σ, then there is a trivial automaton Aπ such that

L(Aπ) = {π(t) | t ∈ L(A)} .

Proof. Let A have state set Q, initial states I and transition δ. Then a possible automaton
Aπ is given by the same set Q of states and the same set I of initial state, but with transition
function δπ defined by δπ(q, g) =

⋃
{δ(q, f) | f ∈ Σ, π(f) = g}.

Another obvious closure property of the languages of trivial automata are the temporal
“next” operators.

Definition 2.15 (EXL, AXL). If L is a language we define the languages

EXL = {ft1 . . . t♯(f) | ∃i.ti ∈ L}

and
AXL = {ft1 . . . t♯(f) | ∀i.ti ∈ L} .

Lemma 2.16. If A is a trivial automaton, then there exist trivial automata AEX and AAX

with L(AEX) = EXL(A) and L(AAX) = AXL(A).

6 K. AEHLIG

Proof. To construct AAX, add a new state q0 to the state set of A. This new state will be
the only initial state of AAX. Extend the transition function δ by setting

δ(q0, f) = {(q1, . . . , q♯(f), ∗, . . . , ∗)|q1, . . . , q♯(f) ∈ I}

where I is the set of initial states of A.
To construct AEX from A add a new state q0, which will be the only initial state of the

new automaton, and add a new all-accepting state qf . Extend δ by setting

δ(q0, f) = { (qi, qf . . . , qf , qf , ∗, . . . , ∗),
(qf , qi . . . , qf , qf , ∗, . . . , ∗),
. . .
(qf , qf . . . , qi, qf , ∗, . . . , ∗),
(qf , qf . . . , qf , qi, ∗, . . . , ∗) |qi ∈ I}

where I is the set of initial states of A.

Definition 2.17 (p ∈ t, t|p, Path). We use p ∈ t to express that p is a node in t. In this

case we write t|p for the subterm of t whose root is p.
A path in t is a maximal set P of nodes in t such that if a node p ∈ t different from

the root is in P , then so is its parent, and such that for every node in P at most one of its
children is in P .

Remark 2.18. Immediately from the definition of a path we note that if P is a path in t
and p ∈ P has a child in t then some child of p has to be in P .

Definition 2.19. If L is a language we define the languages

EGL = {t | ∃P (P path in t ∧ ∀p ∈ P.t|p ∈ L)}

and
AGL = {t | ∀p ∈ t.t|p ∈ L} .

The next lemma states that the set of languages of trivial automata is closed under
the modal operator “globally”. On the one hand, this is an interesting closure property,
which shows that at least safety properties can be expressed by trivial automata. On the
other hand, it is worth looking at the proof of this lemma, as it shows, in a simple setting,
all the central ideas that will be used to construct our finitary proof calculus and show its
soundness and completeness. The states of the automaton AAG constructed in the proof
of Lemma 2.20 should be thought of as annotations proving that A has a run starting in
various states.

Lemma 2.20. If A is a trivial automaton, then there exist trivial automata AEG and AAG

such that L(AEG) = EGL(A) and L(AAG) = AGL(A).

Proof. Roughly speaking, the idea is to construct an alternating automaton that follows
one path (for EG) or spawns through all nodes (for AG) and in each step spawns a new
automaton that verifies that A was a run on the subtree starting at the current node. This
alternation can be removed by a simple powerset construction.

Formally, let A be given by the state set Q, the initial states I and the transition
function δ. Define QAG = P(Q), IAG = {M ∈ P(Q) |M ∩ I 6= ∅}, and

δAG(M, f) = {(M1, . . . ,M♯(f), ∗, . . . , ∗) | [∀q ∈M∃(q1, . . . , q♯(f), ∗, . . . , ∗) ∈ δ(f, q)
q1 ∈M1 ∧ . . . ∧ q♯(f) ∈M♯(f)]

∧ ∀i(Mi ∩ I 6= ∅) } .

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 7

Let AAG be the automaton given by this data. Intuitively, the first condition in the transition
function ensures that every state in M can be continued to a run of A, whereas the second
condition ensures that a new run of A can be started at every node.

To verify these properties first assume that t ∈ AGL(A). For every node p ∈ t set
Mp = {q ∈ Q | A, q |=∞ t|p}. Then the mapping p 7→ Mp is a run of AAG on t. The first
condition in the transition relation is fulfilled since every state that has a infinite run must
be able to make a transition to new states that have an infinite run on the corresponding
subtrees. The second condition is satisfied since t ∈ AGL(A) guarantees that A has a run
for every subtree; so at every subtree, some initial state has to have a run.

Now assume t0 ∈ L(AAG). So there is a run r of AAG on t0. We have to show that
t0 ∈ AGL(A). To do so, we show that for all trees t, all M ∈ QAG, if there is any run of
AAG on t starting in M then for all n ∈ N, it holds that ∀q ∈M.A, q |=n t|p.

This indeed shows t ∈ AGL(A). By the properties of IAG and δAG we immediately get
that for all p ∈ t0 the set r(p) contains an element qp ∈ I. Applying the claim to t0|p we

obtain that A has a run, starting in qp on t|p.
So let us show the claim. We argue by induction on n. For n = 0 there’s nothing to show.

So let n ≥ 1 and q ∈M . Assume that t is of the form t = ft1 . . . t♯(f) and let M1, . . . ,M♯(f) the
states of the run of AAG at the children the root. Since (M1, . . . ,M♯(f), . . .) ∈ δAG(M, f) there
exist q1, . . . , q♯(f) such that (q1, . . . , q♯(f), . . .) ∈ δ(q, f) and qi ∈ Mi. Applying the induction

hypothesis to Mi and ti we get A, qi |=
n−1 ti. Together with the transition q 7→ (q1, . . . , qf)

we get A, q |=n t.
The construction for AEG is similar.

Taking stock, we see that quite a few safety properties can be expressed by trivial
automata. Proposition 2.9 and Lemmata 2.10, 2.11, 2.16, and 2.20 show that the fragment
of CTL given by the following grammar can be expressed by trivial automata.

ϕ,ψ ::= f | ϕ ∨ ψ | ϕ ∧ ψ | EXϕ | AXϕ | EGϕ | AGϕ

Of course ¬f can be expressed by an appropriate disjunction over all the other letters of the
alphabet.

Even though this grammar probably does not exhaust all the properties expressible by
trivial automata, it gives the right flair of the properties being safety properties. We will
now show that the simplest liveness property, that is the “eventually” modality, cannot be
expressed, not even for word languages.

Definition 2.21 (Word Alphabet). An alphabet Σ is called a word alphabet, if all its letters
f ∈ Σ have arity ♯(f) = 1.

Remark 2.22. If Σ is a word alphabet, then the only Σ-terms are ω-words.

Lemma 2.23 (Pumping Lemma for Trivial Automata over Words). Let A be a trivial
automaton over a word alphabet Σ. Then there is a natural number n such that for every
word w such that A |=n w there is a prefix of w of the form uv with |uv| ≤ n and |v| ≥ 1
such that uvω ∈ L(A).

Proof. Set n = |Q| + 1 where Q is the set of states of A. Let w = f0f1f2 . . . and assume
A |=n w. Let the states q0q1 . . . qn−1 constitute such a run up to level n on w. Since
|Q| = n − 1 there must be 0 ≤ i < j < n such that qi = qj. Set u = f0 . . . fi−1 and
v = fi . . . fj−1. Then q0 . . . qi−1(qi . . . qj−1)

ω constitutes a run on uvω and u, v are as desired.

8 K. AEHLIG

An immediate consequence is, that trivial automata cannot express the property “even-
tually b”, as the following corollary shows.

Corollary 2.24. The language L = a∗b(a+b)ω is not the language of any trivial automaton.

Proof. Suppose, for sake of contradiction, that L = L(A) for some trivial automaton A and
let n be as asserted by Lemma 2.23. Consider anbaω ∈ L = L(A) and let u, v be as asserted
by the lemma. Since uv is a prefix of anbaω of length at most n, both, u and v must consist
of letters a only, and therefore the lemma asserts aω ∈ L(A) = L which is not the case.

3. Infinitary Lambda Trees

Now let Σ′ be a fixed set of letters and let f from now on only range over elements of
Σ′. The choice of the name Σ′ will become clear in Definition 5.2, when we have to extend
the alphabet in the context of continuous normalisation.

Definition 3.1. The simple types, denoted by ρ, σ, τ , are built from the base type ι
by arrows ρ → σ. The arrow associates to the right. In particular, −→ρ → ι is short for
ρ1 → (ρ2 → (. . . (ρn → ι) . . .)).

In the lambda calculus the most common way to from terms is via application. In
lambda-trees application is represented by a binary @-node. In linear notation, we omit
the “@” and write a tree consisting of an @-node at the root and subtrees s and t just as
juxtaposition st. Application associates to the right, i.e., rst is short for ((rs)t).

Definition 3.2. The infinitary simply-typed lambda-trees over typed terminals Σ′ are coin-
ductively given by the grammar

r, s ::= xρ | (λxρtσ)ρ→σ | (tρ→σsρ)σ | fι→...→ι→ι .

In other words, they are, not-necessarily well founded, trees built, in a locally type respecting
way, from unary λxρ-nodes, binary @-nodes representing application, and leaf nodes con-
sisting of typed variables xρ of type ρ and typed constants f ∈ Σ′ of type ι→ . . . → ι

︸ ︷︷ ︸

♯(f)

→ ι.

Here λxρ binds free occurrences of the variable xρ in its body. Trees with all variables
bound are called closed.

A lambda-tree with only finitely many non-isomorphic subtrees is called regular.

We omit type superscripts if they are clear from the context, or irrelevant.
We usually leave out the words “simply typed”, tacitly assuming all our lambda-trees

to be simply typed and to use terminals from Σ′ only. Figure 2 shows two regular lambda-
trees. Arrows are used to show where the pattern repeats, or to draw isomorphic subtrees
only once. Note that they denote terms (shown in Figure 1) that are not regular. Here, by
“denote” we mean the term reading of the normal form.

Remark 3.3. It should be noted that in lambda-trees, as opposed to Σ′-terms, all constants
and variables, no matter what their type is, occur at leaf positions.

The reason is, that in a lambda-calculus setting the main concept is that of an applica-
tion. This is different from first order terms, where the constructors are the main concept.
Note that we use lambda-trees to denote Σ′-terms. As these are different concepts, even

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 9

@
❅❅��
aλx

@
PPPP��

@
❅❅��

f x

@
❍❍❍

@
�� ❅❅
g x

✟✟✯

@
��

PPPP
@
❅❅
g

λϕ

@
PPPP��

@
❅❅��

f

@
❍❍❍

@
�� ❅❅

ϕ

@
❅❅��

ϕ a λϕ

λx

@
�� ❅❅
ϕ @

�� ❅❅
ϕ x

✟✟✯

❅❅■

Figure 2: Two regular lambda-trees with denotation being the {f, g, a}-terms in Figure 1.

normal lambda-trees differ from their denotation. For example the lambda-tree
@

�❅
@

�❅
a

g a

denotes the Σ′-term
g

�❅
a a

.

4. Recursion Schemes as Means to Define Regular Lambda Trees

The interest in infinitary lambda-trees in the verification community recently arose by
the study of recursion schemes. It could be shown [10, 11] that under a certain “safety”
condition the (infinite) terms generated by recursion schemes have decidable monadic second
order theory. For our purpose it is enough to consider recursion schemes as a convenient
means to define regular lambda-trees.

Definition 4.1. Recursion schemes are given by a set of first-order terminal symbols,
simply-typed non-terminal symbols and for every non-terminal F an equation

F−→x = e

where e is an expression of ground type built up from terminals, non-terminals and the
variables −→x by type-respecting application. There is a distinguished non-terminal symbol
S of ground type, called the start symbol.

Definition 4.2. Each recursion scheme denotes, in the obvious way, a partial, in general
infinite, term built from the terminals. Starting from the start symbol, recursively re-
place the outer-most non-terminals by their definitions with the arguments substituted in
appropriately.

10 K. AEHLIG

S = Fa
Fx = fx(F (gx))

S′ = F ′(Wg)
F ′ϕ = f(ϕa)(F ′(Wϕ))
Wϕx = ϕ(ϕx)

Figure 3: Two recursion schemes.

Definition 4.3. To every recursion scheme is associated a regular lambda-tree in the fol-
lowing way. First replace all equations F−→x = e by

F = λ−→x .e

where the right hand side is read as a lambda term.
Then, starting from the start symbol, recursively replace all non-terminals by their

definition without performing any computations.

Remark 4.4. Immediately from the definition we note that the β-normal form of the
lambda-tree associated with a recursion scheme, when read a term, is the term denoted by
that recursion scheme.

Example 4.5. Figure 3 shows two recursion schemes with non-terminals F : ι→ ι, F ′ : (ι→
ι) → ι, W : (ι → ι) → ι → ι, and S, S′ : ι. Their corresponding lambda-trees are the ones
shown in Figure 2. The sharing of an isomorphic sub-tree arises as both are translations of
the same non-terminal W . As already observed, these recursion schemes denote the terms
shown in Figure 1.

Remark 4.6. The notion of a recursion scheme wouldn’t change if we allowed λ-
abstractions on the right hand side of the equations; we can always build the closure and
“factor it out” as a new non-terminal. For example, the Wϕ in the definition of F ′ in
Figure 3 should be thought of as the factored-out closure (λx.ϕ(ϕx)) which is part of a line
that originally looked

F ′ϕ = f(ϕa)(F ′(λx.ϕ(ϕx))) .

5. Continuous Normalisation for the Lambda Calculus

As mentioned in the introduction, we are interested in the question, whether an au-
tomaton A has a run on the normal form of some lambda-tree t. Our plan to investigate
this question is by analysing the term t.

However, there is no bound on the number of nodes of t that have to be inspected, and
no bound on the number of beta-reductions to be carried out, before the first symbol of
the normal form is determined — if it ever will be. In fact, it may well be that an infinite
simply-typed lambda-tree leaves the normal form undefined at some point.

Example 5.1. It should be noted that the typing discipline does not prevent the problem
of undefinedness. This is due to inherently infinitary nature of recursion schemes. Let
Y : (ι → ι) → ι, I : ι → ι, and S : ι be non-terminal symbols and consider the recursion
scheme

Y ϕ = ϕ(Y ϕ)
Ix = x
S = Y I

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 11

@
✟✟✟✟✟

❍❍❍❍❍
λx

x

λϕ

@
❍❍❍

✟✟✟
ϕ @

❍❍❍
ϕ

✟✟✟

✏✏✶

Figure 4: The lambda-tree associated to the recursion scheme in Example 5.1.

with start symbol S.
Computing the normal form of the associated lambda-tree gives the following infinite

reduction sequence S = Y I →β I(Y I) →β Y I →β Of course, the fact that the
computation will never produce a terminal symbol can, in this example, also be trivially
seen from the fact that the whole recursion scheme does not contain any terminal symbol.

Whereas the unboundedness of the number of symbols to be inspected is merely a huge
inconvenience, the possibility of undefinedness makes it unclear what it even is supposed to
mean that “A has a run on the normal form of t”— if there is no such normal form.

This problem of possible undefinedness of the normal form is similar to a situation in
proof theory, where only strong principles guarantee the termination of the cut-elimination
procedure, whereas the operation itself can be defined in primitive recursive arithmetic.
Continuous Normalisation was introduced by Mints [12, 14] in order to separate cut-
elimination for semiformal systems from their ordinal analysis. The operational aspects of
normalisation, i.e., the manipulations on infinitary derivations, are isolated and described
independently of the system’s proof theoretic complexity, but at the expense of introducing
the void logical rule

Γ(R)
Γ

of repetition. Note that this rule is both, logically valid and has the subformula property.
Using the repetition rule, the cut-elimination operator becomes primitive recursive and

can be studied in its own right. As Mints observed, this cut-elimination operator can also
be applied to non-wellfounded derivations, resulting in a continuous function on derivation
trees (a concise exposition can be found in an article [6] by Buchholz).

The possibility to handle infinite computations is particularly natural in the realm of the
lambda calculus, where non-termination actually does happen. Let us explain the idea of
continuous normalisation for the lambda-calculus [2, 3] by considering the recursion scheme
in Example 5.1. The associated lambda tree is shown in Figure 4.

We look at the outer-most constructor of the term and see an application. Just from
this knowledge we cannot deduce any constructor of the normal form. The normal form
read as a lambda-tree could be an application as well, e.g., if the left term is a terminal;
since we’re trying to compute the normal form as a Σ′-tree, even in this case we would
have to inspect the term further to find out which terminal it is, the term starts with.
But, more importantly, it could also be that the left term is a λ-abstraction, in which a

12 K. AEHLIG

beta-reduction has to be carried out and the normal form could look almost arbitrary. So
we don’t know any constructor of the normal form yet. On the other hand, we want to be
uniformly continuous with identity as modulus of continuity; in other words, we want to
ensure that the output of all nodes of level k only depend on the input of level k. We solve
this problem by outputting R, signalling that we have to read more input to decide what
the normal form will look like.

Having output R we now may look at the next level of the term. Seeing the λϕ we
still don’t any constructor of the normal form, but at least we know that we have to wait
for a different reason —we have to carry out some computation. Therefore we output a β
constructor, signalling that the delay in the output is due to a beta-reduction being carried
out. Note that in a certain sense (made precise in Lemma 5.4) this β “justifies” the first
R-constructor. The application we have seen in the first step has disappeared due to the
beta-reduction being carried out. A different form of justification would be outputting a
Σ′-term, where the lambda-tree reading contains an application. For example the term
fa with f and a both terminals would have continuous normal form R(f(a)), with the R
justified by the fact that f is applied to one argument a.

After this beta-reduction the term I(Y I) is remaining, so we’re looking at an application
again, and, as before, wait by saying R. Again, there is a lambda abstraction to the left
of the application, so we say β and carry out the reduction due to the λx, leaving us with
Y I, which happens to be the term we started with. Of course, we don’t know this yet, as
the only thing we see so far is the outermost @. But the fact that we arrived at Y I again
ensures that the pattern RβRβ . . . of the normal form will repeat.

Let us now formally introduce continuous normalisation. As mentioned, we extend the
language by two new terminals. The R-constructor for a delay due to inspection of an
application and the β-constructor for a delay due to a beta-reduction.

Definition 5.2. Define Σ = Σ′ ∪ {R, β} with R, β two new terminals of arity one.

The continuous normalisation procedure, which will compute the continuous normal
form, follows the informal description above. In other words, if we see an application
we output R and carry on by reading more input. If we see a lambda-abstraction our
typing restrictions force that we have to have collected some arguments before, so that a
beta-reduction has to be carried out, accompanied by a β constructor; in the more general
case [2] of the untyped lambda calculus [5] we would have to do a case distinction on whether
we have at least one argument collected or not. In the latter case the normal form would
start with a λ. Finally, if we find a terminal symbol we construct a term, which is the
terminal symbol applied to the continuous normal forms of the arguments collected so far.

In our official Definition 5.3 of the continuous normal form, the expression t@
−→
t should

be read as “the continuous normal form of t, with arguments t1, . . . , tn collected already”.
Correspondingly the continuous normal form of t is t@() which we also abbreviate by tβ.

Definition 5.3. For t,
−→
t closed infinitary simply-typed lambda-trees such that t

−→
t is of

ground type we define a Σ-term t@
−→
t coinductively as follows.

(rs)@
−→
t = R(r@(s,

−→
t))

(λx.r)@(s,
−→
t) = β(r[s/x]@

−→
t)

f@
−→
t = f(tβ1 , . . . , t

β
n)

Here we used r[s/x] to denote the substitution of s for x in r. This substitution is necessarily
capture free as s is closed. By f(T1, . . . , Tn) we denote the term with label f at the root

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 13

and T1, . . . , Tn as its n children; this includes the case n = 0, where f() denotes the term
consisting of a single node f. Similar notation is used for R(T) and β(T). Moreover we
used rβ as a shorthand for r@().

The term tβ is also called the continuous normal form of t.

A first observation is that the definition obeys the informal idea of “justifying” the
delay constructors. We note that, whenever the number of collected arguments increases
we output a R, and whenever the number of arguments decreases (due to an argument
being consumed by a beta-reduction) we output a β. This bookkeeping of the number of
collected arguments is made precise in the next lemma.

Lemma 5.4. If t@(t1, . . . , tk) = W1(W2(. . . (Wℓ.f(
−→s)))) with W1, . . . ,Wℓ ∈ {R, β} then

the equation k + |{i | Wi = R}| = |{i | Wi = β}| + ♯(f) holds.

Proof. A simple induction on ℓ. If ℓ = 0, the claim k = ♯(f) follows from the typing

requirements. Note that we allowed the expression t@
−→
t only of t

−→
t is well typed of ground

type. If ℓ > 0 we distinguish whether t is an application or a lambda-abstraction. In either

case we unfold the definition of t@
−→
t once and can apply the induction hypothesis.

Next we will study the relation between lambda terms, their continuous normal forms,
and their normal forms in the usual sense, in case the latter exists. This, on the one hand,
will give a clearer picture on what the continuous normal form of a lambda term is. On
the other hand, it will also justify the claim, that is not only technically more convenient
for the development in the rest of this article to use continuous normalisation, but that it
is also more informative.

As an immediate observation, the reader might note that any property expressible
by some automaton A working on Σ′-trees can be lifted to a property on Σ-trees by
“ignoring the additional R and β constructors”. The lifted property can also be ex-
pressed by an automaton. We just have to extend the transition function δ by setting
δ(q,R) = δ(q, β) = {(q, ∗, . . . , ∗)}. In particular, using continuous normalisation does not
cause any disadvantages for the decision problem we are interested in.

We already mentioned that output up to depth h only depends on the input up to
depth h. To make this idea precise, we first define a notion of similarity for lambda-tree or
Σ-terms. The relation r ≈k s holds, if r and s coincide up to level k. This is made precise
in the following definition.

Definition 5.5. For Σ-terms r, s we define, by induction on k, the relation r ≈k s by the
following rules.

r ≈0 s
r1 ≈k s1, . . . , rℓ ≈k sℓ

f(r1, . . . , rk) ≈k+1 f(s1, . . . , sℓ)
For lambda-trees r, s we define, by induction on k, the relation r ≈k s by the following

rules.

r ≈0 s
r ≈k s

λx.r ≈k+1 λx.s
r ≈k r

′ s ≈k s
′

rs ≈k+1 r
′s′

x ≈k x f ≈k f

Proposition 5.6. If r and s are both Σ-terms or both lambda-trees and ℓ, k ∈ N, then
r ≈ℓ s and ℓ ≥ k imply r ≈k s.

Proof. Induction on k.

14 K. AEHLIG

Remark 5.7. Obviously, s = t holds if and only if ∀k.s ≈k t. Moreover, each of the
relations ≈k is an equivalence relation.

Proposition 5.6 and Remark 5.7 together show, that we obtain a metric d if we set
d(s, t) to be 0, if s = t and otherwise set d(s, t) = 1

k+1 where k is maximal such that s ≈k t.
We will now show that continuous normalisation is continuous with respect to this topology.
In fact, we even show a stronger statement of uniform continuity.

Proposition 5.8. If s ≈k s
′ and t1 ≈k t

′
1, . . . , tn ≈k t

′
n then s@

−→
t ≈k s

′@
−→
t ′.

Proof. Induction on k. If k = 0, there is nothing to show. If k > 0, then the outermost

constructors of s and s′ have to coincide. We unfold the definitions of s@
−→
t and s′@

−→
t ′ once

and apply the induction hypothesis.

Now that we know (by Proposition 5.8) that continuous normalisation does not consume
too much input in order to produce the output, we aim at showing that the output is actually
useful and not just a pointless collection of delay constructors. We have already seen (in
Lemma 5.4) that the R constructors are justified by either β constructors or the arity of
the terminals in the output produced. So what remains to show is, that the β constructors
are not arbitrary, but in a reasonable sense related to the underlying computation. In
fact, it will turn out, that every β constructor corresponds to a beta reduction in the head
normalisation strategy; compare Lemmata 5.9 and 5.10. It is well known that this reduction
strategy finds a normal form, if there is one.

Lemma 5.9. If t@
−→
t = W1(. . . (Wk(f(s1, . . . , s♯(f))))) with Wi ∈ {R, β} then there are

lambda-trees r1, . . . , r♯(f) such that

• t
−→
t reduces in n head-reduction steps to f−→r where n is the number of β constructors, i.e.,
n = |{i | Wi = β}|, and

• for each i it holds that rβ
i = si.

Proof. Induction on k. If k = 0, inspection of Definition 5.3 of t@
−→
t shows that it must be

the case that t = f. So, in this case f@
−→
t = f(tβ1 , . . . , t

β
♯(f)) and we can take −→r to be

−→
t .

If k > 0 and W1 = β it must be the case that t = λx.t′. Then (λx.t′)@(t1, t2, . . . , tℓ) =
β((t′[t1/x])@(t2, . . . , tℓ)). So (t′[t1/x])@(t2, . . . , tℓ) = W2(. . . (Wk(f(s1, . . . , s♯(f))))) and the

induction hypothesis gives us −→r with rβ
i = si such that t

−→
t reduces in n − 1 steps to f−→r .

Since, moreover, in one head reduction step, t
−→
t = (λx.t′)t1t2 . . . tℓ reduces to t′[t1/x]t2 . . . tℓ,

this yields the claim. If k > 0 and W1 = R the claim is immediate from the induction
hypothesis.

Lemma 5.10. If t
−→
t reduces by n head reduction steps to fr1 . . . r♯(f) then for

some W1, . . . ,Wk ∈ {R, β} with |{i | Wi = β}| = n we have t@
−→
t =

W1(. . . (Wk(f(r
β
1 , . . . , r

β
♯(f))))).

Proof. Induction on n. If n = 0 then t
−→
t must be of the form f−→r and, indeed, t@

−→
t =

R(. . . (R(f@−→r))) = R(. . . (R(f(rβ
1 , . . . , r

β
♯(f))))).

If n > 0 then t is of the form (λxs)−→s . Writing
−→
t ′ for −→s

−→
t we note that t@

−→
t =

R(. . . (R((λx.s)@
−→
t ′))) = R(. . . (R(β(s[t′1/x]@(t′2, . . . , t

′
ℓ))))). Since the head reduct of t

−→
t

is s[t′1/x]t
′
2 . . . t

′
ℓ, the induction hypothesis yields the claim.

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 15

It should be noted that in the special case of
−→
t being the empty list, Lemmata 5.9

and 5.10 talk about the continuous normal form of t.

6. Finitary Semantics and Proof System

Let A be a fixed nondeterministic tree automaton with state set Q and transition
function δ : Q × Σ → P((Q ∪ {∗})N). The main technical idea of this article is to use a
finite semantics for the simple types, describing how A “sees” an object of that type.

Definition 6.1. For τ a simple type we define [[τ]] inductively as follows.

[[ι]] = P(Q)

[[ρ→ σ]] = [[ρ]][[σ]]

In other words, we start with the power set of the state set of A in the base case, and use
the full set theoretic function space for arrow-types.

Remark 6.2. Obviously all the [[τ]] are finite sets.

Example 6.3. Taking A to be the automaton of Example 2.7, we have [[ι]] = {∅, {q2}, {q1}, Q}
and examples of elements of [[ι→ ι]] include the identity function id, as well as the “swap func-
tion” swap defined by swap(∅) = ∅, swap(Q) = Q, swap({q2}) = {q1}, and swap({q1}) =
{q2}.

Definition 6.4. [[τ]] is partially ordered as follows.

• For R,S ∈ [[ι]] we set R ⊑ S iff R ⊆ S.
• For f, g ∈ [[ρ→ σ]] we set f ⊑ g iff ∀a ∈ [[ρ]].fa ⊑ ga.

Remark 6.5. Obviously suprema and infima with respect to ⊑ exist.

We often need the concept “continue with f after reading one R symbol”. We call this
R-lifting. Similar for β.

Definition 6.6. For f ∈ [[−→ρ → ι]] we define the liftings R(f), β(f) ∈ [[−→ρ → ι]] as follows.

R(f)(−→a) = {q | δ(q,R) ∩ f−→a × {∗} × . . .× {∗} 6= ∅}
β(f)(−→a) = {q | δ(q, β) ∩ f−→a × {∗} × . . . × {∗} 6= ∅}

Remark 6.7. If A is obtained from an automaton working on Σ′-terms by setting δ(q,R) =
δ(q, β) = {(q, ∗, . . . , ∗)} then R(f) = β(f) = f for all f .

Using this finite semantics we can use it to annotate a lambda-tree by semantical values
for its subtrees to show that the denoted term has good properties with respect to A. We
start by an example.

Example 6.8. The second recursion scheme in Figure 3 denotes a term where the “side
branches” contain 2, 4, 8, . . . , 2n, . . . times the letter g. As these are all even numbers, the
automaton A of Example 2.7 should have a run starting in q2.

We now informally argue how a formal “proof” of this fact can be obtained by assigning
semantical values to the nodes of the corresponding lambda-tree, which is the right tree in
Figure 2. The notion of “proof” will be made formal in Definition 6.10.

So we start by assigning the root {q2} ∈ [[ι]]. Since the term is an application, we have
to guess the semantics of the argument (of type ι → ι). Our (correct) guess is, that it
keeps the parity of gs unchanged, hence our guess is id; the function side then must be

16 K. AEHLIG

@
��

PPPP
@
❅❅
g

λϕ

@
PPPP��

@
❅❅��

f

@
❍❍❍

@
�� ❅❅

ϕ

@
❅❅��

ϕ a λϕ

λx

@
�� ❅❅
ϕ @

�� ❅❅
ϕ x

✟✟✯

❅❅■

id 7→ {q2} ✲

Γϕ ⊢ {q2} ✲

Γϕ ⊢ {q2} 7→ {q2} ✲

Γϕ ⊢ {q2} 7→ {q2} 7→ {q2} ✲

Γϕ ⊢ {q2} �
�✒

Γϕ ⊢ id �
�✒

Γϕ ⊢ {q2} �
�

�
��✒

id 7→ id and swap 7→ id �
�

�
�

�
�
�✒

Γϕ,x ⊢ id and Γ′
ϕ,x ⊢ swap

Γϕ,x′ ⊢ id and Γ′
ϕ,x′ ⊢ swap

✲�
�✒

{q2}✛

id✛

swap✛

Γϕ ⊢ {q2}✛

Γϕ ⊢ id✛

Γϕ ⊢ id✛

Γϕ ⊢ id and Γ′
ϕ ⊢ id✛

Γϕ,x ⊢ {q2} and Γ′
ϕ,x ⊢ {q2}

Γϕ,x′ ⊢ {q1} and Γ′
ϕ,x′ ⊢ {q1}

✛

Γϕ,x ⊢ {q2} and Γ′
ϕ,x ⊢ {q1}

Γϕ,x′ ⊢ {q1} and Γ′
ϕ,x′ ⊢ {q2}

❅❅■

Γϕ,x ⊢ {q2} and Γ′
ϕ,x ⊢ {q2}

Γϕ,x′ ⊢ {q1} and Γ′
ϕ,x′ ⊢ {q1}

✻

Figure 5: A proof that A has an infinite run starting in q2 on the denoted term.

something that maps id to {q2}. Let us denote by id 7→ {q2} the function in [[ι→ι]][[ι]] defined
by (id 7→ {q2})(id) = {q2} and (id 7→ {q2})(f) = ∅ if f 6= id.

The next node to the left is an abstraction. So we have to assign the body the value
{q2} in a context where ϕ is mapped to id. Let us denote this context by Γϕ.

In a similar way we fill out the remaining annotations. Figure 5 shows the whole proof.
Here Γ′

ϕ is the context that maps ϕ to swap; moreover Γϕ,x, Γ′
ϕ,x, Γϕ,x′ , and Γ′

ϕ,x′ are the

same as Γϕ and Γ′
ϕ but with x mapped to {q2} and {q1}, respectively.

It should be noted that a similar attempt to assign semantical values to the other
lambda-tree in Figure 2 fails at the down-most x where in the context Γ with Γ(x) = {q2}
we cannot assign x the value {q1}.

To make the intuition of the example precise, we formally define a “proof system” of
possible annotations (Γ, a) for a (sub)tree. Since the [[τ]] are all finite sets, there are only
finitely many possible annotations.

To simplify the later argument of our proof, which otherwise would be coinductive, we
add a level n to our notion of proof. This level should be interpreted as “for up to n steps
we can pretend to have a proof”. This reflects the fact that coinduction is nothing but
induction on observations.

Definition 6.9. A context is a finite mapping from variables xσ to their corresponding
semantics [[σ]]. We use Γ to range over contexts.

If Γ is a context, x a variable of type σ and a ∈ [[σ]] we denote by Γa
x the context Γ

modified in that x is mapped to a, regardless of whether x was or was not in the domain of
Γ.

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 17

Definition 6.10. For Γ a context, a ∈ [[ρ]] a value, and t an infinitary, maybe open, lambda-
tree of type ρ, with free variables among dom(Γ), we define

Γ ⊢n
A a ⊑ t : ρ

by induction on the natural number n as follows.

• Γ ⊢0
A a ⊑ t : ρ always holds.

• Γ ⊢n
A a ⊑ xi : ρ holds, provided a ⊑ Γ(xi).

• Γ ⊢n+1
A a ⊑ st : σ holds, provided there exists f ∈ [[ρ→ σ]], u ∈ [[ρ]] such that a ⊑ R(fu),

Γ ⊢n
A f ⊑ s : ρ→ σ, and Γ ⊢n

A u ⊑ t : ρ.

• Γ ⊢n+1
A f ⊑ λxρ.s : ρ→ σ holds, provided for all a ∈ [[ρ]] there is a ba ∈ [[σ]] such that

fa ⊑ β(ba) and Γa
x ⊢n

A ba ⊑ s : σ.
• Γ ⊢n

A f ⊑ f : ι→ . . .→ ι→ ι holds, provided for all −→a ∈ [[−→ι]] we have f−→a ⊂ {q | δ(q, f) ∩
a1 × . . .× a♯(f) × {∗} × . . . × {∗} 6= ∅}.

It should be noted that all the quantifiers in the rules range over finite sets. Hence the
correctness of a rule application can be checked effectively (and even by a finite automaton).

We write Γ ⊢∞
A a ⊑ t : ρ to denote ∀n.Γ ⊢n

A a ⊑ t : ρ.

Remark 6.11. Obviously Γ ⊢n+1
A a ⊑ t : ρ implies Γ ⊢n

A a ⊑ t : ρ. Moreover, a′ ⊑ a and
Γ ⊢n

A a ⊑ t : ρ imply Γ ⊢n
A a

′ ⊑ t : ρ. Finally, Γ ⊢n
A a ⊑ t : ρ, if Γ′ ⊢n

A a ⊑ t : ρ for some Γ′

which agrees with Γ on the free variables of t.
Also, in the second an in the last clause we may assume without loss of generality, that

n > 0. However, this assumption is not necessary, and it is even technically more convenient
not to do so.

Remark 6.12. We notice that the proof informally given in Example 6.8 and shown in
Figure 5 complies with the formal Definition 6.10. Indeed, the annotations shown in the
figure are valid for any n.

As already mentioned, for t a term with finitely many free variables, the annotations
(Γ, a) come from a fixed finite set, since we can restrict Γ to the set of free variables of t.
If, moreover, t has only finitely many different sub-trees, that is to say, if t is regular, then
only finitely many terms t have to be considered. So we obtain

Proposition 6.13. For t regular, it is decidable whether Γ ⊢∞
A a ⊑ t : ρ.

Before we continue and show our calculus to be sound (Section 7) and complete (Sec-
tion 8) let us step back and see what we will then have achieved, once our calculus is proven
sound and complete.

Proposition 6.13 gives us decidability for terms denoted by regular lambda-trees, and
hence in particular for trees obtained by recursion schemes. Moreover, since the annotations
only have to fit locally, individual subtrees of the lambda-tree can be verified separately.
This is of interest, as for each non-terminal a separate subtree is generated. In other words,
this approach allows for modular verification; think of the different non-terminals as different
subroutines. As the semantics is the set-theoretic one, the annotations are clear enough to
be meaningful, if we have chosen our automaton in such a way that the individual states
can be interpreted extensionally, for example as “even” versus “odd” number of gs.

It should also be noted, that the number of possible annotations only depends on the
type of the subtree, and on A, that is, the property to be investigated. Fixing A and
the allowed types (which both usually tend to be quite small), the amount of work to be

18 K. AEHLIG

carried out grows only linearly with the representation of t as a regular lambda-tree. For
every node we have to make a guess and we have to check whether this guess is consistent
with the guesses for the (at most two) child nodes. Given that the number of nodes of the
representation of t grows linearly with the size of the recursion scheme, the problem is in
fixed-parameter-NP , which doesn’t seem too bad for practical applications.

7. Truth Relation and Proof of Soundness

The soundness of a calculus is usually shown by using a logical relation, that is, a
relation indexed by a type that interprets the type arrow “→” as logical arrow “⇒”; in
other words, we define partial truth predicates for the individual types [17].

Since we want to do induction on the “observation depth” n of our proof · ⊢n
A · ⊑ · : τ we

have to include that depth in the definition of our truth predicates · ≺≺n
A · : τ . For technical

reasons we have to build in weakening on this depth as well.

Definition 7.1. For f ∈ [[−→ρ → ι]], n ∈ N, t a closed infinitary lambda tree of type −→ρ → ι,
the relation f ≺≺n

A t : −→ρ → ι is defined by induction on the type as follows.

f ≺≺n
A t : −→ρ → ι iff

∀ℓ ≤ n∀−→a ∈ [[−→ρ]]∀−→r : −→ρ
(∀i. ai ≺≺

ℓ
A ri : ρi) ⇒ ∀q ∈ f−→a . A, q |=ℓ t@−→r

Remark 7.2. Immediately from the definition we get the following monotonicity property.
If f ⊑ f ′ and f ′ ≺≺n

A t : ρ then f ≺≺n
A t : ρ.

Remark 7.3. In the special case −→ρ = ε we get

S ≺≺n
A t : ι iff ∀q ∈ S.A, q |=n tβ

Here we used that ∀ℓ ≤ n.A, q |=ℓ s iff A, q |=n s.

Immediately from the definition we obtain weakening in the level.

Proposition 7.4. If f ≺≺n
A t : ρ then f ≺≺n−1

A t : ρ.

Theorem 7.5. Assume Γ ⊢n
A a ⊑ t : ρ for some Γ with domain {x1, . . . , x2}. For all ℓ ≤ n

and all closed terms
−→
t : −→ρ , if ∀i. Γ(xi) ≺≺

ℓ
A ti : ρ

i
then a ≺≺ℓ

A t[
−→
t /−→x] : ρ.

Proof. Induction on n, cases according to Γ ⊢n
A a ⊑ t : ρ.

• Case Γ ⊢0
A a ⊑ t : ρ always. Use that a ≺≺0

A . . . : ρ holds always.
• Case Γ ⊢n

A a ⊑ xi : ρ because of a ⊑ Γ(xi).

Assume ∀i.Γ(xi) ≺≺
ℓ
A ti : ρ

i
. We have to show a ≺≺ℓ

A xi[
−→
t /−→x]

︸ ︷︷ ︸

ti

: ρ, which follows from

one of our assumptions by Remark 7.2.
• Case Γ ⊢n+1

A a ⊑ st : σ thanks to f ∈ [[ρ→ σ]], u ∈ [[ρ]] such that a ⊑ R(fu),
Γ ⊢n

A f ⊑ s : ρ→ σ, and Γ ⊢n
A u ⊑ t : ρ.

Let ℓ ≤ n + 1 be given, and
−→
t : −→ρ such that ∀i. Γ(xi) ≺≺

ℓ
A ti : ρi. We have to show

a ≺≺ℓ
A (st) [

−→
t /−→x]

︸ ︷︷ ︸

η

: σ.

Let σ have the form σ = −→σ → ι. Let k ≤ ℓ be given and −→s : −→σ , ci ∈ [[σi]] such that
ci ≺≺

k
A si : σi. We have to show for all q ∈ a−→c that A, q |=k (sηtη)@−→r

︸ ︷︷ ︸

R.(sη@(tη,−→r))

.

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 19

Hence it suffices to show that there is a q̃ ∈ δ(q,R) such that A, q̃ |=k−1 sη@(tη,−→r).
Since k ≤ ℓ ≤ n + 1, we have k − 1 ≤ n. Using Proposition 7.4 various

times we obtain ∀i. Γ(xi) ≺≺
k−1
A ti : ρi. Hence we may use the induction hypothe-

ses to Γ ⊢n
A f ⊑ s : ρ→ σ and obtain f ≺≺k−1

A sη : ρ→ σ. Applying the induction to

Γ ⊢n
A u ⊑ t : ρ yields u ≺≺k−1

A tη : ρ.

Applying Proposition 7.4 to ci ≺≺
k
A si : σi yields ci ≺≺

k−1
A si : σi. Therefore ∀q̂ ∈

fu−→c . A, q̂ |=k−1 sη@(tη,−→r).
Since a ⊑ R(fu) we get ∀q ∈ a−→c ∃q̃ ∈ δ(q,R). q̃ ∈ fu−→c . This together with the last

statement yields the claim.
• Case Γ ⊢n+1

A f ⊑ λxρ.s : ρ→ σ thanks to ∀a ∈ [[ρ]] ∃ba ∈ [[σ]] such that fa ⊑ β(ba) and
Γa

x ⊢n
A ba ⊑ s : σ.

Let ℓ ≤ n+ 1 be given and
−→
t : −→ρ with Γ(xi) ≺≺

ℓ
A ti : ρi.

We have to show f ≺≺ℓ
A (λxρsσ)η : ρ→ σ where η is short for [

−→
t /−→x].

Let σ have the form σ = −→σ → ι. Let k ≤ ℓ be given and r : ρ, −→s : −→σ , c ∈ [[ρ]],
ci ∈ [[σi]] such that c ≺≺k

A r : ρ, ci ≺≺
k
A si : σi. We have to show for all q ∈ fc−→c that

A, q |=k (λxs)η@(r,−→s)
︸ ︷︷ ︸

β.sηr
x@−→s

.

Hence it suffices to show that there is a q̃ ∈ δ(q, β) such that A, q̃ |=k−1 sηr
x@

−→s .

We know c ≺≺k
A r : ρ; using Proposition 7.4 we get c ≺≺k−1

A r : ρ and

∀i. Γ(xi) ≺≺
k−1
A ti : ρi. Since k ≤ ℓ ≤ n + 1 we get k − 1 ≤ n, hence we may

apply the induction hypothesis to Γa
x ⊢n

A ba ⊑ s : σ and obtain ba ≺≺k−1
A sηr

x : σ.

Since again by Proposition 7.4 we also know ci ≺≺
k−1
A si : σi, we obtain for all q̂ ∈ ba

−→c
that A, q̂ |=k−1 sηr

x@
−→s .

Since fc ⊑ β(bc) we get that ∀q ∈ fc−→c ∃q̃ ∈ δ(q, β). q̃ ∈ bc
−→c . This, together with the

last statement yields the claim.
• Case Γ ⊢n

A f ⊑ f : ι→ ι thanks to ∀−→a ∈ [[ι]]. f−→a ⊂ {q | δ(q, f) ∩ −→a 6= ∅}.

Let ℓ ≤ n be given and
−→
t : −→ρ such that ∀i. Γ(xi) ≺≺

ℓ
A ti : ρi. We have to show

f ≺≺ℓ
A f[

−→
t /−→x]

︸ ︷︷ ︸

f

: ι→ ι.

Let k ≤ ℓ be given and −→r : −→ι ,
−→
S ∈ [[ι]] such that Si ≺≺

ℓ
A ri : ι. We have to show for all

q ∈ f
−→
S that A, q |=ℓ f@−→r

︸ ︷︷ ︸

f−→r β

.

From Si ≺≺
ℓ
A ri : ι we get ∀q̃i ∈ Si. A, q̃i |=

ℓ rβ
i . Hence the claim follows since ∀q ∈

f
−→
S ∃

−→
q̃ ∈ δ(a, f).

−→
q̃ ∈

−→
S .

It should be noted that in the proof of Theorem 7.5 in the cases of the λ-rule and the
application-rule it was possible to use the induction hypothesis due to the fact that we used
continuous normalisation, as opposed to standard normalisation.

Corollary 7.6. For t a closed infinitary lambda term we get immediately from Theorem 7.5

∅ ⊢n
A S ⊑ t : ι =⇒ ∀q ∈ S. A, q |=n tβ

In particular, if ∅ ⊢∞
A S ⊑ t : ι then ∀q ∈ S. A, q |=∞ tβ.

20 K. AEHLIG

8. The Canonical Semantics and the Proof of Completeness

If we want to prove that there is an infinite run, then, in the case of an application st,
we have to guess a value for the term t “cut out”.

We could assume an actual run be given and analyse the “communication”, in the sense
of game semantics [9], between the function s and its argument t. However, it is simpler
to assign each term a “canonical semantics” 〈〈t〉〉A∞, roughly the supremum of all values we
have canonical proofs for.

The subscript ∞ signifies that we only consider infinite runs. The reason is that the
level n in our proofs Γ ⊢n

A a ⊑ t : ρ is not a tight bound; whenever we have a proofs of level
n, then there are runs for at least n steps, but on the other hand, runs might be longer
than the maximal level of a proof. This is due to the fact that β-reduction moves subterms
“downwards”, that is, further away from the root, and in that way may construct longer
runs. The estimates in our proof calculus, however, have to consider (in order to be sound)
the worst case, that is, that an argument is used immediately.

Since, in general, the term tmay also have free variables, we have to consider a canonical
semantics 〈〈t〉〉ΓA∞ with respect to an environment Γ.

Definition 8.1. By induction on the type we define for t a closed infinite lambda-tree of
type ρ = −→ρ → ι its canonical semantics 〈〈t〉〉A∞ ∈ [[ρ]] as follows.

〈〈t〉〉A∞(−→a) = {q | ∃−→s : −→ρ . 〈〈−→s 〉〉A∞ ⊑ −→a ∧ A, q |=∞ t@−→s }

Remark 8.2. For t a closed term of base type we have 〈〈t〉〉A∞ = {q | A, q |=∞ tβ}.

Definition 8.3. For Γ a context, t : ρ typed in context Γ of type ρ = −→ρ → ι we define
〈〈t〉〉ΓA∞ ∈ [[ρ]] by the following explicit definition.

〈〈t〉〉ΓA∞(−→a) = {q | ∃η. dom(η) = dom(Γ)∧
(∀x ∈ dom(Γ).η(x) closed ∧ 〈〈η(x)〉〉A∞ ⊑ Γ(x)) ∧
∃−→s : −→ρ .〈〈−→s 〉〉A∞ ⊑ −→a ∧ A, q |=∞ tη@−→s }

Remark 8.4. For t a closed term and Γ = ∅ we have 〈〈t〉〉ΓA∞ = 〈〈t〉〉A∞.

Proposition 8.5. If s has type −→σ → ι in some context compatible with Γ, and η is some
substitution with dom(η) = dom(Γ) such that for all x ∈ dom(Γ) we have η(x) closed and
〈〈η(x)〉〉A∞ ⊑ Γ(x), then

〈〈sη〉〉A∞ ⊑ 〈〈s〉〉ΓA∞

Proof. Let −→a ∈ [[−→σ]] and q ∈ 〈〈sη〉〉A∞(−→a) be given. Then there are −→s : −→σ with 〈〈−→s 〉〉A∞ ⊑
−→a such that A, q |=∞ sη@−→s . Together with the assumed properties of η this witnesses
q ∈ 〈〈s〉〉ΓA∞(−→a).

Lemma 8.6. If r and s are terms of type σ → −→ρ → ι and σ, respectively, in some context
compatible with Γ, then we have

〈〈rs〉〉ΓA∞ ⊑ R(〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞)

Proof. Let −→a ∈ [[−→ρ]] and q ∈ 〈〈rs〉〉ΓA∞(−→a) be given. Then there is η with ∀x ∈ dom(Γ). 〈〈η(x)〉〉A∞ ⊑
Γ(x) and there are −→s : −→ρ with 〈〈−→s 〉〉A∞ ⊑ −→a and

A, q |=∞ (rs)η@−→s
︸ ︷︷ ︸

R.rη@(sη,−→s)

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 21

Hence there is a q′ ∈ δ(q,R) with A, q′ |=∞ rη@(sη,−→s). It suffices to show that for this
q′ we have q′ ∈ 〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞

−→a .

By Proposition 8.5 we have 〈〈sη〉〉A∞ ⊑ 〈〈s〉〉ΓA∞ and we already have 〈〈−→s 〉〉A∞ ⊑ −→a . So

the given η together with sη and −→s witnesses q′ ∈ 〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞
−→a .

Lemma 8.7. Assume that λx.r has type σ → −→ρ → ι in some context compatible with Γ.
Then

〈〈λxr〉〉ΓA∞(a) ⊑ β(〈〈r〉〉
Γa

x

A∞
)

Proof. Let −→a ∈ [[−→ρ]] and q ∈ 〈〈λxr〉〉ΓA∞(a,−→a) be given. Then there is an η with ∀x ∈ dom(Γ)
we have η(x) closed and 〈〈η(x)〉〉A∞ ⊑ Γ(x) and there are s,−→s with 〈〈s〉〉A∞ ⊑ a and
〈〈−→s 〉〉A∞ ⊑ −→a such that

A, q |=∞ (λxr)η@(s,−→s)
︸ ︷︷ ︸

β.rx[s]η@−→s

So there is a q̃ ∈ δ(q, β) with A, q̃ |=∞ rx[s]η@
−→s . It suffices to show that q̃ ∈ 〈〈r〉〉

Γa
x

A∞
(−→a).

By the properties of η and since 〈〈s〉〉A∞ ⊑ a we know that for all y ∈ dom(Γa
x) we have

〈〈η(y)〉〉A∞ ⊑ Γa
x(y). This witnesses q̃ ∈ 〈〈r〉〉

Γa
x

A∞
(−→a).

Lemma 8.8. 〈〈x〉〉ΓA∞ ⊑ Γ(x)

Proof. Assume x of type −→ρ → ι, let −→a ∈ [[−→ρ]] and q ∈ 〈〈x〉〉ΓA∞(−→a) be given. We have to
show Γ(x)(−→a).

Since q ∈ 〈〈x〉〉ΓA∞(−→a), there is η with η(x) ⊑ a and −→s : −→ρ with 〈〈−→s 〉〉ΓA∞ ⊑ −→a and
A, q |=∞ xη

︸︷︷︸

η(x)

@−→s .

But then −→s witness that q ∈ 〈〈η(x)〉〉A∞(−→a) ⊂ Γ(x)(−→a) where the last subset relation
holds since 〈〈η(x)〉〉A∞ ⊑ Γ(x).

Theorem 8.9. Γ ⊢n
A 〈〈t〉〉ΓA∞ ⊑ t : ρ

Proof. Induction on n, cases on t. Trivial for n = 0. So let n > 0. We distinguish cases
according to t

• Case rsσ. By induction hypothesis Γ ⊢n−1
A 〈〈r〉〉ΓA∞ ⊑ r : σ → ρ and Γ ⊢n−1

A 〈〈s〉〉ΓA∞ ⊑ s : σ.

Moreover, by Lemma 8.6 〈〈rs〉〉ΓA∞ ⊑ R(〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞). Hence Γ ⊢n
A 〈〈rs〉〉ΓA∞ ⊑ rs : ρ.

• Case λxσr. By induction hypothesis we have for all a ∈ [[σ]] that Γa
x ⊢n−1

A 〈〈r〉〉
Γa

x

A∞
⊑ r : ρ.

By Lemma 8.7 we have 〈〈λxr〉〉ΓA∞(a) ⊑ β(〈〈r〉〉
Γa

x

A∞
).

Hence Γ ⊢n
A 〈〈λxr〉〉ΓA∞ ⊑ λxr : σ → ρ.

• Case x. By Lemma 8.8 we have 〈〈x〉〉ΓA∞ ⊑ Γ(x) and hence Γ ⊢n
A 〈〈x〉〉ΓA∞ ⊑ x : ρ.

• Case t = f a terminal symbol. We have to show Γ ⊢n
A 〈〈f〉〉ΓA∞ ⊑ f : ι→ ι.

So, let
−→
S ∈ [[−→ι]] and q ∈ 〈〈f〉〉ΓA∞(S). Hence there are −→s of type ι with 〈〈si〉〉A∞ ⊑ Si

and A, q |=∞ f@−→s
︸ ︷︷ ︸

f(
−→
sβ)

.

So there is (q̃1, . . . , q̃♯(f), ∗, . . . , ∗) ∈ δ(q, f) with A, q̃i |=
∞ sβ

i . But then q̃i ∈ 〈〈si〉〉A∞ ⊂
Si.

Corollary 8.10. If t : ι is closed and of ground type then ∅ ⊢n
A {q | A, q |=∞ tβ} ⊑ t : ι.

Proof. By Remarks 8.4 and 8.2 we have 〈〈t〉〉∅A∞
= 〈〈t〉〉A∞ = {q | A, q |=∞ tβ}. So the claim

follows from Theorem 8.9.

22 K. AEHLIG

Finally, let us sum up what we have achieved.

Corollary 8.11. For t a closed regular lambda term, and q0 ∈ Q it is decidable whether
A, q0 |=∞ tβ.

Proof. By Proposition 6.13 it suffices to show that ∅ ⊢∞
A {q0} ⊑ t : ι holds, if and only if

A, q0 |=∞ tβ.
The “if”-direction follows from Corollary 8.10 and the weakening provided by Re-

mark 6.11. The “only if”-direction is provided by Corollary 7.6.

Note that, since there are only finitely many ways to extend a proof of level n to a
proof of level n+ 1 and all proofs of level n + 1 come from a proof of level n the corollary
implies, by König’s Lemma, that A, q |=∞ tβ implies ∅ ⊢∞

A {q} ⊑ t : ι.

9. Model Checking

Theorem 9.1. Given a tree T defined by an arbitrary recursion scheme (of arbitrary level)
and a property ϕ expressible by a trivial automaton, it is decidable whether T |= ϕ.

Proof. Let t be the infinite lambda-tree associated with the recursion scheme. Then t is
effectively given as a regular closed lambda term of ground type and T is the normal form
of t.

Let Aϕ be the automaton (with initial state q0) describing ϕ. By keeping the state
when reading a R or β it can be effectively extended to an automaton A that works on
the continuous normal form, rather than on the usual one. So T |= ϕ ⇔ A, q0 |=∞ tβ. The
latter, however, is decidable by Corollary 8.11.

Remark 9.2. As shown in Section 2, the above theorem is in particular applicable to
CTL-properties built from letters, conjunction, disjunction, “next”, and “globally”.

Remark 9.3. As discussed after Proposition 6.13 the complexity is fixed-parameter non-
deterministic linear time in the size of the recursion scheme, if we consider ϕ and the allowed
types as a parameter.

Finally, looking back at the technical development, it is not clear to the author, whether
this approach can be extended in a smooth way to work for arbitrary automata, as opposed
to only trivial ones. It is tempting to conjecture that appropriate annotations of the proofs
with priorities could extend the concept to parity automata (and hence the full of Monadic
Second Order). However, all the ways that seemed obvious to the author failed.

One technical problem is that several paths might lead to the same state at the same
node, but with different priorities visited so far. A more fundamental problem is the way the
runs are constructed in the proofs throughout this article; we’re given a run by induction
hypothesis and add a move at its beginning. As all acceptance conditions ignore finite
prefixes, all the promises to visit some state eventually are pushed in the future indefinitely.
So, some promise on how long it will take for some promised event to happen seems to be
needed in the annotations, at least if we want these global conditions to fit with our local
arguments. It is not clear to the author whether and how this can be achieved.

A FINITE SEMANTICS. . . FOR INFINITE RUNS OF AUTOMATA 23

References

[1] K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata. In Z. Esik,
editor, Procedings of the 20th international Workshop on Computer Science Logic (CSL ’06), volume
4207 of Lecture Notes in Computer Science, pages 104–118. Springer Verlag, Sept. 2006.

[2] K. Aehlig and F. Joachimski. On continuous normalization. In Proceedings of the Annual Conference
of the European Association for Computer Science Logic (CSL ’02), volume 2471 of Lecture Notes in
Computer Science, pages 59–73. Springer Verlag, 2002.

[3] K. Aehlig and F. Joachimski. Continuous normalization for the lambda-calculus and Gödel’s T . Annals
of Pure and Applied Logic, 133(1–3):39–71, May 2005.

[4] K. Aehlig, J. G. de Miranda, and C. H. L. Ong. The monadic second order theory of trees given by
arbitrary level-two recursion schemes is decidable. In P. Urzyczyn, editor, Proceedings of the 7th Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA ’05), volume 3461 of Lecture
Notes in Computer Science, pages 39–54. Springer-Verlag, Apr. 2005.

[5] H. Barendregt. The type free lambda calculus. In J. Barwise, editor, Handbook of Mathematical Logic,
volume 90 of Studies in Logic and the Foundations of Mathematics, chapter D.7, pages 1091–1132.
North-Holland Publishing Company, 1977.

[6] W. Buchholz. Notation systems for infinitary derivations. Archive for Mathematical Logic, 30:277–296,
1991.

[7] D. Caucal. On infinite transition graphs having a decidable monadic theory. In F. Meyer auf der Heide
and B. Monien, editors, Proceedings of the 23th International Colloquium on Automata, Languages and
Programming (ICALP ’96), volume 1099 of Lecture Notes in Computer Science, pages 194–205. Springer
Verlag, 1996.

[8] B. Courcelle. The monadic second-order logic of graphs IX: Machines and their behaviours. Theoretical
Comput. Sci., 151(1):125–162, 1995.

[9] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF. Information and Computation,
163(2):285–408, Dec. 2000.

[10] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic trees. In
S. Abramsky, editor, Proceedings of the 5th International Conference on Typed Lambda Caculi and
Applications (TLCA ’01), volume 2044 of Lecture Notes in Computer Science, pages 253–267. Springer
Verlag, 2001.

[11] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy. In M. Nielson, editor,
Proceedings of the 5th International Conference Foundations of Software Science and Computation
Structures (FOSSACS ’02), volume 2303 of Lecture Notes in Computer Science, pages 205–222, Apr.
2002.

[12] G. Kreisel, G. E. Mints, and S. G. Simpson. The use of abstract language in elementary metamathe-
matics: Some pedagogic examples. In R. Parikh, editor, Logic Colloquium, volume 453 of Lecture Notes
in Mathematics, pages 38–131. Springer Verlag, 1975.

[13] O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about infinite-state
systems. In E. A. Emerson and A. P. Sistla, editors, 12th International Conference on Computer Aided
Verification (CAV ’00), volume 1855 of Lecture Notes in Computer Science, pages 36–52. Springer
Verlag, 2000.

[14] G. E. Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathematics, 10:548–596,
1978. Translated from: Zap. Nauchn. Semin. LOMI 49 (1975). Cited after Grigori Mints. Selected papers
in Proof Theory. Studies in Proof Theory. Bibliopolis, 1992.

[15] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In Proceedings of
the Twenty Frist Annual IEEE Symposium on Logic in Computer Science (LICS ’06), pages 81–90,
2006.

[16] M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the
American Mathematical Society, 141:1–35, July 1969.

[17] W. W. Tait. Intensional interpretations of functionals of finite type. The Journal of Symbolic Logic,
32(2):198–212, 1967.

[18] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation,
164(2):234–263, Jan. 2001.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction and Related Work
	2. Automata with Trivial Acceptance Condition
	3. Infinitary Lambda Trees
	4. Recursion Schemes as Means to Define Regular Lambda Trees
	5. Continuous Normalisation for the Lambda Calculus
	6. Finitary Semantics and Proof System
	7. Truth Relation and Proof of Soundness
	8. The Canonical Semantics and the Proof of Completeness
	9. Model Checking
	References

