
Logical Methods in Computer Science
Vol. 3 (4:9) 2007, pp. 1–24
www.lmcs-online.org

Submitted Jan. , 2007
Published Nov. 14, 2007

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS

ALEXANDER RABINOVICH

Sackler Faculty of Exact Sciences, Tel Aviv University, Israel 69978.
e-mail address: rabinoa@post.tau.ac.il

Abstract. For a two-variable formula ψ(X,Y) of Monadic Logic of Order (MLO) the
Church Synthesis Problem concerns the existence and construction of an operator Y =
F (X) such that ψ(X,F (X)) is universally valid over Nat .

Büchi and Landweber proved that the Church synthesis problem is decidable; moreover,
they showed that if there is an operator F that solves the Church Synthesis Problem, then
it can also be solved by an operator defined by a finite state automaton or equivalently
by an MLO formula. We investigate a parameterized version of the Church synthesis
problem. In this version ψ might contain as a parameter a unary predicate P . We show
that the Church synthesis problem for P is computable if and only if the monadic theory
of 〈Nat , <, P 〉 is decidable. We prove that the Büchi-Landweber theorem can be extended
only to ultimately periodic parameters. However, the MLO-definability part of the Büchi-
Landweber theorem holds for the parameterized version of the Church synthesis problem.

1. Introduction

Two fundamental results of classical automata theory are decidability of the monadic
second-order logic of order (MLO) over ω = (Nat , <) and computability of the Church syn-
thesis problem. These results have provided the underlying mathematical framework for the
development of formalisms for the description of interactive systems and their desired prop-
erties, the algorithmic verification and the automatic synthesis of correct implementations
from logical specifications, and advanced algorithmic techniques that are now embodied in
industrial tools for verification and validation.

Büchi [Bu60] proved that the monadic theory of ω = 〈Nat , <〉 is decidable. Even before
the decidability of the monadic theory of ω has been proved, it was shown that the expan-
sions of ω by “interesting” functions have undecidable monadic theory. In particular, the
monadic theory of 〈Nat , <,+〉 and the monadic theory of 〈Nat , <, λx.2 × x〉 are undecid-
able [Rob58, Trak61]. Therefore, most efforts to find decidable expansions of ω deal with
expansions of ω by monadic predicates.

Elgot and Rabin [ER66] found many interesting predicates P for which MLO over
〈Nat , <,P〉 is decidable. Among these predicates are the set of factorial numbers {n! : n ∈
Nat}, the sets of k-th powers {nk : n ∈ Nat} and the sets {kn : n ∈ Nat} (for k ∈ Nat).

1998 ACM Subject Classification: F.4.1;F.4.3.
Key words and phrases: Synthesis Problem, Decidability, Monadic Logic.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (4:9) 2007

c© A. Rabinovich
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. RABINOVICH

The Elgot and Rabin method has been generalized and sharpened over the years and
their results were extended to a variety of unary predicates (see e.g., [Ch69, Th75, Sem84,
CT02]). In [Rab05, Rab07, RT06] we provided necessary and sufficient conditions for the de-
cidability of monadic (second-order) theory of expansions of the linear order of the naturals
ω by unary predicates.

Let Spec be a specification language and Pr be an implementation language. The syn-
thesis problem for these languages is stated as follows: find whether for a given specification
S(I,O) ∈SPEC there is a program P which implements it, i.e., ∀I(S(I,P(I)).

The specification language for the Church Synthesis problem is the Monadic second-
order Logic of Order. An MLO formula ϕ(X,Y) specifies a binary relation on subsets of
Nat . Note that every subset P of Nat is associated with its characteristic ω-string uP
(where uP (i) = 1 if i ∈ P and otherwise uP (i) = 0). Hence, ϕ(X,Y) can be considered as
a specification of a binary relation on ω-strings.

As implementations, Church considers functions from the set {0, 1}ω of ω-strings over
{0, 1} to {0, 1}ω . Such functions are called operators. A machine that computes an operator
at every moment t ∈ Nat reads an input symbol X(t) ∈ {0, 1} and produces an output
symbol Y (t) ∈ {0, 1}. Hence, the output Y (t) produced at t depends only on inputs
symbols X(0),X(1), . . . ,X(t). Such operators are called causal operators (C-operators); if
the output Y (t) produced at t depends only on inputs symbols X(0),X(1), . . . ,X(t − 1),
the corresponding operator is called strongly causal (SC-operator). The sets of recursive
causal and strongly causal operators are defined naturally; a C-or a SC-operator is a finite
state operator if it is computable by a finite state automaton (for precise definitions, see
Subsection 4.4).

The following problem is known as the Church Synthesis problem.

Church Synthesis problem

Input: an MLO formula ψ(X,Y).
Task: Check whether there is a C-operator F such that

Nat |= ∀Xψ(X,F (X)) and if so, construct this operator.

The Church Synthesis problem is much more difficult than the decidability problem for
MLO over ω. Büchi and Landweber [BL69] proved that the Church synthesis problem is
computable. Their main theorem is stated as follows:

Theorem 1.1. For every MLO formula ψ(X,Y) either there is a finite state C-operator F
such that Nat |= ∀Xψ(X,F (X)) or there is a finite state SC-operator G such that Nat |=
∀Y ¬ψ(G(Y), Y). Moreover, it is decidable which of these cases holds and a corresponding
operator is computable from ψ.

In this paper we consider natural generalizations of the Church Synthesis Problem over
expansions of ω by monadic predicates, i.e., over the structures 〈Nat , <,P〉.

For example, let Fac = {n! : n ∈ Nat} be the set of factorial numbers, and let
ϕ(X,Y,Fac) be a formula which specifies that t ∈ Y iff t ∈ Fac and (t′ ∈ X) ↔
(t′ ∈ Fac) for all t′ ≤ t. It is easy to observe that there is no finite state C-operator
F such that ∀Xϕ(X,F (X),Fac). However, there is a recursive C-operator H such that
∀Xϕ(X,H(X),Fac). It is also easy to construct a finite state C-operator G(X,Z) such
that ∀Xϕ(X,G(X,Fac),Fac). It was surprising for us to discover that it is decidable
whether for a formula ψ(X,Y,Fac) there is a C-operator F such that ∀Xϕ(X,F (X),Fac)
and if such an operator exists, then it is recursive and computable from ψ.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 3

Here is the summary of our results. We investigate a parameterized version of the
Church synthesis problem. In this version ψ might contain as a parameter a unary predicate
P . Below five synthesis problems with a parameter P ⊆ Nat are stated. We use capital
italic letters for unary predicate names and set variables and the corresponding bold letters
for their interpretation.

Synthesis Problems for P ⊆ Nat

Input: an MLO formula ψ(X,Y, P).
Problem 1: Check whether there is a C-operator Y = F (X,P) such that

Nat |= ∀Xψ(X,F (X,P),P) and if there is such a recursive operator
- construct it.

Problem 2: Check whether there is a recursive C-operator Y = F (X,P) such
that Nat |= ∀Xψ(X,F (X,P),P) and if so - construct this operator.

Problem 3: Check whether there is a recursive C-operator Y = F (X) such
that Nat |= ∀Xψ(X,F (X),P) and if so - construct this operator.

The next two problems are obtained from problems 2 an 3 when “recursive” is replaced
by “finite state”.

Synthesis Problems for P ⊆ Nat

Input: an MLO formula ψ(X,Y, P).
Problem 4: Check whether there is a finite state C-operator Y = F (X,P) such

that Nat |= ∀Xψ(X,F (X,P),P) and if so - construct this operator.
Problem 5: Check whether there is a finite state C-operator Y = F (X) such

that Nat |= ∀Xψ(X,F (X),P) and if so - construct this operator.

We show

Theorem 1.2. Let P be a subset of Nat. The following conditions are equivalent:

(1) Problem 1 for P is computable.
(2) Problem 2 for P is computable.
(3) Problem 3 for P is computable.
(4) The monadic theory of 〈Nat , <,P〉 is decidable.
(5) For every MLO formula ψ(X,Y, P) either there is a recursive C-operator F such that

Nat |= ∀Xψ(X,F (X),P) or there is a recursive SC-operator G such that Nat |=
∀Y ¬ψ(G(Y), Y,P). Moreover, it is decidable which of these cases holds and the (de-
scription of the) corresponding operator is computable from ψ.

The more difficult part of this theorem is the implication (4)⇒(5).
The trivial examples of predicates with decidable monadic theory are ultimately peri-

odic predicates. Recall that a predicate P is ultimately periodic if there are 0 < p, d ∈ Nat
such that (n ∈ P ↔ n + p ∈ P) for all n > d. Ultimately periodic predicates are MLO-
definable. Hence, for these predicates computability of Problems 1-5 can be derived from
Theorem 1.1.

We prove that the Büchi-Landweber theorem can be extended only to ultimately peri-
odic parameters.

Theorem 1.3. Let P be a subset of Nat. The following conditions are equivalent and imply
computability of Problem 4:

4 A. RABINOVICH

(1) P is ultimately periodic.
(2) For every MLO formula ψ(X,Y,P) either there is a finite state C-operator F such

that Nat |= ∀Xψ(X,F (X,P),P) or there is a finite state SC-operator G such that
Nat |= ∀Y ¬ψ(G(Y,P), Y,P).

In Problems 1-5 we restrict the computational complexity of the C-operators (imple-
mentations) which meet specifications. Another approach is to restrict their descriptive
complexity. The finite state operators are MLO-definable in ω = 〈Nat , <〉. An operator F
is defined by a formula ψ(X,Y, P) in an expansion M = 〈Nat , <,P〉 of ω, if for all ω-strings
X and Y:

Y = F (X) iff ω |= ψ(X,Y,P)

An operator F is MLO-definable in M = 〈Nat , <,P〉, if it is defined by an MLO formula
in M

Our main theorem which is stated in the next section implies

Theorem 1.4. For every MLO formula ψ(X,Y, P) and every expansion M=〈Nat , <,P〉 of
ω either there is an MLO-definable (in M) C-operator F such that M |= ∀Xψ(X,F (X), P)
or there is an MLO-definable (in M) SC-operator G such that M |= ∀Y ¬ψ(G(Y), Y, P).
Moreover, formulas which define these operators are computable from ψ

The paper is organized as follows. In the next section games and their connections to
the Church synthesis problem are discussed, the Büchi and Landweber theorem is rephrased
in the game theoretical language, and our main definability result - Theorem 2.3 - which
implies Theorem 1.4 is stated.

In Section 3, Theorem 1.2 is derived as a consequence of Theorem 2.3. In Section 4,
standard definitions and facts about automata and logic are recalled. In Section 5, finite
state synthesis problems with parameters are considered and Theorem 1.3 is proved.

In Section 6, parity games on graphs and their connection to the synthesis problems
are discussed and definability results needed in the proof of Theorem 2.3 are proved. The
proof of Theorem 2.3 is given in Section 7.

Finally, in Section 8, some open problems are stated and further results are discussed.

2. Game Version of the Church Problem and Main Definability Result

Let W be a set of pairs of ω strings over {0, 1}. A game G(W) is defined as follows.

(1) The game is played by two players, called Player I (or Mr. X) and Player II (or Mr.
Y).

(2) A play of the game has ω rounds.
(3) At round n: first, Player I chooses x(n) ∈ {0, 1}; then, Player II chooses y(n) ∈ {0, 1}.
(4) By the end of the play the ω strings Y = y(0)y(1) . . . and X = x(0)x(1) . . . over {0, 1}

have been constructed.

Winning conditions: Player II wins the play if the pair of ω-strings 〈X,Y〉 is in W;
otherwise, Player I wins the play.

What we want to know is: Does either one of the players have a winning strategy in
G(W). That is, can Player I choose his moves so that in whatever way Player II responds,
we have 〈X,Y〉 6∈ W? Or can Player II respond to Player I’s moves in a way that ensures
the opposite?

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 5

Since at round n, Player I has access only to Y ∩ [0, n) and Player II has access only
to X ∩ [0, n], a strategy of Player I (respectively, of Player II) is a strongly causal (re-
spectively, causal) operator. So, a winning strategy for Player II is a causal operator
F : {0, 1}ω→{0, 1}ω such that 〈X, F (X)〉 is in W for every X ∈ {0, 1}ω , and a winning
strategy for Player I is a strongly causal operator G : {0, 1}ω→{0, 1}ω such that 〈G(Y),Y〉
is not in W for every Y ∈ {0, 1}ω .

There is a natural topology on the set of ω-strings (see e.g., [PP04]). According to this
topology, subsets of ω-strings can be classified as open, closed, Borel and so forth. The
following theorem of Martin is fundamental.

Theorem 2.1 (Determinacy of Borel Games). For every Borel set W, one of the players
has a winning strategy in G(W).

It was McNaughton (see [Mc66]) who first observed that the Church problem can be
equivalently phrased in game-theoretic language. Algorithmic questions deal with finitely
described objects. Hence, McNaughton considered games G(W) only for definable sets W.

LetM = 〈Nat , <,P〉 be a structure. A set W ⊆ {0, 1}ω×{0, 1}ω is defined by an MLO
formula ψ(X,Y, P) in M if W = {〈X,Y〉 :M |= ψ(X,Y, P)}. A set is MLO-definable iff it
is defined by an MLO formula. Similarly, an operator F : {0, 1}ω→{0, 1}ω is definable in M
if its graph {〈X,Y〉 :Y = F (X)} is definable; a strategy is definable iff the corresponding
causal operator is definable.

Let M = 〈Nat , <,P1, . . . ,Pn〉 be an expansion of ω = 〈Nat , <〉 by unary predicates
and let ψ(X,Y, P1, . . . , Pn) be an MLO formula. The McNaughton game GMψ is the game

G(W), where W is the set definable by ψ in M . Hence, the winning condition of GMψ can
be stated as

Winning conditions for GMψ : Player II wins a play if M |= ψ(X,Y, P1, . . . , Pn); other-
wise, Player I wins the play.

This leads to

Game version of the Church problem: Let M = 〈Nat , <,P1, . . . ,Pn〉 be an expan-
sion of ω = 〈Nat , <〉 by unary predicates. Given a formula ψ(X,Y, P1, . . . , Pn) decide
whether Player II has a winning strategy in GMψ .

Theorem 1.1 states the computability of the Church problem in the structure ω =
〈Nat , <〉 (no additional unary predicates). Even more importantly, Büchi and Landwe-
ber show that in the case of ω we can restrict ourselves to definable strategies, i.e., to
causal (or strongly causal) operators computable by finite state automata or equivalently
MLO-definable in ω. The Büchi-Landweber theorem can be stated in the game theoretical
language as follows:

Theorem 2.1 (Büchi-Landweber, 1969). Let ψ(X,Y) be an MLO formula., Then:

Determinacy: One of the players has a winning strategy in the game Gωψ .
Decidability: It is decidable which of the players has a winning strategy.
Definable strategy: The player who has a winning strategy also has an MLO-definable
winning strategy.
Synthesis algorithm: We can compute a formula ϕ(X,Y) that defines (in (ω,<)) a
winning strategy for the winning player in Gωψ .

The determinacy part of the Büchi-Landweber theorem follows from the determinacy of
Borel games. More generally, it is well known that for eachMLO formula ψ(X,Y,Z1, . . . , Zn)

6 A. RABINOVICH

and P1, . . . ,Pn ⊆ Nat the set W = {〈X,Y〉 : 〈Nat , <〉 |= ψ(X,Y,P1, . . . ,Pn)} is a Borel
set (it is even inside the boolean closure of the second level of the Borel hierarchy, see
e.g., [PP04]). Hence, by the determinacy of Borel games, we obtain determinacy of the
McNaughton games. In other words, we have the following corollary:

Corollary 2.2 (Determinacy). Let M = 〈Nat , <,P1, . . . ,Pn〉 be an expansion of ω by
unary predicates. Then, for every MLO formula ψ(X,Y, P1, . . . , Pn)

(1) One of the players has a winning strategy in GMψ .

(2) Equivalently, either there is a C-operator F such that M |= ∀Xψ(X,F (X)), or there is
a SC-operator G such that M |= ∀Y ¬ψ(G(Y), Y).

In order to simplify notations, from now on, we will state our results only for the
expansions of ω by one unary predicate. The generalization to the expansions by any
number of unary predicates is straightforward.

Now, we are ready to state our main result which generalizes the definability and
synthesis parts of the Büchi-Landweber theorem in a uniform way to the expansions of
〈Nat , <〉 by unary predicates.

Theorem 2.3 (Main). There is an algorithm that given a formula ϕ(X,Y, P) constructs a
sentence WIN II

ϕ (P) and formulas St Iϕ(X,Y, P), St
II
ϕ (X,Y, P) such that for every structure

M = 〈Nat , <,P〉 Player II wins the games GMϕ iff M |= WIN II
ϕ . Moreover, if Player II

wins GMϕ , then St IIϕ (X,Y, P) defines his winning strategy; otherwise, St Iϕ defines a winning
strategy of Player I.

Theorem 1.4 is reformulated in the game language as follows.

Theorem 2.4 (Game version of Theorem 1.4). For every MLO formula ψ(X,Y, P) and
every expansion M = 〈Nat , <,P〉 of ω:

Determinacy: One of the players has a winning strategy in the game GMψ .
Definable strategy: The player who has a winning strategy also has an MLO-definable
(in M) winning strategy.
Synthesis algorithm: We can compute a formula that defines (inM) a winning strategy
for the winning player in GMψ .

The determinacy part of Theorem 2.4 follows from Corollary 2.2. Its definability and
synthesis parts are immediate consequences of Theorem 2.3. In the next section, Theorem
1.2 is derived as another consequence of Theorem 2.3 and of Corollary 2.2.

The proof of Theorem 2.3 will be given in Sect. 7. Section 4 provides an additional
background on logic and automata, and Section 6 prepares definability results needed in
the proof of Theorem 2.3.

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Its more difficult part is the implication (4)⇒(5);
the proof of this implication is easily obtained from Theorem 2.3. The proof of the other
equivalences of Theorem 1.2 uses only determinacy and some simple facts.

We start with the following simple Lemma:

Lemma 3.1. Assume that the monadic theory of M = 〈Nat , <,P1, . . . ,Pn〉 is decidable

(1) Every set Q ⊆ Nat definable in M is recursive.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 7

(2) Every C-operator F definable in M is recursive.
(3) There is an algorithm that computes a program for Q (respectively, for F) from a

formula which defines Q (respectively, F).

Proof. (1) Assume that Q is defined in M by a formula ψ(X). Each j ∈ Nat is defined
by an MLO formula ϕj(t). Hence, one can check whether j ∈ Q, by testing whether the
sentence ∃X∃tϕj(t) ∧ ψ(X) ∧ t ∈ X holds in M .

(2) Assume that a C-operator F is defined in M by a formula ψ(X,Y). We have to
show that there is an algorithm which computes the n-th letter of F (X) from the first n
letters of X. Let a = a0 . . . an ∈ {0, 1}∗. Define ζai (t,X) as ϕi(t) ∧ t ∈ X if ai is 1, and
as ϕi(t) ∧ t 6∈ X otherwise, where ϕi(t) is a formula which defines a number i. Note that
M |= ∃t0∃t1 . . . ∃tn

∧n
i=0 ζ

a
i (ti,X)

)

iff the first n+ 1 letters of X are a0 . . . an.
Now, if a0 . . . an ∈ {0, 1}∗ are the first n + 1 letters of X, then the n + 1-th letter of

F (X) is 1 iff

∃X∃Y ∃t0∃t1 . . . ∃tn
(

ψ(X,Y) ∧ ϕn(tn) ∧ tn ∈ Y ∧
n
∧

i=0

ζai (ti,X)
)

holds in M .
(3) follows from the proofs of (1) and (2).

Lemma 3.2 (Implication (4)⇒(5) of Theorem 1.2). Assume that the monadic theory of
M = 〈Nat , <,P〉 is decidable. Then for every MLO formula ϕ(X,Y, P) either there is
a recursive C-operator F such that Nat |= ∀Xϕ(X,F (X),P) or there is a recursive SC-
operator G such that Nat |= ∀Y ¬ϕ(G(Y), Y,P). Moreover, it is decidable which of these
cases holds and the (description of the) corresponding operator is computable from ϕ.

Proof. For a formula ϕ, construct WIN II
ϕ (P) and formulas St Iϕ(X,Y, P), St

II
ϕ (X,Y, P), as

in Theorem 2.3.
By the assumption that the monadic theory of M is decidable, we can check whether

WIN II
ϕ (P) holds in M .

If WIN II
ϕ (P) holds inM then, by Theorem 2.3, St IIϕ (X,Y, P) defines a winning strategy

F for Player II. Hence, F is C-operator and Nat |= ∀Xϕ(X,F (X),P). By Lemma 3.1, F
is recursive.

If WIN II
ϕ (P) does not hold in M , then by Theorem 2.3, St Iϕ(X,Y, P) defines a winning

strategy G for Player I. Hence, G is SC-operator and Nat |= ∀Y ¬ϕ(G(Y), Y,P). Moreover,
by Lemma 3.1, G is recursive.

Lemma 3.3. If one of the Problems 1-5 is computable for P, then the monadic theory of
〈Nat , <,P〉 is decidable.

Proof. Let β(P) be a sentence in MLO and let ψβ(X,Y, P) be defined as
(

β→(Y = {0})
)

∧
(

¬β→(X = ∅)
)

.

Observe that Nat |= β(P) iff there is a C-operator F such that:

Nat |= ∀Xψβ(X,F (X,P),P) iff Nat |= ∀Xψβ(X,H(X,P),P)

where H is a constant C-operator defined as H = λ〈X,P 〉.10ω .
Hence, if one of the Problems 1-5 is computable for P, then we can decide whether

Nat |= β(P).

8 A. RABINOVICH

The proof of Lemma 3.3 also implies that if the following Problem 1′ is decidable for
P, then the monadic theory of 〈Nat , <,P〉 is decidable.

Decision Problem 1′ for P ⊆ Nat

Input: an MLO formulas ψ(X,Y, P).
Question: Check whether there is a C-operator Y = F (X,P) such that

Nat |= ∀Xψ(X,F (X,P),P).

Problem 1′ is actually Problem 1 without construction part.
Finally, we have

Lemma 3.4. The implications (5)⇒(1), (5)⇒(2) and (5)⇒(3) hold.

Proof. Let ψ(X,Y, P) be a formula. By (5) either there is a recursive C-operator F such
that Nat |= ∀Xψ(X,F (X),P) or there is a recursive SC-operator G such that Nat |=
∀Y ¬ψ(G(Y), Y,P). Moreover, it is decidable which of these cases holds and the corre-
sponding operator is computable from ψ.

In the first case, the answer to Problems 1-3 is positive and F is a corresponding
operator.

In the second case, the answer to Problems 1-3 is negative.
Indeed, for the sake of contradiction, assume that there is a C-operator (even non-

recursive) F such that Nat |= ∀Xψ(X,F (X,P),P). Observe that F is a C-operator and
G is a SC-operator. Hence, H = λX.G(F (X,P)) is a SC-operator. Every SC-operator
has a fixed point. Let X0 be a fixed point of H and let Y0 = F (X0,P). Then we have:
X0 = G(Y0). Therefore, we obtain

Nat |= ψ(X0,Y0,P) because Nat |= ∀Xψ(X,F (X,P),P) , and

Nat |= ¬ψ(X0,Y0,P) because Nat |= ∀Y ¬ψ(G(Y), Y,P) .

Contradiction.

4. Background on Logic and Automata

4.1. Notations and Terminology. We use k, l, m, n, i for natural numbers; Nat for
the set of natural numbers and capital bold letters P, S, R for subsets of Nat . We identify
subsets of a set A and the corresponding unary (monadic) predicates on A.

The set of all (respectively, non-empty) finite strings over an alphabet Σ is denoted by
Σ∗ (respectively, by Σ+). The set of ω-strings over Σ is denoted by Σω.

Let a0 . . . ak . . . and b0 . . . bk . . . be ω-strings. We say that these ω-strings coincide on
an interval [i, j] if ak = bk for i ≤ k ≤ j. A function F from Σω1 to Σω2 will be called
an operator of type Σ1→Σ2. An operator F is called causal (respectively, strongly causal)
operator, if F (X) and F (Y) coincide on an interval [0, t], whenever X and Y coincide on
[0, t] (respectively, on [0, t)). We will refer to causal (respectively, strongly causal) operators
as C-operators (respectively, SC-operators).

Let Σ1 and Σ2 be finite alphabet and let F : Σω1→Σω2 be a C-operator. Note that there
is a unique function hF :Σ∗

1→Σ2 such that F (a1 . . . an) = bn if for some (equivalently for all)
ω-string y: bn is the n-th letter of F (a1 . . . any). F is said to be recursive if hF is recursive.

Every SC-operator F of type Σ→Σ has a unique fixed point, i.e., there is a unique
X ∈ Σω such that X = F (X).

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 9

Let G : Σω→∆ω be an operator. In the case Σ is the Cartesian product Σ1×Σ2 we will
identify G with the corresponding operator F : Σω1×Σω2→∆ω. An operator F : Σω1×Σω2→∆ω

is said to be SC-operator (C-operator) if G is SC-operator (respectively, C-operator).
There exists a one-one correspondence between the set of all ω-strings over the alphabet

{0, 1}n and the set of all n-tuples 〈P1, . . . ,Pn〉 of unary predicates over the set of natural
numbers. With an n-tuple 〈P1, . . . ,Pn〉 of unary predicates over Nat , we associate the
ω-string a0a1 . . . ak . . . over alphabet {0, 1}n defined by ak =def 〈bk1 , . . . b

k
n〉 where b

k
i is 1 if

Pi(k) holds and bki is 0 otherwise. Let Q = {q1, . . . , qm} be a finite set of state. There is
a natural one-one correspondence between the subsets of Q× Nat and the set of m-tuples
of unary predicates over Nat : with U ⊆ Q × Nat we associate the m-tuple 〈P1, . . . ,Pm〉
defined as i ∈ Pj iff U(qj, i) (for i ∈ Nat and j ≤ m).

Similarly, there is a one-one correspondence between the set of all strings of length m
over the alphabet {0, 1}n and the set of all n-tuples 〈P1, . . . ,Pn〉 of unary predicates over
the set {0, . . . ,m− 1}.

A linearly ordered set will be called a chain. A chain with n monadic predicates over its
domain will be called an n-labelled chain; whenever n is clear from the context, n-labelled
chains will be called labelled chains.

We will sometimes identify an n-labelled chain M = 〈Nat , <,P1, . . . ,Pn〉 with the ω-
string over the alphabet {0, 1}n which corresponds to the n-tuple 〈P1, . . . ,Pn〉; this ω-string
will be called the characteristic ω-string (or ω-word) of M . Similarly, we will identify finite
n-labelled chains with corresponding strings over {0, 1}n.

4.2. Monadic Second-Order Logic and Monadic Logic of Order. Let σ be a rela-
tional signature. Atomic formulas of the monadic second-order logic over σ are R(t1, ..., tn),
t1 = t2, and t1 ∈ X where t1, . . . , tn are individual variables, R ∈ σ is an n-are relational
symbol, and X is a set variable. Formulas are obtained from atomic formulas by conjunc-
tion, negation, and quantification ∃t and ∃X for t an individual and X a set variable. The
satisfaction relation M, τ1, . . . τk;S1, . . . ,Sm |= ϕ(t1, . . . , tk;X1, . . . ,Xm) is defined as usual
with the understanding that set variables range over subsets of M .

We use standard abbreviations, e.g., we write X ⊆ X ′ for ∀t. X(t)→X ′(t); we write
X = X ′ for ∀t. X(t) ↔ X ′(t); symbols “∃≤1” and “∃!” stands for “there is at most one”
and “there is a unique”.

If a signature σ contains one binary predicate < which is interpreted as a linear order,
and all other predicates are unary, the monadic second-order logic for this signature is called
Monadic Logic of Order (MLO). The formulas of MLO are interpreted over labelled chains.

The monadic theory of a labelled chain M is the set of all MLO sentences which hold
in M .

We will deal with the expansions of ω by monadic predicates, i.e., with the structures
of the form M = 〈Nat , <,P1, . . . ,Pn〉. We say that a chain M = 〈Nat , <,P1, . . . ,Pn〉 is
recursive if all Pi are recursive subsets of Nat .

An ω-language L is said to be defined by anMLO formula ψ(X1, . . . ,Xn) if the following
condition holds: an ω string is in L iff the corresponding n-tuple of unary predicates satisfies
ψ.

10 A. RABINOVICH

4.3. The First-Order Version of the Monadic Second-Order Logic. Sometimes it
will be convenient for us to consider the first-order version of the monadic second order
logic.

Let σ be a relational signature and M be a structure for σ.
Let σ̄ = σ∪{Sing,⊆} where Sing is a new unary relational symbol and ⊆ a new binary

relational symbol. Let M̄ be the structure for σ̄ defined as follows: The domain of M̄ is
the set of all subsets of the domain of M . Sing(A) holds in M̄ if A is one element subset;
A ⊆ B holds if A is a subset of B; for k-ary relational symbol R ∈ σ:

R(A1, . . . Ak) holds in M̄ iff

A1 = {a1}, . . . , Ak = {ak} and R(a1, . . . ak) holds in M

The following lemma is well-known and is easily proved by the structural induction.

Lemma 4.1 (Equivalence of two Versions of Monadic Logic). The two versions of Monadic
logic are expressive equivalent, that is

(1) Let ψ(X1, . . . ,Xk) be a formula of the monadic second-order logic for a signature σ.
There is a first-order formula ϕ(X1, . . . ,Xk) in the signature σ̄ such that for every
structure M for the signature σ and for subsets A1, . . . , Ak of the domain of M

M,A1, . . . , Ak |= ψ(X1, . . . ,Xk) iff M̄,A1, . . . , Ak |= ϕ(X1, . . . ,Xk).

Moreover there is an algorithm that computes ϕ from ψ.
(2) Let ϕ(X1, . . . ,Xk) be a first-order formula in the signature σ̄. There is a formula in the

monadic second-order logic for the signature σ such that for every structure M for the
signature σ and for subsets A1, . . . , Ak of the domain of M

M,A1, . . . , Ak |= ψ(X1, . . . ,Xk) iff M̄,A1, . . . , Ak |= ϕ(X1, . . . ,Xk).

Moreover there is an algorithm that computes ψ from ϕ.

4.4. Automata. A deterministic transition system D is a tuple 〈Q,Σ, δ, qinit 〉, consisting
of a set Q of states, an alphabet Σ, a transition function δ : Q × Σ→Q and initial state
qinit ∈ Q. The transition function is extended as usual to a function from Q × Σ∗ to Q
which will be also denoted by δ. The function δinit :Σ

∗→Q is defined as δinit(π) = δ(qinit , π).
A transition systems is finite if Q and Σ are finite.

A finite deterministic automaton A is a tuple 〈Q,Σ, δ, qinit , F 〉, where 〈Q,Σ, δ, qinit 〉 is
a finite deterministic transition system and F is a subset of Q. A string π ∈ Σ∗ is accepted
by A if δinit(π) ∈ F . The language accepted (or defined) by A is the set of string accepted
by A.

A Mealey automaton is a tuple 〈Q,Σ, δ, qinit ,∆, out〉, where 〈Q,Σ, δ, qinit 〉 is a deter-
ministic transition system, ∆ is an alphabet and out : Q→∆ is an output function. With
a Mealey automaton A = 〈Q,Σ, δ, qinit ,∆, out〉 we associate a function hA : Σ∗→∆ and an
operator FA : Σω→∆ω defined as follows:

hA(a0 . . . ai−1) = out(δinit(a0 . . . ai−1))

FA(a0 . . . ai . . .) = b0 . . . bi . . . iff bi = hA(a0 . . . ai−1)

It is easy to see that an operator is strongly causal (SC-operator) iff it is definable by a
Mealey automaton. We say that a SC-operator F : Σω→∆ω is finite state iff it is definable
by a finite state Mealey automaton.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 11

A finite Mealey automaton A = 〈Q,Σ,→, δ, qinit ,∆, col〉, where the output alphabet ∆
is a (finite) subset of Nat , is called a (deterministic) parity automaton; the output function
col is usually refered to as coloring function.

With every ω-string a0a1 · · · ai · · · ∈ Σω we associate the ω-sequence of successive states
δinit(a0)δinit (a0a1) · · · δinit(a0 · · · ai) · · · and the set Inf of all q ∈ Q that appear infinitely
many times in this sequence. An ω-string is accepted by A if the minimal element of the
set {col (q) : q ∈ Inf} is even. The ω-language accepted (or defined) by A is the set of all
ω-strings accepted by A.

Sometimes the alphabet Σ of A will be the Cartesian product Σ1 × Σ2 × Σ3 of other
alphabets. In this case we say that A defines a relation RA ⊆ Σω1 × Σω2 × Σω3 ; a triplet
〈a, b, c〉 of ω-strings is in RA iff the ω string (a0, b0, c0)(a1, b1, c1) . . . (ai, bi, ci) . . . is accepted
by A.

Here is the classical theorem due to Büchi, Elgot and Trakhtenbrot.

Theorem 4.1. (1) A language is accepted by a finite deterministic automaton iff it is de-
finable by an MLO formula.

(2) An ω-language is accepted by a deterministic parity automaton iff it is definable by an
MLO formula.

(3) Moreover, there is an algorithm which for every formula ϕ(X1, . . . ,Xm) computes an
equivalent deterministic automaton A i.e., the language definable by ϕ is accepted by
A. There is an algorithm which for every deterministic automaton A computes an
equivalent MLO formula. Similarly, there are translation algorithms between formulas
and deterministic parity automata.

A Moore automaton is a tuple 〈Q,Σ, δ, qinit ,∆, out〉, where 〈Q,Σ, δ, qinit 〉 is a determin-
istic transition system, ∆ is an alphabet and out :Q× Σ→∆ is an output function.

With a Moore automaton A = 〈Q,Σ, δ, qinit ,∆, out〉 we associate a function hA :Σ+→∆
and an operator FA : Σω→∆ω defined as follows:

hA(a0 . . . , ai) = out(δinit (a0 . . . ai−1), ai)

FA(a0 . . . ai . . .) = b0 . . . bi . . . iff bi = hA(a0 . . . , ai)

It is easy to see that an operator is causal (C-operator) iff it is definable by a Moore
automaton.

We say that a C-operator F : Σω→∆ω is finite state iff it is definable by a finite state
Moore automaton.

5. Finite State Synthesis Problems with Parameters

Recall that a predicate P ⊆ Nat is ultimately periodic if there is p, d ∈ Nat such that
(n ∈ P ↔ n + p ∈ P) for all n > d. Ultimately periodic predicates are MLO-definable.
Therefore, for every ultimately periodic predicate P the monadic theory of 〈Nat , <,P〉 is
decidable.

The next theorem implies Theorem 1.3 and shows that Theorem 1.1 can be extended
only to ultimately periodic predicates.

Theorem 5.1. Let P be a subset of Nat. The following conditions are equivalent and imply
computability of Problem 4:

(1) P is ultimately periodic.

12 A. RABINOVICH

(2) For every MLO formula ψ(X,Y,P) either there is a finite state C-operator F such that
Nat |= ∀Xψ(X,F (X,P),P) or there is a finite state C-operator G such that Nat |=
∀Y ¬ψ(G(Y,P), Y,P).

(3) P satisfies the following selection condition:
For every formula α(X,P) such that Nat |= ∃Xα(X,P) there is a finite state
C-operator H : {0, 1}ω→{0, 1}ω such that Nat |= α(H(P),P).

Proof. The implication (1)⇒ (2) follows from Theorem 1.1 and the fact that every ulti-
mately periodic predicate is definable by an MLO formula. The implication (2)⇒(3) is
trivial.

The implication (3)⇒(1) is derived as follows. Let α(X,P) be ∀t
(

X(t) ↔ P (t + 1)
)

.
Note Nat |= ∃Xα(X,P) for every P ⊆ Nat . Therefore, if P satisfies selection condition,
then there is C-operator H : {0, 1}ω→{0, 1}ω such that Nat |= α(H(P),P).

Assume that a finite state Moore automaton A computes H and has n states. We are
going to show that P is ultimately periodic with period at most 2n + 1. For i ∈ Nat let
ai be one if i ∈ P and ai be zero otherwise. Let q0q1 . . . q2n+1 . . . be the sequence states
passed by A on the input a0a1 . . . a2n+1 There are i < j < 2n such that ai = aj and
qi = qj. Observe that qi+1 = δA(qi, ai) = δA(qj, aj) = qj+1 and ai+1 = outA(qi, ai) =
outA(qj, aj) = aj+1. And by induction we get that qi+m = qj+m and ai+m = aj+m for all
m ∈ Nat . Therefore, P is an ultimately periodic with a period j − i < 2n.

Note that this theorem does not imply that Problem 4 is computable only for ultimately
periodic predicates. The next theorem can be established by the same arguments.

Theorem 5.2. The following conditions are equivalent and imply computability of Problem
5:

(1) P is ultimately periodic.
(2) For every MLO formula ψ(X,Y, P) either there is a finite state C-operator F such that

Nat |= ∀Xψ(X,F (X),P) or there is a finite state SC-operator G such that Nat |=
∀Y ¬ψ(G(Y), Y,P). Moreover, it is decidable which of these cases holds and the corre-
sponding operator is computable from ψ.

6. Parity Games on Graphs and the Synthesis Problem

In subsection 6.1, we provide standard definitions and facts about infinite two-player
perfect information games on graphs. In [BL69], a reduction of the Church synthesis prob-
lem to infinite two-player games on finite graphs was provided. In subsection 6.2, we provide
a reduction of the Church synthesis problem with parameters to infinite two-player games
on infinite graphs; this reduction is “uniform” in the parameters. The main definability
results needed for the proof of Theorem 2.3 are given in Sect. 6.3 and Sect. 6.4.

6.1. Parity Games on Graphs. We consider here two-player perfect information games,
played on graphs, in which each player chooses, in turn, a vertex adjacent to a current
vertex. The presentation is based on [PP04].

A (directed) bipartite graph G = (V1, V2, E) is called a game arena if the outdegree of
every vertex is at least one. If G is an arena, a game on G is defined by an initial node
vinit ∈ V1 and a set of winning ω-paths F from this node.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 13

Player I plays on vertices in V1 and Player II on vertices in V2. A play from a node
v1 = vinit is an infinite path v1v2 . . . vi . . . in G formed by the two players starting from the
initial position v1. Whenever the current position vi belongs to V1 (respectively V2), then
Player I (respectively, Player II) chooses a successor node vi+1 such E(vi, vi+1). Since the
graph is bipartite, Player I plays at the odd positions (v2i+1 ∈ Vi) and Player II plays at
the even positions (v2i ∈ V2). Player I wins if the play belongs to F .

A strategy f for Player I (Player II) is a function which assigns to every path of
even (respectively, odd) length a node adjacent to the last node of the path. A play
vinitv2v3 . . . is played according to a strategy f1 of Player I (strategy f2 of Player II) if for
every prefix π = vinitv2 . . . vn of even (respectively, odd) length vn+1 = f1(π) (respectively,
vn+1 = f2(π)). A strategy is winning for Player I (respectively, for Player II) if all the
plays played according to this strategy are in F (respectively, in the complement of F). A
strategy is memoryless if it depends only on the last nodes in the path.

Parity games are games on graphs in which the set of winning paths are defined by
parity conditions. More precisely, let G = (V1, V2, E) be a game arena and let c : V1 ∪
V2→{0, 1, . . . m} be a coloring.

Let ρ = v1v2 . . . be a play. With such a play ρ, we associate the set of colors Cρ that
appear infinitely many times in the ω-sequence col(v1)col(v2) . . . ; a play ρ is winning for
Player I if the minimal element of Cρ is odd. The following theorem due to Emerson/Julta
and Mostowski (see, [EJ91, GTW02, PP04]) is fundamental:

Theorem 6.1. In a parity game, one of the players has a memoryless winning strategy.

6.2. Games and the Church Synthesis Problem. Let A = 〈Q,Σ, δA, qinit , col 〉 be a
deterministic parity automaton over the alphabet Σ = {0, 1} × {0, 1} × {0, 1}, let RA ⊆
{0, 1}ω × {0, 1}ω × {0, 1}ω be the relation defined by A and let P be a subset of Nat . We
will define a parity game GA,P such that

(1) Player I has a winning strategy in GA,P iff there is a SC-operator G : {0, 1}ω→{0, 1}ω

such that ¬RA(G(Y), Y,P) holds for every Y .
(2) Player II has a winning strategy in GA,P iff there is a C-operator F : {0, 1}ω→{0, 1}ω

such that RA(X,F (X),P) holds for every X.

The arena G(V1, V2, E) of GA,P is defined as follows:

Nodes: V1 = Q× Nat and V2 = Q× {0, 1} × Nat .
Edges from V1: From 〈q, n〉 ∈ V1 two edges exit; one to 〈q, 0, n〉 ∈ V2, and the second to
〈q, 1, n〉 ∈ V2. We will assign labels to these edges. The first one will be labeled by 0 and
the second one will be labeled by 1. These edge labels play no role in the game on our
graph; however, it will be convenient to refer to them later.
Edges from V2: From 〈q, a, n〉 ∈ V2 two edges exit defined as follows: let c be 1 if n ∈ P

and 0 if n 6∈ P; and for b ∈ {0, 1} let qb be δA(q, 〈a, b, c〉). One edge from 〈q, a, n〉 is
connected to 〈q0, n + 1〉, and the second one to 〈q1, n + 1〉. We label the first edge by 0,
and the second one by 1.

The color of a node of the arena is defined by the color of its automaton’s component, i.e.,
c(〈q, n〉) = c(〈q, a, n〉 = col(q).

The node 〈qinit , 0〉 is the initial node of the game.
Every node of the game graph for GA,P has two successors. The subsets of V1 (respec-

tively, of V2) can be identified with the memoryless strategies of Player I (respectively, of

14 A. RABINOVICH

Player II). For a subset U1 ⊆ V1, the corresponding memoryless strategy fU1
is defined as

fU1
(〈q, n〉) =

{

〈q, 1, n〉 if 〈q, n〉 ∈ U1

〈q, 0, n〉 otherwise

In other words, for v ∈ V1 the strategy fU1
chooses the nodes reachable from v by the edge

with the label U1(v).

Observation 6.1 (bijection between the memoryless strategies and the subset of nodes).
The function that assigns to every subset U of V1 the strategy fU for Player I is a bijection
between the set of memoryless strategies for Player I and the subset of V1. Similarly, the
function that assigns to every subset U of V2 the strategy fU is a bijection between the set
of memoryless strategies for Player II and the subset of V2.

A subset U1 ⊆ V1, induces a function hU1
: {0, 1}∗→V2 and a SC-operator FU1

:
{0, 1}ω→{0, 1}ω . First, we provide the definition for hU1

, and later for FU1
.

Let GU1
be the subgraph of GA,P, obtained by removing from every node v ∈ V1 the

edge labelled by ¬U1(v), and removing the label from the other edge exiting v. In this
graph, every V1 node has outdegree one, and every V2 node has two exiting edges; one is
labeled by 0 and the other is labeled by 1. For every π in {0, 1}∗ there is a unique path
from 〈qinit, 0〉 to a state v2 ∈ V2 such that π is the sequence of labels on the edges of this
path; this node v2 is hU1

image of π.
Now a SC-operator FU1

: {0, 1}ω→{0, 1}ω induced by U1 is defined as follows. Let
π = b0b1 . . . be an ω-string. There is a unique ω-path ρ from 〈qinit, 0〉 in GU1

such that π
is the sequence labels on the edges of this path. Let v1v2 . . . be the sequence of V1 nodes
on ρ and let ai = 1 if vi ∈ U1 and 0 otherwise. The ω sequence a0a1 . . . is defined as the
FU1

image of π.
Similarly, U2 ⊆ V2 induces a function hU2

: {0, 1}+→V1 and C-operator FU2
.

Below we often use “a function F corresponds to a set U” as synonym “a set U induces
a function F”.

The properties of the above constructions are summarized as follows:

Lemma 6.2. (1) Let U1 be a subset of V1. The memoryless strategy defined by U1 is win-
ning for Player I in GA,P iff ¬RA(FU1

(Y), Y,P) holds for every Y .
(2) Let U2 be a subset of V2. The memoryless strategy defined by U2 is winning for Player

II in GA,P iff RA(X,FU2
(X),P) holds for every X.

(3) Let ϕ(X,Y,Z) be an MLO formula equivalent to A, let ψ be ϕ(X,Y, P) and let M be
〈Nat , <,P〉. The memoryless strategy defined by U is winning for Player I (respectively,
Player II) in GA,P iff the operator induced by U is a winning strategy for Player I

(respectively, for Player II) in GMψ .

Our next objective is to show that the set of memoryless winning strategies and the
operator induced by a memoryless strategy are MLO-definable in 〈Nat , <,P〉. For this
purpose, we show in 6.3 that these are definable in the monadic-second order logic for the
structure appropriate for the game graph GA,P. Then, in Sect. 6.4, we translate these
definitions to MLO formulas over 〈Nat , <,P〉.

6.3. Definability in the game structure. The game arena GA,P can be considered as a
logical structure M = MA,P for the signature τA = {Ri : i ∈ Q ∪ Q × {0, 1}} ∪ {Init , P,≺

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 15

, E0, E1}, where Ri, Init and P are unary predicates and ≺, , E0, E1 are binary predicates
with the interpretation

RMi =

{

{〈q, j〉 : j ∈ Nat} for i = q ∈ Q
{〈q, a, j〉 : j ∈ Nat} for i = 〈q, a〉 ∈ Q × {0, 1}

PM = {〈q,m〉 :m ∈ P} ∪ {〈q, a,m〉 : a ∈ {0, 1} and m ∈ P}

InitM = {〈qinit , 0〉}

EM
0 (v1, v2) (respectively, E

M
1 (v1, v2)) holds

iff there is an edge labeled by 0 (respectively, by 1) from v1 to v2.

v1 ≺ v2 iff v1 = 〈i1, j1〉 and v2 = 〈i2, j2〉 and j1 < j2.

The next lemma shows that the set of memoryless winning strategies is definable in
MA,P.

Lemma 6.3 (The set of memoryless winning strategies is definable in MA,P). Let A be a
parity automaton.

(1) There is a monadic second-order formula winStIGA
(X) such that MA,P |= winStIGA

(U)
iff U corresponds to a memoryless winning strategy for Player I.

(2) There is a monadic second-order formula winStIIGA
(X) such that MA,P |= winStIIGA

(U)
iff U corresponds to a memoryless winning strategy for Player II.

(3) Moreover, winStIGA
(X) and winStIIGA

(X) are computable from A.

Proof. We will formalize that “player I wins all the plays consistent with a memoryless
strategy X”.

A play is an infinite path that starts from the initial node. Note that the arena GA,P

is an acyclic graph. Hence, we can formalize that “Z is the set of nodes of an infinite path
that starts from a node v” as a formula Play(v, Z) which is the conjunction of the following
formulas:

(1) For every node u of Z there is a unique node u′ ∈ Z such that an edge from u enters u′.
(2) For every node u 6= v of Z there is a unique node u′ ∈ Z such that an edge from u′

enters u; there is no edge that enters from a node of Z into v.
(3) v is in Z.
(4) For every partition of Z into two non-empty set Z1 and Z2 there is an edge between a

node in Z1 and a node in Z2.

The assertion “u is a Player I node” is formalized by the formula Pos1(u), defined as
∨

q∈QRq(u). Next, we formalize that “Z is the set of nodes of a play consistent with

a strategy U of Player I” by the formula Consis(U,Z) which is the conjunction of the
following formulas:

(1) “U is a subset of Player I nodes” is formalized by

∀u(u ∈ U→Pos1(u))

(2) “Z is the set of nodes of a play from the initial node”:

∃v(Init(v) ∧ Play(v, Z))

(3) “Z is consistent with U”

∀zz′ ∈ Z
(

Pos1(z) ∧ (E1(z, z
′) ∨ E1(z.z

′))
)

→(E1(z, z
′) ↔ z ∈ U)

16 A. RABINOVICH

Assume that the coloring function of A assigns to the states numbers in the set
{0, 1 . . . ,m}, and let Qi (i = 0, . . . m) be the set of states of A which are colored by i.
Color i appears infinitely often in a play with the set of nodes Z if inf i(Z) defined as
∀z∃z′ ∈ Z(z ≺ z′ ∧ (∨q∈Qi

Rq(z
′))) holds. Hence, the formula Even(Z) defined as
∨

k≤m/2

(

inf 2k(Z) ∧
∧

j<2k

¬inf2k(Z)
)

holds for a play Z iff the minimal color that appears infinitely often in Z is even.
Finally, winStIGA

(X) can be defined as ∀Z(Consis(X,Z)→¬Even(Z)).

Note that our construction of winStIGA
(X) from A is algorithmic.

The formula winStIIGA
(X) is defined from A similarly.

Next, we will show that the operator FU : {0, 1}ω→{0, 1}ω induced by a memoryless
strategy U of one of the players is definable in MA,P. The operator FU maps ω-strings to
ω strings. Therefore, we should agree how the ω-strings are encoded by subset of MA,P.

Note that for q ∈ Q the set of elements in Rq ordered by ≺ is isomorphic to 〈Nat , <〉.
Accordingly, we can represent the ω-strings by the subsets of Rqinit, and in the next lemma
the operators from {0, 1}ω to {0, 1}ω are identified with corresponding functions from the
set of subset of Rqinit to the set of subset of Rqinit .

Lemma 6.4 (Definability of the operator induced by a memoryless strategy). Let A be a
parity automaton.

(1) There is a monadic second-order formula ψI(X,Y,U) such that MA,P |= ψI(X,Y,U)
iff U is a memoryless strategy for Player I in GA,P, X,Y ⊆ Rqinit and X = FU(Y),
where FU is the operator induced by U.

(2) There is a monadic second-order formula ψII(X,Y,U) such that MA,P |= ψII(X,Y,U)
iff U is a memoryless strategy for Player II in GA,P, X,Y ⊆ Rqinit and Y = FU(X),
where FU is the operator induced by U.

(3) Moreover, ψI and ψII are computable from A.

Proof. We just formalize in the monadic-second order logic the construction of FU given in
Sect. 6.2.

Let Consis(U,Z) be the formula from the proof of Lemma 6.3 which expresses “Z is
the set of nodes of a play consistent with a strategy U of Player I”. We need to say that X
(respectively, Y) is the sequence of edges1 chosen by Player I (respectively, by Player II) in
the play Z. It can be formalized by formula moves(X,Y,Z) which is the conjunction of

(1) X ⊆ Rqinit ∧ Y ⊆ Rqinit - X and Y “encodes” ω strings over {0, 1}.
(2) We can formalize that X is the sequence of edges chosen by Player I as follows. Let

u ∈ Z be a node of Player II. Then, u is 〈q, 1, j〉 iff 〈qinit , j〉 is in X:

∀u ∈ Z∀v ∈ X
(

PosII(u) ∧ ¬(u ≺ v) ∧ ¬(v ≺ u)
)

→
(

v ∈ X ↔
∨

q∈Q

u ∈ Rq,1
)

(3) Similarly, we can formalize that Y is the sequence of edges chosen by Player II as follows.
Let u = 〈q, a, j〉 ∈ Z and u′ = 〈q′, j+1〉 ∈ Z and let c be 1 (respectively, c be 0) if j ∈ P

(respectively, j 6∈ P) and let b be 1 (respectively, b be 0) if 〈qinit , j〉 ∈ Y (respectively,
〈qinit , j〉 6∈ Y). Then, q′ = δA(q, 〈a, b, c〉).

1Strictly speaking, the sequence of labels of the edges.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 17

Note that for each memoryless strategy U of Player I, we have

∀Y ⊆ Rqinit∃!Z∃!XConsis(U,Z) ∧moves(X,Y,Z)

. Finally, ψI(X,Y,U) can be defined as ∃ZConsis(U,Z) ∧moves(X,Y,Z).
ψII(X,Y,U) is defined in a similar way.

6.4. Interpretation of MA,P in the structure 〈Nat , < P〉. Every set S of nodes inMA,P

corresponds to the tuple 〈. . . ,Wi, . . . 〉 where i ∈ Q ∪ Q × {0, 1}) of subsets of Nat , such
that 〈q,m〉 ∈ S iff m ∈Wq and 〈q, a,m〉 ∈ S iff m ∈W〈q,a〉.

The proof of the following lemma shows that there is an interpretation of the structure
MA,P in the structure 〈Nat , < P〉.

Lemma 6.5. For every formula ψ(X1, . . . Xk) in the second order monadic logic over the

signature τA with free monadic variables X1, . . . ,Xk there is a formula ϕ(Y,
−→
Z1 . . . ,

−→
Zk),

where
−→
Zj is a tuple of monadic variables {Zji : i ∈ Q ∪ Q × {0, 1}}, such that for every

P ⊆ Nat and a tuple 〈. . . ,W j
i , . . . 〉 where j ∈ {1, . . . , k} and i ∈ Q ∪Q× {0, 1}) of subsets

of Nat the following equivalence holds:

〈Nat , <〉 |= ϕ(P, . . . ,W j
i , . . .), iff MA,P |= ψ(S1, . . . , Sk)

where Sj is the subset of nodes in GA,P, which corresponds to 〈. . . ,W j
i , . . . 〉.

Moreover, there is an algorithms that computes ϕ from ψ.

Proof. The proof proceeds by the structural induction. It is more convenient to consider
the first-order version of the monadic second-order logic (see, Subsection 4.3).

Basis - Atomic formulas.

• Sing(X) is translated as
∨

i∈Q∪Q×{0,1}

Sing(Zi) ∧
∧

i 6=i′∈Q∪Q×{0,1}

(Sing(Zi)→Empty(Zi′)),

where Empty(W) is a shorthand for ∀W ′(W ⊆W ′).
• X1 ⊆ X2 is translated as

∧

i∈Q∪Q×{0,1}

Z1
i ⊆ Z2

i

• X1 ≺ X2 is translated as the conjunction of the following:
(1) one of the Z1

i (i ∈ Q ∪Q× {0, 1}) is singleton and all the others are empty.
(2) one of the Z2

i (i ∈ Q ∪Q× {0, 1}) is singleton and all the others are empty.
(3) if Z1

i1
and Z2

i2
are singletons, then Z1

i1
< Z2

i2
, i.e., the (unique) natural number which

is in Z1
i1

is less than the natural number in Z2
i2
.

• Other relations in τA are translated similarly just by the straightforward formalization of
our definition of the game arena, e.g., E0(X

1,X2) is translated as the conjunction of the
following:
(1) one of the Z1

i (i ∈ Q ∪Q× {0, 1}) is singleton and all others are empty.
(2) one of the Z2

i (i ∈ Q ∪Q× {0, 1}) is singleton and all others are empty.
(3) if Z1

q (for some q ∈ Q) is singleton, then Z2
〈q,0〉 is singleton and both of them contain

the same natural number.

18 A. RABINOVICH

(4) if Z1
〈q,a〉 (for some q ∈ Q and a ∈ {0, 1, }) is singleton, and the unique number n from

Z1
〈q,a〉 is in P (i.e., Z1

〈q,a〉 ⊆ P) and q′ is be δA(q, 〈a, 0, 1〉), then Z
2
q′ is singleton and

the unique element of Z2
q′ is the successor of the unique element of Z1

〈q,a〉.

(5) if Z1
〈q,a〉 (for some q ∈ Q and a ∈ {0, 1, }) is singleton, and the unique number n from

Z1
〈q,a〉 is not in P (i.e., ¬(Z1

〈q,a〉 ⊆ P)) and q′ is δA(q, 〈a, 0, 0〉), then Z
2
q′ is singleton,

and the unique element of Z2
q′ is the successor of the unique element of Z1

〈q,a〉.

Inductive step. If ϕj is the translation of ψj for j = 1, 2, then ψ1∧ψ2 is translated as ϕ1∧ϕ2

and ¬ψ1 is translated as ¬ϕ1.

Finally, if ϕ(Y,
−→
Z1 . . . ,

−→
Zk) is the translation of ψ(X1, . . . Xk), then ∃X1ψ is translated

as ∃
−→
Z1ϕ.

The next two lemmas use the interpretation of MA,P in 〈Nat,< P〉 to show MLO
definability in 〈Nat,< P〉 of the set of memoryless winning strategies and the operator
induced by a memoryless strategy.

Lemma 6.6 (The set of memoryless winning strategies is definable in 〈Nat,< P〉).
Let A = 〈Q,Σ, δA, qinit, col〉, be a deterministic parity automaton over the alphabet Σ =
{0, 1} × {0, 1} × {0, 1}.

(1) There is an MLO formula WinStIA(Z1, . . . , Z|Q|, Z) such that for every P ⊆ Nat and
W1, . . . ,W|Q| ⊆ Nat:

Nat |= WinStIA(W1, . . . ,W|Q|,P)

iff the corresponding subset U ⊆ Q × Nat defines a memoryless winning strategy for
Player I in GA,P.

(2) There is an MLO formula WinStIIA (Z1, . . . , Z|Q|, Z
′
1, . . . , Z

′
|Q|, Z) such that for every

P ⊆ Nat and W1, . . . ,W|Q|,W
′
1, . . . ,W

′
|Q| ⊆ Nat:

Nat |= WinStIIA (W1, . . . ,W|Q|,W
′
1, . . . ,W

′
|Q|,P)

iff the corresponding subset U ⊆ Q×{0, 1}×Nat defines a memoryless winning strategy
for Player II in GA,P.

(3) Moreover, there is an algorithm that computes formulas WinStIA and WinStIIA from A.

Proof. Follows from Lemma 6.3 and Lemma 6.5. Let winStIGA
(X) be the formula con-

structed in Lemma 6.3 which defines (in MA,P) the set of memoryless winning strategies of

the first player. Let ψ(Y, ~Z1) be its translation, as in Lemma 6.5, where
−→
Z1 is the tuple of

variables indexed by i ∈ Q ∪ Q × {0, 1}. Note that since
−→
Z1 defines (in MA,P) a strategy

of Player I, Z〈q,a〉 for q ∈ Q and a ∈ {0, 1} should be interpreted as the empty set. The

formula WinStIA is obtained from ψ by replacing Z〈q,a〉 for q ∈ Q and a ∈ {0, 1} by the
empty set and replacing Y by Z.

WinStIIA is defined in a similar way.

From Lemma 6.4 and Lemma 6.5, by the same arguments, we can derive the following
Lemma:

Lemma 6.7 (The operator induced by a memoryless strategy is definable in 〈Nat,< P〉).
Let A = 〈Q,Σ, δA, qinit, col〉, be a deterministic parity automaton over the alphabet Σ =
{0, 1} × {0, 1} × {0, 1}.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 19

(1) There is an MLO formula opIA(X,Y,Z1, . . . , Z|Q|, Z) which has the following property:
Let P ⊆ Nat and W1, . . . ,W|Q| ⊆ Nat, and let FU be the C-operator, in-
duced by Player I memoryless strategy U ⊆ Q × Nat which corresponds to
〈W1, . . . ,W|Q|〉. Then, Nat |= opIA(X,Y,W1, . . . ,W|Q|,P) iff X = FU (Y).

(2) There is an MLO formula opIIAA(X,Y,Z1, . . . , Z|Q|, Z
′
1, . . . , Z

′
|Q|, Z) which has the fol-

lowing property:
Let P ⊆ Nat and W1, . . . ,W|Q|,W

′
1, . . . ,W

′
|Q| ⊆ Nat and let FU be the C-

operator, induced by Player II memoryless strategy U ⊆ Q × {0, 1} × Nat
which corresponds to 〈W1, . . . ,W|Q|,W

′
1, . . . ,W

′
|Q|〉. Then,

Nat |= opIIA (X,Y,W1, . . . ,W|Q|,W
′
1, . . . ,W

′
|Q|,P) iff Y = FU (X).

(3) Moreover, there is an algorithm that computes formulas opIA and opIIA from A.

7. Proof of Theorem 2.3

We are now almost ready to prove Theorem 2.3. We will show an algorithm that, given
a formula ϕ(X,Y, P), constructs

(1) a sentence WIN II
ϕ (P) and

(2) formulas St Iϕ(X,Y, P) and St IIϕ (X,Y, P)

such that for every structure M = 〈Nat , <,P〉, Player II has a winning strategy in the
games GMϕ iff M |= WIN II

ϕ . If Player II (respectively, Player I) has a winning strategy, then

St IIϕ (X,Y, P) (respectively, St Iϕ(X,Y, P)) defines his winning strategy.

Let ϕ(X,Y, P) be a formula. We are going to construct WIN II
ϕ (P), as follows. First,

let ϕ′(X,Y,Z) be a formula obtained from ϕ by replacing all the occurrences of P by a
fresh variable Z.

Let A = 〈Q,Σ, δA, qinit, col 〉 be a deterministic parity automaton over the alphabet
Σ = {0, 1} × {0, 1} × {0, 1}, which is equivalent to ϕ′. Let WinStIA(Z1, . . . , Z|Q|, Z) be
constructed from A, as in Lemma 6.6. Player I has a winning strategy iff

M |= ∃Z1 . . . ∃Z|Q|WinStIA(Z1, . . . , Z|Q|, P) .

Finally, WIN II
ϕ (P) can be defined as ¬∃Z1 . . . ∃Z|Q|WinStIA(Z1, . . . , Z|Q|, P).

The correctness of the construction follows from Lemma 6.6 and Lemma 6.2.
In order to construct St Iϕ(X,Y, P), St

II
ϕ (X,Y, P), we need the following definition and

Theorem.

Definition 7.1 (Selection). Let ϕ(Ȳ), ψ(Ȳ) be formulas and C a class of structures. We
say that ψ selects (or, is a selector for) ϕ over C iff for every M ∈ C:

(1) M |= ∃≤1Ȳ ψ(Ȳ),
(2) M |= ∀Ȳ (ψ(Ȳ) → ϕ(Ȳ)), and
(3) M |= ∃Ȳ ϕ(Ȳ) → ∃Ȳ ψ(Ȳ).

Here, Ȳ is a tuple of distinct variables and “∃≤1Ȳ . . .” stands for “there exists at most
one...”. The definition can be rephrased as ψ is a selector of ϕ over C iff for each M ∈ C,
if ϕ is satisfiable in M , then it is satisfiable by the (unique) tuple defined by ψ.

We say that C has the selection property iff every formula ϕ has a selector ψ over C.

20 A. RABINOVICH

Theorem 7.2. The class of labelled ω-chains has the selection property. Moreover, there
is an algorithm which constructs for every ϕ a formula ψ which selects ϕ over the class of
labelled ω-chains.

Theorem 7.2 was proved in [Rab07]. Its version without the “Moreover” clause was
stated without proof in [LS98].

Now, we are ready to define St Iϕ(X,Y, P) and St IIϕ (X,Y, P).

Let A = 〈Q,Σ, δA, qinit, col 〉 and WinStIA(Z1, . . . , Z|Q|, Z) be as in the construction of

WIN II
ϕ (P) above.

Construct α(Z1, . . . , Z|Q|, P) as a selector for WinStIA(Z1, . . . , Z|Q|, P) over the class

{〈Nat , <,P〉 :P ⊆ Nat} of structures. If WinStIA(Z1, . . . , Z|Q|, P) is satisfiable in M , then
every tuple which satisfies it corresponds to a memoryless winning strategy of Player I
in the parity game GA,P. In particular, the tuple defined by α describes a memoryless
winning strategy of Player I in the parity game GA,P. Let op

I
A be as in Lemma 6.6. Then,

∃Z1 . . . ∃Z|Q|

(

α(Z1, . . . , Z|Q|, P) ∧ opIA(X,Y,Z1, . . . , Z|Q|

)

defines in M a SC-operator F ,
induced by a memoryless winning strategy of Player I in the parity game GA,P.

Hence, by Lemma 6.2, ¬RA(F (Y), Y,P) holds for every Y . Therefore, by the definitions
of A and RA, we have

〈Nat , <〉 |= ∀Y ¬ψ((F (Y), Y,P).

Hence F , defined by ∃Z1 . . . ∃Z|Q|

(

α ∧ opIA(X,Y,Z1, . . . , Z|Q|

)

, is a winning strategy for

Player I in GMϕ .

The formula St IIϕ (X,Y, P) which defines a winning strategy for Player II is constructed
similarly.

8. Conclusion and Related Work

We investigated the Church synthesis problem with parameters. We provided the nec-
essary and sufficient conditions for the computability of Synthesis problems 1-3.

The conditions of Theorem 5.1 and Theorem 5.2 are sufficient, but are not necessary
for the computability of Synthesis problems 4-5. For example, let Fac = {n! : n ∈ Nat}
be the set of factorial numbers. We can show that Problems 4-5 are computable for this
predicate Fac [Rab06].

It is an open question whether the decidability of 〈Nat , <,P〉 is a sufficient condition
for the computability of Synthesis problems 4-5.

We proved that the definability and synthesis parts of the Büchi and Landweber theorem
hold for all expansions of ω by unary predicates.

Büchi proved that the MLO-theory of any countable ordinal is decidable. After stating
their main theorem, Büchi and Landweber write:

“We hope to present elsewhere a corresponding extension of [our main the-
orem] from ω to any countable ordinal.”

However, despite the fundamental role of the Church problem, no such extension is even
mentioned in a later book by Büchi and Siefkes [BS73], which summarizes the theory of
finite automata and MLO over words of countable length.

In [Rab06a], we proved that the determinacy and decidability parts of the Büchi and
Landweber theorem hold for all countable ordinals; however, its definability and synthesis
parts hold for an ordinal α iff α < ωω [RS06].

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 21

In [RT07], the Church Problem for fragments of MLO was considered. First-order MLO
formulas are MLO formulas without the second-order quantifiers. In [RT06], it was proved
that if ψ(X,Y) is a first-order MLO formula, then one of the players has a first-order defin-
able winning strategy in Gωψ . Similar results were obtained for several interesting fragments
of MLO . However, it is an open question whether these results hold when parameters are
added.

Kupferman and Vardi [KV97] considered the synthesis problem with incomplete in-
formation for the specifications described by temporal logics LTL and CTL∗. Their main
results deal with the complexity of this synthesis problem. The decidability of the synthesis
problem with incomplete information for LTL (respectively, for CTL∗) can be easily derived
from the Büchi-Landweber (respectively, Rabin) theorem. It seems that there are no in-
teresting connections between the synthesis problems with incomplete information and the
synthesis problems with parameters considered here.

In [RT98] a program for the relativization of finite automata theory was proposed. Our
results can be seen as the first step in this direction. This step corresponds to the case
where oracles are C-operators without inputs.

In the rest of this section we comment on Rabin’s proof of the Church synthesis Problem,
discuss possibilities of extending it to the Church synthesis Problem with parameters, and
state some open questions.

Rabin [Rab72] provided an alternative proof for computability of the Church synthesis
problem. This proof uses an automata on infinite trees as a natural tool for treating the
synthesis problem. A C-operator F :{0, 1}ω→{0, 1}ω can be represented by a labelled infinite
full binary tree 〈T2, <,S〉, where S is a subset of the tree nodes. Namely, the branches of
the tree represent X ∈ {0, 1}ω and the sequence of values assigned by S to the nodes along
the branch X represents F (X) = Y ∈ {0, 1}ω . Also, the fact that S represents a C-operator
F which uniformizes ϕ(X,Y) can be expressed by an MLO formula ψ(Z) (computable
from ϕ(X,Y)): T2 |= ψ(S) iff Nat |= ∀ϕ(X,FS(X)) , where FS is the C-operator that
corresponds to S. Hence, the question whether there exists a C-operator which uniformizes
ϕ is reduced to the problem whether T2 |= ∃Zψ(Z). Now, the Rabin basis theorem states
that if T2 |= ∃Zψ(Z) then there is a regular subset S ⊆ T2 such that T2 |= ψ(S). The
C-operator which corresponds to a regular set S is computable by a finite state automaton.
Hence, the Büchi and Landweber theorem is obtained as a consequence of the decidability
of the monadic logic of order of the full binary tree and the basis theorem.

One could try to apply the Rabin method to the Church synthesis problem with param-
eters. The reduction which is similar to Rabin’s reduction shows that for every ϕ(X,Y, P)
there is a sentence WIN II

ϕ (Q) such that for every structure M = 〈Nat , <,P〉 Player II wins

the games GMϕ iff

〈T2, <,Q〉 |= WIN II
ϕ (Q),

where a node is inQ if its distance from the root is in P. Moreover, WIN II
ϕ (Q) is computable

from ϕ (cf. Theorem 2.3).
Hence, the decidability of Problem 1′ for P ⊆ Nat (recall that this is Problem 1 without

its constructive part, see Sect. 3) is reduced to the decidability of the monadic theory of
the labelled full binary tree 〈T2, <,Q〉, where a node is in Q, if its distance from the root
is in P. The decidability of the latter problem can be reduced by Shelah-Stupp Muchnick
Theorem [Shel75, Wal02, Th03] to the decidability of 〈Nat , <,P〉. Now, in order to estab-
lish computability of problems 1-3, one can try to prove the basis theorem for 〈T2, <,Q〉.

22 A. RABINOVICH

Unfortunately, arguments similar to the proof of Theorem 5.1 show that for P,Q, as above,
the following are equivalent:

(1) P is ultimately periodic.
(2) For every ψ(Z,Q) such that T2 |= ∃Zψ(Z,Q) there is a finite state operator F (Y,U)

such that the set which corresponds to the C-operator λXF (X,P) satisfies ψ(Z,Q).

In case selector over 〈T2, <,Q〉 is computable, it would be easy to derive the com-
putability of Problems 1-3. However, even the following is open
Open Question - Selectoion property for an expansion of T2 by unary predicate.

Is it true that for every Q ⊆ T2 every formula ϕ(Y,Q) has a selector over
〈T2, <,Q〉, i.e., there is ψ(Y,Q) such that (1) 〈T2, < .Q〉 |= ∃≤1Y ψ(Y), (2)
〈T2, <,Q〉 |= ∀Y (ψ(Y) → ϕ(Y)), and (3) 〈T2, < .Q〉 |= ∃Y ϕ(Y) → ∃Ȳ ψ(Y).

Note that this question asks whether every expansion of T2 has the selection property
and is different from the Rabin’s uniformization problem over T2, which asks whether every
formula has a selector over the class of all the expansions of T2 by unary predicates. The
negative answer to the Rabin uniformization problem was obtained by Gurevich and Shelah
[GS83] who proved that a formula ϕ(Y,Q) which express that “if Q is not empty than Y is
a singleton set which is a subset of Q” has no selector over the class of all the expansions
of T2.

We believe that if the answer to the above mentioned question is positive, then its proof
is non-trivial.

Our proof of Theorem 1.2 implies that for P ⊆ Nat and Q ⊆ T2, where a node is in Q

if its distance from the root is in P, the following are equivalent:

(1) The monadic theory of 〈Nat , <,P〉 is decidable,
(2) For every ψ(Z,Q) such that T2 |= ∃Zψ(Z,Q) there is a recursive S ⊂ T2 such that

T2 |= ψ(S,Q).

However, we do not know the answer to the following question:
Open Question: Are the following assertions equivalent?

(1) The monadic theory of 〈T2, < S〉 is decidable.
(2) For every ψ(Z,U) such that T2 |= ∃Zψ(Z,S) there is a recursive set Q ⊂ T2 such that

T2 |= ψ(Q,S).

Acknowledgments

I am grateful to the anonymous referees for their suggestions.

References

[Bu60] J. R. Büchi. On a decision method in restricted second order arithmetic In Proc. International

Congress on Logic, Methodology and Philosophy of Science, E. Nagel at al. eds, Stanford University
Press, pp 1-11, 1960.

[BL69] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finitestate strategies. Transac-
tions of the AMS, 138(27):295–311, 1969.

[BS73] J. R. Büchi, D. Siefkes, The Monadic Second-order Theory of all Countable Ordinals, Springer
Lecture Notes 328 (1973), pp. 1-126.

[CT02] O. Carton and W.Thomas. The Monadic Theory of Morphic Infinite Words and Generalizations.
Inf. Comput. 176(1), pp. 51-65, 2002.

[Ch69] Y. Choueka. Finite Automata on Infinite Structure. Ph.D Thesis, Hebrew University, 1970.

THE CHURCH SYNTHESIS PROBLEM WITH PARAMETERS 23

[ER66] C. Elgot and M. O. Rabin. Decidability and Undecidability of Extensions of Second (First) Order
Theory of (Generalized) Successor. J. Symb. Log., 31(2), pp. 169-181, 1966.

[EJ91] E. A. Emerson, C. S. Jutla: Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)
FOCS91: 368-377, 1991.

[GTW02] E. Grädel, W. Thomas and T. Wilke. Automata, Logics, and Infinite Games, LNCS 2500, 2002.
[GS83] Y. Gurevich and S. Shelah. Rabin’s uniformization problem. The Journal of Symbolic Logic,

48:1105-1119, 1983.
[KV97] O. Kupferman and M.Y. Vardi, Synthesis with incomplete information, In 2nd International Con-

ference on Temporal Logic, pp 91–106, 1997.
[Mc66] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Information and

Control 9 (1966), pp. 521-530.
[LS98] S. Lifsches, S. Shelah, Uniformization and skolem functions in the class of trees, Jou. of Symolic

Logic, Vol. 63(1) (Mar. 1998), pp. 103-127.
[PP04] D. Perrin and J. E. Pin. Infinite Words Automata, Semigroups, Logic and Games. Pure and

Applied Mathematics Vol 141 Elsevier, 2004.
[Rab72] M. O. Rabin. Automata on Infinite Objects and Church’s Problem Amer. Math. Soc. Providence,

RI, 1972.
[Rab05] A. Rabinovich. On decidability of monadic logic of order over the naturals extended by monadic

predicates. 2005 Summer Meeting of the Association for Symbolic Logic, Logic Colloquium 05.
The Bulletin of Symbolic Logic 12:343-344, 2006.

[Rab06] A. Rabinovich. The Church problem over ω expanded by factorial numbers. In preparation, 2006.
[Rab06a] A. Rabinovich. The Church Problem for Countable Ordinals. Submitted, 2006.
[Rab07] A. Rabinovich. On decidability of Monadic logic of order over the naturals extended by monadic

predicates. Information and Computation, 2007.
[RT98] A. Rabinovich and B.A. Trakhtenbrot. From Finite Automata toward Hybrid Systems Proceddings

of Fundamentals of Computation Theory. Lecture Notes in Computer Science 1450, pp. 411-422,
Springer, 1998.

[RS06] A. Rabinovich and A. Shomrat. Selection in the Monadic Theory of Countable Ordinals. Submitted
2006.

[RT06] A. Rabinovich and W. Thomas. Decidable Theories of the Ordering of Natural Numbers with
Unary Predicates. In CSL 2006, Springer LNCS 4207, 562-574, 2006.

[RT07] A. Rabinovich and W. Thomas. Logical Refinements of Church’s Problem. In CSL 2007, LNCS
4646, 69-83, 2007.

[Rob58] R. M. Robinson. Restricted Set-Theoretical Definitions in Arithmetic. In Proceedings of the AMS
Vol. 9, No. 2. pp. 238-242, 1958.

[Sem84] A. Semenov. Logical theories of one-place functions on the set of natural numbers. Mathematics
of the USSR - Izvestia, vol. 22, pp 587-618, 1984.

[Se04] O. Serre. Games With Winning Conditions of High Borel Complexity. In ICALP 2004, LNCS
volume 3142, pp. 1150-1162, 2004.

[Shel75] S. Shelah. The monadic theory of order. Ann. of Math. 102:379–419, 1975.
[Sie75] D. Siefkes. The recursive sets in certain monadic second order fragments of arithmetic. Arch. Math.

Logik, pp71-80, 17(1975).
[Th75] W. Thomas. Das Entscheidungsproblem für einige Erweiterungen der Nachfalger-Arithmetic. Ph.

D. Thesis Albert-Ludwigs Universität, 1975.
[Th95] W. Thomas. On the synthesis of strategies in infinite games. In STACS ’95, LNCS vo. 900, pp.

1-13. 1995.
[Th03] W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In MFCS03, LNCS 2747,

2003.
[Trak61] B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. (Russian version 1961).

In AMS Transl. 59, 1966, pp. 23-55.
[Wal02] I. Walukiewicz. Monadic second order logic on tree-like structures.TCS 1:275, pp 311-346, 2002.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Game Version of the Church Problem and Main Definability Result
	3. Proof of Theorem ??
	4. Background on Logic and Automata
	4.1. Notations and Terminology
	4.2. Monadic Second-Order Logic and Monadic Logic of Order
	4.3. The First-Order Version of the Monadic Second-Order Logic
	4.4. Automata

	5. Finite State Synthesis Problems with Parameters
	6. Parity Games on Graphs and the Synthesis Problem
	6.1. Parity Games on Graphs
	6.2. Games and the Church Synthesis Problem
	6.3. Definability in the game structure
	6.4. Interpretation of MA,P in the structure "426830A Nat,<P"526930B

	7. Proof of Theorem ??
	8. Conclusion and Related Work
	Acknowledgments
	References

