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Abstract. We show that forbidden patterns problems, when restricted to some classes of
input structures, are in fact constraint satisfaction problems. This contrasts with the case
of unrestricted input structures, for which it is known that there are forbidden patterns
problems that are not constraint satisfaction problems. We show that if the input comes
from a class of connected structures with low tree-depth decomposition then every forbidden
patterns problem is in fact a constraint satisfaction problem. In particular, our result
covers input restrictions such as: structures of bounded degree, planar graphs, structures
of bounded tree-width and, more generally, classes definable by at least one forbidden
minor. This result can also be rephrased in terms of expressiveness of the logic MMSNP,
introduced by Feder and Vardi in relation with constraint satisfaction problems. Our
approach follows and generalises that of Nešetřil and Ossona de Mendez’s, who investigated
restricted dualities, which corresponds in our setting to investigating the restricted case
when the considered forbidden patterns problems are captured by a first-order sentence.
Note also that our result holds in the general setting of problems over arbitrary relational
structures (not just for graphs).

Introduction

Constraint satisfaction problems have been first investigated in artificial intelligence as a
generic concept covering a wide range of combinatorial problems. The input of such a prob-
lem consists of a set of variables, a set of values for these variables and a set of constraints
between these variables; the question is to decide whether there is an assignment of values to
the variables that satisfies all the constraints. Note that these sets (of values, variables and
constraints) are usually assumed to be finite, thus in particular such problems do not cover
constraints over integers or over reals. However, this framework remains general enough to
cover a variety of well-known problems such as Boolean satisfiability, graph 3-colourability,
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and conjunctive query evaluation; and, more importantly for us as it is the approach we
shall adopt in this paper, constraint satisfaction problems can be phrased as homomorphism
problems. For further details, we suggest the survey [19] which gives a detailed background
on the intimate connection between constraint satisfaction problems, database theory and
finite model theory. Graph homomorphisms and related problems have received consider-
able attention in recent years as a topic in combinatorics, and the monograph [18] serves as
a good survey of the area.

The theoretical investigations of constraint satisfaction problems have been concerned
mostly with computational complexity; in particular, with the dichotomy conjecture, that
asserts that every constraint satisfaction problem is either tractable (polynomial time de-
cidable) or intractable (NP-complete). This conjecture is supported by early results in the
Boolean case [32] and in the case of graph homomorphism [17]; and, by later results using
tools from universal algebra [5]. So, despite the fact that constraint satisfaction problems
capture numerous well-known problems in NP, the dichotomy conjecture suggests a funda-
mental difference with the class NP (recall Ladner’s Theorem [23] which states that if P is
different from NP then there is an infinite number of distinct polynomial-time equivalence
classes in NP).

Investigations on the fundamental properties of constraint satisfaction problems have
also focused on their descriptive complexity. Based upon Fagin’s logical characterisation of
NP as those problems expressible in the existential fragment of second order logic, Feder
and Vardi attempted to find a large (syntactically-defined) sub-class of NP which exhibits
the dichotomy property [11]. What emerged from Feder and Vardi’s consideration was the
logic MMSNP (short for Monotone Monadic SNP without inequalities) defined by imposing
syntactic restrictions upon the existential fragment of second-order logic. Though syntac-
tically defined this logic is very combinatorial in nature, in the sense that every sentence
corresponds to a finite set of coloured obstructions: this was made precise in [26], where
Madelaine and Stewart introduced a new class of combinatorial problems, the so-called for-
bidden patterns problems, and proved that every sentence of MMSNP defines a finite union
of forbidden patterns problems (since we only deal with decision problems in this paper, we
equate a problem with the set of its yes-instances). Feder and Vardi were unable to prove
that MMSNP has the dichotomy property, a question which remains open, but showed that
this logic is “computationally” equivalent to the class of constraint satisfaction problems.
This result, together with Kun’s derandomisation [20] of a particular graph construction
used in Feder and Vardi’s reduction, implies that MMSNP has the dichotomy property if,
and only, if the dichotomy conjecture holds. So, one could argue that MMSNP and the
class of constraint satisfaction problems are essentially the same.

However, as was first observed by Feder and Vardi, the logic MMSNP is too strong:
there are forbidden patterns problems which are not constraint satisfaction problems [11, 25].
Moreover, Bodirsky and Dalmau [3] showed that forbidden patterns problems are in fact
examples of well-behaved constraint satisfaction with a countable set of values (which shall
be referred as infinite constraint satisfaction problems thereafter). So, in the context of
descriptive complexity, the logic MMSNP and constraint satisfaction problems are rather
different. In [26], Madelaine and Stewart gave an effective characterisation of forbidden
patterns problems that are constraint satisfaction problems: given a forbidden patterns
problem, we can decide whether it is a finite or infinite constraint satisfaction problem;
and, in the former case, we can compute effectively a description of this problem as a finite
constraint satisfaction problem. Since the transformation of a sentence of MMSNP into a
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finite union of forbidden patterns problems is also effective, as a corollary, we can decide
whether a given sentence of MMSNP defines a finite union of (finite) constraint satisfaction
problems, or defines a finite union of infinite constraint satisfaction problems.

The question of expressivity of the logic MMSNP with respect to the class of constraint
satisfaction problems is also being studied in a different guise in structural combinatorics.
For example, the above result, which delineates the border between forbidden patterns
problems and constraint satisfaction problems (respectively, MMSNP and finite union of
constraint satisfaction problems), subsumes the characterisation of duality pairs (respec-
tively, finite dualities) obtained by Tardif and Nešetřil [31] (see also the sequel paper [13]).
Moreover, Kun and Nešetřil give a new proof of the characterisation of forbidden patterns
problems that are constraint satisfaction problems [21]. Their elegant approach involves
lifting dualities to a more complex form of dualities. However, contrary to Madelaine and
Stewart’s result, note that this approach is not effective. The present paper is motivated
by another kind of duality known as restricted duality, which corresponds to restricting the
studied problems to a particular class of inputs. Contrary to the case of duality, for par-
ticular restrictions, e.g. for bounded degree [16] or planar graphs [28], it turns out that we
have all restricted dualities. This provokes the following question, which is the object of this
paper. For which input restrictions, do all forbidden patterns problems become constraint
satisfaction problems?

Before we can discuss in more detail our contribution, let us introduce more precisely
duality and restricted duality. A duality pair is a pair (F,H) of structures such that, for
every structure G, there is no homomorphism from F to G (we say that G is F -mote) if,
and only if, there is a homomorphism from G to H (we say that G is homomorphic to
H). There are structures F , for which there is no H such that (F,H) is a duality pair
(for example, choose F to be the triangle). In this sense, we do not have all dualities.
However, when we turn to restricted duality, that is when G in the above definition ranges
over a particular class of structures, there are examples in which we have all dualities. For
example, Häggkvist and Hell [16] showed how to build a finite “universal” graph H for the
class of F -mote graphs of bounded degree b. That is, any degree b graph G is F -mote if,
and only if, there is a homomorphism from G to H. Note that the usual notion of universal
graph, as used by Fräıssé [14] is for induced substructures, not homomorphism, and that
the universal graph is usually countable. In our context, the word universal graph refers to
a finite graph and is universal with respect to the existence of homomorphisms.

Nešetřil and Ossona de Mendez [30] introduced the notion of tree-depth of a graph
and of low tree-depth decomposition of a class of graphs. They show a restricted duality
theorem for restriction to classes of low tree-depth decomposition: this includes graphs of
bounded degree, planar graphs, graphs of bounded tree-width, any proper minor closed
class and, more generally, classes of bounded expansion. In Figure 1, we have depicted how
these classes compare. See [28] for further details on these classes, and for the algorithmic
features that the existence of such low tree-depth decomposition provides. In this paper,
we generalise the approach taken in [30] and show for arbitrary relational structures, not
just for graphs, that every forbidden patterns problem is a constraint satisfaction problem
when restricted to a class of connected structures that has a low tree-depth decomposition.
Since this case is technically much more involved than the simple case of bounded-degree
inputs, as a warm-up case to illustrate the basic concepts, we first show that every forbidden
patterns problems restricted to connected inputs of bounded degree becomes a constraint
satisfaction problem (this result already appeared in a conference paper [9]). Next, we
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Figure 1: Classes of graphs and how they compare.

extend this result and prove that every forbidden patterns problem when restricted to a
class of connected structures with low tree-depth decomposition is a constraint satisfaction
problem. Examples of classes of structures with this property are proper minor closed classes
(this result was originally presented in this restricted case in the preliminary version of this
paper [24]), classes of bounded degree and, more generally, classes of bounded expansion.

A well-known extension of monadic second order logic consists of allowing monadic
predicates to range over tuples of elements, rather than just elements of a structure. This
extension is denoted by MSO2 whereas the more standard logic with monadic predicates
ranging over elements only is denoted by MSO1. In general, MSO2 is strictly more expres-
sive than MSO1. However, Courcelle [7] proved that MSO2 collapses to MSO1, for some
restriction of the input: for graphs of degree at most k, for graphs of tree-width at most k
(for any fixed k), for planar graphs and, more generally, for graphs belonging to a proper
minor closed class (a class K such that: a minor of a graph G belongs to K provided that
G belongs to K; and, K does not contain all graphs). It is perhaps worth mentioning that
in [9, 24] and the present paper we assume a definition of forbidden patterns problems that
is more general than the original one in [26] in that the new definition allows colourings not
only of the elements of the input structure but also of its tuples of elements. Essentially,
this means that we are now considering problems related to MMSNP2, the extension of
MMSNP with “edge” quantification (for clarity, from now on, we denote by MMSNP1 the
original logic, i.e. without edge quantification). This means that the main result of this
paper provides us with a theorem analogous to that of Courcelle but concerning equal ex-
pressivity of the logics MMSNP1 and MMSNP2 (they both capture the class of constraint
satisfaction problems, when suitably restricted). Courcelle extended the above result to
uniformly sparse graphs [8]. However, as we shall see our result fails in this case: there is a
problem in MMSNP1 which is not a constraint satisfaction problem and since this problem
is very restricted, it follows in fact that uniformly k-sparse graphs do not have all restricted
dualities, for any fixed k ≥ 2.

As a further motivation for the definition of MMSNP2 we show that this logic, just like
MMSNP1, correspond to infinite constraint satisfaction problems in the sense of Bodirsky[2,
3].
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The paper is organised as follows. In Section 1, we define constraint satisfaction prob-
lems, forbidden patterns problems and give some examples. We conclude this section by a
brief review of results on restricted dualities and we state the main result of this paper.

In Section 2, we prove that forbidden patterns problems are constraint satisfaction
problems when restricted to connected structures of bounded degree. This serves as a warm
up case to illustrate the main definitions and concepts.

In Section 3, we prove our main result, that is that forbidden patterns problems are
constraint satisfaction problems when restricted to a class of connected structures that have
low tree-depth decomposition. In order to do so, we first introduce the notion of tree-depth
for structures. Then, we show that coloured structures of bounded tree-depth have bounded
cores. We conclude the proof by the construction of a finite universal coloured structure,
using the existence of a low tree-depth decomposition for every input.

In Section 4, we turn to logical aspects. We define MMSNP1, recall some known results
for this logic and extend them to MMSNP2. Next, we reformulate our main result in terms
of expressivity of the logics MMSNP2 and MMSNP1 with respect to constraint satisfaction
problems. We compare this result with Courcelle’s result on the expressivity of MSO1 and
MSO2. We conclude this section by proving that problems in MMSNP2 are also infinite
constraint satisfaction problems in the sense of Bodirsky.

In the last section, we conclude and discuss related work and open questions.

1. Preliminaries

1.1. Constraint satisfaction problems and forbidden patterns problems. Let σ be
a signature that consists of finitely many relation symbols. From now on, unless otherwise
stated, every structure considered will be a σ-structure. Let S and T be two structures. A
homomorphism h from S to T is a mapping from |S| (the domain of S) to |T | such that for
every r-ary relation symbol R in σ and any elements x1, x2, . . . , xr of S, if R(x1, x2, . . . , xr)
holds in S then R(h(x1), h(x2), . . . , h(xr)) holds in T . If there exists a homomorphism from
S to T we say that S is homomorphic to T .

The constraint satisfaction problem with template T is the decision problem with,
• input: a finite structure S; and,
• question: does there exist a homomorphism from S to T?
We denote by CSP the class of constraint satisfaction problems with a finite template.

Example 1.1. The constraint satisfaction problem with template K3 (the clique with
three elements, i.e. a triangle) is nothing other than the 3-colourability problem from graph
theory.

Let V (respectively, E) be a finite set of vertex colours (respectively, edge colours). A
coloured structure is a triple (S, sV, sE), where S is a structure, sV is a mapping from |S| to
V and sE is a mapping from E(S) to E where,

E(S) :=
⋃
R∈σ

{
(R, x1, x2, . . . , xr) s.t. R(x1, x2, . . . , xr) holds in S

}
.

Let (S, sV, sE) and (S′, s′V, s′E) be two coloured structures. A colour-preserving homomor-
phism h from S to S′ is a homomorphism from S to S′ such that s′V◦h = sV and for every tu-
ple t = (R, x1, x2, . . . , xr) in E(S), s′E(t′) = sE(t), where t′ :=

(
R, h(x1), h(x2), . . . , h(xr)

)
.
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When the colours are clear from the context, we simply write that h preserves colours. Note
that the composition of two homomorphism that preserve colours is also a homomorphism
that preserves colours.

A structure S is connected if it can not be partitioned into two disjoint induced sub-
structures. A pattern is a finite coloured structure (F, fV, fE) such that F is connected. In
this paper, patterns are used to model constraints in a negative fashion and consequently,
we refer to them as forbidden patterns. Let F be a finite set of forbidden patterns. We say
that a coloured structure (S, sV, sE) is valid with respect to F if, and only if, for every for-
bidden pattern (F, fV, fE) in F, there does not exist any colour-preserving homomorphism
h from F to S.

The problem with forbidden patterns F is the decision problem with,
• input: a finite structure S
• question: does there exist sV : |S| → V and sE : E(S) → E such that (S, sV, sE) is valid

with respect to F?
We denote by FPP1 the class of forbidden patterns problem with vertex colours only (that
is for which E has size one) and by FPP2 the class of forbidden patterns problems.

Examples 1.2. Let G be an undirected graph. It is usual to represent G as a relational
structure with a single binary relation E that is symmetric. However, the logics considered
in this paper are monotone and we can not express that E is symmetric; therefore, we use
a different representation to encode graphs. We say that a structure S with one binary
relation symbol E encodes G, if |S| = V (G) and for any x and y in V (G), x and y are
adjacent in G if, and only if, E(x, y) or E(y, x) holds in S. Note that this encoding is
not bijective. Modulo this encoding, the following graph problems are forbidden patterns
problems.
(1) Vertex-No-Mono-Tri: consists of the graphs for which there exists a partition of the

vertex set into two sets such that no triangle has its three vertices occurring in a single
partition. It was proved in [11, 25] that this problem is not in CSP and in [1] that it is
NP-complete.

(2) Tri-Free-Tri: consists of the graphs that are both three colourable (tripartite) and
in which there is no triangle. It was proved in [25] that this problem is not in CSP. It
follows from [20] that this problem is NP-complete.

(3) Edge-No-Mono-Tri: consists of the graphs for which there exists a partition of the
edge set in two sets such that no triangle has its three edges occurring in a single
partition. It is known to be NP-complete (see [15]).

The above examples can be formulated as Forbidden Patterns Problems. The corresponding
sets of forbidden patterns are depicted on Figure 2. In the case of Edge-No-Mono-Tri,
the two type of colours for edges are depicted with dashed and full line respectively.

1.2. Restricted Dualities. Let C be a class of structures. We say that C has all restricted
dualities if, and only if, for every finite set of connected structures F there exists a finite
structure U , the so-called universal structure, such that for every structure A in C there is
no homomorphism from any F in F to A if, and only if, A is homomorphic to U .

The first example of a restricted duality theorem is due to Häggvist and Hell.

Theorem 1.3. [16] Let b be an integer and C be a class of graphs. If every graph in C has
bounded degree b then C has all restricted dualities.
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Vertex-No-Mono-Tri

Tri-Free-Tri

Edge-No-Mono-Tri

Figure 2: Some forbidden patterns problems

More recently, Nešetřil and Ossona de Mendez gave a duality theorem for proper minor
closed classes.

Theorem 1.4. [30] Let M be a graph and C be a class of graphs. If no graph in C admits
M as a minor then C has all restricted dualities.

One of the key notions in the proof is that of a low tree-depth decomposition (see
Section 3.3 for a definition). More recently, the same authors have introduced the notion
of classes of graphs of bounded expansion, which encompasses both classes of graphs of
bounded degree and proper minor closed classes. A class of graphs C has bounded expansion
if there exists a function f : N→ R such that for every graph G in C and every r > 0, ∇r(G),
the so-called grad of G of rank r is bounded by f(r), where ∇r(G) = max |E(G|P)|

|P| . Here, P

is a set of disjoint sets of vertices of G, each of which induce a connected subgraph of G;
and, E(G|P) denotes the edge set of the minor of G constructed by identifying the vertices
inside each set into a single vertex and deleting other vertices and edges. These authors
proved that classes of graphs of bounded expansions have also low tree-depth decomposition
and proved the following general result.

Theorem 1.5. [27] Let C be a class of graphs. If C has bounded expansion then C has all
restricted dualities.

Example 1.6. We can use restricted duality results, such as those presented above, and ad
hoc techniques from [9] to show that two of our examples are constraint satisfaction problems
when restricted to a suitable class K (e.g. class of graphs of bounded degree, proper minor
closed class or, more generally, class of bounded expansion; in fact, any class for which we
have a suitable restricted duality result). Let U be the universal graph for F = {K3}. Let
U ′ be the product of U with K3. Recall that this is the graph with edge set |U | × |K3|
and with an edge E((u, x), (v, y)) if, and only if both E(u, v) in U and E(x, y) in K3. It
is not difficult to check that Tri-Free-Tri, restricted to K is the constraint satisfaction
problem with template U ′. Similarly Vertex-No-Mono-Tri is the constraint satisfaction
problem with template U ′′, where U ′′ is the graph that consists of two copies of U , such
that every pair of elements from different copies are adjacent. Note that, technically, our
problems being defined over structures with a single binary relation E, we have not really
expressed them as a constraint satisfaction problem. However, according to our encoding,
replacing any two adjacent vertices x and y in the above graphs by two arcs E(x, y) and
E(y, x) provides us with a suitable template.
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1.3. Restricted Coloured Dualities. We say that C has all restricted coloured dualities
if, and only if, for every finite set of forbidden patterns F there exists a finite structure
U , the so-called universal structure, such that for every structure A in C, A is valid with
respect to F 1 if, and only if, A is homomorphic to U .

We say that a structure S has bounded degree b if every element of S occurs in at
most b distinct tuples. We extended the previous result to restricted coloured dualities (we
provide the proof of this result for completeness in Section 2).

Theorem 1.7. [9] Let b be an integer and C be a class of structures. If every structure S
in C has bounded degree b then C has all restricted coloured dualities.

In the preliminary version of this paper [24], we extended Theorem 1.4 to restricted
coloured dualities. We also extended the result to structures, rather than just graphs. Let
us make precise what we understand by a proper minor closed class of structures. Let S
be a structure. The Gaifman graph of S, which we denote by GS is the loopless graph with
vertices |S| in which two distincts elements x and y of S are adjacent if, and only if, there
exists a tuple in a relation of S in which they occur simultaneously. Given a class K of
structures, we denote by GK the class of their Gaifman graphs. A class of graphs G is said to
be a proper minor closed class if the following holds: first, for any graph G and any minor
H of G, if G belongs to G then so does H; and, secondly G does not contain all graphs.
Alternatively, G is proper minor closed if it excludes at least one fixed graph M as a minor,
a so-called forbidden minor. We say that a class of structures K is a proper minor closed
class if, and only if, GK is a proper minor closed class.

Theorem 1.8. [24] Let C be a class of structures. If C is a proper minor closed class then
C has all restricted coloured dualities.

The key property we use in the proof of this result, namely that such a proper minor
closed class has low tree-depth decomposition, holds also in the general case of a class of
(structures) of bounded expansion defined similarly as follows. A class of structures K is
of bounded expansion if, and only if, GK is of bounded expansion. Thus, a similar proof
provides us in fact with the following more general result which subsumes also Theorem 1.7.

Theorem 1.9. Let C be a class of structures. If C has low tree-depth decomposition (e.g.
bounded degree, proper minor closed class, structure of bounded expansion) then C has all
restricted coloured dualities.

Section 3 is devoted to the proof of this result.

Example 1.10. The last of our examples Edge-No-Mono-Tri is also a constraint satis-
faction problem when restricted to a class K that has low tree-depth decomposition by the
above result.

2. Bounded Degree

In this section, we give a proof of Theorem 1.7. To simplify the notation we will consider
graphs only but the proof extends to relational structures without major difficulty. We shall
first explain the intuition and ideas behind the proof by giving an informal outline. Let us
denote the largest diameter of a forbidden pattern by m. This parameter, together with

1That is there is no suitable colouring of A (see definition of validity on page 6).
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the degree-bound b, are constants, i.e. they are not part of the input of the forbidden
patterns problem. The universal graph U has to contain all possible small graphs that are
yes-instances of the forbidden patterns problem, “small” meaning “of diameter m + 1” here
and thereafter. The intuition then is that each graph G, which is a yes-instance of the
forbidden patterns problem, however big, can be homomorphically mapped to U as such
a mapping should be only locally consistent. Given that the degree of G is bounded by b,
we need to distinguish among no more than X vertices in a small neighbourhood, where X
depends on b and m. So we can use X many different labels in constructing the vertex set
of U . On the other hand, in order to define the adjacency relation of the universal graph,
i.e. to correctly “glue” all the possible small neighbourhoods, any vertex of U should carry
information not only about its label, but also about its neighbourhood. In other words, any
such vertex will represent a small graph together with a vertex which is the “centre” (or the
root) of the small graph. Thus the vertex set of the universal graph will consists of all such
rooted small graphs, vertex- and edge-coloured in all possible ways, that are yes-instances
of the forbidden patterns problem. Two vertices will be adjacent in U if, and only if, the
graphs they represent “agree”, i.e. have most of their vertices with the same labels and
colours and the induced subgraphs of these vertices coincide including the edge colours; for
the precise definition of what “agree” means, one should see the formal proof below. It is
now intuitively clear why a yes-instance G of the forbidden patterns problem should be
homomorphic to the universal graph U : the vertices of G can be labelled so that any two
adjacent vertices get different labels, then one can choose a good vertex- and edge-colouring
of G, and because of the construction of U now every vertex u in G can be mapped to the
vertex of U that represents the small neighbourhood of u rooted at u. It is straightforward
to see that the mapping preserves edges.

The universal graph U has a very useful property, namely every small neighbourhood of
U rooted at a vertex v is homomorphic to the small graph represented by the vertex u (see
Lemma 2.2 below). This property immediately implies that a no-instance of the forbidden
patterns problem cannot be homomorphic to U . Indeed, suppose for the sake of contradic-
tion, there is a no-instance G that is homomorphic to U . Fix the colouring induced by the
homomorphism and observe that there is a homomorphism from the forbidden pattern F
into G. The composition of the two homomorphisms gives a homomorphism from F into
U , and by the property above, by another composition, we get a homomorphism from the
forbidden pattern F to some small graph represented by a vertex of U . This gives a con-
tradiction with our construction as we have taken small no-instances only to be represented
by the vertices of the universal graph.

Example 2.1. We illustrate the construction of Theorem 1.7 for our final example Edge-
No-Mono-Tri in Figure 3 for inputs of bounded degree b ≥ 3. Any input G can be
labelled by elements from {1, 2, . . . , 10} such that, for every vertex x in V (G), the vertices
at distance at most 2 (the diameter of a triangle plus one) of x have a different label.

The remainder of this section is devoted to the formal proof of Theorem 1.7.
Let b be a positive integer and F be a set of forbidden patterns. We write δ(G) to

denote the diameter of a graph G: that is, the maximum for all vertices x in V (G) of the
maximum distance from x to any other vertex y in V (G).
Let m := max{δ(F ) such that (F, fV, fE) ∈ F}. Let X := 1 + Σm

j=0b(b− 1)j .
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(Edge) coloured graph S1 (Edge) coloured graph S2

1 2

3 4

5 6 7

8

1 2

3 4

5 6 7

The coloured graph induced
by the vertices at distance at
most one from the vertex 1 is
identical in both S1 and S2

The coloured graph induced
by the vertices at distance at
most one from the vertex 2 is
identical in both S1 and S2

1 2

3 4

5

1 2

3

7

The template U has the edge

(1, S1) (2, S2)

Figure 3: Illustration of the construction for Edge-No-Mono-Tri.

Construction of U . Let S be the set of connected graphs (S, sV, sE) that are valid w.r.t.
F, such that V (S) is a subset of {1, 2, . . . , X}. Let U be the graph with:
• vertices (v, (S, sV, sE)), where (S, sV, sE) ∈ S and v ∈ S; and,
• such that (v, (S, sV, sE)) is adjacent to (v′, (S′, s′V, s′E)) if, and only if, the following holds:

(i) (v, v′) belongs to both E(S) and E(S′); and,
(ii) the induced coloured subgraph of S induced by every vertex at distance at most m

from v (respectively, v′) is identical to the induced coloured subgraph of S′ induced
by every vertex at distance at most m from v (respectively, v′).

We shall prove shortly that U is a yes-instance witnessed by the following “universal
colours” defined as follows,
• uV(v, (S, sV, sE)) := sV(v), for every vertex (S, sV, sE) in V (U); and,
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• uE((v, (S, sV, sE))(v′, (S′, s′V, s′E))) := sE(v, v′), for every edge
((v, (S, sV, sE))(v′, (S′, s′V, s′E))) in E(U).

We first need the following lemma.

Lemma 2.2. Let (v, (S, sV, sE)) in V (U). Let (B, bV, bE) be the coloured graph induced by
all vertices at distance at most m from (v, (S, sV, sE)). Then, there exists a homomorphism
from (B, bV, bE) to (S, sV, sE) that preserves the colours.

Proof. Let (v′, (S′, s′V, s′E)) in V (B). We set h(v′, (S′, s′V, s′E)) := v′. By induction on
the distance from (v, (S, sV, sE)) to (v′, (S′, s′V, s′E)), using (i), it follows that the vertex
v′ belongs to V (S) and that h is a homomorphism. Similarly, using (ii) it follows that h
preserves colours.

Claim. (U, uV, uE) is valid with respect to the forbidden patterns F.

Proof. Assume for contradiction that (U, uV, uE) is not valid and that there exists some
forbidden pattern (F, fV, fE) in F and some homomorphism f ′ from F to U that preserves
these colours. Since the diameter of F is at most m, there exists a vertex x in V (F ) such
that every vertex of F is at distance at most m. Hence, it is also the case for f ′(x) in the
homomorphic image of F via f ′. By lemma 2.2, there exists a homomorphism h from F to S,
where f ′(F ) = (v, (S, sV, sE)). Both homomorphisms are colour preserving, thus composing
these two homomorphisms, we get that h ◦ f ′ is a colour-preserving homomorphism from F
to S. However, by definition of S, the coloured graph (S, sV, sE) is valid with respect to the
forbidden patterns F. We reach a contradiction and the result follows.

Claim. Yes-Instances Are Homomorphic to U .

Proof. Let G be a graph of bounded degree b for which there exist gV : V (G) → V and
gE : E(G) → E such that (G, gV, gE) is valid w.r.t. F. Since G has bounded degree b, for
every vertex x in V (G), there are at most X − 1 vertices y at distance at most m from x.
Therefore, there exists a map χ from V (G) to {1, 2, . . . , X} such that every two distinct
vertices within distance m or less take a different colour via χ. Thus, for every vertex x in G,
the subgraph of G induced by the vertices at distance at most m of x can be identified (via
the labelling χ) to a graph Sx with domain {1, 2, . . . , X}. Similarly, the restriction of gV and
gE to this subgraph induce colour maps sV

x and sE
x of S. We set a(x) := (χ(x), (Sx, sV

x , s
E
x)).

It follows directly from the definition of U that a is homomorphism that preserve colours.

Claim. No-instances are not homomorphic to U .

Proof. Let G be a graph of bounded degree b that is a no instance of the forbidden patterns
problem represented by F and assume for contradiction that a is a homomorphism from
G to U . The homomorphism a together with the universal colouring (U, uV, uE) induces
colourings gV and gE as follows: For every vertex x in V (G), set gV(x) := uV(a(x)); and,
for every edge (x, y) in E(G), set gE(x, y) := uE(a(x), a(y)). Since G is a no instance,
there exists a forbidden pattern (F, fV, fE) in F and a homomorphism f ′ from F to G
that preserve these colours. Composing the two homomorphisms, we get that a ◦ f ′ is a
homomorphism from F to U that preserves the colours of F and U . This contradicts the
fact that (U, uV, uE) is valid w.r.t. F.
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This concludes the proof of Theorem 1.7.

3. Low Tree-depth decomposition.

In this section we give a proof of Theorem 1.9. Before moving to the formal proof,
let us give an informal outline. Given a forbidden patterns problem, we need to build a
universal structure U such that, for every input structure S (that comes from a class K

that has low tree-depth decomposition), S is a yes-instance of the given forbidden patterns
problem if, and only if, S is homomorphic to U . Recall that we use the word universal
structure with a different meaning to that of Fräıssé, in particular U has to be finite rather
than infinite and is universal w.r.t. the existence of homomorphisms rather than induced
substructures (i.e. existence of embeddings). Assume for now that the forbidden patterns
problem in question has a single colour. One of the key properties for building such a finite
U is that of bounded tree-depth. It turns out that though the size of a structure of bounded
tree-depth may be arbitrarily large, the size of its core is bounded. Recall that the core of
a structure S is the smallest structure that is homomorphically equivalent to S. Let Yp be
the disjoint union of all cores of structures of tree-depth at most p that are valid (w.r.t. our
fixed forbidden patterns problem). Note that Yp is finite and for any structure S of tree-
depth at most p, S is homomorphic to Yp if, and only if, S is valid. The next key ingredient
is that the inputs have low tree-depth decomposition: that is any input structure can be
decomposed into a fixed number of parts, say q, so that any p ≤ q parts induce a structure
of tree-depth at most p (here, q depends on p and the considered class of structures). So,
given some input S together with such a decomposition, if the largest forbidden pattern
has size p then it suffices to check for any choice of p parts of the input, that the structure
induced by these p-parts is valid, or equivalently, that it is homomorphic to Yp. Finally,
we use the key concept of pth truncated product. This concept allows us to translate the
existence of homomorphisms to a structure T , for any p−1 parts of a p partitioned input S,
to the existence of a homomorphism to the pth truncated product of T . Hence, by taking a
sequence of suitable truncated products of Yp, we get the desired finite universal structure
U . Note that we assumed that the forbidden patterns problem had a single colour. In order
to get our result in general, we adapt the above ideas and concepts to coloured structures
in the same spirit as in the previous section.

3.1. Tree-depth and Elimination Tree of a Structure. Following the theory of tree-
depth of graphs introduced in [30], we develop elements of a theory of tree-depth for struc-
tures.

Let S be a structure. We denote by HS the hypergraph induced by S, that has the
same domain as S and whose hyperedges are the sets that consists of the elements that
occur in the tuples of the relations of S. If H is an hypergraph and r is an element of the
domain of H then we denote by H\{r} the hypergraph obtained from H by deleting r from
the domain of H and removing r from every hyperedge in which it occurs (e.g. {a, b, r} is
replaced by {a, b}). A connected component Hi of HS \ {r} induces a substructure Si of S
in a natural way: Si is the induced substructure of S with the same domain as Hi. If S is
connected, then we say that a rooted tree (r, Y ) is an elimination tree for S if, and only if,
either |S| = {r} and |Y | = r, or for every component Si of S (1 ≤ i ≤ p) induced by the
connected components Hi of HS \{r}, Y is the tree with root r adjacent to subtrees (ri, Yi),
where (ri, Yi) is an elimination tree of Si. Let F be a rooted forest (disjoint union of rooted
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trees). We define the closure of F clos(F, σ) to be the σ-structure with domain |F | and all
tuples Ri(x1, x2, . . . , xri) such that the elements mentioned in this tuple {xi|1 ≤ i ≤ ri}
form a chain w.r.t. ≤F , where ≤F is the partial order induced by F , i.e. x ≤F y if, and
only if, x is an ancestor of y in F . The tree-depth of S, denoted by td(S), is the minimum
height of a rooted forest F such that S is a substructure of the closure of F , clos(F, σ).

These notions are closely related.

Lemma 3.1. Let S be a connected structure. A rooted tree (r, Y ) is an elimination tree for
S if, and only if, S is a substructure of clos(Y, σ). Consequently, the tree-depth of S is the
minimum height of an elimination tree.

Proof. We prove this result by induction on |S|. If S has a single vertex r then the result
holds trivially. Assume that the above equivalence holds for every connected structure of
size at most n− 1 and assume that S has size n.

Let (r, Y ) be a tree that consists of a root r adjacent to rooted subtrees (ri, Yi). The tree
(r, Y ) is an elimination tree for S if, and only if, the subtrees (ri, Yi) are elimination trees
for the components Si induced by the connected component Hi of HS \ {r}. By induction
Si is a substructure of clos(Yi, σ). Moreover every tuple t in a relation of S either does
not mention r and occurs in a single component Si or t mentions r and apart from r only
elements from a single structure Si. Hence, equivalently we have that S is a substructure
of clos(Y, σ).

We will need the following lemma later.

Lemma 3.2. A rooted tree (r, Y ) is an elimination tree for a structure S if, and only if, it
is an elimination-tree for its Gaifman graph GS.

Proof. The forward implication holds since every edge between two elements x and y in the
Gaifman graph is induced by at least one tuple in some relation of S in which both x and y
occurs. Thus, in particular x and y occur on the same branch in an elimination tree of S.

Conversely, every tuple induces a clique in the Gaifman graph and all elements of a
clique must occur on the same branch of an elimination tree. Thus, an elimination tree for
GS is also an elimination tree for S.

3.2. Tree-depth and Cores. We show that a coloured structure K of bounded tree-depth
has a core of bounded size. Recall that a retract of a structure S is an induced substructure
S′ of S for which there exists a homomorphism from S to S′. A minimal retract of a
structure S is called a core of S. Since it is unique up to isomorphism, we may speak of the
core of a structure [18]. This notion extends naturally to coloured structures [26].

We say that a (colour-preserving) automorphism µ of a (coloured structure) S has the
fixed-point property if, for every connected substructure T of S, either µ(T )∩T = ∅ or there
exist an element x in T such that µ(x) = x. We say that µ is involuting if µ ◦ µ is the
identity.

Theorem 3.3. There exists a function η : N×N→ N such that, for any coloured structure
(S, sV, sE) such that |S| > η(N, td(S)) and any mapping g : |S| → {1, 2, . . . , N}, there
exists a non-trivial involuting g-preserving automorphism µ of (S, sV, sE) with the fixed-
point property.
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Proof. Let (S, sV, sE) be a coloured structure with p ≥ 1 connected components (Si, sV
i , s

E
i )

where 1 ≤ i ≤ p and let g : |S| → {1, 2, . . . , N}. Let F be a rooted forest that consists
of rooted trees (ri, Yi), where 1 ≤ i ≤ p, such that (ri, Yi) is an elimination tree for Si of
height at most td(S). We prove this result by induction on td(S).

If td(S) = 1 then every (ri, Yi) has height 1 and every (Si, sV
i , s

E
i ) is a coloured self-

loop (a self-loop is a structure with a single element). Let |σ| be the number of relation
symbols in σ. There are at most N × |V| × |E| × 2|σ| g-valued coloured self-loops. Hence,
we set η(N, 1) := N × |V| × |E| × 2|σ| and for any (S, sV, sE) satisfying |S| ≥ η(N, 1) and
any mapping g from |S| to {1, 2 . . . , N}, there exists a non-trivial involuting g-preserving
automorphism µ of (S, sV, sE) that has the fixed point property (simply choose for µ an
automorphism that permutes two identical coloured self-loops with the same g value). In
the rest of the proof, we shall write that µ is a “good” g-preserving automorphism for short.

Assume that the result holds for every coloured structure of tree depth at most n, and
let S be a structure with tree-depth n+ 1. Assume first that p = 1. That is, F consists of
a single rooted tree (r, Y ). Let (rj , Yj), 1 ≤ j ≤ q be the subtrees of Y where rj is a child
of r in Y . We wish to define a mapping g′ over S \ {r} such that g′(x) describes both g(x)
and the relationship of x and r in S. Let N(x, r) be the coloured structure (together with
the restriction of g) that is the substructure of S induced by the following set of elements:⋃

{e hyperedge of HS s.t. x ∈ e and r ∈ e}.

If this set is empty, we set N(x, r) to be ∅. Let Θ be the set of such neighbourhoods N(x, r)
with two constants x and r, considered up to isomorphisms. We also assume that ∅ is an
element of Θ. Since σ, E and V are fixed, it follows that Θ is finite. We define g′ as the
mapping from |S| \ {r} to N ×Θ such that g′(x) := (g(x), Ñ(x, r)), where Ñ(x, r) belongs
to Θ and is isomorphic to N(x, r). Hence, by induction if |S \ {r}| > η(N |Θ|, n), there
exists a “good” g′-preserving automorphism µ′ of S \ {r}. Let µ′ be the extension of µ′ to
S such that µ(r) := r. By construction, µ is a “good” g-preserving automorphism.

Assume now that p > 1. If one of the components (Si, sV
i , s

E
i ) with elimination tree

(ri, Yi) has size strictly greater than η(N |Θ|, n) + 1, then from the previous case, it has a
“good” g-preserving automorphism µi which we can extend by the identity into a “good”
g-preserving automorphism µ of the whole structure. Assume now that every component
(Si, sV

i , s
E
i ) has size at most η(N |Θ|, n) + 1. The number ζ(N, k) of coloured structures

(together with a mapping g to a set of size N) of size at most k considered up to isomorphism
depends only on N and k (and the constants σ,V and E). Hence, if p > ζ

(
N, η(N(|Θ|, n)+1

)
then there must be at least two components that are isomorphic (also w.r.t. both colours and
g-values). Hence, µ is a “good” g-preserving automorphism, where µ is the automorphism
that exchanges these two components and leaves the element of any other component fixed.
Thus, we may set,

η(N,n+ 1) :=
(
η(N |Θ|, n) + 1

)
× ζ
(
N, η(N |Θ|, n) + 1

)
.

This concludes the proof.

Theorem 3.4. Let (S, sV, sE) be a coloured structure. If |S| > η(1, td(S)) then (S, sV, sE)
maps homomorphically into one of its proper induced substructure (S0, s

V
0 , s

E
0 ). Conse-

quently, the core of (S, sV, sE) has size at most η(1, td(S)).

Proof. By the previous theorem, if |S| > η(1, td(S)) then there exists a non-trivial involuting
automorphism µ of (S, sV, sE) with the fixed-point property. Let F be the set of fixed-points
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of µ. Let S′ be the substructure of S induced by |S|\|F |. Let S′′ be a connected substructure
of S′. Since µ has the fixed-point property and S′′ has no fixed point by definition, we know
that µ(S′′)∩S′′ = ∅. Note that there can not be any tuple t in a relation of S′ that involves
simultaneously elements of S′′ and µ(S′′) (Otherwise, the substructure S′′t of S′ induced by
|S′′| and the element of t would be connected and µ(S′′t )∩S′′t 6= ∅). There could be however a
tuple that involves simultaneously elements of F , S′′ and µ(S′′). We need a slightly stronger
result than the previous theorem. Note that in the previous proof, given a structure S, we
can fix a tree decomposition (r, Y ) of height td(S) with subtrees (ri, Yi) that corresponds
to substructures Si of S, and subsequently at the induction stage, rather than using any
tree-decomposition of the structures Si, we can assume that (ri, Yi) is used instead. With
this further assumption, we ensure that the automorphism µ we build has still the required
properties, and moreover that there is no tuple that involves simultaneously elements of
F, S′′ and µ(S′′), for any connected substructure S′′ of S′.

Hence, starting with two empty sets A and B, we can inductively pick a connected
component S′′ of S′, add S′′ to A and µ(S′′) to B until S′ is partitioned into A and B.
By construction, there is no tuple involving elements of both A and B (and possibly some
element of F ). Let h be the mapping such that h(x) := µ(x), if x ∈ B, and h(x) := x,
otherwise. By construction of µ,A and B, it follows that h is a homomorphism from
(S, sV, sE) to (S0, s

V
0 , s

E
0 ), the substructure of (S, sV, sE) induced by |F | ∪A. Since µ is non-

trivial, B 6= ∅ and (S0, s
V
0 , s

E
0 ) is a proper induced substructure of (S, sV, sE). This proves

the first claim.
For the second claim, we apply inductively the first claim until we get a proper in-

duced substructure (S?, sV
? , s

E
? ) of size at most η(1, td(S)). Thus, (S?, sV

? , s
E
? ) is an induced

substructure of (S, sV, sE) in which (S, sV, sE) maps homomorphically into (composing the
homomorphisms, we get a homomorphism). The core of (S?, sV

? , s
E
? ) is also the core of

(S, sV, sE) (since the two structures are homomorphically equivalent) and its size is at most
that of (S?, sV

? , s
E
? ), which is bounded by η(1, td(S)).

Thus, we get the following result.

Corollary 3.5. Let K be any class of coloured structures of bounded tree-depth k. Then
the set K′ of cores of structures from K (up to isomorphism) is finite.

3.3. Decompositions. Before we can define this concept for structures, let us briefly recall
how the notion was first defined for graphs. In [10], De Vos et al. proved that for any proper
minor closed class K and any integer p ≥ 1, there exists an integer q such that for every
graph G in K there exists a vertex partition of G into q parts such that any subgraph of
G induced by at most p parts has tree-width at most p − 1 (existence of a low tree-width
decomposition). Similarly, we say speak of a low tree-depth decomposition for K whenever,
for every integer p, there exists an integer q such that any graph in K has a proper q-colouring
in which any p colours induce a subgraph of tree-depth at most p.

In [30], Nešetřil and Ossona de Mendez refined De Vos et al.’s result to low tree-depth
decomposition. More recently, they reproved this result in the more general setting of
graphs of bounded expansion without using De Vos et al.’s result and obtained the following
characterisation of low tree-depth decomposition for graphs.

Theorem 3.6. [27] Let K be a class of graphs. K has bounded expansion if, and only if, K

has low tree-depth decomposition.
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We say that a class K of structures has low tree-depth decomposition if, and only if,
for every p ≥ 1, there exists an integer q such that for any structure S in K, there exists a
partition of |S| into q sets such that any substructure of S induced by at most p of these
sets has tree-depth at most p.

Proposition 3.7. Let K be a class of structures. If K has bounded expansion then K has
low tree-depth decomposition.

Proof. Let S be a structure in K. We apply Theorem 3.6 to GS , the Gaifman graph of S
and get a vertex partition such that every subgraph of GS induced by at most p colours
has a tree-decomposition of height at most p. We use the same partition for S. For every
substructure S′ of S induced by at most p parts, the tree-decomposition of GS′ is also a
tree-decomposition of S′ (by Lemma 3.2) and the result follows.

Remark 3.8. We adopt a definition of low tree-depth decomposition of structures that
seems more natural than a definition that would involve the Gaifman graph (we require
only a vertex partition). We do not know whether our definition is more general or not (in
other words, does the converse implication in the previous result hold?).

3.4. Truncated Product. We extend the definition of truncated product and adapt two
lemmas from [30] to coloured structures. Recall first that the usual notion of product in the
context of graph homomorphism is the following. The product of two structures A and B
is the structure with universe the cartesian product of the universes of A and B and such
that R((a1, b1), (a2, b2), . . . , (an, bn)) holds if, and only if, both R(a1, a2, . . . , an) holds in A
and R(b1, b2, . . . , bn) holds in B. The truncated product resembles this “classical” product
except that each component has a special“don’t care”element and the domain of this special
product consists only of tuples involving exactly one “don’t care” element.

Let (S, sV, sE) be a coloured structure and p ≥ 2 be an integer. We define the pth
truncated product of (S, sV, sE), to be the coloured structure (S′, s′V, s′E) defined as follows.
• Its domain is a subset of

⋃p
i=1W

i where,

W i := {(x1, x2, . . . , xi−1, ?, xi+1, . . . , xp) s.t. ∀1 ≤ k ≤ p, k 6= i =⇒ xk ∈ |S|}
(? denotes a new element, i.e. ? 6∈ |S|).
• We restrict further W i to W̃ i that consists of elements

wi = (x1, x2, . . . , xi−1, ?, xi+1, . . . , xp)

of W i such that there exists v ∈ V such that for every 1 ≤ k ≤ p with k 6= i we have
sV(xk) = v and we set |S′| := ∪pi=1W̃

i and s′V(wi) := v.
• For every relation symbol R of arity r, and every tuple (wi1 , wi2 , . . . , wir) where for every

1 ≤ k ≤ r, wik belongs to W̃ ik and

wik = (xik1 , x
ik
2 , . . . , x

ik
ik−1, ?, x

ik
ik+1, . . . , x

ik
p )

that satisfies for every 1 ≤ i ≤ p, with i 6∈ {i1, i2, . . . , ir}:
− R(ti) holds in S, where ti = (xi1i , x

i2
i , . . . , x

ir
i ); and,

− there exists e ∈ E such that for every 1 ≤ i ≤ p, sE(ti) = e,
we set R(wi1 , wi2 , . . . , wir) to hold in S′ and we set s′E(wi1 , wi2 , . . . , wir) := e.
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We denote the pth truncated product by (S, sV, sE)⇑p.
This product has two important properties: it preserves validity w.r.t. a forbidden

patterns problem (for a suitable p); and, the existence of all “partial” colour-preserving
homomorphisms is equivalent to the existence of a homomorphism to the truncated product
(see Lemma 3.9 and Lemma 3.10 below).

Lemma 3.9. Let p ≥ 2. Let F be a set of forbidden patterns such that for every (F, fV, fE)
in F, we have |F | < p. If a coloured structure (S, sV, sE) is valid w.r.t F then its p-truncated
product (S′, s′V, s′E) is also valid w.r.t. F.

Proof. We prove the contrapositive. Assume that (S′, s′V, s′E) is not valid w.r.t. F, that is
for some (F, fV, fE) in F, there exist a colour-preserving homomorphism f ′ from F to S′.
Since |F | < p, by the pigeon-hole principle there exists 1 ≤ i0 ≤ p such that f ′(F )∩W̃ i0 = ∅.

Let πi0 be the mapping from |S′| \ W̃ i0 to |S| defined as πi0(wi) = xii0 (with the same
notation as above). It follows directly from the definition of S′ that πi0 is a homomorphism
from S′ \ W̃ i0 to S, where S′ \ W̃ i0 is the substructure of S′ induced by |S′| \ W̃ i0 .

Hence, by composition f := πi0 ◦ f ′ is a colour-preserving homomorphism from F to S
and we have proved that (S, sV, sE) is not valid w.r.t. F.

Lemma 3.10. Let (U, uV, uE) be a coloured structure and let p be an integer greater than the
arity of any symbol in σ. Let (S, sV, sE) be a coloured structure. If there exists a partition
V1, V2, . . . , Vp of |S| such that for every substructure (S̃i, s̃V, s̃E) of (S, sV, sE) induced by
|S|\Vi there exist a colour-preserving homomorphism s̃i from (S̃i, s̃V, s̃E) to (U, uV, uE) then
there exists a colour-preserving homomorphism s̃ from (S̃i, s̃V, s̃E) to (U, uV, uE)⇑p.

Proof. Let (U ′, u′V, u′E) := (U, uV, uE)⇑p. Let x be an element of S such that x belongs to
Vi. Then x is an element of S̃k for every 1 ≤ k ≤ p such that k 6= i and s̃k(x) is defined and
we set:

s̃(x) := (s̃1(x), s̃2(x), . . . , s̃i−1(x), ?, s̃i+1(x), . . . , s̃p(x)).
Since s̃k is colour-preserving, uV(s̃k(x)) = s̃V(x) and s̃(x) is indeed in |U ′| by the definition
of the truncated product.

Let x1, x2, . . . , xr be elements of S that belong to the sets Vi1 , Vi2 , . . . , Vir , respectively.
Let R be a r-ary relation symbol from σ such that R(x1, x2, . . . , xr) holds in S. Then, for ev-
ery 1 ≤ k ≤ p such that k 6∈ {i1, i2, . . . , ir}, we have that R(s̃k(x1), s̃k(x2), . . . , s̃r(xr)) holds
in U . Moreover, since s̃k is colour-preserving, we have that uE(s̃k(x1), s̃k(x2), . . . , s̃r(xr)) =
s̃E(x1, x2, . . . , xr) and it follows by the definition of the truncated product that
R(s̃(x1), s̃(x2), . . . , s̃(xr)) holds in U ′ and that s̃ is a colour-preserving homomorphism.

Using the two previous lemmas, an easy induction provides the following result.

Proposition 3.11. Let p be an integer greater than the arity of any symbol in σ. Let F be
a set of forbidden patterns such that, for every (F, fV, fE) in F, we have |F | < p. Let q ≥ p.
Let (U ′, u′V, u′E) be a coloured structure that is valid w.r.t F. Let (S, sV, sE) be a coloured
structure.

Assume that there exists a partition V1, V2, . . . , Vq of |S|, such that for every substructure
(S̃i, s̃V

i , s̃
E
i ) of (S, sV, sE) induced by p subsets Vi1 , Vi2 , . . . , Vip, there exists a colour-preserving

homomorphism s̃i from (S̃i, s̃V
i , s̃

E
i ) to (U ′, u′V, u′E).



18 F. R. MADELAINE

Then there exists a colour-preserving homomorphism s̃ from (S̃i, s̃V, s̃E) to (U, uV, uE)
and (U, uV, uE) is valid with respect to F, where

(U, uV, uE) := (U ′, u′V, u′E)⇑(p+1)⇑(p+2)...⇑q.

3.5. Universal Structure. We can now conclude the proof of Theorem 1.9, whose state-
ment we recall now.

Theorem. Let C be a class of structures. If C has low tree-depth decomposition (e.g.
bounded degree, proper minor closed class, structure of bounded expansion) then C has all
restricted coloured dualities.

Proof. Let (S, sV, sE) be a coloured structure such that S belongs to K. By Corollary 3.7,
there exists an integer N such that every structure S in K can be partitioned into q parts,
such that every p parts induce a substructure of S of tree-depth at most p. By Theorem 3.4,
the core of the coloured structure induced by p parts is bounded. Let (U ′, u′V, u′E) be the
disjoint union of all such cores that are valid w.r.t. F (there are only finitely many). Since
the forbidden patterns have size at most p, it suffices to check every substructure of S of
size at most p and, a fortiori, (S, sV, sE) is valid w.r.t. F if, and only if, each of its coloured
substructures induced by p parts is valid, or equivalently if every such coloured substructure
maps homomorphically into (U ′, u′V, u′E).

Let (U, uV, uE) := (U ′, u′V, u′E)⇑(p+1)⇑(p+2)...⇑q. By Proposition 3.11, if (S, sV, sE) is
valid w.r.t. F then it is homomorphic to (U, uV, uE); and, since (U, uV, uE) is valid w.r.t. F
the converse holds as forbidden patterns problems are closed under inverse homomorphism.

As in the proof of Theorem 1.7 in the previous section, forgetting the colours provides
us with the desired template U .

4. Logical aspects

4.1. MMSNP1 and MMSNP2. The class of forbidden patterns problems with colours
over vertices only, corresponds to the problems that can be expressed by a formula in Feder
and Vardi’s MMSNP (Monotone Monadic SNP without inequalities, see [11, 26]). Note that
allowing colours over the edges does not amount to dropping the hypothesis of monadicity
altogether. Rather, it corresponds to a logic, let’s call it MMSNP2, which is similar to
MMSNP but allows first-order variables over edges (just like Courcelle’s MSO (Monadic
Second Order logic) and MSO2, see [7]).

In the following, we introduce formally MMSNP1 and recall some known results; and,
secondly, we introduce MMSNP2 and prove that it defines finite unions of problems in FPP2.

Definition 4.1. Monotone Monadic SNP without inequality, MMSNP1, is the fragment of
MSO consisting of those formulae Φ of the following form:

∃M∀t
∧
i

¬
(
αi(σ, t) ∧ βi(M, t)

)
,

where M is a tuple of monadic relation symbols (not in σ), t is a tuple of (first-order)
variables and for every negated conjunct ¬(αi ∧ βi):
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• αi consists of a conjunction of positive atoms involving relation symbols from σ and
variables from t; and
• βi consists of a conjunction of atoms or negated atoms involving relation symbols from

M and variables from t.
(Notice that the equality symbol does not occur in Φ.)

The negated conjuncts ¬(α∧β) correspond to (partially coloured) forbidden structures
(and this is the reason why we use such a notation in the definition rather than using
implications or clausal form). To get forbidden patterns problems, we need to restrict
sentences so that negated conjuncts correspond precisely to coloured connected structures.
Such a restriction was introduced in [26] as follows.

Definition 4.2. Let Φ be as in Definition 4.1 on the preceding page. Φ is primitive if, and
only if, moreover, for every negated conjunct ¬(α ∧ β):
• for every first-order variable x that occurs in ¬(α ∧ β) and for every monadic symbol C

in M, exactly one of C(x) and ¬C(x) occurs in β;
• unless x is the only first-order variable that occurs in ¬(α∧β), an atom of the form R(t),

where x occurs in t and R is a relation symbol from σ, must occur in α; and,
• the structure induced by α is connected.

Remark 4.3. We have altered slightly the definitions w.r.t. [26]. We now require a pattern
to be connected. However, we have amended the notion of a primitive sentence accordingly.
Thus, the following statement still holds as the connectivity requirement is enforced on both
sides of the equivalence.

Theorem 4.4. [26] The class of problems defined by the primitive fragment of the logic
MMSNP1 is exactly the class FPP1 of forbidden patterns problems with vertex colours only.

It is only a technical exercise to relate any sentence of MMSNP1 with its primitive
fragment.

Proposition 4.5. [26] Every sentence of MMSNP1 is logically equivalent to a finite dis-
junction of primitive sentences.

This paper is concerned with decision problems only and we equate a problem with
the (isomorphism closed) set of its yes-instances. Thus, we may speak of the union of two
problems. Consequently, we have the following characterisation.

Corollary 4.6. Every sentence Φ in MMSNP1 defines the union of finitely many problems
in FPP1.

The logic MMSNP2 is the extension of the logic MMSNP1 where in each negated con-
junct ¬(α ∧ β), we allow a monadic predicate to range over a tuple of elements of the
structure, that is we allow new “literals” of the form M(R(x1, x2, . . . , xn)) in β, where R
is n-ary relation symbol from the signature σ. We also insists that whenever such a literal
occurs in β then R(x1, x2, . . . , xn) appears in α. The semantic of a monadic predicate M
is extended and is defined as both a subset of the domain and a subset of the set of tuples
that occur in some input relation: that is, for a structure S, MS ⊂ |S| ∪E(S). We say that
a sentence of MMSNP2 is primitive if each negated conjunct ¬(α ∧ β) satisfies the same
conditions as in Definition 4.2 and a further condition:
• if R(x1, x2, . . . , xn) occurs in α then for every (existentially quantified) monadic predicate
C exactly one of C(R(x1, x2, . . . , xn)) or ¬C(R(x1, x2, . . . , xn)) occurs in β.
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It is only a technical exercise to extend all the previous results of this section concerned
with MMSNP1 and FPP1 to MMSNP2 and FPP2. In particular, we have the following
result.

Corollary 4.7. Every sentence Φ in MMSNP2 defines the union of finitely many problems
in FPP2.

4.2. Edge Quantification versus Vertex Quantification. Courcelle investigated the
difference in expressivity that adding edge set quantification provided to MSO: he proved
that MSO2 (with edge set quantification) is more expressive than MSO1 (with the more
usual vertex set quantification) in general. However, he also showed that under certain
restriction, edge set quantification does not add to MSO’s expressivity.

Theorem 4.8. [7] On each of the following classes of simple graphs: those of degree at
most k, those of tree-width at most k, for each k, planar graphs, and, more generally, every
proper minor closed class, every sentence in MSO2 is logically equivalent to a sentence of
MSO1.

Restricted coloured duality theorems can be reformulated in terms of expressivity of
MMSNP2, MMSNP1 and constraint satisfaction problems as the following result shows.

Theorem 4.9. (Collapse to CSP). If a class K has all restricted coloured dualities then
MMSNP1 and MMSNP2 are equally expressive when restricted to inputs from K. These
logics define precisely finite unions of constraint satisfaction problems; and, in particular if
K contains connected structures only then these logics define precisely constraint satisfaction
problems.

Proof. By Corollary 4.6 (resp. Corollary 4.7) every problem in MMSNP1 (resp. MMSNP2)
is a finite union of problems from FPP1 (resp. FPP2). When restricted to a class K

that has all restricted coloured dualities, every forbidden patterns problem is a restricted
CSP. Moreover, any finite union of constraint satisfaction problems can be written using
a sentence in MMSNP1 [11, 26]. This proves that the logics MMSNP1 and MMSNP2,
when restricted to a class K that has all restricted coloured dualities, define precisely finite
unions of constraint satsifaction problems. Moreover, if we assume that the input is also
connected, then a finite union of constraint satisfaction problems is a single constraint
satisfaction problem: indeed, its template consists of the disjoint union of the template of
each constraint satisfaction problem.

Remark 4.10. An alternative proof strategy would be to use Courcelle’s method from [7]
to build a sentence of MSO1 and next to transform it hopefully into an equivalent sentence
of MMSNP1 using preservation under inverse homomorphisms as in Feder and Vardi’s work
on preservation theorem for MMSNP in [12]. However, even if successful such a proof
strategy would only provide a proof that both logics become equally expressive and would
not provide the collapse to (finite union of) CSP(s) as required.

Thus, Theorem 1.7 and Theorem 1.8 reformulated using Theorem 4.9 provides us with
the analogous result for MMSNP to Courcelle’s result for MSO.

Corollary 4.11. On each of the following classes of simple graphs: those of degree at most
k, those of tree-width at most k, for each k, planar graphs, and, more generally, every
proper minor closed class, every sentence in MMSNP2 is logically equivalent to a sentence
of MMSNP1.
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Courcelle has recently extended Theorem 4.8 to hypergraphs, which can be stated as
follows in the case of graphs.

Theorem 4.12. [8] Let k > 0. Every sentence of MSO2 is logically equivalent to a sentence
of MSO1 over uniformly k-sparse graphs.

Recall that a graph G is uniformly k-sparse if, and only if, every subgraph H of G is
k-sparse, that is |E(H)| ≤ k.|V (H)|. This definition is equivalent to the following condition:
G has an orientation such that every vertex has in-degree at most k (see Lemma 3.1 in [8]).

Remark 4.13. It follows directly from the definitions that a class of graphs with bounded
expansion is uniformly k-sparse for some fixed k. However, we know that the converse
implication can not hold as 2-sparse graphs do not have all restricted dualities. Indeed, we
prove in Proposition 4.14 (see below) that there exists a problem definable by a first-order
sentence of MMSNP1 that is not a CSP even when restricted to uniformly 2-sparse graphs.
However, this does not exclude that MMSNP1 and MMSNP2 are also equally expressive
when restricted to uniformly k-sparse graphs.

The following was observed independently in [29]. We provide our own proof for com-
pleteness.

Proposition 4.14. Uniformly 2-sparse graphs do not have all restricted dualities.

Proof. Consider the problem Tri-Free whose yes-instances are triangle-free graphs. Con-
sider the graph Gn with n special elements, such that every pair of distinct special elements
are linked by a path of length three (using additional vertices). We give an orientation to
each edge on each of the path as follows: edges with a special vertex become arcs originating
from this special vertex; and other edges are oriented arbitrarily. Note that every special
vertex has in-degree zero and every non-special vertex has in-degree at most 2 (since it has
degree at most 2). This shows that our graph is uniformly 2-sparse.

Moreover, by construction Gn is triangle-free and no homomorphic image of this graph
can identify special elements. The family of graphs (Gn)n∈N provides us with proofs (so-
called witness family in [26]) that the problem can not be a finite union of (finite) constraint
satisfaction problems even when restricted to graphs that are uniformly 2-sparse.

4.3. Infinite constraint satisfaction problems and MMSNP2. Bodirsky et al. have
investigated constraint satisfaction problems where the template is infinite. They have
proposed restrictions that ensure that the problems are decidable (and in NP): when the
template is countable and homogeneous in [4], and more recently to a more general case
when the template is ω-categorical in [2]. Recall that a countable structure Γ is ω-categorical
if all countable models of the first-order theory of Γ are isomorphic to Γ. Denote by CSP?

the set of constraint satisfaction problems that have a ω-categorical countable template and
belong to NP.

Remark 4.15. In [2], the definition of CSP? is more restricted than ours. A template is
required to be both ω-categorical and finitely constrained (see definition below). However,
the property of being finitely constrained is only used in order to enforce that the problem
belongs to NP. This motivates our more general definition. A countable structure Γ is
finitely constrained if there is a first-order expansion Γ′ of Γ over some expanded signature
τ ′ and a finite set N′ of finite τ ′-structures such that Age(Γ′) = Forb(N′), where Age(Γ),
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the so-called age of Γ is the set of all finite induced substructures of Γ; and, by Forb(N),
we denote the set of all finite structures that do not admit any of the structures from N as
an induced substructure.

We say that a problem Ω is closed under disjoint union if for every structures A and B,
their disjoint union A+B is a yes-instance of Ω whenever both A and B are yes-instances of
Ω. Using a recent result due to Cherlin, Shelah and Chi [6], Bodirsky and Dalmau proved
the following result.

Theorem 4.16. [3] Every non-empty problem in MMSNP1 that is closed under disjoint
union belongs to CSP?.

It follows directly from the definition that every problem in FPP1 is closed under disjoint
union. Hence, we get the following result.

Corollary 4.17. Every problem in FPP1 is in CSP?. Consequently, every problem in
MMSNP1 is the union of finitely many problems in CSP?.

Since ω-categoricity is preserved under first-order interpretation, we can prove the fol-
lowing.

Theorem 4.18. Every problem in FPP2 is in CSP?. Consequently, every problem in
MMSNP2 is the union of finitely many problems in CSP?.

Proof. Note that the second claim follows from the first claim together with Corollary 4.7.
We now prove the first claim in the case of a problem Ω in FPP2. To simplify the notation,
we assume that Ω is a problem over digraphs encoded using a single binary relation E. For
simplicity, we may also assume that there are only arc colours (vertex colours can be easily
encoded using more arc colours and additional forbidden patterns). Let E be the set of arc
colours and let |E| = c.

Consider the problem Ω′ in MMSNP1 defined over a structure with one monadic pred-
icate T and one ternary predicate R, given by a sentence Φ with m = dlog ce monadic
predicates. We use these monadic predicates to encode the c colours in a natural way, using
a conjunction χa of m monadic predicates for each colour a (if necessary, Φ may contain
negated conjuncts forbidding certain combinations of monadic predicates if 2m > c). Each
forbidden pattern (F, fE) of Ω is encoded as a negated conjunct as follows: for each arc
E(x, y) of colour a, add the literals R(x, e, y), T (e) and χa(e).

The following formula provides an interpretation Π of the signature 〈E〉 in the signature
〈T,R〉: ψE(x, y) = ∃eT (e)∧R(x, e, y). By construction of Ω′, this interpretation Π is a first-
order reduction from Ω′ to Ω. Note also that Ω′ is closed under disjunction (since every
forbidden pattern of Ω is connected by definition of FPP2). By Theorem 4.16, there exists
an ω-categorical structure Γ′ such that Ω′ = CSP (Γ′). Let Γ be Π(Γ′). By Proposition 2.7
of [2] (page 27), it follows that Γ is also ω-categorical. Moreover, it is not difficult to check
that Ω = CSP ?(Γ).

Remark 4.19. As pointed out in [2], there are problems that are in CSP? but not in
MMSNP1. For example, the problem over directed graphs with template induced by the
linear order over Q. Unfortunately, this problem is not expressible in MMSNP2 either.
In fact, we do not know whether MMSNP1 is strictly contained in MMSNP2. Indeed,
to the best of our knowledge, none of the problems used to separate MSO1 from MSO2

are expressible in MMSNP2. We suspect that the problem Edge-No-Mono-Tri is not
expressible in MMSNP1 and that MMSNP1 is strictly contained in MMSNP2.
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5. Conclusion

Our results. In this paper, we have proved that every forbidden patterns (with colours
on both edges and vertices) problem is in fact a constraint satisfaction problem, when re-
stricted to a class of structures that have low tree-depth decomposition: e.g. bounded
degree structures, a proper minor closed class of structures and more generally a class of
bounded expansion. We derive from this result that the logic MMSNP2 (and MMSNP1)
coincides with the class of constraint satisfaction problems on connected inputs that belong
to a class that has low tree-depth decomposition. Together these results cover the restric-
tions considered by Courcelle in [7] under which MSO1 and MSO2 have the same expressive
power.

Some technical questions. Note that we do not know whether for unrestricted inputs,
MMSNP2 is more expressive than MMSNP1. Moreover, we have seen that Courcelle’s more
recent generalisation to uniformly k-sparse graphs [8] does not have an analog for MMSNP1,
MMSNP2 and constraint satisfaction problems. By this we mean that the two logics could
well be equally expressive under this restriction, but they must necessarily capture problems
that are not constraint satisfaction problems even when restricted to uniformly k-sparse
graphs, for any fixed k ≥ 2.

Another point concerns the notion of a proper minor closed class of structures. In the
present paper, we use the Gaifman graph to define this concept. However, it would be more
natural and perhaps preferable to define a notion of minor for structures. The following
definition seems reasonable. A minor of a structure S is obtained from S by performing a
finite sequence of the following operations: taking a (not necessarily induced) substructure;
and, identifying some elements, provided that they all occur in some tuple of some relation.
This new definition subsumes the definition used in this paper and provokes the following
question: Do the results of this paper hold under this new definition? A similar question
arises for a class of structures with bounded expansion. In particular, is there a suitable
definition that would be equivalent to low tree-depth decomposition (recall that to define
this notion over structures we do not use the Gaifman graph)?

Future work. Apart from the above, perhaps technical questions, there are two general
questions that we plan to investigate in future work. The first question is related to CSP?,
the class of (well-behaved) infinite constraint satisfaction problems introduced by Bodirsky.
We know that any problem in MMSNP2 is a finite union of problems from CSP?. However,
there are problems in CSP? that are not expressible in MMSNP2, which yields the following
question. Which logic (necessarily, some extension of MMSNP2) defines precisely CSP??

The second one concerns restricted duality and restricted coloured duality. We have
given some ad-hoc techniques to lift results of restricted duality to restricted coloured duality
for some of our examples. These techniques do not need to know precisely the construction
of the universal graph in the case of restricted duality they reduce to. Instead they rely on
the rather restricted form of our examples. We wonder whether this is indeed an artifact
of the restricted nature of our examples or whether this can be done in general. In other
words, Is it the case that all restricted dualities for a class K implies all restricted coloured
dualities for K?



24 F. R. MADELAINE

Related work. Independently to our work, Kun and Nešetřil have initiated an elegant
new approach by means of lifts and shadows in [21]. In the sequel paper [22], they state a
theorem, which corresponds to our main result, but in the case of vertex colours only. The
approach these authors propose relies on the fact that (restricted) coloured duality can be
reduced to (restricted) duality over an extended signature, where the additional symbols
are monadic and used to encode the vertex colours. Since the property of being of bounded
expansion does not depends on the monadic predicates, this means that one only needs to
generalise the results concerning restricted duality for bounded expansion due to Nešetřil
and Ossona de Mendez to arbitrary relational signature. In other words, the consideration
of vertex colouring in our proof has become unecessary. We believe that it is possible to deal
similarly with edge colours by defining a suitable notion of lift and follow the lines of Kun
and Nešetřil’s approach. This would allow us to remove the consideration of edge-colouring
in our proof, simplifying it further.
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