
Logical Methods in Computer Science
Volume 19, Issue 3, 2023, pp. 15:1–15:46
https://lmcs.episciences.org/

Submitted Dec. 28, 2022
Published Sep. 04, 2023

MONOIDAL WIDTH

ELENA DI LAVORE AND PAWE L SOBOCIŃSKI

Tallinn University of Technology, Tallinn, Estonia

Abstract. We introduce monoidal width as a measure of complexity for morphisms in
monoidal categories. Inspired by well-known structural width measures for graphs, like tree
width and rank width, monoidal width is based on a notion of syntactic decomposition:
a monoidal decomposition of a morphism is an expression in the language of monoidal
categories, where operations are monoidal products and compositions, that specifies this
morphism. Monoidal width penalises the composition operation along “big” objects, while it
encourages the use of monoidal products. We show that, by choosing the correct categorical
algebra for decomposing graphs, we can capture tree width and rank width. For matrices,
monoidal width is related to the rank. These examples suggest monoidal width as a
good measure for structural complexity of processes modelled as morphisms in monoidal
categories.

Contents

1. Introduction 2
2. Monoidal width 6
2.1. Monoidal width of copy 8
3. A monoidal algebra for tree width 10
3.1. Background: tree width and branch width 11
3.2. Hypergraphs with sources and inductive definition 12
3.3. Cospans of hypergraphs 15
3.4. String diagrams for cospans of hypergraphs 18
3.5. Tree width as monoidal width 19
4. Monoidal width in matrices 24
4.1. The prop of matrices 24
4.2. Monoidal width of matrices 25
5. A monoidal algebra for rank width 31
5.1. Background: rank width 31
5.2. Graphs with dangling edges and inductive definition 32
5.3. A prop of graphs 35

Key words and phrases: monoidal categories, tree width, rank width.
This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-

2020.4.05.19-0001). The second author was additionally supported by the Estonian Research Council grant
PRG1210.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(3:15)2023
© E. Di Lavore and P. Sobociński
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-7783-5079
https://orcid.org/0000-0002-7992-9685
http://creativecommons.org/about/licenses

15:2 E. Di Lavore and P. Sobociński Vol. 19:3

5.4. Rank width as monoidal width 37
6. Conclusion and future work 44
References 44

1. Introduction

In recent years, a current of research has emerged with focus on the interaction of structure
— especially algebraic, using category theory and related subjects — and power, that is
algorithmic and combinatorial insights stemming from graph theory, game theory and related
subjects. Recent works include [ADW17,AS21,MS22].

The algebra of monoidal categories is a fruitful source of structure — it can be seen
as a general process algebra of concurrent processes, featuring a sequential (;) as well as a
parallel (⊗) composition. Serving as a process algebra in this sense, it has been used to
describe artefacts of a computational nature as arrows of appropriate monoidal categories.
Examples include Petri nets [FS18], quantum circuits [CK17, DKPvdW20], signal flow
graphs [FS18,BSZ21], electrical circuits [CK22,BS21], digital circuits [GJL17], stochastic
processes [Fri20,CJ19] and games [GHWZ18].

Given that the algebra of monoidal categories has proved its utility as a language for
describing computational artefacts in various applications areas, a natural question is to
examine its relationship with power : can monoidal structure help us to design efficient
algorithms? To begin to answer this question, let us consider a mainstay of computer science:
divide-and-conquer algorithms. Such algorithms rely on the internal geometry of the global
artefact under consideration to ensure the ability to divide, that is, decompose it consistently
into simpler components, inductively compute partial solutions on the components, and
then recombine these local results to obtain a global solution.

f g

f ′ g′
=

f g

f ′ g′

Figure 1. This morphism can be decomposed in two different ways: (f ⊗
f ′) ; (g ⊗ g′) = (f ; g)⊗ (f ′ ; g′).

Let us now return to systems described as arrows of monoidal categories. In applications,
the parallel (⊗) composition typically means placing systems side-by-side with no explicit
interconnections. On the other hand, the sequential (;) composition along an object typically
means communication, resource sharing or synchronisation, the complexity of which is
determined by the object along which the composition is performed. Based on examples in
the literature, our basic motivating intuition is:

An algorithmic problem on an artefact that is a ‘⊗’ lends itself to a divide-
and-conquer approach more easily than one that is a ‘;’.

Moreover, the “size” of the object along which the ‘;’ occurs matters; typically the “larger”
the object, the more work is needed in order to recombine results in any kind of divide-
and-conquer approach. An example is compositional reachability checking in Petri nets of

Vol. 19:3 MONOIDAL WIDTH 15:3

Rathke et. al. [RSS14]: calculating the sequential composition is exponential in the size of
the boundary. Another recent example is the work of Master [Mas22] on a compositional
approach to calculating shortest paths.

On the other hand, (monoidal) category theory equates different descriptions of systems.
Consider what is known as middle-four interchange, illustrated in Figure 1. Although
monoidal category theory asserts that (f ⊗ f ′) ; (g ⊗ g′) = (f ; g)⊗ (f ′ ; g′), considering the
two sides of the equations as decomposition blueprints for a divide-and-conquer approach,
the right-hand side of the equation is clearly preferable since it maximises parallelism by
minimising the size of the boundary along which composition occurs. This, roughly speaking,
is the idea of width – expressions in the language of monoidal categories are assigned a
natural number that measures “how good” they are as decomposition blueprints. The
monoidal width of an arrow is then the width of its most efficient decomposition. In concrete
examples, arrows with low width lend themselves to efficient divide-and-conquer approaches,
following a width-optimal expression as a decomposition blueprint.

The study of efficient decompositions of combinatorial artefacts is well-established,
especially in graph theory. A number of graph widths — by which we refer to related
concepts like tree width, path with, branch width, cut width, rank width or twin width
— have become known in computer science because of their relationship with algorithmic
properties. All of them share a similar basic idea: in each case, a specific notion of legal
decomposition is priced according to the most expensive operation involved, and the price
of the cheapest decomposition is the width.

Perhaps the most famous of these is tree width, a measure of complexity for graphs that
was independently defined by different authors [BB73,Hal76,RS86]. Every nonempty graph
has a tree width, which is a natural number. Intuitively, a tree decomposition is a recipe
for decomposing a graph into smaller subgraphs that form a tree shape. These subgraphs,
when some of their vertices are identified, need to compose into the original graph, as shown
in Figure 2. Courcelle’s theorem

Every property expressible in the monadic second order logic of graphs can be
verified in linear time on graphs with bounded tree width.

is probably the best known among several results that establish links with algorithms [Bod92,
BK08,Cou90] thus illustrating its importance for computer science.

G = (Y, t) =

Figure 2. A tree decomposition cuts the graph along its vertices.

Another important measure is rank width [OS06] — a relatively recent development that
has attracted significant attention in the graph theory community. A rank decomposition is
a recipe for decomposing a graph into its single-vertex subgraphs by cutting along edges.
The cost of a cut is the rank of the adjacency matrix that represents it, as illustrated in
Figure 3. An intuition for rank width is that it is a kind of “Kolmogorov complexity” for

15:4 E. Di Lavore and P. Sobociński Vol. 19:3

graphs, with higher rank widths indicating that the connectivity data of the graph cannot
be easily compressed. For example, while the family of cliques has unbounded tree width,
their connectivity rather simple: in fact, all cliques have rank width 1.

rk(1 1
1 1) = 1

Figure 3. A cut and its matrix in a rank decomposition.

Contribution. Building on our conference paper [DLS22], our goals are twofold. Firstly,
to introduce the concept of monoidal width and begin to develop techniques for reasoning
about it.

Before describing concrete, technical contributions, let us take a bird’s eye view. It
is natural for the seasoned researcher to be sceptical of a new abstract framework that
seeks to generalise known results. The best abstract approaches (i) simplify existing known
arguments, (ii) clean up the research landscape by connecting existing notions, or (iii)
introduce techniques that allow one to prove new theorems. This paper does not (yet) bring
strong arguments in favour of monoidal width if one uses these three points as yardsticks. Our
high-level, conceptual contribution is, instead, the fact that the algebra of monoidal categories
– already used in several contexts in theoretical computer science – is a multi-purpose algebra
for specifying decompositions of graph-like structures important for computer scientists.
There are several ways of making this work, and making these monoidal algebras of “open
graphs” explicit as monoidal categories is itself a valuable endeavour. Indeed, identifying a
monoidal category automatically yields a particular notion of decomposition: the instance of
monoidal width in the monoidal category of interest. This point of view therefore demystifies
ad hoc notions of decomposition that accompany each notion of width that we consider in
this paper. Moreover, having an explicit algebra is also useful because it suggests a data
structure — the expression in the language of monoidal categories — as a way of describing
decompositions.

The results in this paper can be seen as a “sanity check” of these general claims, but can
also be seen as taking the first technical steps in order to build towards points (i)-(iii) of
the previous paragraph. To this end we examine monoidal width in the presence of common
structure, such as coherent comultiplication on objects, and in a foundational setting such
as the monoidal category of matrices. Secondly, connecting this approach with previous
work, to examine graph widths through the prism of monoidal width. The two widths we
focus on are tree width and rank width. We show that both can be seen as instances of
monoidal width. The interesting part of this endeavour is identifying the monoidal category,
and thus the relevant “decomposition algebra” of interest.

Unlike the situation with graph widths, it does not make sense to talk about monoidal
width per se, since it is dependent on the choice of underlying monoidal category and thus
a particular “decomposition algebra”. The decomposition algebras that underlie tree and
rank decompositions reflect their intuitive understanding. For tree width, this is a cospan
category whose morphisms represent graphs with vertex interfaces, while for rank width it is
a category whose morphisms represent graphs with edge interfaces, with adjacency matrices
playing the role of tracking connectivity information within a graph. We show that the

Vol. 19:3 MONOIDAL WIDTH 15:5

monoidal width of a morphism in these two categories is bounded, respectively, by the branch
(Theorem 3.34) and rank width (Theorem 5.26) of the corresponding graph. In the first
instance, this is enough to establish the connection between monoidal width and tree width,
given that it is known that tree width and branch width are closely related. A small technical
innovation is the definition of intermediate inductive notions of branch (Definition 3.14)
and rank (Definition 5.7) decompositions, equivalent to the original definitions via “global”
combinatorial notions of graph decomposition. The inductive presentations are closer in
spirit to the inductive definition of monoidal decomposition, and allow us to give direct
proofs of the main correspondences.

String diagrams. String diagrams [JS91] are a convenient syntax for monoidal categories,

where a morphism f : X → Y is depicted as a box with input and output wires: fX Y .
Morphisms in monoidal categories can be composed sequentially, using the composition of
the category, and in parallel, using the monoidal structure. These two kinds of composition
are reflected in the string diagrammatic syntax: the sequential composition f ; g is depicted
by connecting the output wire of f with the input wire of g; the parallel composition f ⊗ f ′

is depicted by writing f on top of f ′.

f ; g = f gX Z f ⊗ f ′ =
f

f ′

X Y

X ′ Y ′

The advantage of this syntax is that all coherence equations for monoidal categories are
trivially true when written with string diagrams. An example is the middle-four interchange
law (f ⊗ f ′) ; (g ⊗ g′) = (f ; g) ⊗ (g ; g′). These two expressions have one representation
in terms of string diagrams, as shown in Figure 1. The coherence theorem for monoidal
categories [Mac78] ensures that string diagrams are a sound and complete syntax for
morphisms in monoidal categories.

Related work. This paper contains the results of [DLS21] and [DLS22] with detailed proofs.
We generalise the results of [DLS21] to undirected hypergraphs and provide a syntactic
presentation of the subcategory of the monoidal category of cospans of hypergraphs on
discrete objects.

Previous syntactical approaches to graph widths are the work of Pudlák, Rödl and
Savickỳ [PRS88] and the work of Bauderon and Courcelle [BC87]. Their works consider
different notions of graph decompositions, which lead to different notions of graph complexity.
In particular, in [BC87], the cost of a decomposition is measured by counting shared names,
which is clearly closely related to penalising sequential composition as in monoidal width.
Nevertheless, these approaches are specific to particular, concrete notions of graphs, whereas
our work concerns the more general algebraic framework of monoidal categories.

Abstract approaches to width have received some attention recently, with a number of
diverse contributions. Blume et. al. [BBFK11], similarly to our work, use (the category of)
cospans of graphs as a formal setting to study graph decompositions: indeed, a major insight
of loc. cit. is that tree decompositions are tree-shaped diagrams in the cospan category, and
the original graph is reconstructed as a colimit of such a diagram. Our approach is more
general, however, emphasising the relevance of the algebra of monoidal categories, of which
cospan categories are just one family of examples.

15:6 E. Di Lavore and P. Sobociński Vol. 19:3

The literature on comonads for game semantics characterises tree and path decompo-
sitions of relational structures (and graphs in particular) as coalgebras of certain comon-
ads [ADW17,AS21,MS22,AM21,CD21]. Bumpus and Kocsis [BK21,Bum21] and, later,
Bumpus, Kocsis and Master [BKM23] also generalise tree width to the categorical setting,
although their approach is conceptually and technically removed from ours. Their work
takes a combinatorial perspective on decompositions, following the classical graph theory
literature. Given a shape of decomposition, called the spine in [BK21], a decomposition
is defined globally as a functor out of that shape. This generalises the characterisation of
tree width based on Halin’s S-functions [Hal76]. In contrast, monoidal width is algebraic
in flavour, following Bauderon and Courcelle’s insights on tree decompositions [BC87].
Monoidal decompositions are syntax trees defined inductively and rely on the decomposition
algebra given by monoidal categories.

Synopsis. The definition of monoidal width is introduced in Section 2, together with a
worked out example. In Section 3 we recover tree width by instantiating monoidal width
in a suitable category of cospans of hypergraphs. We recall it in Section 3.3 and provide a
syntax for it in Section 3.4. Similarly, in Section 5 we recover rank width by instantiating
monoidal width in a prop of graphs with boundaries where the connectivity information
is stored in adjacency matrices, which we recall in Section 5.3. This motivates us to study
monoidal width for matrices over the natural numbers in Section 4.

2. Monoidal width

We introduce monoidal width, a notion of complexity for morphisms in monoidal categories
that relies on explicit syntactic decompositions, relying on the algebra of monoidal categories.
We then proceed with a simple, yet useful examples of efficient monoidal decompositions
in Section 2.1.

A monoidal decomposition of a morphism f is a binary tree where internal nodes are
labelled with the operations of composition ; or monoidal product ⊗, and leaves are labelled
with “atomic” morphisms. A decomposition, when evaluated in the obvious sense, results
in f . We do not assume that the set of atomic morphisms A is minimal, they are merely
morphisms that do not necessarily need to be further decomposed. We assume that A
contains enough atoms to have a decomposition for every morphism. In most cases, we will
take A to contain all the morphisms.

Definition 2.1 (Monoidal decomposition). Let C be a monoidal category and A be a subset
of its morphisms to which we refer as atomic. The set Df of monoidal decompositions of
f : A→ B in C is defined inductively:

Df ::= (f) if f ∈ A
| (d1—⊗—d2) if d1 ∈ Df1 , d2 ∈ Df2 and f =C f1 ⊗ f2

| (d1— ;X —d2) if d1 ∈ Df1 : A→X , d2 ∈ Df2 : X→B and f =C f1 ; f2

In general, a morphism can be decomposed in different ways and decompositions that
maximise parallelism are deemed more efficient. The monoidal width of a morphism is the
cost of its cheapest monoidal decomposition.

Formally, each operation and atom in a decomposition is assigned a weight that will
determine the cost of the decomposition. This is captured by the concept of a weight function.

Vol. 19:3 MONOIDAL WIDTH 15:7

Definition 2.2. Let C be a monoidal category and let A be its atomic morphisms. A weight
function for (C,A) is a function w : A∪{⊗}∪Obj(C)→ N such that w(X⊗Y) = w(X)+w(Y),
and w(⊗) = 0.

A prop is a strict symmetric monoidal category where objects are natural numbers and
the monoidal product on them is addition. If C is a prop, then, typically, we let w(1) := 1.
The idea behind giving a weight to an object X ∈ C is that w(X) is the cost paid for
composing along X.

Definition 2.3 (Monoidal width). Let w be a weight function for (C,A). Let f be in C and
d ∈ Df . The width of d is defined inductively as follows:

wd(d) := w(f) if d = (f)

max{wd(d1),wd(d2)} if d = (d1—⊗—d2)

max{wd(d1), w(X), wd(d2)} if d = (d1— ;X —d2)

The monoidal width of f is mwd(f) := mind∈Df
wd(d).

Example 2.4. Let f : 1 → 2 and g : 2 → 1 be morphisms in a prop such that mwd(f) =
mwd(g) = 2. The following figure represents the monoidal decomposition of f ;(f⊗f);(g⊗g);g
given by

(f— ;2 —(((f— ;2 —g)—⊗—(f— ;2 —g))— ;2 —g)).

f

f

f

g

g

g

Indeed, taking advantage of string diagrammatic syntax, decompositions can be illustrated
by enhancing string diagrams with additional annotations that indicate the order of decom-
position. Throughout this paper, we use thick yellow dividing lines for this purpose.

Given that the width of a decomposition is the most expensive operation or atom, the
above has width is 2 as compositions are along at most 2 wires.

Example 2.5. With the data of Example 2.4, define a family of morphisms hn : 1 → 1
inductively as h0 := f ;2 g, and hn+1 := f ;2 (hn ⊗ hn) ;2 g.

f

f

f

g

g

g

· · ·

· · ·
· · ·

· · ·

Each hn has a decomposition of width 2n where the root node is the composition along
the middle wires. However — following the schematic diagram above — we have that
mwd(hn) ≤ 2 for any n.

15:8 E. Di Lavore and P. Sobociński Vol. 19:3

2.1. Monoidal width of copy. Although monoidal width is a very simple notion, reasoning
about it in concrete examples can be daunting because of the combinatorial explosion in
the number of possible decompositions of any morphism. For this reason, it is useful to
examine some commonly occurring structures that one encounters “in the wild” and examine
their decompositions. One such situation is when the objects are equipped with a coherent
comultiplication structure.

Definition 2.6. Let C be a symmetric monoidal category, with symmetries X,Y : X⊗Y →
Y ⊗ X. We say that C has coherent copying if there is a class of objects ∆C ⊆ Obj(C),
satisfying

• X,Y ∈ ∆C iff X ⊗ Y ∈ ∆C;
• Every object X ∈ ∆C is endowed with a morphism X : X → X ⊗X;
• For every X,Y ∈ ∆C, X⊗Y = (X ⊗ Y) ; (1X ⊗ X,Y ⊗ 1Y) (coherence).

X ⊗ Y
X ⊗ Y

X ⊗ Y
=

X

Y

X

Y

X

Y

An example is any cartesian prop, where the copy morphisms are the universal ones
given by the cartesian structure: n := ⟨1n,1n⟩ : n→ n+ n. For props with coherent copy,
we assume that copy morphisms, symmetries and identities are atoms, X , X,Y ,1X ∈ A,
and that their weight is given by w(X) := 2 · w(X), w(X,Y) := w(X) + w(Y) and
w(1X) := w(X).

Example 2.7. Let C be a prop with coherent copy and suppose that 1 ∈ ∆C. This
implies that every n ∈ ∆C and there are copy morphisms n : n → 2n for all n. Let
γn,m := (n ⊗ 1m) ; (1n ⊗ n,m) : n+m→ n+m+ n. We can decompose γn,m in terms
of γn−1,m+1 (in the dashed box), 1 and 1,1 by cutting along at most n+ 1 +m wires:

γn,m = (1n−1 ⊗ ((1 ⊗ 11) ; (11 ⊗ 1,1))) ;n+1+m (gn−1,m+1 ⊗ 11).

γn,m =
n

m

n

m

n

=

n− 1

1

m

n− 1

1

m

n− 1

1

This allows us to decompose n = γn,0 cutting along only n+ 1 wires. In particular, this
means that mwd(n) ≤ n+ 1.

The following lemma generalises the above example and is used in the proofs of some
results in later sections, Proposition 3.30 and Proposition 4.6.

Lemma 2.8. Let C be a symmetric monoidal category with coherent copying. Suppose
that A contains X for all X ∈ ∆C, and X,Y and 1X for all X ∈ Obj(C). Let

X := X1 ⊗ · · · ⊗ Xn, with Xi ∈ ∆C, f : Y ⊗ X ⊗ Z → W and let d ∈ Df . Let γX(f) :=

Vol. 19:3 MONOIDAL WIDTH 15:9

(1Y ⊗ X ⊗ 1Z) ; (1Y⊗X ⊗ X,Z) ; (f ⊗ 1X).

γX(f) := f

Y

X

Z

W

X

Then there is a monoidal decomposition CX(d) of γX(f) such that

wd(CX(d)) ≤ max{wd(d),w(Y) + w(Z) + (n+ 1) · max
i=1,...,n

w(Xi)}.

Proof. Proceed by induction on the number n of objects being copied. If n = 0, then we are
done because we keep the decomposition d and define CI(d) := d.

Suppose that the statement is true for any f ′ : Y ⊗ X ⊗ Z ′ → W . Let f : Y ⊗ X ⊗
Xn+1 ⊗ Z →W . By coherence of , we can rewrite γX⊗Xn+1

(f).

f

Y

X ⊗Xn+1

Z

W

X ⊗Xn+1

=

f
Y

X

Xn+1

Z

W

X

Xn+1

Let γX(f) be the morphism in the above dashed box. By the induction hypothesis, there is a
monoidal decomposition CX(d) of γX(f) of bounded width: wd(CX(d)) ≤ max{wd(d),w(Y)+
w(Xn+1 ⊗ Z) + (n + 1) · maxi=1,...,n w(Xi)}. We can use this decomposition to define a
monoidal decomposition CX⊗Xn+1

(d) of γX⊗Xn+1
(f) as shown below.

f
Y

X

Xn+1

Z

W

X

Xn+1

Note that the only cut that matters is the longest vertical one, the composition node along
Y ⊗X ⊗Xn+1 ⊗ Z ⊗Xn+1, because all the other cuts are cheaper. The cost of this cut
is w(Y) + w(Z) + 2 · w(Xn+1) + w(X) = w(Y) + w(Z) + w(Xn+1) +

∑n+1
i=1 w(Xi). With

this observation and applying the induction hypothesis, we can compute the width of the
decomposition CX⊗Xn+1

(d).

wd(CX⊗Xn+1
(d))

= max
{
w(Y) + w(Z) + w(Xn+1) +

n+1∑
i=1

w(Xi),wd(CX(d))
}

≤ max
{
w(Y) + w(Z) + (n+ 2) · max

i=1,...,n+1
w(Xi),wd(d),

w(Y) + w(Xn+1 ⊗ Z) + (n+ 1) · max
i=1,...,n

w(Xi)
}

15:10 E. Di Lavore and P. Sobociński Vol. 19:3

= max
{
w(Y) + w(Z) + (n+ 2) · max

i=1,...,n+1
w(Xi),wd(d)

}

3. A monoidal algebra for tree width

Our first case study is tree width of undirected hypergraphs. We show that monoidal width
in a suitable monoidal category of hypergraphs is within constant factors of tree width. We
rely on branch width, a measure equivalent to tree width, to relate the latter with monoidal
width.

After recalling tree and branch width and the bounds between them in Section 3.1, we
define the intermediate notion of inductive branch decomposition in Section 3.2 and show
its equivalence to that of branch decomposition. Separating this intermediate step allows a
clearer presentation of the correspondence between branch decompositions and monoidal
decompositions. Section 3.3 recalls the categorical algebra of cospans of hypergraphs and
Section 3.4 introduces a syntactic presentations of them. Finally, Section 3.5 contains the
main result of the present section, which relates inductive branch decompositions, and thus
tree decompositions, with monoidal decompositions.

Classically, tree and branch widths have been defined for finite undirected multihyper-
graphs, which we simply call hypergraphs. These have undirected edges that connect sets of
vertices and they may have parallel edges.

Definition 3.1. A (multi)hypergraph G = (V,E) is given by a finite set of vertices V , a
finite set of edges E and an adjacency function ends : E → ℘(V), where ℘(V) indicates the
set of subsets of V . A subhypergraph of G is a hypergraph G′ = (V ′, E′) such that V ′ ⊆ V ,
E′ ⊆ E and ends′(e) = ends(e) for all e ∈ E′.

Definition 3.2. Given two hypergraphs G = (V,E) and H = (W,F), a hypergraph homo-
morphism α : G→ H is given by a pair of functions αV : V →W and αE : E → F such that,
for all edges e ∈ E, endsH(αE(e)) = αV (endsG(e)).

E F

℘(V) ℘(W)

fE

endsG endsH
℘(fV)

Hypergraphs and hypergraph homomorphisms form a category UHGraph, where composition
and identities are given by component-wise composition and identities.

Note that the category UHGraph is not the functor category [{• → •}, kl(℘)]: their
objects coincide but the morphisms are different.

Definition 3.3. The hyperedge size of a hypergraph G is defined as γ(G) := maxe∈edges(G)

|ends(e)|. A graph is a hypergraph with hyperedge size 2.

Definition 3.4. A neighbour of a vertex v is a vertex w distinct from v with an edge e
such that v, w ∈ ends(e). A path in a hypergraph is a sequence of vertices (v1, . . . , vn) such
that, for every i = 1, . . . , n − 1, vi and vi+1 are neighbours. A cycle in a hypergraph is a
path where the first vertex v1 coincides with the last vertex vn. A hypergraph is connected
if there is a path between every two vertices. A tree is a connected acyclic hypergraph. A
tree is subcubic if every vertex has at most three neighbours.

Vol. 19:3 MONOIDAL WIDTH 15:11

Definition 3.5. The set of binary trees with labels in a set Λ is either: a leaf (λ) with label
λ ∈ Λ; or a label λ ∈ Λ with two binary trees T1 and T2 with labels in Λ, (T1—λ—T2).

3.1. Background: tree width and branch width. Intuitively, tree width measures “how
far” a hypergraph G is from being a tree: a hypergraph is a tree iff it has tree width 1.
Hypergraphs with tree widths larger than 1 are not trees; for example, the family of cliques
has unbounded tree width.

The definition relies on the concept of a tree decomposition. For Robertson and Sey-
mour [RS86], a decomposition is itself a tree Y , each vertex of which is associated with a
subhypergraph of G. Then G can be reconstructed from Y by identifying some vertices.

Definition 3.6 [RS86]. A tree decomposition of a hypergraph G = (V,E) is a pair (Y, t)
where Y is a tree and t : vertices(Y)→ ℘(V) is a function such that:

(1) Every vertex is in one of the components:
⋃

i∈vertices(Y) t(i) = V .

(2) Every edge has its endpoints in a component: ∀e ∈ E ∃i ∈ vertices(Y) ends(e) ⊆ t(i).
(3) The components are glued in a tree shape: ∀i, j, k ∈ vertices(Y) i⇝ j ⇝ k ⇒ t(i)∩t(k) ⊆

t(j).

The cost is the maximum number of vertices of the component subhypergraphs.

Example 3.7. Consider the hypergraph G and its tree decomposition (Y, t) below. Its cost
is 3 as its biggest component has three vertices.

G = (Y, t) =

Definition 3.8 (Tree width). Given a tree decomposition (Y, t) of a hypergraph G, its width
is wd(Y, t) := maxi∈vertices(Y) |t(i)|. The tree width of G is given by the min-max formula:

twd(G) := min
(Y,t)

wd(Y, t).

Note that Robertson and Seymour subtract 1 from twd(G) so that trees have tree width
1. To minimise bureaucratic overhead, we ignore this convention.

We use branch width [RS91] as a technical stepping stone to relate monoidal width and
tree width. Before presenting its definition, it is important to note that branch width and
tree width are equivalent, i.e. they are within a constant factor of each other.

Theorem 3.9 [RS91, Theorem 5.1]. Branch width is equivalent to tree width. More precisely,
for a hypergraph G = (V,E),

max{bwd(G), γ(G)} ≤ twd(G) ≤ max{3
2
bwd(G), γ(G), 1}.

Branch width relies on branch decompositions, which, intuitively, record in a tree a way
of iteratively partitioning the edges of a hypergraph.

15:12 E. Di Lavore and P. Sobociński Vol. 19:3

Definition 3.10 [RS91]. A branch decomposition of a hypergraph G = (V,E) is a pair (Y, b)
where Y is a subcubic tree and b : leaves(Y) ∼= E is a bijection.

Each edge e in the tree Y determines a splitting of the hypergraph. More precisely, it
determines a two partition of the leaves of Y , which, through b, determines a 2-partition
{Ae, Be} of the edges of G. This corresponds to a splitting of the hypergraph G into two
subhypergraphs G1 and G2. Intuitively, the order of an edge e is the number of vertices that
are glued together when joining G1 and G2 to get G. Given the partition {Ae, Be} of the
edges of G, we say that a vertex v of G separates Ae and Be whenever there are an edge in
Ae and an edge in Be that are both adjacent to v.

Let (Y, b) be a branch decomposition of a hypergraph G. Let e be an edge of Y . The
order of e is the number of vertices that separate Ae and Be: ord(e) := |ends(Ae)∩ ends(Be)|.

Definition 3.11 (Branch width). Given a branch decomposition (Y, b) of a hypergraph
G = (V,E), define its width as wd(Y, b) := maxe∈edges(Y) ord(e).

The branch width of G is given by the min-max formula: bwd(G) := min(Y,b) wd(Y, b).

Example 3.12. If we start reading the decomposition from an edge in the tree Y , we can
extend the labelling to internal vertices by labelling them with the glueing of the labels of
their children.

G = (Y, b) =

In this example, there is only one vertex separating the first two subgraphs of the decom-
position. This means that the corresponding edge in the decomposition tree has order
1.

3.2. Hypergraphs with sources and inductive definition. We introduce a definition of
decomposition that is intermediate between a branch decomposition and a monoidal decom-
position. It adds to branch decompositions the algebraic flavour of monoidal decompositions
by using an inductive data type, that of binary trees, to encode a decomposition.

Our approach follows closely Bauderon and Courcelle’s hypergraphs with sources [BC87]
and the corresponding inductive definition of tree decompositions [Cou92]. Courcelle’s
result [Cou92, Theorem 2.2] is technically involved as it translates between a combinatorial
description of a decomposition to a syntactic one. Our results in this and the next sections
are similarly technically involved.

We recall the definition of hypergraphs with sources and introduce inductive branch
decompositions of them. Intuitively, the sources of a hypergraph are marked vertices that
are allowed to be “glued” together with the sources of another hypergraph. Thus, the
equivalence between branch decompositions and inductive branch decompositions formalises
the intuition that a branch decomposition encodes a way of dividing a hypergraph into
smaller subgraphs by “cutting” along some vertices.

Vol. 19:3 MONOIDAL WIDTH 15:13

Definition 3.13 [BC87]. A hypergraph with sources is a pair Γ = (G,X) where G = (V,E) is
a hypergraph and X ⊆ V is a subset of its vertices, called the sources (Figure 4). Given two
hypergraphs with sources Γ = (G,X) and Γ′ = (G′, X ′), we say that Γ′ is a subhypergraph
of Γ whenever G′ is a subhypergraph of G.

Note that the sources of a subhypergraph Γ′ of Γ need not to appear as sources of Γ,
nor vice versa. In fact, if Γ is obtained by identifying all the sources of Γ1 with some of the
sources of Γ2, the sources of Γ and Γ1 will be disjoint.

Figure 4. Sources are marked vertices in the graph and are thought of as
an interface that can be glued with that of another graph.

An inductive branch decomposition is a binary tree whose vertices carry subhypergraphs
Γ′ of the ambient hypergraph Γ. This set of all such binary trees is defined as follows

TΓ ::= () | (TΓ,Γ
′, TΓ)

where Γ′ ranges over the non-empty subhypergraphs of Γ. An inductive branch decomposition
has to satisfy additional conditions that ensure that “glueing” Γ1 and Γ2 together yields Γ.

Definition 3.14. Let Γ = ((V,E), X) be a hypergraph with sources. An inductive branch
decomposition of Γ is T ∈ TΓ where either:

• Γ is discrete (i.e. it has no edges) and T = ();
• Γ has one edge and T = (()—Γ—()). We will use the shorthand T = (Γ) in this case;
• T = (T1—Γ—T2) and Ti ∈ TΓi are inductive branch decompositions of subhypergraphs
Γi = ((Vi, Ei), Xi) of Γ such that:
– The edges are partitioned in two, E = E1 ⊔ E2 and V = V1 ∪ V2;
– The sources are those vertices shared with the original sources as well as those shared
with the other subhypergraph, Xi = (V1 ∩ V2) ∪ (X ∩ Vi).

Note that ends(Ei) ⊆ Vi and that not all subtrees of a decomposition T are themselves
decompositions: only those T ′ that contain all the nodes in T that are below the root of
T ′. We call these full subtrees and indicate with λ(T ′) the subhypergraph of Γ that T ′ is a
decomposition of. We sometimes write Γi = λ(Ti), Vi = vertices(Γi) and Xi = sources(Γi).
Then,

sources(Γi) = (vertices(Γ1) ∩ vertices(Γ2)) ∪ (sources(Γ) ∩ vertices(Γi)). (3.1)

Definition 3.15. Let T = (T1—Γ—T2) be an inductive branch decomposition of Γ =
(G,X), with Ti possibly both empty. Define the width of T inductively: wd(()) := 0, and
wd(T) := max{wd(T1),wd(T2), |sources(Γ)|}. Expanding this expression, we obtain

wd(T) = max
T ′ full subtree of T

|sources(λ(T ′))|.

The inductive branch width of Γ is defined by the min-max formula ibwd(Γ) := minT wd(T).

We show that this definition is equivalent to the original one by exhibiting a mapping
from branch decompositions to inductive branch decompositions that preserve the width

15:14 E. Di Lavore and P. Sobociński Vol. 19:3

and vice versa. Showing that these mappings preserve the width is a bit involved because
the order of the edges in a decomposition is defined “globally”, while, for an inductive
decomposition, the width is defined inductively. Thus, we first need to show that we can
compute the inductive width globally.

Lemma 3.16. Let Γ = (G,X) be a hypergraph with sources and T be an inductive branch
decomposition of Γ. Let T0 be a full subtree of T and let T ′ ≹ T0 denote a full subtree T ′ of
T such that its intersection with T0 is empty. Then,

sources(λ(T0)) = vertices(λ(T0)) ∩

X ∪
⋃

T ′≹T0

vertices(λ(T ′))

 .

Proof. Proceed by induction on the decomposition tree T . If it is empty, T = (), then its
subtree is also empty, T0 = (), and we are done.

If T = (T1—Γ—T2), then either T0 is a full subtree of T1, or it is a full subtree of T2, or
it coincides with T . If T0 coincides with T , then their boundaries coincide and the statement
is satisfied because sources(λ(T0)) = X = V ∩X. Now suppose that T0 is a full subtree of
T1. Then, by applying the induction hypothesis, Equation (3.1), and using the fact that
λ(T0) ⊆ λ(T1), we compute the sources of T0:

sources(λ(T0))

= vertices(λ(T0)) ∩

sources(λ(T1)) ∪
⋃

T ′≤T1,T ′≹T0

vertices(λ(T ′))

= vertices(λ(T0)) ∩

(vertices(λ(T1)) ∩ (vertices(λ(T2)) ∪X)) ∪
⋃

T ′≤T1,T ′≹T0

vertices(λ(T ′))

= vertices(λ(T0)) ∩

vertices(λ(T2)) ∪X ∪
⋃

T ′≤T1,T ′≹T0

vertices(λ(T ′))

= vertices(λ(T0)) ∩

X ∪
⋃

T ′≤T,T ′≹T0

vertices(λ(T ′))

A similar computation can be done if T0 is a full subtree of T2.

Lemma 3.17. Let Γ = (G,X) be a hypergraph with sources and G = (V,E) be its underlying
hypergraph. Let T be an inductive branch decomposition of Γ. Then, there is a branch
decomposition I†(T) of G such that wd(I†(T)) ≤ wd(T).

Proof. A binary tree is, in particular, a subcubic tree. Then, we can define Y to be the
unlabelled tree underlying T . The label of a leaf l of T is a subhypergraph of Γ with one
edge el. Then, there is a bijection b : leaves(T)→ edges(G) such that b(l) := el. Then, (Y, b)
is a branch decomposition of G and we can define I†(T) := (Y, b).

By construction, e ∈ edges(Y) if and only if e ∈ edges(T). Let {v, w} = ends(e) with
v parent of w in T and let Tw the full subtree of T with root w. Let {Ev, Ew} be the
(non-trivial) partition of E induced by e. Then, for the edges sets, Ew = edges(λ(Tw))
and Ev =

⋃
T ′≹Tw

edges(λ(T ′)), and, for the vertices sets, ends(Ew) ⊆ vertices(λ(Tw)) and

Vol. 19:3 MONOIDAL WIDTH 15:15

ends(Ev) ⊆
⋃

T ′≹Tw
vertices(λ(T ′)). Using these inclusions and applying Lemma 3.16,

ord(e) wd(Y, b)

:= |ends(Ew) ∩ ends(Ev)| := max
e∈edges(Y)

ord(e)

≤ |vertices(λ(Tw)) ∩
⋃

T ′≹Tw

vertices(λ(T ′))| ≤ max
T ′<T

|sources(λ(T ′))|

≤ |vertices(λ(Tw)) ∩ (X ∪
⋃

T ′≹Tw

vertices(λ(T ′)))| ≤ max
T ′≤T

|sources(λ(T ′))|

= |sources(λ(Tw))| = wd(T)

Lemma 3.18. Let Γ = (G,X) be a hypergraph with sources and G = (V,E) be its underlying
hypergraph. Let (Y, b) be a branch decomposition of G. Then, there is a branch decomposition
I(Y, b) of Γ such that wd(I(Y, b)) ≤ wd(Y, b) + |X|.

Proof. Proceed by induction on |edges(Y)|. If Y has no edges, then either G has no edges
and (Y, b) = () or G has only one edge el and (Y, b) = (el). In either case, define I(Y, b) := (Γ)
and wd(I(Y, b)) := |X| ≤ wd(Y, b) + |X|.

If Y has at least one edge e, then Y = Y1
e
—Y2 with Yi a subcubic tree. Let Ei =

b(leaves(Yi)) be the sets of edges of G indicated by the leaves of Yi. Then, E1 ⊔ E2 = E.
By induction hypothesis, there are inductive branch decompositions Ti := I(Yi, bi) of
Γi = (Gi, Xi), where V1 := ends(E1), V2 := ends(E2)∪(V \V1), Xi := (V1∩V2)∪(Vi∩X) and
Gi := (Vi, Ei). Then, the tree I(Y, b) := (T1—Γ—T2) is an inductive branch decomposition
of Γ and, by applying Lemma 3.16,

wd(I(Y, b))
:= max{wd(T1), |X|,wd(T2)}
= max

T ′≤T
|sources(λ(T ′))|

≤ max
T ′≤T

|vertices(λ(T ′)) ∩ ends(E \ edges(λ(T ′)))|+ |X|

= max
e∈edges(Y)

ord(e) + |X|

:=wd(Y, b) + |X|

Combining Lemma 3.17 and Lemma 3.18 we obtain:

Proposition 3.19. Inductive branch width is equivalent to branch width.

3.3. Cospans of hypergraphs. We work with the category UHGraph of undirected hyper-
graphs and their homomorphisms (Definition 3.1). The monoidal category Cospan(UHGraph)
of cospans is a standard choice for an algebra of “open” hypergraphs. Hypergraphs are
composed by glueing vertices [RSW05,GH97,Fon15]. We do not need the full expressivity
of Cospan(UHGraph) and restrict to Cospan(UHGraph)∗, where the objects are sets, seen as
discrete hypergraphs.

Definition 3.20. A cospan in a category C is a pair of morphisms in C that share the
same codomain, called the head, f : X → E and g : Y → E. When C has finite colimits,
cospans form a symmetric monoidal category Cospan(C) whose objects are the objects of C

15:16 E. Di Lavore and P. Sobociński Vol. 19:3

and morphisms are cospans in C. More precisely, a morphism X → Y in Cospan(C) is an

equivalence class of cospans X
f→ E

g← Y , up to isomorphism of the head of the cospan. The

composition of X
f→ E

g← Y and Y
h→ F

l← Z is given by the pushout of g and h. Intuitively,
the pushout of g and h “glues” E and F along the images of g and h (see Example 3.23).
The monoidal product is given by component-wise coproducts.

We can construct the category of cospans of hypergraphs Cospan(UHGraph) because the
category of hypergraphs UHGraph has all finite colimits.

Proposition 3.21. The category UHGraph has all finite colimits and they are computed
pointwise.

Proof. Let D : J→ UHGraph be a diagram in UHGraph. Then, every object i in J determines
a hypergraph Gi := D(i) = (Vi, Ei, endsi) and every f : i→ j in J, gives a hypergraph homo-
morphism D(f) = (fV , fE). Let the functors UE : UHGraph→ Set and UV : UHGraph→ Set
associate the edges, resp. vertices, component to hypergraphs and hypergraph homomor-
phisms: for a hypergraph G = (V,E), UE(G) := E and UV (G) := V ; and, for a morphism
f = (fV , fE), UE(f) := fE and UV (f) := fV . (

Vi
fV→ Vj

)

(
i

f→ j
) (

Gi
(fV ,fE)−→ Gj

)

(
Ei

fE→ Ej

)

D

UV

UE

The category Set has all colimits, thus there are E0 := colim(D;UE) and V0 := colim(D;UV).
Let ci : Vi → V0 and di : Ei → E0 be the inclusions given by the colimits. Then, for any
i, j ∈ Obj(J) the following diagrams commute:

Vi Vj

V0

fV

ci cj

Ei Ej

E0

fE

di dj

By definition of hypergraph morphism, fE ; endsj = endsi ; ℘(fV), and, by functoriality of ℘,
℘(fV) ; ℘(cj) = ℘(ci). This shows that ℘(V0) is a cocone over D ;UE with morphisms given
by endsi ; ℘(ci). Then, there is a unique morphism ends : E0 → ℘(V0) that commutes with
the cocone morphisms: di ; ends = endsi ; ℘(ci).

Ei Ej ℘(Vi) ℘(Vj)

E0 ℘(V0)

di

fE

endsi

dj

endsj

℘(ci)

℘(fV)

℘(cj)
ends

Vol. 19:3 MONOIDAL WIDTH 15:17

This shows that the pairs (ci, di) are hypergraph morphisms and, with the hypergraph
defined by G0 := (V0, E0, ends), form a cocone over D in UHGraph. Let H = (VH , EH , endsH)
be another cocone over D with morphisms (ai, bi) : Gi → H.

Gi Gj

G0 H

Df

(ci,di)
(ai,bi) (cj ,dj)

(aj ,bj)

We show that G0 is initial by constructing a morphism (hV , hE) : G0 → H and showing that
it is the unique one commuting with the inclusions.

By applying the functors UE and UV to the diagram above, we obtain the following
diagrams in Set, where hV : V0 → VH and hE : E0 → EH are the unique morphism from the
colimit cone.

Vi Vj

V0 VH

fV

ci
ai cj

aj

hV

Ei Ej

E0 EH

fE

di
bi dj bj

hE

We show that (hV , hE) is a hypergraph morphism. The object ℘(VH) is a cocone over
D ;UE in (at least) two ways: with morphisms di ; ends ; ℘(hV) and morphisms bi ; endsH .
By initiality of E0, there is a unique morphism E0 → ℘(VH) and it must coincide with
hE ; endsH and ends ; ℘(hV).

E0 EH

℘(V0) ℘(VH)

hE

ends endsH

℘(hV)

This proves that (hV , hE) is a hypergraph morphism. It is, moreover, unique because
any other morphism with this property would have the same components. In fact, let
(h′V , h

′
E) : G0 → H be another hypergraph morphism that commutes with the cocones, i.e.

(ci, di) ; (h
′
V , h

′
E) = (ai, bi). Then, its components must commute with the respective cocones

in Set, by functoriality of UE and UV : ci ; h
′
V = ai and di ; h

′
E = bi. By construction, V0

and E0 are the colimits of D ;UV and D ;UE , so there are unique morphisms to any other
cocone over the same diagrams. This means that h′V = hV and h′E = hE , which shows the
uniqueness of (hV , hE).

Definition 3.22. The category Cospan(UHGraph)∗ is the full subcategory of
Cospan(UHGraph) on discrete hypergraphs. Objects are sets and a morphism g : X → Y is
given by a hypergraph G = (V,E) and two functions, ∂X : X → V and ∂Y : Y → V .

Composition in Cospan(UHGraph)∗ is given by identification of the common sources: if
two vertices are pointed by a common source, then they are identified.

Example 3.23. The composition of two morphisms with a single edge along a common
vertex gives a path of length two, obtained by identifying the vertex v of the first morphism

15:18 E. Di Lavore and P. Sobociński Vol. 19:3

= = =

= = =

= =

Figure 5. Generators and axioms of a special Frobenius monoid.

with the vertex u of the second.

u v u v

=

u v

3.4. String diagrams for cospans of hypergraphs. We introduce a syntax for the
monoidal category Cospan(UHGraph)∗, which we will use for proving some of the results in
this section. We will show that the syntax for Cospan(UHGraph)∗ is given by the syntax of
Cospan(Set) together with an extra “hyperedge” generator en : n→ 0 for every n ∈ N. This
result is inspired by the similar one for cospans of directed graphs [RSW05].

It is well-known that the category Cospan(Set) of finite sets and cospans of functions
between them has a convenient syntax given by the walking special Frobenius monoid [Lac04].

Proposition 3.24 [Lac04]. The skeleton of the monoidal category Cospan(Set) is isomorphic
to the prop sFrob, whose generators and axioms are in Figure 5.

In order to obtain cospans of hypergraphs from cospans of sets, we need to add generators
that behave like hyperedges: they have n inputs and these inputs can be permuted without
any effect.

Definition 3.25. Define UHedge to be the prop generated by a “hyperedge” generator
en : n→ 0 for every n ∈ N such that permuting its inputs does not have any effect:

∀n ∈ N
n

such that ∀ permutation σ : n→ n σ
n

n =
n

The syntax for cospans of graphs is defined as a coproduct of props.

Definition 3.26. Define the prop FGraph as a coproduct: FGraph := sFrob+ UHedge.

We will show that every morphism g : n→ m in FGraph corresponds to a morphism in
Cospan(UHGraph)∗.

Vol. 19:3 MONOIDAL WIDTH 15:19

Example 3.27. The string diagram below corresponds to a hypergraph with two left sources,
one right source and two hyperedges. The number of endpoints of each hyperedge is given
by the arity of the corresponding generator in the string diagram. Two hyperedges are
adjacent to the same vertex when they are connected by the Frobenius structure in the
string diagram, and a hyperedge is adjacent to a source when it is connected to an input or
output in the string diagram.

⇝

Proposition 3.28. There is a symmetric monoidal functor S : FGraph→ Cospan(UHGraph)∗.

Proof. By definition, FGraph := sFrob + UHedge is a coproduct. Therefore, it suffices to
define two symmetric monoidal functors S1 : sFrob→ Cospan(UHGraph)∗ and S2 : UHedge→
Cospan(UHGraph)∗ for constructing the functor S := [S1,S2].

The category of cospans of finite sets embeds into the category of cospans of undirected hy-
pergraphs, and in particular Cospan(Set) ↪→ Cospan(UHGraph)∗. By Proposition 3.24, there
is a functor sFrob→ Cospan(Set), which gives us a functor S1 : sFrob→ Cospan(UHGraph)∗.

For the functor S2, we need to define it on the generators of UHedge and show that
it preserves the equations. We define S2(en) to be the cospan of graphs n→ (n, {e})← ∅
given by 1n : n → n and ¡n : ∅ → n. With this assignment, we can freely extend S2 to
a monoidal functor UHedge → Cospan(UHGraph)∗. In fact, it preserves the equations of
UHedge because permuting the order of the endpoints of an undirected hyperedge has no
effect by definition.

In order to instantiate monoidal width in Cospan(UHGraph)∗, we need to define an
appropriate weight function.

Definition 3.29. Let A be all morphisms of Cospan(UHGraph)∗. Define the weight function
as follows. For an object X, w(X) := |X|. For a morphism g ∈ A, w(g) := |V |, where V is
the set of vertices of the apex of g, i.e. g = X → G← Y and G = (V,E).

3.5. Tree width as monoidal width. Here we show that monoidal width in the monoidal
category Cospan(UHGraph)∗, with the weight function given in Definition 3.29, is equivalent
to tree width. We do this by bounding monoidal width by above with branch width +1 and
by below with half of branch width (Theorem 3.34). We prove these bounds by defining
maps from inductive branch decompositions to monoidal decompositions that preserve the
width (Proposition 3.30), and vice versa (Proposition 3.33).

The idea behind the mapping from inductive branch decompositions to monoidal
decompositions is to take a one-edge hypergraph for each leaf of the inductive branch
decomposition and compose them following the structure of the decomposition tree. The
3-clique has a branch decomposition as shown on the left. The corresponding monoidal

15:20 E. Di Lavore and P. Sobociński Vol. 19:3

decomposition is shown on the right.

B†
7→

Proposition 3.30. Let Γ = (G,X) be a hypergraph with sources and T be an inductive

branch decomposition of Γ. Let g := X
ι→ G← ∅ be the corresponding cospan. Then, there

is a monoidal decomposition B†(T) ∈ Dg such that wd(B†(T)) ≤ max{wd(T) + 1, γ(G)}.

Proof. Let G = (V,E) and proceed by induction on the decomposition tree T . If the
tree T = (Γ) is composed of only a leaf, then the label Γ of this leaf must have only one
hyperedge with γ(G) endpoints and wd(T) := |X|. We define the corresponding monoidal
decomposition to also consist of only a leaf, B†(T) := (g), and obtain the desired bound
wd(B†(T)) = max{|X|, γ(G)} = max{wd(T), γ(G)}.

If T = (T1—Γ—T2), then, by definition of branch decomposition, T is composed of two
subtrees T1 and T2 that give branch decompositions of Γ1 = (G1, X1) and Γ2 = (G2, X2).
There are three conditions imposed by the definition on these subgraphs Gi = (Vi, Ei):
E = E1⊔E2 with Ei ̸= ∅, V1∪V2 = V , and Xi = (V1∩V2)∪ (X∩Vi). Let gi = Xi → Gi ← ∅
be the cospan given by ι : Xi → Vi and corresponding to Γi. Then, we can decompose g in
terms of identities, the structure of Cospan(UHGraph)∗, and its subgraphs g1 and g2:

g =
g1

g2

By induction hypothesis, there are monoidal decompositions B†(Ti) of gi whose width
is bounded: wd(B†(Ti)) ≤ max{wd(Ti) + 1, γ(Gi)}. By Lemma 2.8, there is a monoidal
decomposition C(B†(T1)) of the morphism in the above dashed box of bounded width:
wd(C(B†(T1))) ≤ max{wd(B†(T1)), |X1|+ 1}. Using this decomposition, we can define the
monoidal decomposition given by the cuts in the figure above.

B†(T) := ((C(B†(T1))—⊗—1X2\X1
)— ;X2

—B†(T2)).

We can bound its width by applying Lemma 2.8, the induction hypothesis and the relevant
definitions of width (Definition 3.11 and Definition 3.29).

wd(B†(T))
:= max{wd(C(B†(T1))),wd(B†(T2)), |X2|}

= max{wd(B†(T1)),wd(B†(T2)), |X1|+ 1, |X2|}
≤ max{wd(T1) + 1, γ(G1),wd(T2) + 1, γ(G2), |X1|+ 1, |X2|}
≤ max{max{wd(T1),wd(T2), |X1|, |X2|}+ 1, γ(G1), γ(G2)}
≤ max{max{wd(T1),wd(T2), |X|}+ 1, γ(G)}
:=max{wd(T) + 1, γ(G)}

Vol. 19:3 MONOIDAL WIDTH 15:21

The mapping B follows the same idea of the mapping B† but requires extra care: we
need to keep track of which vertices are going to be identified in the final cospan. The
function ϕ stores this information, thus it cannot identify two vertices that are not already
in the boundary of the hypergraph. The proof of Proposition 3.33 proceeds by induction
on the monoidal decomposition and constructs the corresponding branch decomposition.
The inductive step relies on ϕ to identify which subgraphs of Γ correspond to the two
subtrees in the monoidal decomposition, and, consequently, to define the corresponding
branch decomposition.

Remark 3.31. Let f : A→ C and g : B → C be two functions. The union of the images of f
and g is the image of the coproduct map [f, g] : A+B → C, i.e. im(f)∪im(g) = im([f, g]). The
intersection of the images of f and g is the image of the pullback map ⟨f ∧ g⟩ : A×C B → C,
i.e. im(f) ∩ im(g) = im(⟨f ∧ g⟩).
Remark 3.32. Let f : A → C, g : B → C and ϕ : C → V such that ∀ c ̸= c′ ∈ C ϕ(c) =
ϕ(c′)⇒ c, c′ ∈ im(f). We have that im(⟨f ;ϕ∧g ;ϕ⟩) ⊇ im(⟨f∧g⟩;ϕ). Then, im(⟨f ;ϕ∧g ;ϕ⟩) =
im(⟨f ∧ g⟩ ; ϕ) because their difference is empty:

im(⟨f ∧ g⟩ ; ϕ) \ im(⟨f ; ϕ ∧ g ; ϕ⟩)
= {v ∈ V : ∃a ∈ A ∃b ∈ B ϕ(f(a)) = ϕ(g(b)) ∧ f(a) /∈ im(g) ∧ g(b) /∈ im(f)} = ∅

Proposition 3.33. Let h = A
∂A→ H

∂B← B with H = (W,F). Let ϕ : W → V such that
∀ w ̸= w′ ∈ W ϕ(w) = ϕ(w′) ⇒ w,w′ ∈ im(∂A) ∪ im(∂B) (glueing property). Let d be a
monoidal decomposition of h. Let Γ := ((im(ϕ), F), im(∂A ; ϕ) ∪ im(∂B ; ϕ)). Then, there is
an inductive branch decomposition B(d) of Γ such that wd(B(d)) ≤ 2 ·max{wd(d), |A|, |B|}.
Proof. Proceed by induction on the decomposition tree d. If it is just a leaf, d = (h) and
H has no edges, F = ∅, then the corresponding inductive branch decomposition is empty,
B(d) := (), and we can compute its width: wd(B(d)) := 0 ≤ 2 ·max{wd(d), |A|, |B|}.

If the decomposition is just a leaf d = (h) but H has exactly one edge, F = {e}, then the
corresponding branch decomposition is just a leaf as well, B(d) := (Γ), and we can compute
its width: wd(B(d)) := |im(∂A ; ϕ) ∪ im(∂B ; ϕ)| ≤ |A|+ |B| ≤ 2 ·max{wd(d), |A|, |B|}.

If the decomposition is just a leaf d = (h) and H has more than one edge, |F | > 1,
then we can let B(d) be any inductive branch decomposition of Γ. Its width is not greater
than the number of vertices in Γ, thus we can bound its width wd(B(d)) ≤ |im(ϕ)| ≤
2 ·max{wd(d), |A|, |B|}.

If d = (d1— ;C —d2), then di is a monoidal decomposition of hi with h = h1 ;C h2. We

can give the expressions of these morphisms: h1 = A
∂1
A→ H1

∂1← C and h2 = C
∂2→ H2

∂2
B← B,

with Hi = (Wi, Fi), and obtain the following diagram, where ιi : Wi →W are the functions
induced by the pushout and we define ϕi := ιi ; ϕ.

V

W

A W1 W2 B

C

ϕ

∂1
A

ι1

ϕ1

ι2

ϕ2

∂2
B

∂1 ∂2

15:22 E. Di Lavore and P. Sobociński Vol. 19:3

We show that ϕ1 satisfies the glueing property in order to apply the induction hypothesis to
ϕ1 and H1: let w ̸= w′ ∈W1 such that ϕ1(w) = ϕ1(w

′). Then, ι1(w) = ι1(w
′) or ϕ(ι1(w)) =

ϕ(ι1(w
′)) ∧ ι1(w) ̸= ι1(w

′). Then, w,w′ ∈ im(∂1) or ι1(w), ι1(w
′) ∈ im(∂A ; ϕ) ∪ im(∂B ; ϕ).

Then, w,w′ ∈ im(∂1) or w,w
′ ∈ im(∂1

A). Then, w,w
′ ∈ im(∂1) ∪ im(∂1

A). Similarly, we can
show that ϕ2 satisfies the same property. Then, we can apply the induction hypothesis to
get an inductive branch decomposition B(d1) of Γ1 = ((im(ϕ1), F1), im(∂1

A ; ϕ1) ∪ im(∂1 ; ϕ1))
and an inductive branch decomposition B(d2) of Γ2 = ((im(ϕ2), F2), im(∂2

B ; ϕ2) ∪ im(∂2 ;
ϕ2)) with bounded width: wd(B(d1)) ≤ 2 · max{wd(d1), |A|, |C|} and wd(B(d2)) ≤ 2 ·
max{wd(d2), |B|, |C|}.

We check that we can define an inductive branch decomposition of Γ from B(d1) and
B(d2).
• F = F1 ⊔ F2 because the pushout is along discrete hypergraphs.
• im(ϕ) = im(ϕ1)∪ im(ϕ2) because im([ι1, ι2]) = W and im(ϕ1)∪ im(ϕ2) = im(ι1 ; ϕ)∪ im(ι2 ;
ϕ) = im([ι1, ι2] ; ϕ) = im(ϕ).
• im([∂1

A, ∂1] ; ϕ1) = im(ϕ1) ∩ (im(ϕ2) ∪ im(∂A ; ϕ) ∪ im(∂B ; ϕ)) because

im(ϕ1) ∩ (im(ϕ2) ∪ im(∂A ; ϕ) ∪ im(∂B ; ϕ))

= (by definition of ϕi)

im(ι1 ; ϕ) ∩ (im(ι2 ; ϕ) ∪ im(∂A ; ϕ) ∪ im(∂B ; ϕ))

= (because im(∂B) = im(∂2
B ; ι2) ⊆ im(ι2))

im(ι1 ; ϕ) ∩ (im(ι2 ; ϕ) ∪ im(∂A ; ϕ))

= (by Remark 3.31)

im(ι1 ; ϕ) ∩ im([ι2, ∂A] ; ϕ)

= (by Remark 3.31)

im(⟨ι1 ; ϕ ∧ [ι2, ∂A] ; ϕ⟩)
= (by Remark 3.32)

im(⟨ι1 ∧ [ι2, ∂A]⟩ ; ϕ)
= (because pullbacks commute with coproducts)

im([⟨ι1 ∧ ι2⟩, ⟨ι1 ∧ ∂A⟩] ; ϕ)
= (because ∂A = ∂1

A ; ι1)

im([⟨ι1 ∧ ι2⟩, ∂A] ; ϕ)
= (because ∂1 ; ι1 = ∂2 ; ι2 is the pushout map of ∂1 and ∂2)

im([∂1 ; ι1, ∂
1
A ; ι1] ; ϕ)

= (by property of the coproduct)

im([∂1, ∂
1
A] ; ϕ1)

• im([∂2, ∂
2
B] ; ϕ2) = im(ϕ2)∩ (im(ϕ1)∪ im(∂A ; ϕ)∪ im(∂B ; ϕ)) similarly to the former point.

Then, B(d) := (B(d1)—Γ—B(d2)) is an inductive branch decomposition of Γ and

wd(B(d))
:= max{wd(B(d1)), |im([∂A, ∂B])|,wd(B(d2))}
≤ max{2 · wd(d1), 2 · |A|, 2 · |C|, |A|+ |B|,

Vol. 19:3 MONOIDAL WIDTH 15:23

2 · wd(d2), 2 · |B|}
≤ 2 ·max{wd(d1), |A|, |C|,wd(d2), |B|}
:=2 ·max{wd(d), |A|, |B|}

If d = (d1—⊗—d2), then di is a monoidal decomposition of hi with h = h1 ⊗ h2. Let

hi = Xi
∂i
X→ Hi

∂i
Y← Yi with Hi = Fi

s,t

⇒ Wi. Let ιi : Wi → W be the inclusions induced
by the monoidal product. Define ϕi := ιi ; ϕ. We show that ϕ1 satisfies the glueing
property: Let w ̸= w′ ∈W1 such that ϕ1(w) = ϕ1(w

′). Then, ι1(w) = ι1(w
′) or ϕ(ι1(w)) =

ϕ(ι1(w
′))∧ι1(w) ̸= ι1(w

′). Then, ι1(w), ι1(w
′) ∈ im(∂A ;ϕ)∪ im(∂B ;ϕ) because ιi are injective.

Then, w,w′ ∈ im(∂1
A) ∪ im(∂1

B). Similarly, we can show that ϕ2 satisfies the same property.
Then, we can apply the induction hypothesis to get B(di) inductive branch decomposition
of Γi = ((im(ϕi), Fi), im([∂i

A, ∂
i
B] ; ϕi)) such that wd(B(di)) ≤ 2 ·max{wd(di), |Ai|, |Bi|}.

We check that we can define an inductive branch decomposition of Γ from B(d1) and
B(d2).
• F = F1 ⊔ F2 because the monoidal product is given by the coproduct in Set.
• im(ϕ) = im(ϕ1)∪ im(ϕ2) because im([ι1, ι2]) = W and im(ϕ1)∪ im(ϕ2) = im(ι1 ; ϕ)∪ im(ι2 ;
ϕ) = im([ι1, ι2] ; ϕ) = im(ϕ).
• im([∂1

A, ∂
1
B] ; ϕ1) = im(ϕ1) ∩ (im(ϕ2) ∪ im(∂A ; ϕ) ∪ im(∂B ; ϕ)) because

im(ϕ1) ∩ (im(ϕ2) ∪ im(∂A ; ϕ) ∪ im(∂B ; ϕ))

= (by definition of ϕi)

im(ι1 ; ϕ) ∩ (im(ι2 ; ϕ) ∪ im(∂A ; ϕ) ∪ im(∂B ; ϕ))

= (by Remark 3.31 and property of the coproduct)

im(ι1 ; ϕ) ∩ im([ι2, [∂A, ∂B]] ; ϕ)

= (by Remark 3.31)

im(⟨ι1 ; ϕ ∧ [ι2, [∂A, ∂B]] ; ϕ⟩)
= (by Remark 3.32)

im(⟨ι1 ∧ [ι2, [∂A, ∂B]]⟩ ; ϕ)
= (because pullbacks commute with coproducts)

im([⟨ι1 ∧ ι2⟩, ⟨ι1 ∧ [∂A, ∂B]⟩] ; ϕ)
= (because ⟨ι1 ∧ ι2⟩ = ¡)

im(⟨ι1 ∧ [∂A, ∂B]⟩ ; ϕ)
= (because ∂A = ∂1

A + ∂2
A and ∂B = ∂1

B + ∂2
B)

im([∂1
A ; ι1, ∂

1
B ; ι1] ; ϕ)

= (by property of the coproduct)

im([∂1
A, ∂

1
B] ; ϕ1)

• im([∂2
A, ∂

2
B] ; ϕ2) = im(ϕ2)∩ (im(ϕ1)∪ im(∂A ; ϕ)∪ im(∂B ; ϕ)) similarly to the former point.

Then, B(d) := (B(d1)—Γ—B(d2)) is an inductive branch decomposition of Γ and

wd(B(d))
:= max{wd(B(d1)), |im([∂A, ∂B])|,wd(B(d2))}

15:24 E. Di Lavore and P. Sobociński Vol. 19:3

≤ max{2 · wd(d1), 2 · |A1|, 2 · |B1|, |A|+ |B|,
2 · wd(d2), 2 · |A2|, 2 · |B2|}

≤ 2 ·max{wd(d1), |A|,wd(d2), |B|}
:=2 ·max{wd(d), |A|, |B|}

where we applied the induction hypothesis and Definition 3.29.

Combining Theorem 3.9, Proposition 3.19, Proposition 3.30, and Proposition 3.33, we
obtain the following.

Theorem 3.34. Branch width is equivalent to monoidal width in Cospan(UHGraph)∗. More
precisely, let G be a hypergraph and g = ∅ → G ← ∅ be the corresponding morphism of
Cospan(UHGraph)∗. Then, 1

2 · bwd(G) ≤ mwd(g) ≤ bwd(G) + 1.

With Theorem 3.9, we obtain:

Corollary 3.35. Tree width is equivalent to monoidal width in Cospan(UHGraph)∗.

4. Monoidal width in matrices

We have just seen that instantiating monoidal width in a monoidal category of graphs yields
a measure that is equivalent to tree width. Now, we turn our attention to rank width, which
is more linear algebraic in flavour as it relies on treating the connectivity of graphs by means
of adjacency matrices. Thus, the monoidal category of matrices is a natural example to
study first. We relate monoidal width in the category of matrices over the natural numbers,
which we introduce in Section 4.1, to their rank (Section 4.2).

The rank of a matrix is the maximum number of its linearly independent rows (or, equiv-
alently, columns). Conveniently, it can be characterised in terms of minimal factorisations.

Lemma 4.1 [PO99]. Let A ∈ MatN(m,n) be an m by n matrix with entries in the natural
numbers. Then rk(A) = min{k ∈ N : ∃B ∈ MatN(k, n) ∃C ∈ MatN(m, k) A = C ·B}.

4.1. The prop of matrices. The monoidal category MatN of matrices with entries in the
natural numbers is a prop whose morphisms from n to m are m by n matrices.

Definition 4.2. MatN is the prop whose morphisms n→ m are m by n matrices with entries
in the natural numbers. Composition is the usual product of matrices and the monoidal
product is the biproduct A⊗B :=

(
A 0
0 B

)
.

Let us examine matrix decompositions enabled by this algebra. A matrix A can be
written as a monoidal product A = A1 ⊗ A2 iff the matrix has blocks A1 and A2, i.e.

A =
(

A1 0
0 A2

)
. On the other hand, a composition is related to the rank: the statement of

Lemma 4.1 can be read in the category MatN as rk(A) = min{k ∈ N : A = B ;k C}.

Theorem 4.3 [Zan15]. Let Bialg be the prop whose generators and axioms are given in
Figure 6. There is an isomorphism of categories Mat : Bialg→ MatN.

Every morphism f : n→ m in Bialg corresponds to a matrix A = Mat(f) ∈ MatN(m,n):
we can read the (i, j)-entry of A off the diagram of f by counting the number of paths from
the jth input to the ith output.

Vol. 19:3 MONOIDAL WIDTH 15:25

= = =

= = =

= = = =

Figure 6. Generators and axioms of a bialgebra.

Example 4.4. The matrix
(

1 0
1 2
0 0

)
∈ MatN(3, 2) corresponds to

For matrices A ∈ MatN(m,n), B ∈ MatN(m, p) and C ∈ MatN(l, n), we indicate with
(A | B) ∈ MatN(m,n + p) and with

(
A
C

)
∈ MatN(m + l, n) the matrices obtained by

concatenating A with B horizontally or with C vertically.

In order to instantiate monoidal width in Bialg, we need to define an appropriate weight
function: the natural choice for a prop is to assign weight n to compositions along the object
n.

Definition 4.5. The atoms for Bialg are its generators (Figure 6) with the symmetry
and identity on 1: A = { 1, 1, 1, 1, 1,1,11}. The weight function w : A ∪ {⊗} ∪
Obj(Bialg)→ N has w(n) := n, for any n ∈ N, and w(g) := max{m,n}, for g : n→ m ∈ A.

4.2. Monoidal width of matrices. We show that the monoidal width of a morphism
in the category of matrices Bialg, with the weight function in Definition 4.5, is, up to 1,
the maximum rank of its blocks. The overall strategy to prove this result is to first relate
monoidal width directly with the rank (Proposition 4.8) and then to improve this bound by
prioritising ⊗-nodes in a decomposition (Proposition 4.10). Combining these two results
leads to Theorem 4.13. The shape of an optimal decomposition is given in Figure 7: a matrix

A =

A1 0 ··· 0
0 A2 ··· 0
...

...
. . .

...
0 0 ··· Ak

 can be decomposed as A = (M1 ;N1)⊗ (M2 ;N2)⊗ · · · ⊗ (Mk ;Nk),

where Aj = Mj ;Nj is a rank factorisation as in Lemma 4.1.
The characterisation of the rank of a matrix in Lemma 4.1 hints at some relationship

between the monoidal width of a matrix and its rank. In fact, we have Proposition 4.8,

15:26 E. Di Lavore and P. Sobociński Vol. 19:3

M1 N1

M2 N2

...

Mk Nk

Figure 7. Generic shape of an optimal decomposition in Bialg.

which bounds the monoidal width of a matrix with its rank. In order to prove this result, we
first need to bound the monoidal width of a matrix with its domain and codomain, which is
done in Proposition 4.6.

Proposition 4.6. Let P be a cartesian and cocartesian prop. Suppose that 11, 1, 1, 1,

1 ∈ A and w(11) ≤ 1, w(1) ≤ 2, w(1) ≤ 2, w(1) ≤ 1 and w(1) ≤ 1. Suppose
that, for every g : 1 → 1, mwd(g) ≤ 2. Let f : n → m be a morphism in P. Then
mwd(f) ≤ min{m,n}+ 1.

Proof. We proceed by induction on k = max{m,n}. There are three base cases.

• If n = 0, then f = m because 0 is initial by hypothesis, and we can compute its width,
mwd(f) = mwd(

⊗
m 1) ≤ w(1) ≤ 1 ≤ 0 + 1.

• If m = 0, then f = n because 0 is terminal by hypothesis, and we can compute its width,
mwd(f) = mwd(

⊗
m 1) ≤ w(1) ≤ 1 ≤ 0 + 1.

• If m = n = 1, then mwd(f) ≤ 2 ≤ 1 + 1 by hypothesis.

For the induction steps, suppose that the statement is true for any f ′ : n′ → m′ with
max{m′, n′} < k = max{m,n} and min{m′, n′} ≥ 1. There are three possibilities.

(1) If 0 < n < m = k, then f can be decomposed as shown below because n+1 is uniform
and morphisms are copiable because P is cartesian by hypothesis.

fn m

= fn
m− 1

1

= fn

m− 1

1

=
f

f
n

m− 1

1

This corresponds to f = n ;(1n⊗h1);n+1 (h2⊗11), where h1 := f ;(m−1⊗11) : n→ 1
and h2 := f ; (1m−1 ⊗ 1) : n→ m− 1.

Then, mwd(f) ≤ max{mwd(n ; (1n ⊗ h1)), n+ 1,mwd(h2 ⊗ 11)}. So, we want to
bound the monoidal width of the two morphisms appearing in the formula above. For
the first morphism, we apply the induction hypothesis because h1 : n→ 1 and 1, n < k.

Vol. 19:3 MONOIDAL WIDTH 15:27

For the second morphism, we apply the induction hypothesis because h2 : n → m− 1
and n,m− 1 < k.

mwd(n ; (1n ⊗ h1)) mwd(h2 ⊗ 11)

≤ (by Lemma 2.8) = (by Definition 2.3)

max{mwd(h1), n+ 1} mwd(h2)

≤ (by induction hypothesis) ≤ (by induction hypothesis)

max{min{n, 1}+ 1, n+ 1} min{n,m− 1}+ 1

= (because 0 < n) = (because n ≤ m− 1)

n+ 1 n+ 1

Then, mwd(f) ≤ n+ 1 = min{m,n}+ 1 because n < m.
(2) If 0 < m < n = k, we can apply Item 1 to Pop with the same assumptions on the set of

atoms because Pop is also cartesian and cocartesian. We obtain that mwd(f) ≤ m+ 1 =
min{m,n}+ 1 because m < n.

(3) If 0 < m = n = k, f can be decomposed as in Item 1 and, instead of applying
the induction hypothesis to bound mwd(h1) and mwd(h2), one applies Item 2. Then,
mwd(f) ≤ m+ 1 = min{m,n}+ 1 because m = n.

We can apply the former result to Bialg and obtain Proposition 4.8 because the width
of 1 × 1 matrices, which are numbers, is at most 2. This follows from the reasoning
in Example 2.5 as we can write every natural number k : 1→ 1 as the following composition:

. . .

Lemma 4.7. Let k : 1→ 1 in Bialg. Then, mwd(k) ≤ 2.

Proposition 4.8. Let f : n→ m in Bialg. Then, mwdf ≤ rk(Matf) + 1. Moreover, if f
is not ⊗-decomposable, i.e. there are no f1, f2 both distinct from f s.t. f = f1 ⊗ f2, then
rk(Matf) ≤ mwdf .

Proof. We prove the second inequality. Let d be a monoidal decomposition of f . By
hypothesis, f is non ⊗-decomposable. Then, there are two options.

(1) If the decomposition is just a leaf, d = (f), then f must be an atom. We can check
the inequality for all the atoms: w() = 2 ≥ rk(Matf) = 2, w(1) = w(1) =
2 ≥ rk(Matf) = 1 or w(1) = w(1) = 1 ≥ rk(Matf) = 0. Then, wd(d) = w(f) ≥
rk(Matf).

(2) If d = (d1— ;k —d2), then there are g : n → k and h : k → m such that f = g ; h. By
Lemma 4.1, k ≥ rk(Matf). Then, wd(d) ≥ k ≥ rk(Matf).

We prove the first inequality. By Lemma 4.1, there are g : n→ r and h : r → m such that
f = g ; h with r = rk(Matf). Then, r ≤ m,n by definition of rank. By Lemma 4.7, we
can apply Proposition 4.6 to obtain that mwd(g) ≤ min{n, r}+ 1 = r + 1 and mwd(h) ≤
min{m, r}+ 1 = r + 1. Then, mwd(f) ≤ max{mwd(g), r,mwd(h)} ≤ r + 1.

The bounds given by Proposition 4.8 can be improved when we have a ⊗-decomposition
of a matrix, i.e. we can write f = f1 ⊗ . . .⊗ fk, to obtain Proposition 4.10. The latter relies
on Lemma 4.9, which shows that discarding inputs or outputs cannot increase the monoidal
width of a morphism in Bialg.

15:28 E. Di Lavore and P. Sobociński Vol. 19:3

Lemma 4.9. Let f : n → m in Bialg and d ∈ Df . Let fD := f ; (1m−k ⊗ k) and
fZ := (1n−k′ ⊗ k′) ; f , with k ≤ m and k′ ≤ n.

fD := fn m− k , fZ := fn− k m .

Then there are D(d) ∈ DfD and Z(d) ∈ DfZ such that wd(D(d)) ≤ wd(d) and wd(Z(d)) ≤
wd(d).

Proof. We show the inequality for fD by induction on the decomposition d. The inequality for
fZ follows from the fact that Bialg coincides with its opposite category. If the decomposition
has only one node, d = (f), then f is an atom and we can check these cases by hand in
the table below. The first column shows the possibilities for f , while the second and third
columns show the decompositions of fD for k = 1 and k = 2.

f k = 1 k = 2

=

= =

=

= =

=

If the decomposition starts with a composition node, d = (d1— ;—d2), then f = f1 ; f2,
with di monoidal decomposition of fi.

fn m− k = f1 f2n m− k

By induction hypothesis, there is a monoidal decomposition D(d2) of f2 ; (1m−k ⊗ k)
such that wd(D(d2)) ≤ wd(d2). We use this decomposition to define a decomposition
D(d) := (d1— ;—D(d2)) of fD. Then, D(d) is a monoidal decomposition of f ; (1m−k ⊗ k)
because f ; (1m−k ⊗ k) = f1 ; f2 ; (1m−k ⊗ k).

If the decomposition starts with a tensor node, d = (d1— ⊗—d2), then f = f1 ⊗ f2,
with di monoidal decomposition of fi : ni → mi. There are two possibilities: either k ≤ m2

or k > m2. If k ≤ m2, then f ; (1m−k ⊗ k) = f1 ⊗ (f2 ; (1m2−k ⊗ k)).

fn m− k =
f1

f2

n1

n2

m1

m2 − k

By induction hypothesis, there is a monoidal decomposition D(d2) of f2 ; (1m−k ⊗ k) such
that wd(D(d2)) ≤ wd(d2). Then, we can use this decomposition to define a decomposition
D(d) := (d1— ⊗—D(d2)) of fD. If k > m2, then f ; (1m−k ⊗ k) = (f1 ; (1m1−k+m2 ⊗

k−m2))⊗ (f2 ; m2).

fn m− k =
f1

f2

n1

n2

m1 − k + m2

By induction hypothesis, there are monoidal decompositions D(di) of f1 ;(1m1−k+m2⊗ k−m2)
and f2 ; m2 such that wd(D(di)) ≤ wd(di). Then, we can use these decompositions to define
a monoidal decomposition D(d) := (D(d1)—⊗—D(d2)) of fD.

Vol. 19:3 MONOIDAL WIDTH 15:29

Proposition 4.10. Let f : n → m in Bialg and d′ = (d′1— ;k —d′2) ∈ Df . Suppose there
are f1 and f2 such that f = f1 ⊗ f2. Then, there is d = (d1— ⊗—d2) ∈ Df such that
wd(d) ≤ wd(d′).

Proof. By hypothesis, d′ is a monoidal decomposition of f . Then, there are g and h such
that f1 ⊗ f2 = f = g ; h. By Proposition 4.8, there are monoidal decompositions di of fi
with wd(di) ≤ ri + 1, where ri := rk(Matfi). By properties of the rank, r1 + r2 = rk(Matf)
and, by Lemma 4.1, rk(Matf) ≤ k.

There are two cases: either both ranks are non-zero, or at least one is zero. If ri > 0,
then r1 + r2 ≥ max{r1, r2}+ 1. If there is ri = 0, then fi = ;0 and we may assume that
f1 = ;0 . Then, we can express f2 in terms of g and h.

f2 =
f2

=
f2

f1
= g h

By Lemma 4.9, mwd((1 ⊗) ; g) ≤ mwd(g) and mwd(h ; (1 ⊗)) ≤ mwd(h). We compute
the widths of the decompositions in these two cases.

Case ri > 0 Case r1 = 0

wd(d′) wd(d′)

= max{wd(d′1), k,wd(d′2)} = max{wd(d′1), k,wd(d′2)}
≥ k ≥ max{mwd(g), k,mwd(h)}
≥ rk(Matf) ≥ max{mwd((1 ⊗) ; g), k,mwd(h ; (1 ⊗))}
= r1 + r2 ≥ mwd(f2)

≥ max{r1, r2}+ 1 = wd(d2)

≥ max{wd(d1),wd(d2)} = wd(d)

= wd(d)

We summarise Proposition 4.10 and Proposition 4.8 in Corollary 4.11.

Corollary 4.11. Let f = f1⊗. . .⊗fk in Bialg. Then, mwd(f) ≤ maxi=1,...,k rk(Mat(fi))+1.
Moreover, if fi are not ⊗-decomposable, then maxi=1,...,k rk(Mat(fi)) ≤ mwdf .

Proof. By Proposition 4.10 there is a decomposition of f of the form d = (d1—⊗— · · · (dk−1—⊗
—dk)), where we can choose di to be a minimal decomposition of fi. Then, mwd(f) ≤ wd(d) =
maxi=1,...,k wd(di). By Proposition 4.8, wd(di) ≤ ri+1. Then, mwd(f) ≤ max{r1, . . . , rk}+1.
Moreover, if fi are not ⊗-decomposable, Proposition 4.8 gives also a lower bound on their
monoidal width: rk(Mat(fi)) ≤ mwdfi; and we obtain that maxi=1,...,k rk(Mat(fi)) ≤
mwdf .

The results so far show a way to construct efficient decompositions given a ⊗-decomposi-
tion of the matrix. However, we do not know whether ⊗-decompositions are unique.
Proposition 4.12 shows that every morphism in Bialg has a unique ⊗-decomposition.

Proposition 4.12. Let C be a monoidal category whose monoidal unit 0 is both initial and
terminal, and whose objects are a unique factorisation monoid. Let f be a morphism in C.
Then f has a unique ⊗-decomposition.

15:30 E. Di Lavore and P. Sobociński Vol. 19:3

Proof. Suppose f = f1 ⊗ · · · ⊗ fm = g1 ⊗ · · · ⊗ gn with fi : Xi → Yi and gj : Zj → Wj non
⊗-decomposables. Suppose m ≤ n and proceed by induction on m. If m = 0, then f = 10

and gi = 10 for every i = 1, . . . , n because 0 is initial and terminal.
Suppose that f̄ := f1 ⊗ . . .⊗ fm−1 has a unique ⊗-decomposition. Let A1 ⊗ . . .⊗ Aα

and B1 ⊗ . . .⊗Bβ be the unique ⊗-decompositions of X1 ⊗ . . .⊗Xm = Z1 ⊗ . . .⊗ Zn and
Y1 ⊗ . . .⊗ Ym = W1 ⊗ . . .⊗Wn, respectively. Then, there are x ≤ α and y ≤ β such that
A1⊗ . . .⊗Ax = X1⊗ . . .⊗Xm−1 and B1⊗ . . .⊗By = Y1⊗ . . .⊗Ym−1. Then, we can rewrite
f̄ in terms of gis:

f1

fm−1

X1

Xm−1

Y1

Ym−1

...
=

f1

fm−1

fm

X1

Xm−1

Y1

Ym−1

...

=

g1

gk−1

gk

gn

...

...

=

g1

gk−1

...

By induction hypothesis, f̄ has a unique ⊗-decomposition, thus it must be that k = m− 1,
for every i < m− 1 fi = gi and fm−1 = (1 ⊗) ; gk ; (1 ⊗). Then, we can express fm in
terms of gm, . . . , gn:

fmXm Ym =

f1

fm−1

fmXm Ym

...

=

g1

gm−1

gm

gn

...

...

=

gm−1

gm

gn

...

By hypothesis, fm is not ⊗-decomposable and m ≤ n. Thus, n = m, fm−1 = gm−1 and
fm = gm.

Our main result in this section follows from Corollary 4.11 and Proposition 4.12, which
can be applied to Bialg because 0 is both terminal and initial, and the objects, being a free
monoid, are a unique factorisation monoid.

Theorem 4.13. Let f = f1⊗ . . .⊗fk be a morphism in Bialg and its unique ⊗-decomposition
given by Proposition 4.12, with ri = rk(Mat(fi)). Then max{r1, . . . , rk} ≤ mwd(f) ≤
max{r1, . . . , rk}+ 1.

Note that the identity matrix has monoidal width 1 and twice the identity matrix has
monoidal width 2, attaining both the upper and lower bounds for the monoidal width of a
matrix.

Vol. 19:3 MONOIDAL WIDTH 15:31

5. A monoidal algebra for rank width

After having studied monoidal width in the monoidal category of matrices, we are ready
to introduce the second monoidal category of “open graphs”, which relies on matrices to
encode the connectivity of graphs. In this setting, we capture rank width: we show that
instantiating monoidal width in this monoidal category of graphs is equivalent to rank width.

After recalling rank width in Section 5.1, we define the intermediate notion of inductive
rank decomposition in Section 5.2, and show its equivalence to that of rank decomposition.
As for branch decompositions, adding this intermediate step allows a clearer presentation of
the correspondence between rank decompositions and monoidal decompositions. Section 5.3
recalls the categorical algebra of graphs with boundaries [CS15,DLHS21]. Finally, Section 5.4
contains the main result of the present section, which relates inductive rank decompositions,
and thus rank decompositions, with monoidal decompositions.

Rank decompositions were originally defined for undirected graphs [OS06]. This mo-
tivates us to consider graphs rather than hypergraphs as in Section 3. As mentioned in
Definition 3.3, a finite undirected graph is a finite undirected hypergraph with hyperedge
size 2. More explicitly,

Definition 5.1. A graph G = (V,E) is given by a finite set of vertices V , a finite set of
edges E and an adjacency function ends : E → ℘≤2(V), where ℘≤2(V) indicates the set of
subsets of V with at most two elements. The same information recorded in the function
ends can be encoded in an equivalence class of matrices, an adjacency matrix [G]: the sum
of the entries (i, j) and (j, i) of this matrix records the number of edges between vertex i
and vertex j; two adjacency matrices are equivalent when they encode the same graph, i.e.
[G] = [H] iff G+G⊤ = H +H⊤.

5.1. Background: rank width. Intuitively, rank width measures the amount of informa-
tion needed to construct a graph by adding edges to a discrete graph. Constructing a clique
requires little information: we add an edge between any two vertices. This is reflected in the
fact that cliques have rank width 1.

Rank width relies on rank decompositions. In analogy with branch decompositions, a
rank decomposition records in a tree a way of iteratively partitioning the vertices of a graph.

Definition 5.2 [OS06]. A rank decomposition (Y, r) of a graph G is given by a subcubic
tree Y together with a bijection r : leaves(Y)→ vertices(G).

Each edge b in the tree Y determines a splitting of the graph: it determines a two
partition of the leaves of Y , which, through r, determines a 2-partition {Ab, Bb} of the
vertices of G. This corresponds to a splitting of the graph G into two subgraphs G1 and
G2. Intuitively, the order of an edge b is the amount of information required to recover G
by joining G1 and G2. Given the partition {Ab, Bb} of the vertices of G, we can record the
edges in G beween Ab and Bb in a matrix Xb. This means that, if vi ∈ Ab and vj ∈ Bb, the
entry (i, j) of the matrix Xb is the number of edges between vi and vj .

Definition 5.3 (Order of an edge). Let (Y, r) be a rank decomposition of a graph G. Let b
be an edge of Y . The order of b is the rank of the matrix associated to it: ord(b) := rk(Xb).

Note that the order of the two sets in the partition does not matter as the rank is
invariant to transposition. The width of a rank decomposition is the maximum order of the
edges of the tree and the rank width of a graph is the width of its cheapest decomposition.

15:32 E. Di Lavore and P. Sobociński Vol. 19:3

Definition 5.4 (Rank width). Given a rank decomposition (Y, r) of a graph G, define its
width as wd(Y, r) := maxb∈edges(Y) ord(b). The rank width of G is given by the min-max
formula:

rwd(G) := min
(Y,r)

wd(Y, r).

5.2. Graphs with dangling edges and inductive definition. We introduce graphs
with dangling edges and inductive rank decomposition of them. These decompositions
are an intermediate notion between rank decompositions and monoidal decompositions.
Similarly to the definition of inductive branch decomposition (Section 3.2), they add to rank
decompositions the algebraic flavour of monoidal decompositions by using the inductive
data type of binary trees to encode a decomposition.

Intuitively, a graph with dangling edges is a graph equipped with some extra edges that
connect some vertices in the graph to some boundary ports. This allows us to combine graphs
with dangling edges by connecting some of their dangling edges. Thus, the equivalence
between rank decompositions and inductive rank decompositions formalises the intuition
that a rank decomposition encodes a way of dividing a graph into smaller subgraphs by
“cutting” along some edges.

Definition 5.5. A graph with dangling edges Γ = ([G] , B) is given by an adjacency matrix
G ∈ MatN(k, k) that records the connectivity of the graph and a matrix B ∈ MatN(k, n)
that records the “dangling edges” connected to n boundary ports. We will sometimes write
G ∈ adjacency(Γ) and B = sources(Γ).

Example 5.6. Two graphs with the same ports, as illustrated below, can be “glued”
together:

glued with gives

A rank decomposition is, intuitively, a recipe for decomposing a graph into its single-
vertex subgraphs by cutting along its edges. The cost of each cut is given by the rank of the
adjacency matrix that represents it.

rk(1 1
1 1) = 1

Decompositions are elements of a tree data type, with nodes carrying subgraphs Γ′

of the ambient graph Γ. In the following Γ′ ranges over the non-empty subgraphs of Γ:
TΓ ::= (Γ′) | (TΓ—Γ′—TΓ). Given T ∈ TΓ, the label function λ takes a decomposition
and returns the graph with dangling edges at the root: λ(T1—Γ—T2) := Γ and λ((Γ)) := Γ.

The conditions in the definition of inductive rank decomposition ensure that, by glueing
Γ1 and Γ2 together, we get Γ back.

Definition 5.7. Let Γ = ([G] , B) be a graph with dangling edges, where G ∈ MatN(k, k)
and B ∈ MatN(k, n). An inductive rank decomposition of Γ is T ∈ TΓ where either: Γ is
empty and T = (); or Γ has one vertex and T = (Γ); or T = (T1—Γ—T2) and Ti ∈ TΓi are
inductive rank decompositions of subgraphs Γi = ([Gi] , Bi) of Γ such that:

• The vertices are partitioned in two, [G] =
[(

G1 C
0 G2

)]
;

Vol. 19:3 MONOIDAL WIDTH 15:33

• The dangling edges are those to the original boundary and to the other subgraph, B1 =

(A1 | C) and B2 = (A2 | C⊤), where B =
(

A1
A2

)
.

We will sometimes write Γi = λ(Ti), Gi = adjacency(Γi) and Bi = sources(Γi). We can
always assume that the rows of G and B are ordered like the leaves of T so that we can
actually split B horizontally to get A1 and A2.

Remark 5.8. The perspective on rank width and branch width given by their inductive
definitions emphasises an operational difference between them: a branch decompositon
gives a recipe to construct a graph from its one-edge subgraphs by identifying some of their
vertices; on the other hand, a rank decomposition gives a recipe to construct a graph from
its one-vertex components by connecting some of their “dangling” edges.

Definition 5.9. Let T = (T1—Γ—T2) be an inductive rank decomposition of Γ = ([G] , B),
with Ti possibly both empty. Define the width of T inductively: if T is empty, wd(()) := 0;
otherwise, wd(T) := max{wd(T1),wd(T2), rk(B)}. Expanding this expression, we obtain

wd(T) = max
T ′ full subtree of T

rk(sources(λ(T ′))).

The inductive rank width of Γ is defined by the min-max formula irwd(Γ) := minT wd(T).

We show that the inductive rank width of Γ = ([G] , B) is the same as the rank width of
G, up to the rank of the boundary matrix B.

Before proving the upper bound for inductive rank width, we need a technical lemma
that relates the width of a graph with that of its subgraphs and allows us to compute it
“globally”.

Lemma 5.10. Let T be an inductive rank decomposition of Γ = ([G] , B). Let T ′ be a full
subtree of T and Γ′ := λ(T ′) with Γ′ = ([G′] , B′). The adjacency matrix of Γ can be written

as [G] =

[(
GL CL C
0 G′ CR
0 0 GR

)]
and its boundary as B =

(
AL

A′
AR

)
. Then, rk(B′) = rk(A′ | C⊤

L | CR).

Proof. Proceed by induction on the decomposition tree T . If it is just a leaf, T = (Γ), then
Γ has at most one vertex, and Γ′ = ∅ or Γ′ = Γ. In both cases, the desired equality is true.

If T = (T1—Γ—T2), then, by the definition of inductive rank decomposition, λ(Ti) =

Γi = ([Gi] , Bi) with [G] =
[(

G1 C
0 G2

)]
, B =

(
A1
A2

)
, B1 = (A1 | C) and B2 = (A2 | C⊤).

Suppose that T ′ ≤ T1. Then, we can write [G1] =

[(
GL CL D′

0 G′ DR
0 0 HR

)]
, A1 =

(
AL

A′
FR

)
and

C =

(
EL

E′
ER

)
. It follows that B1 =

(
AL EL

A′ E′
FR ER

)
and CR = (DR | E′). By induction hypothesis,

rk(B′) = rk(A′ | E′ | C⊤
L | DR). The rank is invariant to permuting the order of columns,

thus rk(B′) = rk(A′ | C⊤
L | DR | E′) = rk(A′ | C⊤

L | CR). We proceed analogously if
T ′ ≤ T2.

The above result allows us to relate the width of rank decompositions, which is computed
“globally”, to the width of inductive rank decompositions, which is computed “locally”, with
the following bound.

Proposition 5.11. Let Γ = ([G] , B) be a graph with dangling edges and (Y, r) be a rank
decomposition of G. Then, there is an inductive rank decomposition I(Y, r) of Γ such that
wd(I(Y, r)) ≤ wd(Y, r) + rk(B).

15:34 E. Di Lavore and P. Sobociński Vol. 19:3

Proof. Proceed by induction on the number of edges of the decomposition tree Y to construct
an inductive decomposition tree T in which every non-trivial full subtree T ′ has a correspond-
ing edge b′ in the tree Y . Suppose Y has no edges, then either G = ∅ or G has one vertex.
In either case, we define an inductive rank decomposition with just a leaf labelled with Γ,
I(Y, r) := (Γ). We compute its width by definition: wd(I(Y, r)) := rk(B) ≤ wd(Y, r)+ rk(B).

If the decomposition tree has at least an edge, then it is composed of two subcubic

subtrees, Y = Y1
b
—Y2. Let Vi := r(leaves(Yi)) be the set of vertices associated to Yi and

Gi := G[Vi] be the subgraph of G induced by the set of vertices Vi. By induction hypothesis,
there are inductive rank decompositions Ti of Γi = ([Gi] , Bi) in which every full subtree T ′

has an associated edge b′. Associate the edge b to both T1 and T2 so that every subtree of
T has an associated edge in Y . We can use these decompositions to define an inductive
rank decomposition T = (T1—Γ—T2) of Γ. Let T ′ be a full subtree of T corresponding
to Γ′ = ([G′] , B′). By Lemma 5.10, we can compute the rank of its boundary matrix
rk(B′) = rk(A′ | C⊤

L | CR), where A′, CL and CR are defined as in the statement of
Lemma 5.10. The matrix A′ contains some of the rows of B, then its rank is bounded by the
rank of B and we obtain rk(B′) ≤ rk(B) + rk(C⊤

L | CR). The matrix (C⊤
L | CR) records the

edges between the vertices in G′ and the vertices in the rest of G, which, by definition, are
the edges that determine ord(b′). This means that the rank of this matrix is the order of the
edge b′: rk(C⊤

L | CR) = ord(b′). With these observations, we can compute the width of T .

wd(T)

= max
T ′≤T

rk(B′)

= max
T ′≤T

rk(A′ | C⊤
L | CR)

≤ max
T ′≤T

rk(C⊤
L | CR) + rk(B)

= max
b∈edges(Y)

ord(b) + rk(B)

:=wd(Y, r) + rk(B)

Proposition 5.12. Let T be an inductive rank decomposition of Γ = ([G] , B) with G ∈
MatN(k, k) and B ∈ MatN(k, n). Then, there is a rank decomposition I†(T) of G such that
wd(I†(T)) ≤ wd(T).

Proof. A binary tree is, in particular, a subcubic tree. Then, the rank decomposition
corresponding to an inductive rank decomposition T can be defined by its underlying
unlabelled tree Y . The corresponding bijection r : leaves(Y) → vertices(G) between the
leaves of Y and the vertices of G can be defined by the labels of the leaves in T : the label of
a leaf l of T is a subgraph of Γ with one vertex vl and these subgraphs need to give Γ when
composed together. Then, the leaves of T , which are the leaves of Y , are in bijection with
the vertices of G: there is a bijection r : leaves(Y)→ vertices(G) such that r(l) := vl. Then,
(Y, r) is a branch decomposition of G and we can define I†(T) := (Y, r).

By construction, the edges of Y are the same as the edges of T so we can compute
the order of the edges in Y from the labellings of the nodes in T . Consider an edge b in
Y and consider its endpoints in T : let {v, vb} = ends(b) with v parent of vb in T . The
order of b is related to the rank of the boundary of the subtree Tb of T with root in vb. Let
λ(Tb) = Γb = ([Gb] , Bb) be the subgraph of Γ identified by Tb. We can express the adjacency

Vol. 19:3 MONOIDAL WIDTH 15:35

and boundary matrices of Γ in terms of those of Γb:

[G] =

[(
GL CL C
0 Gb CR
0 0 GR

)]
and B =

(
AL

A′
AR

)
.

By Lemma 5.10, the boundary rank of Γb can be computed by rk(Bb) = rk(A′ | C⊤
L | CR).

By definition, the order of the edge b is ord(b) := rk(C⊤
L | CR), and we can bound it with

the boundary rank of Γb: rk(Bb) ≥ ord(b). These observations allow us to bound the width
of the rank decomposition Y that corresponds to T .

wd(Y, r)

:= max
b∈edges(Y)

ord(b)

≤ max
b∈edges(Y)

rk(Bb)

≤ max
T ′≤T

rk(sources(λ(T ′)))

:=wd(T)

Combining Proposition 5.11 and Proposition 5.12 we obtain:

Proposition 5.13. Inductive rank width is equivalent to rank width.

5.3. A prop of graphs. Here we recall the algebra of graphs with boundaries and its
diagrammatic syntax [DLHS21]. Graphs with boundaries are graphs together with some
extra “dangling” edges that connect the graph to the left and right boundaries. They
compose by connecting edges that share a common boundary. All the information about
connectivity is handled with matrices.

Remark 5.14. The categorical algebra of graphs with boundaries is a natural choice for
capturing rank width because it emphasises the operation of splitting a graph into parts
that share some edges. This contrasts with the algebra of cospans of graphs (Section 3.3),
in which graphs are split into subgraphs that share some vertices. The difference in the
operation that is emphasised by these two algebras reflects the difference between rank width
and tree or branch width pointed out in Remark 5.8.

Definition 5.15 [DLHS21]. A graph with boundaries g : n → m is a tuple g =
([G] , L,R, P, [F]) of an adjacency matrix [G] of a graph on k vertices, with G ∈ MatN(k, k);
matrices L ∈ MatN(k, n) and R ∈ MatN(k,m) that record the connectivity of the vertices
with the left and right boundary; a matrix P ∈ MatN(m,n) that records the passing wires
from the left boundary to the right one; and a matrix F ∈ MatN(m,m) that records the
wires from the right boundary to itself. Graphs with boundaries are taken up to an equiv-
alence making the order of the vertices immaterial. Let g, g′ : n → m on k vertices, with
g = ([G] , L,R, P, [F]) and g′ = ([G′] , L′, R′, P, [F]). The graphs g and g′ are considered equal
iff there is a permutation matrix σ ∈ MatN(k, k) such that g′ = (

[
σGσ⊤] , σL, σR, P, [F]).

Graphs with boundaries can be composed sequentially and in parallel [DLHS21], forming
a symmetric monoidal category MGraph.

The prop Grph provides a convenient syntax for graphs with boundaries. It is obtained
by adding a cup and a vertex generators to the prop of matrices Bialg (Figure 6).

15:36 E. Di Lavore and P. Sobociński Vol. 19:3

Definition 5.16 [CS15]. The prop of graphs Grph is obtained by adding to Bialg the
generators ∪ : 0→ 2 and v : 1→ 0 with the equations below.

and such that = and = .

These equations mean, in particular, that the cup transposes matrices (Figure 8, left)
and that we can express the equivalence relation of adjacency matrices as in Definition 5.1:
[G] = [H] iff G+G⊤ = H +H⊤ (Figure 8, right).

C
=

C⊤
[G] = [H] iff

G
=

H

Figure 8. Adding the cup.

Proposition 5.17 [DLHS21, Theorem 23]. The prop of graphs Grph is isomorphic to the
prop MGraph.

Proposition 5.17 means that the morphisms in Grph can be written in the following
normal form

k

G

L

R

P

F
n

m

.

The prop Grph is more expressive than graphs with dangling edges (Definition 5.5): its
morphisms can have edges between the boundaries as well. In fact, graphs with dangling
edges can be seen as morphisms n→ 0 in Grph.

Example 5.18. A graph with dangling edges Γ = ([G] , B) can be represented as a morphism
in Grph

g = ([G] , B, ¡, !, [()]) = k

G

Bn

,

where ! : n→ 0 and ¡ : 0→ k are the unique maps to and from the terminal and initial object
0. We can now formalise the intuition of glueing graphs with dangling edges as explained in
Example 5.6. The two graphs there correspond to g1 and g2 below left and middle. Their
glueing is obtained by precomposing their monoidal product with a cup, i.e. ∪2 ; (g1 ⊗ g2),

Vol. 19:3 MONOIDAL WIDTH 15:37

as shown below right.

g1 = g2 = ∪2 ; (g1 ⊗ g2) =

Definition 5.19. Let the set of atomic morphisms A be the set of all the morphisms of Grph.
The weight function w : A ∪ {⊗} ∪ Obj(Grph) → N is defined, on objects n, as w(n) := n;
and, on morphisms g ∈ A, as w(g) := k, where k is the number of vertices of g.

Note that, the monoidal width of g is bounded by the number k of its vertices, thus we
could take as atoms all the morphisms with at most one vertex and the results would not
change.

5.4. Rank width as monoidal width. We show that monoidal width in the prop Grph,
with the weight function given in Definition 5.19, is equivalent to rank width. We do this
by bounding monoidal width by above with twice rank width and by below with half of
rank width (Theorem 5.26). We prove these bounds by defining maps from inductive rank
decompositions to monoidal decompositions that preserve the width (Proposition 5.23), and
vice versa (Proposition 5.25).

The upper bound (Proposition 5.23) is established by associating to each inductive rank
decomposition a suitable monoidal decomposition. This mapping is defined inductively,
given the inductive nature of both these structures. Given an inductive rank decomposition
of a graph Γ, we can construct a decomposition of its corresponding morphism g as shown
by the first equality in Figure 9. However, this decomposition is not optimal as it cuts along

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2

Figure 9. First step of a monoidal decomposition given by an inductive
rank decomposition

the number of vertices k1 + k2. But we can do better thanks to Lemma 5.21, which shows

15:38 E. Di Lavore and P. Sobociński Vol. 19:3

that we can cut along the ranks, r1 = rk(A1 | C) and r2 = rk(A2 | C⊤), of the boundaries of
the induced subgraphs to obtain the second equality in Figure 9. First, recall some facts
about ranks.

Remark 5.20. By Lemma 4.1, the rank of a composition of two matrices is bounded by their
ranks: rk(A ·B) ≤ min{rk(A), rk(B)}. If, moreover, B has full rank, then rk(A ·B) = rk(A).

Lemma 5.21. Let Ai ∈ MatN(ki, n), for i = 1, 2, and C ∈ MatN(k1, k2). Then, there are
rank decompositions of (A1 | C) and (A2 | C⊤) of the form (A1 | C) = L1 · (N1 | S · L⊤

2),
and (A2 | C⊤) = L2 · (N2 | S⊤ · L⊤

1). This ensures that we can decompose the diagram
below on the left-hand-side as the one on the right-hand-side, where r1 = rk(A1 | C) and
r2 = rk(A2 | C⊤).

A1

A2

C

n

n

k1

k2

=

N1

N2

S
L1

L2

n

n

k1

k2

r1

r2

Proof. Let r1 = rk(A1 | C) and r2 = rk(A2 | C⊤). We start by factoring (A1 | C) into
L1 · (N1 | K1),

A1

C

n
k1

k2
=

N1

K1

L1

n
k1

k2

r1

where L1 ∈ MatN(k1, r1), N1 ∈ MatN(r1, n) and K1 ∈ MatN(r1, k2). Then, we proceed with
factoring (A2 | K⊤

1) and we show that rk(A2 | K⊤
1) = rk(A2 | C⊤). Let L2 · (N2 | K2) be a

rank factorisation of (A2 | K⊤
1),

K⊤
1

A2

r1
k2

n
=

K2

N2

L2

r1
k2

n

r′

with L2 ∈ MatN(k2, r
′), N2 ∈ MatN(r

′, n) and K2 ∈ MatN(r
′, k1). We show that r′ = r2. By

the first factorisation, we obtain that C = L1 ·K1, and

(A2 | C⊤) = (A2 | K⊤
1 · L⊤

1) = (A2 | K⊤
1) ·

(
1 0
0 L⊤

1

)
.

Then, r′ = r2 because L1 and, consequently,
(

1 0
0 L⊤

1

)
have full rank. By letting S = K⊤

2 , we

obtain the desired factorisation.

Once we have performed the cuts in Figure 9 on the right, we have changed the boundaries
of the induced subgraphs. This means that we cannot apply the inductive hypothesis right
away, but we need to transform first the inductive rank decompositions of the old subgraphs
into decompositions of the new ones, as shown in Lemma 5.22. More explicitly, when M has
full rank, if we have an inductive rank decomposition of Γ = ([G] , B ·M), which corresponds
to g below left, we can obtain one of Γ′ = ([G] , B ·M ′), which corresponds to g′ below right,
of at most the same width.

g =
G

BM

⇝ g′ =
G

BM ′

Vol. 19:3 MONOIDAL WIDTH 15:39

Lemma 5.22. Let T be an inductive rank decomposition of Γ = ([G] , B ·M), with M that
has full rank. Then, there is an inductive rank decomposition T ′ of Γ′ = ([G] , B ·M ′) such
that wd(T) ≤ wd(T ′) and such that T and T ′ have the same underlying tree structure. If,
moreover, M ′ has full rank, then wd(T) = wd(T ′).

Proof. Proceed by induction on the decomposition tree T . If the tree T is just a leaf with label
Γ, then we define the corresponding tree to be just a leaf with label Γ′: T ′ := (Γ′). Clearly,
T and T ′ have the same underlying tree structure. By Remark 5.20 and the fact that M has
full rank, we can relate their widths: wd(T ′) := rk(B ·M ′) ≤ rk(B) = rk(B ·M) :=wd(T).
If, moreover, M ′ has full rank, the inequality becomes an equality and wd(T ′) = wd(T).

If T = (T1—Γ—T2), then the adjacency and boundary matrices of Γ can be expressed
in terms of those of its subgraphs Γi := λi(Ti) = ([Gi] , Di), by definition of inductive rank

decomposition: G =
(

G1 C
0 G2

)
, B ·M =

(
A1
A2

)
·M =

(
A1·M
A2·M

)
, with D1 = (A1 ·M | C) and

D2 = (A2 ·M | C⊤). The boundary matrices Di of the subgraphs Γi can also be expressed

as a composition with a full-rank matrix: D1 = (A1 ·M | C) = (A1 | C) ·
(

M 0
0 1k2

)
and

D2 = (A2 ·M | C⊤) = (A2 | C⊤) ·
(

M 0
0 1k1

)
. The matrices

(
M 0
0 1ki

)
have full rank because

all their blocks do. Let B1 = (A1 | C) and B2 = (A2 | C⊤). By induction hypothesis,

there are inductive rank decompositions T ′
1 and T ′

2 of Γ′
1 = ([G1] , B1 ·

(
M ′ 0
0 1k2

)
) and

Γ′
2 = ([G2] , B2 ·

(
M ′ 0
0 1k1

)
) with the same underlying tree structure as T1 and T2, respectively.

Moreover, their width is bounded, wd(T ′
i) ≤ wd(Ti), and if, additionally, M ′ has full rank,

wd(T ′
i) = wd(Ti). Then, we can use these decompositions to define an inductive rank

decomposition T ′ := (T ′
1—Γ′—T ′

2) of Γ
′ because its adjacency and boundary matrices can

be expressed in terms of those of Γ′
i as in the definition of inductive rank decomposition:

G =
(

G1 C
0 G2

)
, B1 ·

(
M ′ 0
0 1k2

)
= (A1 ·M ′ | C) and B2 ·

(
M ′ 0
0 1k1

)
= (A2 ·M ′ | C⊤). Applying

the induction hypothesis and Remark 5.20, we compute the width of this decomposition.

wd(T ′)

:= max{rk(B ·M ′),wd(T ′
1),wd(T

′
2)}

≤ max{rk(B),wd(T1),wd(T2)}
= max{rk(B ·M),wd(T1),wd(T2)}
:=wd(T)

If, moreover, M ′ has full rank, the inequality becomes an equality and wd(T ′) = wd(T).

With the above ingredients, we can show that rank width bounds monoidal width from
above.

Proposition 5.23. Let Γ = ([G] , B) be a graph with dangling edges and g : n→ 0 be the
morphism in Grph corresponding to Γ. Let T be an inductive rank decomposition of Γ. Then,
there is a monoidal decomposition R†(T) of g such that wd(R†(T)) ≤ 2 · wd(T).

Proof. Proceed by induction on the decomposition tree T . If it is empty, then G must also
be empty, R†(T) = () and we are done. If the decomposition tree consists of just one leaf
with label Γ, then Γ must have one vertex, we can define R†(T) := (g) to also be just a leaf,
and bound its width wd(T) := rk(G) = wd(R†(T)).

15:40 E. Di Lavore and P. Sobociński Vol. 19:3

If T = (T1—Γ—T2), then we can relate the adjacency and boundary matrices of
Γ to those of Γi := λ(Ti) = ([Gi] , Bi), by definition of inductive rank decomposition:

G =
(

G1 C
0 G2

)
, B =

(
A1
A2

)
, B1 = (A1 | C) and B2 = (A2 | C⊤). By Lemma 5.21, there are

rank decompositions of (A1 | C) and (A2 | C⊤) of the form: (A1 | C) = L1 · (N1 | S · L⊤
2);

and (A2 | C⊤) = L2 · (N2 | S⊤ · L⊤
1). This means that we can write g as

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2
,

with ri = rk(Bi). Then, Bi = Li ·Mi with Mi that has full rank ri. By taking M ′ = 1 in
Lemma 5.22, there is an inductive rank decomposition T ′

i of Γ′
i = ([Gi] , Li), with the same

underlying binary tree as Ti, such that wd(Ti) = wd(T ′
i). Let gi : ri → 0 be the morphisms

in Grph corresponding to Γ′
i and let b : n→ r1 + r2 be defined as

bn r1 + r2 =

N1

N2

S
n

r1

r2

.

By induction hypothesis, there are monoidal decompositions R†(T ′
1) and R†(T ′

2) of g1 and
g2 of bounded width: wd(R†(T ′

i)) ≤ 2 · wd(T ′
i) = 2 · wd(Ti). Then, g = b ;r1+r2 (g1 ⊗ g2) and

R†(T) := (b— ;r1+r2 —(R†(T ′
1)—⊗—R†(T ′

2))) is a monoidal decomposition of g. Its width
can be computed.

wd(R†(T))

:= max{w(b),w(r1 + r2),wd(R†(T ′
1)),wd(R†(T ′

2))}
≤ max{w(b),w(r1 + r2), 2 · wd(T ′

1), 2 · wd(T ′
2)}

= max{w(b), r1 + r2, 2 · wd(T1), 2 · wd(T2)}
≤ 2 ·max{r1, r2,wd(T1),wd(T2)}
:=2 · wd(T)

Proving the lower bound is similarly involved and follows a similar proof structure.
From a monoidal decomposition we construct inductively an inductive rank decomposition
of bounded width. The inductive step relative to composition nodes is the most involved and
needs two additional lemmas, which allow us to transform inductive rank decompositions of
the induced subgraphs into ones of two subgraphs that satisfy the conditions of Definition 5.7.

Applying the inductive hypothesis gives us an inductive rank decomposition of Γ =
([G] , (L | R)), which is associated to g below left, and we need to construct one of Γ′ :=

Vol. 19:3 MONOIDAL WIDTH 15:41

(
[
G+ L · F · L⊤] , (L | R+ L · (F + F⊤) · P⊤)), which is associated to f ; g below right, of

at most the same width.

g =
k

G

L

R

P

j

m

f ; g =
k

G

L

R

P

F
j

m

Lemma 5.24. Let T be an inductive rank decomposition of Γ = ([G] , (L | R)), with
G ∈ MatN(k, k), L ∈ MatN(k, j) and R ∈ MatN(k,m). Let F ∈ MatN(j, j), P ∈ MatN(m, j)
and define Γ′ := (

[
G+ L · F · L⊤] , (L | R+L · (F +F⊤) ·P⊤)). Then, there is an inductive

rank decomposition T ′ of Γ′ such that wd(T ′) ≤ wd(T).

Proof. Note that we can factor the boundary matrix of Γ′ as (L | R+L ·(F+F⊤) ·P⊤) = (L |
R) ·

(
1j (F+F⊤)·P⊤

0 1m

)
. Then, we can bound its rank, rk(L | R+L · (F +F⊤) ·P⊤) ≤ rk(L | R).

Proceed by induction on the decomposition tree T . If it is just a leaf with label Γ, then
Γ has one vertex and we can define a decomposition for Γ′ to be also just a leaf: T ′ := (Γ′).
We can bound its width with the width of T : wd(T ′) := rk(L | R + L · (F + F⊤) · P⊤) ≤
rk(L | R) :=wd(T).

If T = (T1—Γ—T2), then there are two subgraphs Γ1 = ([G1] , (L1 | R1 | C)) and
Γ2 = ([G2] , (L2 | R2 | C)) such that Ti is an inductive rank decomposition of Γi, and we
can relate the adjacency and boundary matrices of Γ to those of Γ1 and Γ2, by definition

of inductive rank decomposition: [G] =
[(

G1 C
0 G2

)]
and (L | R) =

(
L1 R1
L2 R2

)
. Similarly,

we express the adjacency and boundary matrices of Γ′ in terms of the same components:[
G+ L · F · L⊤] =

[(
G1+L1·F ·L⊤

1 C+L1·(F+F⊤)·L⊤
2

0 G2+L2·F ·L⊤
2

)]
and (L | R + L · (F + F⊤) · P⊤) =(

L1 R1+L1·(F+F⊤)·P⊤

L2 R2+L2·(F+F⊤)·P⊤

)
. We use these decompositions to define two subgraphs of Γ′ and

apply the induction hypothesis to them.

Γ′
1 :=(

[
G1 + L1 · F · L⊤

1

]
, (L1 | R1 + L1 · (F + F⊤) · P⊤ | C + L1 · (F + F⊤) · L⊤

2))

=(
[
G1 + L1 · F · L⊤

1

]
, (L1 | (R1 | C) + L1 · (F + F⊤) · (P⊤ | L⊤

2)))

and

Γ′
2 :=(

[
G2 + L2 · F · L⊤

2

]
, (L2 | R2 + L2 · (F + F⊤) · P⊤ | C⊤ + L2 · (F + F⊤) · L⊤

1))

=(
[
G2 + L2 · F · L⊤

2

]
, (L2 | (R2 | C⊤) + L2 · (F + F⊤) · (P⊤ | L⊤

1)))

15:42 E. Di Lavore and P. Sobociński Vol. 19:3

By induction, we have inductive rank decompositions T ′
i of Γ′

i such that wd(T ′
i) ≤ wd(Ti).

We defined Γ′
i so that T ′ := (T ′

1—Γ′—T ′
2) would be an inductive rank decomposition of Γ′.

We can bound its width as desired.

wd(T ′)

:= max{wd(T ′
1),wd(T

′
2), rk(L | R+ L · (F + F⊤) · P⊤)}

≤ max{wd(T1),wd(T2), rk(L | R+ L · (F + F⊤) · P⊤)}
≤ max{wd(T1),wd(T2), rk(L | R)}
:=wd(T)

In order to obtain the subgraphs of the desired shape we need to add some extra
connections to the boundaries. This can be done thanks to Lemma 5.22, by taking M = 1.
We are finally able to prove the lower bound for monoidal width.

Proposition 5.25. Let g = ([G] , L,R, P, [F]) in Grph and d ∈ Dg. Let Γ = ([G] , (L |
R)). Then, there is an inductive rank decomposition R(d) of Γ s.t. wd(R(d)) ≤ 2 ·
max{wd(d), rk(L), rk(R)}.

Proof. Proceed by induction on the decomposition tree d. If it is just a leaf with label g,
then its width is defined to be the number k of vertices of g, wd(d) := k. Pick any inductive
rank decomposition of Γ and define R(d) := T . Surely, wd(T) ≤ k :=wd(d)

If d = (d1— ;j —d2), then g is the composition of two morphisms: g = g1 ; g2, with
gi = ([Gi] , Li, Ri, Pi, [Fi]). Given the partition of the vertices determined by g1 and g2, we

can decompose g in another way, by writing [G] =
[(

G1 C
0 G2

)]
and B = (L | R) =

(
L1 R1

L2 R2

)
.

Then, we have that G1 = G1, L1 = L1, P = P2 ·P1, C = R1 ·L⊤
2 , R1 = R1 ·P⊤

2 , L2 = L2 ·P1,
R2 = R2 + L2 · (F1 + F⊤

1) · P⊤
2 , G2 = G2 + L2 · F1 · L⊤

2 , and F = F2 + P2 · F1 · P⊤
2 . This

corresponds to the following diagrammatic rewriting using the equations of Grph.

k1

G1

L1

R1

P1

F1n
j

k2

G2

L2

R2

P2

F2 m

=

k1

G1

L1

n

k2

G2

R2

F m

P

C⊤

R
⊤
1 L2

We define B1 := (L1 | R1 | C) and B2 := (L2 | R2 | C⊤). In order to build an inductive rank
decomposition of Γ, we need rank decompositions of Γi = (

[
Gi

]
, Bi). We obtain these in

three steps. Firstly, we apply induction to obtain inductive rank decompositionsR(di) of Γi =
([Gi] , (Li | Ri)) such that wd(R(di)) ≤ 2 ·max{wd(di), rk(Li), rk(Ri)}. Secondly, we apply

Vol. 19:3 MONOIDAL WIDTH 15:43

Lemma 5.24 to obtain an inductive rank decomposition T ′
2 of Γ

′
2 = (

[
G2 + L2 · F1 · L⊤

2

]
, (L2 |

R2 + L2 · (F1 + F⊤
1) · P⊤

2)) such that wd(T ′
2) ≤ wd(R(d2)). Lastly, we observe that (R1 |

C) = R1 · (P⊤
2 | L⊤

2) and (L2 | C⊤) = L2 · (P1 | R⊤
1). Then we obtain that B1 = (L1 |

R1) ·
(

1n 0 0
0 P⊤

2 L⊤
2

)
and B2 = (L2 | R2 + L2 · (F1 + F⊤

1) · P⊤
2) ·

(
P1 0 R⊤

1
0 1m 0

)
, and we can

apply Lemma 5.22, with M = 1, to get inductive rank decompositions Ti of Γi such that
wd(T1) ≤ wd(R(d1)) and wd(T2) ≤ wd(T ′

2) ≤ wd(R(d2)). If k1, k2 > 0, then we define
R(d) := (T1—Γ—T2), which is an inductive rank decomposition of Γ because Γi satisfy the
two conditions in Definition 5.7. If k1 = 0, then Γ = Γ2 and we can define R(d) := T2.
Similarly, if k2 = 0, then Γ = Γ1 and we can define R(d) := T1. In any case, we can
compute the width of R(d) (if ki = 0 then Ti = () and wd(Ti) = 0) using the inductive
hypothesis, Lemma 5.24, Lemma 5.22, the fact that rk(L) ≥ rk(L1), rk(R) ≥ rk(R2) and
j ≥ rk(R1), rk(L2) because R1 : j → k1 and L2 : j → k2.

wd(T)

:= max{wd(T1),wd(T2), rk(L | R)}
≤ max{wd(R(d1)),wd(T ′

2), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L) + rk(R)}
≤ max{2 · wd(d1), 2 · rk(L1), 2 · rk(R1), 2 · wd(d2), 2 · rk(L2), 2 · rk(R2), rk(L) + rk(R)}
≤ 2 ·max{wd(d1), rk(L1), rk(R1),wd(d2), rk(L2), rk(R2), rk(L), rk(R)}
≤ 2 ·max{wd(d1),wd(d2), j, rk(L), rk(R)}
:=2 ·max{wd(d), rk(L), rk(R)}

If d = (d1— ⊗—d2), then g is the monoidal product of two morphisms: g = g1 ⊗ g2,
with gi = ([Gi] , Li, Ri, Pi, [Fi]) : ni → mi. By exlicitly computing the monoidal product, we

obtain that [G] =
[(

G1 0
0 G2

)]
, L =

(
L1 0
0 L2

)
, R =

(
R1 0
0 R2

)
, P =

(
P1 0
0 P2

)
and F =

(
F1 0
0 F2

)
.

By induction, we have inductive rank decompositions R(di) of Γi := ([Gi] , Bi), where
Bi = (Li | Ri), of bounded width: wd(R(di)) ≤ 2 · max{wd(di), rk(Li), rk(Ri)}. Let

B1 := (L1 | 0n2 | R1 | 0m2 | 0k2) = B1 ·
(

1n1 0 0 0 0
0 0 1m1 0 0

)
and B2 := (0n1 | L2 | 0m1 | R2 |

0k1) = B2 ·
(

0 1n2 0 0 0
0 0 0 1m2 0

)
. By taking M = 1 in Lemma 5.22, we can obtain inductive

rank decompositions Ti of Γi := ([Gi] , Bi) such that wd(Ti) ≤ wd(R(di)). If k1, k2 > 0, then
we define R(d) := (T1—Γ—T2), which is an inductive rank decomposition of Γ because
Γi satisfy the two conditions in Definition 5.7. If k1 = 0, then Γ = Γ2 and we can define
R(d) := T2. Similarly, if k2 = 0, then Γ = Γ1 and we can define R(d) := T1. In any case, we
can compute the width of R(d) (if ki = 0 then Ti = () and wd(Ti) = 0) using the inductive
hypothesis and Lemma 5.22.

wd(T)

:= max{wd(T1),wd(T2), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L) + rk(R)}
≤ max{2 · wd(d1), 2 · rk(L1), 2 · rk(R1), 2 · wd(d2), 2 · rk(L2), 2 · rk(R2), rk(L) + rk(R)}

15:44 E. Di Lavore and P. Sobociński Vol. 19:3

≤ 2 ·max{wd(d1), rk(L1), rk(R1),wd(d2), rk(L2), rk(R2), rk(L), rk(R)}
≤ 2 ·max{wd(d1),wd(d2), rk(L), rk(R)}
:=2 ·max{wd(d), rk(L), rk(R)}

From Proposition 5.23, Proposition 5.25 and Proposition 5.13, we obtain the main result
of this section.

Theorem 5.26. Let G be a graph and let g = ([G] , ¡, ¡, (), [()]) be the corresponding
morphism in Grph. Then, 1

2 · rwd(G) ≤ mwd(g) ≤ 2 · rwd(G).

6. Conclusion and future work

We defined monoidal width for measuring the complexity of morphisms in monoidal categories.
The concrete examples that we aimed to capture are tree width and rank width. In fact, we
have shown that, by choosing suitable categorical algebras, monoidal width is equivalent to
these widths. We have also related monoidal width to the rank of matrices over the natural
numbers.

Our future goal is to leverage the generality of monoidal categories to study other
examples outside the graph theory literature. In the same way Courcelle’s theorem gives
fixed-parameter tractability of a class of problems on graphs with parameter tree width
or rank width, we aim to obtain fixed-parameter tractability of a class of problems on
morphisms of monoidal categories with parameter monoidal width. This result would rely
on Feferman-Vaught-Mostowski type theorems specific to the operations of a particular
monoidal category C or particular class of monoidal categories, which would ensure that the
problems at hand respect the compositional structure of these categories.
Conjecture. Computing a compositional problem on the set of morphisms Ck(X,Y) with k-
bounded monoidal width with a compositional algorithm is linear in w. Explicitly, computing
the solution on f ∈ Ck(X,Y) takes O(c(k) · w(f)), for some more than exponential function
c : N→ N.

References

[ADW17] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model
theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE, 2017. doi:10.1109/LICS.2017.8005129.

[AM21] Samson Abramsky and Dan Marsden. Comonadic semantics for guarded fragments. In 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470594.

[AS21] Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for
computational resources. Journal of Logic and Computation, 31(6):1390–1428, 2021. doi:

10.1093/logcom/exab048.
[BB73] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. Journal of

Combinatorial Theory, Series A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.
[BBFK11] Christoph Blume, HJ Sander Bruggink, Martin Friedrich, and Barbara König. Treewidth,

pathwidth and cospan decompositions. Electronic Communications of the EASST, 41, 2011.
doi:10.14279/tuj.eceasst.41.643.

[BC87] Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathematical
Systems Theory, 20(1):83–127, 1987. doi:10.1007/BF01692060.

[BK08] Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

https://doi.org/10.1109/LICS.2017.8005129
https://doi.org/10.1109/LICS52264.2021.9470594
https://doi.org/10.1093/logcom/exab048
https://doi.org/10.1093/logcom/exab048
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.14279/tuj.eceasst.41.643
https://doi.org/10.1007/BF01692060
https://doi.org/10.1093/comjnl/bxm037

Vol. 19:3 MONOIDAL WIDTH 15:45

[BK21] Benjamin Merlin Bumpus and Zoltan A Kocsis. Spined categories: generalizing tree-width
beyond graphs, 2021. arXiv:2104.01841.

[BKM23] Benjamin Merlin Bumpus, Zoltan Kocsis, and Jade Edenstar Master. Structured decomposi-
tions: Structural and algorithmic compositionality, 2023. arXiv:2207.06091.

[Bod92] Hans L Bodlaender. A tourist guide through treewidth. Technical report, 1992.
[BS21] Guillaume Boisseau and Pawe l Sobociński. String diagrammatic electrical circuit theory.

In Kohei Kishida, editor, Proceedings of the Fourth International Conference on Applied
Category Theory, Cambridge, United Kingdom, 12-16th July 2021, volume 372 of Electronic
Proceedings in Theoretical Computer Science, pages 178–191. Open Publishing Association,
2021. doi:10.4204/EPTCS.372.13.

[BSZ21] Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. A survey of compositional signal flow
theory. In Michael Goedicke, Erich J. Neuhold, and Kai Rannenberg, editors, Advancing
Research in Information and Communication Technology - IFIP’s Exciting First 60+ Years,
Views from the Technical Committees and Working Groups, volume 600 of IFIP Advances
in Information and Communication Technology, pages 29–56. Springer, 2021. doi:10.1007/
978-3-030-81701-5_2.

[Bum21] Benjamin Merlin Bumpus. Generalizing graph decompositions. PhD thesis, University of
Glasgow, 2021.

[CD21] Adam Ó Conghaile and Anuj Dawar. Game comonads & generalised quantifiers. In Christel
Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CSL.2021.16.

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Diagrams.
Mathematical Structures in Computer Science, pages 1–34, March 2019. doi:10.1017/

S0960129518000488.
[CK17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quan-

tum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/
9781316219317.

[CK22] Cole Comfort and Aleks Kissinger. A graphical calculus for lagrangian relations. In Kohei
Kishida, editor, Proceedings of the Fourth International Conference on Applied Category
Theory, Cambridge, United Kingdom, 12-16th July 2021, volume 372 of Electronic Proceedings
in Theoretical Computer Science, pages 338–351. Open Publishing Association, 2022. doi:
10.4204/EPTCS.372.24.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[Cou92] Bruno Courcelle. The monadic second-order logic of graphs III: Tree-decompositions, minors
and complexity issues. RAIRO-Theoretical Informatics and Applications, 26(3):257–286, 1992.
doi:10.1051/ita/1992260302571.

[CS15] Apiwat Chantawibul and Pawe l Sobociński. Towards compositional graph theory. Electronic
Notes in Theoretical Computer Science, 319:121–136, 2015. doi:10.1016/j.entcs.2015.12.
009.

[DKPvdW20] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic
simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, 2020. doi:10.22331/
q-2020-06-04-279.

[DLHS21] Elena Di Lavore, Jules Hedges, and Pawe l Sobociński. Compositional modelling of network
games. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference
on Computer Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 30:1–30:24, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2021.30.

[DLS21] Elena Di Lavore and Pawe l Sobociński. Monoidal Width: Unifying Tree Width, Path Width
and Branch Width, 2021. arXiv:2202.07582.

[DLS22] Elena Di Lavore and Pawe l Sobociński. Monoidal Width: Capturing Rank Width, to appear
in ACT 2022. arXiv:2202.07582.

http://arxiv.org/abs/2104.01841
http://arxiv.org/abs/2207.06091
https://doi.org/10.4204/EPTCS.372.13
https://doi.org/10.1007/978-3-030-81701-5_2
https://doi.org/10.1007/978-3-030-81701-5_2
https://doi.org/10.4230/LIPIcs.CSL.2021.16
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.4204/EPTCS.372.24
https://doi.org/10.4204/EPTCS.372.24
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1016/j.entcs.2015.12.009
https://doi.org/10.1016/j.entcs.2015.12.009
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.4230/LIPIcs.CSL.2021.30
http://arxiv.org/abs/2202.07582
http://arxiv.org/abs/2202.07582

15:46 E. Di Lavore and P. Sobociński Vol. 19:3

[Fon15] Brendan Fong. Decorated cospans. Theory and Applications of Categories, 30(33):1096–1120,
2015.

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, 2020.

[FS18] Brendan Fong and David I Spivak. Seven sketches in compositionality: An invitation to applied
category theory, 2018. arXiv:1803.05316.

[GH97] Fabio Gadducci and Reiko Heckel. An inductive view of graph transformation. In
Francesco Parisi Presicce, editor, International Workshop on Algebraic Development Techniques,
pages 223–237. Springer, 1997. doi:10.1007/3-540-64299-4_36.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 472–481.
ACM, 2018. doi:10.1145/3209108.3209165.

[GJL17] Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital circuits.
In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer
Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs, pages
24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
CSL.2017.24.

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1):171–186, 1976. doi:10.1007/
BF01917434.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in mathematics,
88(1):55–112, 1991. doi:10.1016/0001-8708(91)90003-P.

[Lac04] Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163, 2004.
[Mac78] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathe-

matics. Springer New York, 1978. doi:10.1007/978-1-4757-4721-8.
[Mas22] Jade Master. How to compose shortest paths, 2022. arXiv:2205.15306.
[MS22] Yoàv Montacute and Nihil Shah. The pebble-relation comonad in finite model theory. In

Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–11. ACM, 2022. doi:10.1145/3531130.3533335.

[OS06] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

[PO99] R Piziak and PL Odell. Full rank factorization of matrices. Mathematics magazine, 72(3):193–
201, 1999. doi:10.1080/0025570X.1999.11996730.

[PRS88] Pavel Pudlák, Vojtěch Rödl, and Petr Savickỳ. Graph complexity. Acta Informatica, 25(5):515–
535, 1988. doi:10.1007/bf00279952.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

[RS91] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-n.

[RSS14] Julian Rathke, Pawe l Sobociński, and Owen Stephens. Compositional reachability in Petri
nets. In Joël Ouaknine, Igor Potapov, and James Worrell, editors, International Workshop
on Reachability Problems, Lecture Notes in Computer Science, pages 230–243. Springer, 2014.
doi:10.1007/978-3-319-11439-2_18.

[RSW05] Robert Rosebrugh, Nicoletta Sabadini, and Robert FC Walters. Generic commutative separable
algebras and cospans of graphs. Theory and applications of categories, 15(6):164–177, 2005.

[Zan15] Fabio Zanasi. Interacting Hopf Algebras - The Theory of Linear Systems. PhD thesis, École
Normale Supérieure de Lyon, 2015.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

http://arxiv.org/abs/1803.05316
https://doi.org/10.1007/3-540-64299-4_36
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1007/978-1-4757-4721-8
http://arxiv.org/abs/2205.15306
https://doi.org/10.1145/3531130.3533335
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1080/0025570X.1999.11996730
https://doi.org/10.1007/bf00279952
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0095-8956(91)90061-n
https://doi.org/10.1016/0095-8956(91)90061-n
https://doi.org/10.1007/978-3-319-11439-2_18

	1. Introduction
	2. Monoidal width
	2.1. Monoidal width of copy

	3. A monoidal algebra for tree width
	3.1. Background: tree width and branch width
	3.2. Hypergraphs with sources and inductive definition
	3.3. Cospans of hypergraphs
	3.4. String diagrams for cospans of hypergraphs
	3.5. Tree width as monoidal width

	4. Monoidal width in matrices
	4.1. The prop of matrices
	4.2. Monoidal width of matrices

	5. A monoidal algebra for rank width
	5.1. Background: rank width
	5.2. Graphs with dangling edges and inductive definition
	5.3. A prop of graphs
	5.4. Rank width as monoidal width

	6. Conclusion and future work
	References

