
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 1:1–1:120
https://lmcs.episciences.org/

Submitted Dec. 08, 2021
Published Oct. 10, 2023

NON-DETERMINISTIC FUNCTIONS AS

NON-DETERMINISTIC PROCESSES

JOSEPH W. N. PAULUS a, DANIELE NANTES-SOBRINHO b, AND JORGE A. PÉREZ a

aUniversity of Groningen, The Netherlands
e-mail address: j.w.n.paulus@rug.nl, j.a.perez@rug.nl

b Imperial College London, UK and University of Braśılia, Brazil
e-mail address: dnantess@ic.ac.uk

Abstract. We study encodings of the λ-calculus into the π-calculus in the unexplored
case of calculi with non-determinism and failures. On the sequential side, we consider λ ⊕,
a new non-deterministic calculus in which intersection types control resources (terms); on
the concurrent side, we consider sπ, a π-calculus in which non-determinism and failure rest
upon a Curry-Howard correspondence between linear logic and session types. We present a
typed encoding of λ ⊕ into sπ and establish its correctness. Our encoding precisely explains

the interplay of non-deterministic and fail-prone evaluation in λ ⊕ via typed processes in sπ.
In particular, it shows how failures in sequential evaluation (absence/excess of resources)
can be neatly codified as interaction protocols.

Introduction

Milner’s seminal work on encodings of the λ-calculus into the π-calculus [Mil92] explains
how interaction in π subsumes evaluation in λ. It opened a research strand on formal
connections between sequential and concurrent calculi, covering untyped and typed regimes
(see, e.g., [San99, BL00, BHY03, TCP12, HYB14, OY16, TY18]). This paper extends this
line of work by tackling a hitherto unexplored angle, namely encodability of calculi in which
computation is non-deterministic and may be subject to failures—two relevant features in
sequential and concurrent programming models.

We focus on typed calculi and study how non-determinism and failures interact with
resource-aware computation. In sequential calculi, non-idempotent intersection types offer one
fruitful perspective at resource-awareness (see, e.g., [Gar94, Kfo00, KW04, NM04, BKV17]).
Because non-idempotency amounts to distinguish between types σ and σ ∧ σ, this class of
intersection types can “count” different resources and enforce quantitative guarantees. In
concurrent calculi, resource-awareness has been much studied using linear types. Linearity
ensures that process actions occur exactly once, which is key to enforce protocol correctness.
In particular, session types [Hon93, HVK98] specify the protocols that channels must respect;
this typing discipline exploits linearity to ensure absence of communication errors and stuck
processes. To our knowledge, connections between calculi adopting these two distinct views of

Key words and phrases: concurrency, lambda-calculus, process calculi, intersection types, session types.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:1)2023
© J. Paulus, D. Nantes, and J.A. Pérez
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-1711-9361
https://orcid.org/0000-0002-1959-8730
https://orcid.org/0000-0002-1452-6180
http://creativecommons.org/about/licenses

1:2 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

resource-awareness via types are still to be established. We aim to develop such connections
by relating models of sequential and concurrent computation.

On the sequential side, we introduce λ ⊕: a λ-calculus with resources, non-determinism,
and failures, which distills key elements from λ-calculi studied in [Bou93, PR10]. Evaluation

in λ ⊕ considers bags of resources, and determines alternative executions governed by non-
determinism. Failure results from a lack or excess of resources (terms), and is captured

by the term failx̃, where x̃ denotes a sequence of variables. Non-determinism in λ ⊕ is
non-collapsing (i.e., confluent): intuitively, given M and N with reductions M −→M ′ and
N −→ N ′, the non-deterministic sum M + N reduces to M ′ + N ′. In contrast, under a
collapsing (i.e., non-confluent) approach, as in, e.g., [DdP93], the non-deterministic sum
M +N reduces to either M or N .

On the concurrent side, we consider sπ: a session-typed π-calculus with (non-collap-
sing) non-determinism and failure, proposed in [CP17]. sπ rests upon a Curry-Howard
correspondence between session types and (classical) linear logic, extended with modalities
that express non-deterministic protocols that may succeed or fail. Non-determinism in sπ is
non-collapsing, which ensures confluent process reductions.

Contributions. This paper presents the first formal connection between a λ-calculus with
non-idempotent intersection types and a π-calculus with session types. Specifically, the
paper presents the following contributions:

(1) The resource calculus λ ⊕, a new calculus that distills the distinctive elements from
previous resource calculi [BL00, PR10], while offering an explicit treatment of failures
in a setting with non-collapsing non-determinism.

We develop the syntax, semantics, and essential meta-theoretical results for λ ⊕. In
particular, using intersection types, we define well-typed (fail-free) expressions and

well-formed (fail-prone) expressions in λ ⊕ and establish their properties.

(2) An encoding of λ ⊕ into sπ, proven correct following established criteria in the realm
of relative expressiveness for concurrency [Gor10, KPY19]. These criteria attest to an
encoding’s quality; we consider type preservation, operational correspondence (including
completeness and soundness), success sensitiveness, and compositionality.

Thanks to these correctness properties, our encoding precisely describes how typed
interaction protocols (given by session types) can codify sequential evaluation in which
absence and excess of resources leads to failures (as governed by intersection types).

These contributions entail different challenges. The first is bridging the different

mechanisms for resource-awareness involved (i.e., intersection types in λ ⊕, session types in

sπ). A direct encoding of λ ⊕ into sπ is far from obvious, as multiple occurrences of a variable

in λ ⊕ must be accommodated into the linear setting of sπ. To overcome this challenge, we

introduce a variant of λ ⊕, dubbed λ̂ ⊕. The distinctive feature of λ̂ ⊕ is a sharing construct,
which we adopt following the atomic λ-calculus presented in [GHP13]. Our encoding of

λ ⊕ expressions into sπ processes is then in two steps. We first define a correct encoding

from λ ⊕ to λ̂ ⊕, which relies on the sharing construct to “atomize” occurrences of the same

variable. Then, we define another correct encoding, from λ̂ ⊕ to sπ, which extends Milner’s
with constructs for non-determinism.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:3

λ⊕

λ ⊕

λ̂⊕

λ̂ ⊕ sπ

L · M◦ J · K u
Well-typed expressions / processes

Well-formed expressions

Figure 1: Overview of our approach.

Another challenge is framing failures in λ ⊕ (undesirable computations) as well-typed sπ

processes. Using intersection types, we define well-formed λ ⊕ expressions, which can fail,

in two stages. First, we consider λ⊕, the sub-language of λ ⊕ without failx̃. We give an
intersection type system for λ⊕ to regulate fail-free evaluation. Well-formed expressions are
then defined on top of well-typed λ⊕ expressions. We show that sπ can correctly encode the

fail-free λ⊕ but, more interestingly, also well-formed λ ⊕ expressions, which are fail-prone.

Fig. 1 summarizes our approach: the encoding from λ ⊕ to λ̂ ⊕ is denoted L · M◦, whereas
the encoding from λ̂ ⊕ to sπ is denoted J · K u.

Organization. Next, § 1 informally discusses key ideas in our work. § 2 introduces the

syntax and semantics of λ ⊕, and defines its intersection type system. § 3 introduces λ̂ ⊕,

the variant of λ ⊕ with sharing. It also presents its associated intersection type system, and

defines an encoding from λ ⊕ to λ̂ ⊕. In § 4 we summarize the syntax, semantics, and session

type system of sπ, following [CP17]. § 5 establishes the correctness of the encoding of λ ⊕
into λ̂ ⊕ and presents and proves correct the encoding of λ̂⊕ into sπ. § 6 presents comparisons
with related works. § 7 closes with a discussion about our approach and results.

This paper is an extended and revised version of the conference paper [PNP21a]. Here
we have included full technical details, additional examples, and extended explanations. For
the sake of readability, and to make the paper self-contained, we have included proof sketches
in the main text; their corresponding full proofs have been collected in the appendices.

1. Overview of Key Ideas

Before embarking into our technical developments, we discuss some key ideas in the definition

of λ ⊕ and its correct encodability into sπ.

Non-determinism. Our source language λ ⊕ has three syntactic categories: terms (M,M ′),
bags (B,B′) and expressions (M,L). Terms can be variables, abstractions λx.M , applications
(M B), explicit substitutions M⟨⟨B/x⟩⟩, or the explicit failure term fail (see below). Bags
are multisets of terms (the resources); this way, e.g., B = HM1,M1,M2I is a bag with three
resources (M1, M1, and M2). Expressions are sums of terms, written M1 +M2; they denote
a non-deterministic choice between different ways of fetching resources from the bag.

In λ ⊕, reduction is lazy: first, a β-reduction evolves to an explicit substitution, which
will then fetch the elements in the bag to be substituted for the corresponding variable, when

1:4 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

some conditions are satisfied: we interpret this as “consuming a resource”. For instance,

given a λ ⊕-term M with head variable x and two occurrences of x, we have the reduction:

λx.MHM1,M2I −→ M⟨⟨HM1,M2I/x⟩⟩
−→ M{|M1/x|}⟨⟨HM2I/x⟩⟩+M{|M2/x|}⟨⟨HM1I/x⟩⟩ = M ′ (1.1)

The resulting expression M ′ is a sum that gathers two alternative computations: it may
reduce by either (i) first fetching M1 from the bag and linearly substituting it for x in the
head position of M (this is denoted with M{|M1/x|}) and then continue with the rest of the
bag (M2, wrapped in an explicit substitution), or (ii) fetching and linearly substituting M2

in head position, leaving M1 in an explicit substitution.

Successful Reductions. We consider a computation as successful only when the number
of elements in the bag matches the number of occurrences of the variable to be substituted;
otherwise the computation fails. As an example, consider the previous example, now with
M = xHxHIII where I = λz.z is the identity. The reduction in (1.1) is then

(λx.xHxHIII)HM1,M2I −→∗ M1HxHIII⟨⟨HM2I/x⟩⟩+M2HxHIII⟨⟨HM1I/x⟩⟩

Hence, when λx.M is applied to a bag with two resources, it evolves successfully. However,
if λx.M is applied to a bag with less (or more) than two resources, the computation evolves
to the explicit failure term failz̃, where z̃ is a multiset of variables, as we explain next.

Explicit Failure. A construct for failure is present in the resource λ-calculus in [PR10]. In
this formulation, the failure term ‘0’ is consumed by sums and disappears at the end of the
computation; as such, it gives no information about the failed computation and its origins.

Following [PR10], a design decision in λ ⊕ is to have failx̃ in the syntax of terms. The
sequence x̃ denotes the variables captured by failure; this provides useful information on the
origins of a failure. As an example, consider a term M with free variables ỹ and in which
the number of occurrences of x is different from 2. Given a bag B = HM1,M2I, reduction
leads to a failure, as follows:

(λx.M)B −→M ⟨⟨HM1,M2I/x⟩⟩ −→
∑

PER(HM1,M2I)

failỹ = M ′

In this case, M ′ is the sum failỹ+failỹ, which has as many summands as the permutations
of the elements of B. Intuitively, it means that it does not matter if one replaces the
occurrence(s) of x first with M1 (or M2), then the other occurrence (if any), with M2 (or
M1), the result will be the same, i.e., failỹ. Here again both possibilities are expressed in a
sum. The precise semantics of failure will be presented in § 2.2.

Typability and Well-formedness. We define an intersection type system for λ ⊕. This
choice follows a well-established tradition of coupling resource λ-calculi with intersection
types [Bou93, BL96, PR10]. Intersection types are also adopted in related calculi [ER03].
Intersection types are a natural typing structure for resources: they have similar mathematical
properties of non-idempotency and commutativity, and can help to “count” the number of
occurrences of a variable in a term, as well as the number of components in a bag.

In our type systems, each element of a bag must have the same type. This way, e.g., a
well-typed bag B = HM1,M2,M3I has type σ ∧ σ ∧ σ, where σ is a strict type (cf. Def. 2.15).
Then, an application M B is well-typed, say, with type τ , only if M : σ ∧ σ ∧ σ → τ . We

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:5

shall write σk to denote the intersection type σ ∧ . . . ∧ σ, with k ≥ 0 copies of σ. Notice
that σ0 denotes the empty type ω. The typing rule for application is then as expected:

Γ ⊢M : σk → τ Γ ⊢ B : σk
[T : app]

Γ ⊢M B : τ
where Γ is a type context assigning types to variables.

We chose to express explicit failing terms and computation. To properly account for
these computations, we define a separate type system with so-called well-formedness rules,
with notation ‘|=’. Unlike rules for typability, rules for well-formedness capture computations
that fail due to a mismatch of resources (lack or excess). This entails some increased
flexibility in selected rules. This way, e.g, the following is the well-formedness rule for
application:

Γ |= M : σj → τ Γ |= B : σk

[F : app]
Γ |= M B : τ

Here the added flexibility is that we do not require k = j; hence, the rule can capture
successful and failing computations, depending on whether k = j or not. As expected, the
term failz̃ is not well-typed, but it is well-formed: the judgement Γ |= failz̃ : τ holds for
an arbitrary type τ and a Γ consisting of variable assignments for the variables in z̃.

Therefore, we consider two intersection type systems: one captures exclusively successful
computations (see Fig. 3); the other, which we call the well-formedness system (see Fig. 4),
subsumes the first one by admitting both successful and failing computations. The weakening
rule is admissible in both systems (see below). Both systems enjoy subject reduction, whereas
only well-typed terms satisfy subject expansion.

Controlling resources via sharing. In order to better control the use of resources,
i.e., substituting variables for terms with a careful form of duplication, we borrow ideas

from the sharing graphs by Guerrini et al. [Gue99, GMM03] and define the calculus λ̂ ⊕.
The key idea is as follows: whenever a bound variable x occurs multiple times within a
term, these occurrences, say x1, . . . , xn, are temporarily assigned new names (think aliases).
This assignment is indicated with the sharing construct [x1, . . . , xn ← x], which we adopt

following [GHP13]. This way, for instance, the λ ⊕-term λx.xHxI would correspond to

λx.x1Hx2I[x1, x2 ← x] in λ̂ ⊕.
We also carefully treat the “erasing” of resources: if a term has vacuous abstractions,

this is also indicated with the sharing construct, where the bound variable maps to “empty”.

Hence, the λ ⊕-term λx.yHzI is expressed as λx.yHzI[← x] in λ̂ ⊕. The tight control of

resources in λ̂ ⊕ turns out to be very convenient to encode λ ⊕ into sπ, as we discuss next.

Encoding λ ⊕ into sπ. The central result of our work is a correct translation of λ ⊕ into sπ.

In defining our translation we use λ̂ ⊕ as a stepping stone. This is advantageous, because

(i) the relation between λ̂⊕ and λ̂ ⊕ is fairly direct and (ii) the sharing construct in λ̂ ⊕ makes
it explicit the variable occurrences that should be treated as linear names in sπ.

The encoding of λ ⊕ into λ̂ ⊕ is denoted L · M• and given in § 3.4. The encoding of λ̂ ⊕ into

sπ, denoted J · K u and presented in § 5.3.2, is arguably more interesting—we discuss it below.

The definition of J · K u considers well-formed source terms in λ̂ ⊕ which are translated
into well-typed sπ processes. As usual, the translation is parametric on a channel name u,
which is used to provide the behavior of the source term.

1:6 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

The calculus sπ includes a non-deterministic choice operator P⊕Q and formalizes sessions
which are non-deterministically available. Intuitively, this means that a given session protocol
along a name can either be available and proceed as prescribed by the corresponding session
type, or fail to be available. Clearly, such a failure may have repercussions on other sessions
that depend on it. To this end, sπ includes prefixes x.some and x.none, which are used to
confirm the availability of x and to signal its failure, respectively. Process x.some(w1,··· ,wk);Q
declares the dependency of sessions w1, . . . , wk in Q on an external session along x. The
corresponding reduction rules are then:

x.some | x.some(w1,··· ,wk);Q −→ Q

x.none | x.some(w1,··· ,wk);Q −→ w1.none | · · · | wk.none

Following Milner, J · K u maps computation in λ̂ ⊕ into session communication in sπ; non-

deterministic sessions are used to codify the non-deterministic fetching of resources in λ̂ ⊕.
This way, the translation of (λx.M [x1, x2 ← x])B will enable synchronizations between the
translations of M [x1, x2 ← x] and B. More in details, the translation of a bag B = HM1,M2I
is as follows:

JHM1I · HM2IK x = x.somez̃1,z̃2 ;x(yi).x.someyi,z̃1,z̃2 ;x.some;

x(xi).(xi.somez̃1 ; JM1K xi
| JHM2IK x | yi.none)

where z̃1 and z̃2 denote the free variables of M1 and M2, respectively. Process JHM1I ·HM2IK

x

first expects confirmation of session x; then, the translation of each resource Mi is made
available in a dedicated name xi, which will be communicated to other processes. Accordingly,

the translation of JM [x1, x2 ← x]K u is expected to synchronize with the translation of the
bag B: indeed, it confirms behavior along x, before receiving the names, one for each shared
copy of x that should be used throughout the synchronizations:

JM [x1, x2 ← x]K u = x.some.x(y1).
(
y1.some∅; y1.close |x.some;x.someu,(fv(M)\{x1,x2});x(x1).

.x.some.x(y2).
(
y2.some∅; y2.close | x.some;x.someu,(fv(M)\{x2});x(x2)

.x.some;x(y).(y.someu,fv(M); y.close; JMK u | x.none)
))

Several confirmations take place along the channel names involved in the synchronizations;
see § 5.3.2 for details.

Non-determinism plays a key role in the translation of an application M ′B. In this
case, we consider the permutations of the elements of B using non-deterministic choice in sπ.
When B = HM1,M2I, the translation is:

JM ′BK u = (νv)(JM ′K v | v.someu,fv(B); v(x).([v ↔ u] | JHM1,M2IK x))
⊕

(νv)(JM ′K v | v.someu,fv(B); v(x).([v ↔ u] | JHM2,M1IK x))

A synchronization occurs when process JM ′K v can confirm its behavior along v. For instance,
when M ′ = λx.M [x1, x2 ← x] the translation is as

Jλx.M [x1, x2 ← x]K v = v.some; v(x).JM [x2, x2 ← x]K v
and the synchronization may be possible; it depends on the translations of M , M1, and M2.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:7

We close this section by observing that our translations L · M• and J · K u satisfy well-known
correctness criteria, as formulated by Gorla [Gor10] and Kouzapas et al. [KPY19] (see § 5.1
for details).

2. λ ⊕: A λ-calculus with Non-Determinism and Failure

We define the syntax and reduction semantics of λ ⊕, our new resource calculus with non-
determinism and failure. We then equip it with non-idempotent session types, and establish
the subject reduction property for well-typed and well-formed expressions (Theorems 2.20
and 2.28, respectively). We also consider the subject expansion property, which holds for
well-typed expressions (Theorem 2.22) but not for well-formed ones (Theorem 2.29).

2.1. Syntax.

The syntax of λ ⊕ combines elements from calculi introduced and studied by Boudol
and Laneve [BL00] and by Pagani and Ronchi della Rocca [PR10]. We use x, y, . . . to range
over the set of variables. We write x̃ to denote the sequence of pairwise distinct variables
x1, . . . , xk, for some k ≥ 0. We write |x̃| to denote the length of x̃.

Definition 2.1 (Syntax of λ ⊕). The λ ⊕ calculus is defined by the following grammar:

(Terms) M,N,L ::= x | λx.M | (M B) | M⟨⟨B/x⟩⟩ | failx̃
(Bags) A,B ::= 1 | HMI | A ·B
(Expressions) M,N,L ::= M | M+ N

We have three syntactic categories: terms (in functional position); bags (in argument
position), which denote multisets of resources; and expressions, which are finite formal sums
that represent possible results of a computation. Terms are unary expressions: they can be
variables, abstractions, and applications. Following [Bou93, BL00], the explicit substitution
of a bag B for a variable x in a term M , written M⟨⟨B/x⟩⟩, is also a term. The term failx̃

results from a reduction in which there is a lack or excess of resources to be substituted,
where x̃ denotes a multiset of free variables that are encapsulated within failure.

The empty bag is denoted 1. The bag enclosing the term M is HMI. The concatenation
of bags B1 and B2 is denoted as B1 ·B2; the concatenation operator ‘·’ is associative and
commutative, with 1 as its identity. To ease readability, we rely on a shorthand notation for
bags: we often write HN1, N2I rather than HN1I · HN2I.

We treat expressions as sums, and use notations such as
∑n

i Ni for them. Sums are
associative and commutative; reordering of the terms in a sum is performed silently.

Example 2.2. We give some examples of terms and expressions in λ ⊕:

• M1 = (λx.x)HyI
• M2 = (λx.x)(Hy, zI)
• M3 = (λx.x)1

• M4 = (λx.y)1

• M5 = fail∅

• M6 = (λx.x)HyI + (λx.x)HzI

Terms M1, M2, and M3 illustrate the application of the identity function I = λx.x to
bags with different formats: a bag with one component, two components, and the empty
bag, respectively. Special attention should be given to the fact that the x has only one
occurrence in I, whereas the bags contain zero or more components (resources). This way:

1:8 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

• M1 represents a term with a correct number of resources;
• M2 denotes a term with an excess of resources; and
• M3 denotes a term with a lack of resources

This resource interpretation will become clearer once the reduction semantics is introduced
in the next subsection (cf. Example 2.11).

Term M4 denotes the application of a vacuous abstraction on x to the empty bag 1.
Term M5 denotes a failure term with no associated variables. Expression M6 denotes the
non-deterministic sum between two terms, each of which denotes an application of I to a
bag containing one element.

Notation 2.3 (Expressions). Notation N ∈M denotes that N is part of the sum denoted
by M. Similarly, we write Ni ∈ B to denote that Ni occurs in the bag B, and B \\Ni to
denote the bag that is obtained by removing one occurrence of the term Ni from B.

2.2. Reduction Semantics.
Reduction in λ ⊕ is defined in terms of the relation −→, defined in Fig. 2; it operates

lazily on expressions, and will be described after introducing some auxiliary notions.

Notation 2.4. We write PER(B) to denote the set of all permutations of bag B. Also,
Bi(n) denotes the n-th term in the (permuted) Bi. We define size(B) to denote the number
of terms in bag B. That is, size(1) = 0 and size(HMI ·B) = 1 + size(B).

Definition 2.5 (Set and Multiset of Free Variables). The set of free variables of a term,
bag, and expression, is defined as

fv(x) = {x}
fv(λx.M) = fv(M)\{x}
fv(M B) = fv(M) ∪ fv(B)

fv(M⟨⟨B/x⟩⟩) = (fv(M) \ {x}) ∪ fv(B)

fv(1) = ∅
fv(HMI) = fv(M)

fv(B1 ·B2) = fv(B1) ∪ fv(B2)
fv(failx1,··· ,xn) = {x1, · · · , xn}

fv(M+ N) = fv(M) ∪ fv(N)
We use mfv(M) or mfv(B) to denote a multiset of free variables, defined similarly. We

sometimes treat the sequence x̃ as a (multi)set. We write x̃⊎ ỹ to denote the multiset union
of x̃ and ỹ and x̃ \ y to express that every occurrence of y is removed from x̃. A term M is

closed if fv(M) = ∅ (and similarly for expressions). As usual, we shall consider λ ⊕-terms
modulo α-equivalence.

Notation 2.6. #(x,M) denotes the number of (free) occurrences of x in M . Similarly, we
write #(x, ỹ) to denote the number of occurrences of x in the multiset ỹ.

Definition 2.7 (Head). Given a term M , we define head(M) inductively as:

head(x) = x
head(λx.M) = λx.M
head(M B) = head(M)

head(failx̃) = failx̃

head(M⟨⟨B/x⟩⟩) =

{
head(M) if #(x,M) = size(B)

fail∅ otherwise

Definition 2.8 (Linear Head Substitution). Let M be a term such that head(M) = x. The
linear head substitution of a term N for x in M , denoted M{|N/x|}, is defined as:

x{|N/x|} = N

(M B){|N/x|} = (M{|N/x|}) B
(M ⟨⟨B/y⟩⟩){|N/x|} = (M{|N/x|}) ⟨⟨B/y⟩⟩ where x ̸= y

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:9

[R : Beta]
(λx.M)B −→M ⟨⟨B/x⟩⟩

head(M) = x B = HN1, . . . , NkI , k ≥ 1 #(x,M) = k
[R : Fetch]

M ⟨⟨B/x⟩⟩ −→M{|N1/x|}⟨⟨(B \\N1)/x⟩⟩+ · · ·+M{|Nk/x|}⟨⟨(B \\Nk)/x⟩⟩

#(x,M) ̸= size(B) ỹ = (mfv(M) \ x) ⊎mfv(B)
[R : Fail]

M ⟨⟨B/x⟩⟩ −→
∑

PER(B)

failỹ

ỹ = mfv(B)
[R : Cons1]

failx̃ B −→
∑

PER(B)

failx̃⊎ỹ

size(B) = k #(z, x̃) + k ̸= 0 ỹ = mfv(B)
[R : Cons2]

failx̃ ⟨⟨B/z⟩⟩ −→
∑

PER(B)

fail(x̃\z)⊎ỹ

M −→M ′
1 + · · ·+M ′

k[R : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

M −→M′
[R : ECont]

D[M] −→ D[M′]

Figure 2: Reduction Rules for λ ⊕

Finally, we define contexts for terms and expressions and convenient notations:

Definition 2.9 (Term and Expression Contexts). Contexts for terms (CTerm) and expres-
sions (CExpr) are defined by the following grammar:

(CTerm) C[·], C ′[·] ::= ([·])B | ([·])⟨⟨B/x⟩⟩ (CExpr) D[·], D′[·] ::= M + [·] | [·] +M

The reduction relation on λ ⊕ is defined by the rules in Fig. 2. Intuitively, reductions in

λ ⊕ work as follows: A β-reduction induces an explicit substitution of a bag B for a variable

x in a term M , denoted M⟨⟨B/x⟩⟩. In the case the head of the term M is x and the size of
the bag B coincides with the number of occurrences of x in M , this explicit substitution is
expanded into a sum of terms, each of which features a linear head substitution M{|Ni/x|},
where Ni is a term in B, which will replace the variable x occurring in the head of M ; the
rest of the bag (B \\Ni) is kept in an explicit substitution. However, if there is a mismatch
between the number of occurrences of the variable to be substituted and the number of
resources available, then the reduction leads to the failure term. Formally,

• Rule [R : Beta] is standard and admits a bag (possibly empty) as parameter.
• Rule [R : Fetch] transforms a term into an expression: it opens up an explicit substitution
into a sum of terms with linear head substitutions, each denoting the partial evaluation of
an element from the bag, considering all the possible choices for substituting an element
Ni of the bag for x. Hence, the size of the bag will determine the number of summands in
the resulting expression.

There are three rules reduce to the failure term: their objective is to accumulate all (free)
variables involved in failed reductions.

1:10 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

• Rule [R : Fail] formalizes failure in the evaluation of an explicit substitution M ⟨⟨B/x⟩⟩,
which occurs if there is a mismatch between the resources (terms) present in B and the
number of occurrences of x to be substituted. The resulting failure preserves all free
variables in M and B within its attached multiset ỹ, and all possible computations that
could have failed, via permutation of the bags, are captured in a non-deterministic sum.
• Rules [R : Cons1] and [R : Cons2] describe reductions that lazily consume the failure term,
when a term has failx̃ at its head position. The former rule consumes bags attached
to it whilst preserving all its free variables. The latter rule is similar but for the case of
explicit substitutions; its second premise ensures that either (i) the bag in the substitution
is not empty or (ii) the number of occurrences of z in the current multiset of accumulated
variables is not zero.

Notice that our Rule [R : Fail] rule evolves to a sum of failure terms, where each summand
accounts for a permutation of the elements of the bag. As our reduction strategy fails eagerly
this may not be evident at first; however, there is still a non-deterministic choice of elements
in B that are waiting to be substituted at the point of failure (see Example 2.12).

Finally, we describe the contextual rules:

• Rule [R : TCont] describes the reduction of sub-terms within an expression; in this rule,
summations are expanded outside of term contexts.
• Rule [R : ECont] says that reduction of expressions is closed by expression contexts.

Notation 2.10. As standard, −→ denotes one step reduction; −→+ and −→∗ denote the
transitive and the reflexive-transitive closure of −→, respectively. We write N −→[R] M to
denote that [R] is the last (non-contextual) rule used in inferring the step from N to M.

Example 2.11 (Cont. Example 2.2). We show how the terms in Example 2.2 can reduce:

• Reduction of the term M1 with an adequate number of resources:

(λx.x)HyI −→[R:Beta] x⟨⟨HyI/x⟩⟩
−→[R:Fetch] y⟨⟨1/x⟩⟩ since #(x, x) = size(HyI) = 1

• Reduction of term M2 with excess of resources:

(λx.x)(Hy, zI) −→[R:Beta] x⟨⟨(Hy, zI)/x⟩⟩
−→[R:Fail] fail

y,z + faily,z, since #(x, x) = 1 ̸= size(Hy, zI) = 2

• Reduction of term M3 with lack of resources:

(λx.x)1 −→[R:Beta] x⟨⟨1/x⟩⟩

−→[R:Fail] fail
∅, since #(x, x) = 1 ̸= size(1) = 0

• Reduction of term M4 which is a vacuous abstraction applied to an empty bag:

(λx.y)1 −→[R:Beta] y⟨⟨1/x⟩⟩

• M5 = fail∅ is unable to perform any reductions, i.e., it is irreducible.
• Reductions of the expression M6 = (λx.x)HyI + (λx.x)HzI :

x⟨⟨HyI/x⟩⟩+ (λx.x)HzI

(λx.x)HyI + (λx.x)HzI x⟨⟨HyI/x⟩⟩+ x⟨⟨HzI/x⟩⟩

(λx.x)HyI + x⟨⟨HzI/x⟩⟩

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:11

The following example illustrates the use of PER(B) in Rule [R : Fail]: independently
of the order in which the resources in the bag are used, the computation fails.

Example 2.12. Let M = (λx.xHxHyII) B, with B = Hz1, z2, z1I. We have:

M −→[R:Beta]xHxHyII⟨⟨Hz1, z2, z1I/x⟩⟩

−→[R:Fail]

∑
PER(B)

faily,z1,z2,z1

The number of occurrences of x in the term obtained after β-reduction (2) does not
match the size of the bag (3). Therefore, the reduction leads to failure. Notice that∑

PER(B) fail
y,z1,z2,z1 expands to a sum between six instances of faily,z1,z2,z1 , corresponding

to permutation of 3 elements of the bag B.

Notice that the left-hand sides of the reduction rules in λ ⊕ do not interfere with each

other. Therefore, reduction in λ ⊕ satisfies a diamond property :

Proposition 2.13 (Diamond Property for λ ⊕). For all N, N1, N2 in λ ⊕ s.t. N −→ N1,
N −→ N2 with N1 ̸= N2 then there exists M such that N1 −→M, N2 −→M.

Proof (Sketch). By inspecting the rules of Fig. 2 one can check that the left-hand sides only
clash in a non-variable position with Rules [R : Fail] and [R : Cons2]. The clash does not

generate a critical pair: in fact, when applied to the λ ⊕-term failz,x̃⟨⟨1/z⟩⟩ both rules reduce

to failx̃. For all the other rules, whenever they have the same shape, the side conditions of
the rules determine which rule can be applied. Therefore, an expression can only perform a
choice of reduction steps when it is a sum of terms in which multiple summands can perform
independent reductions. Without loss of generality, consider an expression N = N + M
such that N −→ N ′ and M −→ M ′. Then we let N1 = N ′ + M and N2 = N + M ′ by
Rule [R : ECont]. The result follows for M = N ′ +M ′, since N1 −→M and N2 −→M.

Remark 2.14 (A Sub-calculus without Failure (λ⊕)). We find it convenient to define

λ⊕, the sub-calculus of λ ⊕ without explicit failure. The syntax of λ⊕ is obtained from

Definition 2.1 by excluding failx̃ from the syntax of terms. Accordingly, the reduction
relation for λ⊕ is given by Rules [R : Beta], [R : Fetch], [R : ECont], and [R : TCont] in Fig. 2.
Finally, Definition 2.7 is kept unchanged with the provision that head(M⟨⟨B/x⟩⟩) is undefined
when #(x,M) ̸= size(B).

2.3. Well-formed λ ⊕-Expressions.

As mentioned in § 1, we define a notion of well-formed expressions for λ ⊕ by relying on
a non-idempotent intersection type system, similar to the one given by Pagani and Della
Rocca in [PR10]. Our system for well-formed expressions will be defined in two stages:

(1) First we define a intersection type system for the sub-language λ⊕ (cf. Rem. 2.14), given
in Fig. 3. Unlike the system in [PR10], our type system includes a weakening rule and a
rule for typing explicit substitutions.

(2) Second, we define well-formed expressions for the full language λ ⊕, via Def. 2.24.

We say that we check for “well-formedness” (of terms, bags, and expressions) to stress
that, unlike standard type systems, our system is able to account for terms that may reduce
to the failure term.

1:12 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[T : var]
x : σ ⊢ x : σ

[T : 1] ⊢ 1 : ω
Γ ⊢M : σ[T : weak]
Γ, x : ω ⊢M : σ

Γ, x : σk ⊢M : τ
[T : abs]

Γ ⊢ λx.M : σk → τ

Γ ⊢M : σ ∆ ⊢ B : σk
[T : bag]

Γ ∧∆ ⊢ HMI ·B : σk+1

Γ ⊢M : π → τ ∆ ⊢ B : π[T : app]
Γ ∧∆ ⊢M B : τ

Γ, x : σk ⊢M : τ ∆ ⊢ B : σk

[T : ex-sub]
Γ ∧∆ ⊢M⟨⟨B/x⟩⟩ : τ

Γ ⊢M : σ Γ ⊢ N : σ[T : sum]
Γ ⊢M+ N : σ

Figure 3: Typing Rules for λ⊕

2.3.1. Intersection Types.
Intersection types allow us to reason about types of resources in bags but also about

every occurrence of a variable. That is, non-idempotent intersection types enable us to
distinguish expressions not only by measuring the size of a bag but also by counting the
number of times a variable occurs within a term.

Definition 2.15 (Types for λ ⊕). We define strict and multiset types by the grammar:

(Strict) σ, τ, δ ::= unit | π → σ (Multiset) π ::= σk | ω

where σk stands for σ ∧ · · · ∧ σ (k times, for some k > 0).

A strict type can be the unit type unit or a functional type π → σ, where π is a multiset
type and σ is a strict type. Multiset types can be either an intersection of strict types σk (if
k > 0) or the empty type ω, which would correspond to σk with k = 0. Hence, σk denotes
an intersection; the operator ∧ is commutative, associative, and non-idempotent, that is,
σ ∧σ ̸= σ. The empty type is the type of the empty bag; it acts as the identity element to ∧.

Definition 2.16. Type contexts Γ,∆, . . . are sets of type assignments x : π, as defined by
the grammar:

Γ,∆ = - | Γ, x : π

The set of variables in Γ is denoted as dom(Γ). In writing Γ, x : π we assume that x ̸∈ dom(Γ).
We generalize the operator ∧ from types to contexts, and define Γ ∧∆ as follows:

(Γ1 ∧ Γ2)(x) =

x : π1 ∧ π2 x : πi ∈ Γi, πi ̸= ω, i ∈ {1, 2}
x : πi x : πi ∈ Γi, x ̸∈ dom(Γj), i ̸= j, i, j ∈ {1, 2}
undefined otherwise

Type judgements are of the form Γ ⊢M : σ, where Γ is a type context. We write ⊢M : σ
to denote - ⊢M : σ.

Definition 2.17. (Well-typed Expressions) An expression M ∈ λ⊕ is well-typed (or typable)
if there exist Γ and τ such that Γ ⊢M : τ is entailed via the rules in Fig. 3.

The rules are standard. We only consider intersections of the same strict type, say σ,
since the current objective is to count the number of occurrences of a variable in a term,
and measure the size of a bag. We now give a brief description of the rules in Fig. 3:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:13

• Rules [T:var], [T:1] and [T:weak] are as expected: the first assigns a type to a variable,
the second assigns the empty bag 1 the empty type ω, and the third introduces a useful
weakening principle.
• Rule [T : abs] types an abstraction λx.M with σk → τ , as long as the variable assignment
x : σk has an intersection type with σ occurring exactly k times.
• Rule [T : bag] types a bag B with a type σk+1 as long as every component of B is typed
with same type σ, a defined amount of times.
• Rule [T:app] types an application M B with τ as long as M and B match on the multiset
type π, i.e., M : π → τ and B : π. Intuitively, this means that M expects a fixed amount
of resources, and B has exactly this number of resources.
• Rule [T:ex-sub] types an explicit substitution M⟨⟨B/x⟩⟩ with τ as long as the bag B
consists of elements of the same type as x and the size of B matches the number of times
x occurs in M , i.e., B : σk and x : σk types the assignment of M : τ .
• Rule [T : sum] types an expression (a sum) with a type σ, if each summand has type σ.

Notice that with the typing rules for λ⊕ the failure term fail cannot be typed. We

could consider this set of rules as a type system for λ ⊕, i.e. the extension of λ⊕ with failure,
in which failure can be expressed but not typed.

Example 2.18 (Cont. Example 2.11). We explore the typability of some of the terms given
in previous examples:

(1) Term M1 = (λx.x)HyI is typable, as we have:

[T : var]
x : σ ⊢ x : σ[T : abs] ⊢ λx.x : σ → σ

[T : var]
y : σ ⊢ y : σ

[T : 1] ⊢ 1 : ω
[T : bag]

y : σ ⊢ HyI · 1 : σ
[T : app]

y : σ ⊢ (λx.x)HyI : σ

(2) Term M2 = (λx.x)(Hy, zI) is not typable.
• The function λx.x has a functional type σ → σ;
• The bag has an intersection type of size two: y : σ, z : σ ⊢ (Hy, zI) : σ2;
• Rule [T : app] requires a match between the type of the bag and the left of the arrow:
it can only consume a bag of type σ.

(3) Similarly, M3 = (λx.x)1 is not typable: since λx.x has type σ → σ, to apply the
Rule [T : app] the bag must have a type σ, but the empty bag 1 can only be typed
with ω.

(4) Term M4 = (λx.y)1 is typable, as follows:

[T : var]
y : σ ⊢ y : σ

[T : weak]
y : σ, x : ω ⊢ y : σ

[T : abs]
y : σ ⊢ λx.y : ω → σ

[T : 1] ⊢ 1 : ω
[T : app]

y : σ ⊢ (λx.y)1 : σ

Our typing system for λ⊕ satisfies standard properties, such as subject reduction, which
follows from the Linear Substitution Lemma. We stress ‘linearity’ because the lemma is
stated in terms of the head linear substitution {| · |}.

Lemma 2.19 (Linear Substitution Lemma for λ⊕). If Γ, x : σk ⊢ M : τ (with k ≥ 1),
head(M) = x, and ∆ ⊢ N : σ then Γ ∧∆, x : σk−1 ⊢M{|N/x|} : τ .

Proof. Standard, by induction on the rule applied in Γ, x : σ ⊢M : τ .

1:14 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Γ ⊢M : τ[F : wf-expr]
Γ |= M : τ

Γ ⊢ B : π[F : wf-bag]
Γ |= B : π

∆ |= M : τ
[F : weak]

∆, x : ω |= M : τ

Γ, x : σn |= M : τ x /∈ dom(Γ)
[F : abs]

Γ |= λx.M : σn → τ

Γ |= M : σ ∆ |= B : σk

[F : bag]
Γ ∧∆ |= HMI ·B : σk+1

Γ |= M : σ Γ |= N : σ
[F : sum]

Γ |= M+ N : σ

dom(Γ†) = x̃
[F : fail]

Γ |= failx̃ : τ

Γ, x : σk |= M : τ ∆ |= B : σj k, j ≥ 0
[F : ex-sub]

Γ ∧∆ |= M⟨⟨B/x⟩⟩ : τ

Γ |= M : σj → τ ∆ |= B : σk k, j ≥ 0
[F : app]

Γ ∧∆ |= M B : τ

Figure 4: Well-Formed Rules for λ ⊕

Theorem 2.20 (Subject Reduction for λ⊕). If Γ ⊢M : τ and M −→M′ then Γ ⊢M′ : τ .

Proof. By induction on the reduction rule (Fig. 2) applied in M.

Lemma 2.21 (Linear Anti-substitution Lemma for λ⊕). Let M and N be λ⊕-terms such
that head(M) = x, then we have:

• Γ, x : σk−1 ⊢M{|N/x|} : τ , with k > 1, then there exist Γ1,Γ2 such that Γ1, x : σk ⊢M : τ ,
and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.
• Γ ⊢ M{|N/x|} : τ , with x ̸∈ dom(Γ), then there exist Γ1,Γ2 such that Γ1, x : σ ⊢ M : τ ,
and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.

Proof. Standard, by structural induction.

Theorem 2.22 (Subject Expansion for λ⊕). If Γ ⊢M′ : τ and M −→M′ then Γ ⊢M : τ .

Proof. Standard, by structural induction. See App.B for details.

2.3.2. Well-formed Expressions (in λ ⊕).
Building upon the type system for λ⊕, we now define a type system for checking

well-formed λ ⊕-expressions. This approach enables us to admit expressions with a failing
computational behavior, may it be due to the mismatch in the number of resources required
and available, or be due to consumption of a failing behavior by another expression. Such
definition relies on the core context which is the key to the well-formedness of failure terms:
free variables that are result of weakening will disregarded in the typing of the failure term.

Definition 2.23 (Core Context). Given a context Γ, the associated core context is defined
as Γ† = {x : π ∈ Γ |π ̸= ω}.

Definition 2.24 (Well-formed λ ⊕ expressions). An expression M is well-formed if there
exist Γ and τ such that Γ |= M : τ is entailed via the rules in Fig. 4.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:15

Below we give a brief description of the rules in Fig. 4. Essentially, they differ from
the ones in Fig. 3, by allowing mismatches between the number of copies of a variable in a
functional position and the number of components in a bag.

• Rules [F:wf-expr] and [F:wf-bag] derive that well-typed expressions and bags in λ⊕ are
well-formed.
• Rules [F:abs], [F:bag], and [F:sum] are as in the type system for λ⊕, but extended to the
system of well-formed expressions.
• Rules [F:ex-sub] and [F:app] differ from the similar typing rules as the size of the bags
(as declared in their types) is no longer required to match the number of occurrences of
the variable assignment in the typing context ([F : ex-sub]), or the type of the term in the
functional position ([F : app]).
• Rule [F:fail] has no analogue in the type system: we allow failx̃ to be well-formed with
any strict type, provided that the core context contains the types of the variables in x̃
(i.e., none of the variables in x̃ is typed with ω).

Clearly, the set of well-typed expressions is strictly included in the set of well-formed
expressions. Take, e.g., M = x⟨⟨HN1, N2I/x⟩⟩, where both N1 and N2 are well-typed. It is
easy to see that M is well-formed. However, M is not well-typed.

Example 2.25 (Cont. Example 2.18). We explore the well-formedness of some of the terms
motivated in previous examples:

(1) Term M1 = (λx.x)HyI is well-typed and also well-formed, as we have:

y : σ ⊢ (λx.x)HyI : σ
[F : wf-expr]

y : σ |= (λx.x)HyI : σ

(2) We saw that term M2 = (λx.x)(Hy, zI) is not typable; however, it is well-formed:

⊢ λx.x : σ1 → σ[F : wf-expr]
|= λx.x : σ1 → σ

y : σ, z : σ ⊢ Hy, zI : σ2

[F : wf-bag]
y : σ, z : σ |= Hy, zI : σ2 1, 2 ≥ 0

[F : app]
y : σ, z : σ |= (λx.x)(Hy, zI) : σ

Notice that both ⊢ λx.x : σ1 → σ and Γ ⊢ Hy, zI : σ2 are well-typed.
(3) Similarly, the term M3 = (λx.x)1 is also well-formed. The corresponding derivation is

as above, but uses an empty context as well as the well-formedness rule for bags:

⊢ 1 : σ0
[F : wf-bag]

|= 1 : σ0

Notice how σ0 = ω and that |= 1 : ω.
(4) Term M4 = (λx.y)1 is well-typed and also well-formed.

(5) Interestingly, term M5 = fail∅ is well-formed as:

[F : fail]
|= fail∅ : τ

Example 2.26. Let us consider an expression that is not well-formed:

λx.xHλy.y, λz.z1Hz1Hz2III.

Notice that λx.x is applied to bags of two different types:

• The first bag containing λy.y is well-typed, thus well-formed. Consider the derivation Π1:

1:16 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[T : var]
y : σ ⊢ y : σ

[T : abs] ⊢ λy.y : σ → σ
[T : 1] ⊢ 1 : ω

[T : bag]
⊢ Hλy.yI · 1 : σ → σ

[F : wf-bag]
|= Hλy.yI · 1 : σ → σ

In the rest of the example we will omit the labels of rule applications, and concatenations
with the empty bag 1 (i.e., Hλy.yI · 1 will be written simply as Hλy.yI) and corresponding
sub-derivations consisting of applications of Rule [T : 1].

• The second bag contains λz.z1Hz1Hz2II contains an abstraction that acts as a weakening
as z does not appear within z1Hz1Hz2II. Consider the derivation Π2:

z1 : σ → σ ⊢ z1 : σ → σ

z1 : σ → σ ⊢ z1 : σ → σ

z2 : σ ⊢ z2 : σ

z2 : σ ⊢ Hz2I : σ

z1 : σ → σ, z2 : σ ⊢ z1Hz2I : σ

z1 : σ → σ, z2 : σ ⊢ Hz1Hz2II : σ

z1 : σ → σ ∧ σ → σ, z2 : σ ⊢ z1Hz1Hz2II : σ

z1 : σ → σ ∧ σ → σ, z2 : σ, z : ω ⊢ z1Hz1Hz2II : σ

z1 : σ → σ ∧ σ → σ, z2 : σ ⊢ λz.z1Hz1Hz2II : ω → σ

z1 : σ → σ ∧ σ → σ, z2 : σ |= λz.z1Hz1Hz2II : ω → σ

z1 : σ → σ ∧ σ → σ, z2 : σ︸ ︷︷ ︸
Γ

|= Hλz.z1Hz1Hz2III : ω → σ

• The concatenation of these two bags is not well-formed since each component has a different
type: σ → σ and ω → σ. Therefore, λx.xH λy.y , λz.z1Hz1Hz2II I is not well-formed.

Notice that if we change λy.y to λy.y1 in the first bag, we would have a derivation Π′
1 for

y1 : σ |= λy.y1 : ω → σ. This would allow us to concatenate the bags with derivation Π3:

Π′
1

y1 : σ |= λy.y1 : ω → σ

Π2

Γ |= λz.z1Hz1Hz2II : ω → σ 1 : ω

Γ |= Hλz.z1Hz1Hz2III · 1 : ω → σ

Γ, y1 : σ |= Hλy.y1I · Hλz.z1Hz1Hz2III · 1 : (ω → σ)2

Thus, the whole term becomes well-formed:

x : ω → σ ⊢ x : ω → σ
⊢ λx.x : (ω → σ)→ ω → σ

|= λx.x : (ω → σ)→ ω → σ

Π3

Γ, y1 : σ |= H λy.y1 , λz.z1Hz1Hz2II I : (ω → σ)2

Γ, y1 : σ |= λx.xH λy.y1 , λz.z1Hz1Hz2II I : ω → σ

Well-formedness rules satisfy subject reduction with respect to the rules in Fig. 2 and

relies on the linear substitution lemma for λ ⊕:

Lemma 2.27 (Substitution Lemma for λ ⊕). If Γ, x : σk |= M : τ (with k ≥ 1), head(M) = x,

and ∆ |= N : σ then Γ ∧∆, x : σk−1 |= M{|N/x|}.

We now show subject reduction on well formed expressions in λ ⊕. We use our results of

subject reduction for well-typed λ⊕ (Theorem 2.20) and extend them to λ ⊕.

Theorem 2.28 (Subject Reduction in λ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:17

Proof (Sketch). By structural induction on the reduction rules. See App.A for details.

Differently from λ⊕, subject expansion fails for λ ⊕. This is due to the possibility of
failure in the use of resources. In λ⊕, if a resource is substituted within a term it is always
done once, hence the term substituted must always be well-typed; however, in reductions
that lead to the failure term, resources within a bag may be discarded before ever being
substituted and hence, there is no requirement to be well-formed. Formally, we have:

Theorem 2.29 (Failure of Subject Expansion in λ ⊕). If Γ |= M′ : τ and M −→M′ then it
is not necessarily the case that Γ |= M : τ .

Proof. A counter-example suffices here. Consider the term fail∅, which is well-formed but
not well-typed, and let Ωl be the term (λx.xHxI)Hλx.xHxII. Notice that - |= fail∅ : τ and

failx⟨⟨HΩlI/x⟩⟩ −→ fail∅, but failx⟨⟨HΩlI/x⟩⟩ is not well-formed (nor well-typed) .

3. λ̂ ⊕: A Resource Calculus With Sharing

We define λ̂ ⊕, a variant of λ ⊕ with a sharing construct, which we adopt following the atomic

λ-calculus in [GHP13]. In λ̂ ⊕, a variable is only allowed to appear once in a term: multiple
occurrences of the same variable are atomized, i.e., they are given new different variable

names. The “atomization” of variable occurrences realized in λ̂ ⊕ via sharing will turn out
to be very convenient to define our encoding into sπ.

Our language λ̂ ⊕, defined in § 3.1, includes also a form of explicit substitution, called
explicit linear substitution, which enables a refined analysis of the consumption of linear
resources. Later, in § 3.2, we introduce the reduction semantics that implements a lazy
evaluation. In § 3.3, we present a non-idempotent intersection type system to control the

use of resources. Finally, in § 3.4 we give an encoding from λ ⊕ into λ̂ ⊕, denoted L · M◦, whose
correctness is established in § 5.

3.1. Syntax.

The syntax of λ̂ ⊕ only modifies the syntax of λ ⊕-terms, which is defined by the grammar
below; the syntax of bags B and expressions M is as in Def. 2.1.

(Terms) M,N,L ::= x | λx.(M [x̃← x]) | (M B) | M⟨|N/x|⟩ | failx̃

| M [x̃← x] | (M [x̃← x])⟨⟨B/x⟩⟩
Distinctive aspects are the sharing construct M [x̃← x] and the explicit linear substitution
M⟨|N/x|⟩. The term M [x̃ ← x] defines the sharing of variables x̃ occurring in M using x.
We shall refer to x as sharing variable and to x̃ as shared variables. Notice that x̃ can be
empty: M [← x] expresses that x does not share any variables in M . The sharing construct
M [x̃ ← x] binds the variables in x̃; the occurrence of xi can appear within the fail term

failỹ, if xi ∈ ỹ. In the explicit linear substitution M⟨|N/x|⟩ binds x in M . As in λ ⊕, the

term failx̃ explicitly accounts for failed attempts at substituting the variables x̃, due to
an excess or lack of resources. A variable that is not explicitly sharing/shared is called
independent.

Example 3.1. The following are examples of λ̂ ⊕-terms.

• (Shared identity) Î = λx.x1[x1 ← x]

1:18 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

• (Independent variables) An independent variable x applied to a 1-component bag (another
independent variable): xHx1I
• Î applied to a 1-component bag: ÎHy1I[y1 ← y]

• Î applied to a 2-component bag: Î(Hy1, y2I)[y1, y2 ← y]
• Shared vacuous abstraction: (λy.x1Hx2I[← y])[x1, x2 ← x]

• Î applied to a bag containing an explicit substitution of a failure term that does not share
the variable y: ÎHfail∅[← y]⟨⟨HNI/y⟩⟩I
• An abstraction on x of two shared occurrences of x: D̂ = λx.x1Hx2I[x1, x2 ← x]

The syntax of terms is subject to some natural conditions on variable occurrences and
on the structure of the sharing construct and the explicit linear substitution. We formalize
these conditions as consistency, defined as follows:

Definition 3.2 (Consistent Terms, Bags, and Expressions). We say that the expression M
is consistent if each subterm M0 of M satisfies the following conditions:

(1) If M0 = M [x̃← x] then: (i) x̃ contains pairwise distinct variables; (ii) every xi ∈ x̃ must
occur exactly once in M ; (iii) xi is not a sharing variable; (iv) M is consistent.

(2) If M0 = M⟨|N/x|⟩ then: (i) the variable x must occur exactly once in M ; (ii) x cannot
be a sharing variable; (iii) M and N are consistent; (iv) fv(M) ∩ fv(N) = ∅.

(3) Otherwise, for other forms of M0, variables must occur exactly once, i.e.,:
• If M0 = λx.(M [x̃← x]) then: x ̸∈ fv(M); x̃ contains pairwise distinct variables; every
xi ∈ x̃ must occur exactly once in M and is not a sharing variable; M is consistent.
• If M0 = (M B) then fv(M) ∩ fv(B) = ∅ and M and B are consistent.
• If M0 = failx̃ then x̃ contains pairwise distinct variables.
• If M0 = (M [x̃ ← x])⟨⟨B/x⟩⟩ then: x ̸∈ fv(M); x̃ contains pairwise distinct variables;
every xi ∈ x̃ must occur exactly once in M and is not a sharing variable; fv(M) ∩
fv(B) = ∅; and M and B are consistent.

Consistency extends to bags as follows. The bag 1 is always consistent. The bag HMI is
consistent if M is consistent. The bag A ·B is consistent if (i) A and B are consistent and
(ii) fv(A) ∩ fv(B) = ∅.

We now discuss the consistency conditions for the sharing construct M [x̃← x]. Con-
dition 1(ii) enforces that variables cannot have more than one linear occurrence in the
subject of a sharing construct: this condition rules out terms such as x1Hx1HyII[x1 ← x].
Condition 1(iii), which rules out terms of the form x1Hx2Hx3HyIII[x1, x2 ← x′][x′, x3 ← x],
is for convenience: by requiring that sharing occurrences appear at the top level in bindings,
we can easily deduce the number of occurrences of a variable by measuring the size of x̃
in [x̃ ← x], rather than inductively having to measure the occurrences of each x′ ∈ x̃ in
multiple sharing constructs.

Conditions on the explicit linear substitution M⟨|N/x|⟩ formalize our design choice:
an explicit linear substitution is defined when the number of variables to be substituted
coincides with the number of available resources. In particular, Condition 2(i) rules out
terms of the form y⟨|M/x|⟩, where an explicit linear substitution has no variable to perform
a substitution. Condition 2(ii) rules out terms such as M [x1, x2 ← x]⟨|M/x|⟩, in which a
term is to be linearly substituted for a single variable x; however, as the variable is shared
twice within M , there are less available terms to be substituted than it is necessary.

Finally, Condition 3 enforces that each variable occurs only once in a consistent term,
and also that in failx̃, the x̃ denotes a set of variables (rather than a multiset), as variables

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:19

can appear at most once within consistent terms. Thus, consistent terms also excludes terms
such as failx,x.

In what follows, we shall be working with consistent terms only, which we will call
simply terms in our definitions and results. As we will see, consistency will be preserved by
reduction (Theorem 3.15) and ensured by typing (Theorem 3.24) and a structural congruence
on terms (Theorem 5.26).

3.2. Reduction Semantics.
Similarly to λ ⊕, the reduction semantics of λ̂ ⊕ is given by a relation −→, defined by

the rules in Fig. 5; it consists of an extension of reductions in λ ⊕ that deals with the sharing
construct [· ← ·] and with the explicit linear substitution ·⟨| · / · |⟩. In order to define
the reduction rules formally, we require some auxiliary notions: the free variables of an
expression/term, the head of a term, linear head substitution, and contexts.

Definition 3.3 (Free Variables). The set of free variables of a term, bag and expressions in

λ̂ ⊕, is defined inductively as

fv(x) = {x} fv(failx̃) = {x̃}
fv(HMI) = fv(M) fv(B1 ·B2) = fv(B1) ∪ fv(B2)
fv(M B) = fv(M) ∪ fv(B) fv(1) = ∅
fv(M⟨|N/x|⟩) = (fv(M) \ {x}) ∪ fv(N) fv(M [x̃← x]) = (fv(M) \ {x̃}) ∪ {x}
fv(λx.(M [x̃← x])) = fv(M [x̃← x]) \ {x} fv(M+ N) = fv(M) ∪ fv(N)
fv((M [x̃← x])⟨⟨B/x⟩⟩) = (fv(M [x̃← x]) \ {x}) ∪ fv(B)

As usual, a term M is closed if fv(M) = ∅.

Definition 3.4 (Head). The head of a term M , denoted head(M), is defined inductively:

head(x) = x head(λx.(M [x̃← x])) = λx.(M [x̃← x])
head(M B) = head(M) head(M⟨|N/x|⟩) = head(M)
head(failx̃) = failx̃

head(M [x̃← x]) =

{
x If head(M) = y and y ∈ x̃

head(M) Otherwise

head((M [x̃← x])⟨⟨B/x⟩⟩) =

fail∅ If |x̃| ≠ size(B)

head(M [← x]) If x̃ = ∅ and B = 1

(M [x̃← x])⟨⟨B/x⟩⟩ Otherwise

The most notable difference between head(·) in λ ⊕ (cf. Definition 2.7) and in λ̂ ⊕
concerns explicit substitution. Both definitions return fail∅ in a mismatch of resources; in

λ̂ ⊕, the head term of an explicit substitution is only defined in the case of empty sharing
(weakening). As we will see, this allows us to prioritize explicit substitution reductions over
fetch reductions, as the head variable will block until an explicit substitution is separated
into its linear component.

1:20 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Definition 3.5 (Linear Head Substitution). Given a term M with head(M) = x, the linear
substitution of a term N for x in M , written M{|N/x|} is inductively defined as:

x{|N/x|} = N

(M B){|N/x|} = (M{|N/x|}) B
(M⟨|L/y|⟩){|N/x|} = (M{|N/x|}) ⟨|L/y|⟩ x ̸= y

((M [ỹ ← y])⟨⟨B/y⟩⟩){|N/x|} = (M [ỹ ← y]{|N/x|}) ⟨⟨B/y⟩⟩ x ̸= y

(M [ỹ ← y]){|N/x|} = (M{|N/x|})[ỹ ← y] x ̸= y

We now define contexts for terms and expressions in λ̂ ⊕. Term contexts involve an
explicit linear substitution, rather than an explicit substitution: this is due to the reduction
strategy we have chosen to adopt (cf. Rule [RS : Ex-Sub] in Fig. 5), as we always wish to
evaluate explicit substitutions first. Expression contexts can be seen as sums with holes.

Definition 3.6 (Term and Expression Contexts in λ̂ ⊕). Let [·] denote a hole. Contexts for
terms and expressions are defined by the following grammar:

(Term Contexts) C[·], C ′[·] ::= ([·])B | ([·])⟨|N/x|⟩ | ([·])[x̃← x] | ([·])[← x]⟨⟨1/x⟩⟩
(Expression Contexts) D[·], D′[·] ::= M + [·] | [·] +M

The substitution of a hole with a term M in a context C[·], denoted C[M], must be a

λ̂ ⊕-term.

We assume that the terms that fill in the holes respect consistency (i.e., variables appear
in a term only once, shared variables must occur in the context).

Example 3.7. This example illustrates that certain contexts cannot be filled with certain
terms. Consider the hole in context C[·] = ([·])⟨|N/x|⟩.
• The hole cannot be filled with y, since C[y] = y⟨|N/x|⟩ is not a consistent term. Indeed,
M⟨|N/x|⟩ requires that x occurs exactly once within M .
• Similarly, the hole cannot be filled with failz with z ̸= x, since C[failz] = (failz)⟨|N/x|⟩
and x does not occur in the failz, thus, the result is not a consistent term.

Now we are ready to describe the rules in Fig. 5. Intuitively, the lazy reduction relation

−→ on expressions works as follows: a β-reduction in λ̂ ⊕ results into an explicit substitution

M [x̃← x]⟨⟨B/x⟩⟩, which then evolves, as an in intermediate step, to an expression consisting
of explicit linear substitutions, which are the ones reducing to a linear head substitution
{|N/x|} (with N ∈ B) when the size of B coincides with the number of occurrences of x in
M . The term reduces to failure when there is a mismatch between the size of B and the
number of shared variables to be substituted. More in details, we have:

• Rule [RS:Beta] is standard and reduces to an explicit substitution.
• Rule [RS:Ex-Sub] applies when the size k of the bag coincides with the length of the list
x̃ = x1, . . . , xk. Intuitively, this rule “distributes” an explicit substitution into a sum of
terms involving explicit linear substitutions; it considers all possible permutations of the
elements in the bag among all shared variables.
• Rule [RS:Lin-Fetch] specifies the evaluation of a term with an explicit linear substitution
into a linear head substitution.

We have three rules that reduce to the failure term—their objective is to accumulate all
(free) variables involved in failed reductions. Accordingly:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:21

[RS:Beta]
(λx.M [x̃← x])B −→M [x̃← x]⟨⟨B/x⟩⟩

B = HM1I · · · HMkI k ≥ 1 M ̸= failỹ
[RS:Ex-Sub]

M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→
∑

Bi∈PER(B)M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩

head(M) = x
[RS:Lin-Fetch]

M⟨|N/x|⟩ −→M{|N/x|}

k ̸= size(B) ỹ = (fv(M) \ {x1, . . . , xk}) ∪ fv(B)
[RS:Fail]

M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→
∑

PER(B) fail
ỹ

ỹ = fv(B)
[RS:Cons1]

failx̃B −→
∑

PER(B)

failx̃∪ỹ

size(B) = k k + |x̃| ≠ 0 z̃ = fv(B)
[RS:Cons2]

(failx̃∪ỹ[x̃← x])⟨⟨B/x⟩⟩ −→
∑

PER(B)

failỹ∪z̃

z̃ = fv(N)
[RS:Cons3]

failỹ∪x⟨|N/x|⟩ −→ failỹ∪z̃

M −→M ′
1 + · · ·+M ′

k[RS:TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

M −→M′
[RS:ECont]

D[M] −→ D[M′]

Figure 5: Reduction Rules for λ̂ ⊕.

• Rule [RS:Fail] formalizes failure in the evaluation of an explicit substitution M [x̃ ←
x]⟨⟨B/x⟩⟩, which occurs if there is a mismatch between the resources (terms) present in B
and the number of occurrences of x to be substituted. The resulting failure term preserves
all free variables in M and B within its attached set ỹ.
• Rules [RS:Cons1] and [RS:Cons2] describe reductions that lazily consume the failure term,
when a term has failx̃ at its head position. The former rule consumes bags attached to
it whilst preserving all its free variables.
• Rule [RS:Cons3] accumulates into the failure term the free variables involved in an explicit
linear substitution.

The contextual Rules [RS:TCont] and [RS:Econt] are standard.

Example 3.8. We show how a term can reduce using Rule [RS:Cons2].

(λx.x1[x1 ← x])Hfail∅[← y]⟨⟨HNI/y⟩⟩I −→[RS:Beta] x1[x1 ← x]⟨⟨Hfail∅[← y]⟨⟨HNI/y⟩⟩I/x⟩⟩

−→[RS:Ex-Sub] x1⟨|fail∅[← y]⟨⟨HNI/y⟩⟩/x1|⟩

−→[RS:Lin-Fetch] fail
∅[← y]⟨⟨HNI/y⟩⟩

−→[RS:Cons2] fail
fv(N)

1:22 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Example 3.9. We illustrate how Rule [RS:Fail] can introduce failx̃ into a term. It also
shows how Rule [RS:Cons3] consumes an explicit linear substitution:

x1[← y]⟨⟨HNI/y⟩⟩[x1 ← x]⟨⟨HMI/x⟩⟩ −→[RS:Ex-Sub] x1[← y]⟨⟨HNI/y⟩⟩⟨|M/x1|⟩

−→[RS:Fail] fail
{x1}∪fv(N)⟨|M/x1|⟩

−→[RS:Cons3] fail
fv(M)∪fv(N)

Similarly to λ ⊕, reduction in λ̂ ⊕ satisfies a diamond property. Therefore, we have the
analogue of Proposition 2.13:

Proposition 3.10 (Diamond Property for λ̂ ⊕). For all N, N1, N2 in λ̂ ⊕ s.t. N −→ N1,
N −→ N2 with N1 ̸= N2 then there exists M such that N1 −→M and N2 −→M.

Proof. The thesis follows as in λ ⊕ since the left-hand sides of the reduction rules in λ̂ ⊕ do
not interfere with each other.

Remark 3.11 (A Calculus with Sharing but Without Failure (λ̂⊕)). As we did in Re-

mark 2.14, we define a sub-calculus of λ̂ ⊕ in which failure is not explicit. The calculus λ̂⊕

is obtained from the syntax of λ̂ ⊕ by disallowing the term failx̃. The relevant reduction
rules from Fig. 5 are [RS : Beta], [RS:Ex-Sub], [RS:Lin-Fetch], and the two contextual rules.
We keep Def. 3.4 unchanged with the provision that head(M⟨⟨B/x⟩⟩) is undefined when
|x̃| ≠ size(B).

3.3. Non-Idempotent Intersection Types.

Similarly to λ ⊕, we now define well-formed λ̂ ⊕ expressions and a system of rules for
checking well-formedness by modifying the rules in Fig. 4. The grammar of strict and multiset
types, the notions of typing assignments, and judgements are the same as in Section 2.3.

We need an extension to the notion of typing context: whereas in λ ⊕ variables were only
assigned to multiset types, now sharing variables are assigned to multiset types, shared and
independent variables are assigned to strict types.

Definition 3.12. We extend the definition of typing contexts (Def. 2.16) as follows:

Γ,∆ = - | Γ, x : π | Γ, x : σ

The definition of core contexts is extended accordingly, and also denoted as Γ†.

The presentation is in two phases:

(1) We consider the intersection type system given in Fig. 6 for which we consider the

sub-calculus λ̂⊕, the sharing calculus excluding failure (cf. Rem. 3.11).

(2) We define well-formed expressions for the full language λ̂ ⊕, via Def. 3.19 (see below).

To avoid ambiguities, we write x : σ1 to make it explicit that the type assignment
involves an intersection type (and a sharing variable), rather than a strict type.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:23

3.3.1. Well-typed Expressions (in λ̂⊕).
The typing rules in Fig. 6 are essentially the same as the ones in Fig. 3, but now taking

into account the sharing construct M [x̃← x] and the explicit linear substitution. We discuss
selected rules:

• Rules [TS:var], [TS:1], [TS:bag], [TS:app], and [TS:sum] are the same as in Fig. 3, consid-
ering sharing within the terms and bags.
• Rule [TS:weak] deals with k = 0, typing the term M [← x], when there are no occurrences
of x in M , as long as M is typable.
• Rule [TS:abs-sh] is as expected: it requires that the sharing variable is assigned the k-fold
intersection type σk.
• Rule [TS:ex-lin-sub] supports explicit linear substitutions and consumes one occurrence
of x : σ from the context.
• Rule [TS:ex-sub] types explicit substitutions where a bag must consist of both the same
type and length of the shared variable it is being substituted for.
• Rule [TS:share] requires that the shared variables x1, . . . , xk have the same type as the
sharing variable x, for k ̸= 0. This rule justifies the need for the extension of contexts with
assignments of the form x : σ. This way, e.g., Example 3.14 below gives an application of
Rule [TS : share] with k = 1).

Definition 3.13 (Well-typed Expressions). An expression M ∈ λ̂ ⊕ is well-typed (or typable)
if there exist Γ and τ such that Γ ⊢M : τ is entailed via the rules in Fig. 6.

Again, the failure term fail in λ̂ ⊕ is not typable via this typing system. The following
examples illustrate the typing rules.

Example 3.14. The term ((λx.x1[x1 ← x])Hy1I)[y1 ← y] is well-typed, as follows:

[TS:var]
x1 : σ ⊢ x1 : σ[TS:share]

x : σ1 ⊢ x1[x1 ← x] : σ
[TS:abs-sh]

⊢ λx.x1[x1 ← x] : σ1 → σ

[TS:var]
y1 : σ ⊢ y1 : σ

[TS:1] ⊢ 1 : ω
[TS:bag]

y1 : σ ⊢ Hy1I · 1 : σ1

[TS:app-sh]
y1 : σ ⊢ ((λx.x1[x1 ← x])Hy1I) : σ

[TS:share]
y : σ1 ⊢ ((λx.x1[x1 ← x])Hy1I)[y1 ← y] : σ

Theorem 3.15 (Consistency Stability Under −→). If M is a consistent λ̂ ⊕-expression and
M −→M′ then M′ is consistent.

Proof. By structural induction, and analyzing the reduction rules applied in M. See Appen-
dix B for details.

As expected, the typing system satisfies the subject reduction property w.r.t. the
reduction relation given in Fig. 5, excluding rules for failure.

Theorem 3.16 (Subject Reduction in λ̂⊕). If Γ ⊢M : τ and M −→M′ then Γ ⊢M′ : τ .

Proof. Standard by induction on the rule applied in M.

Lemma 3.17 (Linear Anti-substitution Lemma for λ̂⊕). Let M and N be λ̂⊕-terms such
that head(M) = x. The following hold:

• If Γ, x : σk−1 ⊢M{|N/x|} : τ , with k > 1, then there exist Γ1,Γ2 such that Γ1, x : σk ⊢M :
τ , and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.

1:24 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[TS:var]
x : σ ⊢ x : σ

[TS:1] ⊢ 1 : ω
∆ ⊢M : τ[TS:weak]

∆, x : ω ⊢M [← x] : τ

∆, x : σk ⊢M [x̃← x] : τ
[TS:abs-sh]

∆ ⊢ λx.(M [x̃← x]) : σk → τ

Γ ⊢M : π → τ ∆ ⊢ B : π[TS:app]
Γ,∆ ⊢M B : τ

Γ ⊢M : σ ∆ ⊢ B : σk
[TS:bag]

Γ,∆ ⊢ HMI ·B : σk+1

∆ ⊢ N : σ Γ, x : σ ⊢M : τ
[TS :ex-lin-sub]

Γ,∆ ⊢M⟨|N/x|⟩ : τ

∆ ⊢ B : σk Γ, x : σk ⊢M [x̃← x] : τ
[TS : ex-sub]

Γ,∆ ⊢M [x̃← x]⟨⟨B/x⟩⟩ : τ
Γ ⊢M : σ Γ ⊢ N : σ[TS:sum]

Γ ⊢M+ N : σ

∆, x1 : σ, · · · , xk : σ ⊢M : τ x /∈ dom(∆) k ̸= 0
[TS:share]

∆, x : σk ⊢M [x1, · · · , xk ← x] : τ

Figure 6: Typing Rules for λ̂⊕.

• If Γ ⊢M{|N/x|} : τ , with x ̸∈ dom(Γ), then there exist Γ1,Γ2 such that Γ1, x : σ ⊢M : τ ,
and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.

Proof. By structural induction on the reduction rule from Fig. 6. See App. B for details.

Theorem 3.18 (Subject Expansion for λ̂⊕). If Γ ⊢M′ : τ and M −→M′ then Γ ⊢M : τ .

Proof. Standard, by induction on the reduction rule applied. See App.B for details.

3.3.2. Well-formed Expressions (in λ̂ ⊕).

On top of the intersection type system for λ̂⊕, we define well-formed expressions:

λ̂ ⊕-terms whose computation may lead to failure.

Definition 3.19 (Well-formedness in λ̂ ⊕). An expression M is well formed if there exist Γ
and τ such that Γ |= M : τ is entailed via the rules in Fig. 7.

Rules [FS:wf-expr] and [FS:wf-bag] guarantee that every well-typed expression and bag,
respectively, is well-formed. Since our language is expressive enough to account for failing
computations, we include rules for checking the structure of these ill-behaved terms—terms
that can be well-formed, but not typable. For instance,

• Rules [FS:ex-sub] and [FS:app] differ from similar typing rules in Fig. 6: the size of the
bags (as declared in their types) is no longer required to match.
• Rule [FS:fail] has no analogue in the type system: we allow the failure term failx̃ to be
well-formed with any type, provided that the core context contains types for the variables
in x̃.

The other rules are similar to their corresponding ones in Fig. 4 and Fig. 6.

The following example illustrates a λ̂ ⊕ expression that is well-formed but not well-typed.

Example 3.20 (Cont. Example 3.20). The λ̂ ⊕ expression consisting of an application of

Î to a bag containing a failure term λx.x1[x1 ← x])Hfail∅[← y]⟨⟨1/y⟩⟩I is well-formed with
type σ. The derivation, with omitted rule labels, is the following:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:25

Γ ⊢M : τ[FS :wf-expr]
Γ |= M : τ

Γ ⊢ B : π[FS :wf-bag]
Γ |= B : π

Γ |= M : τ
[FS :weak]

Γ, x : ω |= M [← x] : τ

Γ, x : σk |= M [x̃← x] : τ x /∈ dom(Γ)
[FS:abs-sh]

Γ |= λx.(M [x̃← x]) : σk → τ

dom(Γ†) = x̃
[FS:fail]

Γ |= failx̃ : τ

Γ |= M : σj → τ ∆ |= B : σk

[FS:app]
Γ,∆ |= M B : τ

Γ |= M : σ ∆ |= B : σk

[FS:bag]
Γ,∆ |= HMI ·B : σk+1

Γ, x : σ |= M : τ ∆ |= N : σ
[FS:ex-lin-sub]

Γ,∆ |= M⟨|N/x|⟩ : τ
Γ |= M : σ Γ |= N : σ

[FS:sum]
Γ |= M+ N : σ

Γ, x : σk |= M [x̃← x] : τ ∆ |= B : σj

[FS:ex-sub]
Γ,∆ |= M [x̃← x]⟨⟨B/x⟩⟩ : τ

Γ, x1 : σ, · · · , xk : σ |= M : τ x /∈ dom(Γ) k ̸= 0
[FS:share]

Γ, x : σk |= M [x1, · · · , xk ← x] : τ

Figure 7: Well-formedness Rules for λ̂ ⊕.

x1 : σ ⊢ x1 : σ

x1 : σ |= x1 : σ

x : σ1 |= x1[x1 ← x] : σ

|= λx.x1[x1 ← x] : σ → σ

|= fail∅ : σ

y : ω |= fail∅[← y] : σ
⊢ 1 : ω
|= 1 : ω

|= fail∅[← y]⟨⟨1/y⟩⟩ : σ
⊢ 1 : ω
|= 1 : ω

|= Hfail∅[← y]⟨⟨1/y⟩⟩I : σ1

|= λx.x1[x1 ← x]Hfail∅[← y]⟨⟨1/y⟩⟩I : σ

Besides, we have λx.x1[x1 ← x])Hfail∅[← y]⟨⟨1/y⟩⟩I −→∗ fail∅[← y]⟨⟨1/y⟩⟩.

Well-formed λ̂ ⊕ expressions satisfy the subject reduction property; as usual, the proof

relies on a linear substitution lemma for λ̂ ⊕.

Lemma 3.21 (Substitution Lemma for λ̂ ⊕). If Γ, x : σ |= M : τ , head(M) = x, and
∆ |= N : σ then Γ,∆ |= M{|N/x|} : τ .

Proof. By structural induction on M . See App.B for details.

Theorem 3.22 (Subject Reduction in λ̂ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

Proof. By structural induction on the reduction rule from Fig. 5. See App. B for details.

We close this part by stating the failure of subject expansion for well-formed expressions.

Theorem 3.23 (Failure of Subject Expansion in λ̂ ⊕). If Γ |= M′ : τ and M −→M′ then it
is not necessarily the case that Γ |= M : τ .

Proof. We adapt the counter-example from the proof of Theorem 2.29. Consider the term
fail∅, which is well-formed but not well-typed, and let Ωl be the term (λx.x1Hx2I[x1, x2 ←
x])Hλx.x1Hx2I[x1, x2 ← x]I. Notice that failx1 [x1 ← x]⟨⟨HΩlI/x⟩⟩ −→ fail∅ and - |= fail∅ :

τ , but failx1 [x1 ← x]⟨⟨HΩlI/x⟩⟩ is not well-formed (nor well-typed).

1:26 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Theorem 3.24 (Consistency enforced by typing). Let M be a λ̂ ⊕-expression. If Γ |= M
then M is consistent.

Proof. By induction on the type derivation. See Appendix B for details.

Taking Stock. Up to here, we have presented our source language λ ⊕—a new resource lambda
calculus with failure—and its fail-free sub-calculus λ⊕. Based on them we defined well-typed

and well-formed expressions. Similarly, we defined the intermediate calculus λ̂ ⊕ and its

sub-calculus λ̂⊕. We now move on to define a translation of λ ⊕ into λ̂ ⊕.

3.4. From λ ⊕ into λ̂ ⊕. Borrowing inspiration from translations given in [GHP13] for the

atomic λ-calculus, we now define a translation L · M◦ from well-formed expressions in λ ⊕ into

λ̂ ⊕. It relies on an auxiliary translation L · M• on λ ⊕-terms, which depends on the notion of
(simultaneous) linear substitution (Def. 3.25) which, intuitively, forces all bound variables in

λ ⊕ to become shared variables in λ̂ ⊕. The correctness of L · M◦ will be addressed in § 5.2.

Definition 3.25 (Linear substitution). Suppose given a λ ⊕-term M , a variable x, and a
sequence of variables w̃ = y, z̃. When #(x,M) = |w̃| and {y} ∩ z̃ = ∅, the linear substitution
M⟨y, z̃/x⟩ of variable x for variables w̃ in M is defined inductively as follows:

x⟨y/x⟩ = y

(λz.M)⟨y/x⟩ = λz.(M⟨y/x⟩) if x ∈ fv(M)

(M B)⟨y/x⟩ =

{
((M⟨y/x⟩) B) if x ∈ fv(M)

(M (B⟨y/x⟩)) if x ̸∈ fv(M), x ∈ fv(B)

failz̃⟨y/x⟩ = failz̃
′,y if x ∈ z̃ and z̃ = z̃′, x

(M⟨⟨B/z⟩⟩)⟨y/x⟩ =

{
(M⟨y/x⟩)⟨⟨B/z⟩⟩ if x ∈ fv(M)

M⟨⟨B⟨y/x⟩/z⟩⟩ if x ̸∈ fv(M), x ∈ fv(B)

1⟨y/x⟩ = undefined

HMI⟨y/x⟩ = HM⟨y/x⟩I if x ∈ fv(M)

(A ·B)⟨y/x⟩ =

{
((A⟨y/x⟩) ·B) if x ∈ fv(A)

(A · (B⟨y/x⟩)) if x ̸∈ fv(A), x ∈ fv(B)

M⟨y, z̃/x⟩ = (M⟨y/x⟩)⟨z̃/x⟩
Otherwise, in all other cases, the substitution is undefined. We write M⟨z1, z2, · · · , zk/x⟩

to stand for (· · · ((M⟨z1/x⟩)⟨z2/x⟩) · · · ⟨zk/x⟩).

Notice that for a λ ⊕-term with multiple occurrences of the variable to be substituted for,
this linear substitution fixes an ordering of instantiation. For example, λx.yHy, xI⟨z1, z2/y⟩
results in λx.z1Hz2, xI, and a permutation of variables as in λx.z2Hz1, xI is not accounted
for. This is not restrictive; actually it is enough for our purposes since this substitution will
only be used in Def. 3.26 and the variables being substituted will be bound by sharing, and
therefore could be α-renamed.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:27

LxM• = x L1M• = 1 Lfailx̃M• = failx̃

LM BM• = LMM• LBM• LHMI ·BM• = HLMM•I · LBM•

Lλx.MM• = λx.(LM⟨ỹ/x⟩M•[ỹ ← x]) #(x,M) = n, each yi ∈ ỹ is fresh

LM⟨⟨B/x⟩⟩M• =

∑

Bi∈PER(LBM•)

LM⟨ỹ/x⟩M•⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ #(x,M) = size(B) = k ≥ 1

LM⟨y1. · · · , yk/x⟩M•[ỹ ← x]⟨⟨LBM•/x⟩⟩ otherwise, #(x,M) = k ≥ 0

Figure 8: Auxiliary Translation: λ ⊕ into λ̂ ⊕.

Definition 3.26 (From λ ⊕ to λ̂ ⊕). Let M ∈ λ ⊕. Suppose Γ |= M : τ , with dom(Γ) =
fv(M) = {x1, · · · , xk} and #(xi,M) = ji. We define LMM◦ as

LMM◦ = LM⟨ỹ1/x1⟩ · · · ⟨ỹk/xk⟩M•[ỹ1 ← x1] · · · [ỹk ← xk]

where ỹi = yi1 , · · · , yiji and the translation L · M• : λ ⊕ → λ̂ ⊕ is defined in Fig. 8. The

translation L · M◦ extends homomorphically to expressions.

As already mentioned, the translation L · M◦ “atomizes” occurrences of variables, in
the spirit of [GHP13]: it converts n occurrences of a variable x in a term into n distinct
variables y1, . . . , yn. The sharing construct coordinates the occurrences of these variables by
constraining each to occur exactly once within a term. We proceed in two stages:

(1) First, we use L · M◦ to ensure that each free variable (say, y) is replaced by a shared
variable (say, yi ∈ ỹ), which is externally bound by the y in [ỹ ← y].

(2) Second, we apply the auxiliary translation L · M• on the corresponding to the sharing of
bound variables.

We now describe the two cases of Fig. 8 that are noteworthy.

• In Lλx.MM•, the occurrences of x are replaced with fresh shared variables that only occur
once in M .
• The definition of LM⟨⟨B/x⟩⟩M• considers two possibilities. If the bag being translated is non-
empty and the explicit substitution would not lead to failure (the number of occurrences
of x and the size of the bag coincide) then we translate the explicit substitution as a sum
of explicit linear substitutions. Otherwise, the explicit substitution will lead to a failure,
and the translation proceeds inductively. As we will see, doing this will enable a tight
operational correspondence result with sπ.

Example 3.27 (Cont. Example 2.2). We illustrate the translation L · M◦ on previously
discussed examples. In all cases, we start by ensuring that the free variables are shared.
This explains the occurrence of [y1 ← y] in the translation of M1 as well as [y1 ← y] and
[z1 ← z] in the translation of M2. Then, the auxiliary translation L · M• ensures that bound
variables that are guarded by an abstraction are shared. This explains, e.g., the occurrence
of [x1 ← x] in the translation of M1.

• The translation of a λ ⊕-term with one occurrence of a bound variable and one occurrence
of a free variable: M1 = (λx.x)HyI.

1:28 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

LM1M◦ = L(λx.x)HyIM◦

= L(λx.x)Hy1IM•[y1 ← y]

= ((λx.x1[x1 ← x])Hy1I)[y1 ← y]

• The translation of a λ ⊕-term with one bound and two different free variables: M2 =
(λx.x)(Hy, zI).

LM2M◦ = L(λx.x)(Hy, zI)M◦

= L(λx.x)(Hy1, z1I)M•[y1 ← y][z1 ← z]

= ((λx.x1[x1 ← x])(Hy1, z1I))[y1 ← y][z1 ← z]

• The translation of a λ ⊕-term with a vacuous abstraction: M4 = (λx.y)1.

LM4M◦ = L(λx.y)1M◦

= L(λx.y1)1M•[y1 ← y]

= ((λx.y1[← x])1)[y1 ← y]

• The translation of a λ ⊕-expression: M6 = (λx.x)HyI + (λx.x)HzI.

LM6M◦ = L(λx.x)HyI + (λx.x)HzIM◦

= L(λx.x)HyIM◦ + L(λx.x)HzIM◦

= ((λx.x1[x1 ← x])Hy1I)[y1 ← y] + ((λx.x1[x1 ← x])Hz1I)[z1 ← y]

Example 3.28. The translation of a λ ⊕-term with two occurrences of a bound variable
and two occurrences of a free variable: M = (λx.xHxI)(Hy, yI).

LMM◦ = L(λx.xHxI)(Hy, yI)M◦

= L(λx.xHxI)(Hy1, y2I)M•[y1, y2 ← y]

= ((λx.x1Hx2I[x1, x2 ← x])(Hy1, y2I))[y1, y2 ← y]

Example 3.29. Now consider the translation of y⟨⟨B/x⟩⟩, with fv(B) = ∅ and y ̸= x:

Ly⟨⟨B/x⟩⟩M◦ = Ly0⟨⟨B/x⟩⟩M•[y0 ← y]

= y0[← x]⟨⟨LBM•/x⟩⟩[y0 ← y].

Hence, the translation induces (empty) sharing on x, even if x does not occur in the term y.

Proposition 3.30 (L · M◦ Preserves Consistency). Let M be a λ ⊕-expression. Then LMM◦ is

a consistent λ̂ ⊕-expression.

Proof. By induction on the structure of M. See App.B for details.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:29

P,Q ::= 0 (inaction)
| x(y).P (output)
| x(y).P (input)
| (P | Q) (parallel)
| (νx)P (restriction)
| [x↔ y] (forwarder)
| x.close (session close)
| x.close;P (complementary close)
| x.some;P (session confirmation)
| x.none (session failure)
| x.some(w1,··· ,wn);P (session dependency)
| P ⊕Q (non-deterministic choice)

Figure 9: Syntax of sπ.

4. sπ: A Session-Typed π-Calculus with Non-Determinism

The π-calculus [MPW92] is a model of concurrency in which processes interact via names
(or channels) to exchange values, which can be themselves names. Here we overview sπ,
introduced by Caires and Pérez in [CP17], in which session types [Hon93, HVK98] ensure
that the two endpoints of a channel perform matching actions: when one endpoint sends,
the other receives; when an endpoint closes, the other closes too. Following [CP10, Wad12],
sπ defines a Curry-Howard correspondence between session types and a linear logic with
two dual modalities (NA and ⊕A), which define non-deterministic sessions. In sπ, cut
elimination corresponds to process communication, proofs correspond to processes, and
propositions correspond to session types.

4.1. Syntax and Semantics. We use x, y, z, w . . . to denote names implementing the
(session) endpoints of protocols specified by session types. We consider the sub-language

of [CP17] without labeled choices and replication, which is actually sufficient to encode λ ⊕.

Definition 4.1 (Processes). The syntax of sπ processes is given by the grammar in Fig. 9.

As standard, 0 is the inactive process. Session communication is performed using the
pair of primitives output and input: the output process x(y).P sends a fresh name y along
session x and then continues as P ; the input process x(y).P receives a name z along x and
then continues as P{z/y}, which denotes the capture-avoiding substitution of z for y in
P . Process P | Q denotes the parallel execution of P and Q. Process (νx)P denotes the
process P in which name x has been restricted, i.e., x is kept private to P . The forwarder
process [x↔ y] denotes a bi-directional link between sessions x and y. Processes x.close
and x.close;P denote complementary actions for closing session x.

The following constructs introduce non-deterministic sessions which, intuitively, may
provide a session protocol or fail.

• Process x.some;P confirms that the session on x will execute and continues as P .
• Process x.none signals the failure of implementing the session on x.
• Process x.some(w1,··· ,wn);P specifies a dependency on a non-deterministic session x. This
process can either (i) synchronize with an action x.some and continue as P , or (ii) syn-
chronize with an action x.none, discard P , and propagate the failure on x to (w1, · · · , wn),

1:30 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[Comm] x(y).Q | x(y).P −→ (νy)(Q | P)
[Forw] (νx)([x↔ y] | P) −→ P{y/x} (x ̸= y)
[Close] x.close | x.close;P −→ P
[Some] x.some;P | x.some(w1,··· ,wn);Q −→ P | Q
[None] x.none | x.some(w1,··· ,wn);Q −→ w1.none | · · · | wn.none
[Cong] P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q =⇒ P −→ Q
[Par] Q −→ Q′ =⇒ P | Q −→ P | Q′

[Res] P −→ Q =⇒ (νy)P −→ (νy)Q
[NChoice] Q −→ Q′ =⇒ P ⊕Q −→ P ⊕Q′

Figure 10: Reduction for sπ.

which are sessions implemented in P . When x is the only session implemented in P , the
tuple of dependencies is empty and so we write simply x.some;P .
• P ⊕Q denotes a non-deterministic choice between P and Q. We shall often write

⊕
i∈I Pi

to stand for P1 ⊕ · · · ⊕ Pn.

In (νy)P and x(y).P the distinguished occurrence of name y is binding, with scope P . The
set of free names of P is denoted by fn(P). We identify process up to consistent renaming
of bound names, writing ≡α for this congruence. We omit trailing occurrences of 0; this
way, e.g., we write x.close instead of x.close;0.

Structural congruence, denoted ≡, expresses basic identities on the structure of processes
and the non-collapsing nature of non-determinism.

Definition 4.2 (Structural Congruence). Structural congruence is defined as the least
congruence relation on processes such that:

P | 0 ≡ 0
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
[x↔ y] ≡ [y ↔ x]

((νx)P) | Q ≡ (νx)(P | Q), x ̸∈ fn(P)
(νx)(P | (Q⊕R)) ≡ (νx)(P | Q)⊕ (νx)(P | R)

0⊕ 0 ≡ 0
P ⊕Q ≡ Q⊕ P

(P ⊕Q)⊕R ≡ P ⊕ (Q⊕R)
(νx)0 ≡ 0

(νx)(νy)P ≡ (νy)(νx)P
P ≡α Q =⇒ P ≡ Q

4.2. Operational Semantics.
The operational semantics of sπ is given by a reduction relation, denoted P −→ Q,

which is the smallest relation on processes generated by the rules in Fig. 10. These rules
specify the computations that a process performs on its own. We now explain each rule.

• Rule [Comm] formalizes communication, which concerns bound names only (internal
mobility): name y is bound in both x(y).Q and x(y).P .
• Rule [Forw] implements the forwarder process that leads to a name substitution.
• Rule [Close] formalizes session closure and is self-explanatory.
• Rule [Some] describes the synchronization of a process, that is dependent on a non-
deterministic session x, with the complementary process x.some that confirms the avail-
ability of such non-deterministic session.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:31

• Rule [None] applies when the non-deterministic session is not available, prefix x.none
triggers this failure to all dependent sessions w1, . . . , wn; this may in turn trigger further
failures (i.e., on sessions that depend on w1, . . . , wn).
• Rule [NChoice] defines the closure of reduction w.r.t. non-collapsing non-deterministic
choice.
• Rules [Cong], [Par] and [Res] are standard and formalize that reduction is closed under
structural congruence, and also contextual closure of parallel and restriction constructs.

Example 4.3. We illustrate confluent reductions starting in a non-deterministic process R
which will fail during communication due to unavailability of a session:

R =(νx)(x.some(y1,y2); y1(z).y2(w).0 | (x.some;P ⊕ x.none))

≡(νx)(x.some(y1,y2); y1(z).y2(w).0 |x.some;P)⊕ (νx)(x.some(y1,y2); y1(z).y2(w).0 |x.none)
Letting Q = y1(z).y2(w).0, we have:

(νx)(x.some(y1,y2);Q | x.some;P)⊕ (y1.none | y2.none)

R = (νx)(x.some(y1,y2);Q | (x.some;P ⊕ x.none)) (νx)(Q | P)⊕ (y1.none | y2.none)

(νx)(Q | P)⊕ (νx)(x.some(y1,y2);Q | x.none)

Observe that reduction is confluent. The resulting term (νx)(Q | P)⊕ (y1.none | y2.none) in-
cludes both alternatives for the interaction on x, namely the successful one (i.e., (νx)(Q | P))
but also the failure of x, which is then propagated to y1 and y2, i.e., y1.none | y2.none.

4.3. Type System. The type discipline for sπ is based on the type system given in [CP17],
which contains modalities NA and ⊕A, as dual types for non-deterministic sessions.

Definition 4.4 (Session Types). Session types are given by

A,B ::= ⊥ | 1 | A⊗B | A O B | NA | ⊕A

Types are assigned to names: an assignment x : A enforces the use of name x according to
the protocol specified by A. The multiplicative units ⊥ and 1 are used to type terminated
(closed) endpoints. A⊗B types a name that first outputs a name of type A before proceeding
as specified by B. Similarly, A O B types a name that first inputs a name of type A before
proceeding as specified by B. Then we have the two modalities introduced in [CP17]. We
use NA as the type of a (non-deterministic) session that may produce a behavior of type A.
Dually, ⊕A denotes the type of a session that may consume a behavior of type A.

The two endpoints of a session must be dual to ensure absence of communication errors.
The dual of a type A is denoted A. Duality corresponds to negation (·)⊥ in linear logic:

Definition 4.5 (Duality). The duality relation on types is given by:

1 = ⊥ ⊥ = 1 A⊗B = A O B A O B = A⊗B ⊕A = NA NA = ⊕A

Typing judgments are of the form P ⊢ ∆, where P is a process and ∆ is a context of
the form x1 : A1, . . . , xn : An, which defines the assignment of type Ai to name xi (with
1 ≤ i ≤ n); all names xi must be distinct. The context ∆ is linear in that it is subject

1:32 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[T·]
0 ⊢

[Tid]
[x↔ y] ⊢ x:A, y:A

P ⊢ ∆, y : A Q ⊢ ∆′, x : B
[T⊗]

x(y).(P | Q) ⊢ ∆,∆′, x : A⊗B

P ⊢ Γ, y : C, x : D
[TO]

x(y).P ⊢ Γ, x : C O D

[T1]
x.close ⊢ x : 1

P ⊢ ∆[T⊥]
x.close;P ⊢ x:⊥,∆

P ⊢ ∆ Q ⊢ ∆′
[T |]

P | Q ⊢ ∆,∆′
P ⊢ ∆, x : A Q ⊢ ∆′, x : A

[Tcut]
(νx)(P | Q) ⊢ ∆,∆′

P ⊢ ∆, x : A
[TNx

d] x.some;P ⊢ ∆, x : NA

P ⊢w̃ : N∆, x : A
[T⊕x

w̃] x.somew̃;P ⊢ w̃:N∆, x:⊕A

[TNx]
x.none ⊢ x : NA

P ⊢ N∆ Q ⊢N∆
[TN]

P ⊕Q ⊢ N∆

Figure 11: Typing rules for sπ.

to exchange (the ordering of assignments does not matter), but not to weakening and
contraction. In writing ‘∆, x : A’, we assume that x does not occur in ∆; also, in writing
‘∆1,∆2’, we assume that the names in ∆1 are distinct from those in ∆2. The empty context
is denoted ‘·’. We write N∆ to denote that all assignments in ∆ have a non-deterministic
type, i.e., N∆ = w1 : NA1, . . . , wn : NAn, for some A1, . . . , An. The typing judgment P ⊢ ∆
corresponds to the logical sequent ⊢ ∆ for classical linear logic, which can be recovered by
erasing processes and name assignments.

Typing rules for processes correspond to proof rules in the logic; see Fig. 11. This way,
Rule [T·] allows us to introduce the inactive process 0. Rule [Tid] interprets the identity
axiom using the forwarder process. Rules [T⊗] and [TO] type output and input of a name
along a session, respectively. Rules [T1] and [T⊥] type the process constructs for session
termination. Rules [Tcut] and [T |] define cut and mix principles in the logic, which induce
typing rules for independent and dependent parallel composition, respectively.

The last four rules in Fig. 11 are used to type process constructs related to non-de-
terminism and failure. Rules [TNx

d] and [TNx] introduce a session of type NA, which may
produce a behavior of type A: while the former rule covers the case in which x : A is
indeed available, the latter rule formalizes the case in which x : A is not available (i.e., a
failure). Rule [T⊕x

w̃], accounts for the possibility of not being able to consume the session
x : A by considering sessions, the sequence of names w̃ = w1, . . . , wn, different from x as
potentially not available. Rule [TN] expresses non-deterministic choice of processes P and Q
that implement non-deterministic behaviors only.

The type system enjoys type preservation, a result that follows directly from the cut
elimination property in the underlying logic; it ensures that the observable interface of a
system is invariant under reduction. The type system also ensures other properties for
well-typed processes (e.g. global progress and confluence); see [CP17] for details.

Theorem 4.6 (Type Preservation [CP17]). If P ⊢ ∆ and P −→ Q then Q ⊢ ∆.

Having defined sπ, we now move on to define a correct translation from λ ⊕ to sπ.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:33

λ ⊕ λ̂ ⊕ sπ
L · M◦

§ 3.4 § 5.3

J · K u

Figure 12: Summary of our approach.

5. A Correct Encoding

Having introduced the typed sequential calculi λ ⊕ and λ̂ ⊕ (as well as the translation L · M◦ :

λ ⊕ → λ̂ ⊕) and the typed concurrent calculus sπ, in this section we show how to correctly

translate λ ⊕ into sπ, using λ̂ ⊕ as a stepping stone.
Before delving into technical details, we briefly discuss the significance of our encoding.

As in Milner’s seminal work, our translation explains how interaction in π provides a
principled interpretation of evaluation in λ. We tackle the challenging case in which
evaluation and interaction are fail-prone and non-deterministic, effectively generalizing
previous translations. Because our encoding preserves types, our developments also delineate
a new connection between non-idempotent intersection types and logically motivated session
types—indeed, our translation of functions as processes goes hand-in-hand with a translation
on types (Fig. 17), which reveals a new protocol-oriented interpretation of the non-idempotent
intersections that govern functional resources.

As already mentioned, we shall proceed in two steps. We rely on the translation L · M◦
from well-formed expressions in λ ⊕ to well-formed expressions in λ̂ ⊕ given in § 3.4. As λ ⊕
and λ̂ ⊕ share the same syntax of types, in this case the translation of types is the identity.

Then, the translation J · K u (for some name u) transforms well-formed expressions in λ̂ ⊕ to
well-typed processes in sπ (cf. Fig. 12). We first define encodability criteria for translations,
which include type preservation; these criteria lead to the notion of correct encoding (§ 5.1).
Then, in § 5.2 we establish the correctness of the translation L · M◦ (Corollary 5.15); finally, in

§ 5.3, we present the translation J · K u and establish its correctness (Corollary 5.39).

5.1. Encodability Criteria.
We follow most of the criteria defined by Gorla in [Gor10], a widely studied abstract

framework for establishing the quality of translations. A language L is defined as a pair
containing a set of termsM and a reduction semantics −→ on terms (with reflexive, transitive

closure denoted
∗−→). A behavioral equivalence on terms, denoted ≈, is also assumed. Then,

a correct encoding, defined next, concerns a translation of terms of a source language L1 into
terms of a target language L2 that respects certain criteria. The criteria in [Gor10] concern
untyped languages; because we consider typed languages, we follow Kouzapas et al. [KPY19]
in requiring also that translations preserve typability.

Definition 5.1 (Correct Encoding). Let L1 = (M,−→1) and L2 = (P,−→2) be two
languages and let ≈1 be a behavioral equivalence on terms inM. We use M,M ′, . . . and
P, P ′, . . . to range over elements inM and P. We say that a translation J·K :M→ P is a
correct encoding if it satisfies the following criteria:

(1) Type preservation: For every well-typed M , it holds that JMK is well-typed.

1:34 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(2) Operational Completeness: For every M,M ′, and M ′′ such that M
∗−→1 M

′ ≈1 M
′′, it

holds that JMK ∗−→2 JM ′′K.
(3) Operational Soundness: For every M and P such that JMK ∗−→2 P , there exist M ′ and

M ′′ such that M −→∗
1 M

′ ≈1 M
′′ and P

∗−→2 JM ′′K.
(4) Success Sensitiveness: Let✓1 and✓2 denote a success predicate inM and P , respectively.

For every M , it holds that M✓1 if and only if JMK✓2.

We briefly describe the criteria. First, type preservation is a natural requirement and a
distinguishing aspect of our work, given that we always consider source and target calculi
with types. Operational completeness formalizes how reduction steps of a source term are
mimicked by its corresponding translation in the target language; ≈1 conveniently abstracts
away from source terms useful in the translation but which are not meaningful in comparisons.
Operational soundness concerns the opposite direction: it formalizes the correspondence
between (i) the reductions of a target term obtained via the translation and (ii) the reductions
of the corresponding source term. The role of ≈1 can be explained as in completeness.
Our use of the equivalence ≈1 for M1, rather than of an equivalence on M2, is a minor
difference with respect to [Gor10]. Finally, success sensitiveness complements completeness
and soundness, which concern reductions and therefore do not contain information about
observable behaviors. The so-called success predicates ✓1 and ✓2 serve as a minimal notion
of observables; the criterion then says that observability of success of a source term implies
observability of success in the corresponding target term, and vice versa.

Besides these semantic criteria, we also consider compositionality, a syntactic criterion
that requires that a composite source term is translated as the combination of the translations
of its sub-terms.

5.2. Correctness of L · M◦.
We prove that the translation L · M◦ from λ ⊕ into λ̂ ⊕ in § 3.4 is a correct encoding, in

the sense of Def. 5.1. Because our translation L · M◦ is defined in terms of L · M•, it satisfies
weak compositionality, in the sense of Parrow [Par08].

5.2.1. Type Preservation.

We now prove that L·M◦ translates well-formed λ ⊕-expressions into well-formed expressions

λ̂ ⊕-expressions (Theorem 5.6). Notice that because λ ⊕ and λ̂ ⊕ share the same type syntax,
there is no translation on types/contexts involved (i.e., an identity translation applies).

Next we define well formed preservation in the translation L · M• from λ ⊕ to λ̂ ⊕. We
rely on the prerequisite proof of type preservation in the translation L · M• on the sub-calculi

from λ⊕ to λ̂⊕, and also on syntactic properties of the translation such as: (i) the property
below guarantees that the translation L · M• commutes with the linear head substitution; (ii)

preservation of typability/well-formedness w.r.t. linear substitutions in λ̂ ⊕.

Proposition 5.2. Let M,N be λ ⊕-terms. We have:

(1) LM{|N/x|}M• = LMM•{|LNM•/x|}.
(2) LM⟨x̃/x⟩M• = LMM•⟨x̃/x⟩, where x̃ = x1, . . . , xk is sequence of pairwise distinct fresh

variables.

Proof. By induction of the structure of M .

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:35

Lemma 5.3 (Preservation under Linear Substitutions in λ̂ ⊕). Let M ∈ λ̂ ⊕.

(1) Typing: If Γ, x : σk ⊢M : τ then Γ, xi : σ
k−1 ⊢M⟨xi/x⟩ : τ .

(2) Well-formedness: If Γ, x : σk |= M : τ then Γ, xi : σ
k−1 |= M⟨xi/x⟩ : τ .

Proof. Standard by induction on the rules from Fig. 6 for item (1), and Fig. 7 for item (2).

The following example illustrates that the translation of a well-formed λ ⊕-expression is

a well-formed λ̂ ⊕-expression.

Example 5.4 (Cont. Example 2.25). Term M2 = (λx.x)(Hy, zI) is well-formed with a
well-formedness judgment y : σ, z : σ |= (λx.x)(Hy, zI) : σ. In Example 3.27 we showed that
LM2M◦ = ((λx.x1[x1 ← x])(Hy1, z1I))[y1 ← y][z1 ← z] which is well-formed with translated
well-formed judgment y : σ1, z : σ1 |= LM2M◦ : σ. The derivation is given below (using rules
from Fig. 7); we omit the labels of rule applications and concatenations with the empty bag,
i.e., we write Hy1I instead of Hy1I · 1.

x1 : σ ⊢ x1 : σ

x1 : σ |= x1 : σ

x : σ1 |= x[x1 ← x] : σ

|= λx.(x[x1 ← x]) : σ → σ

y1 : σ ⊢ y1 : σ

y1 : σ |= y1 : σ

y1 : σ
1 |= Hy1I : σ1

z1 : σ ⊢ z1 : σ

z1 : σ |= z1 : σ

z1 : σ
1 |= Hz1I : σ1

y1 : σ
1, z1 : σ

1 |= Hy1I · Hz1I : σ2

y1 : σ
1, z1 : σ

1 |= λx.(x1[x1 ← x])Hy1, z1I : σ

y : σ1, z1 : σ
1 |= λx.(x1[x1 ← x])Hy1, z1I[y1 ← y] : σ

y : σ1, z : σ1 |= λx.(x1[x1 ← x])Hy1, z1I[y1 ← y][z1 ← z] : σ

As the translation L · M◦ for λ ⊕-terms is defined in terms of L · M•, it is natural that
preservation of well-formedness under L · M◦ (Theorem 5.6) relies on the preservation of
well-formedness under L · M•, given next.

To state well-formedness preservation, we use Γ†, the core context of Γ (Def. 3.12). In
the following property, we use an additional condition on Γ†, which reflects the fact that

intersection types get “flattened” by virtue of the translation. The condition, denoted Γ̂†,
is defined whenever Γ† contains only unary multisets as follows: if x : σ1 ∈ Γ† for all

x ∈ dom(Γ†), then x : σ ∈ Γ̂†.

Lemma 5.5 (Well-formedness preservation for L·M•). Let B and M be a bag and an expression

in λ ⊕, respectively. Also, let Γ be a context such that Γ̂† is defined. We have:

(1) If Γ |= B : π then Γ̂† |= LBM• : π.
(2) If Γ |= M : σ then Γ̂† |= LMM• : σ.

Proof (Sketch). By mutual induction on the typing derivations Γ |= B : σ and Γ |= M : σ.
The proof of item (1) follows mostly by induction hypothesis, by analyzing the rule applied
(Fig. 4). The proof of item (2), also follows by analyzing the rule applied, but it is more
delicate, especially when treating cases involving Rules [FS : app] or [FS : ex-sub], for which
the size of the bag does not match the number of occurrences of variables in the expression.
See App.C.1.2 for full details.

Theorem 5.6 (Well-formedness Preservation for L · M◦). Let B and M be a bag and an

expression in λ ⊕, respectively.

1:36 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

M⟨⟨1/x⟩⟩ ≡λ M (if x ̸∈ fv(M))
MB1⟨⟨B2/x⟩⟩ ≡λ (M⟨⟨B2/x⟩⟩)B1 (if x ̸∈ fv(B1))

M⟨⟨B1/y⟩⟩⟨⟨B2/x⟩⟩ ≡λ (M⟨⟨B2/x⟩⟩)⟨⟨B1/y⟩⟩ (if x ̸= y, x ̸∈ fv(B1) and y ̸∈ fv(B2))
M ≡λ M ′ ⇒ C[M] ≡λ C[M ′]
M ≡λ M′ ⇒ D[M] ≡λ D[M′]

Figure 13: Congruence in λ ⊕

(1) If Γ |= B : π then Γ† |= LBM◦ : π.
(2) If Γ |= M : σ then Γ† |= LMM◦ : σ.

Proof (Sketch). By mutual induction on the typing derivations Γ |= B : σ and Γ |= M : σ.
Note that for a bag B, since the first part of translation consists in sharing the free variables of
B, we will work with the translated bag LBM◦ = LB⟨x̃1/x1⟩ . . . ⟨x̃k/xk⟩M•[x̃1 ← x1] . . . [x̃k ← xk],
and the rest of the proof depends on Proposition 5.2 that moves linear substitutions outside
L ·M•, then Lemma 5.3 that guarantees preservation of typability/well-formedness under linear
substitutions, and Lemma 5.5 for treating the closed translation. The dependency extends
to the proof of item (2), for expressions. The full proof can be found in App.C.1.2.

5.2.2. Operational Correspondence: Completeness and Soundness.
Def. 5.1 states operational completeness and soundness over the reflexive, transitive

closure of the reduction rules. However, in the case of L · M◦, we prove completeness and
soundness for a single reduction step (cf. Fig. 14). This is sufficient: by the diamond property

(Proposition 2.13) a result stated for −→ can be extended easily to
∗−→, by induction on the

length of the reduction sequence. (The result is immediate when the length is zero.)

We rely on a structural equivalence over λ ⊕-expressions, denoted ≡λ, which is the least
congruence satisfying α-conversion and satisfying the identities in Fig. 13. This congruence
allows us to move explicit substitutions to the right of the term and to ignore explicit
substitutions of a variable x for empty bags in a term that does not contain x.

Example 5.7. Consider the failure term M = faily,y,z⟨⟨1/x⟩⟩. Since size(1) = 0, the term M
cannot reduce using Rule [R : Cons2], which requires that the size of the bag is greater than 0.
Instead, we use the structural equivalence identity in Fig. 13: faily,y,z⟨⟨1/x⟩⟩ ≡λ faily,y,z.

Theorem 5.8 (Operational Completeness). Let M,N be well-formed λ ⊕ expressions. Suppose
N −→[R] M.

(1) If [R] = [R : Beta] then LNM◦ −→≤2 LMM◦;
(2) If [R] = [R : Fetch] then LNM◦ −→+ LM′M◦, for some M′ such that M ≡λ M′.
(3) If [R] ̸= [R : Beta] and [R] ̸= [R : Fetch] then LNM◦ −→ LMM◦.

Proof (Sketch). By induction on the rules from Figure 2 applied to infer N −→[R] M. We
analyse the reduction depending on whether [R] is either [R : Beta], or [R : Fetch], or neither.
In the case the rule applied is [Beta], then N = (λx.M ′)HBI and M = M ′⟨⟨B/x⟩⟩. When
applying the translation L · M◦ to N and M we obtain:

• LNM◦ = ((λx.LM ′′⟨ỹ/x⟩M•[ỹ ← x])LB′M•)[x̃1 ← x1] . . . [x̃k ← xk]

• LMM◦ = LM ′′⟨⟨B′
/x⟩⟩M•[x̃1 ← x1] . . . [x̃k ← xk]

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:37

Operational Completeness

λ ⊕: N M ≡λ M′
[R]

λ̂ ⊕: LNM◦ LM′M◦∗

L · M◦ Thm 5.8 L · M◦

Operational Soundness

N N′ ≡λ N′′
[R]

LNM◦ L LN′M◦

L · M◦ Thm 5.9 L · M◦

*

Figure 14: Operational correspondence for L · M◦

where B′ and M
′′
stand for the renamings of B and M ′, respectively, after sharing the

multiple occurrences of their free/bound variables (Def. 3.26). Note that

LNM◦ −→ [RS:Beta](LM
′′⟨ỹ/x⟩M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩)[x̃1 ← x1] . . . [x̃k ← xk] := L,

and according to rules in Fig. 5, the remaining reduction depends upon the characteristics of
the bag LB′M•:

(i) size(LB′M•) = #(x,M
′′
) = k ≥ 1. Then, LNM◦ −→ [RS:Beta]L −→[RS:ex-sub] LMM◦.

(ii) Otherwise, L can be further expanded, the “otherwise case” of the translation of
explicit substitutions, such that

LNM◦ −→ [RS:Beta](LM
′′⟨ỹ/x⟩M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩)[x̃1 ← x1] . . . [x̃k ← xk] = L = LMM◦.

In the case the rule applied is [R : Fetch], the proof depends on the size n of the bag. The
interesting case is when the bag B has only one component (i.e., n = 1): from N −→[F:Fetch] N
we have that N = M⟨⟨HN1I/x⟩⟩ and M = M{|N1/x|}⟨⟨1/x⟩⟩. We need to use the congruence ≡λ

to obtain M = M{|N1/x|}⟨⟨1/x⟩⟩ ≡λ M{|N1/x|} := M′ and then conclude that LNM◦ −→ LM′M◦.
The analysis for the other cases is also done by inspecting the structure of expressions and
bags. The full proof can be found in App.C.2.

We establish soundness for a single reduction step. As we discussed for completeness,
the property generalizes to multiple steps.

Theorem 5.9 (Operational Soundness). Let N be a well-formed λ ⊕ expression. Suppose
LNM◦ −→ L. Then, there exists N′ such that N −→[R] N′ and

(1) If [R] = [R : Beta] then L −→≤1 LN′M◦;
(2) If [R] ̸= [R : Beta] then L −→∗ LN′′M◦, for N′′ such that N′ ≡λ N′′.

Proof (Sketch). By induction on the structure of N and inspecting the rules from Fig. 5
that can be applied in LNM◦. The interesting cases happen when N is either an application
N = (M B) or an explicit substitution N = M⟨⟨B/x⟩⟩). The former is reducible when N is
an instance of [R : Beta] or when M = failx̃ and N is an instance of [R : Cons1]. The latter,
for N = M⟨⟨B/x⟩⟩), the proof is split in several subcases depending whether: (i) size of the
bag size(B) = #(x,M) ≥ 1, and three possible reductions can take place [RS : lin-fetch],
[RS : Cons3] and [RS : Cont], depending if M is a failing term or not; (ii) size(B) ̸= #(x,M)

1:38 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

or size(B) = 0, and the proof follows either applying Rule [RS : Fail] or by induction
hypothesis. The full proof can be found in App.C.2.

5.2.3. Success Sensitiveness.
We now consider success sensitiveness, a property that complements (and relies on)

operational completeness and soundness. For the purposes of the proof, we consider the

extension of λ ⊕ and λ̂ ⊕ with dedicated constructs and predicates that specify success.

Definition 5.10. We extend the syntax of terms for λ ⊕ and λ̂ ⊕ with the same ✓ construct.
In both cases, we assume ✓ is well formed. Also, we define head(✓) = ✓ and L✓M• = ✓

An expression M has success, denoted M ⇓✓, when there is a sequence of reductions
from M that leads to an expression that includes a summand that contains an occurrence of
✓ in head position.

Definition 5.11 (Success in λ ⊕ and λ̂ ⊕). In λ ⊕ and λ̂ ⊕, we define

M ⇓✓ ⇐⇒ ∃M1, · · · ,Mk. M −→∗ M1 + · · ·+Mk and head(Mj) = ✓,

for some j ∈ {1, . . . , k}.

Definition 5.12 (Head of an expression). We extend Def. 3.4 from terms to expressions as
follows:

head∑(M) =

{
head(Mi) if head(Mi) = head(Mj) for all Mi,Mj ∈M
undefined otherwise

Proposition 5.13 (Preservation of head term). The head of a term is preserved when
applying the translation L · M◦, i.e.,

∀M ∈ λ ⊕. head(M) = ✓ ⇐⇒ head∑(LMM◦) = ✓.

Proof (Sketch). By induction on the structure of M considering the extension of the language
established in Def. 5.10. See App.C.3 for details.

Theorem 5.14 (Success Sensitivity). Let M be a well-formed λ ⊕-expression. Then,

M ⇓✓ ⇐⇒ LMM◦ ⇓✓ .

Proof (Sketch). By induction on the structure of λ ⊕ and λ̂ ⊕ expressions. The if-case follows
from operational soundness (Thm. 5.9) by analyzing a reductions starting from LMM◦.
Reciprocally, the only-if-case follows by operational completeness (Thm. 5.8), analyzing
reductions starting from M. See App.C.3 for details.

We have the corollary below, which follows from Theorems 5.6, 5.8, 5.9, and 5.14:

Corollary 5.15. Our translation L · M◦ is a correct encoding, in the sense of Def. 5.1.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:39

JxKu = x.some; [x↔ u]

Jλx.M [x̃← x]Ku = u.some;u(x).JM [x̃← x]Ku

JM BKu =
⊕

Bi∈PER(B)

(νv)(JMKv | v.someu,fv(B); v(x).(x.somefv(Bi); JBiKx | [v ↔ u]))

JM [x1, . . . , xk ← x]Ku = x.some;x(x1). · · · .x(xk).x.close; JMKu
JM [← x]Ku = x.some;x.close; JMKu
JHMI ·BKx = x(x1).(x1.somefv(B); JMKx1 | JBKx)

J1Kx = x.close

JM [x̃← x]⟨⟨B/x⟩⟩Ku =
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]Ku | x.somefv(Bi); JBiKx)

JM⟨|N/x|⟩Ku = (νx)(JMKu | x.somefv(N); JNKx)
JM+ NKu = JMKu ⊕ JNKu

Figure 15: An auxiliary translation of λ̂⊕ into sπ, without failures

5.3. From λ̂ ⊕ to sπ.

We now define our translation of λ̂ ⊕ into sπ, denoted J · K u, and establish its correctness.
As usual in translations of λ into π, we use a name u to provide the behavior of the translated
expression. In our case, u is a non-deterministic session: the translated expression can be
available or not; this is signalled by prefixes ‘u.some’ and ‘u.none’, respectively. Notice that

every (free) variable x in a λ̂ ⊕-term M becomes a name x in its corresponding process JMK u
and is assigned an appropriate session type.

5.3.1. An Auxiliary Translation. Before introducing J · K u, we first discuss the translation

J·Ku : λ̂⊕ → sπ, i.e., the translation in which the source language does not include failures.
This auxiliary translation, shown in Fig. 15, is given for pedagogical purposes: it allows us

to gradually discuss several key design decisions in J · K u.
We describe each case of the translation J·Ku, focusing on the rôle of non-deterministic

sessions (expressed using prefixes ‘x.some’ and ‘x.some(w1,··· ,wn)’ in sπ):

• JxKu: Because sessions are non-deterministically available, the translation first confirms
that the behavior along x is available; subsequently, the forwarder process induces a
substitution {x/u}.
• Jλx.M [x̃← x]Ku: As in the case of variables, the translation first confirms the behavior
along u before receiving a name, which will be used in the translation of M [x̃ ← x],
discussed next.
• JM BKu: This process models the application of M to bag B as a non-deterministic choice
in the order in which the elements of B are substituted into M . Substituting each Bi

involves a protocol in which the translation of a term λx.M ′[x̃← x] within M confirms
its own availability, before and after the exchange of the name x, on which the translation
of Bi is spawned. This protocol uses the fact that M B does not reduce to failure, i.e.,
there is no lack or excess of resources in B.

1:40 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

• JM [x1, . . . , xk ← x]Ku: The translation first confirms the availability of the behavior along
x. Then, it receives along x a name for each xi: these received names will be used to
synchronize with the translation of bags (see below). Subsequently, the protocol on x
safely terminates and the translation of M is executed.
• JM [← x]Ku: When there are no variables to be shared with x, the translation simply
confirms the behavior on x, close the protocol immediately after, and executes the
translation of M .
• JHMI ·BKx: The translation of a non-empty bag essentially makes each element available
in its corresponding order. This way, for the first element M a name x1 is sent over x; the
translation of M [x1, · · · , xn ← x], discussed above, must send a confirmation on x1 before
the translation of M is executed. After these exchanges, the translation of the rest of the
bag is spawned.
• J1Kx: In line with the previous item, the translation of the empty bag simply closes
the name x; this signals that there are no (further) elements in the bag and that all
synchronizations are complete.
• JM [x̃← x]⟨⟨B/x⟩⟩Ku: In this case, the translation is a sum involving the parallel composition
of (i) the translation of each element Bi in the bag and (ii) the translation of M . Observe
that a fresh name x is created to enable synchronization between these two processes. Also,
as in previous cases, notice how the translation of Bi must first confirm its availability
along x.
• JM⟨|N/x|⟩Ku: This translation essentially executes the translations of M and N in parallel,
with a caveat: the translation of N depends on the availability of a behavior along x, to
be produced within the translation of M .
• JM+ NKu: This translation homomorphically preserves the non-determinism between M
and N .

Example 5.16. Consider the λ̂⊕-term M0 = (λx.M [x1, x2 ← x])HN1, N2I. Writing fv(B)
to denote the free variables in N1 and N2, the process JM0Ku is as follows:

JM0Ku =J(λx.M [x1, x2 ← x])HN1, N2IKu
=(νv)(Jλx.M [x1, x2 ← x]Kv | v.someu,fv(B); v(x).(x.somefv(B); JHN1, N2IKx | [v ↔ u])︸ ︷︷ ︸

P1

)

⊕
(νv)(Jλx.M [x1, x2 ← x]Kv | v.someu,fv(B); v(x).(x.somefv(B); JHN2, N1IKx | [v ↔ u])︸ ︷︷ ︸

P2

)

= (νv)(v.some; v(x).x.some;x(x1).x(x2).x.close; JMKv | P1)

⊕
(νv)(v.some; v(x).x.some;x(x1).x(x2).x.close; JMKv | P2)

The translation immediately opens up a non-deterministic choice with two alternatives,
corresponding to the bag of size 2. Because of non-collapsing non-determinism, after some
reductions, this amounts to accounting for the two different orders in which N1 and N2 can
be extracted from the bag.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:41

JM0Ku −→∗ (νx)(x(x1).x(x2).x.close; JMKu | JHN1, N2IKx)
⊕
(νx)(x(x1).x(x2).x.close; JMKu | JHN2, N1IKx)

We show further reductions for one of the processes, which we will denote R, for R =
(νx)(x(x1).x(x2).x.close; JMKu | JHN1, N2IKx), in the resulting sum (reductions for the
other process are similar):

R =(νx)(x(x1).x(x2).x.close; JMKu | JHN1, N2IKx)
= (νx)(x(x1).x(x2).x.close; JMKu | x(x1).(x1.somefv(N1); JN1Kx1 |

x(x2).(x2.somefv(N2); JN2Kx2 | x.close)))
−→∗ (νx1, x2)(JMKu | x1.somefv(N1); JN1Kx1 | x2.somefv(N2); JN2Kx2)

5.3.2. The Translation.
The translation J·Kx leverages non-deterministic sessions in sπ to give a concurrent

interpretation of λ̂⊕, the non-deterministic (but fail-free) sub-calculus of λ̂ ⊕. In a nutshell,
non-deterministic sessions entail the explicit confirmation of the availability of a name’s
behavior, via synchronizations of a prefix ‘x.some(w1,··· ,wn)’ with a corresponding prefix
‘x.some’. Clearly, J·Kx under-utilizes the expressivity of sπ: in processes resulting from J·Kx,
no prefix ‘x.some(w1,··· ,wn)’ will ever synchronize with a prefix ‘x.none’. Indeed, because

terms in λ̂⊕ never reduce to failure, J·Kx should not account for such failures.

We may now introduce J · K u, our translation of the fail-prone calculus λ̂ ⊕ into sπ. It
builds upon the structure of J·Kx to account for failures in expressions due to the lack or

excess of resources. To this end, as we will see, J · K u does exploit prefixes ‘x.none’ to signal
failures.

Translating Expressions. We introduce the translation J · K u, which will be shown to be a
correct encoding, according to the criteria given in § 5.1.

Definition 5.17 (From λ̂ ⊕ into sπ: Expressions). Let u be a name. The translation

J · K u : λ̂ ⊕ → sπ is defined in Fig. 16.

We discuss the most interesting aspects of the translation in Fig. 16, in particular how
the possibility of failure (lack or excess of resources in bags) induces differences with respect
to the translation in Fig. 15.

Most salient differences can be explained by looking at the translation of the application

M B. Indeed, the sources of failure in λ̂ ⊕ concern a mismatch between the number of
variable occurrences in M and the number of resources present in B. Both M and B can
fail on their own, and our translation into sπ must capture this mutual dependency. Let us
recall the translation given in Fig. 15:

JM BKu =
⊕

Bi∈PER(B)

(νv)(JMKv | v.someu,fv(B); v(x).(x.somefv(Bi); JBiKx | [v ↔ u]))

The corresponding translation in Fig. 16 is seemingly simpler:

JM BK u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

1:42 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

JxK u = x.some; [x↔ u]

Jλx.M [x̃← x]K u = u.some;u(x).JM [x̃← x]K u

JM BK u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

JM [x̃← x]⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x)

JM [x1, x2 ← x]K u = x.some.x(y1).
(
y1.some∅; y1.close |x.some;x.someu,(fv(M)\{x1,x2});x(x1).

.x.some.x(y2).
(
y2.some∅; y2.close |x.some;x.someu,(fv(M)\{x2});x(x2)

.x.some;x(y).(y.someu,fv(M); y.close; JMK u | x.none)
))

JM [← x]K u = x.some.x(y).(y.someu,fv(M); y.close; JMK u | x.none)

JHMI ·BK x = x.somefv(HMI·B);x(yi).x.someyi,fv(HMI·B);x.some;x(xi)

.(xi.somefv(M); JMK xi | JBK x | yi.none)

J1K x = x.some∅;x(y).(y.some; y.close | x.some∅;x.none)

Jfailx1,··· ,xkK u = u.none | x1.none | · · · | xk.none

JM⟨|N/x|⟩K u = (νx)(JMK u | x.somefv(N); JNK x)

JM+ NK u = JMK u ⊕ JNK u

Figure 16: Translating λ̂ ⊕ expressions into sπ processes.

Indeed, the main difference is the prefix ‘x.somefv(Bi)’, which is present in process JM BKu
but is not explicit in process JM BK u. Intuitively, such a prefix denotes the dependency of B

on M ; because terms in λ̂⊕ do not fail, we can be certain that a corresponding confirming

prefix ‘x.some’ will be available to spawn every JBiKx. When moving to λ̂ ⊕, however, this is

not the case: JMK v may fail to provide the expected number of corresponding confirmations.
For this reason, the role of prefix ‘x.somefv(Bi)’ in JM BKu is implemented within process

JBiK

x. As a consequence, the translations for sharing terms (M [x̃← x] and M [← x]) and

for bags (HMI ·B and 1) are more involved in the case of failure.

With this motivation for JM BK u in mind, we discuss the remaining entries in Fig. 16:

• Translations for x and λx.M [x̃← x] are exactly as in Fig. 15:

JxK u = x.some; [x↔ u] Jλx.M [x̃← x]K u = u.some;u(x).JM [x̃← x]K u

• Similarly as JM BK u, discussed above, the translation of M [x̃← x]⟨⟨B/x⟩⟩ is more compact
than the one in Fig. 15, because confirmations for each of the elements of the bag are

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:43

handled within their respective translations:

JM [x̃← x]⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x)

• As anticipated, the translation of M [x1, . . . , xk ← x] is more involved than before. For
simplicity, let us discuss the representative case when k = 2 (two shared variables):

JM [x1, x2 ← x]K u = x.some.x(y1).
(
y1.some∅; y1.close |x.some;x.someu,(fv(M)\{x1,x2});x(x1).

x.some.x(y2).
(
y2.some∅; y2.close |x.some;x.someu,(fv(M)\{x2});x(x2).

x.some;x(y).(y.someu,fv(M); y.close; JMK u | x.none)
))

This process is meant to synchronize with the translation of a bag. After confirming the
presence of a behavior on name x, an auxiliary name yi is sent to signal that there are
elements to be substituted. This name implements a short protocol that allows us to check
for lack of resources in the bag. These steps on yi are followed by another confirmation
and also a request for confirmation of behavior along x; this represents that the name
can fail in one of two ways, capturing the mutual dependency between M and the bag
mentioned above. Once these two steps on x have succeeded, it is finally safe for the
process to receive a name xi. This process is repeated for each shared variable to ensure
safe communication of the elements of the bag. The last line shows the very final step: a
name y is communicated to ensure that there are no further elements in the bag; in such

a case, y fails and the failure is propagated to JMK u. The prefix ‘x.none’ signals the end
of the shared variables, and is meant to synchronize with the translation of 1, the last
element of the bag. If the bag has elements that still need to be synchronized then the
failure along x is propagated to the remaining resources within the translation of the bag.
• The translation of M [← x] corresponds to the final step in the translation just discussed:

JM [← x]K u = x.some.x(y).(y.someu,fv(M); y.close; JMK u | x.none)

• The translation of the non-empty bag HMI ·B is as follows:

JHMI ·BK x = x.somefv(HMI·B);x(yi).x.someyi,fv(HMI·B);x.some;x(xi)

.(xi.somefv(M); JMK xi
| JBK x | yi.none)

Notice how this process operates hand in hand with the translation of M [x1, . . . , xk ← x].
The process first waits for its behavior to be confirmed; then, the auxiliary name yi is
received from the translation of M [x1, . . . , xk ← x]. The name yi fails immediately to
signal that there are more resources in the bag. Name x then confirms its behavior and
awaits its behavior to be confirmed. Subsequently, a name xi is sent: this is the name on
which the translation of M will be made available to the application. After that, name x
is used in the translation of B, the rest of the bag.
• The translation of 1 operates aligned with the translations just discussed, exploiting the
fact that in fail-free reductions the last element of the bag must be 1:

J1K x = x.some∅;x(y).(y.some; y.close | x.some∅;x.none)

This process relays the information that the translated empty bag is no longer able to
provide resources for further substitutions. It first waits upon a correct behavior followed
by the reception of a name y. The process then confirms its behavior along y: this signals

1:44 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

that there are no further resources. Concurrently, name x waits for a confirmation of a
behavior and ends with ‘x.none’, thus signaling the failure of producing further behaviors.

• The explicit failure term failx1,··· ,xk is not part of λ̂⊕ and so it was not covered in Fig. 15.
Its translation is straightforward:

Jfailx1,··· ,xkK u = u.none | x1.none | · · · | xk.none
The failure term is translated as the non-availability of a behavior along name u, composed
with the non-availability of sessions along the names/variables x1, . . . , xn encapsulated by
the source failure term.
• The translations for M⟨|N/x|⟩ and M+ N are exactly as before:

JM⟨|N/x|⟩K u = (νx)(JMK u | x.somefv(N); JNK x) JM+ NK u = JMK u ⊕ JNK u

5.3.3. Examples. Before presenting the session types associated to our translation J · K u, we
present a series of examples that illustrate different possibilities in a step-by-step fashion:

• No failure: an explicit substitution that is provided an adequate amount of resources;
• Failure due to excess of resources in the bag;
• Failure due to lack of resources in the bag.

We first discuss the translation of a term in which there is no failure. In that follows, we
refer to a specific reduction by adding a number as in, e.g., ‘−→[3]’.

Example 5.18 (No Failure). Let us consider the well-formed λ̂ ⊕-term N [x1 ← x]⟨⟨HMI/x⟩⟩,
where, for simplicity, we assume that fv(N) \ {x1} = fv(M) = ∅. As we have seen,

N [x1 ← x]⟨⟨HMI/x⟩⟩ −→ N⟨|M/x|⟩. We discuss reduction steps for JN [x1 ← x]⟨⟨HMI/x⟩⟩K u,
highlighting in blue relevant prefixes. First, we have:

JN [x1 ← x]⟨⟨HMI/x⟩⟩K u = (νx)(JN [x1 ← x]K u | JHMIK x)

= (νx)
(
x.some.x(y1).(y1.some∅; y1.close | x.some;x.someu;

.x(x1).x.some;x(y).(y.someu,x1
; y.close; JNK u | x.none))

| x.some∅;x(y1).x.somey1 ;x.some;x(x1)

.(x1.some∅; JMK x1
| y1.none | x.some∅;x(y).(y.some; y.close

| x.some∅;x.none))
)

A detailed description of the reduction steps follows:

• Reduction −→[1] concerns the name x confirming its behavior (see highlighted prefixes
above), and reduction −→[2] concerns the communication of name y1:

JN [x1 ← x]⟨⟨HMI/x⟩⟩K u −→[1] (νx)(x(y1).
(
y1.some∅; y1.close | x.some;x.someu;x(x1).

.x.some;x(y).(y.someu,x1
; y.close; JNK u | x.none)

)
| x(y1).x.somey1

;x.some;x(x1).(x1.some∅; JMK x1

| y1.none | x.some∅;x(y).(y.some; y.close | x.some∅;x.none)))
−→[2] (νx, y1)(y1.some∅; y1.close | x.some;x.someu;x(x1).

.x.some;x(y).(y.someu,x1 ; y.close; JNK u | x.none)

| x.somey1 ;x.some;x(x1).(x1.some∅; JMK x1

|y1.none |x.some∅;x(y).(y.some; y.close |x.some∅;x.none))) (:= P)

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:45

• Reduction −→[3] concerns x confirming its behavior, which signals that there are variables
free for substitution in the translated term. In the opposite direction, reduction −→[4]

signals that there are elements in the bag which are available for substitution in the
translated term.

P −→[3] (νx, y1)(y1.some∅; y1.close| x.someu;x(x1).

.x.some;x(y).(y.someu,x1 ; y.close; JNK u | x.none)

| x.some;x(x1).(x1.some∅; JMK x1
| y1.none | x.some∅;x(y).

(y.some; y.close | x.some∅;x.none)))
−→[4] (νx, y1)(y1.some∅; y1.close | x(x1).x.some;x(y).(y.someu,x1

; y.close;

JNK u | x.none) | x(x1).(x1.some∅; JMK x1
| y1.none

| x.some∅;x(y).(y.some; y.close | x.some∅;x.none))) (:= Q)

• Given the confirmations in the previous two steps, reduction −→[5] can now safely com-
municate a name x1. This reduction synchronizes the shared variable x1 with the first
element in the bag.

Q −→[5] (νx, y1, x1)(y1.some∅; y1.close | x.some;x(y).(y.someu,x1 ; y.close; JNK u
| x.none) | x1.some∅; JMK x1

| y1.none | x.some∅;x(y).(y.some; y.close
| x.some∅;x.none)) (:= R)

• Reduction −→[6] concerns x confirming its behavior. At this point, we could have
alternatively performed a reduction on name y1. We chose to discuss all reductions on x
first; thanks to confluence this choice has no effect on the overall behavior. Reduction
−→[7] communicates name y along x.

R −→[6] (νx, y1, x1)(y1.some∅; y1.close | x(y).(y.someu,x1
; y.close; JNK u

| x.none) | x1.some∅; JMK x1
| y1.none | x(y).(y.some; y.close

| x.some∅;x.none))

−→[7] (νx, y, y1, x1)(y1.some∅; y1.close | y.someu,x1 ; y.close; JNK u | x.none

| x1.some∅; JMK x1
| y1.none | y.some; y.close | x.some∅;x.none) (:= S)

• Reduction −→[8] cancels the behavior along x, meaning that there are no more free
variables to synchronize with. Subsequently, reduction −→[9] cancels the behavior along
y1: at the beginning, when y1 was received, the encoded bag had the element M left to
be synchronized; at this point, the failure on y1 signals that the bag still has elements to
be synchronized with.

S −→[8] (νy, y1, x1)(y1.some∅; y1.close | y.someu,x1 ; y.close; JNK u | x1.some∅; JMK x1

| y1.none | y.some; y.close)

−→[9] (νy, x1)(y.someu,x1
; y.close; JNK u | x1.some∅; JMK x1

x | y.some; y.close) (:= T)

• Finally, reductions −→[10] and −→[11] concern name y: the former signals that the bag
has no more elements to be synchronized for substitution; the latter closes the session, as
it has served its purpose of correctly synchronizing the translated term. The resulting
process corresponds to the translation of N⟨|M/x|⟩.

T −→[10] (νy, x1)(y.close; JNK u | x1.some∅; JMK x1
| y.close)

−→[11] (νx1)(JNK u | x1.some∅; JMK x1
) = JN⟨|M/x|⟩K u

1:46 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

We now discuss the translation of a term that fails due to an excess of resources.

Example 5.19 (Excess of Resources). Let us consider the well-formed λ̂ ⊕-term that does not

share occurrences of x, i.e., N [← x]⟨⟨HMI/x⟩⟩, whereM,N are closed (i.e. fv(N) = fv(M) = ∅).
This term’s translation is:

JN [← x]⟨⟨HMI/x⟩⟩K u = (νx)(JN [← x]K u | JHMIK x)

= (νx)(x.some.x(y1).(y1.someu; y1.close; JNK u | x.none) |

x.some∅;x(y1).x.somey1 ;x.some;x(xi).(xi.some∅; JMK xi
| J1K x | y1.none))

• Reductions −→[1] and −→[2] follow as in Example 5.18.

JN [← x]⟨⟨HMI/x⟩⟩K u −→[1] (νx)(x(y1).(y1.someu; y1.close; JNK u | x.none) |

x(y1).x.somey1
;x.some;x(xi).(xi.some∅; JMK xi

| J1K x | y1.none))

−→[2] (νx, y1)(y1.someu; y1.close; JNK u | x.none |

x.somey1 ;x.some;x(xi).(xi.some∅; JMK xi
| J1K x | y1.none)) (:= P)

Notice how the translation of the term first triggers the failure: prefix x.none (highlighted
in red) signals that there are no (more) occurrences of x within the process; nevertheless,
the translation of the bag is still trying to communicate the translation of M . This failure
along x causes the chain reaction of the failure along y1, which eventually triggers across
the translation of N .
• Reduction −→[3] differs from −→[3] in Example 5.18, as the translation of the shared
variable is empty, we abort along the name x; as the translated bag still contains elements
to synchronize, the abortion of the bag triggers that failure of the dependant name y1.

P −→[3] (νy1)(y1.someu;y1.close; JNK u | −→ y1.none)

−→[4] u.none = Jfail∅K u

• Reduction −→[4] differs from that of −→[9] and −→[10] from Example 5.18: the name y1
fails signaling that there was an element in the bag that was to be sent; as the translation
of the term N is guarded by the confirmation along y1, it aborts.

Finally, we illustrate how J · K u acts on a term that fails due to lack of resources in a bag.

Example 5.20 (Lack of Resources). Consider the well-formed λ̂ ⊕-term N [x1 ← x]⟨⟨1/x⟩⟩,
where N is a closed term (i.e. fv(N) = ∅). This term’s translation is:

JN [x1 ← x]⟨⟨1/x⟩⟩K u = (νx)(JN [x1 ← x]K u | J1K x)
= (νx)(x.some.x(y1).(y1.some∅; y1.close | x.some;x.someu;

x(x1).x.some;x(y2).(y2.someu,x1
; y2.close; JNK u | x.none)) |

x.some∅;x(y1).(y1.some; y1.close | x.some∅;x.none)) (:= P)

Notice how the translation of the empty bag 1 triggers the failure: prefix ‘x.none’ signals that
there are no (more) elements in the bag; however, the translated term aims to synchronize,
as it (still) requires resources.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:47

• Reductions −→[1] and −→[2] follow from Example 5.18.

P −→[1] (νx)(x(y1).(y1.some∅; y1.close | x.some;x.someu;x(x1).

x.some;x(y2).(y2.someu,x1
; y2.close; JNK u | x.none)) |

x(y1).(y1.some; y1.close | x.some∅;x.none))
−→[2] (νx, y1)(y1.some∅; y1.close | x.some;x.someu;x(x1).

x.some;x(y2).(y2.someu,x1
; y2.close; JNK u | x.none) |

y1.some; y1.close | x.some∅;x.none)

• Reductions −→[3] and −→[4] follow from that of −→[9] and −→[10] in Example 5.18; as the
term contains the element x1 for synchronization, the encoding of N is not guarded by y1.

Q −→[3] (νx, y1)(y1.close | x.some;x.someu;x(x1).

x.some;x(y2).(y2.someu,x1
; y2.close; JNK u | x.none) |

y1.close | x.some∅;x.none)
−→[4] (νx)(x.some;x.someu;x(x1).x.some;x(y2).(y2.someu,x1

; y2.close;

JNK u | x.none) | x.some∅;x.none)

−→[5] (νx)(x.someu;x(x1).x.some;x(y2).(y2.someu,x1 ; y2.close; JNK u | x.none) | x.none)

−→[6] u.none = Jfail∅K u
• Reduction −→[5] follows from reduction −→[3] in Example 5.18.
• Reduction −→[6] differs from that of −→[4] from Example 5.18: the bag contains no
elements, and signals this by aborting along the name x; still, the term expects to receive
an element of the bag, and prematurely aborts.

Translating Types. In describing our translation J · K − we have informally referred to
(non-deterministic) session protocols in sπ that implement (non-deterministic) expressions

in λ̂ ⊕. We are actually able to make these intuitions precise and give a translation of

intersection types (for λ̂ ⊕, cf. Def. 2.15) into session types (for sπ, cf. Def. 4.4). This provides
the protocol-oriented interpretation of intersections mentioned earlier. Intuitively speaking,
given an intersection type π, we will have a corresponding session type JπK that determines
a protocol tied to the evaluation of a (fail-prone, non-deterministic) expression with type π.

Definition 5.21 (From λ̂ ⊕ into sπ: Types). The translation J · K on types is defined in
Fig. 17. Let Γ = x1 : σ1, · · · , xm : σk, v1 : π1, · · · , vn : πn be as in Def. 3.12.

For some strict types τ1, · · · , τn and i1, · · · , in ≥ 0 we define:

JΓK = x1 : NJσ1K , · · · , xk : NJσkK , v1 : NJπ1K

(τ1,i1)

, · · · , vn : NJπnK (τn,in)

As we will see, given a well-formedness judgement Γ |= M : τ , with the translations on

types and assignments defined above, we will have JMK u ⊢ JΓK , u : JτK ; this is the content
of the type preservation property (Theorem 5.23).

The translation of types in Fig. 17 leverages non-deterministic session protocols (typed

with ‘N’) to represent non-deterministic fetching and fail-prone evaluation in λ̂ ⊕. Notice
that the translation of the multiset type π depends on two arguments (a strict type τ
and a number i ≥ 0) which are left unspecified above, but are appropriately specified in

Proposition 5.22. This is crucial to represent mismatches in λ̂ ⊕ (i.e., sources of failures) as

1:48 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

JunitK = N1

Jπ → τK = N((JπK (σ,i)) O JτK) (for some strict type σ, with i ≥ 0)

Jσ ∧ πK (τ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JπK (τ,i)))))

= ⊕((N1) O (⊕N((⊕JσK)⊗ (JπK (τ,i)))))

JωK (σ,i) =

N((⊕⊥)⊗ (N⊕⊥))) if i = 0

N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,i−1))))) if i > 0

Figure 17: Translating intersection types as session types.

typable processes in sπ. For instance, in Fig. 7, Rule [FS:app] admits a mismatch between
σj → τ and σk, for it allows j ̸= k. In our proof of type preservation, these two arguments
are instantiated appropriately, enabling typability as session-typed processes.

We are now ready to consider correctness for J · K u, in the sense of Def. 5.1. First, the
compositionality property follows directly from Fig. 16. In the following sections, we state
the remaining properties in Def. 5.1: type preservation, operational correspondence, and
success sensitiveness.

5.3.4. Type Preservation. We prove that our translation from λ̂ ⊕ to sπ maps well-formed

λ̂ ⊕ expressions to session-typed processes in sπ. First, we show that translated multiset
types can be “lengthened” by setting appropriate parameters to the encoding.

Proposition 5.22. Suppose σj and σk are arbitrary strict types (Def. 2.15), for some

j, k ≥ 0. Following Fig. 17, consider their encoding into session types JσjK (τ1,m) and JσkK (τ2,n),
respectively, where τ1, τ2 are strict types and n,m ≥ 0.

We have JσjK (τ1,m) = JσkK (τ2,n) under the following conditions:

(1) If j > k then we take τ1 to be an arbitrary strict type and m = 0; also, we take τ2 to be
σ and n = j − k.

(2) If j < k then we take τ1 to be σ and m = k− j; also, we take τ2 to be an arbitrary strict
type and n = 0.

(3) Otherwise, if j = k then we take m = n = 0. Also, τ1, τ2 are arbitrary strict types.

Proof. Immediate by unfolding the translation. The full analysis can be found in App.D.1.

Given Proposition 5.22 we now show that the translation preserves types:

Theorem 5.23 (Type Preservation for J · K u). Let B and M be a bag and an expression in

λ̂ ⊕, respectively.

(1) If Γ† |= B : π then JBK u ⊢ JΓ†K , u : JπK (σ,i), for some strict type σ and index i ≥ 0.

(2) If Γ† |= M : τ then JMK u ⊢ JΓ†K , u : JτK .

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:49

Proof. By mutual induction on the typing derivation of B and M , with an analysis of the
last rule applied in Γ |= B : π and in Γ |= M : τ . One key aspect of this proof is the
application of Proposition 5.22 to ensure duality of types. Intuitively, the conditions given
by Proposition 5.22 are used to instantiate the parameters in the encoding of intersection
types, so as to ensure that when intersection types have different types the smaller type
can be correctly “padded” to match the size of the larger type—Example 5.24, given below,
illustrates this padding. The full proof can be found in App.D.1.

Example 5.24 (Parameters in the encoding of types). We give the dual types when encoding

intersection types, namely the case of Jσ ∧ πK (σ,i), to express the encoding of intersection

typed behavior into session typed behavior. The application of dual types is most evident in
the application of a bag into an abstraction: the bag providing the intersection type and the
abstraction consuming it. In session types the interaction between these is expressed by dual
session types where one channel provides a behavior and and the dual channel provides the
dual session type behavior via the cut rule. Let us consider the term (λx.M [x1, x2 ← x])B
typed with the well-formedness rules by:

Γ |= λx.M [x1, x2 ← x] : (σ ∧ σ)→ τ ∆ |= B : σk

[FS:app]
Γ,∆ |= (λx.M [x1, x2 ← x])B : τ

When applying the translation of Fig. 16 to the term we obtain:⊕
Bi∈PER(B)

(νv)(Jλx.M [x1, x2 ← x]K v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

By appealing to Type Preservation (Theorem 5.23) we obtain both Jλx.M [x1, x2 ← x]K v ⊢
JΓK , v : J(σ ∧ σ) → τK and JBK x ⊢ J∆K , x : JσkK (δ2,i2). We give the typing for one

non-deterministic branch where we take an arbitrary permutation of B is as follows by
applying the rules of Fig. 11 and that Π1 is derived to be:

[Tid]
[v ↔ u] ⊢ v : JτK , u : JτK JBK x ⊢ J∆K , x : JσkK (δ2,i2)

[T⊗]
v(x).([v ↔ u] | JBK x) ⊢ J∆K , v : JσkK (δ2,i2) O JτK , u : JτK

[T⊕x
w̃]

v.someu,fv(B); v(x).([v ↔ u] | JBK x) ⊢ J∆K , v : J(σk)→ τK , u : JτK

Hence we obtain the derivation:

Jλx.M [x1, x2 ← x]K v ⊢ JΓK , v : J(σ ∧ σ)→ τK Π1
[Tcut]

(νv)(Jλx.M [x1, x2 ← x]K v |v.someu,fv(B); v(x).([v ↔ u] |JBK x) ⊢ JΓK , J∆K , u : JτK

Now we shall focus on the typing of the channel v and x in this process as these channel
describes the behavior of the encoded intersection type which we are trying to match via
duality. By the translation on types from Fig. 17 we have that

J(σ ∧ σ)→ τK = N((J(σ ∧ σ)K (δ1,i1)) O JτK)

• When B = 1 we have derivation:

J1K x |= J∆K , x : JωK (δ2,i2)

1:50 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

M [← x]⟨⟨1/x⟩⟩ ≡λ M
MB⟨|N/x|⟩ ≡λ (M⟨|N/x|⟩)B with x ̸∈ fv(B)

M⟨|N2/y|⟩⟨|N1/x|⟩ ≡λ M⟨|N1/x|⟩⟨|N2/y|⟩ with x ̸∈ fv(N2), y /∈ fv(N1)
MA[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)A with xi ∈ x̃⇒ xi ̸∈ fv(A)

M [ỹ ← y]⟨⟨A/y⟩⟩[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)[ỹ ← y]⟨⟨A/y⟩⟩ with xi ∈ x̃⇒ xi ̸∈ fv(A)
C[M] ≡λ C[M ′] with M ≡λ M ′

D[M] ≡λ D[M′] with M ≡λ M′

Figure 18: Congruence in λ̂ ⊕.

To obtain duality from Rule [Tcut] we must have that Jσ2K (δ1,i1) = JωK (δ2,i2). By Propo-

sition 5.22 we can take δ1 to be an arbitrary strict type, i1 = 0, i2 = 2 , δ2 = σ. We
have:

JωK (σ,2) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,1)))))

= N((⊕⊥)⊗ (N⊕ ((NJσK) O (N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,0)))))))))

= Jσ2K (δ1,i1)

• When B = HN1, N2I we have derivation:

JHN1, N2IK x |= J∆K , x : Jσ2K (δ2,i2)

To obtain duality from Rule [Tcut] we must have that Jσ2K (δ1,i1) = Jσ2K (δ2,i2). By Proposi-

tion 5.22 we can take δ1 and δ2 to be an arbitrary strict type and i1 = i2 = 0 . We then

obtain Jσ2K (δ1,0) = Jσ2K (δ2,0), as JωK (δ1,0) = JωK (δ2,0) for any two strict types δ1, δ2.

• When B = HN1, N2, N3I we have derivation:

JHN1, N2, N3IK x |= J∆K , x : Jσ3K (δ2,i2)

To obtain duality from Rule [Tcut] we must have that Jσ2K (δ1,i1) = Jσ3K (δ2,i2). By Proposi-

tion 5.22 we can take δ2 to be an arbitrary strict type, i2 = 0, i1 = 2 , δ1 = σ. Then the
case proceeds similarly to when B = 1.

5.3.5. Operational Correspondence: Completeness and Soundness. We now state our opera-
tional correspondence results (completeness and soundness, cf. Fig. 19).

A Congruence. We will identify some λ̂ ⊕-terms such as M [← x]⟨⟨1/x⟩⟩ and M . The
identification is natural, as the former is a term M with no occurrences of x in which x is
going to be replaced with 1, which clearly describes a substitution that “does nothing”, and
would result in M itself. With this intuition, other terms are identified via a congruence
(denoted ≡λ) on terms and expressions that is formally defined in Fig. 18.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:51

Operational Completeness

λ̂ ⊕: N M ≡λ M′

sπ: JNK Q = JM′K
∗

J · K Thm 5.30 J · K

Operational Soundness

N N′
≡λ

*

JNK Q Q′ = JN′K

J · K Thm 5.33 J · K

* *

Figure 19: Operational Correspondence for J · K

Example 5.25 (Cont. Example 3.20). We illustrate the congruence in case of failure:

(λx.x1[x1 ← x])Hfail∅[← y]⟨⟨1/y⟩⟩I −→[RS:Beta] x1[x1 ← x]⟨⟨Hfail∅[← y]⟨⟨1/y⟩⟩I/x⟩⟩

−→[RS:Ex-Sub] x1⟨|fail∅[← y]⟨⟨1/y⟩⟩/x1|⟩

−→[RS:Lin-Fetch] fail
∅[← y]⟨⟨1/y⟩⟩

≡λ fail∅

In the last step, Rule [RS:Cons2] cannot be applied: y is sharing with no shared variables
and the explicit substitution involves the bag 1.

Theorem 5.26 (Consistency Stability Under ≡). Let M be a consistent λ̂ ⊕-expression. If
M ≡M′ then M′ is consistent.

Proof. By induction on the structure of M; see Appendix D.2 for details.

Definition 5.27 (Partially Open Terms). We say that a λ̂ ⊕-term M is partially open if
∀x ∈ fv(M) (cf. Def. 3.3) implies that x is not a sharing variable.

Notice that the class of open terms (no conditions on free variables) subsumes the class
of partially open terms, which in turn subsumes the class of closed terms. Consider the
following example.

Example 5.28 (Partially Open Terms). We give three examples of well-formed λ̂ ⊕-terms:

M1 = λx.x1[x1 ← x] M2 = λx.(x1HyI)[x1 ← x] M3 = (x1HyI)[x1 ← x]

Here the only closed term is M1 as M2 has one free variable (i.e., y) and M3 has two free
variables (y and x). While M2 is partially open, M3 is not because x is a sharing variable.

The following proposition will be used in the proof of operational completeness (Theo-
rem 5.30) and operational soundness (Theorem 5.33). The proposition relies on well-formed
partially open terms; however, in the proof of operational correspondence we only consider
closed terms rather then partially open terms.

1:52 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Proposition 5.29. Suppose N is a well-formed, partially open λ̂ ⊕-term with head(N) = x.
Then, there exist an index set I, names ỹ and n, and processes Pi such that the following
four conditions hold:

(1)

JNK u −→∗
⊕
i∈I

(νỹ)(JxK n | Pi)

(2) There exists a λ̂ ⊕-term N ′ such that N ≡λ N ′ and:

JN ′K u =
⊕
i∈I

(νỹ)(JxK n | Pi)

(3) For any well-formed and partially open λ̂ ⊕-term M :

JN{|M/x|}K u −→∗
⊕
i∈I

(νỹ)(JMK n | Pi)

(4) There exists a λ̂ ⊕-term M ′ such that M ′ ≡λ N{|M/x|} and:

JM ′K u =
⊕
i∈I

(νỹ)(JMK n | Pi)

Proof. By induction on the structure of N . We briefly sketch the strategy for proving it
case below, but the complete proof can be found in App.D.2.

(1) The interesting cases are for N = M⟨|N ′/x|⟩ and N = M [ỹ ← y]⟨⟨B/y⟩⟩, when size(B) =
size(ỹ) = 0 and head(M) = x. Notice that N = M [ỹ ← y] is not a case, because of the
definition of partially open term: y is a sharing variable in N and y ∈ fv(N). The other
cases follow easily by the induction hypothesis.

(2) Reductions are only introduced by explicit weakening, which can be eliminated via the
precongruence.

(3) Follows from (1) and the fact that linear head substitution can be placed deeper within
the term until it reaches the head variable.

(4) Follows from (2) and (3).

Because of the diamond property (Proposition 3.10), it suffices to consider a completeness

result based on a single reduction step in λ̂ ⊕:

Theorem 5.30 (Operational Completeness). Let N and M be well-formed, partially open λ̂ ⊕
expressions. If N −→M then there exist Q and M′ such that M′ ≡λ M, JNK u −→∗ Q = JM′K u.

Proof. By induction on the reduction rule applied to infer N −→ M. The case in which
N −→[RS:Lin- Fetch] M happens for N = M⟨|N ′/x|⟩ with head(M) = x, and M = M{|N ′/x|}.
The translation of N is of the form (omitting details):

JNK u = (νx)(JMK u | x.somefv(N ′); JN ′K x)

−→∗ (νx)(
⊕
i∈I

(νỹ)(JxK n | Pi) | x.somefv(N ′); JN ′K x), by Proposition 5.29

−→∗
⊕
i∈I

(νỹ)(Pi | JN ′K n) = JMK u

The other cases follow by analyzing reductions from the translation of N. The full proof can
be found in App.D.2.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:53

Notice how Proposition 5.29 requires a term to be partially open; however, we prove
operational correspondence for closed terms. The reason for this is that we start from a

source closed term in λ ⊕, which is translated by L · M◦ into a closed λ̂ ⊕-term.

Example 5.31 (Cont. Example 5.19). Recall that M and N are well-formed with fv(N) =

fv(M) = ∅, we can verify that N [← x]⟨⟨HMI/x⟩⟩ and failfv(N)∪fv(M) are also well-formed.
We have

N [← x]⟨⟨HMI/x⟩⟩ −→[RS:Fail] fail
fv(N)∪fv(M)

In sπ, this reduction is mimicked as

JN [← x]⟨⟨HMI/x⟩⟩K u −→∗ Jfailfv(N)∪fv(M)K u.

In fact,

JN [← x]⟨⟨HMI/x⟩⟩K u = (νx)(JN [← x]K u | JHMIK x)

= (νx)(x.some.x(yi).(yi.someu; yi.close; JNK u | x.none) |

= x.some∅;x(yi).x.someyi
;x.some;x(xi).(xi.some∅; JMK xi

| J1K x | yi.none))

−→ (νx)(x(yi).(yi.someu; yi.close; JNK u | x.none) |

x(yi).x.someyi
;x.some;x(xi).(xi.some∅; JMK xi

| J1K x | yi.none))

−→ (νx)(yi.someu; yi.close; JNK u | x.none |

x.someyi ;x.some;x(xi).(xi.some∅; JMK xi
| J1K x | yi.none))

−→ (νx)(yi.someu; yi.close; JNK u | yi.none)
−→ u.none

= Jfailfv(N)∪fv(M)K u

To state soundness we rely on the congruence relation ≡λ, given in Fig. 18.

Notation 5.32. Recall the congruence ≡λ for λ̂ ⊕, given in Figure 18. We write N −→≡λ
N ′

iff N ≡λ N1 −→ N2 ≡λ N ′, for some N1, N2. Then, −→∗
≡λ

is the reflexive, transitive closure

of −→≡λ
. We use the notation M −→i

≡λ
N to state that M performs i steps of −→≡λ

to N
in i ≥ 0 steps. When i = 0 it refers to no reduction taking place.

Theorem 5.33 (Operational Soundness). Let N be a well-formed, partially open λ̂ ⊕ ex-

pression. If JNK u −→∗ Q then there exist Q′ and N′ such that Q −→∗ Q′, N −→∗
≡λ

N′ and

JN′K u = Q′.

Proof (Sketch). By induction on the structure of N with sub-induction on the number of

reduction steps in JNK u −→∗ Q. The cases in which N = x, or N = failx̃, or N = λx.M [x̃←
x], are easy since there are no reductions starting from JNK u, i.e., JNK u −→0 Q which implies

JNK u = JN′K u = Q = Q′ and the result follows trivially. The analysis for some cases are
exhaustive, for instance, when N = (M B) or N = M [x̃ ← x]⟨⟨B/x⟩⟩, there are several
sub-cases to be considered: (i) B being equal to 1 or not; (ii) size(B) matching the number
of occurrences of the variable in M or not; (iii) M being a failure term or not.

We now discuss one of these cases to illustrate the recurring idea used in the proof: let
N = (M B) and suppose that we are able to perform k > 1 steps to a process Q, i.e.,

1:54 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

JNK u = J(M B)K u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x)) −→k Q

(5.1)
Then there exist an sπ process R and integers n,m such that k = m+ n and

JNK u −→m
⊕

Bi∈PER(B)

(νv)(R | v.someu,fv(B); v(x).(JBiK x | [v ↔ u])) −→n Q

where the first m ≥ 0 reduction steps are internal to JMK v ; type preservation in sπ ensures
that, if they occur, these reductions do not discard the possibility of synchronizing with
v.some. Then, the first of the n ≥ 0 reduction steps towards Q is a synchronization between
R and v.someu,fv(B).

We will consider the case when m = 0 and n ≥ 1. Then R = JMK u −→0 JMK u and there
are two possibilities of having an unguarded v.some or v.none without internal reductions:

(i) M = (λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩ (p ≥ 0)

(ii) M = failz̃

Firstly we use case (i) to express the need for the reduction N −→∗
≡λ

N′. In this case
N = ((λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩ B) and JNKu may perform synchronizations where
both Jλx.M ′Kv and JBKx synchronize across their shared channel. Here we use the congruence
relation as follows:

N = ((λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩ B)

≡λ ((λx.M ′[x̃← x]) B)⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩

This enables the abstraction λx.M ′ to synchronize with the bag B.
Now we will develop case (ii):

JMK v = Jfailz̃K v = Jfailz̃K v = v.none | z̃.none

With this shape for M , the translation and reductions from (5.1) become

JNK u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

=
⊕

Bi∈PER(B)

(νv)(v.none | z̃.none | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→
⊕

Bi∈PER(B)

u.none | z̃.none | fv(B).none

(5.2)

We also have that N = failz̃ B −→
∑

PER(B) fail
z̃∪fv(B) = M. Furthermore, we have:

JMK u = J
∑

PER(B)

failz̃∪fv(B)K u

=
⊕

PER(B)

Jfailz̃∪fv(B)K u

=
⊕

PER(B)

u.none | z̃.none | fv(B).none

(5.3)

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:55

From reductions in (5.2) and (5.3) one has JNK u −→ JMK u, and the result follows with n = 1

and JMK u = Q = Q′. The full proof can be found in App.D.2.

5.3.6. Success Sensitiveness. Finally, we consider success sensitiveness. This requires ex-

tending λ̂ ⊕ and sπ with success predicates.

Definition 5.34. We extend the syntax of sπ processes (Definition 4.1) with the ✓ construct,

which we assume well typed. Also, we extend Definition 5.17 by defining J✓K u = ✓

Definition 5.35. We say that a process occurs guarded when it occurs behind a prefix
(input, output, closing of channels and non-deterministic session behavior). That is, P
is guarded if α.P or α;P , where α = x(y), x(y), x.close, x.close, x.some, x.some(w1,··· ,wn).
We say it occurs unguarded if it is not guarded for any prefix.

Definition 5.36 (Success in sπ). We extend the syntax of sπ processes with the ✓ construct,
which we assume well-typed. We define P ⇓✓ to hold whenever there exists a P ′ such that
P −→∗ P ′ and P ′ contains an unguarded occurrence of ✓.

Proposition 5.37 (Preservation of Success). The ✓ at the head of a partially open term

is preserved to an unguarded occurrence of ✓ when applying the translation J · K u up to
reductions and vice-versa. That is to say:

(1) ∀M ∈ λ̂ ⊕ : head(M) = ✓ =⇒ JMK u −→∗ (P | ✓)⊕Q

(2) ∀M ∈ λ̂ ⊕ : JMK u = (P | ✓)⊕Q =⇒ head(M) = ✓

Proof (Sketch). By induction on the structure of M . For item (1), consider the case
M = (N B) and head(N B) = head(N) = ✓. This term’s translation is

JN BK u =
⊕

Bi∈PER(B)

(νv)(JNK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x)).

By the induction hypothesis, ✓ is unguarded in JNK u after a sequence of reductions, i.e.,

JNK u −→∗ (✓ | P ′)⊕Q′, for some sπ processes P ′ and Q′. Thus,

JN BK u −→∗
⊕

Bi∈PER(B)

(νv)((✓ | P ′)⊕Q′ | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

≡ ✓ | (νv)(P ′ ⊕Q′ | v.someu,fv(B); v(x).([v ↔ u] | JBjK x))

⊕
(⊕

Bi∈(PER(B)\\Bj)

✓ | (νv)(P ′ ⊕Q′ | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))
)

≡ (✓ | P)⊕Q

and the result follows by taking P = (νv)(P ′⊕Q′ | v.someu,fv(B); v(x).([v ↔ u] | JBjK

x)) and

Q =
⊕

Bi∈(PER(B)\\Bj)
✓ | (νv)(P ′ ⊕Q′ | v.someu,fv(B); v(x).([v ↔ u] | JBiK

x)). The analysis

for the other cases are similar; see App.D.3 for details.

The translation J · K u : λ̂ ⊕ → sπ is success sensitive on well-formed closed expressions.

Theorem 5.38 (Success Sensitivity). Let M be a closed well-formed λ̂ ⊕-expression. Then,

M ⇓✓ ⇐⇒ JMK u ⇓✓ .

1:56 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Proof (Sketch). Suppose M ⇓✓. By Definition 5.11 there exists M′ = M1 + · · ·+Mk such
that M −→∗ M′ and head(Mj) = ✓, for some j ∈ {1, . . . , k} and Mj . By operational

completeness (Theorem 5.30), there exists Q such that JMK u −→∗ Q = JM′K u. Due to
compositionality of J · K and the homomorphic preservation of non-determinism, we have:

• Q = JM1K

u ⊕ · · · ⊕ JMkK

u

• JMjK

u = C[J✓K v] = C[✓]

By Proposition 5.37, item (1), since head(Mj) = ✓ it follows that JMjK

u −→∗ P | ✓⊕Q′.

Hence Q reduces to a process that has an unguarded occurrence of ✓. The proof of the
converse is similar and can be found in App.D.3.

As main result of this sub-section, we have the corollary below, which follows from the
previously stated Theorems 5.23, 5.30, 5.33, and 5.38:

Corollary 5.39. Our translation J · K is a correct encoding, in the sense of Def. 5.1.

Together, Corollary 5.15 and Corollary 5.39 ensure that λ ⊕ can be correctly translated into

sπ, using λ̂ ⊕ as a stepping stone.

6. Related Work

Closely related works have been already discussed in the introduction and throughout the
paper; here we mention other related literature.

Intersection Types. The first works on intersection types date back to the late 70s (see,
e.g., [CD78, Pot80]) and consider intersections with the idempotence property (i.e., σ∧σ = σ).
This formulation enables the analysis of qualitative properties of λ-calculi, such as (strong)
normalization and solvability. By dropping idempotence, intersection types can characterize
quantitative properties, such as, e.g., bounds on the number of steps needed to reach a normal
form. Early works on non-idempotent intersection types include [Gar94, Kfo00, KW04].
The paper [BD20] overviews the origins, development, and applications of intersection types.

Our work formally connects non-idempotent intersection types and classical linear logic
extended with the modalities N and ⊕, interpreted in [CP17] as session types for non-
deterministically available protocols. To the best of our knowledge, this is an unexplored
angle. Prior connections between (non-idempotent) intersection types and linear logic arise
in very different settings (see [MPV18] and references therein). They include [NM04], which
presents a connection based on a correspondence between normalization and type inference;
the work [dC09, dC18], which shows a correspondence between the relational model of linear
logic and an non-idempotent intersection type system; and [Ehr20], which concerns indexed
linear logic (cf. [BE00, BE01]).

The work [LdVMY19] develops a type system for the π-calculus based on non-idempotent
intersections. The type system ensures that processes are “well-behaved”—they never
produce run-time errors, and can always reduce to an idle process. Remarkably, they show
that their type system is complete: every well-behaved process is typable. Although their
type system does not consider session types, it is related to our work for it builds upon
Mazza et al.’s correspondence between linear logic and intersection types, given in terms of
polyadic approximations [MPV18].

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:57

Other Resource λ-calculi. A fine-grained treatment of duplication and erasing—similar to

our design for λ̂ ⊕—is present in Kesner and Lengrand’s λlxr-calculus [KL07], a simply-
typed, deterministic λ-calculus that is in correspondence with proof nets. The λlxr-calculus
includes operators called weakening W () and contraction C | () to deal with empty and
non-empty sharing, respectively. In this approach, our terms λx.xHxI and λx.yHzI would be

expressed as Cx1|x2
x (λx.x1Hx2I) and Wx(λx.yHzI), respectively.

Our approach is convenient when expressing the sharing of more than two occurrences

of a variable in a term; as in, e.g., the λ ⊕-term λx.(xHx, xI) which would correspond to

λx.(x1Hx2, x3I)[x1, x2, x3 ← x] in λ̂ ⊕. In the λlxr-calculus, contractions are binary, and so
representing λx.(xHx, xI) requires the composition of two binary contractions.

More substantial differences appear at the level of types. As we have seen, in λ̂ ⊕ we use
intersection types to define well-typed and well-formed expressions (see Fig. 6 and Fig. 7,
respectively). In particular, recall the well-formedness rule for the sharing construct:

Γ, x1 : σ, . . . , xk : σ |= M : τ x /∈ dom(Γ) k ̸= 0
[FS : share]

Γ, x : σk |= M [x1, . . . , xk ← x] : τ

where, as mentioned above, σk denotes the intersection type σ ∧ . . . ∧ σ. Differently, the
typing rule for contraction in the λlxr-calculus involves an arbitrary (simple) type A:

Γ, y : A, z : A ⊢M : B
(Cont)

Γ, x : A ⊢ Cy|zx (M) : B

Our weakening rule [FS : weak] types the empty sharing term M [← x] as follows:

Γ |= M : τ
[FS : weak]

Γ, x : ω |= M [← x] : τ

Hence, the context Γ is weakened with a variable assignment x : ω, where ω denotes the
empty type. In contrast, weakening in the λlxr-calculus involves a (simple) type A:

Γ ⊢M : A(Weak)
Γ, x : B ⊢ Wx(M) : A

Hence, the context can be weakened with an assignment x : B, where B is a simple type.

Inspired by the multiplicative exponential fragment of linear logic, Kesner and Re-
naud [KR11] define the so-called prismoid of resources, a parametric framework of simply-
typed λ-calculi in which each language incorporates different choices for contraction, weak-
ening, and substitution operations. The prismoid defines a uniform and general setting for
establishing key properties of typed terms, including simulation of β-reduction, confluence,
and strong normalization. One of the languages included in the prismoid is a minor variant
of the λlxr-calculus, which we have just mentioned.

There are some similarities between λ ⊕ and the differential λ-calculus, introduced
in [ER03]. Both express non-deterministic choice via sums and use linear head reduction for
evaluation. In particular, our fetch rule, which consumes non-deterministically elements from
a bag, is related to the derivation (which has similarities with substitution) of a differential
term. However, the focus of [ER03] is not on typability nor encodings to process calculi;
instead they relate the Taylor series of analysis to the linear head reduction of λ-calculus.

1:58 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Functions as Processes. A source of inspiration for our developments is the work by Boudol
and Laneve [BL00]. As far as we know, this is the only prior study that connects λ and
π from a resource-oriented perspective, via an encoding of a λ-calculus with multiplicities
into a π-calculus without sums. The goal of [BL00] is different from ours, as they study
the discriminating power of semantics for λ as induced by encodings into π. In contrast,
we study how typability delineates the encodability of resource-awareness across sequential
and concurrent realms. The source and target calculi in [BL00] are untyped, whereas we
consider typed calculi and our encodings preserve typability. As a result, the encoding
in [BL00] is conceptually different from ours; remarkably, our encoding respects linearity
and homomorphically translates sums.

Prior works have studied encodings of typed λ-calculi into typed π-calculi; see, e.g., [San99,
BL00, SW01, BHY03, TCP12, HYB14, TY18]. None of these works consider non-determinism
and failures; the one exception is the encoding in [CP17], which involves a λ-calculus with

exceptions and failures (but without non-determinism due to bags, as in λ ⊕) for which no
reduction semantics is given. As a result, the encoding in [CP17] is different from ours, and is
only shown to preserve typability: properties such as operational completeness, operational
soundness, and success sensitivity—important in our developments—are not considered.

7. Concluding Remarks

Summary. We developed a correct encoding of λ ⊕, a new resource λ-calculus in which
expressions feature non-determinism and explicit failure, into sπ, a session-typed π-calculus in
which behavior is non-deterministically available: session protocols may perform as stipulated

but also fail. Our encodability result is obtained by appealing to λ̂ ⊕, an intermediate language
with a sharing construct that simplifies the treatment of variables in expressions. To our
knowledge, we are the first to relate typed λ-calculi and typed π-calculi encompassing non-
determinism and failures, while connecting intersection types and session types, two different
mechanisms for resource-awareness in sequential and concurrent settings, respectively.

Design of λ ⊕ (and λ̂ ⊕). The design of λ ⊕ has been influenced by the logically justified

treatment of non-determinism and explicit failure in sπ. Our correct encoding of λ ⊕ into
sπ makes this influence precise by connecting terms and processes but also their associated
intersection types and linear logic propositions. We have also adopted features from previous
resource λ-calculi, in particular those in [Bou93, BL00, PR10]. Major similarities between

λ ⊕ and these calculi include: as in [BL00], our semantics performs lazy evaluation and linear
substitution on the head variable; as in [PR10], our reductions lead to non-deterministic

sums. A distinctive feature of λ ⊕ is its lazy treatment of failures via the term failx̃. In
contrast, in [Bou93, BL00] there is no dedicated term to represent failure. The non-collapsing

semantics for non-determinism is another distinctive feature of λ ⊕.

Our design for λ̂ ⊕ has been informed by the atomic λ-calculus introduced in [GHP13].

Also, our translation from λ ⊕ into λ̂ ⊕ (Def. 3.26) borrows insights from translations given

in [GHP13]. The calculus λ̂ ⊕ is also loosely related to the λ-calculus with sharing in [GILL11],
which considers (idempotent) intersection types. Notice that the calculi in [GHP13, GILL11]
do not consider explicit failure nor non-determinism. We distinguish between well-typed and

well-formed expressions: this allows us to make fail-prone evaluation in λ ⊕ explicit. It is

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:59

interesting that explicit failures can be elegantly encoded as protocols in sπ—this way, we
make the most out of sπ’s expressivity.

Bags in λ ⊕ have linear resources, which are used exactly once. In recent work, we have

defined an extension of λ ⊕ in which bags contain both linear and unrestricted resources, as
in [PR10], and established that our approach to encodability into sπ extends to such an
enriched language [PNP21b]. This development requires the full typed process framework

in [CP17], with replicated processes and labeled choices (not needed to encode λ ⊕).

Future Work. The approach and results developed here enable us to tackle open questions
that go beyond the scope of this work. We comment on some of them:

• It would be useful to investigate the relative expressiveness of λ ⊕ with respect to other
resource calculi, such as those in [BL00, PR10]. Derived encodability (and non-encodability)
results could potentially unlock transfer of reasoning techniques between different calculi.
• Besides transfer of techniques, one application of encodings between sequential and
concurrent calculi is in the design of functional concurrent languages with advanced
features. In this respect, it should be feasible to develop a variant of Wadler’s GV [Wad12]
with non-determinism, resources, explicit failure, and session communication by exploiting

our correct encodings from λ ⊕ to sπ.
• It would be relevant to investigate decidability properties of the intersection type systems

for λ ⊕ and λ̂ ⊕. Our translation is proven correct under the assumption that we consider

only well-formed λ ⊕-terms. The type assignment problem for intersection type systems is,
in general, undecidable [Lei83]; it would be interesting to consider decidable fragments of
intersection type systems via, for instance, ranking restrictions [vB95].

• It would be insightful to establish full abstraction for our translation of λ ⊕ into sπ. We
choose not to consider it because, as argued in [GN16], full abstraction is not an informative
criterion when it comes to an encoding’s quality. Establishing full abstraction requires

developing the behavioral theory of λ ⊕ and sπ, which is relevant and challenging in itself.

Acknowledgements. We are grateful to the anonymous reviewers for their detailed and helpful
comments. We gratefully acknowledge the support of the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).
Daniele Nantes-Sobrinho has been partially funded by the EPSRC Fellowship ‘VeTSpec: Ver-
ified Trustworthy Software Specification’ (EP/R034567/1) and Edital DPI/DPG n. 03/2020.

References

[BD20] Viviana Bono and Mariangiola Dezani-Ciancaglini. A tale of intersection types. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020,
pages 7–20. ACM, 2020. doi:10.1145/3373718.3394733.

[BE00] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics in
multiplicative-additive linear logic. Ann. Pure Appl. Log., 102(3):247–282, 2000. doi:10.1016/
S0168-0072(99)00040-8.

[BE01] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics:
the exponentials. Ann. Pure Appl. Log., 109(3):205–241, 2001. doi:10.1016/S0168-0072(00)
00056-7.

https://doi.org/10.1145/3373718.3394733
https://doi.org/10.1016/S0168-0072(99)00040-8
https://doi.org/10.1016/S0168-0072(99)00040-8
https://doi.org/10.1016/S0168-0072(00)00056-7
https://doi.org/10.1016/S0168-0072(00)00056-7

1:60 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[BHY03] Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the pi-calculus. In Andrew D.
Gordon, editor, Foundations of Software Science and Computational Structures, 6th International
Conference, FOSSACS 2003 Held as Part of the Joint European Conference on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume
2620 of Lecture Notes in Computer Science, pages 103–119. Springer, 2003. doi:10.1007/
3-540-36576-1_7.

[BKV17] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

[BL96] Gérard Boudol and Cosimo Laneve. The discriminating power of multiplicities in the lambda-
calculus. Inf. Comput., 126(1):83–102, 1996. doi:10.1006/inco.1996.0037.

[BL00] Gérard Boudol and Cosimo Laneve. lambda-calculus, multiplicities, and the pi-calculus. In Proof,
Language, and Interaction, Essays in Honour of Robin Milner, pages 659–690, 2000.

[Bou93] Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor, CON-
CUR ’93, Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture Notes
in Computer Science, pages 1–6. Springer, 1993. doi:10.1007/3-540-57208-2_1.

[CD78] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms. Arch.
Math. Log., 19(1):139–156, 1978. doi:10.1007/BF02011875.

[CP10] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR
2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, Au-
gust 31-September 3, 2010. Proceedings, pages 222–236, 2010. doi:10.1007/978-3-642-15375-4\
_16.

[CP17] Lúıs Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In Hongseok
Yang, editor, Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes
in Computer Science, pages 229–259. Springer, 2017. doi:10.1007/978-3-662-54434-1_9.

[dC09] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and inter-
section types. CoRR, abs/0905.4251, 2009. URL: http://arxiv.org/abs/0905.4251, arXiv:
0905.4251.

[dC18] Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection types.
Math. Struct. Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

[DdP93] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. Filter models for a parallel
and non deterministic lambda-calculus. In Andrzej M. Borzyszkowski and Stefan Sokolowski,
editors, Mathematical Foundations of Computer Science 1993, 18th International Symposium,
MFCS’93, Gdansk, Poland, August 30 - September 3, 1993, Proceedings, volume 711 of Lecture
Notes in Computer Science, pages 403–412. Springer, 1993. doi:10.1007/3-540-57182-5_32.

[Ehr20] Thomas Ehrhard. Non-idempotent intersection types in logical form. In Jean Goubault-Larrecq
and Barbara König, editors, Foundations of Software Science and Computation Structures - 23rd
International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
volume 12077 of Lecture Notes in Computer Science, pages 198–216. Springer, 2020. doi:
10.1007/978-3-030-45231-5_11.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theor. Comput. Sci.,
309(1-3):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

[Gar94] Philippa Gardner. Discovering needed reductions using type theory. In Masami Hagiya and
John C. Mitchell, editors, Theoretical Aspects of Computer Software, International Conference
TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings, volume 789 of Lecture Notes in
Computer Science, pages 555–574. Springer, 1994. doi:10.1007/3-540-57887-0_115.

[GHP13] Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 311–320, 2013.
doi:10.1109/LICS.2013.37.

[GILL11] Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, and Silvia Likavec. Intersection types for
the resource control lambda calculi. In Theoretical Aspects of Computing - ICTAC 2011 -

https://doi.org/10.1007/3-540-36576-1_7
https://doi.org/10.1007/3-540-36576-1_7
https://doi.org/10.1006/inco.1996.0037
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/BF02011875
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-662-54434-1_9
http://arxiv.org/abs/0905.4251
http://arxiv.org/abs/0905.4251
http://arxiv.org/abs/0905.4251
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1007/3-540-57182-5_32
https://doi.org/10.1007/978-3-030-45231-5_11
https://doi.org/10.1007/978-3-030-45231-5_11
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1109/LICS.2013.37

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:61

8th International Colloquium, Johannesburg, South Africa, August 31 - September 2, 2011.
Proceedings, pages 116–134, 2011. doi:10.1007/978-3-642-23283-1_10.

[GMM03] Stefano Guerrini, Simone Martini, and Andrea Masini. Coherence for sharing proof-nets. The-
oretical Computer Science, 294(3):379–409, 2003. Linear Logic. doi:10.1016/S0304-3975(01)
00162-1.

[GN16] Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: history, myths and facts.
Math. Struct. Comput. Sci., 26(4):639–654, 2016. doi:10.1017/S0960129514000279.

[Gor10] Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010. doi:10.1016/j.ic.2010.05.002.

[Gue99] Stefano Guerrini. A general theory of sharing graphs. Theoretical Computer Science, 227(1):99–
151, 1999. doi:10.1016/S0304-3975(99)00050-X.

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, Hildesheim,
Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science,
pages 509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

[HYB14] Kohei Honda, Nobuko Yoshida, and Martin Berger. Process types as a descriptive tool for
interaction - control and the pi-calculus. In Gilles Dowek, editor, Rewriting and Typed Lambda
Calculi - Joint International Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8560 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2014. doi:10.1007/978-3-319-08918-8_1.

[Kfo00] A. J. Kfoury. A linearization of the lambda-calculus and consequences. J. Log. Comput., 10(3):411–
436, 2000. doi:10.1093/logcom/10.3.411.

[KL07] Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Inf. Comput.,
205(4):419–473, 2007. doi:10.1016/j.ic.2006.08.008.

[KPY19] Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. On the relative expressiveness of
higher-order session processes. Inf. Comput., 268, 2019. doi:10.1016/j.ic.2019.06.002.

[KR11] Delia Kesner and Fabien Renaud. A prismoid framework for languages with resources. Theor.
Comput. Sci., 412(37):4867–4892, 2011. doi:10.1016/j.tcs.2011.01.026.

[KW04] A. J. Kfoury and J. B. Wells. Principality and type inference for intersection types using expansion
variables. Theor. Comput. Sci., 311(1-3):1–70, 2004. doi:10.1016/j.tcs.2003.10.032.

[LdVMY19] Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Intersection types
and runtime errors in the pi-calculus. Proc. ACM Program. Lang., 3(POPL):7:1–7:29, 2019.
doi:10.1145/3290320.

[Lei83] Daniel Leivant. Polymorphic type inference. In John R. Wright, Larry Landweber, Alan J.
Demers, and Tim Teitelbaum, editors, Conference Record of the Tenth Annual ACM Symposium
on Principles of Programming Languages, Austin, Texas, USA, January 1983, pages 88–98.
ACM Press, 1983. doi:10.1145/567067.567077.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–
141, 1992. doi:10.1017/S0960129500001407.

[MPV18] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. Proc. ACM Program. Lang., 2(POPL):6:1–6:28, 2018. doi:10.1145/3158094.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

[NM04] Peter Møller Neergaard and Harry G. Mairson. Types, potency, and idempotency: why nonlin-
earity and amnesia make a type system work. In Chris Okasaki and Kathleen Fisher, editors,
Proceedings of the Ninth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2004, Snow Bird, UT, USA, September 19-21, 2004, pages 138–149. ACM, 2004.
doi:10.1145/1016850.1016871.

[OY16] Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

https://doi.org/10.1007/978-3-642-23283-1_10
https://doi.org/10.1016/S0304-3975(01)00162-1
https://doi.org/10.1016/S0304-3975(01)00162-1
https://doi.org/10.1017/S0960129514000279
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/S0304-3975(99)00050-X
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-319-08918-8_1
https://doi.org/10.1093/logcom/10.3.411
https://doi.org/10.1016/j.ic.2006.08.008
https://doi.org/10.1016/j.ic.2019.06.002
https://doi.org/10.1016/j.tcs.2011.01.026
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1145/3290320
https://doi.org/10.1145/567067.567077
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1145/3158094
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/1016850.1016871

1:62 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 568–581. ACM, 2016.
doi:10.1145/2837614.2837634.

[Par08] Joachim Parrow. Expressiveness of process algebras. Electron. Notes Theor. Comput. Sci.,
209:173–186, 2008. doi:10.1016/j.entcs.2008.04.011.

[PNP21a] Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Non-deterministic functions
as non-deterministic processes. In Naoki Kobayashi, editor, 6th International Conference on
Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires,
Argentina (Virtual Conference), volume 195 of LIPIcs, pages 21:1–21:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.21.

[PNP21b] Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Types and terms translated:
Unrestricted resources in encoding functions as processes. In Henning Basold, Jesper Cockx,
and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs and Programs,
TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference), volume 239
of LIPIcs, pages 11:1–11:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.TYPES.2021.11.

[Pot80] Garrell Pottinger. A type assignment for the strongly normalizable λ-terms. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 561–577. Academic
Press, New York, 1980.

[PR10] Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus. In
C.-H. Luke Ong, editor, Foundations of Software Science and Computational Structures, 13th
International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
volume 6014 of Lecture Notes in Computer Science, pages 358–373. Springer, 2010. doi:10.
1007/978-3-642-12032-9_25.

[San99] Davide Sangiorgi. From lambda to pi; or, rediscovering continuations. Math. Struct. Comput.
Sci., 9(4):367–401, 1999. URL: http://journals.cambridge.org/action/displayAbstract?
aid=44843.

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes. Cambridge
University Press, 2001.

[TCP12] Bernardo Toninho, Lúıs Caires, and Frank Pfenning. Functions as session-typed processes. In
Lars Birkedal, editor, Foundations of Software Science and Computational Structures - 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 346–360. Springer, 2012.
doi:10.1007/978-3-642-28729-9_23.

[TY18] Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions - A tale
of two (fully abstract) encodings. In Amal Ahmed, editor, 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
volume 10801 of Lecture Notes in Computer Science, pages 827–855. Springer, 2018. doi:
10.1007/978-3-319-89884-1_29.

[vB95] Steffen van Bakel. Intersection type assignment systems. Theor. Comput. Sci., 151(2):385–435,
1995. doi:10.1016/0304-3975(95)00073-6.

[Wad12] Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Findler, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1016/j.entcs.2008.04.011
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-3-642-12032-9_25
https://doi.org/10.1007/978-3-642-12032-9_25
http://journals.cambridge.org/action/displayAbstract?aid=44843
http://journals.cambridge.org/action/displayAbstract?aid=44843
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1016/0304-3975(95)00073-6
https://doi.org/10.1145/2364527.2364568

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:63

Contents

Introduction 1
1. Overview of Key Ideas 3

2. λ ⊕: A λ-calculus with Non-Determinism and Failure 7
2.1. Syntax 7
2.2. Reduction Semantics 8
2.3. Well-formed λ ⊕-Expressions 11

3. λ̂ ⊕: A Resource Calculus With Sharing 17
3.1. Syntax 17
3.2. Reduction Semantics 19
3.3. Non-Idempotent Intersection Types 22

3.4. From λ ⊕ into λ̂ ⊕ 26
4. sπ: A Session-Typed π-Calculus with Non-Determinism 29
4.1. Syntax and Semantics 29
4.2. Operational Semantics 30
4.3. Type System 31
5. A Correct Encoding 33
5.1. Encodability Criteria 33
5.2. Correctness of L · M◦ 34

5.3. From λ̂ ⊕ to sπ 39
6. Related Work 56
7. Concluding Remarks 58
References 59
Appendix A. Appendix to § 2.3 64
Appendix B. Appendix to § 3.3 69
Appendix C. Appendix to § 5.2 79
C.1. Encoding L · M• 79
C.2. Completeness and Soundness 86
C.3. Success Sensitiveness 95
Appendix D. Appendix to § 5.3 96
D.1. Type Preservation 96
D.2. Completeness and Soundness 104
D.3. Success Sensitiveness 118

1:64 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Appendix A. Appendix to § 2.3

Lemma 2.21 (Linear Anti-substitution Lemma for λ⊕). Let M and N be λ⊕-terms such
that head(M) = x, then we have:

• Γ, x : σk−1 ⊢M{|N/x|} : τ , with k > 1, then there exist Γ1,Γ2 such that Γ1, x : σk ⊢M : τ ,
and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.
• Γ ⊢ M{|N/x|} : τ , with x ̸∈ dom(Γ), then there exist Γ1,Γ2 such that Γ1, x : σ ⊢ M : τ ,
and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.

Proof. By induction on the structure of M :

(1) When M = x then we have x{|N/x|} = N and may derive the derivation of Γ ⊢ N : τ
with x ̸∈ dom(Γ). By taking Γ1 = ∅ and Γ2 = Γ as Γ = ∅ ∧ Γ the case follows as
Γ ⊢ N : τ and

[T : var]
x : σ ⊢ x : σ

(2) When M = (M B) then we have that (M B){|N/x|} = (M{|N/x|}) B. Let us
consider two cases:
(I) When x ∈ fv(M{|N/x|})

Γ′, x : σk−1 ⊢M{|N/x|} : π → τ ′ ∆ ⊢ B : π
[T : app]

(Γ′, x : σk−1) ∧∆ ⊢ (M{|N/x|}) B : τ ′

By the IH we have that Γ′, x : σk−1 ⊢M{|N/x|} : π → τ ′ implies that ∃ Γ′
1,Γ2

such that Γ′
1, x : σk ⊢M : τ , and Γ2 ⊢ N : σ with Γ′ = Γ′

1 ∧ Γ2.

Γ′
1, x : σk ⊢M : π → τ ′ ∆ ⊢ B : π

[T : app]
(Γ′

1, x : σk) ∧∆ ⊢M B : τ ′

(II) When x ̸∈ fv(M{|N/x|})
Γ′ ⊢M{|N/x|} : π → τ ′ ∆ ⊢ B : π

[T : app]
Γ′ ∧∆ ⊢ (M{|N/x|}) B : τ ′

By the IH we have that Γ′ ⊢M{|N/x|} : π → τ ′ implies that ∃ Γ′
1,Γ2 such that

Γ′
1, x : σ ⊢M : τ , and Γ2 ⊢ N : σ with Γ′ = Γ′

1 ∧ Γ2.

Γ′
1, x : σ ⊢M{|N/x|} : π → τ ′ ∆ ⊢ B : π

[T : app]
(Γ′

1, x : σ) ∧∆ ⊢M B : τ ′

(3) When M = M⟨⟨B/y⟩⟩ then we have that (M ⟨⟨B/y⟩⟩){|N/x|} = (M{|N/x|}) ⟨⟨B/y⟩⟩
where x ̸= y
(I) When x ∈ fv(M{|N/x|})

Γ′, x : σk−1, y : δj ⊢ (M{|N/x|}) : τ ∆ ⊢ B : δj
[T : ex-sub]

Γ′, y : δj ∧∆ ⊢ (M{|N/x|})⟨⟨B/y⟩⟩ : τ
By the IH we have that Γ′, x : σk−1, y : δj ⊢ (M{|N/x|}) : τ implies that ∃ Γ′

1,Γ2

such that Γ′
1, x : σk, y : δj ⊢ M : τ , and Γ2 ⊢ N : σ with Γ′, y : δj = (Γ′

1, y :
δj) ∧ Γ2.

Γ′
1, x : σk, y : δj ⊢M : τ ∆ ⊢ B : δj

[T : ex-sub]
Γ′
1 ∧∆ ⊢M⟨⟨B/y⟩⟩ : τ

(II) When x ̸∈ fv(M{|N/x|})

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:65

Γ′, y : δk ⊢ (M{|N/x|}) : τ ∆ ⊢ B : δk
[T : ex-sub]

Γ′ ∧∆ ⊢ (M{|N/x|})⟨⟨B/y⟩⟩ : τ
By the IH we have that Γ′, y : δk ⊢ (M{|N/x|}) : τ implies that ∃ Γ′

1,Γ2 such
that Γ′

1, x : σ ⊢M : τ , and Γ2 ⊢ N : σ with Γ′, y : δk = (Γ′
1, y : δk) ∧ Γ2.

Γ′
1, x : σ, y : δk ⊢M : τ ∆ ⊢ B : δk

[T : ex-sub]
Γ′
1 ∧∆ ⊢M⟨⟨B/y⟩⟩ : τ

(4) When M = λy.M then linear head substitution is undefined on this term as
head(M) ̸= x.

(5) When M = failx̃ then M is not well typed.

Theorem 2.22 (Subject Expansion for λ⊕). If Γ ⊢M′ : τ and M −→M′ then Γ ⊢M : τ .

Proof. By induction on the reduction rule applied. There are four possible cases.

(1) When M′ is reduced to via the Rule [R : Beta]

[R : Beta]
(λx.M)B −→M ⟨⟨B/x⟩⟩

Then M′ = M ⟨⟨B/x⟩⟩ can be type as follows:

Γ, x : σk ⊢M : τ ∆ ⊢ B : σk

[T : ex-sub]
Γ ∧∆ ⊢M⟨⟨B/x⟩⟩ : τ

From the typing of M′ we can deduce that M = (λx.M)B may be typed by:

Γ, x : σk ⊢M : τ
[T : abs]

Γ ⊢ λx.M : σk → τ ∆ ⊢ B : π[T : app]
Γ ∧∆ ⊢ (λx.M)B : τ

(2) When M′ is reduced to via the Rule [R : Fetch]

head(M) = x B = HN1, . . . , NkI , k ≥ 1 #(x,M) = k
[R : Fetch]

M ⟨⟨B/x⟩⟩ −→M{|N1/x|}⟨⟨(B \\N1)/x⟩⟩+ · · ·+M{|Nk/x|}⟨⟨(B \\Nk)/x⟩⟩
Let us consider two cases:

(I) The bag B has k elements where k > 1, then we type M{|Ni/x|}⟨⟨(B \\Ni)/x⟩⟩
with the derivation Πi to be:

Γ, x : σk−1 ⊢M{|N1/x|} : τ ∆ ⊢ (B \\N1) : σ
k−1

[T : ex-sub]
Γ ∧∆ ⊢M{|N1/x|}⟨⟨(B \\N1)/x⟩⟩ : τ

We can type the sum with each derivation Πi to be

Π1

Γ ∧∆ ⊢M{|N1/x|}⟨⟨(B \\N1)/x⟩⟩ : τ

Πk

Γ ∧∆ ⊢M{|Nk/x|}⟨⟨(B \\Nk)/x⟩⟩ : τ
...

Γ ∧∆ ⊢M{|N1/x|}⟨⟨(B \\N1)/x⟩⟩+ · · ·+M{|Nk/x|}⟨⟨(B \\Nk)/x⟩⟩ : τ
By the anti-substitution lemma (Lemma 2.21) we have that ∃ Γ1,Γ2 such that
Γ1, x : σk ⊢M : τ , and Γ2 ⊢ Ni : σ with Γ = Γ1 ∧ Γ2 and finally we have:

Γ1, x : σk ⊢M : τ ∆ ∧ Γ2 ⊢ B : σk

[T : ex-sub]
Γ ∧∆ ⊢M⟨⟨B/x⟩⟩ : τ

notice that we make use that Γ2 ⊢ Ni : σ to ensure that the bag B is well typed.

1:66 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(II) The bag B has one element, then we type M{|Ni/x|}⟨⟨1/x⟩⟩ with the derivation
Π to be:

Γ ⊢M{|N1/x|} : τ ∆ ⊢ 1 : ω
[T : ex-sub]

Γ ∧∆ ⊢M{|N1/x|}⟨⟨1/x⟩⟩ : τ
By the anti-substitution lemma (Lemma 2.21) we have that ∃ Γ1,Γ2 such that

Γ1, x : σ ⊢M : τ , and Γ2 ⊢ N1 : σ with Γ = Γ1 ∧ Γ2 and finally we have:

Γ1, x : σ ⊢M : τ ∆ ∧ Γ2 ⊢ HN1I : σ
[T : ex-sub]

Γ ∧∆ ⊢M{|N1/x|}⟨⟨N/x⟩⟩ : τ
(3) When M′ is reduced to via the Rule [R : TCont]

M −→M ′
1 + · · ·+M ′

k[R : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

Hence the proof follows by the IH on M .
(4) When M′ is reduced to via the Rule [R : ECont]

M −→M′
[R : ECont]

D[M] −→ D[M′]

Hence the proof follows by the IH on M .

Lemma 2.27 (Substitution Lemma for λ ⊕). If Γ, x : σk |= M : τ (with k ≥ 1), head(M) = x,

and ∆ |= N : σ then Γ ∧∆, x : σk−1 |= M{|N/x|}.

Proof. By structural induction on M with head(M) = x. There are three cases to be
analyzed:

(1) M = x.
This case follows trivially. First, x : σ |= x : σ and Γ = ∅. Second, x{|N/x|} = N ,

by definition. Since ∆ |= N : σ, by hypothesis, the result follows.
(2) M = M ′ B.

In this case, head(M ′ B) = head(M ′) = x, and by inversion of the typing derivation
one has the following derivation:

Γ1, x : σm |= M ′ : δj → τ Γ2 |= B : δl
[F:app]

(Γ1, x : σm) ∧ Γ2 |= M ′B : τ

where Γ, x : σk = (Γ1, x : σm) ∧ Γ2, δ is a strict type, and j, l,m are non-negative
integers, possibly different with m ≥ 1.

By IH, we get Γ1 ∧∆, x : σm−1 |= M ′{|N/x|} : δj → τ , which gives the following
derivation:

Γ1 ∧∆, x : σm−1 |= M ′{|N/x|} : δj → τ Γ2 |= B : δl
[F:app]

(Γ1 ∧∆, x : σm−1) ∧ Γ2 |= (M ′{|N/x|})B : τ

Therefore, from Def. 2.8, one has Γ ∧∆, x : σk−1 |= (M ′B){|N/x|} : τ , and the result
follows.

(3) M = M ′⟨⟨B/y⟩⟩.
In this case, head(M ′⟨⟨B/y⟩⟩) = head(M ′) = x, with x ≠ y, and by inversion of the

typing derivation one has the following derivation:

Γ1, y : δl, x : σm |= M ′ : τ Γ2 |= B : δj
[F:ex-sub]

(Γ1, x : σm) ∧ Γ2 |= M ′⟨⟨B/y⟩⟩ : τ

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:67

where Γ, x : σk = (Γ1, x : σm) ∧ Γ2, δ is a strict type and j, l,m are positive integers
with m ≥ 1. By IH, we get (Γ1, y : δl, x : σm−1) ∧∆ |= M ′{|N/x|} : τ and

(Γ1, y : δl, x : σm−1) ∧∆ |= M ′{|N/x|} : τ Γ2 |= B : δj
[F:ex-sub]

(Γ1, y : δl, x : σm−1) ∧∆ ∧ Γ2 |= M ′{|N/x|}⟨⟨B/y⟩⟩ : τ
From Def. 2.8, M ′⟨⟨B/y⟩⟩{|N/x|} = M ′{|N/x|}⟨⟨B/y⟩⟩, therefore, Γ ∧ ∆, x : σk−1 |=

(M ′⟨⟨B/y⟩⟩){|N/x|} : τ and the result follows.

Theorem 2.28 (Subject Reduction in λ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

Proof. By structural induction on the reduction rules. We proceed by analysing the rule
applied in M. There are seven cases:

(1) Rule [R : Beta].
Then M = (λx.M)B −→M ⟨⟨B/x⟩⟩ = M′.
Since Γ |= M : τ , by inversion of the typing derivation one has the following

derivation:

Γ′, x : σj |= M : τ
[F:abs]

Γ′ |= λx.M : σj → τ ∆ |= B : σk

[F:app]
Γ′ ∧∆ |= (λx.M)B : τ

for Γ = Γ′ ∧∆. Notice that

Γ′, x : σj |= M : τ ∆ |= B : σk

[F:ex-sub]
Γ′ ∧∆ |= M⟨⟨B/x⟩⟩ : τ

Therefore, Γ |= M′ : τ and the result follows.
(2) Rule [R : Fetch].

Then M = M ⟨⟨B/x⟩⟩, where B = HN1, . . . , NkI , k ≥ 1, #(x,M) = k, and
head(M) = x. The reduction is as follows:

head(M) = x B = HN1, . . . , NkI , k ≥ 1 #(x,M) = k
[R : Fetch]

M ⟨⟨B/x⟩⟩ →M{|N1/x|}⟨⟨(B \\N1)/x⟩⟩+ · · ·+M{|Nk/x|}⟨⟨(B \\Nk)/x⟩⟩
To simplify the proof we take k = 2, as the case k > 2 is similar. Therefore, by

inversion of the typing derivation and B = HN1, N2I:

Γ′, x : σ ∧ σ |= M : τ

∆1 |= N1 : σ

∆2 |= N2 : σ
[F:1]

|= 1 : ω
[F:bag]

∆2 |= HN2I : σ
[F:bag]

∆ |= B : σ ∧ σ
[F:ex-sub]

Γ′ ∧∆ |= M⟨⟨B/x⟩⟩ : τ
where ∆ = ∆1 ∧∆2 and Γ = Γ′ ∧∆. By the Substitution Lemma (Lemma 2.27),

there exists a derivation Π1 of (Γ′, x : σ) ∧∆1 |= M{|N1/x|} : τ and a derivation Π2

of (Γ′, x : σ) ∧∆2 |= M{|N2/x|} : τ . Therefore, one has the following derivation:

Π1 ∆2 |= HN2I : σ
[F:ex-sub]

Γ′ ∧∆ |= M{|N1/x|}⟨⟨HN2I/x⟩⟩ : τ
Π2 ∆1 |= HN1I : σ

[F:ex-sub]
Γ′ ∧∆ |= M{|N2/x|}⟨⟨HN1I/x⟩⟩ : τ

[F:sum]
Γ′ ∧∆ |= M{|N1/x|}⟨⟨HN2I/x⟩⟩+M{|N2/x|}⟨⟨HN1I/x⟩⟩ : τ

Assuming M′ = {|N1/x|}⟨⟨HN2I/x⟩⟩+M{|N2/x|}⟨⟨HN1I/x⟩⟩, the result follows.
(3) Rule [R : Fail].

Then M = M ⟨⟨B/x⟩⟩ where B = HN1, · · · ·, NkI , k ≥ 0 , #(x,M) ̸= k and we can
perform the following reduction:

1:68 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

#(x,M) ̸= size(B) ỹ = (mfv(M) \ x) ⊎mfv(B)
[R : Fail]

M ⟨⟨B/x⟩⟩ −→
∑

PER(B) fail
ỹ

with M′ =
∑

PER(B) fail
ỹ. By hypothesis, one has the derivation:

∆ |= B : σj Γ′, x : σk |= M : τ
[F:ex-sub]

Γ′ ∧∆ |= M⟨⟨B/x⟩⟩ : τ
Notice that we also have from #(x,M) ̸= size(B) that j ̸= k.Hence Γ = Γ′ ∧∆ and
we may type the following:

[F:fail]
Γ |= failỹ : τ · · ·

[F:fail]
Γ |= failỹ : τ

[F:sum]
Γ |=

∑
PER(B) fail

ỹ : τ

(4) Rule [R : Cons1].
Then M = failx̃ B where B = HN1, . . . , NkI , k ≥ 0 and we can perform the

following reduction:

size(B) = k ỹ = mfv(B)
[R : Cons1]

failx̃ B −→
∑

PER(B) fail
x̃⊎ỹ

where M′ =
∑

PER(B) fail
x̃⊎ỹ. By hypothesis and inversion of the typing derivation,

there exists the following derivation:

[F:fail]
Γ′ |= failx̃ : π′ → τ ∆ |= B : π

[F:app]
Γ′ ∧∆ |= failx̃ B : τ

Hence Γ = Γ′ ∧∆ and we may type the following:

[F:fail]
Γ |= failx̃⊎ỹ : τ · · ·

[F:fail]
Γ |= failx̃⊎ỹ : τ

[F:sum]
Γ |=

∑
PER(B) fail

x̃⊎ỹ : τ

(5) Rule [R : Cons2].
Then M = failz̃ ⟨⟨B/x⟩⟩ where B = HN1, . . . , NkI , k ≥ 1 and we can perform the

following reduction:

size(B) = k #(x, z̃) + k ̸= 0 ỹ = mfv(B)
[R : Cons2]

failz̃ ⟨⟨B/x⟩⟩ −→
∑

PER(B) fail
(z̃\x)⊎ỹ

where M′ =
∑

PER(B) fail
(z̃\x)⊎ỹ. By hypothesis and inversion of the typing

derivation, there exists a derivation:

dom((Γ′, x : σk)†) = z̃
[F:fail]

Γ′, x : σk |= failz̃ : τ ∆ |= B : σj

[F:ex-sub]
Γ′ ∧∆ |= failz̃⟨⟨B/x⟩⟩ : τ

Hence Γ = Γ′ ∧∆ and we may type the following:

[F:fail]
Γ |= fail(z̃\x)⊎ỹ : τ · · ·

[F:fail]
Γ |= fail(z̃\x)⊎ỹ : τ

[F:sum]
Γ |=

∑
PER(B) fail

(z̃\x)⊎ỹ : τ

(6) Rule [R : TCont].
Then M = C[M] and the reduction is as follows:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:69

M −→M ′
1 + · · ·+M ′

l[R : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
l]

where M′ = C[M ′
1] + · · ·+C[M ′

l]. The proof proceeds by analysing the context C:
(1) C = [·] B.

In this case M = M B, for some B, and the following derivation holds:

Γ′ |= M : σj → τ ∆ |= B : σk

[F:app]
Γ′ ∧∆ |= M B : τ

where Γ = Γ′ ∧∆.
Since Γ′ |= M : σj → τ and M −→ M ′

1 + . . . + M ′
l , it follows by IH that

Γ′ |= M ′
1 + . . .+M ′

l : σ
j → τ . By applying [F:sum], one has Γ′ |= M ′

i : σ
j → τ ,

for i = 1, . . . , l. Therefore, we may type the following:

∀i ∈ 1, · · · , l
Γ′ |= M ′

i : σ
j → τ ∆ |= B : σk

[F:app]
Γ′ ∧∆ |= (M ′

i B) : τ
[F:sum]

Γ′ ∧∆ |= (M ′
1 B) + · · ·+ (M ′

l B) : τ

Thus, Γ |= M′ : τ , and the result follows.
(2) C = ([·])⟨⟨B/x⟩⟩.

This case is similar to the previous one.
(7) Rule [R : ECont].

Then M = D[M′′] where M′′ →M′′′ then we can perform the following reduction:

M′′ −→M′′′
[R : ECont]

D[M′′] −→ D[M′′′]

Hence M′ = D[M′′′]. The proof proceeds by analysing the context D:
(1) D = [·] + N. In this case M = M′′ + N by inversion of the typing derivation:

Γ |= M′′ : τ Γ |= N : τ
[F:sum]

Γ |= M′′ + N : τ

Since Γ ⊢ M′′
: τ and M′′ −→ M′′′

, by IH, it follows that Γ ⊢ M′′′
: τ and we

may type the following:

Γ |= M′′′ : τ Γ |= N : τ
[F:sum]

Γ |= M′′′ + N : τ

Therefore, Γ ⊢M′ : τ and the result follows.
(2) D = N+ [·]. This case is similar to the previous one.

Appendix B. Appendix to § 3.3

Theorem 3.15 (Consistency Stability Under −→). If M is a consistent λ̂ ⊕-expression and
M −→M′ then M′ is consistent.

Proof. By structural induction on the reduction rules. We will consider two key reduction
rules, the other cases follow analogously via application of the IH.

(1) Rule [RS:Ex-Sub]. In this case, we have

B = HM1I · · · HMkI k ≥ 1 M ̸= failỹ
[RS:Ex-Sub]

M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→
∑

Bi∈PER(B)M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩

1:70 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Notice that if a bag is consistent then each element in the bag is consistent, that is, for
any permutation Bi of the bag B then each Bi(n) is consistent. Then, the assumption of
consistency for (M [x̃← x])⟨⟨B/x⟩⟩, along with each element of the bag being consistent
implies consistency of

∑
Bi∈PER(B)M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ for each permutation

of B.

(2) Rule [RS:Lin-Fetch]. In this case, we have

head(M) = x
[RS:Lin-Fetch]

M⟨|N/x|⟩ −→M{|N/x|}
This case follows from the fact that M{|N/x|} preserves consistency. The argument
is by structural induction, with base case of M = x together with the fact that N is
consistent trivially implies that x{|N/x|} must also be consistent. As for the inductive
step, notice that ‘adding’ N to the structure of M does not break any of the consistency
requirements: the consistency of M⟨|N/x|⟩ implies that the free variables of M and N
are disjoint.

Lemma 3.17 (Linear Anti-substitution Lemma for λ̂⊕). Let M and N be λ̂⊕-terms such
that head(M) = x. The following hold:

• If Γ, x : σk−1 ⊢M{|N/x|} : τ , with k > 1, then there exist Γ1,Γ2 such that Γ1, x : σk ⊢M :
τ , and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.
• If Γ ⊢M{|N/x|} : τ , with x ̸∈ dom(Γ), then there exist Γ1,Γ2 such that Γ1, x : σ ⊢M : τ ,
and Γ2 ⊢ N : σ, where Γ = Γ1 ∧ Γ2.

Proof. By induction on the structure of M :

(1) When M = x then we have x{|N/x|} = N and may derive the derivation of Γ ⊢ N : τ
with x ̸∈ dom(Γ). By taking Γ1 = ∅ and Γ2 = Γ as Γ = ∅ ∧ Γ the case follows as
Γ ⊢ N : τ and

[TS : var]
x : σ ⊢ x : σ

(2) When M = (M B) then we have that (M B){|N/x|} = (M{|N/x|}) B. Let us
consider two cases:
(I) When x ∈ fv(M{|N/x|})

Γ′, x : σk−1 ⊢M{|N/x|} : π → τ ′ ∆ ⊢ B : π
[TS : app]

(Γ′, x : σk−1) ∧∆ ⊢ (M{|N/x|}) B : τ ′

By the IH we have that Γ′, x : σk−1 ⊢M{|N/x|} : π → τ ′ implies that ∃ Γ′
1,Γ2

such that Γ′
1, x : σk ⊢M : τ , and Γ2 ⊢ N : σ with Γ′ = Γ′

1 ∧ Γ2.

Γ′
1, x : σk ⊢M{|N/x|} : π → τ ′ ∆ ⊢ B : π

[TS : app]
(Γ′

1, x : σk) ∧∆ ⊢M B : τ ′

(II) When x ̸∈ fv(M{|N/x|})
Γ′ ⊢M{|N/x|} : π → τ ′ ∆ ⊢ B : π

[TS : app]
Γ′ ∧∆ ⊢ (M{|N/x|}) B : τ ′

By the IH we have that Γ′ ⊢ M{|N/x|}[ỹ ← y] : π → τ ′ implies that ∃ Γ′
1,Γ2

such that Γ′
1, x : σ ⊢M [ỹ ← y] : τ , and Γ2 ⊢ N : σ with Γ′ = Γ′

1 ∧ Γ2.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:71

Γ′
1, x : σ ⊢M : π → τ ′ ∆ ⊢ B : π

[TS : app]
(Γ′

1, x : σ) ∧∆ ⊢M B : τ ′

(3) When M = M [ỹ ← y]⟨⟨B/y⟩⟩ then we have that (M [ỹ ← y]⟨⟨B/y⟩⟩){|N/x|} =
(M{|N/x|}) [ỹ ← y]⟨⟨B/y⟩⟩ where x ̸= y.
(I) When x ∈ fv(M{|N/x|}):

Γ′, x : σk−1, ỹ : δj ⊢ (M{|N/x|}) : τ
[TS:share]

Γ′, x : σk−1, y : δj ⊢ (M{|N/x|})[ỹ ← y] : τ ∆ ⊢ B : δj
[TS : ex-sub]

Γ′ ∧∆ ⊢ (M{|N/x|})[ỹ ← y]⟨⟨B/y⟩⟩ : τ
By the IH we have that Γ′, x : σk−1, ỹ : δj ⊢ (M{|N/x|}) : τ implies that ∃ Γ′

1,Γ2

such that Γ′
1, x : σk, ỹ : δj ⊢ M : τ , and Γ2 ⊢ N : σ with Γ′, y : δj = (Γ′

1, y :
δj) ∧ Γ2.

Γ′
1, x : σk, ỹ : δj ⊢M : τ

[TS:share]
Γ′
1, x : σk, y : δj ⊢M [ỹ ← y] : τ ∆ ⊢ B : δj

[TS : ex-sub]
Γ′
1 ∧∆ ⊢ (M)[ỹ ← y]⟨⟨B/y⟩⟩ : τ

(II) When x ̸∈ fv(M{|N/x|}):

Γ′, ỹ : δk ⊢ (M{|N/x|}) : τ
[TS:share]

Γ′, y : δk ⊢ (M{|N/x|})[ỹ ← y] : τ ∆ ⊢ B : δk
[TS : ex-sub]

Γ′ ∧∆ ⊢ (M{|N/x|})[ỹ ← y]⟨⟨B/y⟩⟩ : τ
By the IH we have that Γ′, y : δk ⊢ (M{|N/x|}) : τ implies that ∃ Γ′

1,Γ2 such
that Γ′

1, x : σ, ỹ : δk ⊢M : τ , and Γ2 ⊢ N : σ with Γ′, y : δk = (Γ′
1, y : δk) ∧ Γ2.

Γ′, x : σ, ỹ : δk ⊢M : τ
[TS:share]

Γ′, x : σ, y : δk ⊢M [ỹ ← y] : τ ∆ ⊢ B : δk
[TS : ex-sub]

Γ′ ∧∆ ⊢ (M [ỹ ← y]{|N/x|})⟨⟨B/y⟩⟩ : τ
(4) When M = M [ỹ ← y] then we have that (M [ỹ ← y]){|N/x|} = (M{|N/x|}) [ỹ ← y]

where x ̸= y.
(I) When x ∈ fv(M{|N/x|}):

Γ′, x : σk−1, ỹ : δj ⊢ (M{|N/x|}) : τ
[TS:share]

Γ′, x : σk−1, y : δj ⊢ (M{|N/x|})[ỹ ← y] : τ

By the IH we have that Γ′, x : σk−1, ỹ : δj ⊢ (M{|N/x|}) : τ implies that ∃ Γ′
1,Γ2

such that Γ′
1, x : σk, ỹ : δj ⊢ M : τ , and Γ2 ⊢ N : σ with Γ′, y : δj = (Γ′

1, y :
δj) ∧ Γ2.

Γ′
1, x : σk, ỹ : δj ⊢M : τ

[TS:share]
Γ′
1, x : σk, y : δj ⊢M [ỹ ← y] : τ

(II) When x ̸∈ fv(M{|N/x|}):
Γ′, ỹ : δk ⊢ (M{|N/x|}) : τ

[TS:share]
Γ′, y : δk ⊢ (M{|N/x|})[ỹ ← y] : τ

1:72 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

By the IH we have that Γ′, y : δk ⊢ (M{|N/x|}) : τ implies that ∃ Γ′
1,Γ2 such

that Γ′
1, x : σ, ỹ : δk ⊢M : τ , and Γ2 ⊢ N : σ with Γ′, y : δk = (Γ′

1, y : δk) ∧ Γ2.

Γ′, x : σ, ỹ : δk ⊢M : τ
[TS:share]

Γ′, x : σ, y : δk ⊢M [ỹ ← y] : τ

(5) When M = M⟨|N/y|⟩ then we have that (M⟨|N/y|⟩){|N/x|} = (M{|N/x|}) ⟨|N/y|⟩
where x ̸= y.
(I) When x ∈ fv(M{|N/x|}):

∆ ⊢ N : δ Γ′, x : σk−1, y : δ ⊢ (M{|N/x|}) : τ
[TS :ex-lin-sub]

Γ′, x : σk−1, y : δ,∆ ⊢ (M{|N/x|})⟨|N/y|⟩ : τ

By the IH we have that Γ′, x : σk−1, ỹ : δj ⊢ (M{|N/x|}) : τ implies that ∃ Γ′
1,Γ2

such that Γ′
1, x : σk, ỹ : δj ⊢ M : τ , and Γ2 ⊢ N : σ with Γ′, y : δj = (Γ′

1, y :
δj) ∧ Γ2.

∆ ⊢ N : δ Γ′
1, x : σk, y : δ ⊢M : τ

[TS :ex-lin-sub]
Γ′
1, x : σk, y : δ,∆ ⊢M⟨|N/y|⟩ : τ

(II) When x ̸∈ fv(M{|N/x|}):
∆ ⊢ N : δ Γ′, y : δ ⊢ (M{|N/x|}) : τ

[TS :ex-lin-sub]
Γ′, y : δ,∆ ⊢ (M{|N/x|})⟨|N/y|⟩ : τ

By the IH we have that Γ′, y : δk ⊢ (M{|N/x|}) : τ implies that ∃ Γ′
1,Γ2 such

that Γ′
1, x : σ, ỹ : δk ⊢M : τ , and Γ2 ⊢ N : σ with Γ′, y : δk = (Γ′

1, y : δk) ∧ Γ2.

∆ ⊢ N : δ Γ′
1, x : σ, y : δ ⊢M : τ

[TS :ex-lin-sub]
Γ′
1, x : σ, y : δ,∆ ⊢M⟨|N/y|⟩ : τ

(6) When M = λy.M [ỹ ← y] then linear head substitution is undefined on this term as
head(M) ̸= x.

(7) When M = failx̃ then M is not well typed.

Theorem 3.18 (Subject Expansion for λ̂⊕). If Γ ⊢M′ : τ and M −→M′ then Γ ⊢M : τ .

Proof. By induction on the reduction rule applied. There are five possible cases.

(1) When M′ is reduced to via the Rule [RS : Beta]:

[RS : Beta]
(λx.M [x̃← x])B −→M [x̃← x] ⟨⟨B/x⟩⟩

Then M′ = M [x̃← x] ⟨⟨B/x⟩⟩ can be type as followed:

Γ, x : σk ⊢M [x̃← x] : τ ∆ ⊢ B : σk

[TS : ex-sub]
Γ ∧∆ ⊢M [x̃← x]⟨⟨B/x⟩⟩ : τ

From the typing of M′ we can deduce that M = (λx.M [x̃← x])B may be typed
by:

Γ, x : σk ⊢M [x̃← x] : τ
[TS : abs]

Γ ⊢ λx.M [x̃← x] : σk → τ ∆ ⊢ B : σk

[TS : app]
Γ ∧∆ ⊢ (λx.M [x̃← x])B : τ

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:73

(2) When M′ is reduced to via the Rule [RS:Ex-Sub]:

B = HM1I · · · HMkI k ≥ 1 M ̸= failỹ
[RS:Ex-Sub]

M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→
∑

Bi∈PER(B)M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩
Then M′ =M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ can be type as followed:

Γ, x1 : σ, · · · , xk : σ ⊢M : τ ∆1 ⊢ Bi(1) : σ

... ∆k ⊢ Bi(k) : σ
[TS :ex-lin-sub]

Γ,∆1, · · · ,∆k ⊢M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ : τ ∀Bi ∈ PER(B)
[TS:sum]

Γ,∆1, · · · ,∆k ⊢
∑

Bi∈PER(B)M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ : τ
From the typing of M′ we can deduce that M = (λx.M [x̃← x])B may be typed

by:

∆1 ⊢M1 : σ

∆k ⊢Mk : σ
...

[TS:bag]
∆1, · · · ,∆k ⊢ B : σk

Γ, x1 : σ, · · · , xk : σ ⊢M : τ

Γ, x : σk ⊢M [x̃← x] : τ
[TS : ex-sub]

Γ,∆1, · · · ,∆k ⊢M [x̃← x]⟨⟨B/x⟩⟩ : τ
(3) When M′ is reduced to via the Rule [RS:Lin-Fetch]:

head(M) = x
[RS:Lin-Fetch]

M⟨|N/x|⟩ −→M{|N/x|}
The result follow from Lemma 3.17.

(4) When M′ is reduced to via the Rule [RS : TCont]:

M −→M ′
1 + · · ·+M ′

k[RS : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

Hence the proof follows by the IH on M .
(5) When M′ is reduced to via the Rule [RS : ECont]:

M −→M′
[RS : ECont]

D[M] −→ D[M′]

Hence the proof follows by the IH on M .

Lemma 3.21 (Substitution Lemma for λ̂ ⊕). If Γ, x : σ |= M : τ , head(M) = x, and
∆ |= N : σ then Γ,∆ |= M{|N/x|} : τ .

Proof. By structural induction on M with head(M) = x. There are six cases to be analyzed:

(1) M = x.
In this case, x : σ |= x : σ and Γ = ∅. Observe that x{|N/x|} = N , since ∆ |= N : σ,

by hypothesis, the result follows.
(2) M = M ′ B.

Then head(M ′ B) = head(M ′) = x, and the derivation is the following by inversion
of the typing derivation:

Γ1, x : σ |= M ′ : δj → τ Γ2 |= B : δk
[FS:app]

Γ1,Γ2, x : σ |= M ′B : τ

1:74 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

where Γ = Γ1,Γ2, and j, k are non-negative integers, possibly different. Since
∆ ⊢ N : σ, by IH, the result holds for M ′, that is,

Γ1,∆ |= M ′{|N/x|} : δj → τ

which gives the derivation:

Γ1,∆ |= M ′{|N/x|} : δj → τ Γ2 |= B : δk
[FS:app]

Γ1,Γ2,∆ |= (M ′{|N/x|})B : τ

From Def. 3.5, (M ′B){|N/x|} = (M ′{|N/x|})B, therefore, Γ,∆ |= (M ′B){|N/x|} : τ
and the result follows.

(3) M = M ′[ỹ ← y].
Then head(M ′[ỹ ← y]) = head(M ′) = x, for y ̸= x. Therefore by inversion of the

typing derivation,

Γ1, y1 : δ, · · · , yk : δ, x : σ |= M ′ : τ y /∈ Γ1 k ̸= 0
[FS:share]

Γ1, y : δk, x : σ |= M ′[y1, · · · , yk ← y] : τ

where Γ = Γ1, y : δk. By IH, the result follows for M ′, that is,

Γ1, y1 : δ, · · · , yk : δ,∆ |= M ′{|N/x|} : τ
and we have the derivation:

Γ1, y1 : δ, · · · , yk : δ,∆ |= M ′{|N/x|} : τ y /∈ Γ1 k ̸= 0
[FS:share]

Γ1, y : δk,∆ |= M ′{|N/x|}[ỹ ← y] : τ

From Def. 3.5 one has M ′[ỹ ← y]{|N/x|} = M ′{|N/x|}[ỹ ← y]. Therefore, Γ,∆ |=
M ′[ỹ ← y]{|N/x|} : τ and the result follows.

(4) M = M ′[← y].
Then head(M ′[← y]) = head(M ′) = x with x ̸= y,

Γ, x : σ |= M : τ
[FS:weak]

Γ, y : ω, x : σ |= M [← y] : τ

and M ′[← y]{|N/x|} = M ′{|N/x|}[← y]. Then by the IH:

Γ,∆ |= M{|N/x|} : τ
[FS:weak]

Γ, y : ω,∆ |= M{|N/x|}[← y] : τ

(5) M = M ′[ỹ ← y]⟨⟨B/y⟩⟩.
Then head(M ′[ỹ ← y]⟨⟨B/y⟩⟩) = head(M ′[ỹ ← y]) = x ̸= y by inversion of the

typing derivation we have:

Γ1, ŷ : δk, x : σ |= M ′[ỹ ← y] : τ Γ2 |= B : δj
[FS:ex-sub]

Γ1,Γ2, x : σ |= M ′[ỹ ← y]⟨⟨B/y⟩⟩ : τ
and M ′[ỹ ← y]⟨⟨B/y⟩⟩{|N/x|} = M ′[ỹ ← y]{|N/x|}⟨⟨B/y⟩⟩. By IH:

Γ1, ŷ : δk,∆ |= M ′[ỹ ← y]{|N/x|} : τ Γ2 |= B : δj
[FS:ex-sub]

Γ1,Γ2,∆ |= M ′[ỹ ← y]{|N/x|}⟨⟨B/y⟩⟩ : τ
(6) M = M ′⟨|M ′′/y|⟩.

Then head(M ′⟨|M ′′/y|⟩) = head(M ′) = x ̸= y, by inversion of the typing derivation
we have:

∆ |= M ′′ : δ Γ, y : δ, x : σ |= M : τ
[FS:ex-lin-sub]

Γ1,Γ2, x : σ |= M ′⟨|M ′′/y|⟩ : τ

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:75

and M ′⟨|M ′′/y|⟩{|N/x|} = M ′{|N/x|}⟨|M ′′/y|⟩. Then by the IH:

∆ |= M ′′ : δ Γ, y : δ,∆ |= M ′{|N/x|} : τ
[FS:ex-lin-sub]

Γ1,Γ2,∆ |= M ′{|N/x|}⟨|M ′′/y|⟩ : τ

Theorem 3.22 (Subject Reduction in λ̂ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

Proof. By structural induction on the reduction rule from Fig. 5 applied in M −→ N. There
are nine cases to be analyzed:

(1) Rule [RS:Beta].
Then M = (λx.M [x̃← x])B and the reduction is:

[RS:Beta]
(λx.M [x̃← x])B −→M [x̃← x] ⟨⟨B/x⟩⟩

where M′ = M [x̃← x] ⟨⟨B/x⟩⟩. Since Γ |= M : τ we get the following derivation by
inversion of the typing derivation:

Γ′, x1 : σ, · · · , xj : σ |= M : τ
[FS:share]

Γ′, x : σj |= M [x̃← x] : τ
[FS:abs-sh]

Γ′ |= λx.M [x̃← x] : σj → τ ∆ |= B : σk

[FS:app]
Γ′,∆ |= (λx.M [x̃← x])B : τ

for Γ = Γ′,∆ and x /∈ dom(Γ′). Notice that:

Γ′, x1 : σ, · · · , xj : σ |= M : τ
[FS:share]

Γ′, x : σj |= M [x̃← x] : τ ∆ |= B : σk

[FS:ex-sub]
Γ′,∆ |= M [x̃← x] ⟨⟨B/x⟩⟩ : τ

Therefore Γ′,∆ |= M′ : τ and the result follows.
(2) Rule [RS:Ex-Sub].

Then M = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ where B = HN1, . . . , NkI. By inversion of
the typing derivation the reduction is:

B = HN1, · · · , NkI k ≥ 1 M ̸= failỹ
[RS:Ex-Sub]

M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ −→
∑

Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩
and M′ =

∑
Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩. To simplify the proof we

take k = 2, as the case k > 2 is similar. Therefore,
• B = HN1, N2I; and
• PER(B) = {HN1, N2I, HN2, N1I}

Since Γ |= M : τ we get a derivation where we first type the bag B with the
derivation Π, given next:

∆1 |= N1 : σ

∆2 |= N2 : σ
[FS:1]

|= 1 : ω
[FS:bag]

∆2 |= HN2I : σ
[FS:bag]

∆ |= B : σ ∧ σ

The full derivation is as follows:

Γ′, x1 : σ, x2 : σ |= M : τ
[FS:share]

Γ′, x : σ ∧ σ |= M [x̃← x] : τ Π
[FS:ex-sub]

Γ′,∆ |= M [x̃← x] ⟨⟨B/x⟩⟩ : τ

1:76 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

where ∆ = ∆1,∆2 and Γ = Γ′,∆. We can build a derivation Π1,2 of Γ′,∆ |=
M⟨|N1/x1|⟩⟨|N2/x2|⟩ : τ as :

Γ′, x1 : σ, x2 : σ |= M : τ ∆1 |= N1 : σ
[FS:ex-lin-sub]

Γ,∆1, x2 : σ |= M⟨|N1/x1|⟩ : τ ∆2 |= N2 : σ
[FS:ex-lin-sub]

Γ′,∆ |= M⟨|N1/x1|⟩⟨|N2/x2|⟩ : τ
Similarly, we can obtain a derivation Π2,1 of Γ′,∆ |= M⟨|N2/x1|⟩⟨|N1/x2|⟩ : τ .

Finally, applying Rule [FS:sum]:

Π1,2 Π2,1
[FS:sum]

Γ′,∆ |= M⟨|N1/x1|⟩⟨|N2/xk|⟩+M⟨|N2/x1|⟩⟨|N1/xk|⟩ : τ
and the result follows.

(3) Rule [RS:Lin-Fetch].
Then M = M ⟨|N/x|⟩ where head(M) = x. The reduction is:

head(M) = x
[RS:Lin-Fetch]

M ⟨|N/x|⟩ −→M{|N/x|}
and M′ = M{|N/x|}. Since Γ |= M : τ we get the following derivation by inversion of
the typing derivation:

∆ |= N : σ Γ′, x : σ |= M : τ
[FS:ex-lin-sub]

Γ′,∆ |= M⟨|N/x|⟩ : τ
where Γ = Γ′,∆. By the Substitution Lemma (Lemma 3.21), we obtain a derivation

Γ′,∆ |= M{|N/x|} : τ , and the result follows.
(4) Rule [RS:TCont].

Then M = C[M] and the reduction is as follows:

M −→M ′
1 + · · ·+M ′

k[RS:TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

with M′ = C[M ′
1] + · · ·+ C[M ′

k]. The proof proceeds by analysing the context C.
There are four cases:
(1) C = [·] B.

In this case M = M B, for some B. Since Γ ⊢M : τ by inversion of the typing
derivation, one has the derivation:

Γ′ |= M : σj → τ ∆ |= B : σk

[FS:app]
Γ′,∆ |= M B : τ

where Γ = Γ′,∆. From Γ′ |= M : σj → τ and the reduction M −→M ′
1+· · ·+M ′

k,
one has by IH that Γ′ |= M ′

1 + . . . ,M ′
k : σj → τ , which entails Γ′ |= M ′

i : σ
j → τ ,

for i = 1, . . . , k, via Rule [FS:sum]. Finally, we may type the following:

∀i ∈ 1, · · · , l
Γ′ |= M ′

i : σ
j → τ ∆ |= B : σk

[FS:app]
Γ′,∆ |= (M ′

i B) : τ
[FS:sum]

Γ′,∆ |= (M ′
1 B) + · · ·+ (M ′

l B) : τ

Since M′ = (C[M ′
1]) + · · ·+ (C[M ′

l]) = M ′
1B + . . .+M ′

kB, the result follows.
(2) Cases C = [·]⟨|N/x|⟩ and C = [·][x̃← x] are similar to the previous one.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:77

(3) C = [·][← x]⟨⟨1/x⟩⟩
In this case M = C[M] = M [← x]⟨⟨1/x⟩⟩. Since Γ |= M : τ by inversion of the
typing derivation, one has a derivation

Γ |= M : τ
[FS-weak]

Γ, x : ω |= M [← x] : τ

[TS:1] ⊢ 1 : ω[FS:wf-bag]
|= 1 : ω

[FS:ex-sub]
Γ |= M [← x]⟨⟨1/x⟩⟩ : τ

From M −→ M1 + . . . + Mk and Γ |= M : τ , by the IH, it follows that
Γ |= M1 + . . .+Mk : τ , and consequently, Γ |= Mi, via application of [FS:sum].
Therefore, there exists a derivation

Γ |= Mi : τ

Γ, x : ω |= Mi[← x] : τ |= 1 : ω

Γ |= Mi[← x]⟨⟨1/x⟩⟩ : τ
for each i = 1, . . . , k. By applying [FS:sum], we obtain Γ |= M1[← x]⟨⟨1/x⟩⟩+ . . .+
Mk[← x]⟨⟨1/x⟩⟩ : τ , and the result follows.

(5) Rule [RS:ECont].
Then M = D[M1] where M1 −→M2 then we can perform the following reduction:

M1 −→M2[RS:ECont]
D[M1] −→ D[M2]

and M′ = D[M2].
The proof proceeds by analysing the context D. There are two cases: D = [·] + N
and D = N+ [·]. We analyze only the first one:

D = [·] + N. In this case M = M1 + N and by inversion of the typing derivation:

Γ |= M1 : τ Γ |= N : τ
[FS:sum]

Γ |= M1 + N : τ

From Γ |= M1 : τ and M1 −→ M2, by IH, one has that Γ |= M2 : τ . Hence we
may type the following:

Γ |= M2 : τ Γ |= N : τ
[FS:sum]

Γ |= M2 + N : τ

Since M′ = D[M2] = M2 + N, the result follows.
(6) Rule [RS:Fail].

Then M = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ where B = HN1, . . . , NlI and the reduction
is:

k ̸= size(B) ỹ = (fv(M) \ {x1, · · · , xk}) ∪ fv(B)
[RS:Fail]

M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ −→
∑

Bi∈PER(B) fail
ỹ

where M′ =
∑

Bi∈PER(B) fail
ỹ. Since Γ |= M and by inversion of the typing

derivation, one has a derivation:

Γ′, x1 : σ, . . . , xk : σ |= M : τ
[FS:ex-sub]

Γ′, x : σk |= M [x1, · · · , xk ← x] : τ ∆ |= B : σj

[FS:ex-sub]
Γ′,∆ |= M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ : τ

where Γ = Γ′,∆. We may type the following:

[FS:fail]
Γ′,∆ |= failỹ : τ

1:78 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

since Γ′,∆ contain assignments on the free variables in M and B. Therefore,
Γ |= failỹ : τ , by applying [FS:sum], it follows that Γ |=

∑
Bi∈PER(B) fail

ỹ : τ , as

required.
(7) Rule [RS:Cons1].

Then M = failx̃ B where B = HN1, . . . , NkI and the reduction is:

B = HN1, . . . , NkI ỹ = fv(B)
[RS:Cons1]

failx̃ B −→
∑

PER(B) fail
x̃∪ỹ

and M′ =
∑

PER(B) fail
x̃∪ỹ. Since Γ |= M : τ and by inversion of the typing

derivation, one has the derivation:

[FS:fail]
Γ′ |= failx̃ : ω → τ ∆ |= B : π

[FS:app]
Γ′,∆ |= failx̃ B : τ

where Γ = Γ′,∆. After PER(B) applications of [FS:sum], we obtain Γ |=∑
PER(B) fail

x̃∪ỹ : τ , and the result follows.

(8) Rule [RS:Cons2].
Then M = (failx̃∪ỹ[x̃← x])⟨⟨B/x⟩⟩for B = HN1, . . . , NkI and the reduction is:

B = HN1, . . . , NkI k + |x̃| ≠ 0 ỹ = fv(B)
[RS:Cons2]

(failx̃∪ỹ[x̃← x])⟨⟨B/x⟩⟩ −→
∑

PER(B) fail
ỹ∪z̃

with M′ =
∑

PER(B) fail
ỹ∪z̃. Since Γ |= M : τ and by inversion of the typing

derivation, one has the derivation:

[FS:fail]
∆, x1 : σ, · · · , xj : σ |= failx̃∪ỹ : τ x /∈ ∆ k ̸= 0

[FS:share]
∆, x : σj |= failx̃∪ỹ[x1, · · · , xj ← x] : τ ∆ |= B : σk

[FS:ex-sub]
Γ,∆ |= failx̃∪ỹ[x̃← x]⟨⟨B/x⟩⟩ : τ

Hence Γ = Γ′,∆ and M′ =
∑

PER(B) fail
ỹ∪z̃ and we may type the following:

[FS:fail]
Γ |= failỹ∪z̃ : τ · · ·

[FS:sum]
Γ |=

∑
PER(B) fail

ỹ∪z̃ : τ

(9) Rule [RS:Cons3].
Then M = failỹ∪x and the reduction is

z̃ = fv(N)
[RS:Cons3]

failỹ∪x⟨|N/x|⟩ −→ failỹ∪z̃

with M′ = failỹ∪z̃. Since Γ |= M and by inversion of the typing derivation, one has
the derivation

[FS:fail]
Γ′, x : σ |= failỹ∪x : τ ∆ |= N : σ

[FS:ex-lin-sub]
Γ′,∆ |= failỹ∪x⟨|N/x|⟩ : τ

where x /∈ dom(Γ′), dom(Γ′) = ỹ and dom(∆) = z̃ = fv(N).
We can type the following:

[FS:fail]
Γ′,∆ |= failỹ∪z̃ : τ

and the result follows.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:79

Theorem 3.24 (Consistency enforced by typing). Let M be a λ̂ ⊕-expression. If Γ |= M
then M is consistent.

Proof. By induction on the typing derivation, with a case analysis on the last applied rule
(Figure 7). We only consider the cases for the typing rules that relate to the sharing construct
and the explicit substitution. First, consider conditions 1(i) to 1(iv), which are related to
M [x̃← x]. The conditions are as follows (i) x̃ contains pairwise distinct variables; (ii) every
xi ∈ x̃ must occur exactly once in M ; (iii) xi is not a sharing variable; (iv) M is consistent.
By considering rule [FS:share], we have:

Γ, x1 : σ, · · · , xk : σ |= M : τ x /∈ dom(Γ) k ̸= 0
[FS:share]

Γ, x : σk |= M [x1, · · · , xk ← x] : τ

Condition 1(i) follows from uniquness of variables within the context. Condition 1(ii)
follows from the premise, which ensures that M is well-formed with a context including
each xi; linearity conditions imply that each xi must be consumed so it must occur in M .
Condition 1(iii) also follows directly from the well-formedness of M : each xi is typed with a
strict type, and the rule ensures that the sharing variable x is typed with the multiset type
σk. Finally condition 1(iv) is ensured by the IH.

For conditions 2(i) to 2(iv) which are (i) the variable x must occur exactly once in M ;
(ii) x cannot be a sharing variable; (iii) M and N are consistent; (iv) fv(M) ∩ fv(N) = ∅.
Consider the case of rule [FS:ex-lin-sub]:

Γ, x : σ |= M : τ ∆ |= N : σ
[FS:ex-lin-sub]

Γ,∆ |= M⟨|N/x|⟩ : τ
First, because Γ and ∆ are disjoint, x cannot appear within ∆ and M must consume the
type of x : σ; hence x must occur in M , satisfying condition 2(i) and 2(iv). Second, Γ, x : σ
ensures a strict type for x; if x were a sharing variable in M then x would have a multiset
type π. Therefore, condition 2(ii) is satisfied. Finally, condition (iii) is satisfied by induction
on M and N .

Proposition 3.30 (L · M◦ Preserves Consistency). Let M be a λ ⊕-expression. Then LMM◦ is

a consistent λ̂ ⊕-expression.

Proof. By induction on the structure of M. Notice that L · M• ensures consistency for bound
variables: it replaces all occurrences of a bound variable (say y) with fresh bound variables
(say, y1, . . . , yk). Thus, the following hold for bound variables: (i) they occur once within a
term and (ii) they are not shared themselves, as the sharing of variables only occurs when
handling binders associated to explicit substitutions and abstractions. As for free variables,
the translation L · M◦ replaces each occurrence with a fresh variable, and does so before
applying L · M•; this ensures that free variables that are already shared are not shared again.
Because of this design, the translations preserve consistency.

Appendix C. Appendix to § 5.2

C.1. Encoding L · M•.

1:80 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

C.1.1. Auxiliary Encoding: From λ⊕ into λ̂⊕.

Proposition C.1. The encoding commutes with linear substitution: LM{|N/x|}M• =
LMM•{|LNM•/x|}

Proof. By induction of the structure of M in M{|LNM•/x|}.

Proposition C.2 (Well-typedness preservation for L− M•). Let B and M be a bag and an

expression in λ ⊕, respectively.

(1) If Γ ⊢ B : σ then Γ̂† ⊢ LBM• : σ.
(2) If Γ ⊢M : σ then Γ̂† ⊢ LMM• : σ.

Proof. By mutual induction on the typing derivations for B and M, with an analysis of the
last rule applied.
Part (1) includes two cases:

i) Rule [T : 1]: Then B = 1 and the thesis follows trivially, because the encoding of
terms/bags (cf. Figure 8) ensures that L1M• = 1.

ii) Rule [T : bag]. Then B = HMI ·A, where M is a term and A is a bag, and

Γ ⊢M : σ ∆ ⊢ A : π[T : bag]
Γ ∧∆ ⊢ HMI ·A : σ ∧ π

By the IHs, we have both Γ̂† ⊢ LMM• : σ and ∆̂† ⊢ LAM• : π. The thesis then follows by

applying Rule [TS : bag] in λ̂ ⊕:

Γ̂† ⊢ LMM• : σ ∆̂† ⊢ LAM• : π
[TS : bag]

Γ̂†, ∆̂† ⊢ HLMM•I · LAM• : σ ∧ π

Part (2) considers six cases:

i) Rule [T : var]: Then M = x and

[T : var]
x : σ ⊢ x : σ

By the encoding of terms (cf. Fig. 8), we infer x : σ ⊢ x : σ and so the thesis holds
immediately.

ii) Rule [T : abs]: Then M = λx.M and

Γ, x : σn ⊢M : τ
[T : abs]

Γ ⊢ λx.M : σn → τ

By the encoding of terms (cf. Fig. 8), we have LMM• = λx.LM⟨x1, · · · , xn/x⟩M•[x̃← x],
where #(x,M) = n and each xi is fresh.

We work on the premise Γ, x : σn ⊢M : τ before appealing to the IH.
Then, by n applications of Lemma 5.3 to this judgment, we obtain

Γ, x1 : σ, · · · , xn : σ ⊢M⟨x1, · · · , xn/x⟩ : τ (C.1)

By IH on (C.1) we have

Γ̂†, x1 : σ, · · · , xn : σ ⊢ LM⟨x1, · · · , xn/x⟩M• : τ (C.2)

Starting from (C.2), we then have the following type derivation for LMM•, which
concludes the proof for this case:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:81

Γ̂†, x1 : σ, · · · , xn : σ ⊢ LM⟨x1, · · · , xn/x⟩M• : τ
[TS : share]

Γ̂†, x : σn ⊢ LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ← x] : τ
[TS : abs-sh]

Γ̂† ⊢ λx.(LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ← x]) : σn → τ

iii) Rule [T : app]: Then M = M B and

Γ ⊢M : π → τ ∆ ⊢ B : π[T : app]
Γ ∧∆ ⊢M B : τ

By IH we have both Γ̂† ⊢ LMM• : π → τ and ∆̂† ⊢ LBM• : π, and the thesis follows easily

by Rule [TS : app] in λ̂ ⊕:

Γ̂† ⊢ LMM• : π → τ ∆̂† ⊢ LBM• : π
[TS : app]

Γ̂†, ∆̂† ⊢ LMM• LBM• : τ

iv) Rule [T : ex-sub]: Then M = M⟨⟨B/x⟩⟩ and the proof is split in two cases, depending
on the shape of B:
(a) B = 1. In this case, M = M⟨⟨1/x⟩⟩ and we obtain the following type derivation:

⊢ 1 : ω
Γ ⊢M : τ[T : weak]

Γ, x : ω ⊢M : τ
[T : ex-sub]

Γ ⊢M⟨⟨1/x⟩⟩ : τ

By IH we have both ⊢ 1 : ω and Γ̂† ⊢ LMM• : τ . By the encoding of terms
(Figure 8), LM⟨⟨1/x⟩⟩M• = LMM•[← x]⟨⟨1/x⟩⟩, and the result holds by the following
type derivation:

⊢ 1 : ω

Γ̂† ⊢ LMM• : τ
[TS : weak]

Γ̂†, x : ω ⊢ LMM•[← x] : τ
[TS : ex-sub]

Γ̂† ⊢ LMM•[← x]⟨⟨1/x⟩⟩ : τ
(b) B = HN1, . . . , NnI, n ≥ 1. Suppose w.l.o.g. that n = 2, then B = HN1, N2I and

∆1 ⊢ N1 : σ ∆2 ⊢ N2 : σ[T : bag]
∆1 ∧∆2 ⊢ HN1I · HN2I : σ2 Γ, x : σ2 ⊢M : τ

[T : ex-sub]
Γ ∧∆1 ∧∆2 ⊢M⟨⟨B/x⟩⟩ : τ

By IH we have ∆̂1
†
⊢ LN1M• : σ and ∆̂2

†
⊢ LN2M• : σ. We can expand Γ, x : σ2 ⊢

M : τ into Γ, x : σ ∧ σ ⊢M : τ . By Lemma 5.3 and the IH on this last sequent we
obtain

Γ̂†, y1 : σ, y2 : σ ⊢ LM⟨y1, y2/x⟩M• : τ
where #(x,M) = 2 and y1, y2 are fresh variables with the same type as x.
Now, by the encoding of terms (Figure 8), we have

LM⟨⟨HN1, N2I/x⟩⟩M• = LM⟨y1, y2/x⟩M•⟨|LN1M•/y1|⟩⟨|LN2M•/y2|⟩+
LM⟨y1, y2/x⟩M•⟨|LN1M•/y2|⟩⟨|LN2M•/y1|⟩

= M′

We give typing derivations in λ̂ ⊕ for each summand. First, let Π1 be the following
derivation:

1:82 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

∆̂2
†
⊢ LN2M• : σ

∆̂1
†
⊢ LN1M• : σ Γ̂†, y1 : σ, y2 : σ ⊢ LM⟨y1, y2/x⟩M• : τ

Γ̂†, y2 : σ, ∆̂1
†
⊢ LM⟨y1, y2/x⟩M•⟨|LN1M•/y1|⟩ : τ

Γ̂†, ∆̂1
†
, ∆̂2

†
⊢ LM⟨y1, y2/x⟩M•⟨|LN1M•/y1|⟩⟨|LN2M•/y2|⟩ : τ

Similarly, we can obtain a derivation Π2 for:

Γ̂†, ∆̂1
†
, ∆̂2

†
⊢ LM⟨y1, y2/x⟩M•⟨|LN1M•/y2|⟩⟨|LN2M•/y1|⟩ : τ

From Π1, Π2, and Rule [TS : sum], the thesis follows:

Π1 Π2[TS : sum]
Γ̂†, ∆̂1

†
, ∆̂2

†
⊢M′ : τ

v) Rule [T : weak]: Then M = M and

Γ ⊢M : σ x /∈ dom(Γ)
[T : weak]

Γ, x : ω ⊢M : σ

Because [TS : weak] is a silent typing rule in λ ⊕, we have that x ̸∈ fv(M) and so this
case does not apply.

vi) Rule [T : sum]:
This case follows easily by IH.

C.1.2. Properties. We divide the proof of well-formedness preservation: we first prove it for
L− M•, then we extend it to L− M◦.

Lemma 5.5 (Well-formedness preservation for L·M•). Let B and M be a bag and an expression

in λ ⊕, respectively. Also, let Γ be a context such that Γ̂† is defined. We have:

(1) If Γ |= B : π then Γ̂† |= LBM• : π.
(2) If Γ |= M : σ then Γ̂† |= LMM• : σ.

Proof. By mutual induction on the typing derivations for B and M , with an analysis of the
last rule (from Fig. 4) applied. We proceed with the following nine cases:

(1) This case includes two subcases:
(a) Rule [F : wf-bag].

Then by inversion of the typing derivation,

Γ ⊢ B : σ[F:wf− bag]
Γ |= B : σ

By Propostion C.2 we have Γ ⊢ B : σ implies Γ̂† ⊢ LBM• : σ. Notice that the

encoding L · M• given in Fig. 8, is a restriction of L · M• to λ⊕. Therefore, Γ̂
† ⊢ LBM• : σ,

and the result follows after an application of [FS:wf− bag].
(b) Rule [F : bag].

In this case B = HMI · A, where M is a term and A is a bag, and we have the
following derivation by inversion of the typing derivation:

Γ |= M : σ ∆ |= A : σk

[F : bag]
Γ ∧∆ |= HMI ·A : σk+1

with dom(Γ) = fv(M) and dom(∆) = fv(A). By the IHs, we have both

• Γ̂† ⊢ LMM• : σ; and

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:83

• ∆̂† ⊢ LAM• : σk.

By applying Rule [FS:bag] from Fig. 7, for λ̂ ⊕, we obtain the following derivation:

Γ̂† |= LMM• : σ ∆̂† |= LAM• : σk

[FS:bag]
Γ̂†, ∆̂† |= HLMM•I · LAM• : σk+1

Since LHMI ·AM• = HLMM•I · LAM•, one has Γ̂†, ∆̂† ⊢ LHMI ·AM• : σk+1, and the result
follows.

(2) This case is divided in seven subcases:
(a) Rule [F : wf-expr].

Then the thesis follows trivially from type preservation in L− M◦ of Proposition C.2.
(b) Rule [F : weak].

In this case, M = M and by inversion of the typing derivation we have the derivation

Γ1 |= M : τ
[F : weak]

Γ1, x : ω |= M : τ

Because [weak] is a silent well-formed rule in λ ⊕, we have that x ̸∈ fv(M) and so
this case does not apply.

(c) Rule [F : abs].
In this case M = λx.M by inversion of the typing derivation and we have the
derivation:

Γ, x : σn |= M : τ
[F : abs]

Γ |= λx.M : σn → τ

By the encoding given in Fig. 8, we have LMM• = λx.LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ←
x], where #(x,M) = n and each xi is fresh and has the same type as x. From
Γ, x : σn |= M : τ , we obtain after n applications of Proposition 5.2 and Lemma 5.3:

Γ, x1 : σ, · · · , xn : σ |= M⟨x1, · · · , xn/x⟩ : τ
By IH we have:

Γ̂†, x1 : σ, · · · , xn : σ |= LM⟨x1, · · · , xn/x⟩M• : τ
which gives us the following derivation:

Γ̂†, x1 : σ, · · · , xn : σ |= LM⟨x1, · · · , xn/x⟩M• : τ
[FS:share]

Γ̂†, x : σn |= LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ← x] : τ
[FS:abs-sh]

Γ̂† |= λx.(LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ← x]) : σn → τ

and the result follows.
(d) Rule [F : app].

In this case M = M B, and by inversion of the typing derivation we have the
derivation:

Γ |= M : σj → τ ∆ |= B : σk

[F : app]
Γ ∧∆ |= M B : τ

By IH we have both Γ̂† |= LMM• : σj → τ and ∆̂† |= LBM• : σk, and the result follows

easily by Rule [FS:app] in λ̂ ⊕:

Γ̂† |= LMM• : σj → τ ∆̂† |= LBM• : σk

[FS:app]
Γ̂†, ∆̂† |= LMM• LBM• : τ

1:84 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(e) Rule [F : ex-sub].
Then M = M⟨⟨B/x⟩⟩ and the proof is split in two cases, depending on the shape
of B:

(i) When #(x,M) = size(B) = k ≥ 1.
Then we have B = HN1, . . . , NnI, n ≥ 1. Suppose w.l.o.g. that n = 2, then
B = HN1, N2I and by inversion of the typing derivation we have the following
derivation:

∆1 |= N1 : σ ∆2 |= N2 : σ
[F : bag]

∆1 ∧∆2 |= HN1I · HN2I : σ2 Γ1, x : σ2 |= M : τ
[F : ex-sub]

Γ1 ∧∆1 ∧∆2 |= M⟨⟨B/x⟩⟩ : τ
where Γ = Γ1,∆1,∆2. By IH we have both

• ∆̂1
†
⊢ LN1M• : σ; and

• ∆̂2
†
⊢ LN2M• : σ; and

• Γ̂1
†
, x : σ2 |= LMM• : τ

We can expand Γ̂1
†
, x : σ2 |= LMM• : τ into Γ̂1

†
, x : σ ∧ σ |= LMM• : τ ,

which gives Γ̂1
†
, y1 : σ, y2 : σ |= LMM•⟨y1, y2/x⟩ : τ , after two applications of

Proposition 5.2 along with the application of Lemma 5.3, with y1, y2 fresh
variables of the same type as x. Since the encoding L · M• commutes with the

linear substitution ⟨·/·⟩ (Proposition 5.2), if follows that, Γ̂1
†
, y1 : σ, y2 : σ |=

LM⟨y1, y2/x⟩M• : τ .
Let Π1 be the derivation obtained after two consecutive applications of
Rule [FS:ex-lin-sub]:

Γ̂1
†
, y1 : σ, y2 : σ |= LM⟨y1, y2/x⟩M• : τ ∆̂1

†
|= LN1M• : σ

Γ̂1
†
, y2 : σ, ∆̂1

†
|= LM⟨y1, y2/x⟩M•⟨|LN1M•/y1|⟩ : τ ∆̂2

†
|= LN2M• : σ

Γ̂1
†
, ∆̂1

†
, ∆̂2

†
|= LM⟨y1, y2/x⟩M•⟨|LN1M•/y1|⟩⟨|LN2M•/y2|⟩ : τ

Similarly, we can obtain a derivation Π2 for:

Γ̂1
†
, ∆̂1

†
, ∆̂2

†
|= LM⟨y1, y2/x⟩M•⟨|LN1M•/y2|⟩⟨|LN2M•/y1|⟩ : τ

By the encoding given in Figure 8, we have

LM⟨⟨HN1, N2I/x⟩⟩M• =LM⟨y1, y2/x⟩M•⟨|LN1M•/y1|⟩⟨|LN2M•/y2|⟩+
LM⟨y1, y2/x⟩M•⟨|LN1M•/y2|⟩⟨|LN2M•/y1|⟩

Therefore,

Π1 Π2[FS:sum]
Γ̂1

†
, ∆̂1

†
, ∆̂2

†
|= LM⟨⟨HN1, N2I/x⟩⟩M• : τ

and the result follows.
(ii) #(x,M) = k ̸= size(B).

In this case, size(B) = j for some j ̸= k, and by inversion of the typing
derivation we have the following derivation:

∆ |= B : σj Γ1, x : σk |= M : τ
[F : ex-sub]

Γ1 ∧∆ |= M⟨⟨B/x⟩⟩ : τ
where Γ = Γ1 ∧∆. By IH we have both

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:85

• ∆̂† |= LBM• : σj ; and

• Γ̂1
†
, x̂ : σk |= LMM• : τ .

We analyse two cases, depending on the number k of occurrences of x in M :
(A) k = 0.

From Γ1, x : ω |= M : τ , which we get Γ1 |= M : τ , via Rule [F : weak].

The IH gives Γ̂1
†
|= LMM• : τ , which entails:

Γ̂1
†
|= LMM• : τ

[FS:weak]
Γ̂1

†
, x : ω |= LMM•[← x] : τ ∆̂† |= LBM• : σj

[FS:ex-sub]
Γ̂1

†
, ∆̂† |= LMM•[← x]⟨⟨B/x⟩⟩ : τ

By the encoding given in Figure 8, LM⟨⟨B/x⟩⟩M• = LMM•[← x]⟨⟨LBM•/x⟩⟩,
and the result follows.

(B) k > 0.

By applying Proposition 5.2 in Γ̂1
†
, x : σk |= LMM• : τ , we obtain

Γ̂1
†
, x1 : σ, . . . , xk : σ |= LMM•⟨x1, . . . , xk/x⟩ : τ

From Proposition 5.2 and Lemma 5.3, it follows that Γ̂1
†
, x1 : σ, . . . , xk :

σ |= LM⟨x1, . . . , xk/x⟩M• : τ , which entails x /∈ dom(Γ1) since k ≠ 0. First
we give Π:

Γ̂1
†
, x1 : σ, . . . , xk : σ |= LM⟨x1, . . . , xk/x⟩M• : τ

[FS:share]
Γ̂1

†
, x : σk |= LM⟨x1. · · · , xk/x⟩M•[x1. · · · , xk ← x] : τ

finally we give the full derivation:

∆̂† |= LBM• : σj Π
[FS:ex-sub]

Γ̂†, ∆̂† |= LM⟨x1. · · · , xk/x⟩M•[x1. · · · , xk ← x]⟨⟨LBM•/x⟩⟩ : τ
(f) Rule [F : fail].

The result follows trivially, because the encoding of failure in Fig. 8 is such that
Lfailx̃M• = failx̃.

(g) Rule [F : sum].
This case follows easily by IH.

Theorem 5.6 (Well-formedness Preservation for L · M◦). Let B and M be a bag and an

expression in λ ⊕, respectively.

(1) If Γ |= B : π then Γ† |= LBM◦ : π.
(2) If Γ |= M : σ then Γ† |= LMM◦ : σ.

Proof. By mutual induction on the typing derivations Γ |= B : σ and Γ |= M : σ, exploiting
both Proposition 5.2 and Lemma 5.3. The analysis for bags (Part 1) follows directly from
the IHs and will be omitted.

As for Part 2, there are two main cases to consider:

i) M = M .
Without loss of generality, assume fv(M) = {x, y}. Then,

x : σj
1, y : σk

2 |= M : τ (C.3)

1:86 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

where #(x,M) = j and #(y,M) = k, for some positive integers j and k.
After j + k applications of Lemma 5.3 we obtain:

x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2 |= M⟨x̃/x⟩⟨ỹ/y⟩ : τ
where x̃ = x1, . . . , xj and ỹ = y1, . . . , yk. From Proposition 5.2 and Lemma 5.3 one has

x1 : σ1, . . . , xj : σ1, y1 : σ2, . . . , yk : σ2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M• : τ
Since x1 : σ1, . . . , xj : σ1, y1 : σ2, . . . , yk : σ2 = x1 : σ1, . . . , xj : σ1, y1 : σ2, . . . , yk : σ2,
we have the following derivation:

x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M• : τ
[FS:share]

x : σj
1, y1 : σ2, · · · , yk : σ2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M•[x̃← x] : τ

[FS:share]
x : σj

1, y : σk
2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M•[x̃← x][ỹ ← y] : τ

By expanding Def. 3.26, we have

LMM◦ = LM⟨x̃/x⟩⟨ỹ/y⟩M•[x̃← x][ỹ ← y],

which completes the proof for this case.
ii) M = M1 + · · ·+Mn.

This case proceeds easily by IH, using Rule [FS:sum].

C.2. Completeness and Soundness.

Theorem 5.8 (Operational Completeness). Let M,N be well-formed λ ⊕ expressions. Suppose
N −→[R] M.

(1) If [R] = [R : Beta] then LNM◦ −→≤2 LMM◦;
(2) If [R] = [R : Fetch] then LNM◦ −→+ LM′M◦, for some M′ such that M ≡λ M′.
(3) If [R] ̸= [R : Beta] and [R] ̸= [R : Fetch] then LNM◦ −→ LMM◦.

Proof. By induction on the rule from Fig. 2 applied to infer N −→M, distinguishing three

cases. Below ˜[x1k ← x1k] abbreviates [x̃1 ← x1] . . . [x̃k ← xk]:

(1) The rule applied is [R] = [R : Beta].
In this case, N = (λx.M)B, the reduction is

[R : Beta]
(λx.M)B −→M ⟨⟨B/x⟩⟩

and M = M⟨⟨B/x⟩⟩. Below we assume fv(N) = {x1, . . . , xk} and x̃i = xi1 , . . . , xiji ,

where ji = #(xi, N), for 1 ≤ i ≤ k. On the one hand, we have:

LNM◦ = L(λx.M)BM◦

= L((λx.M)B)⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= L(λx.M
′
)B′M• ˜[x1k ← x1k]

= (Lλx.M
′
M•LB′M•) ˜[x1k ← x1k]

= ((λx.LM
′⟨ỹ/x⟩M•[ỹ ← x])LB′M•) ˜[x1k ← x1k]

−→[RS:Beta] (LM
′⟨ỹ/x⟩M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩) ˜[x1k ← x1k] = L

(C.4)

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:87

where we define M ′ and B′ to be M and B after the substitutions of ⟨x̃1/x1⟩ · · ·
⟨x̃k/xk⟩. On the other hand, we have:

LMM◦ = LM⟨⟨B/x⟩⟩M◦

= LM⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LM
′⟨⟨B′

/x⟩⟩M• ˜[x1k ← x1k]

(C.5)

We need to analyse two sub-cases: either #(x,M ′) = size(B) = k ≥ 1 or
#(x,M ′) = k and our first sub-case is not met.

i) If #(x,M ′) = size(B) = k ≥ 1 then we can reduce L using Rule [RS : Ex− sub]:

L −→
∑

Bi∈PER(LBM•)

LM
′⟨ỹ/x⟩M•⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(n)/yn|⟩ ˜[x1k ← x1k] = LMM◦

From (C.4) and (C.5) and ỹ = y1 . . . yn, one has the desired result.
ii) Otherwise, #(x,M) = k (either k = 0 or k ̸= size(B)).

Expanding the encoding in (C.5) :

LMM◦ = LM
′⟨⟨B′

/x⟩⟩M• ˜[x1k ← x1k]

= (LM
′⟨ỹ/x⟩M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩) ˜[x1k ← x1k]

Therefore LMM◦ = L and LNM◦ −→ LMM◦.
(2) The rule applied is [R] = [R : Fetch].

Then N = M⟨⟨B/x⟩⟩ and the reduction is

head(M) = x B = HN1, . . . , NnI, n ≥ 1 #(x,M) = n
[R : Fetch]

M⟨⟨B/x⟩⟩ −→
∑n

i=1M{|Ni/x|}⟨⟨B \\Ni/x⟩⟩

with M =
∑n

i=1M{|Ni/x|}⟨⟨B \\Ni/x⟩⟩.
Below we assume fv(N) = fv(M⟨⟨HN1I/x⟩⟩) = {x1, . . . , xk}. We distinguish two

cases:
(1) n = 1.

Then B = HN1I and N = M⟨⟨HN1I/x⟩⟩ −→M{|N1/x|}⟨⟨1/x⟩⟩ = M.
On the one hand, we have:

LNM◦ = LM⟨⟨HN1I/x⟩⟩M◦

= L(M⟨⟨HN1I/x⟩⟩)⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LM ′⟨⟨HN ′
1I/x⟩⟩M• ˜[x1k ← x1k]

= LM ′⟨y1/x⟩M•⟨|LN ′
1M

•/y1|⟩ ˜[x1k ← x1k], notice that head(M ′) = y1

= LM
′′
M•⟨|LN ′

1M
•/y1|⟩ ˜[x1k ← x1k]

−→[RS:Lin-Fetch] LM ′′M•{|LN ′
1M

•/y1|} ˜[x1k ← x1k]

where we define M ′ and N ′
1 to be M and N1 after the substitutions of ⟨x̃1/x1⟩ · · ·

⟨x̃k/xk⟩; similarly, we define M ′′ to be M ′after the substitution of y1 for x. On

1:88 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

the other hand,

LMM◦ = LM{|N1/x|}⟨⟨1/x⟩⟩M◦

= LM{|N1/x|}⟨⟨1/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LM ′{|N ′
1/x|}⟨⟨1/x⟩⟩M• ˜[x1k ← x1k]

= LM ′{|N ′
1/x|}M•[← x]⟨⟨1/x⟩⟩ ˜[x1k ← x1k]

By the congruence defined in Fig. 13 for λ ⊕, one has M⟨⟨1/x⟩⟩ ≡λ M .
Therefore, M = M{|N1/x|}⟨⟨1/x⟩⟩ ≡λ M{|N1/x|} = M′. Expanding LM′M◦ we
have:

LM′M◦ = LM{|N1/x|}M◦

= LM{|N1/x|}⟨x̃1/x1⟩ · · · ⟨x̃j/xj⟩M• ˜[x1k ← x1k]

= LM ′{|N ′
1/x|}M• ˜[x1k ← x1k]

= LM ′M•{|LN ′
1M

•/x|} ˜[x1k ← x1k]

Hence, LNM◦ −→ LM′M◦ and the result follows.
(2) n > 1

To simplify the proof, we take n = 2 (the analysis when n > 2 is similar). Then
B = HN1, N2I and the reduction is

N = M⟨⟨B/x⟩⟩ −→M{|N1/x|}⟨⟨HN2I/x⟩⟩+M{|N2/x|}⟨⟨HN1I/x⟩⟩ = M

Notice that #(x,M) = 2, we take y1, y2 fresh variables. On the one hand, we
have:

LNM◦ = LM⟨⟨B/x⟩⟩M◦ = LM⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LM ′⟨⟨B′
/x⟩⟩M• ˜[x1k ← x1k]

= (LM ′⟨y1, y2/x⟩M•⟨|LN ′
1M

•/y1|⟩⟨|LN ′
2M

•/y2|⟩

+ LM ′⟨y1, y2/x⟩M•⟨|LN ′
2M

•/y1|⟩⟨|LN ′
1M

•/y2|⟩) ˜[x1k ← x1k]

= (LM
′′
M•⟨|LN ′

1M
•/y1|⟩⟨|LN ′

2M
•/y2|⟩

+ LM
′′
M•⟨|LN ′

2M
•/y1|⟩⟨|LN ′

1M
•/y2|⟩) ˜[x1k ← x1k]

−→2
[RS:Lin-Fetch] (LM

′′M•{|LN ′
1M

•/y1|}⟨|LN ′
2M

•/y2|⟩

+ LM ′′M•{|LN ′
2M

•/y1|}⟨|LN ′
1M

•/y2|⟩) ˜[x1k ← x1k]

= L.

(C.6)

where we define M ′ and B′ to be M and B after the substitutions of ⟨x̃1/x1⟩ · · ·
⟨x̃k/xk⟩ and N ′

1, N
′
2 are the the elements of the bag B′. Similarly, we define M ′′

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:89

to be M ′ after the substitution ⟨y1, y2/x⟩. On the other hand, we have:

LMM◦ = LM{|N1/x|}⟨⟨HN2I/x⟩⟩+M{|N2/x|}⟨⟨HN1I/x⟩⟩M◦

= LM{|N1/x|}⟨⟨HN2I/x⟩⟩M◦ + LM{|N2/x|}⟨⟨HN1I/x⟩⟩M◦

= LM{|N1/x|}⟨⟨N2/x⟩⟩M•⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩ ˜[x1k ← x1k]

+ LM{|N2/x|}⟨⟨N1/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LM ′{|N ′
1/x|}⟨⟨N

′
2/x⟩⟩M• ˜[x1k ← x1k]

+ LM ′{|N ′
2/x|}⟨⟨N

′
1/x⟩⟩M• ˜[x1k ← x1k]

= LM ′{|N ′
1/x|}M•⟨|LN ′

2M
•/y2|⟩ ˜[x1k ← x1k]

+ LM ′{|N ′
2/x|}M•⟨|LN ′

1M
•/y2|⟩ ˜[x1k ← x1k]

(C.7)

The reductions in (C.6) and (C.7) lead to identical expressions, up to renaming
of shared variables, which are taken to be fresh by definition. In both cases, we
have taken the same fresh variables.

(3) The rule applied is [R] ≠ [R : Beta] and [R] ̸= [R : Fetch]. There are two possible

cases. Below ˜[x1n ← x1n] abbreviates [x̃1 ← x1] · · · [x̃n ← xn]:
(I) [R] = [R : Fail]

Then N = M⟨⟨B/x⟩⟩ and the reduction is

#(x,M) ̸= size(B) ỹ = (mfv(M) \ x) ⊎mfv(B)
[R : Fail]

M ⟨⟨B/x⟩⟩ −→
∑

PER(B) fail
ỹ

where M =
∑

PER(B) fail
ỹ. Below assume fv(N) = {x1, . . . , xn}.

On the one hand, we have:

LNM◦ = LM⟨⟨B/x⟩⟩M◦ = LM⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1n ← x1n]

= LM ′⟨⟨B′
/x⟩⟩M• ˜[x1n ← x1n]

= LM ′⟨y1, · · · , yk/x⟩M•[y1, · · · , yk ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1n ← x1n]

−→[RS:Fail]

∑
PER(B)

failỹ ˜[x1n ← x1n] = L

where we define M ′ and B′ to be M and B after the substitutions of ⟨x̃1/x1⟩ · · ·
⟨x̃k/xk⟩. On the other hand, we have:

LMM◦ = L
∑

PER(B)

failỹM◦ =
∑

PER(B)

LfailỹM◦

=
∑

PER(B)

LfailỹM• ˜[x1n ← x1n] =
∑

PER(B)

failỹ ˜[x1n ← x1n] = L

Therefore, LNM◦ −→ LMM◦ and the result follows.
(II) [R] = [R : Cons1].

Then N = failỹ B and the reduction is
size(B) = k z̃ = mfv(B)

[R : Cons1]
failỹ B −→

∑
PER(B) fail

ỹ⊎z̃

1:90 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

and M′ =
∑

PER(B) fail
ỹ⊎z̃. Below we assume fv(N) = {x1, . . . , xn}.

On the one hand, we have:

LNM◦ = Lfailỹ BM◦ = Lfailỹ B⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1n ← x1n]

= Lfailỹ′ B′M• ˜[x1n ← x1n] = Lfailỹ′M• LB′M• ˜[x1n ← x1n]

= failỹ
′ LB′M• ˜[x1n ← x1n]

−→[RS:Cons1]

∑
PER(B)

failỹ
′∪z̃′ ˜[x1n ← x1n] = L

where we define B′ to be B after the substitutions of ⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩. Simi-

larly, ỹ′ and z̃′ are ỹ and z̃ after the substitution ⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩. On the
other hand, we have:

LMM◦ = L
∑

PER(B)

failỹ⊎z̃M◦ =
∑

PER(B)

Lfailỹ⊎z̃M◦

=
∑

PER(B)

Lfailỹ′⊎z̃′M• ˜[x1n ← x1n] =
∑

PER(B)

failỹ
′∪z̃′ ˜[x1n ← x1n] = L

Therefore, LNM◦ −→ L = LMM◦, and the result follows.
(III) [R] = [R : Cons2]

Then N = failỹ ⟨⟨B/x⟩⟩ and the reduction is

size(B) = k #(x, ỹ) + k ̸= 0 z̃ = mfv(B)
[R : Cons2]

failỹ ⟨⟨B/x⟩⟩ −→
∑

PER(B) fail
(ỹ\x)⊎z̃

and M =
∑

PER(B) fail
(ỹ\x)⊎z̃. Below we assume fv(N) = {x1, . . . , xn}.

On the one hand, we have: (below ỹ = y1, . . . , ym)

LNM◦ = Lfailỹ ⟨⟨B/x⟩⟩M◦

= Lfailỹ ⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1n ← x1n]

= Lfailỹ′⟨y1/x⟩ · · · ⟨ym/x⟩M•[ỹ ← x] ⟨⟨LB′M•/x⟩⟩ ˜[x1n ← x1n]

= failỹ
′′
[ỹ ← x] ⟨⟨LB′M•/x⟩⟩ ˜[x1n ← x1n]

−→[RS:Cons2] fail
(ỹ′\x)∪z̃′ ˜[x1n ← x1n]

(C.8)

As ỹ consists of free variables, in failỹ ⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩ the substitu-

tions also occur on ỹ resulting in a new ỹ′ where all xi’s are replaced with their

fresh components in x̃i. Similarly for z′ and B′ as well as ỹ′′ being ỹ′ with each
x replaced with a fresh yi. On the other hand, we have:

LMM◦ = L
∑

PER(B)

fail(ỹ\x)⊎z̃M◦ =
∑

PER(B)

Lfail(ỹ\x)⊎z̃M◦

=
∑

PER(B)

Lfail(ỹ′\x)⊎z̃M• ˜[x1n ← x1n] = fail(ỹ
′\x)∪z̃′ ˜[x1n ← x1n]

(C.9)

The reductions in (C.8) and (C.9) lead to identical expressions.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:91

As before, the reduction via Rule [R] could occur inside a context (cf. Rules [R : TCont]
and [R : ECont]). We consider only the case when the contextual rule used is [R : TCont].
We have N = C[N]. When we have C[N] −→[R] C[M] such that N −→[R] M we need

to show that LC[N]M◦ −→j LC[M]M◦for some j dependent on [R]. Firstly, let us assume
[R] = [R : Cons2] then we take j = 1. Let us take C[·] to be [·]B and fv(NB) = {x1, · · · , xk}
then

LNBM◦ = LNB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LN ′B′M• ˜[x1k ← x1k] = LN ′M•LB′M• ˜[x1k ← x1k]

We take N ′B′ = NB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩, and by the IH that LNM• −→ LMM• and hence we
can deduce that LN ′M• −→ LM ′M• where M ′B′ = MB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩. Finally,

LN ′M•LB′M• ˜[x1k ← x1k] −→ LM ′M•LB′M• ˜[x1k ← x1k]

and hence LC[N]M◦ −→ LC[M]M◦.

Theorem 5.9 (Operational Soundness). Let N be a well-formed λ ⊕ expression. Suppose
LNM◦ −→ L. Then, there exists N′ such that N −→[R] N′ and

(1) If [R] = [R : Beta] then L −→≤1 LN′M◦;
(2) If [R] ̸= [R : Beta] then L −→∗ LN′′M◦, for N′′ such that N′ ≡λ N′′.

Proof. By induction on the structure of N with the following six cases given below, where
˜[x1k ← x1k] abbreviates [x̃1 ← x1] . . . [x̃k ← xk]:

i) N = x:
Then LxM◦ = x1[x1 ← x], and no reductions can be performed.

ii) N = λx.N :
Suppose fv(N) = {x1, · · · , xk}. Then,

Lλx.NM◦ = Lλx.N⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= Lλx.N ′M• ˜[x1k ← x1k] = λx.LN ′⟨ỹ/x⟩M•[ỹ ← x] ˜[x1k ← x1k],

where N ′ is N after the substitutions ⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩ and no reductions can be
performed.

iii) N = NB:
Suppose fv(NB) = {x1, · · · , xn}. Then

LNM◦ = LNBM◦ = LNB⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1n ← x1n]

= LN ′B′M• ˜[x1n ← x1n] = LN ′M•LB′M• ˜[x1n ← x1n]
(C.10)

where x̃i = xi1, . . . , xiji , for 1 ≤ i ≤ n and N ′, B′ are N and B after performing
the substitutions ⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩ . By the reduction rules in Fig. 5 there are three
possible reductions starting in N:
(a) LN ′M•LB′M• ˜[x1n ← x1n] reduces via rule [RS:Beta].

In this caseN = λx.N1, and the encoding in (C.10) givesN ′ = N⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩,
which implies N ′ = λx.N

′
1 and the following holds:

LN ′M• = L(λx.N ′
1)M

• = (λx.LN ′
1⟨ỹ/x⟩M•[ỹ ← x]) = (λx.LN

′′
M•[ỹ ← x])

1:92 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Thus, we have the following [RS:Beta] reduction from (C.10):

LNM◦ = LN ′M•LB′M• ˜[x1n ← x1n] = (λx.LN ′′M•[ỹ ← x]LB′M•) ˜[x1n ← x1n]

−→[RS:Beta] LN
′′
M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1n ← x1n] = L

(C.11)

where N ′′ is N ′ after the substitutions ⟨ỹ/x⟩. Notice that the expression N can
perform the following [R : Beta]-reduction:

N = (λx.N1)B −→[R:Beta] N1⟨⟨B/x⟩⟩

Assuming N′ = N1⟨⟨B/x⟩⟩, there are two cases:
(i) #(x,M) = size(B) = k ≥ 1.

On the one hand:

LN′M◦ = LN1⟨⟨B/x⟩⟩M◦

= LN1⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1n ← x1n]

= LN ′
1⟨⟨B

′
/x⟩⟩M• ˜[x1n ← x1n]

=
∑

Bi∈PER(LBM•)

LN ′
1⟨y1, · · · , yk/x⟩M•⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(k)/yk|⟩ ˜[x1n ← x1n]

=
∑

Bi∈PER(LBM•)

LN ′′
1 M•⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(k)/yk|⟩ ˜[x1n ← x1n]

where N ′′
1 is N ′

1 after the substitution ⟨ỹ/x⟩.
On the other hand, after an application of Rule [RS : Ex− Sub]:

L = LN ′′M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1n ← x1n]

−→
∑

Bi∈PER(LBM•)

LN ′′
1 M•⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(k)/yk|⟩ ˜[x1n ← x1n]

= LN′M◦

and the result follows.
(ii) Otherwise, either #(x,N1) = k = 0 or #(x,N1) ̸= size(B). In this case:

LN′M◦ = LN1⟨⟨B/x⟩⟩M◦

= LN1⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1n ← x1n]

= LN ′
1⟨⟨B

′
/x⟩⟩M• ˜[x1n ← x1n]

= LN
′′
M•[ỹ ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1n ← x1n] = L

From (C.11): LNM◦ −→ L = LN′M◦ and the result follows.

(b) LN ′M•LB′M• ˜[x1n ← x1n] reduces via rule [RS:Cons1].
In this case we would have N = failỹ, and the encoding in (C.10) gives N ′ =

N⟨x̃1/x1⟩ . . . ⟨x̃n/xn⟩, which implies N ′ = failỹ
′
, we let size(B) = k and the

following:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:93

LNM◦ = LN ′M•LB′M• ˜[x1n ← x1n] = Lfailỹ′M•LB′M• ˜[x1n ← x1n]

= failỹ
′LB′M• ˜[x1n ← x1n]

−→
∑

PER(B)

failỹ
′⊎z̃ ˜[x1n ← x1n], where z̃ = fv(B′)

(C.12)

The expression N can perform the following [R] = [R : Cons1]-reduction:

N = failỹ B −→[R]

∑
PER(B)

failỹ⊎z̃ where z̃ = mfv(B) (C.13)

From (C.12) and (C.13), we infer that L = LN′M◦ and so the result follows.
(c) Suppose that LN ′M• −→ LN ′′M•.

This case follows from the IH.
iv) N = N⟨⟨B/x⟩⟩:

Suppose fv(N⟨⟨B/x⟩⟩) = {x1, · · · , xk}. Then,

LNM◦ = LN⟨⟨B/x⟩⟩M◦ = LN⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1k ← x1k]

= LN ′⟨⟨B′
/x⟩⟩M• ˜[x1k ← x1k]

(C.14)

where N ′, B′ are N and B after performing the substitutions ⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩ .
Let us consider the two possibilities of the encoding:
(1) #(x,M) = size(B) = k ≥ 1.

Then we continue equation (C.14) as follows:

LNM◦ = LN ′⟨⟨B′
/x⟩⟩M• ˜[x1k ← x1k]

=
∑

Bi∈PER(LB′M•)

LN ′⟨y1, · · · , yn/x⟩M•⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(n)/yn|⟩ ˜[x1k ← x1k]

=
∑

Bi∈PER(LB′M•)

LN ′′M•⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(n)/yn|⟩ ˜[x1k ← x1k]

(C.15)

where N ′′ is N ′ after performing the substitutions ⟨y1, · · · , yn/x⟩ . There are
three possible reductions, these being from rules [RS:Lin-Fetch], [RS:Cons3], and
[RS:Cont].
(I) Suppose that head(N ′′) = y1.

Then one has to consider the shape of the bag B′:
(A) When B′ has only one element N1 then from (C.15) and by letting

B = HN1I and B′ = HN ′
1I we have

LNM◦ = LN
′′
M•⟨|LN ′

1M
•/y1|⟩ ˜[x1k ← x1k], since head(M ′) = y1

−→ LN
′′
M•{|LN ′

1M
•/y1|} ˜[x1k ← x1k] = L

(C.16)

We also have:

N = N⟨⟨HN1I/x⟩⟩
−→ N{|N1/x|}⟨⟨1/x⟩⟩ = N′ ≡λ N{|N1/x|} = N′′ (C.17)

1:94 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

From (C.16) and (C.17), we infer that L′ = LN′M◦ and so the result
follows.

(B) When B′ has more then one element. Let us say that B = HN1, N2I
and B′ = HN ′

1, N
′
2I and cases for larger bags proceed similarly then

from (C.15). (Below we use the fact that head(M ′) = y1)

LNM◦ = LN ′′M•⟨|LN ′
1M

•/y1|⟩⟨|LN ′
2M

•/y2|⟩ ˜[x1k ← x1k]

+ LN ′′M•⟨|LN ′
2M

•/y1|⟩⟨|LN ′
1M

•/y2|⟩ ˜[x1k ← x1k],

−→ LN ′′M•{|LN ′
1M

•/y1|}⟨|LN ′
2M

•/y2|⟩[˜[x1k ← x1k]

+ LN ′′M•{|LN ′
2M

•/y1|}⟨|LN ′
1M

•/y2|⟩ ˜[x1k ← x1k] = L

(C.18)

We also have:

N = N⟨⟨HN1, N2I/x⟩⟩
−→ N{|N1/x|}⟨⟨HN2I/x⟩⟩+N{|N2/x|}⟨⟨HN1I/x⟩⟩ = N′ (C.19)

From (C.18) and (C.19), we infer that L′ = LN′M◦ and so the result
follows.

(II) Suppose that N ′′ = failz̃
′
. Then we proceed similarly as from (C.15):

LNM◦ =
∑

Bi∈PER(LB′M•)

failz̃
′⟨|Bi(1)/y1|⟩ · · · ⟨|Bi(n)/yn|⟩

−→∗
∑

Bi∈PER(LB′M•)

fail(z̃
′\y1,··· ,yn)⊎ỹ, since head(M ′) = y1

= L′

(C.20)

where ỹ = fv(Bi(1)) ⊎ · · · ⊎ fv(Bi(n)). We also have that

N = failz̃⟨⟨B/x⟩⟩ −→ fail(z̃\x)⊎ỹ = N′ (C.21)

where ỹ = mfv(B). From (C.20) and (C.21), we infer that L′ = LN′M◦ and
so the result follows.

(III) Suppose that N ′′ −→ N ′′′

This case follows by the IH.
(2) Otherwise we continue equation (C.14) as follows where #(x,M) = k

LNM◦ = LN ′⟨⟨B′
/x⟩⟩M• ˜[x1k ← x1k]

= LN ′⟨y1. · · · , yk/x⟩M•[y1. · · · , yk ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1k ← x1k]

= LN ′′M•[y1. · · · , yk ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1k ← x1k]

(C.22)

Let us consider the two possible cases:
(I) #(x,M) = size(B) = k = 0.

Then we have:

LNM◦ = LN ′M•⟨⟨1/x⟩⟩ ˜[x1k ← x1k] (C.23)

Reductions can only appear in LN ′M• and the case follows by the IH.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:95

(II) Otherwise we can perform the reduction:

LNM◦ = LN ′′M•[y1. · · · , yk ← x]⟨⟨LB′M•/x⟩⟩ ˜[x1k ← x1k]

−→
∑

Bi∈PER(B)

failz̃
′ ˜[x1k ← x1k] = L′ (C.24)

where z̃′ = fv(N ′′) ⊎ fv(B′). We also have that

N = N⟨⟨B/x⟩⟩ −→
∑

PER(B)

failz̃ = N′
(C.25)

where z̃ = mfv(M) ⊎mfv(B).
From (C.24) and (C.25), we infer that L′ = LN′M◦ and so the result follows.

v) N = failỹ

Then LfailỹM◦ = failỹ, and no reductions can be performed.
vi) N = N1 + N2:

This case holds by the IH.

C.3. Success Sensitiveness.

Proposition 5.13 (Preservation of head term). The head of a term is preserved when
applying the translation L · M◦, i.e.,

∀M ∈ λ ⊕. head(M) = ✓ ⇐⇒ head∑(LMM◦) = ✓.

Proof. By induction on the structure of M . We only need to consider terms of the following
form.

(1) When M = ✓ the case is immediate.
(2) When M = NB with fv(NB) = {x1, · · · , xk} and #(xi,M) = ji we have that:

head∑(LNBM◦) = head∑(LNB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk])

= head∑(LNBM•) = head∑(LNM•)

and head(NB) = head(N), by the IH we have head(N) = ✓ ⇐⇒ head∑(LNM•) = ✓.

(3) When M = N⟨⟨B/x⟩⟩, we must have that #(x,M) = size(B) for the head of this
term to be ✓. Let fv(N⟨⟨B/x⟩⟩) = {x1, · · · , xk} and #(xi,M) = ji. We have that:

head∑(LN⟨⟨B/x⟩⟩M◦) = head∑(LN⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk])

= head∑(LN⟨⟨B/x⟩⟩M•)

= head∑(
∑

Bi∈PER(LBM•)

LN⟨x1, · · · , xk/x⟩M•⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩)

= head∑(LN⟨x1, · · · , xk/x⟩M•⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩)
= head∑(LN⟨x1, · · · , xk/x⟩M•)

and head(N⟨⟨B/x⟩⟩) = head(N), by the IH we have

head(N) = ✓ ⇐⇒ head∑(LNM•) = ✓

1:96 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Theorem 5.14 (Success Sensitivity). Let M be a well-formed λ ⊕-expression. Then,

M ⇓✓ ⇐⇒ LMM◦ ⇓✓ .

Proof. By induction on the structure of expressions λ ⊕ and λ̂ ⊕. We proceed with the proof
in two parts.

(1) Suppose that M ⇓✓. We will prove that LMM◦ ⇓✓.
By operational completeness (Theorem 5.8) we have that if M −→[R] M′ then

(1) If [R] = [R : Beta] then LMM◦ −→≤2 LM′M◦;
(2) If [R] = [R : Fetch] then LMM◦ −→+ LM′′M◦, for some M′′ such that M′ ≡λ M′′.
(3) If [R] ̸= [R : Beta] and [R] ̸= [R : Fetch] then LMM◦ −→ LM′M◦;

Notice that neither our reduction rules (in Figure 5), or our congruence ≡λ (in
Figure 18), or our encoding (L✓M◦ = ✓) create or destroy a ✓ occurring in the head
of term. By Proposition 5.13 the encoding preserves the head of a term being ✓.
The encoding acts homomorphically over sums, therefore, if a ✓ appears as the head
of a term in a sum, it will stay in the encoded sum. We can iterate the operational
completeness lemma and obtain the result.

(2) Suppose that LMM◦ ⇓✓. We will prove that M ⇓✓.
From Def. 5.11 we have that LMM◦ ⇓✓ =⇒ ∃M1, · · · ,Mk. M −→∗ M1 + · · · +

Mk and head(Mj) = ✓, for some j ∈ {1, . . . , k}.
Notice that if LMM◦ is itself a term headed with ✓, say head(LMM◦) = ✓, then M

is itself headed with ✓, from Proposition 5.13.
Based on the shape of LMM◦, we consider two cases. The first case, when LMM◦ =

M1+ . . .+Mk, k ≥ 2, and ✓ occurs in the head of an Mj , follows a similar reasoning.
Then M has one of the forms:
(1) M = N1, then N1 must contain the subterm M⟨⟨B/x⟩⟩ and size(B) = #(x,M).

Since,

LM⟨⟨B/x⟩⟩M◦ =
∑

Bi∈PER(LBM•)

LM⟨x̃/x⟩M•⟨|Bi(1)/xi|⟩ . . . ⟨|Bi(k)/xi|⟩, we can apply

Proposition 5.13 as we may apply head∑(LM⟨⟨B/x⟩⟩M◦).
(2) M = N1 + . . .+Nl for l ≥ 2.

The reasoning is similar and uses the fact that the encoding distributes homo-
morphically over sums.

The second case is when LMM◦ −→∗ M1 + . . .+Mk, and head(Mj) = ✓, for some
j and Mj . By operational soundness (Theorem 5.9) we have that if LMM◦ −→ L then
there exist M′ such that M −→[R] M′ and

(1) If [R] = [R : Beta] then L −→≤1 LM′M◦;
(2) If [R] ̸= [R : Beta] then L −→∗ LM′′M◦, for M′′ such that M′ ≡λ M′′.
The reasoning is similar to the previous case, since our reduction rules do not
introduce/eliminate ✓ occurring in the head of terms and by taking L to be M1 +
. . .+Mk with head(Mj) = ✓, for some j and Mj the result follows.

Appendix D. Appendix to § 5.3

D.1. Type Preservation.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:97

Proposition 5.22. Suppose σj and σk are arbitrary strict types (Def. 2.15), for some

j, k ≥ 0. Following Fig. 17, consider their encoding into session types JσjK (τ1,m) and JσkK (τ2,n),
respectively, where τ1, τ2 are strict types and n,m ≥ 0.

We have JσjK (τ1,m) = JσkK (τ2,n) under the following conditions:

(1) If j > k then we take τ1 to be an arbitrary strict type and m = 0; also, we take τ2 to be
σ and n = j − k.

(2) If j < k then we take τ1 to be σ and m = k− j; also, we take τ2 to be an arbitrary strict
type and n = 0.

(3) Otherwise, if j = k then we take m = n = 0. Also, τ1, τ2 are arbitrary strict types.

Proof. We shall prove the case of (1) and the case of (2) follows immediately. The case of
(3) is immediate by the encoding on types defined in Definition 5.21. Hence we take j > k,
τ1 to be an arbitrary type and m = 0; also, we take τ2 to be σ and n = j − k. Hence we

want to show that JσjK (τ1,0) = JσkK (σ,n). We have the following

JσkK (σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσk−1K (σ,n)))))

Jσk−1K (σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσk−2K (σ,n)))))

...

Jσ1K (σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK (σ,n)))))

and

JσjK (τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσj−1K (τ1,0)))))

Jσj−1K (τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσj−2K (τ1,0)))))

...

Jσj−k+1K (τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσj−kK (τ1,0)))))

Notice that n = j − k, hence we wish to show that JσnK (τ1,0) = JωK (σ,n). Finally we have

that:

JωK (σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK (σ,n−1)))))

JωK (σ,n−1) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK (σ,n−2)))))

...

JωK (σ,1) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK (σ,0)))))

JωK (σ,0) = ⊕((N1) O (⊕N1)

1:98 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

and

JσnK (τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσn−1K (τ1,0)))))

Jσn−1K (τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσn−2K (τ1,0)))))

...

Jσ1K (τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK (τ1,0)))))

JωK (τ1,0) = ⊕((N1) O (⊕N1)

Theorem 5.23 (Type Preservation for J · K u). Let B and M be a bag and an expression in

λ̂ ⊕, respectively.

(1) If Γ† |= B : π then JBK u ⊢ JΓ†K , u : JπK (σ,i), for some strict type σ and index i ≥ 0.

(2) If Γ† |= M : τ then JMK u ⊢ JΓ†K , u : JτK .

Proof. By mutual induction on the typing derivation of B and M, with an analysis for the
last rule applied. Recall that the encoding of types (J− K) has been given in Definition 5.21.

(1) We consider two cases:
(a) Rule [FS:wf-bag]:

In this case we have the following derivation:

Γ† ⊢ B : π[FS:wf-bag]
Γ† |= B : π

There are two cases to be analyzed:
i) We may type bags with the [TS:bag] Rule.

This case is similar to that of [FS:bag]
ii) We may type bags with the [TS:1] Rule.

That is,
[TS:1] ⊢ 1 : ω

Our encoding gives us:

J1K x = x.some∅;x(yn).(yn.some; yn.close | x.some∅;x.none)
and the encoding of ω can be either:

(A) JωK (σ,0) = N((⊕⊥)⊗ (N⊕⊥)); or

(B) JωK (σ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,i−1)))))

and one can build the following type derivation (rules from Figure 11):
[T1]

yn.close ⊢ yn : 1
[TNx

d]
yn.some; yn.close ⊢ yn : N1

[TNx]
x.none ⊢ x : NA[T⊕x

w̃] x.some∅;x.none ⊢ x:⊕NA
[T |]

(yn.some; yn.close | x.some∅;x.none) ⊢ yn : N1, x:⊕NA
[TO]

x(yn).(yn.some; yn.close | x.some∅;x.none) ⊢ x : (N1) O (⊕NA)
[T⊕x

w̃] x.some∅;x(yn).(yn.some; yn.close | x.some∅;x.none) ⊢ x:⊕ ((N1) O (⊕NA))

Since A is arbitrary, we can take A = 1 for JωK (σ,0) and A =

((NJσK) O (JωK (σ,i−1))) for JωK (σ,i), in both cases, the result follows.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:99

(b) Rule [FS:bag]:
Then B = HMI ·A and we have the following derivation:

Γ† |= M : σ ∆† |= A : σk

[FS:bag]
Γ†,∆† |= HMI ·A : σk+1

To simplify the proof, we will consider k = 2 (the case k > 2 follows analogously).
By IH we have

JMK xi
⊢ JΓ†K , xi : JσK

JAK x ⊢ J∆†K , x : Jσ ∧ σK (τ,j)
By Definition 5.17,

JHMI ·AK x =x.somefv(HMI·A);x(yi).x.someyi,fv(HMI·A);x.some;x(xi).

(xi.somefv(M); JMK xi
| JAK x | yi.none)

(D.1)

Let Π1 be the derivation:

JMK xi ⊢JΓ†K , xi : JσK
[T⊕x

w̃]
xi.somefv(M); JMK xi ⊢ JΓ†K , xi : ⊕JσK

[TNx]
yi.none ⊢ yi : N1

[T |]
xi.somefv(M); JMK xi

| yi.none︸ ︷︷ ︸
P1

⊢ JΓ†K , xi : ⊕JσK , yi : N1

Let P1 = (xi.somefv(M); JMK xi | yi.none) in the the derivation Π2 below:

Π1 JAK x ⊢ J∆†K , x : Jσ ∧ σK (τ,j)
[T⊗]

x(xi).(P1 | JAK x) ⊢ JΓ†K , J∆†K , yi : N1, x : (⊕JσK)⊗ (Jσ ∧ σK (τ,j))
[TNx

d]
x.some;x(xi).(P1 | JAK x)︸ ︷︷ ︸

P2

⊢ JΓ†K , J∆†K , yi : N1, x : N((⊕JσK)⊗ (Jσ ∧ σK (τ,j)))

Let P2 = (x.some;x(xi).(P1 | JAK x)) in the derivation below (the last two rules that
were applied are [T⊕x

w̃] and [TO]):

Π2

...

P2 ⊢ JΓ†K , J∆†K , yi : N1, x : N((⊕JσK)⊗ (Jσ ∧ σK (τ,j)))
[T⊕x

w̃]
x.someyi,fv(HMI·A);P2 ⊢ JΓ†K , J∆†K , yi : N1, x : ⊕N((⊕JσK)⊗ (Jσ ∧ σK (τ,j)))

x(yi).x.someyi,fv(HMI·A);P2 ⊢ JΓ†K , J∆†K , x : (N1) O (⊕N((⊕JσK)⊗ (Jσ ∧ σK (τ,j))))

x.somefv(HMI·A);x(yi).x.someyi,fv(HMI·A);P2︸ ︷︷ ︸
JHMI·AK x

⊢ JΓ†K , J∆†K , x : ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσ ∧ σK (τ,j)))))

From Definitions 4.5 (duality) and 5.21, we infer:

⊕((N1) O (⊕N((⊕JσK)⊗ (Jσ ∧ σK (τ,j))))) = Jσ ∧ σ ∧ σK (τ,j)

Therefore, JHMI ·AK x ⊢ JΓ†,∆†K , x : Jσ ∧ σ ∧ σK (τ,j) and the result follows.

(2) The proof of type preservation for expressions, relies on the analysis of nine cases:

1:100 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(a) Rule [FS:wf-expr]:
Then we have the following derivation:

Γ† ⊢M : τ[FS:wf-expr]
Γ† |= M : τ

Cases follow from their corresponding case from [FS:-]. In the case of [TS:var] we
have:

[TS:var]
x : τ ⊢ x : τ

By Definition 5.21, Jx : τK = x : NJτK , and by Figure 16, JxK u = x.some; [x↔ u].
The thesis holds thanks to the following derivation:

[(Tid)]
[x↔ u] ⊢ x : JτK , u : JτK

[TNx
d)]

x.some; [x↔ u] ⊢ x : NJτK , u : JτK

(b) Rule [FS:abs-sh]:
Then M = λx.(M [x̃← x]), and the derivation is:

∆†, x1 : σ, · · · , xk : σ |= M : τ
[FS:share]

∆†, x : σ ∧ · · · ∧ σ |= M [x1, · · · , xk ← x] : τ x /∈ ∆†
[FS:abs-sh]

∆† |= λx.(M [x̃← x]) : σk → τ

To simplify the proof we will consider k = 2 (k > 2 follows similarly).
By the IH, we have

JMK u ⊢ J∆†, x1 : σ, x2 : σK , u : JτK .

From Def. 5.17 and Def. 5.21, it follows that

J∆†, x1 : σ, x2 : σK = J∆†K , x1 : NJσK , x2 : NJσK

Jλx.M [x1, x2 ← x]K u = u.some;u(x).JM [x1, x2 ← x]K u
= u.some;u(x).x.some.x(y1).(y1.some∅; y1.close;0

| x.some;x.someu,(fv(M)\x1,x2);x(x1).x.some.

x(y2).(y2.some∅; y2.close;0 | x.some;x.someu,(fv(M)\x2);

x(x2).x.some;x(y3).(y3.someu,fv(M); y3.close; JMK u
| x.none)))

We shall split the expression into three parts:

N1 = x.some;x(y3).(y3.someu,fv(M); y3.close; JMK u | x.none)
N2 = x.some.x(y2).(y2.some∅; y2.close;0 | x.some;x.someu,(fv(M)\x2);

x(x2).N1)

N3 = u.some;u(x).x.some.x(y1).(y1.some∅; y1.close;0 | x.some;
x.someu,(fv(M)\x1,x2);x(x1).N2)

and we obtain the derivation for term N1 as follows:

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:101

JMK u ⊢ J∆†, x1 : σ, x2 : σK , u : JτK
[T⊥]

y3.close; JMK u ⊢ J∆†, x1 : σ, x2 : σK , u : JfτK , y3:⊥
[T⊕x

w̃]
y3.someu,fv(M); y3.close; JMK u ⊢ J∆†, x1 : σ, x2 : σK , u : JτK , y3:⊕⊥

[TNx]
x.none ⊢ x : NA

[T⊗]
x(y3).(y3.someu,fv(M); y3.close; JMK u | x.none) ⊢ J∆†, x1 : σ, x2 : σK , u : JτK , x : (⊕⊥)⊗ (NA)

[TNx
d]

x.some;x(y3).(y3.someu,fv(M); y3.close; JMK u | x.none)︸ ︷︷ ︸
N1

⊢ J∆†, x1 : σ, x2 : σK , u : JτK , x : JωK (σ,i)

Notice that the last rule applied [TNx
d] assigns x : N((⊕⊥)⊗ (NA)). Again, since A

is arbitrary, take A = ⊕((NJσK) O (JωK (σ,i−1))), obtaining x : JωK (σ,i). In order to

obtain a type derivation for N2, consider the derivation Π1:

N1 ⊢ J∆†K , x1 : NJσK , x2 : NJσK , u : JτK , x : JωK (σ,i)
[TO]

x(x2).N1 ⊢ J∆†K , x1 : NJσK , u : JτK , x : (NJσK) O (JωK (σ,i))
[T⊕x

w̃]
x.someu,(fv(M)\x2);x(x2).N1 ⊢ J∆†K , x1 : NJσK , u : JτK , x:⊕ ((NJσK) O (JωK (σ,i)))

[TNx
d]

x.some;x.someu,(fv(M)\x2);x(x2).N1 ⊢ J∆†K , x1 : NJσK , u : JτK , x : N⊕ ((NJσK) O (JωK (σ,i)))

We take P1 = x.some;x.someu,(fv(M)\x2);x(x2).N1 and Γ†
1 = J∆†K , x1 : NJσK , u :

JτK and continue the derivation of N2

[T·]
0 ⊢[T⊥]

y2.close;0 ⊢ y2 : ⊥
[T⊕x

w̃] y2.some∅; y2.close;0 ⊢ y2:⊕⊥

Π1

...

P1 ⊢ Γ†
1, x : N⊕ ((NJσK) O (JωK (σ,i)))

[T⊗]
x(y2).(y2.some∅; y2.close;0 | P1) ⊢ Γ†

1, x : (⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,i))))
[TNx

d]
x.some.x(y2).(y2.some∅; y2.close;0 | P1)︸ ︷︷ ︸

N2

⊢ Γ†
1, x : Jσ ∧ ωK (σ,i)

Finally, we type N3 by first having the derivation Π2:

N2 ⊢ J∆†K , x1 : NJσK , u : JτK , x : Jσ ∧ ωK (σ,i)
[TO]

x(x1).N2 ⊢ J∆†K , u : JτK , x : (NJσK) O Jσ ∧ ωK (σ,i)
[T⊕x

w̃]
x.someu,(fv(M)\x1,x2);x(x1).N2 ⊢ J∆†K , u : JτK , x:⊕ ((NJσK) O Jσ ∧ ωK (σ,i))

[TNx
d]

P2 ⊢ J∆†K , u : JτK , x : N⊕ ((NJσK) O Jσ ∧ ωK (σ,i))

We let P2 = x.some;x.someu,(fv(M)\x1,x2);x(x1).N2 and Γ†
2 = J∆†K , u : JτK . We

continue the derivation ofN3 = u.some;u(x).x.some.x(y1).(y1.some∅; y1.close;0 | P2):

1:102 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

[T·]
0 ⊢[T⊥]

y1.close;0 ⊢ y1 : ⊥
[T⊕x

w̃] y1.some∅; y1.close;0 ⊢ y1:⊕⊥ Π2
[T⊗]

x(y1).(y1.some∅; y1.close;0 | P2) ⊢ Γ†
2, x : (⊕⊥)⊗ (N⊕ ((NJσK) O Jσ ∧ ωK (σ,i)))

[TNx
d]

x.some.x(y1).(y1.some∅; y1.close;0 | P2) ⊢ J∆†K , u : JτK , x : Jσ ∧ σK (σ,i)
[TO]

u(x).x.some.x(y1).(y1.some∅; y1.close;0 | P2) ⊢ J∆†K , u : (Jσ ∧ σK (σ,i)) O (JτK)
[TNx

d]
N3 ⊢ J∆†K , u : N((Jσ ∧ σK (σ,i)) O (JτK))

Since Jσ∧σ → τK = N(Jσ ∧ σK (σ,i)OJτK), we have proven that Jλx.M [x̃← x]K u ⊢
J∆†K , u : Jσ ∧ σ → τK and the result follows.

(c) Rule [FS:app]:
Then M = M B, and the derivation is

Γ† |= M : σj → τ ∆† |= B : σk

[FS:app]
Γ†,∆† |= M B : τ

By IH, we have both

• JMK u ⊢ JΓ†K , u : Jσj → τK ;
• and JBK u ⊢ J∆†K , u : JσkK (τ2,n), for some τ2 and some n.

From the fact that M is well-formed and Def. 5.17 and Def. 5.21, we have:
• B = HN1, · · · , NkI;
• JM BK u =

⊕
Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x));

• Jσj → τK = N(JσjK (τ1,m) O JτK), for some τ1 and some m.

Also, since JBK u ⊢ J∆†K , u : JσkK (τ2,n), we have the following derivation Πi:

JBiK

x ⊢ J∆†K , x : JσkK (τ2,n)

[Tid]
[v ↔ u] ⊢ v : JτK , u : JτK

[T⊗]
v(x).([v ↔ u] | JBiK

x) ⊢ J∆†K , v : JσkK (τ2,n) ⊗ JτK , u : JτK

[T⊕v
w]

v.someu,fv(B); v(x).([v ↔ u] | JBiK

x) ⊢ J∆†K , v : ⊕(JσkK (τ2,n) ⊗ JτK), u : JτK

Notice that

⊕(JσkK (τ2,n) ⊗ JτK) = Jσk → τK

Therefore, by one application of [Tcut] we obtain the derivations ∇i, for each
Bi ∈ PER(B):

JMK v ⊢ JΓ†K , v : N(JσjK (τ1,m) O (JτK)) Πi
[Tcut]

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK

x)) ⊢ JΓ†K , J∆†K , u : JτK

In order to apply [Tcut], we must have that JσjK (τ1,m) = JσkK (τ2,n), therefore, the
choice of τ1, τ2, n and m, will consider the different possibilities for j and k, as in
Proposition 5.22.

We can then conclude that JMBK u ⊢ JΓ†K , J∆†K , u : JτK :

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:103

For each Bi ∈ PER(B) ∇i
[TN] ⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x)) ⊢ JΓ†K , J∆†K , u : JτK

and the result follows.
(d) Rule [FS:share]:

Then M = M [x1, . . . xk ← x] and

∆†, x1 : σ, · · · , xk : σ |= M : τ x /∈ ∆† k ̸= 0
[FS:share]

∆†, x : σk |= M [x1, · · · , xk ← x] : τ

The proof for this case is contained within 2(b).
(e) Rule [FS:weak]:

Then M = M [← x] and

Γ† |= M : τ
[FS:weak]

Γ†, x : ω |= M [← x] : τ

However Γ†, x : ω is not a core context hence we disallow the case.
(f) Rule [FS:ex-sub]:

Then M = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ and

∆† |= B : σj Γ†, x : σk |= M [x1, · · · , xk ← x] : τ
[FS:ex-sub]

Γ†,∆† |= M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ : τ
By Proposition 5.22 and IH we have both

JM [x1, · · · , xk ← x]K u ⊢ JΓ†K , x : JσkK

(τ,n), u : JτK

JBK x ⊢ J∆†K , x : JσjK

(τ,m)

From Def. 5.17, we have

JM [x̃← x] ⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x)

Therefore, for each Bi ∈ PER(B), we obtain the following derivation Πi:

JM [x̃← x]K u ⊢ JΓ†K , x : JσkK

(τ,n), u : JτK JBiK

x ⊢ J∆†K , x : JσjK

(τ,m)

[Tcut]
(νx)(JM [x̃← x]K u | JBiK

x) ⊢ JΓ†K , J∆†K , u : JτK

We must have that JσjK (τ,m) = JσkK (τ,n) which holds by the conditions in Proposition

5.22. Therefore, from Πi and multiple applications of [TN] it follows that

∀
⊕

Bi∈PER(B) Πi
[TN] ⊕

Bi∈PER(B)(νx)(JM [x̃← x]K u | x.somew; JBiK

x) ⊢ JΓ†K , J∆†K , u : JτK

that is, JM [x1, x2 ← x]⟨⟨B/x⟩⟩K ⊢ JΓ†,∆†K , u : JτK and the result follows.
(g) Rule [FS:ex-lin-sub]:

Then M = M⟨|N/x|⟩ and
∆† |= N : σ Γ†, x : σ |= M : τ

[FS:ex-lin-sub]
Γ†,∆† |= M⟨|N/x|⟩ : τ

1:104 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

By IH we have both

JNK x ⊢ J∆†K , x : JσK

JMK x ⊢ JΓ†K , x : NJσK , u : JτK .

From Def. 5.17, JM⟨|N/x|⟩K u = (νx)(JMK u | x.somefv(N); JNK x) and

JMK u ⊢ JΓ†K , u : JτK , x : NJσK
JNK x ⊢ J∆†K , x : JσK

[T⊕x]
x.somefv(N); JNK x ⊢ J∆†K , x : ⊕JσK

[TCut]
(νx)(JMK u | x.somefv(N); JNK x) ⊢ JΓ†K , J∆†K , u : JτK

Observe that for the application of Rule [TCut] we used the fact that ⊕JσK = NJσK .
Therefore, JM⟨|N/x|⟩K u ⊢ JΓ†K , J∆†K , u : JτK and the result follows.

(h) Rule [FS:fail]:
Then M = M⟨|N/x|⟩ and

(x1 : σ1, · · · , xn : σn)
† = x1 : σ1, · · · , xn : σn

[FS:fail]
x1 : σ1, · · · , xn : σn |= failx1,··· ,xn : τ

From Definition 5.17, Jfailx1,··· ,xnK u = u.none | x1.none | · · · | xk.none and

[TNu]
u.none ⊢ u : JτK

[TNx1]
x1.none ⊢1: NJσ1K

[TNxn]
xn.none ⊢ xn : NJσnK

...

x1.none | · · · | xk.none ⊢ x1 : NJσ1K , · · · , xn : NJσnK
[T |]

u.none | x1.none | · · · | xk.none ⊢ x1 : NJσ1K , · · · , xn : NJσnK , u : JτK

Therefore, Jfailx1,··· ,xnK u ⊢ x1 : NJσ1K , · · · , xn : NJσnK , u : JτK and the result
follows.

(i) Rule [FS:sum]:
This case follows easily by IH.

D.2. Completeness and Soundness.

Theorem 5.26 (Consistency Stability Under ≡). Let M be a consistent λ̂ ⊕-expression. If
M ≡M′ then M′ is consistent.

Proof. By induction on the structure of M. Let us consider first two conditions 1 and 2 as
other conditions are analogous. The congruence rules that concern the sharing construct of
condition 1 are:

M [← x]⟨⟨1/x⟩⟩ ≡λ M
MA[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)A with xi ∈ x̃⇒ xi ̸∈ fv(A)

M [ỹ ← y]⟨⟨A/y⟩⟩[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)[ỹ ← y]⟨⟨A/y⟩⟩ with xi ∈ x̃⇒ xi ̸∈ fv(A)

Notice that these rules neither add or remove occurrences of shared variables neither do they
allow shared variables to be extruded from their bindings by their side conditions. Also,
they do not introduce new sharing on already shared variables. Hence, conditions 1(i) to
1(iv) are preserved by these rules.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:105

Now consider the congruence rules concerning the explicit substitution of condition 2:

MB⟨|N/x|⟩ ≡λ (M⟨|N/x|⟩)B with x ̸∈ fv(B)
M⟨|N2/y|⟩⟨|N1/x|⟩ ≡λ M⟨|N1/x|⟩⟨|N2/y|⟩ with x ̸∈ fv(N2), y /∈ fv(N1)

As before, variables are not duplicated or eliminated from terms and by the side conditions
of the rules they cannot extrude bound variables. Similarly, the rules do not introduce any
sharing or new free variables. Hence conditions 2(i) to 2(iv) are satisfied.

Proposition 5.29. Suppose N is a well-formed, partially open λ̂ ⊕-term with head(N) = x.
Then, there exist an index set I, names ỹ and n, and processes Pi such that the following
four conditions hold:

(1)

JNK u −→∗
⊕
i∈I

(νỹ)(JxK n | Pi)

(2) There exists a λ̂ ⊕-term N ′ such that N ≡λ N ′ and:

JN ′K u =
⊕
i∈I

(νỹ)(JxK n | Pi)

(3) For any well-formed and partially open λ̂ ⊕-term M :

JN{|M/x|}K u −→∗
⊕
i∈I

(νỹ)(JMK n | Pi)

(4) There exists a λ̂ ⊕-term M ′ such that M ′ ≡λ N{|M/x|} and:

JM ′K u =
⊕
i∈I

(νỹ)(JMK n | Pi)

Proof. Let us consider each part:

(1) We proceed by induction on the structure of N .
(I) N = x.

Then JxK u. Hence I = ∅ and ỹ = ∅.
(II) N = (M B).

Then head(M B) = head(M) = x and

JNK u = JM BK u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

and the result follows by induction on JMK u.
(III) N = M [ỹ ← y]. Not possible due to the assumption of partially open terms.
(IV) N = (M [ỹ ← y])⟨⟨B/y⟩⟩.

Then head((M [ỹ ← y])⟨⟨B/y⟩⟩) = head((M [ỹ ← y])) = x when ỹ = ∅, B = 1

and head(M) = x .

JNK u = J(M [← y])⟨⟨1/y⟩⟩K u = (νy)(JM [← y]K u | J1K y)

= (νy)(y.some.y(z).(z.someu,fv(M); z.close; JMK u | y.none) |
y.some∅; y(z).(z.some; z.close | y.some∅; y.none))

−→∗ JMK u

Then the result follows by induction on JMK u.

1:106 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(V) When N = M⟨|N ′/y|⟩, then head(M⟨|N ′/y|⟩) = head(M) = x and

JNK u = JM⟨|N ′/y|⟩K u = (νy)(JMK u | x.somefv(N ′); JN ′K x)

Then true by induction on JMK u
(2) In this case, notice how reductions are only introduced when N has sub-term

(M [← y])⟨⟨1/y⟩⟩ from case 1(IV), however from the congruence of Fig. 18 we may
rewrite this sub-term to be M which eliminates the need for reductions. Inductively,
performing this application of ≡λ provides the result.

(3) This case is similar to the first, with the clear difference that linear head substitution
must also be used. However, we can inductively push the linear head substitution
inside the term to reach the head variable. Consider the base case when N = x and we
have some well-formed partially open term M . Then JN{|M/x|}K u = Jx{|M/x|}K u =

JMK u. Hence I = ∅ and ỹ = ∅ matching that of case 1(i).
Next, let us consider the case ofN{|M/x|} = M ′⟨|N ′/y|⟩{|M/x|} = M ′{|M/x|}⟨|N ′/y|⟩.

By considering 1(V) we can see the evaluating the translation of creates the same
process shape up to linear head substitution. Other cases follow analogously.

(4) This is a consequence of both (2) and (3).

Notation D.1. We use the notation fv(M).none and x̃.none where fv(M) or x̃ are equal to
x1, · · · , xk to describe a process of the form x1.none | · · · | xk.none

Theorem 5.30 (Operational Completeness). Let N and M be well-formed, partially open λ̂ ⊕
expressions. If N −→M then there exist Q and M′ such that M′ ≡λ M, JNK u −→∗ Q = JM′K u.

Proof. By induction on the reduction rule applied to infer N −→M. We have five cases.

(1) Case [RS:Beta]:
Then N = (λx.M [x̃← x])B −→M [x̃← x] ⟨⟨B/x⟩⟩ = M.

On the one hand, we have:

JNK u = J(λx.M [x̃← x])BK u

=
⊕

Bi∈PER(B)

(νv)(Jλx.M [x̃← x]K v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

=
⊕

Bi∈PER(B)

(νv)(v.some; v(x).JM [x̃← x]K v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→
⊕

Bi∈PER(B)

(νv)(v(x).JM [x̃← x]K v | v(x).(JBiK x | [v ↔ u]))

−→
⊕

Bi∈PER(B)

(νv, x)(JM [x̃← x]K v | JBiK x | [v ↔ u])

−→
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x)

(D.2)
On the other hand, we have:

JMK u = JM [x̃← x] ⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x) (D.3)

Therefore, by (D.2) and (D.3) the result follows.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:107

(2) Case [RS:Ex-Sub]:
Then N = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩, with B = HN1, . . . , NkI, k ≥ 1 and M ̸= failỹ.

The reduction is

N = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ −→
∑

Bi∈PER(B)

M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ = M.

We detail the encodings of JNK u and JMK u. To simplify the proof, we will consider
k = 1 (the case k > 1 follows analogously).
On the one hand, we have:

JNK u = JM [x1 ← x] ⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JM [x1 ← x]K u | JBiK x)

=
⊕

Bi∈PER(B)

(νx)(x.some.x(y1).(y1.some∅; y1.close;0 | x.some;x.someu,(fv(M)\x1);

x(x1).x.some;x(y2).(y2.someu,fv(M); y2.close; JMK u | x.none)) |
x.somefv(Bi(1));x(y1).x.somey1,fv(Bi(1));x.some;x(x1).(x1.somefv(Bi(1));

JBi(1)K x1
| y1.none | x.some∅;x(y2).(y2.some; y2.close | x.some∅;x.none)))

−→∗
⊕

Bi∈PER(B)

(νx, y1, x1, y2)(y1.some∅; y1.close;0 | y1.none | y2.someu,fv(M); y2.close;

JMK u | y2.some; y2.close | x.none | x.some∅;x.none | x1.somefv(Bi(1)); JBi(1)K x1
)

−→∗
⊕

Bi∈PER(B)

(νx1)(JMK u | x1.somefv(Bi(1)); JBi(1)K x1
)

(D.4)
On the other hand, we have:

JMK u = J
∑

Bi∈PER(B)

M ⟨|Bi(1)/x1|⟩K u =
⊕

Bi∈PER(B)

JM ⟨|Bi(1)/x1|⟩K u

=
⊕

Bi∈PER(B)

(νx1)(JMK u | x1.somefv(Bi(1)); JBi(1)K x1
)

(D.5)

Therefore, by (D.4) and (D.5) the result follows.
(3) Case [RS:Lin-Fetch]:

Then we have N = M ⟨|N ′/x|⟩ with head(M) = x and N −→M{|N ′/x|} = M.
On the one hand, we have:

JNK u = JM ⟨|N ′/x|⟩K u = (νx)(JMK u | x.somefv(N ′); JN ′K x)

−→∗ (νx)(
⊕
i∈I

(νỹ)(JxK j | Pi) | x.somefv(N ′); JN ′K x) (∗)

= (νx)(
⊕
i∈I

(νỹ)(JxK j | Pi) | x.some; JN ′K x)

−→ (νx)(
⊕
i∈I

(νỹ)([x↔ j] | Pi) | JN ′K x)

−→
⊕
i∈I

(νỹ)(Pi | JN ′K j) = Q

(D.6)

1:108 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

where the reductions denoted by (∗) are inferred via Proposition 5.29.
On the other hand, we have by Proposition 5.29 :

JMK u = JM{|N ′/x|}K u −→∗
⊕
i∈I

(νỹ)(Pi | JN ′K j) (D.7)

We also have by Proposition 5.29 and (D.7) that there exists M ′ such that M ′ ≡λ

M{|N ′/x|} with:

JM ′K u =
⊕
i∈I

(νỹ)(Pi | JN ′K j) (D.8)

Therefore, by (D.6) and (D.8) the result follows.
(4) Case [RS:TCont] and [RS:ECont]: These cases follow by IH.
(5) Case [RS:Fail]:

Then, N = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ with k ̸= size(B) and

N −→
∑

Bi∈PER(B)

failỹ = M,

where ỹ = (fv(M) \ {x1, · · · , xk}) ∪ fv(B).
Let us assume that k > l and we proceed similarly for k > l. Hence k = l +m for

some m ≥ 1. On the one hand, we have (D.9), this can be seen in Fig. 20.
On the other hand, we have:

JMK u = J
∑

Bi∈PER(B)

failỹK u =
⊕

Bi∈PER(B)

JfailỹK u

=
⊕

Bi∈PER(B)

u.none | (fv(M) \ {x1, · · · , xk}) ∪ fv(B).none
(D.10)

Therefore, by (D.9) and (D.10) the result follows.
(6) Case [RS:Cons1]:

Then, N = failx̃ B with B = HN1, . . . , NkI and N −→
∑

PER(B) fail
x̃∪ỹ = M, where

ỹ = fv(B).
On the one hand, we have:

JNK u = Jfailx̃ BK u

=
⊕

Bi∈PER(B)

(νv)(Jfailx̃K v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

=
⊕

Bi∈PER(B)

(νv)(v.none | x̃.none | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

−→
⊕

Bi∈PER(B)

u.none | x̃.none | ỹ.none

=
⊕

PER(B)

u.none | x̃.none | ỹ.none

(D.11)

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:109

JNK u = JM [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩K u
=

⊕
Bi∈PER(B)

(νx)(JM [x1, · · · , xk ← x]K u | JBiK x)

=
⊕

Bi∈PER(B)

(νx)(x.some.x(y1).(y1.some∅; y1.close;0 | x.some;x.someu,(fv(M)\x1,··· ,xk);

x(x1). · · ·x.some.x(yk).(yk.some∅; yk.close;0 | x.some;x.someu,(fv(M)\xk);

x(xk).x.some;x(yk+1).(yk+1.someu,fv(M); yk+1.close; JMK u | x.none)) · · ·)

| x.somefv(B);x(y1).x.somey1,fv(B);x.some;x(x1).(x1.somefv(Bi(1)); JBi(1)K x1

| y1.none | · · ·x.somefv(Bi(l));x(yl).x.someyl,fv(Bi(l));x.some;x(xl).(xl.somefv(Bi(l));

JBi(l)K xl
| yl.none | x.some∅;x(yl+1).(yl+1.some; yl+1.close | x.some∅;x.none))))

−→∗
⊕

Bi∈PER(B)

(νx, y1, x1, · · · yl, xl)(y1.some∅; y1.close;0 | · · · | yl.some∅; yl.close;0

x.some.x(yl+1).(yl+1.some∅; yl+1.close;0 | x.some;x.someu,(fv(M)\xl+1,··· ,xk);

x(xl+1). · · ·x.some.x(yk).(yk.some∅; yk.close;0 | x.some;x.someu,(fv(M)\xk);x(xk).

x.some;x(yk+1).(yk+1.someu,fv(M); yk+1.close; JMK u | x.none)) · · ·) |

x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

| y1.none | · · · | yl.none
x.some∅;x(yl+1).(yl+1.some; yl+1.close | x.some∅;x.none))

−→∗
⊕

Bi∈PER(B)

(νx, x1, · · · , xl)(x.someu,(fv(M)\xl+1,··· ,xk);x(xl+1). · · ·

x.some.x(yk).(yk.some∅; yk.close;0 | x.some;x.someu,(fv(M)\xk);x(xk).

x.some;x(yk+1).(yk+1.someu,fv(M); yk+1.close; JMK u | x.none)) |

x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

| x.none)

−→
⊕

Bi∈PER(B)

(νx1, · · · , xl)(u.none | x1.none | · · · | xl.none | (fv(M) \ x1, · · · , xk).none |

x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

)

−→∗
⊕

Bi∈PER(B)

u.none | (fv(M) \ {x1, · · · , xk}) ∪ fv(B).none

(D.9)

Figure 20: Reductions of an encoded explicit substitution

On the other hand, we have:

JMK u = J
∑

PER(B)

failx̃∪ỹK u =
⊕

PER(B)

Jfailx̃∪ỹK u

=
⊕

PER(B)

u.none | x̃.none | ỹ.none
(D.12)

Therefore, by (D.11) and (D.12) the result follows.
(7) Cases [RS:Cons2] and [RS:Cons3]: These cases follow by IH similarly to Case 7.

1:110 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

Theorem 5.33 (Operational Soundness). Let N be a well-formed, partially open λ̂ ⊕ ex-

pression. If JNK u −→∗ Q then there exist Q′ and N′ such that Q −→∗ Q′, N −→∗
≡λ

N′ and

JN′K u = Q′.

Proof. By induction on the structure of N and then induction on the number of reductions
of JNK −→∗

≡λ
Q

(1) N = x, N = fail∅ and N = λx.(M [x̃← x]).
These cases are trivial since no reduction can take place.

(2) N = (M B).
Then,

J(M B)K u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

and we are able to perform the reductions from J(M B)K u.
We now proceed by induction on k, with JNK u −→k Q.
The interesting case is when k ≥ 1 (the case k = 0 is trivial).
Then, for some process R and n,m such that k = n+m, we have the following:

JNK u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→m
⊕

Bi∈PER(B)

(νv)(R | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→n Q

Thus, the first m ≥ 0 reduction steps are internal to JMK v ; type preservation in
sπ ensures that, if they occur, these reductions do not discard the possibility of
synchronizing with v.some. Then, the first of the n ≥ 0 reduction steps towards Q is
a synchronization between R and v.someu,fv(B).

We consider two sub-cases, depending on the values of m and n:
(I) When m = 0 and n ≥ 1:

Thus R = JMK v , and there are two possibilities of having an unguarded v.some or
v.none without internal reductions. By the diamond property (Proposition 3.10)
we will be reducing each non-deterministic choice of a process simultaneously.
Then we have the following for each case:
(A) M = (λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩ (p ≥ 0).

JMK v = J(λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩K v
= (νỹ)(J(λx.M ′[x̃← x])K v | y1.somefv(N1); JN1K y1 | · · · | yp.somefv(Np); JNpK yp)

= (νỹ)(J(λx.M ′[x̃← x])K v | Q′′), for ỹ = y1, · · · , yp
= (νỹ)(v.some; v(x).JM ′[x̃← x]K v | Q′′)

where Q′′ = y1.somefv(N1); JN1K

y1 | · · · | yp.somefv(Np); JNpK

yp .

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:111

With this shape for M , the encoding of N becomes:

JNK u = J(M B)K u

=
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

=
⊕

Bi∈PER(B)

(νv)((νỹ)(v.some; v(x).JM ′[x̃← x]K v | Q′′) |

v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→
⊕

Bi∈PER(B)

(νv, ỹ)(v(x).JM ′[x̃← x]K v | v(x).(JBiK x | [v ↔ u]) | Q′′) = Q1

−→
⊕

Bi∈PER(B)

(νv, ỹ, x)(JM ′[x̃← x]K v | JBiK x | [v ↔ u] | Q′′) = Q2

−→
⊕

Bi∈PER(B)

(νx, ỹ)(JM ′[x̃← x]K u | JBiK x | Q′′) = Q3

We also have that

N = (λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩ B
≡λ ((λx.M ′[x̃← x])B)⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩
−→M ′[x̃← x]⟨⟨B/x⟩⟩⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩ = M

Furthermore, we have:

JM′K v = JM ′[x̃← x]⟨⟨B/x⟩⟩⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩K v
=

⊕
Bi∈PER(B)

(νx)(JM ′[x̃← x]K v | JBiK x | Q′′)

We consider different possibilities for n ≥ 1; in all of the thesis holds:
(i) n = 1:

Then Q = Q1 and JNK u −→1 Q1. In addition,
(a) Q1 −→2 Q3 = Q′,
(b) N −→1 M ′[x̃← x]⟨⟨B/x⟩⟩ = N′,

(c) JM ′[x̃← x]⟨⟨B/x⟩⟩K u = Q3.
and the result follows.

(ii) n = 2:

Then Q = Q2 and JNK u −→2 Q2. In addition,
• Q2 −→1 Q3 = Q′ ,
• N −→1 M ′[x̃← x]⟨⟨B/x⟩⟩ = N′

• JM ′[x̃← x])⟨⟨B/x⟩⟩K u = Q3

and the result follows.
(iii) n ≥ 3:

Then JNK u −→3 Q3 −→l Q, for l ≥ 0. In addition, N −→ M′ and

Q3 = JM′K u. By the IH, there exist Q′ and N′ such that Q −→i Q′,

M′ −→j
≡λ

N′ and JN′K u = Q′ . Finally, JNK u −→3 Q3 −→l Q −→i Q′

and N→M′ −→j
≡λ

N′, and the result follows.

1:112 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(B) M = failz̃.

JMK v = Jfailz̃K v = v.none | z̃.none
With this shape for M , the encoding of N becomes:

JNK u = J(M B)K u

=
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

=
⊕

Bi∈PER(B)

(νv)(v.none | z̃.none | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→
⊕

Bi∈PER(B)

u.none | z̃.none | fv(B).none

=
⊕

PER(B)

u.none | z̃.none | fv(B).none

Also,

N = failz̃ B −→
∑

PER(B)

failz̃∪fv(B) = M.

Furthermore,

JMK u = J
∑

PER(B)

failz̃∪fv(B)K u

=
⊕

PER(B)

Jfailz̃∪fv(B)K u

=
⊕

PER(B)

u.none | z̃.none | fv(B).none

(II) When m ≥ 1 and n ≥ 0, the distinguish two cases:
(A) n = 0:

Then,⊕
Bi∈PER(B)

(νv)(R | v.someu,fv(B); v(x).(JBiK x | [v ↔ u])) = Q,

and JMK u −→m R.

By the IH there exist R′ and M′ such that R −→i R′, M −→j
≡λ

M′, and

JM′K u = R′. Hence,

JNK u =
⊕

Bi∈PER(B)

(νv)(JMK v | v.someu,fv(B); v(x).(JBiK x | [v ↔ u]))

−→m
⊕

Bi∈PER(B)

(νv)(R | v.someu,fv(B); v(x).(JBiK x | [v ↔ u])) = Q

−→i
⊕

Bi∈PER(B)

(νv)(R′ | v.someu,fv(B); v(x).(JBiK x | [v ↔ u])) = Q′

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:113

and so the λ̂ ⊕ term can reduce as follows: N = (M B) −→j
≡λ

M ′ B = N′

and JN′K u = Q′.
(B) n ≥ 1:

Then R has an occurrence of an unguarded v.some or v.none, which implies

it is of the form J(λx.M ′[x̃← x])⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩K v or JfailK v , and
the case follows by IH.

This concludes the analysis for the case N = (M B).
(3) N = M [x̃← x].

The sharing variable x is not free and the result follows by vacuity.
(4) N = (M [x̃← x])⟨⟨B/x⟩⟩. Then,

JNK u = J(M [x̃← x])⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x)

(I) size(x̃) = size(B).
Then let us consider the shape of the bag B.
(A) When B = 1

We have the following

JNK u = (νx)(JM [← x]K u | J1K x)

= (νx)(x.some.x(yi).(yi.someu,fv(M); yi.close; JMK u | x.none) |
x.some∅;x(yn).(yn.some; yn.close | x.some∅;x.none))

−→ (νx)(x(yi).(yi.someu,fv(M); yi.close; JMK u | x.none) |
x(yn).(yn.some; yn.close | x.some∅;x.none)) = Q1

−→ (νx, yi)(yi.someu,fv(M); yi.close; JMK u | x.none | yn.some;
yn.close | x.some∅;x.none) = Q2

−→ (νx, yi)(yi.close; JMK u | x.none | yn.close | x.some∅;x.none) = Q3

−→ (νx)(JMK u | x.none | x.some∅;x.none) = Q4

−→ JMK u = Q5

Notice how Q2 has a choice however the x name can be closed at any
time so for simplicity we only perform communication across this name
once all other names have completed their reductions.

Now proceed by induction on the number of reductions JNK u −→k Q.
(i) k = 0:

This case is trivial.
(ii) k = 1: (2 ≤ k ≤ 4: is similar.)

Then, Q = Q1 and JNK u −→1 Q1. In addition, Q1 −→4 Q5 = Q′,

N −→0 M [← x]⟨⟨1/x⟩⟩ ≡λ M and JMK u = Q5, and the result follows.
(iii) k ≥ 5:

Then JNK u −→5 Q5 −→l Q, for l ≥ 0. Since Q5 = JMK u, by the IH it

follows that there exist Q′ and N′ such that Q −→i Q′,M −→j
≡λ

N′

and JN′K u = Q′.

1:114 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

JNK u = J(M [x̃← x])⟨⟨B/x⟩⟩K u
=

⊕
Bi∈PER(B)

(νx)(JM [x̃← x]K u | JBiK x)

=
⊕

Bi∈PER(B)

(νx)(x.some.x(y1).(y1.some∅; y1.close;0 | x.some;x.someu,(fv(M)\x1,··· ,xl);

x(x1). · · ·x.some.x(yl).(yl.some∅; yl.close;0 | x.some;x.someu,(fv(M)\xl);x(xl).

x.some;x(yl+1).(yl+1.someu,fv(M); yl+1.close; JMK u | x.none)) · · ·) |

x.somefv(B);x(y1).x.somey1,fv(B);x.some;x(x1).(x1.somefv(Bi(1)); JBi(1)K x1

| y1.none | · · ·x.somefv(Bi(l));x(yl).x.someyl,fv(Bi(l));x.some;x(xl).(xl.somefv(Bi(l));

JBi(l)K xl
| yl.none | x.some∅;x(yl+1).(yl+1.some; yl+1.close | x.some∅;x.none))))

−→5l
⊕

Bi∈PER(B)

(νx, x1, y1, · · · , xl, y1)(y1.some∅; y1.close;0 | · · · yl.some∅; yl.close;0 |

x.some;x(yl+1).(yl+1.someu,fv(M); yl+1.close; JMK u | x.none) |

x1.somefv(Bi(1)); JBi(1)K x1
| y1.none | · · ·xl.somefv(Bi(l)); JBi(l)K xl

| yl.none |
x.some∅;x(yl+1).(yl+1.some; yl+1.close | x.some∅;x.none))

−→5
⊕

Bi∈PER(B)

(νx1, y1, · · · , xl, y1)(y1.some∅; y1.close;0 | · · · yl.some∅; yl.close;0

| JMK u | x1.somefv(Bi(1)); JBi(1)K x1
| y1.none | · · ·xl.somefv(Bi(l)); JBi(l)K xl

| yl.none)

−→l
⊕

Bi∈PER(B)

(νx1, · · · , xl)(JMK u | x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

)

= Q6l+5

Figure 21: Reductions of encoded explicit substitution

Then, JNK u −→5 Q5 −→l Q −→i Q′ and by the contextual reduction

one has N = (M [← x])⟨⟨1/x⟩⟩ −→j
≡λ

N′ and the case holds.
(B) B = HN1, · · · , NlI, for l ≥ 1.

Then, consider the reductions in Fig. 21.

The proof follows by induction on the number of reductions JNK u −→k Q.
(i) k = 0:

This case is trivial. Take JNK u = Q = Q′ and N = N′.
(ii) 1 ≤ k ≤ 6l + 5:

Then, JNK u −→k Qk. Observing the reductions in Fig. 21, one has
Qk −→6l+5−k Q6l+5 = Q′ ,
N −→1

∑
Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(l)/xl|⟩ = N′ and

J
∑

Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(l)/xl|⟩K u = Q6l+5, and the result

follows.
(iii) k > 6l + 5:

Then, JNK u −→6l+5 Q6l+5 −→n Q, for n ≥ 1. In addition,
N −→1

∑
Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(l)/xl|⟩ and

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:115

Q6l+5 = J
∑

Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(l)/xl|⟩K u. By the IH

there exist Q′ and N′ such that Q −→i Q′,∑
Bi∈PER(B)

M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(l)/xl|⟩ −→j
≡λ

N′

and JN′K u = Q′. Finally,

JNK u −→6l+5 Q6l+5 −→n Q −→i Q′ and

N→
∑

Bi∈PER(B)M ⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(l)/xl|⟩ −→j
≡λ

N′.

(II) size(x̃) > size(B).
Then, N = M [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩ with B = HN1, · · · , NlI, for k > l. Also,

N −→
∑

Bi∈PER(B)

failz̃ = M and z̃ = (fv(M) \ {x1, · · · , xk}) ∪ fv(B).

On the one hand, we have Fig. 22. Hence k = l +m for some m ≥ 1

Now we proceed by induction on the number of reductions JNK u −→j Q.
(A) j = 0:

This case is trivial.
(B) 1 ≤ j ≤ 7l + 6:

Then,

JNK u −→j Qj −→7l+6−j Q7l+6 = Q′ , N −→1
∑

Bi∈PER(B) fail
z̃ = N′

and J
∑

Bi∈PER(B) fail
z̃K u = Q7l+6, and the result follows.

(C) j > 7l + 6:

Then, JNK u −→7l+6 Q7l+6 −→n Q, for n ≥ 1. Also, N −→1
∑

Bi∈PER(B) fail
z̃.

However no further reductions can be performed.
(III) size(x̃) < size(B).

Proceeds similarly to the previous case.
(5) N = M⟨|N ′/x|⟩.

Then,

JM⟨|N ′/x|⟩K u = (νx)(JMK u | x.somefv(N ′); JN ′K x)

Then we have

JNK u = (νx)(JMK u | x.somefv(N ′); JN ′K x)

−→m (νx)(R | x.somefv(N ′); JN ′K x)
−→n Q

for some process R, where −→n is a reduction that initially synchronizes with
x.somefv(N ′) when n ≥ 1, n+m = k ≥ 1. Type preservation in sπ ensures reducing

JMK v −→m does not consume possible synchronizations with x.some if they occur.
Let us consider the the possible sizes of both m and n.
(I) For m = 0 and n ≥ 1.

In this case R = JMK u and there are two possibilities of having an unguarded
x.some or x.none without internal reductions.
(A) M = failx,ỹ

1:116 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

JNK u = JM [x1, · · · , xk ← x] ⟨⟨B/x⟩⟩K u
=

⊕
Bi∈PER(B)

(νx)(JM [x1, · · · , xk ← x]K u | JBiK x)

=
⊕

Bi∈PER(B)

(νx)(x.some.x(y1).(y1.some∅; y1.close;0 | x.some;x.someu,(fv(M)\x1,··· ,xk);

x(x1). · · ·x.some.x(yk).(yk.some∅; yk.close;0 | x.some;x.someu,(fv(M)\xk);x(xk).

x.some;x(yk+1).(yk+1.someu,fv(M); yk+1.close; JMK u | x.none)) · · ·) |

x.somefv(B);x(y1).x.somey1,fv(B);x.some;x(x1).(x1.somefv(Bi(1)); JBi(1)K x1

| y1.none | · · ·x.somefv(Bi(l));x(yl).x.someyl,fv(Bi(l));x.some;x(xl).(xl.somefv(Bi(l));

JBi(l)K xl
| yl.none | x.some∅;x(yl+1).(yl+1.some; yl+1.close | x.some∅;x.none))))

−→5l
⊕

Bi∈PER(B)

(νx, y1, x1, · · · yl, xl)(y1.some∅; y1.close;0 | · · · | yl.some∅; yl.close;0

x.some.x(yl+1).(yl+1.some∅; yl+1.close;0 | x.some;x.someu,(fv(M)\xl+1,··· ,xk);

x(xl+1). · · ·x.some.x(yk).(yk.some∅; yk.close;0 | x.some;x.someu,(fv(M)\xk);x(xk).

x.some;x(yk+1).(yk+1.someu,fv(M); yk+1.close; JMK u | x.none)) · · ·) |

x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

|
y1.none | · · · | yl.none
x.some∅;x(yl+1).(yl+1.some; yl+1.close | x.some∅;x.none))

−→l+5
⊕

Bi∈PER(B)

(νx, x1, · · · , xl)(x.someu,(fv(M)\xl+1,··· ,xk);x(xl+1). · · ·

x.some.x(yk).(yk.some∅; yk.close;0 | x.some;x.someu,(fv(M)\xk);x(xk).

x.some;x(yk+1).(yk+1.someu,fv(M); yk+1.close; JMK u | x.none)) |

x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

| x.none)

−→
⊕

Bi∈PER(B)

(νx1, · · · , xl)(u.none | x1.none | · · · | xl.none | (fv(M) \ {x1, · · · , xk}).none |

x1.somefv(Bi(1)); JBi(1)K x1
| · · · | xl.somefv(Bi(l)); JBi(l)K xl

)

−→l
⊕

Bi∈PER(B)

u.none | (fv(M) \ {x1, · · · , xk}).none | fv(B).none

= Q7l+6

Figure 22: Reductions of an encoded explicit substitution that leads to failure

JNK u = (νx)(JMK u | x.somefv(N ′); JN ′K x)

= (νx)(Jfailx,ỹK u | x.somefv(N ′); JN ′K x)

= (νx)(u.none | x.none | ỹ.none | x.somefv(N ′); JN ′K x)

−→ u.none | ỹ.none | fv(N ′).none

Notice that no further reductions can be performed.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:117

Thus,

JNK u −→ u.none | ỹ.none | fv(N ′).none = Q′.

We also have that

N −→ failỹ∪fv(N
′) = N′ and Jfailỹ∪fv(N

′)K u = Q′,

and the result follows.
(B) head(M) = x

By the diamond property (Proposition 3.10) we will be reducing each non-
deterministic choice of a process simultaneously. Then by Proposition 5.29
we have the following:

JNK u −→∗ (νx)(
⊕
i∈I

(νỹ)(JxK j | Pi) | x.somefv(N ′); JN ′K x)

= (νx)(
⊕
i∈I

(νỹ)(x.some; [x↔ j] | Pi) | x.somefv(N ′); JN ′K x)

−→ (νx)(
⊕
i∈I

(νỹ)([x↔ j] | Pi) | JN ′K x) = Q1

−→
⊕
i∈I

(νỹ)(JN ′K j | Pi) = Q2

We also have that

N = M⟨|N ′/x|⟩ −→M{|N ′/x|} = M′.

where by Proposition 5.29 we obtain

JM{|N ′/x|}K u −→∗
⊕
i∈I

(νỹ)(JN ′K j | Pi) = Q2.

and finally from Proposition 5.29 there exists an M with M ≡λ M′ such
that:

JMK u =
⊕
i∈I

(νỹ)(JN ′K j | Pi) = Q2.

for simplicity we assume that JNK u −→ Q1

(i) n = 1: Then Q = Q1 and JNK u −→1 Q1. Since, Q1 −→1 Q2 = Q′,

N −→1 M{|N ′/x|} ≡λ M = N′ and JMK u = Q2, the result follows.

(ii) n ≥ 2: Then, JNK u −→2 Q2 −→l Q, for l ≥ 0. Also, N → M,

Q2 = JMK u. By the IH there exist Q′ and N′ such that Q −→i Q′,

M −→j
≡λ

N′ and JN′K u = Q′ . Finally, JNK u −→2 Q2 −→l Q −→i Q′

and N→M −→j
≡λ

N′, and the result follows.
(II) For m ≥ 1 and n ≥ 0.

(A) n = 0:
Then,

(νx)(R | x.somefv(N ′); JN ′K x) = Q and JMK u −→m R.

1:118 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

By the IH there exist R′ and M′ such that R −→i R′, M −→j
≡λ

M′ and

JM′K u = R′. Hence,

JNK u = (νx)(JMK u | x.somefv(N ′); JN ′K x)

−→m (νx)(R | x.somefv(N ′); JN ′K x) = Q.

Also,

Q −→i (νx)(R′ | x.somefv(N ′); JN ′K x) = Q′

and the term can reduce as follows:
N = M⟨|N ′/x|⟩ −→j

≡λ

∑
M ′

i∈M′ M ′
i⟨|N ′/x|⟩ = N′ and JN′K u = Q′.

(B) When n ≥ 1
Then R has an occurrence of an unguarded x.some or x.none, and the
case follows by IH.

D.3. Success Sensitiveness.

Proposition 5.37 (Preservation of Success). The ✓ at the head of a partially open term

is preserved to an unguarded occurrence of ✓ when applying the translation J · K u up to
reductions and vice-versa. That is to say:

(1) ∀M ∈ λ̂ ⊕ : head(M) = ✓ =⇒ JMK u −→∗ (P | ✓)⊕Q

(2) ∀M ∈ λ̂ ⊕ : JMK u = (P | ✓)⊕Q =⇒ head(M) = ✓

Proof. In both cases, by induction on the structure of M .

(1) We only need to consider terms of the following form:
• M = ✓.
This case is immediate.
• M = N B.
By definition, head(N B) = head(N). Hence we consider that head(N) = ✓. Then,

JN BK u =
⊕

Bi∈PER(B)

(νv)(JNK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

and by the IH ✓ is unguarded in JNK u after a sequence of reductions.
• M = (N [x̃← x])⟨⟨B/x⟩⟩.
By definition, head((N [x̃ ← x])⟨⟨B/x⟩⟩) = head(N [x̃ ← x]) = head(N) = ✓ where
x̃ = x1, · · · , xk and #(x,M) = size(B).

J(N [x̃← x])⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JN [x̃← x]K u | JBiK x)

−→∗
⊕

Bi∈PER(B)

(νx̃)(JNK u | x1.somefv(Bi(1));

JBi(1)K x1
| · · · | xk.somefv(Bi(k)); JBi(k)K xk

)

and by the IH ✓ is unguarded in JNK u after a sequence of reductions.

Vol. 19:4 NON-DETERMINISTIC FUNCTIONS AS NON-DETERMINISTIC PROCESSES 1:119

• M = M ′⟨|N/x|⟩.
By definition, head(M ′⟨|N/x|⟩) = head(M ′)✓. Then,

JM ′⟨|N/x|⟩K u = (νx)(JM ′K u | x.somefv(N); JNK x)

and by the IH ✓ is unguarded in JNK u.
(2) We only need to consider terms of the following form:
• M = ✓.
This case is trivial.
• M = N B.
Then,

JN BK u =
⊕

Bi∈PER(B)

(νv)(JNK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x)).

The only occurrence of an unguarded ✓ is within JNK v . By the IH we have that
head(N) = ✓ and finally head(N B) = head(N).
• M = (N [x̃← x])⟨⟨B/x⟩⟩.
Then,

J(N [x̃← x])⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)

(νx)(JN [x̃← x]K u | JBiK x)

However in both JN [x̃← x]K u and JBiK

x we have that both are guarded and hence ✓

cannot occur without synchronizations.
• M = M ′⟨|N/x|⟩.
Then,

JM ′⟨|N/x|⟩K u = (νx)(JM ′K u | x.somefv(N); JNK x),

an unguarded occurrence of ✓ can only occur within JM ′K u. By the IH we have
head(M ′) = ✓ and hence head(M ′⟨|N/x|⟩) = head(M ′).

Theorem 5.38 (Success Sensitivity). Let M be a closed well-formed λ̂ ⊕-expression. Then,

M ⇓✓ ⇐⇒ JMK u ⇓✓ .

Proof. We proceed with the proof in two parts.

(1) Suppose that M ⇓✓. We will prove that JMK ⇓✓.
By Def. 5.11, there exists M′ = M1 + · · · +Mk such that M −→∗ M′ and with

head(Mj) = ✓, for some j ∈ {1, . . . , k}. By completeness there exists Q such that

JMK u −→∗ Q = JM′K u.
We wish to show that there exists Q′ such that Q −→∗ Q′ and Q′ has an unguarded

occurrence of ✓.
Since Q = JM′K u and due to compositionality and the homormorphic preservation

of non-determinism, we have that

Q = JM1K u ⊕ · · · ⊕ JMkK u
By Proposition 5.37 (1) we have that

head(Mj) = ✓ =⇒ JMjK u −→∗ (P | ✓)⊕Q′′

for some Q′′. Hence, Q −→∗ (P | ✓)⊕Q′′ = Q′, as wanted.

1:120 J. Paulus, D. Nantes, and J.A. Pérez Vol. 19:4

(2) Suppose that JMK u ⇓✓. We will prove that M ⇓✓.
By operational soundness (Theorem 5.33): if JNK u −→∗ Q then there exist Q′ and

N′ such that Q −→∗ Q′, N −→∗
≡λ

N′ and JN′K u = Q′. Since JMK u −→∗ P1⊕ . . .⊕Pk,
and Pj = P ′′

j | ✓, for some j.

Notice that if JMK u is itself a term with unguarded ✓, say JMK u = P | ✓, then M
is itself headed with ✓, from Proposition 5.13 (2).

In the case JMK u = P1 ⊕ . . .⊕ Pk, k ≥ 2, and ✓ occurs unguarded in an Pj , The
encoding acts homomorphically over sums and the reasoning is similar. We have
that Pj = P ′

j | ✓ we apply Proposition 5.13 (2).

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	Introduction
	1. Overview of Key Ideas
	2. λ↯⊕: A λ-calculus with Non-Determinism and Failure
	2.1. Syntax
	2.2. Reduction Semantics
	2.3. Well-formed λ↯⊕-Expressions

	3. λ̂↯⊕: A Resource Calculus With Sharing
	3.1. Syntax
	3.2. Reduction Semantics
	3.3. Non-Idempotent Intersection Types
	3.4. From λ↯⊕ into λ̂↯⊕

	4. sπ: A Session-Typed π-Calculus with Non-Determinism
	4.1. Syntax and Semantics
	4.2. Operational Semantics
	4.3. Type System

	5. A Correct Encoding
	5.1. Encodability Criteria
	5.2. Correctness of ⦇⋅⦈∘
	5.3. From λ̂↯⊕ to sπ

	6. Related Work
	7. Concluding Remarks
	References
	Appendix A. Appendix to § 2.3
	Appendix B. Appendix to § 3.3
	Appendix C. Appendix to § 5.2
	C.1. Encoding ⦇⋅⦈•
	C.2. Completeness and Soundness
	C.3. Success Sensitiveness

	Appendix D. Appendix to § 5.3
	D.1. Type Preservation
	D.2. Completeness and Soundness
	D.3. Success Sensitiveness

