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ABSTRACT. The categorical models of the differential lambda-calculus are additive cate-
gories because of the Leibniz rule which requires the summation of two expressions and
therefore the differential lambda-calculus features unrestricted sums of terms. A natural
and simple operational interpretation of such sums of terms is by finite non-determinism
although other interpretations, based for instance on quantum superposition, might also
be possible. In a previous paper we introduced a categorical framework for differentiation
which features a partial form of additivity and is compatible with deterministic denotational
models such as coherence spaces and probabilistic models such as probabilistic coherence
spaces. Based on this categorical theory we develop a syntax of a deterministic version of
the differential lambda-calculus. One nice feature of this new approach to differentiation is
that it is compatible with general fixpoints of terms, so our language is actually a differential
extension of PCF for which we provide a fully deterministic operational semantics by means
of an adapted version of the Krivine Machine.

1. INTRODUCTION

The differential lambda-calculus [ER03] extends the (typed) lambda-calculus with a syntactic
notion of differentiation which is compatible with the basic intuition of differentiation in
Calculus: given f : F — F a sufficiently regular function between two R-vector spaces
(finite dimensional, or Banach...), f' : E — (E — F) where E — F' is the space of
linear (and continuous if we are in infinite dimension) maps E — F such that f(x +u) =
f(@)+ f'(x) - u+o(||u]]). More generally f'(x) is such that y — f(x)+ f'(z) - (y — z) is the
best affine approximation of f which coincides with f at x.

Syntactically this means that, given a term M such that ' M : A = B and a term N
such that I' = N : A we introduce a term DM - N such that ' - DM - N : A = B. Intuitively
M represents a function f : A — B, N an element u of A and DM - N represents the
function ¢g : A — B such that g(z) = f’(x) - u. This syntactic presentation is a convenient
way to express the fact that the derivative has the same regularity as the differentiated
function (intuitively terms represent “smooth” maps, so their derivatives are themselves
smooth) and allows easy iteration of differentiation (n-th derivatives).
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Differentiation is inherently related to the algebraic operation of addition and the
associated operation of subtraction, this is obvious in the definition of derivative we have
all been taught at school: f/(z) = lim._ M More algebraically this connection
manifests itself for instance by the Leibniz Rule (fg) = f'g+ f¢’. In the differential lambda-
calculus, beyond the ordinary S-reduction, there is a differential S-reduction: D(/\arA M)-N —
%—J‘f - N which uses a linear substitution %—Af - N defined by induction on M. The definition
of this operation involves the Leibniz Rule! in the syntactic constructs where the variable
can be used at various places, the most typical example being:

(9(22@ ?;N)Q—F(DP(?;C?N))Q (1.1)

which is a combination of the Leibniz Rule and of the Chain Rule. Because of this feature
of the definition of %—A;[ - N we had to extend the syntax of the lambda-calculus with an
addition operation typed as follows

'EMy:A THM:A

'EMy+M;: A

This rule is most natural if we have in mind the usual mathematical intuitions about
differentiation. However the lambda-calculus is not only a nice and convenient syntax for
denoting mathematical functions, it is also an expressive programming language featuring
crucial properties of determinism. But the most natural operational interpretation of this
+ operation is a kind of non-deterministic superposition®. For instance if our calculus has
a type ¢ of integers with I' - n : ¢ for all n € N (numerals) then we can write terms like
42 + 57 which is a superposition of two values (nothing to do with 99 of course!).

In the setting of differentiable programming where programs can be formally differentiated
(see for instance [MP21] for a functional presentation), an addition on terms also plays a
crucial role for the same reason (Leibniz Rule). This is made possible by the presence of a
ground type p of real numbers (which can be equipped with the usual addition of numbers)
and by the fact that any type is of shape Ay = (--- (A, = p)---) and therefore inherits
from p a canonical operation of addition defined pointwise. For instance, if the language
has also a type ¢ of integers, it is not clear at all how the differential of a term of type
p = t or of type ¢t = ¢ could be defined. In differentiable programming, differentiation
is fundamentally defined for terms of type p = (---(p = p)---), and extended to higher
types by a method close to logical relations (by induction on types), in sharp contrast with
coherent differentiation where derivatives can be taken with respect to parameters of any
type, and does not rely on any specific numerical datatype.

A natural question is then whether differentiation requires such a general addition
operation on terms and is therefore incompatible with determinism. In [Ehr23] we have
provided a semantic negative answer to this question, based on a new categorical setting
that we call coherent differentiation. The basic idea is to replace additive categories®* with

‘N =(

(1.2)

1Ac‘cually the Leibniz Rule is not really related to multiplication but more fundamentally to the fact that
the parameter of a function can be used more than once that is, to the logical rule of contraction.

20ther interpretations might be possible as well, such as, perhaps, quantum states superposition, but we
did not explore this option yet. It seems clear that “probabilistic superposition” is not a possible option
since it requires non-negative coefficients whose sum is < 1: indeed Pcoh is not a model of differential LL.

3Categ0ries enriched over commutative monoids.

4or left-additive categories which are used for axiomatizing differentiation in a general cartesian category
C which is not necessarily the Kleisli category of a model of LL, see [BCS09, CC14]. Observe that, even in
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categories equipped with a weaker structure that we call a summability structure: such
a category L is endowed with an endofunctor S which intuitively maps any object X to
the object S X of pairs (zg,z1) such that xo + 1 is well defined. This functor comes with
natural transformations 7o, m1,0 € £(S X, X) satisfying suitable axioms (intuitively they
map (zg, 1) to xo, 1 and xo + x1 respectively). Thanks to these axioms it is possible to
equip S with a monad structure.

Then assuming that £ is a resource category (that is, a cartesian symmetric monoidal
category equipped with a resource modality comonad !.), the differential structure is
axiomatized as a natural morphism dx € £(IS X,S!X) which is a distributive law between
the functor S and the comonad !_, and also between the monad S and the functor !_. This
allows one to extend the monad S to the Kleisli category £ into a monad that we denote as
(D, ¢, 0). The category L, has the same objects as £ but an element of £i(X,Y") should not
be considered as a linear morphism X — Y as in £(X,Y’), but as a morphism which is only
“smooth” (and actually analytic in several concrete models). The functor D acts exactly as
S on objects but its action on morphisms implements differentiation: given f € £(X,Y),
considered as a smooth map X — Y, the smooth map Df = (Sf) dx € £(DX DY)
intuitively maps (zg,x1) to (f(xo), f'(xo) - 1). The basic observation at the core of this
work is indeed that, if xg + 1 is defined, then so must be f(xg) + f'(xg) - x1, as the
beginning of the Taylor expansion of f(xz¢ + 1) at gp. The monad structure of D accounts

~9 ~
for addition: intuitively the natural transformation 6y € £;(D” X,D X), which is linear®,

maps ((zoo, Z01), (210, 211)) to (oo, xo1 + x10) and (x € L£,(X,D X) maps z to (z,0). The
naturality of these two transformations in £, expresses exactly that the differential is linear
with respect to this 0 and to this addition.

The major benefit of using the operation D for presenting the derivative of morphisms
of £y is that doing so we preserve the information of summability: we know that the two
components of D f can be added without requiring that all pairs of morphisms can be
added. The categorical axiomatization described in [Ehr23] involves other natural linear
transformations: 7; € £1(D X, X) for i = 0,1 (the two obvious projections), ¢; € £1(X,D X)
for i = 0,1 (the two injections, tp = ¢ and ¢; maps = to (0,z)) and the “canonical flip”

cec /.:;(DQ Xv7 D2 X) which maps ((xoo, 1’01), (:Cl(), a}n)) to ((1‘00, .%'10), (.1'01, 1‘11)).

As explained in the introduction of [Ehr23] this categorical axiomatization has strong
formal similarities with the tangent categories axiomatization of the differential calculus
on smooth manifolds [Ros84] — of which differential categories are a special case as shown
in [CC14] —. One crucial difference is that, though tangent categories are not additive
in general, they feature an unrestricted addition operation available in “tangent spaces’
(axiomatized by means of a pullback) which is not available in the coherent differential
setting.

?

1.1. Contents. In the present paper we propose a differential lambda-calculus which uses
the idea of coherent differentiation, but now at the syntactical level.

this apparently weaker setting, left-additivity also entails that any two morphisms f1, fo € C(X,Y) can be
added, whatever be the objects X, Y of C so that these categories also feature the kind of “non-determinism”
we are trying to eliminate. Axiomatizing coherent differentiation in general cartesian categories requires a
more general kind of summability structure which is presented in another article [EW23].

5In the sense that it is obtained from a morphism of £(S%X,S X) by composition with the counit
dergs x € £(!S* X,S? X) of the comonad !_.
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1.1.1. Semantic motivations. Since this work arose from semantic considerations, we first
provide in Section 3 a summary of the categorical framework for coherent differentiation
introduced in [Ehr23]. Our goal is also to make the paper as self-contained as possible. In
this section, we present moreover two concrete instances of this general notion: the relational
model and the probabilistic coherence space model. We describe in these well-known models
of LL various categorical constructions of coherent differentiation. These concrete models
are also used technically in the paper, the first for proving that our reduction rules are
“complete” for reducing the terms in Section 6 (see Section 1.1.5 the explanation of this
word in this context) and the second — probabilistic coherence spaces (PCS [DE11]) — for
proving denotationally that this machine is deterministic in Section 7.

This latter model has been a major incentive for introducing coherent differentiation. It
is a model of LL, and the morphism of the Kleisli category of its resource comonad !_ can
be seen as analytic functions. For instance, in PCS, the type of booleans is interpreted as
the set B of all sub-probability distributions x = (xt,2z¢) on the booleans (meaning that
xt, xf € R>o with 2t + 2¢ < 1) and a morphism from B to B is a function f : B — B with

f(z) = (fe(z), fe(x)) such that
K= S gt and f(a) = Y el

n,pEN n,pEN

for uniquely determined® non-negative coefficients (@npy bnp € R>0)n pen. Of course B has
a natural addition operation, but this addition is only partially defined because the sum of
two sub-probability distributions is not always a sub-probability distribution. Nevertheless
the morphisms of the Kleisli category being analytic in a rather standard mathematical
sense, it is possible to compute their derivative, and the purpose of coherent differentiation
is precisely to give a meaning to such derivatives in a partially additive setting.

1.1.2. The choice of PCF. The categorical framework introduced in [Ehr23] and summarized
in Section 3 relies on the semantics of LL, and this is deeply motivated by the fact that, so
far, all concrete known models of coherent differentiation are models of LL. As explained
above, in such a model £ of LL, differentiation is a distributive law which allows to extend S
to a differentiation functor on the cartesian closed Kleisli category L£;. Moreover it is shown
in [Ehr23] that, when £ is a Lafont category (that is, has a cofree modality comonad), a
very simple condition suffices to guarantee that it is a model of coherent differentiation.
In particular the two models which will play a technical role in the present paper — the
relational model Rel and the probabilistic coherence space model Pcoh — are both Lafont
categories.

This fact has guided us in the choice of the A-calculus to be extended with coherent
differential constructs: it seemed natural to take a language whose translation in such
models is as simple as possible. From this point of view PCF [Plo77] is a reasonable option.
It is a simply typed call-by-name calculus and thus can be interpreted by means of the
standard and simple Girard translation of the A-calculus in LL whose target is the Kleisli
category L. This choice allows us also to stress a major feature of this new presentation of
differentiation, which is the fact that it is fully compatible with general recursive definitions
whose formalization in PCF is particularly simple and natural. This is deeply related to the
limitation we put on the + operation: contrarily to the ordinary differential lambda-calculus,

6The coefficients can be retrieved from f by taking partial derivatives.
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our typing rules do not allow one to write a term such that A\z* (x + 42) which obviously
has no fixpoint (¢ is the type of integers).

Other choices of syntax such as the pure A-calculus or call-by-push-value [Lev06] would
have been possible but would have required additional categorical ingredients, such as the
use of a reflexive object or of the Eilenberg-Moore category as in [ET19]. Of course we are
very interested in studying coherent differentiation in such languages; this will be the object
of further work.

1.1.3. Syntaz. So our calculus is a differential extension of PCF” where the main novelty
is a differentiation operation on terms: if ' H M : A= B then ' H DM : DA= DB
and this requires a new type construct DA. The semantics tells us that we should have
D(A = B) = (A = DB) and we can consider this equation as a definition of D(A = B).
So the only basic differential construct on types that we need is [~)d~L for all d € N. This
differential term construction induces a new redex, namely the term D(Az4 M) (for a term
M such that T,z : A M : B) and we stipulate that it reduces to Az d(z, M) where the
term O(x, M) is defined by induction on M and satisfies T, z : DA O(x, M) : DB.

This inductive definition of d(x, M) involves the use of constructs §(N), td(N) ete. which
syntactically account for the natural transformations alluded to above. The additional super-
script d is required to express the fact that the corresponding operations are applied under d
applications of the D functor. For instance in the rule d(z, (N) P) = (6°(Dd(x, N))) d(z, P),
the 6°(_) construction implements the addition involved in the Leibniz Rule required by the
fact that the variable x may occur in both N and P, as in the Equation (1.1) of the differential
lambda-calculus. We also stipulate that d(z, 8%(N)) = §9F1(9(x, N)) which shows why the d
superscripts are required. The same superscripts appear in the basic “arithmetic” constructs
succ?(N), pred?(N), if4(N, Py, P;) and also in the aforementioned let construct let?(y, N, M).
When applying the 9(z, _) to these constructs, the d superscript is similarly incremented, for
instance d(z, pred?(IN)) = pred®1(d(z, N)). The c?(_) construct is required because, guided
by the semantics, we set d(z, DN) = ®(Dd(x, N)). Notice that the simple typing rules are
not sufficient to “guess” this rule since in this situation we have I'x: AF- N : B = C and
hence I,z : DA F DO(z, N) : DA = D2B and also I,z : DA + c0(68(x,]\7)) : DA = D2B,
the semantic analysis that we develop in Section 5 is really mandatory. The syntax also
contains a projection construct 7¢(M) where r € {0,1} and d € N is the depth we are now
acquainted with. This construct allows one to “extract” the first (when r = 0) or second
(when r = 1) component of a term of type DA which represents a kind of summable pair®.
The language also contains a + operation? on terms which is used in a single reduction rule,
namely 7¢(04(M)) —, 7d(7¢(M)) + 7¢(xd(M)). So we can understand the construction
6%(_) as a tag identifying a place where a sum will have to be introduced when we will
need to extract a component from a “summable 4-tuple” of type D2 A for some type A and
the reduction rules show how these tags are produced and modified during computations.

"More precisely, of a version of PCF extended with a let operation restricted to the unique ground type ¢
of integers; this is particularly relevant for probabilistic extensions of this calculus in the spirit of [EPT18a],
which is perfectly possible since it admits Pcoh as a natural denotational model.

8From our LL point of view it is important to keep in mind that it is not a multiplicative pair in which
both components are actually available, but an additive pair which offers two possible options among which
one must be chosen: this is precisely the purpose of our projection construct.

90f course there is also its associated “neutral” constant 0.
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The + term construct is still necessary, just as in the original differential lambda-calculus
of [ER03], but thanks to the #%(_) construct we can prove subject reduction without the
very strong typing (1.2) which was the source of the non-determinism of the differential

lambda-calculus!®.

1.1.4. Categorical semantics and soundness. After having presented the syntax of our calculus
A in Section 4, we provide and study in Section 5 additional categorical constructs which
are definable in the general framework of Section 3. Based on these constructs, we present a
general categorical semantics of our calculus A4 in the cartesian closed category associated
with such a model by the familiar Kleisli construction associated with the !_ functor and to
prove that this interpretation is invariant under the —,_, reduction relation (soundness). This
requires to prove a number of categorical equations involving in particular additive strengths'!
Vo, € L1(DXo & X1,D(Xo & X1)) and ¢, y, € Li(Xo & D X1,D (Xo & X)) of the
monad D on L. These strengths are linear and extremely easy to define because D commutes
with &, but their properties are not so straightforward due to the definition of the functor D
which involves the distributive law 9. Their main purpose is to define partial derivatives: given
f e Li(Xo & X1,Y) the first partial derivative of fis (D f) o wg(o,)ﬁ € £Li(DXp & X1,Y) and
the second partial derivative is ([N) f)o ¢}<O’ x, € Li(Xo & D X, Y'). These constructions are
of course crucial in the interpretation of A4 since, for instance, d(x, M) must be interpreted
as a derivative with respect to the variable x but not to the other variables occurring in
M. Notice that we use o for the composition operation in £; whereas composition in £ is
denoted as simple juxtaposition.

Thanks to this series of categorical lemmas we can prove soundness for the — , rewriting,
meaning that if M —_, M’ then M and M’ have the same interpretation. The proof is
lengthy due mainly to the number of rewriting rules.

1.1.5. Intersection types, Krivine machine and completeness of the reduction. We address
in Section 6 the major issue of completeness: is our rewriting system —,_, sufficiently rich
for performing all “required” reductions? To give a precise meaning to this question, we
need an external reference, independent from our rewriting system. Denotational models
provide us precisely with such a reference, so we choose the most basic denotational model
of Acg which is Rel (see Section 3 complemented by 6.3.1) and we present the associated
interpretation of terms by means of a non-idempotent intersection typing system for A.
Our completeness expresses that if the interpretation in Rel of a closed term M of type
¢ contains an integer v then M reduces to v using the —,_, reduction relation. As usual
in this kind of situation we prove this property for a particular reduction strategy that we

10T be more precise, as it becomes apparent in Section 6.1 where a specific reduction strategy is presented
by means of a Krivine machine, we manage to reduce the use of the + to the ground type ¢ of integers. This is
similar to what happens in differentiable programming [MP21], the main differences being that our addition
is not at all the arithmetic addition of the ground type and that we allow differentiation wrt. parameters of
all types, not only ground types.

Hrhe adjective “additive” refers to the fact that this strength deals with the additive operation of cartesian
product and not to the multiplicative operation of tensor product. It is shown in [Ehr23] that the monad S
has multiplicative strengths as well which are deeply related to these additive strengths. Notice that both
strong monads are commutative.
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prefer to present as an abstract machine in Krivine style. A state, or command, of this
machine is a triple ¢ = (9, M, s) where

e M is a closed term of type DIF where F is a type which is sharp in the sense that it is
not of shape DA; in other words F' = (A; = -+ = A = 1),

e 6 ={(ry,...,rq) is a sequence of length d of elements of {0, 1} called access word

e and s is a stack of type F' F ¢, meaning that it represents an evaluation context (s) of
type ¢ whose “hole” has type F.

Then the command c represents the term (c¢) = (s)[x" (--- 70 (M)---)] which is closed of

type ¢.

We introduce a set of reduction rules —g_ for this machine and prove that these
reduction rules are simulated in the —p_, rewriting system through the ¢ — (c) translation:
this shows that we can really consider this machine just as a convenient way to express a
specific reduction strategy for applying the reduction —_,.

More precisely this rewriting system acts on finite multisets of commands which are
summable in the sense that the interpretations of their elements are summable in any model.
We extend the semantics (and, accordingly, the intersection typing system) to stacks and
commands and prove that, if a command is typeable in the intersection typing system (and
then its type is a natural number v) then its —g_, reduction leads to a summable multiset
C' of commands which contains the constant v (or more precisely the command ((),v, ())),
thus proving our completeness result. This proof follows essentially the standard pattern of
a reducibility argument, complicated by the fact that we have to take into account arbitrary
iterations of the d(x, M) construct. This method is developed in Section 6.3.3.

1.1.6. Probabilistic semantics and determinism. In Section 7 we prove that the integer v
above is unique, thus showing that the reduction on commands is essentially deterministic.
To this end we use the fact that the LL model of probabilistic coherence spaces introduced
in [DE11] is a model of coherent differentiation. In that model the type ¢ is interpreted as the
set of all sub-probability distributions on N and we observe!? that a summable multiset of
commands must be interpreted as such a sub-probability distribution where all probabilities
belong to N and hence is either equal to 0 or concentrated on a single element v of N. So
all the elements ¢ of C distinct from the command ((), v, ()) must have an () interpretation
in Rel and hence cannot reduce to a value. In spite of this strong result, the fact that the
rewriting system for this machine has still to deal with multisets of states means that it still
contains a little bit of non-determinism.

Finally using an idea suggested by Guillaume Geoffroy, we get rid of this non-determinism
by slightly modifying our Krivine machine. The main change consists in making the access
word writable. We can prove simulation results relating this new machine with the original
one which allow one to prove that the new machine, whilst being fully deterministic, computes
the same thing as the original one, in the same number of steps.

CONTENTS

1. Introduction 1
1.1. Contents 3

12This is due to the fact that the formalism A considered here has no construct for generating random
integers as in [EPT18a].
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2. PRELIMINARIES

2.1. Notations. Given a set I and i,j € I, remember that é;; € {0,1} (the Kronecker
delta) takes value 1 if ¢ = j and 0 otherwise.

We use NT for N\ {0}.

Given a sequence, or word, a = (i1, ...,1), we set len(a) = k. We use simple juxtapo-
sition to denote the concatenation of sequences and also (i, ..., i) = (i,41,...,ik). We
use i for the one-element sequence (i) when there are no ambiguities. We use the following
notation for circular permutations: o = (Igyi1,y ...y ik—1) and Q&= (19, ... ik, 11). Of course
if len(a) = 2 we have o = o We also use @ for the reversed word (that is, if & = (i1, ..., i)
then @ = (ig,...,11)).
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We use Mgy, (I) for the set of finite multisets of elements of a set I. A multiset
is a function m : I — N such that supp(m) = {i € I | m(i) # 0} is finite. We use
additive notations for operations on multisets (0 for the empty multiset, m + p for their
pointwise sum). We use [i1, ..., 1] for the multiset m such that m(i) = #{j € N | i; = i}.
If m=1[j1,...,Jn] € Man(J) and i € I we set i *xm = [(,71),- -, (i, Jn)] € Man(I x J).

We use I W J to denote I U J when I NJ = (.

Our default notation for composition of morphisms in categories is by simple juxta-
position, and we use X to denote the identity morphism X — X. In a category-theoretic
context, the notation t : F' = G means that t is a natural transformation from the functor
F to the functor G.

2.2. Rewriting. Let 7 = (7, —7) be a rewriting system, that is 7 is a set and —7 C T2
We assume that T contains a distinguished element 0 and that there is a binary operation +
on 7T: given t1,to € T there is an element t; 4+ to € 7. We make no further assumptions, in
particular we do not assume that, equipped with 0 and +, the set 7 is a monoid. We define
a rewriting system Mg, (7) by Mgan(T) = Mgan(7T) and rewriting relation defined by the
following rules
t—rt
[0] = a7y (] [t1 + t2] = Mg () [E15 22 1] = o 1]

S = Meu(T) 5

S + T _>Mﬁn(7-) Sl + T
In other words, we have S — 4, () S iff one of the following conditions hold.
e S =255+ (0] and S' = Sp.
e S=Sy+[t],t >7t' and S" = Sy + [t'].
e S=5y+ [to + tﬂ and S’ = Sy + [to,tl].

3. SEMANTIC MOTIVATIONS

Since the main goal of this paper is to shed some light on the operational content of coherent
differentiation, which was introduced as a categorical refinement of the semantics of LL
in [Ehr23] (to which we refer for more details) and motivated by concrete denotational
models, we provide first a bird’s eye view on this categorical setting. We give then two
concrete instances of this notion: the relational semantics and the probabilistic coherence
space semantics of LL. The more specific semantic operations and properties which are used
for interpreting our extension A.q of PCF will be described in Section 5.

3.1. A summary of summable differential categories. A summable category is a tuple
(L,S, 7o, m1,0) where L is a category with zero morphisms'3, S : £ — £ is a functor and
o, 1,0 : S = ld are natural transformations such that 7o, 71 € £(S X, X) are jointly monic:
this means that a morphism f € £(X,SY) is fully characterized by 79 f and w1 f. Then
we say that fo, f1 € L(X,Y) are summable if there is h € L(X,SY') such that m; h = f;
for i = 0,1. This h is unique and is denoted (fp, f1)s. In that situation the sum fo + fi of
fo, f1 is defined as fo + f1 = o (fo, f1)s. There are further axioms (S-com), (S-zero) and

13This means that if X,Y are objects then there is a morphism 0 € £(X,Y’) such that f0=0and 0g = 0.
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(S-witness) in [Ehr23| which imply in particular that, equipped with this partially defined
addition, any homset £(X,Y) is a partial commutative monoid with 0 as neutral element,
and the naturality of 7wy, m1 and ¢ implies that composition commutes with this partially
defined addition, that is, £ is a “partially additive” category (ie. a category enriched in
partial commutative monoids in the sense of [PDT10]). These axioms also imply that there
is a natural transformation ¢ : $2 = S? uniquely characterized by ; 7; ¢ = m; m; for all
i,7 € {0,1}, it is called the (canonical) flip. One also defines uniquely two natural injections
o =(X,0)s,01 =(0,X)s: X - SX.

3.1.1. The associated monad, its monotidal strength and its commutativity. Under these
assumptions S has a monad structure with unit ¢ : Id = S and multiplication 7 : S? = S
characterized by mg 7 = mg w9 and w1 T = 71 7o + Mo w1 from which it follows easily that
7 ¢ = 7. When L is symmetric monoidal (with monoidal unit 1 and monoidal product
®) a further axiom (S®-dist) expresses in [Ehr23] that ® distributes over the sum of
morphisms, when defined. It is then possible to define a tensorial strength @9(07 x; €
L((S Xo)®X1,S(Xo®X7)) which is a natural transformation satisfying further commutations
expressing its compatibility with the ® monoidal structure of £. Using the symmetry iso of
the monoidal structure of £ one can define then go&le € L(Xo® (SX1),S5(Xo® X1)) from
Y. This strength is fully characterized by m; cpg(m x, = ™ ® Xy for i = 0,1. Equipped with
this strength the monad (S, o, 7) is a commutative monad. More precisely the following
diagram commutes

. SXo®SX; )
SDXV \SOSXQ,Xl
S(Xo@SXl) S(SX0®X1)
Swﬁ(o,}ﬁl ls“agfoy)ﬁ
CXo®X1

S?(Xo ® X1) » $%(Xo ® X1)

as indeed 7; 7; (S @}(07)(1) 90%(0,5 x, =™ ®@m; and m; 75 (S <p§<0’X1) @%X07X1 =m; @ mj. The
induced natural symmetric lax monoidality morphism Lx, x, = 7(S gog(m x,) oL Xo.X; =
7(S gp}(()’Xl) SOg(O,SXl € L(SXp®SX1,S5(Xo® Xy)) is fully characterized by

o Lxo,x; =mo®@me and w1 Lx,,x, = ™ @ mo + 70 ® ™1

and its 0-ary version is simply L% = 1o € £(1,S1).

If the SMC L is also closed then we require in [Ehr23|to the summability structure to
satisfy a further condition (S®-fun). We use (X — Y,ev € L((X —Y) ® X,Y)) for the
internal hom object of X and Y in £ and cur f € L(Z, X — Y') for the curried version of
feL(Z®X,Y). With these notations, (S®-fun) says that S(X — YY) and X — SY are
isomorphic (more precisely the morphism S(X —Y) — (X — SY') that one can define
using ‘Pg(_oy, y is an iso). Intuitively this means that, on morphisms, summability is defined
“pointwise”.
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3.2. Differentiation as a double distributive law on a resource category. We
assume now that £ is a resource category which means that £ is a symmetric monoidal
closed category which is also cartesian (with cartesian product (&;er X;, (pr;)ier) for any
finite family of objects (X;)ier of L, the case I = () yielding the terminal object T of
L. Being a resource category means also that £ is equipped with a resource comonad,
that is a tuple (!_, der, dig, mY, m?) where !_is a functor £ — £ which is a comonad with
counit der (for dereliction) and comultiplication dig (for digging), and m® € £(1,!T) and
m? € L(IX ®!YV, /(X & Y)) are the Seely isomorphisms subject to conditions that we do not
recall here, see for instance [Mel09], apart for the following which explains how dig interacts
with m?.

dig x ®digx
'Xo® !X 9 ! Xy ® X,

m?xo,xll lmlzxo,!xl (3'1)

y
1(Xo & X1) —20%0 10x0 & Xp) —P0P i xg & 1)

Then !_ inherits a laxz symmetric monoidality on the SMC (£, ®). This means that one can
define p° € £(1,!1) and u_2X07X1 € L(1Xo ®!X1,!(Xo® X1)) satisfying suitable coherence
commutations. Explicitly these morphisms are given by

1m0 ey im0y

X, ® X,
m§(07X1

(Xo & X1)
digxgex,
(X0 & X1)

(Mm%, x,) "
(!X ® !1X7)
I(der x, @derx, )

(Xo ® X1)

And by combining these morphisms in an arbitrary way one can define uniquely Ko Xy €
LOXy® - @!X,,_1,/(Xo® -+ ® Xp—1)) thanks to the coherence diagrams that we left
implicit.

Remember that, using £, for the Kleisli category of this comonad where we use the
notation g o f to denote composition of morphisms, we have a functor Liny : £ — £ defined
by Lini(X) = X for objects and, given f € L(X,Y), we set Linyf = f derx € Li(X,Y).
Functoriality results from the fact that (!, der,dig) is a comonad. The intuition is that this
functor allows one to see morphisms of £ (considered as linear) as morphisms in £; where
morphisms are not linear in general. This is why this functor is often faithful but of course
not full in general.

The Kleisli category L is cartesian with cartesian product of a family (X;);cr of objects
of £ given by (&ier X, (prl = Liny(pr;))ier). Given a family of morphisms f; € £y(Y, X;) for
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i € I, the morphism (f;)icr € L(IY, &icr Xi) = L1(Y, &ier X;) is uniquely characterized by
the fact that pr'j‘ o (fi)ier = f; for each j € I.

Notice that if now f; € £(X;,Y;) for each i € I we can define functorially &K;cs f; €
Ly(&ier Xi, &ier i) by

8?; fi={fiopicr = (filpriier = (& fi) (Ipridier -
i el

Lemma 3.1. Let f € L(X,Y) and g € L1(Y, Z), we have g o Lini(f) =g!f.
Proof. We have !derx digy = Idx. []

Given f € L(!X,Y) we set f' = !f digy € L£(!X,!Y) which is sometimes called the
I-lifting or the promotion of f. Given f € L(I Xy ® -+ ®1X,,_1,Y) one can define more
generally f' € L(1Xo® ---®!X,,_1,!Y) using 1%,...x,_,- Notice also that if f € L(X,Y)
one has Lin/(f)' = !f.

We assume furthermore that £ is equipped with a summability structure satisfying the
axioms summarized in Section 3.1 (we use the same notations) and we also assume that the
summability functor S preserves cartesian products and to simplify notations we assume
that it preserves them strictly, that is

S(& Xi)= & SX; and Viel Spr,=pr;. (3.2)
icl icl
A coherent differential structure on such a summable resource category consists of a natural
transformation 8 x € L(ISX,S1X) satisfying a few axioms that we recall here.

ISX — SIX
-local -
(0-local) m lo
X

152 x %X, 515 x 0%, g2

ow e |

ISX -2, s1x IS X Ox SIX

That is, 0 is a distributive law between the monad S and the functor !_. This means

essentially that derivatives commute with sums and with 0, that is, are linear. This allows

one to extend the comonad !_ to the Kleisli category of the monad S which is again a resource

category. It can be understood as an infinitesimal extension of L; this construction, as well

as its syntactical outcomes, will be studied in further work.
Ox

ISx %X, s1x 1S X SIX
(O-chain) de\ lSderX d|gsxl lSdigX
s x
nsx X, i51x 9%, gnx

That is, 0 is a dlstrlbutlve law between the comonad !_ and the functor S. This allows
one to extend S to an endofunctor on L.

ST — 97 .57

(0-&) | |5ty
T 1—2551

(mo)~*
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15 (Xo & X1) 20 10X & x) ST S(1x © 1))

S prg,S prﬂl T'—!Xo,!)ﬁ
(S X0 & S X1) ™ 15 Xp 215 X, 205N g 1x @ six,
Notice that our assumption that S preserves & strictly (in the sense of (3.2)) means
that the morphism (S pry,Spry) is the identity.
Intuitively, this diagram expresses that a derivative wrt. a pair of variables (0x,&x,)

can be expressed as a sum of partial derivatives (0x, and Oy, ): this is deeply related to the
Leibniz Rule.

152 x 95X, g5 x 9%, o2y
(0-Schwarz) !Cl lc

0
152 x %X, 15 x 29, 21y
This expresses that the second derivative is a symmetric bilinear function.
When a resource category L is equipped with a summability structure (S, g, 71, 0)
and a natural transformation 0 satisfying these axioms, it is called a differential summable
resource category.

3.2.1. The induced coherent differentiation monad. Thanks to (0-chain) we extend the
functor S to a functor D : Ly — Ly on the Kleisli category of the comonad !_ as follows:
DX =SX and, if f € £(X,Y) then D f = (S f) dx € £(DX,DY). Then we can define
Cx = Linuo € £1(X,D X) and 6y = Linim € £,(D° X, D X) and the condition (9-lin) entails
that these morphisms are natural; the intuitive meaning of that condition is that the
differential of a map of the Kleisli category is linear in the sense that it commutes with the
algebraic operation represented by  and 8. These natural transformations are easily seen to
equip D with a monad structure.

3.2.2. The elementary situation. In the models of coherent differentiation we know for the
time being, the summability and differential structures arise from more basic properties'* of
one specific object of a resource category with zero-morphisms £, namely

D=1&1.

Notice first that it is always possible to define 75§, 7%, AY € £(1,D) by 7% = (1,0),
7 =(0,1) and AY = (1,1). We say that L is elementarily summable if the two following
properties hold. Our first assumption is that ﬁéﬁ ﬁ‘%‘ are jointly epic, meaning that morphisms
f € L(D,X) are fully characterized by f ﬁgﬁ f7¥ € £(1,X). Our second assumption,
corresponding to (S-witness) of [Ehr23], is that if fo, f1,9 € £L(X ® D,Y’) are such that the

MAnd not from an additional structure: it is interesting to observe that the summability structure we
are describing in this section, when it exists, is completely characterized by pre-existing structures of the
category L, so having such a summability structure is indeed a property of L.
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following diagrams commute

&
X0l X227, x oD

X®ff‘l lfr

XeD —2 v

for » = 0,1 then there is a (necessarily unique by our first assumption) morphism h €
L(X ®@D®D,Y) such that the following diagram commutes

?&
XoDol -2, yoDeD

0| |

XoD ta Y

for r = 0,1. Under these assumptions, the functor S = (D — _), equipped with natural
transformations mg, 71,0 : S = Id easily defined by precomposition with ﬁéﬂﬁ‘%, A¥ s a
summability structure on £ which is called the elementary summability structure of L.

It is also possible to equip D with a structure of cocommutative comonoid, with counit
pro € £(D,1) and comultiplication L € £(D,D ® D) fully characterized by

™ p 1 iy D
A—lzp—ll lt )\—lzp—ll lt
=& =& =& =& | =& =&
11 =T, peoD 1@l M HMET, e

where the sum is defined in terms of the elementary summability structure, and exists by
our assumptions.

It is proven in [Ehr23] that endowing this elementary summability structure (S, 7, 71, 0)
with a coherent differentiation structure amounts to equipping D with a !-coalgebra structure
0 € L(D,'D) which satisfies also some compatibility with the comonoid structure (pry, L) of
D. We don’t need here to go into these technicalities, we only need to know that, when L is
a Lafont category [Mel09, Ehr23], such a d always exists and is induced by the comonoid
structure of ID: remember indeed that a resource category is Lafont if, roughly speaking,
any cocommutative comonoid is a !-coalgebra, in a unique way. See [Ehr23], Theorem 21 for
more details.

So, for a Lafont resource category with zero-morphisms, being an elementary coherent
differential category is a property, not an additional structure: it simply means that it
satisfies the two conditions of elementary summability.

3.2.3. Scott summable categories. One distinctive feature of the present approach to differ-
entiation is its built-in compatibility with general recursion at all types. In the models which
motivated this work, general recursion is implemented by means of fixpoint operators which
arise from a cpo structure of homsets as usual in domain-theoretic models of PCF [Plo77].
We explain how the associated order relation is induced by the summability structure.

Let (£,S) be a summable category. Let fo, f1 € L(X,Y), we write fo < fi if there exists
h € L(X,SY) such that 7o = fy and o h = f;. In other words: there is g € £(X,Y") such
that fo, g are summable and f; = fo + ¢.
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Lemma 3.2. The relation < on L(X,Y) is a preorder relation for which 0 is the least
element.

Definition 3.3. The summable category (L£,S) is Scott if, equipped with <, any homset
L(X,Y) is a poset (with 0 as least element as we have seen), which is w-complete is the sense
that any monotone w-sequence of elements of £(X,Y) has a least upper bound!®. Morphism
composition is required to be continuous. This means in particular that £ is enriched in
w-cpos. Moreover the ® tensor is assumed to be locally continuous (in both arguments)
when L is an SMC. Next, the functor S must be locally continuous, and, in the case where
L is a resource category, the functor !_ is also assumed to be locally continuous.

Assume that £ is a Scott summable resource category. In the CCC L, for any object
X, we can define a sequence of morphisms VX € £,(X = X, X) by induction as follows

Vo =0
X =Evo (X = X, X

and an easy induction, using the minimality of 0 and the fact that all categorical operations
are monotone wrt. <, shows that the sequence (V:X),en is monotone. We set
VX =sup V¥ € £i(X = X, X)
neN
and by continuity of all categorical operations we have

VX =Evo (X = X, V%) (3.3)

which means that V¥ is a fixpoint operator.
We will illustrate now these general definitions in two concrete models of LL which will
also be essential in the technical developments of this paper.

3.3. The relational model. The simplest example of a resource category is the category
Rel of sets and relations which is a well known model of classical LL. In [Ehr23] it is proven
that Rel is also an elementary differential summable resource category; actually we proved
this result for the category nCoh of non-uniform coherence spaces, but in that category the
operations on morphisms are exactly the same as in Rel and the operations on objects are
the same as in Rel as far as the webs are concerned!S.

Let us briefly recall the definition of this model of LL. An object of Rel is a set and
Rel(X,Y) =P (X xY), composition being the usual composition of relations denoted vu
when u € Rel(X,Y) and v € Rel(Y, Z). The identity morphism is the diagonal relation.
The isos in this category are the bijections.

This category Rel is symmetric monoidal with 1 = {x} as tensorial unit and Xy ® X; =
Xo x X1, and given u; € Rel(X;,Y;) for i = 0,1, one sets ug @ u1 = {((ao,a1), (bo,b1)) |
(ai,b;) € u; for i = 0,1)} defining a functor Rel®> — Rel which has obvious natural isos
Ax € Rel(l@X,X), pPx € Rel(X®1, X), ax, X1,Xs € Rel((Xo ® X1)®X2,X0®(X1 ® XQ))

150n purpose we do not ask all directed sets to have a lub as it is usual in domain theory because we have
in mind probability based models where such a requirement would prevent us from applying the monotone
convergence theorem.

16A non-uniform coherence space X is a triple consisting of a set |X|, the web of X, and two disjoint
binary symmetric relations on that web, the strict coherence and the strict incoherence relations. Remember
that Rel is a model of differential LL — which is not the case of nCoh —, so it is not surprising at all that
it is also a coherent differential category.
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and vx,,x, € Rel(Xo® X1, X1 ® Xo). This SMC is closed with internal hom from X to Y
the pair (X — Y,ev) where X —oY = X xY and ev = {(((a,b),a),b) |[a€ X and be Y} €
Rel((X —Y) ® X,Y). Given any morphism u € Rel(Z ® X,Y), the associated morphism
(Curry transpose of u) curu € Rel(Z, X — Y) is simply curu = {(a, (b,¢)) | ((a,b),c) € u}.
This SMCC is *-autonomous with dualizing object 1. = 1, so that the “linear negation” of
an object X is simply X.

The category Rel is cartesian: the cartesian product of a family (X;);er of objects of
Rel is (&icr Xi, (pr;)icr) where &ier Xi = Ui} x Xi and pr; = {((4,a),a) | i € I and a €
X;} € Rel(&jer X, X;) is the ith projection. The tupling of a family of morphisms (u; €
Rel(Y, Xi))iel is the morphism <Ui>i61 S Rel(Y, &ier Xz) given by <Ui>iel = {(b, (i, a)) ‘ 1€
I and (b,a) € u;}. The coproduct (Dier Xi, (T;)icr) also exists and is given by ®;er X; =
&icr X; and T; € Rel(X;, ®jecr X;) is given by T; = {(a, (i,a)) | i € I and a € X;}; it is the
ith injection. The cotupling of morphisms (u; € Rel(X;,Y))er is [u];c; € Rel(®ier X;,Y)
given by [u;);c; = {((i,a),b) | (a,b) € u;}. Notice that the terminal (and initial) object of
Relis T =0=0.

The SMC Rel is a Lafont category [Mel09, Ehr23]. The exponential functor is given
by X = Mg,(X) and, if s € Rel(X,Y) then s = {([a1,...,ax],[b1,...,0k]) | k& €
N and Vi (a;,b;) € s)}, defining a functor Rel — Rel. The comonad structure of that
functor is given by the natural transformations derx = {([a],a) | a € X} € Rel(!X, X) and
digy = {([m1,....,mp],m1+---+my) |neNand my,...,m, € X} € Rel(!X,!!X). The
Seely isomorphisms are m® = {(*,[])} € Rel(1,!T) and

m%(’y ={(([a1,---,an], [b1,---, b)), [(1,a1),...,(1,an)], (2,01),...,(2,bk)) |
ai,...,ap € X and by,...,0p €Y} e Rel(IX ® Y, (X & Y)).
The Kleisli category Rel; can be directly described as Rel;(X,Y) = Mg, (X) x Y, with
identity Ildx = {([a],a) | a € X} € Reli(X,X) and, given u € Relj(X,Y) and v €
Reli(Y, Z), composition given by v o u = {(my + --- + mg,c) | k € Nand Jby,...,b; €
Y ([b1,...,bk],¢) € vand (m;,b;) €ufori=1,... k}.
It is easy to see that Rel is elementarily summable (see Section 3.2.2) and has therefore

exactly one coherent differential structure. The cocommutative comonoid structure of
D=1&1={0,1} has counit pry = {(0,%)} € Rel(DD, 1) and comultiplication

L= {(07 (070))7 (17 (17 0))7 (17 (07 1))}
={(r,(ro,m1)) | r,r0,71 €D and r =19 +71)} € Rel(D,D @ D)

as explained in Section 5.1 of [Ehr23] which, by the Lafont property, induces on D the
I-coalgebra structure 9 € Rel(ID, D) given by

d={(0,k[0]) | k € N} U {(1,[1] + K[0]) | k € N}
k
={(r,[r1,..., 7)) €D X Mgy(D) | r = Zrl}

i=1
As explained in Section 3.2.2, in this elementary setting, the associated summability functor
is

Sp=(D — ),
and is therefore given by Sp X = {0,1} x X and, for u € Rel(X,Y), Spu = {((¢,a), (i,b)) |
i € Dand (a,b) € u}. The associated natural transformations are m; = {((¢,a),a) |
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a € X}o =mnUm = {((4,a),a) | i € Danda € X} € Rel(Sp X, X) and the two
injections are ¢; = {(a, (i,a)) | a € X} € Rel(X,Sp X) for i = 0,1. So any two morphisms
fo, f1 € Rel(X,Y) are summable, and their sum is fo U fi.

The monad structure of Sp has g = {(a, (0,a)) | a € X} € Rel(X,Sp X) as unit and

7 ={((0,0,a),(0,a)) | a € X} U{((1,0,0a),(1,a)) [ a € X} U{((0,1,a),(1,a)) |a € X}

= {((ro,71,a),(r,a)) |a € X, r,79,71 €D and r = 79 + 1} € Rel(S3 X, Sp X)
as multiplication. The flip is ¢ = {((ro,71,a), (r1,70,a)) | r0,71 € Danda € X} €
Rel(S3 X,S3 X).

Notice that there is a natural bijection between !Sp X and Mg, (X) X Mg, (X), mapping
the multiset [(0,a1),...,(0,a;),(1,b1),...,(1,b,)] to ([a1,...,ai], [b1,...,b;]). The natural
transformation dx € Rel(!Sp X,Sp !X) is defined as the Curry transpose of the following
composition of morphisms

(D—X)®Rd HQ)HX,IDJ
-

(D — X)®D (D —o X) @D 2758 1sl(D —o X) @ D) % 1X |

(see [Ehr23], Theorem 20 and hence
dx = {((m,[1),(0,m)) | m € Man(X)}
U{((m,[a]),(1,m+[a])) | m € Mgy(X) and a € X}.

It will also be convenient to write equivalently

Ox = {(m/, (r,m)) € Mga(D x X) x (D x Mga(X)) |
m = lay,...,a), m =[(r1,a1),...,(rp,ap)] and r =71 + -+ i}
Therefore the functor D: Rel; — Rel,, which is defined on objects by DX =SpX and
on morphisms by Du = (Spu) 0x € Rel(!Sp X,SpY) for u € Rel|(X,Y) satisfies
Du={((m,[]), (0,5) | (m,b) € u} U{((m, [a]), (1,)) | (m + [a],b) € u}
={(m, (r,b)) | m' = [(r1,a1), ..., (T, ar)] € Mga(D x X),
([a1,...,a],b) Evand r=7r; +---+ 1, € D}.

Then the monad structure of Sp is extended to D by (x = {([a],(0,a)) | a € X} €
Rel,(X,D X) and

HX = {([(0,0,&)], (0,(1)) ’ ac X}
U{(l(1,0,a)],(1,a)) | a € X} U{([(0,1,a)],(1,a)) | a € X}

={([(ro,r1,0)],(r,a)) |la€ X, r,ro,r1 €D and r=ro+r1} € Rel[(ﬁ2 X, 5X)

Concerning fixpoints, observe that (Rel,Sp) is Scott (in the sense of Section 3.2.3) with
C as associated order relation on morphisms. One checks easily that the (VX € Rel;(X =
X, X))nen are given by VX — 0 and Y2y, = {(my + -+ + my + [(a1, ... ap) a)],a) | k €
N and (m1,a1), ..., (mk,ax) € YX} so that X € Rel;(X = X, X) is the least set such
that for all & € N, (my,a1),...,(mr,ax) € YX and a € X, one has (my + --- + my +
[([a1,---,ax],a)],a) € YX.
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3.4. Probabilistic coherence spaces as an elementary coherent differential category.
We present now the model which motivated this whole investigation, the model of probabilistic
coherence spaces (PCS [DE11]), and explain why it is an elementary model of coherent
differentiation. One can see Pcoh as obtained by adding to the purely combinatorial skeleton
Rel some “numerical flesh” whose purpose is to describe probabilities of computational
events.

Given an at most countable set A and u, v’ € EA, we set (u | u') =3, c 4 uattl, € R>g

where R>( is the completed half real line. Given P C RZOA, we define P+ C R>o " as
pt :{u'ERZOA]Vu€P<ulu’> <1}.

Observe that if P satisfies Va € AJdx € P x, > 0 and Va € A3dm € R>oVz € P z, < m then
Pt e (RZO)I and P satisfies the same two properties that we call local boundedness which
can also be rephrased as

YVae A 0O<supz, < 00.
zeP

A probabilistic pre-coherence space (pre-PCS) is a pair X = (| X|,PX) where | X| is an
at most countable set'” and PX C RZO‘Xl satisfies PX++ = PX. A probabilistic coherence
space (PCS) is a pre-PCS X such that PX is locally bounded.

Given a PCS X and z € PX we set ||z||x = supycpxi (z | 2') € [0,1]. This operation
obeys the usual properties of a norm: ||z|| =0 = x = 0, ||xg+ z1]| < [|zo]| + ||z1]] and
|Az|| = Aljz|| for all A € [0,1].

Remark 3.4. Given z € PX and a € |X| we use the notations z, or z(a) for the cor-
responding element of R>(, depending on the context. In some situations x; can denote
an element of PX and in such a situation we will prefer the notation z;(a) to denote the
a-component, of x; to avoid the ugly x;,.

Given t € ]REOAXB considered as a matrix (where A and B are at most countable sets)
——A ——B .
and u € R>o", we define t-u € R>g~ by (t-u)p = Y c 4 taptia (usual formula for applying a

matrix to a vector), and if s € @BXC we define the product!® st € @AXC of the matrix
s and t as usual by (st)a,c = D pcptabshe. This is an associative operation.

Let X and Y be PCSs, a morphism from X to Y is a matrix ¢ € (Rso)X*Y1 such that
Ve € PX t-x € PY. It is clear that the identity (diagonal) matrix is a morphism from X
to X and that the matrix product of two morphisms is a morphism and therefore, PCSs
equipped with this notion of morphism form a category Pcoh.

The condition t € Pcoh(X,Y) is equivalent to Vo € PXVy' € PYL (t-2 | ¢/) <1
and observe that (t-z [ y') = (t | * ® y/) where (v @ y)(q,p) = Zay,- We define X — YV =
(| X| x [Y],{t € (R5o) XYl |V € PX t -2 € PY}): this is a pre-PCS by this observation,
and checking that it is indeed a PCS is easy.

17This restriction is not technically necessary, but very meaningful from a philosophic point of view; the
non countable case should be handled via measurable spaces and then one has to consider more general
objects as in [EPT18b] for instance.

18We write this product in the reverse order wrt. the usual algebraic conventions on matrices, because it
is the notion of composition in our category and we respect the standard order of factors when writing a
composition in a category. This is a well known and unfortunate mismatch of conventions.
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We define then X @Y = (X —o YL)L; this is a PCS which satisfies P(X ® Z) = {z® 2 |
z € PX and z € PZ}+ where (2 ® 2)(4,c) = Zaz. Then it is easy to see that we have
equipped in that way the category Pcoh with a symmetric monoidal structure for which it
is *-autonomous with the dualizing object L =1 = ({x}, [0, 1]), which coincides with the
unit of ®. The *-autonomy follows easily from the observation that (X —o 1)~ X,

Lemma 3.5. Given s,t € Pcoh(X; ® -+ ® Xy,Y), if for all (z; € PX;)F_, one has
s (11 ®--Quap) =t (x1Q---®@xy) then s =t.

The category Pcoh is cartesian: if (X;);es is an at most countable family of PCSs, then
(&jes Xj, (prj)jes) is the cartesian product of the X;’s, with [&jes Xj| = Ujes{j} x [Xj],
(Prj)(kya),ar = 1 if j = k and a = a’ and (pr;)(g,q),w = O otherwise, and = € P(&jes X;) if
pr; - € PXj for each j € J (for z € (Rsp)l&i€7 X51). Given (t; € Pcoh(Y, X;))jes, the
unique morphism ¢t = (t;);e; € Pcoh(Y,&;es X;) such that pr;t = t; is simply defined
by ty,(j.a) = (tj)ap- The dual operation @jes X;, which is a coproduct, is characterized by
‘@jeJ X]’ = Ujej{j} X ‘XJ’ and x € P(@jej X]) ifx e P(&jeJ X]) and ZjEJ Hprj . .%'HXj <1.

A particular case is N = @,eny X, where X, = 1 for each v € N. So that |[N| = N
and z € (R>o)" belongs to PN if 3°, .z, < 1 (that is, « is a sub-probability distribution
on N). For each v € N we have e, € PN which is the distribution concentrated on the
integer v. There are successor and predecessor morphisms suc, pred € Pcoh(N,N) given
by suc,,,» = 8,41, (see Section 2.1) and pred,,, = 1if v =+ =0or v =1 +1 (and
pred, ,» = 0 in all other cases). An element of Pcoh(N, N) is a (sub)stochastic matrix and
the very idea of this model is to represent programs as transformations of this kind, and
their generalizations.

As to the exponentials, one sets [!X| = Mg, (|X]) and P(1X) = {z' | z € PX}++
where, given m € Mgy, (| X)), #}, = 2™ = [Toeix 2@ A morphism t € Pcoh(lX,Y) =
P(1X —Y) is completely characterized by the associated analytic function

t:PX — PY

|
Tt = Z tm "™ €.
melX|,be|Y]

Lemma 3.6. Let t € (Rx)'X1® XYl One has t € Pcoh(!X; ® --- @ !X}, Y) iff for
all (v; € PX;)¥ | one hast- (2} ®---®x}) € PY.

Lemma 3.7. Ifs,t € Pcoh(IX;® - ®!X},Y) satisfy s+ (v} @ -+ @a}) =t (2] @+ @ x},)
for all (z; € PX;)k_| then s =t.

This very useful property uses crucially the local boundedness property of PCSs.

Then given ¢ € Pcoh(X,Y), we explain now how to define !t € Pcoh(!X,!Y). Let
m € Man(|X|) and p € Mg, (|Y]). We use L(m, p) for the set of all r € Mg, (|X| x |Y])
such that

Va € |X|m(a)= Y r(a,b) and Vbe|Y|p(d)= > r(a,b).
beY| a€|X]|
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Notice that if » € Mg, (|X| x |Y|) then #r = #m = #p so that L(m,p) is non-empty iff
#m = #p. When r € L(n,p) we set

- plb)!
L, [Toeix (@, b)!
which belongs to N '\ {0}; this is a generalized multinomial coefficient. Then we have

W= 3 [T

rel(m,p)

where we recall that t" = ], »e/x|x|v| tz(; ) The main feature of this definition is that

for all x € PX one has '/Z\f(.%‘) = It.2' = (t-z)". This property fully characterizes !t.
The comonad structure is given by dery € (Rsq)" Xl given by (derx)m. = 01 [a] SO
that Vz € PX dery - 2! = 2 € PX and therefore dery € P(!1X,X). Similarly one defines
digy € (Rso)'X "Xl by (digx) (m,(m1,....mn]) = Ommy+-+m, 50 that Vo € PX digy - o =z"
and hence, again, digy € P(!X,!!X). The equations required to prove that (! der,dig)
is indeed a comonad result from Lemma 3.7. For instance, let ¢ € P(X,Y), we have
(digy 't) - &' = digy - (t-2') =digy - (t-2)! = (¢t-2)" and (Mt digy) - &' = ¢ - (digy - 2') =
ez = (1t -2 = (t-2)" which shows that dig is a natural transformation. As another
example, we have (dig,y digy) - z' = dig;y - 2" = 2™ and (/digy digy) - 2' = ldigy - 2" =
(digy - 2')' = (z")' = 2" and hence dig,y digy = !digy digy which is one of the required
comonad commutations. The others are proven similarly.

The monoidality Seely isomorphisms m® € Pcoh(1,!T) and m?Xh x, € Peoh(!X; ®
X2, (X1 & X3)) are given by mgiH = 1 and m%(mhmZ)’m)
multiset m = [ay,...,a;] we set i xm = [(i,a1),...,(i,a)], see Section 2.1. It is obvious
that mY is an iso. To check that m?Xhm is a morphism we use Lemma 3.6: let z; € PX;

= 61*m1+2*m2,m where, for a

for i = 1,2, one has m§(17X2 (7] ®@xh) = (w1, 22)" € P(X] & X3). Conversely, defining
5 € (Rsq) (X1&X2) (X1 81Xz2) 1y S, (ma1,ma) = Olsmi+2+ma,m We have s - (z1,z2) = 2} ® a2} €
P('Xl & 'Xg) for all x; € PX; (Z = 1,2), and hence s € PCOh('(Xl & XQ), (‘Xl X 'XQ)) It
is obvious that s is the inverse of m%h x, Which is therefore an iso in Pcoh. Proving that it
is natural and that it satisfies all the required commutations for turning Pcoh into a model
of LL is routine (using crucially Lemma 3.7).

The induced lax monoidality ;* € Pecoh(!X; ® -+ @ !X, /(X1 ® --- ® X)) is such that

(Mk)(ml,...,mk),m =1ifm= [(a%,...,ai),...,(a?,...,aﬁ))] and (m; = [ail,...,a?])f:l, and

(uk)(mh._’mk),m = 0 otherwise.
Theorem 3.8. The SMC Pcoh is a Lafont category.
Proof. This is the object of [CEPT17]. ]

3.4.1. Elementary differential structure of Pcoh. The category Pcoh has zero-morphisms
(we have the 0 matrix in Pcoh(X,Y") for any two objects X and Y).

The object D = 1 & 1 can be described as |D| = {0,1} and PD = [0, 1]2. Then the
morphisms (7 € Pcoh(1,D)),—g 1 are characterized by 7§ - u = (u,0) and 7 - u = (0, u)
for u € P1 = [0, 1]. These two morphisms are jointly epic because, for any ¢t € Pcoh(D, X)
and (ug,u;) € PD one has ¢ - (ug,u1) =t - (up,0) + ¢ - (0,u1) by linearity of ¢.
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Given a PCS X, the PCS Sp X = (D — X)) is characterized by |Sp X| = {0,1} x| X| and
PSp X = {(z0,21) € PX? | 29 + 21 € PX} (to be more precise, an element x € (Rxq)> Xl
belongs to PSp X if xg + z; € PX, where z, € PX is given by z,(a) = z(r,a), we refer
to Remark 3.4 for the notation). Given 2 € P(Sp X), the morphism z A¥ € Pcoh(1, X),
considered as an element of PX, is simply xg+ x1. So the natural transformations 7, 71,0 €
Pcoh(Sp X, X) are characterized by 7, - = x, and 0 - x = x¢ + ;.

Therefore two morphisms sg, 1 € Pcoh(X,Y') are summable iff Vo € PX so-x+s1-2 €
PY which is equivalent to so + s1 € Pcoh(X,Y) since so-x + s1 -2 = (so + s1) - . Then
the witness of summability is (sg, s1)s € Pcoh(X,SpY’) characterized by (so,s1)s - = =
(so - x,s1-x). Let soo,S01, 810,511 € Pcoh(X,Y) be morphisms such that (sgo, sp1) and
(810, 511) are summable, and moreover (sg9 + So1, S10 + $11) is summable. Then the witnesses
(800, S01)s, (510, 511)s € Pcoh(X,S X) are summable because (sgo, So1)s + (S10,511)s =
(s00 + S10, So1 + S11)s as easily checked. So (S-witness) holds (see Section 3.2.2 and [Ehr23])
which shows that Pcoh is an elementary summable category.

As explained in Section 3.2.2 and [Ehr23] Section 5.1 D is equipped with a com-
mutative comonoid structure given by the two Pcoh morphisms pr, € Pcoh(D,1) and
L € Pcoh(D,D®D), which are given by (prg)y« = 0r.0 and L,. (o 1) = 8ppgpry for r,ro, 71 € D.
Therefore, by Theorem 3.8, D has an induced !-coalgebra structure 9 € Pcoh(D,!D), which
is given by

0

T‘,[’I"l,---,'f’k} =

0

k
T?Zi:l Tk ’

in other words 507[ is equal to 1 if all the r;’s are = 0 and to 0 otherwise. And

T1yeeesTk]
517[741,“.“} is equal to 1 if exactly one among the r;’s is equal to 1 an all the others are equal
to 0, and to 0 otherwise.

By Theorem 21 of [Ehr23] we know that & (denoted ¢ in that paper) defines a coherent
differential structure on Pcoh. Let us describe explicitly the associated natural dx €
Pcoh(!D X,D!X). We know that dx = curd where d € Pcoh(!(D — X)®D,!X) is defined

as the following composition of morphisms in Pcoh:

(D—X)®d 1 x D 1
- 75 |

(D — X)®D (D —o X)® D D —o X)®D) % 1X .

Let d' = 3 _,xp ({(D — X) ®J) € Pcoh(!(D — X) ® D, (D — X) @ D)), we have

J )1 ifm=[((r1,01),71), - ((Tnyan), )] and r = 1) + - 41,
([(Tl7a1)""1(rn7an))]7r)’m B O OtherWiSe

On the other hand, to have (!ev)[((n,al)m
p = [a1,...,a,]. So to have d(
p=[ai,...,ay], and then

D ser((Prsan) ) p # 0 we need (r; = r})I; and

Tl7a’1)7"'7(rn7an))]7’r)7p # 0 We need T. = Tl + T + ’r.n and

A([(r1,01),0,(Frsan)))p = (1OV)[((r1,01),70) 000 (@) 7)1 ]

Notice that L([((r1,@1),71),-- -, ((*n,an), )], [a1, ..., ay]) contains exactly one element h
such that ev” # 0, namely the multiset h = [(((r1,a1),71),a1), ..., (((*n,an),7n), an)], and
of course ev? = 1. If r = 0 we have r, = --- = 1, = 0 and hence

p
d([(rl7“1)7""(rn7an)}’T)’p = |:h:| B 1 '
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If r = 1, there is exactly one i € {1,...,n} such that r; = 1, and we have r; = 0 for j # i.
Then we have

b
A([(r1,a1) e (rrsan)]r)p = [h] =p(a;).

To summarize

1 if r=0and m'=0%xm
(O ) (rom)y = { m(a) if r =1, a € supp(m) and m’ = (0 x (m — [a])) + [(1,a)]
0 otherwise.

Let ¢t € Pcoh(X,Y) = P(IX — Y). Then Dt € Pcohy(D X,DY) is defined as (St) dx, so

we have

b ifr=0and m' =0*xm
Bty = (@) + Dty 7= 1 and m/ = (0% m) + [(1, )]
0 otherwise.

Notice that in the above trichotomy the multiset m is completely determined by the condition

on m': in the first case m’ = [(0,a1),...,(0,a,)] and then m = [ay, ..., ay]. In the second
case m' = [(r1,a1), ..., (rn,an)] and there is exactly one index i such that r; = 1, and we
have r; = 0 for j # i. Then we have m = [a1,...,Gi—1, Git1,...,a,] and a = a;.

Let t € Pcoh(X,Y), to describe the function Dt:P(DX) — P(DY), remember first
that P(D X) can be identified with the set of all pairs (z,u) € PX? such that x +u € PX.
With this identification, the element (z,u)" of P(ISp X) is given by

@l = [ @@ T] w0
a€lX]| a€c|X]|
If m' = 0%m then (z,u) , = 2™ and if m' = 0xm+[(1,a)] then (z,u)} , = 2™u,. It follows
that

Dt(x,u) = [ (=), > (m(@) + Dty (057 ™ Ua €
meMagn(X),a€| X |,be|Y]
and notice that the second component of this tuple is nothing but the u-linear component
of the powerseries t(z + u) (see [Ehr19]). So, as expected, if we set f =t then

Bt u) = (f(x), '(x) - )

in the ordinary sense of mathematical differentiation.

» Example 3.9. There is a morphism ¢ € Pcohy(1,1) such that, identifying P1 with [0, 1],
one has t(z) =1 — I —z = Y nen tnx™ = f(x) for a sequence (t,)nen of non-negative real

numbers that we could write explicitly. Then D t(z,u) = (¢(x), Y onen(m + Dtpp12™u) =
(f(z), f/(x)u). In this case it is interesting to notice that f'(x) = 2\/% is not defined for
x =1 but that f’(z)u is defined even for x = 1 (and takes value 0) because of the constraint
that 2 +u = 1. And indeed we know that Dt € Pcoh;(B 1, D 1). The function f is entirely

defined by the equation f(z) = %x + %f(x)2 and by the fact that the corresponding series
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M —lin M’
L[M] —lin L[M/]

L0] =in O L[Mo+ My] —jin L[Mo] + L[M;]

Figure 1: Linear reduction, L must be a linear context of height 1.

must have only non-negative coefficients. It is easy to write in a probabilistic version of PCF
with a unit type a recursive program which is interpreted as . <

4. SYNTAX OF Ay

Our choice of notations for Ay is fully coherent with the notations chosen to describe the
model, suggesting a straightforward denotational interpretation. The types are A, B, - - :=
D4, | A= B (with d € N) and then for any type A we define DA as follows: D(D%) = Dd+1
and D(A = B) = (A = DB). Terms are given by

M,N, =z | Mt M | (M)N | YM | n | succ®(M) | pred®(M) | if% (M, P,Q)
| letd(z, M, P) | DM | w}(M) | 1}(M) | 6*(M) | cf(M) | 0% | M+ N

where n,d,l € N and i € {0,1}, so that our syntax has countably many constructs.

4.1. The typing system. The typing system uses a reduction relation —;, expressing that
most constructs are linear wrt. 0 and addition of terms; it is specified in Figure 1 and is
based on the following notion of linear context

L:=[]| L | (L)N | succ(L) | pred(L) | if*(L, P, Q) | let(x, L, P)
| DL | x{(L) | (L) | 64(L) | (L).

The height Ih(L) of a linear context L is the distance between its hole and its root, in other
words |h([]) = 0, Ihn(AzA L) = 1 4 |h(L), Ih(ifY(L, P,Q)) = 1 + Ih(L) etc.

(4.1)

Remark 4.1. We have decorated the conditional and the let constructs with a type, which
is intended to be the type of its last parameter(s). The only purpose of this decoration is to
provide a type for the resulting 0 in the linear reduction of if¢(0, P, Q) and let?(z, 0, P) in
Figure 1. Most often, we will drop this type decoration which can easily be retrieved from
the context.

Lemma 4.2. For any linear context L we have L[0] —, 0 and LMy + M;] =, L[Mo] +
L[M].

Proof. By induction on lh(L). If In(L) = 0 we use the fact that R —; R. Otherwise we have
L = K[L'] where Ih(K) = 1 and Ih(L') = Ih(L) —1. By inductive hypothesis L'[Mo+ M;] =,
L'[My]+ L'[M;] and hence by definition of —jiy we have L{My+ M) —, K[L'[Mo]+ L'[M]]
and by definition of —;, again we have K[L'[My| + L'[Mi]] —in L[Mo] + L[M;]. The case
of L]0] is similar. ]

One should think of a term of type D*A as a complete binary tree of height k whose
leaves have type A. In constructs such as succd(M ), the integer d represents the “depth” at

which the corresponding operation is performed in a tree of type DA with k > d. The main



7:24 T. EHRHARD Vol. 19:4

ie{l,....k} Iz:A-M:B
(var) (abs)
(1: Ay, . o Ag) Bt A; I'XeAM:A=B
'M:A=B TFN:A : N
(app) ''FM:A= A (fix) n e (num)
I'-(M)N:B THYM:A Thn:e
. Nd . pd
PEM:DhY (e PEM:D% g
' F succ?(M) : D4 '+ pred?(M) : D%
I'M:D4 THP:A THQ:A . (0)
- (if) TEO0A: A
I Fifd (M, P,Q) : DA :
I'-M:D¥A  ie{o,1 T+ M : DA :
— 0.1} (projl) —— (proj2)
I'F7d(M): DA [ F7d(M) +7¢(M) : DA
T+ M+ M; : D41 A . CHM:A M-y M
—— (projd) (lin)
[ F7d(Mo) + 7d(M;) : D4A M :A
I'-M:D%4  iec{0,1} _ | [+ M : D424
— 1nj — (Sul’l’l)
I (M): DA I+ 6%(M): DA
[ M : D24 (cire)
T b cf(M) : D424
: . I'+M:D% TD,z:tFN:B
LEM:A=B (g borien (let)
I'-DM :DA=DB T+ letd(x, M,N) : DB

Figure 2: Typing rules

intuitive feature of such a tree is that its leaves are summable. When d = 0 we often drop
the superscript.

We provide a typing system in Figure 2 allowing one to prove typing judgments I' - M : A.
Notice that in general, when I' - Ny : A and I' = Ny : A, it is not necessarily true that
I'F Nog+ Ny : A

Some examples of terms are provided in Section 4.4 together with their relational
semantics. More examples will be provided in forthcoming articles.

Remark 4.3. We use the notation DM for the syntactic differentiation of a term M instead
of DM as in an earlier version of this paper, and similarly for types. In that way we avoid a
clash with the notations used in the (categorical and additive) setting of cartesian differential
categories for denoting an operation which, in our syntax, would correspond to 7r1([~)M ).
We use fully compatible notations in the final version of [Ehr23].

4.2. Differential. Given a variable x and a term N, we define a term 9(z, M) in Figure 3
which is called the differential of M with respect to x.

As it is usual in the A-calculus, this definition requires some a-conversions to be
performed on the fly.
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O(z,y) = {Z(y) z)ftlgllejwfse (x, \yB P) = \yB o(x, P) if x # y
d(x,DM) = ¢(Dd(x, M)) d(z,(P)Q) = (0(DI(z, P))) 8(x, Q)
O, YM) = Y(6(DO(x, M))) 8(,n) = to(n)
d(x,succ?(M)) = succ™(d(z, M)) d(x, pred?(M)) = pred®™ (9 (z, M))
O(x, it (M, P, Q)) = 6(ca(if"* (0(z, M), 8(x, P),d(x, Q))))
Ol let(y, P,Q)) = blcallet™ (3, (z, P), 8z, Q))))
J(x,0)=0 d(x, My + My) = d(x, My) + O(x, M)
Oz, 7 (M) = 71 (0(z, M) O(z,0%(M)) = 641 (8(z, M)
Oz, 1} (M)) = 71 (8(x, M) Oz, cf (M) = ¢ (0(x, M)

Figure 3: Inductive definition of the differential of a term

o, []) =[] O(w, \y* L) = My 0(x, L) if & £ y
d(x,DL) = ¢(Dd(z, L)) d(z, (L) N) = (8(Dd(x, L)) d(z, N)
8(x,succd(L)) = succdH(a(x, L)) Oz, predd(L)) = preddH(@(x, L))
O(x,if(L, P,Q)) = 0(ca(if ™' (0(x, L), d(x, P),d(x, Q))))
O(x,let’(y, L, Q)) = O(cq(let™™ (y,0(x, L), (=, Q))))
d(w, (L)) = 7§ (0(=, L)) 0(x,04(L)) = 6“7 (d(x, L))
O(x, (L)) = 1 (0(, L)) O(x,cf (L)) = ¢ (9(x, L))

Figure 4: Inductive definition of the differential of a context

Lemma 4.4. Let L be a linear context. There is a linear context O(x, L) such that, for any
term M, we have O(x, L[M]) = d(x, L)[0(x, M)].

Proof. Simple analysis of the definition of d(x, M) in Figure 3. The definition of d(x, L) is
given in Figure 4. []

Lemma 4.5. If R —ji, R’ and L is a linear context then L[R] —in L[R']. We also have
L[O] —)ﬁn 0 and L[Ro + Rl] —)ﬁn L[R(]] + L[Rl].

Proof. Straightforward inductions on Ih(L). ]

Lemma 4.6. If R —ji, R’ then O(xz, R) =} 0(z, R').
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Proof. By induction on the derivation of R —j, R'. Assume that R = L[Ry + R;| and
R’ = L[Ry] + L[Ry] with |h(L) = 1. Using Lemma 4.4, we have
d(z,R) = 0(x, L)[0(z, Ry + R1)]
0( L)[0(x, Ro) + O(x, R1)]
O(z, L)[0(z, Ro)] + 0(x, L)[0(x, R1)]
= (9«“7 [Ro]) + 0(x, L[R1])
= 0(z, L[Ro] + L[R1])

i

by Lemma 4.5.

Assume now that R = L[M], R' = L[M'] and M —;, M'. By inductive hypothesis
we know that d(xz, M) —}, 0(z, M'). We have 0(z, R) = 0(x, L)[0(x, M)] and 0(z, R') =
O(x,L)[0(x, M')] by Lemma 4.4 and hence 9(z, R) =}, 0(z, R') by Lemma 4.5. []

Lemma 4.7. If',2: A- M : B then ', x : 5A|—8(J:,M) : DB.

Proof. We consider the following cases, the others are left to the reader.

» Assume first that M = ifY(P,Qo, Q1) and that the last typing rule is (if) so that
I'x:AF P D4, and I'z:AF Q; : B for i = 0,1. By inductive hypothesis we have
I,z:DA + d(x,P) : D41, and | DA + 0z, Qi) : DB for i = 0,1. Applying the
rule (if) we get I',z : DA + it (d(z, P), d(x, Qo), d(z, Q1)) : D¥2B and hence we have
T,z : DA F cq(if(0(x, P), d(z, Qo), d(x, Q1))) : D*2B. Therefore

P DA F 0(c(if* (D, P), 8, Qo). D, Q1)) : D' B.

Notice finally that DI+1B = DDB is exactly the type expected for d(x, M) in that case.

» Assume that M = DP and that the last typing rule is (diff) so that Iz : A = P :
C=D T,z:A+F M : DC = DD and B = (DC’ = DD) By inductive hypothesis
we have I',z: DA  8(z, P) : C = DD and hence T,z : DA + Dd(z, P) : DC = D?D =
D2(DC = D) = DB. 1t follows that T,z : DA F ¢(Dd(z, P)) : DB as required.

» Assume next that M = Ay® P and that the last typing rule is (abs) so that T,z : A,y : C' F
P : D (and hence B = (C' = D)). By inductive hypothesis T,z : DA,y : C'+ d(x, P) : DD
and hence T,z : DA+ \yB d(x, P) : (C = DD) = DB as required.

» Assume now that M = (P)Q and that the last typing rule is (app) with ',z : A+ P :
C=BandT',z: AF Q : C. Then by inductive hypothesis we have I', x : DA+ J(x, P) :
D(C = B) = (C = DB) and T,z : DA F (z, Q) : DC. Therefore

T,z :DAF Dd(x, P): DC = D*B = D*(DC = B)
and hence T,z : DA + 6(Dd(z, P)) : DC = DB so that I,z : DA - (§(Dd(x, P))) d(z, Q) :
DB by the rules (sum) and (app).
» Assume that M = cf(P) and that the last typing rule is (circ) with T,z : A+ P :
DI+d+2C = B. By inductive hypothesis we have I,z : DA  8(z, P) : D™4+3C and hence
T,z : DA F ¢ (d(z, P)) : D¥H3C = DB by applying the rule (circ).
» Assume that M = YP and that the last typing rule is (fix) with I';z: A- P: B= B
so that T,z : DA + d(z,P) : B= DB and hence I',z: DA + Dd(z,P) : DB = D?B
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(\zA M) N =, M [N/x] D(Aa? M) =4, AaPA d(x, M)
succ’(n) —a, n+1 pred’(0) — 4, 0
pred’(n+1) =5, n if?(0, P,Q) —a, P
if'(n+1,P,Q) —a, Q let (2,1, P) —a P [n/z]

YP =, (P)YP
Figure 5: Main reduction rules

by (diff) and therefore T', 2 : DA - §(DO(x, P)) : DB = DB by (sum) and finally ', z : DA +
Y (6(Dd(z, P))) : DB by (fix).

» Assume that the last typing rule is (projl) meaning that we have M = 7¢(P) and
B = DYC with ax:AF P D4T1C. Then by inductive hypothesis we have I', x : DA
d(z, P) : DY2C and hence T,z : DA+ 7971 (d(x, P)) : D*1C by the rule (projl).

» Assume that the last typing rule is (proj2) so that M = 7d(P) + 7T1( ) and B = D?C
with I,z : A - P : D*C. By inductive hypothesis we have I,z : DA + d(z, P) : D4+2B
and hence I',z : DA F 7T6l+1(0(33, P)) + 78 (d(x, P)) D¥1C by the rule (proj2). That is
T,z:DAF d(x, M) : DB as expected.

» Assume that the last typing rule is (projd) so that M = 7d(Py) + 7n¢(Py) with T,z : A
Py+ P DH1LC and B = D4C. By inductive hypothesis we have

T,z :DAF 8(x, Py) + d(x, P1) : D*2C

and hence I', z : DA+ Oz, Po)) + 7 (9(x, Py)) : DH1C that is T,z : DA+ O(x, M) :
DB as expected.

» Assume that the last typing rule is (lin) so that I'z: A F P : B and P —y;, M.
By inductive hypothesis I',z : DA + d(z, P) : DB and we have d(z, P) —, 0(x, M) by
Lemma 4.6 and hence ',z : DA + d(x;, M) : DB by the rule (lin). []

4.3. Reduction rules. We define a rewriting system A.. The elements of Ay are the
terms of the syntax introduced above. The main reduction rules are given in Figure 5. A
second series of reduction rules given in Figure 6 specifies how the projections 7r§l(M ) interact
with the other constructs. They are crucially used for “reading” the result of a computation

by accessing leaves of a “tree” of type D9A (complete binary tree of height d; the leaves can
themselves be trees if A = DB with e > 0).

Remark 4.8. The two rules wf(ﬂj(M)) A Ty Yrd(M)) if d < e and Trf(wj(M)) — Ay
wj(wf“(M )) if e < d lead clearly to infinite sequences of computations so it would be
tempting to remove one of them from the rewriting system. However both seem necessary

in order to prove the soundness of the stack machine that we introduce in Section 6.1.

We also need the reduction rule
M —lin M !

M —)Acd M’



7:28 T. EHRHARD Vol. 19:4

T (Ax? M) —ay Az? (M) T ((M)N) —ay (m8(M)) N
7 (succ®(M)) =, succ® H(md(M)) ifd<e 7l (pred®(M)) —a, pred® '(xf(M)) ifd<e
w3 (if°(M, P,Q)) =g it (71(M), P,Q) ifd<e 7f(if"(M,P,Q)) —a, if (M,n{*(P), 7! “(Q))
ife<d
(let®(z, M, P)) —a_, let® (z, 78 (M), P) ifd<e wi(let®(x, M,P)) —u, let®(z, M,x{ *(P)) ife<d
7o (67 (M) —a 7o (o (M) 7101 (M)) =g 7 (70 (M)) + o (1 (M)
TE(O° (M) —ag 657 (r0(M)) ifd < e T (0% (M) ag 05 (1 (M) if e < d
T r (- oo (¢ (M) =gy oo (S, (-8, (M)
mi (el (M) —ag € (xf (M) ifd<e mi (el (M)) =g i (w5 (M) ifet+l+2<d
ﬂf(L?(M)) —ag M ifi=j i ;i(M)) —ay 0 ifi#j
Trf(LJe(M)) A b5 ! (xd (M)) ifd<e WZ(Lj(M)) A (T - M) ife<d
Wf(ﬂj(M)) — A 7T§ 1(7T§I(M)) fd<e 5 (7r] (M)) —ag 7r]( ;Hl(M)) ife<d
¢ (DM) —a,, Dy (M) Drf(M) —a,, ©i T (DM)

Figure 6: Projection reduction rules

Example 4.9. Let T = Af4=4 \z? (f) (f) x so that
DT : (A= DA)= A= DA,
we have

DT —a,, AA=PAO(f, 02 (£) () @)
AfA;‘DAAxAm £ )

= AAZPANA (GBS, 1)) A(f, (f) @)

= AP0 (6(Df)) (6(DF)) O(f,2)

AfA=PA A (0(D ) (0(Df)) wole)

which shows that, contrarily to what happens in the differential A-calculus, even if the

variable f occurs twice, no actual sum is created during this computation of the differential
of T.

x)

4.3.1. Reducing sums, and the evaluation contexts. These reduction rules can be applied
almost anywhere in a term (taking care as usual of not binding free variables of N in the
ordinary substitution M [N/z] and in the differential substitution 0(x, M)).

However, in order to make the proof of subject reduction possible, we forbid reductions
within subterms of the shape My + M;. Indeed by the very nature of the coherence we want
to implement in this programming language, we have provided very restricted ways to type
sums. For that reason allowing one for instance to reduce My to some M|, by performing,
say, a f-reduction would lead to a term M + M; whose typeability is not at all obvious
(imagine for instance that M; = m;(M) for some M such that I' = M : DA). One option
would be to develop a theory of “parallel” reductions generalizing the observation that in
the example at hand the S-reduction performed in Mj is also available in M; because both
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come from the same term M. This kind of approach will certainly be developed in further
work. For the time being we adopt a much simpler and conservative approach. So here is
the syntax of our evaluation contexts:
E:=[]|Xe?E | (E)YN | (M)E | YE | succ’(E) | pred?(E)
[ifU(E, P,Q) | if*(M, E,Q) | (M, P, E) | let!(z, E, P) | let’(x, M, E)
| DE | 7{(E) | {(E) | 6%(E) | ¢/(E)
and the associated inference rule is as usual
M A M
E[M] =5, E[M']
We will need however to perform reduction within sums at some point otherwise our
computations will remain stuck for artificial reasons. So we do allow such reductions but

only at “toplevel”: this is precisely the purpose of the associated rewriting system Mgy (Acq)
defined in Section 2.2.

4.3.2. Term multiset typing. Let S = [My,..., M| € Mgan(Aed), I' be a context and A
be a type. We write ' - S : Aif ' - M; : A for i = 1,...,k. This notion of typing
for multisets (which represent sums of terms) is quite weak: I' - [My, M;] : A does not
imply I' - Mg+ My : A. Tt is only for that reason that we will be able to prove subject
reduction for — v, (a.4)- This is not really an issue because we will prove that the semantics
is invariant by reduction (including the — 4, (a.,) reduction) — a property which is called
as usual soundness— so we know that actually the terms that we obtain by performing the
— Man(Aeq) Teduction belong to the expected type even if we are not necessarily able to prove
it syntactically.

4.3.3. Subject reduction.

Lemma 4.10. IfT,z: A- M :B and T+ N : A then T+ M [N/z] : B.

Proof. Straightforward induction on the typing derivation of M. []
Theorem 4.11 (Subject reduction). If ' M : A and M —,_, M’ thenT'+= M': A.

Proof. The last possible typing rules for the derivation of I' - M : A cannot be any of the
rules (proj2), (projd) or (lin) since the reduction —,_, does not apply to sums and to
0. For the remaining typing rules, observe that the typing system is syntax directed, we
consider a few reductions. The proof is by induction on the derivation of M —_, M.

» Assume that M = D(AzB N) and M’ = AzPB 9(z, N) so that the last typing rule is (diff),
with I,z: B+ N : C and hence I' - \aB N : B= C and A = (DB = DC). Then we
have I', z : DB+ d(x,N) : DC by Lemma 4.7, and therefore I - \zPB 9(z, N) : DB = DC
by (abs). All the other reduction rules of Figure 5 are dealt with as usual in the typed
A-calculus, using Lemma 4.10.

The fact that if ' M : A and M —;, M’ then I' = M’ : A is by a straightforward
application of rule (lin).

So we consider now some of the rules of Figure 6.



7:30 T. EHRHARD Vol. 19:4

» Assume that M = 7¢(A\zB N) with T',z: B+ N : D*1C so that A = (B = DC) =
DB = C). Then we have ',z : B+ (N : D?C and hence I - \z:B 7(N): A. And on
the other hand I' - 7¢(Az® N) : A.

» Assume that M = 7¢((N) P) with T+ N : B= D*'C =D(B = DC) and T+ P : B
so that T F (N) P : D*1C and hence I' - M : A where A = D?C, and on the other hand
I+ 7d(N): B = DC and hence I'+ (7d(N)) P : A.

» Assume that M = 7¢(succ®(N)) with T' - N : D¢. For M to be typeable we need to
have d < e and then T' - M : D', = A. Then we have T + Td(N) : D!, and hence
[ F succH(rd(N)) : A.

» Assume that M = 7¢ (|f€(N P,Q))and d < e, with'F N : D¢, and T+ P : BandI'-Q:
B so that T'Fif¢(NV, P,Q) : DB and hence I' - M : D! B, which means that A = D! B.
On the other hand we have I' - 7¢(N) : D!, and hence I - if*~! (7 m4(N), P,Q) : De!B as
expected.

» Assume that M = 7¢(if*(N, P,Q)) and e < d, with T - N : D¢ and assume that T+ P : B
and I' - @ : B so that I' - if¢(NV, P,Q) : D¢B = A. For the term M to be typeable, we
need B to be of shape D4"¢T1C for some (uniquely defined) type C so that 4 = D1C
and hence T' - 7¢(M) : D?C. On the other hand we have I' - ¢ ¢(P) D?~¢C and hence
Tk ife(N, 797¢(P), 74¢(Q)) : DC as expected.

» Assume that M = 7(6%(N)) with T' - N : D*2C, and hence I - %(N) : D*'C and
therefore I' - 7d(§4(N)) : C, so that A = D?C. Then we have I' - 7d(N) D¥+1C by (projl)
and hence T' F 7d(7d(N)) : A by (projl1) again.

» Assume that M = 7¢(6%(N)) with T - N : D*2C, and hence I - %(N) : D*'C and
therefore T F 7¢(#4(N)) : C, so that A = DC. Then we have I 7d(N) + 7d(N) : DI+l
by (proj2) and hence I' b 7 (7((N)) + 7i(x{(N)) : A by (projd).

» Assume that M = 7%(9¢(N)) with d < e. So we must have I' - N : D**24 so that T -
f¢(N) : Dt A = DDA and hence T - 7(0°(N)) : D°A. We have I' b n%(N) : D¢+ A
and hence I' F ¢~ 1(7¢(N)) : D°A as required.

» Assume that M = 7¢(0°(N)) with e < d. We must have T' - N : Det2 A so that I F 6¢(N) :
D¢t A and for 74(6°(N)) to be typeable we need A to be of shape D4~¢B (for a uniquely
defined type B) so that I' - §°(N) : D*'B and hence I' F M = 7(6°(N)) : DB = D°A.
We have I' - N : D4"2B and hence T - (N DB and therefore (using the fact that
d>0) T+ ¢°(r¢*(N)) : DB = D°A.

» Assume that M = 7r”+1(---7rfo(cf(N))) with T + N : D"%2C and hence I’ + M :
D?C' = A by (cire) and 142 applications of (proj1). Then we have T - md ( T, (o ¢ (N))) :

A by [ + 2 applications of (projl). !

» Assume that M = 7¢(cf(N)) with d < e so that we have ' N : DeHH2C for a type C
such that A = D¢**+1C. Then we have I' - 7%(N) : D¢H+1C (since d < e + 1+ 1) and hence
'k cf‘l(wf(]\f)) : Asince e >0 and hence e +1+1=(e—1)+1+2.

» Assume that M = 7¢(cf(N)) with e + 1+ 2 < d so that we have I' - N : Dett2C

for a type C such that A = [~)e+l+1C, and moreover A = D?D for some type D, meaning



Vol. 19:4 A COHERENT DIFFERENTIAL PCF 7:31

that C = D ¢'~'D (remember that d —e — [ — 1 > 0). Then we have I' - 7d(N) :
DeHFLC = A by (projl1) and hence I' F cf(7%(N)) : A by (circ) which can be applied since
A= 66+l+2 6d767l72D_

The remaining cases are similar. L]

Given a derivation § in the typing system we use sz(d) for the number of inference rule
occurrences d contains.

Lemma 4.12. Let § be a typing derivation of ' = Mg+ My : A. For j = 0,1, there is a
derivation 6; of I' = M : A such that sz(0;) < sz(6).

Proof. By induction on §. The following cases can arise.

» The last rule of § is (proj2) so that M; = W?(M), A=D'Band '+ M : D*'B by a
derivation &’ such that sz(¢") = sz(§) — 1 that we can extend with a rule (projl) to get the
required derivation d; of I = M; : A which satisfies sz(d;) = sz(d') + 1 = sz(9).

» The last rule of § is (projd) so that My = 7¢(No), My = wd(N1), A = DB and
T+ No+ Ny : DTLB by a derivation ¢’ such that sz(§') = sz(§) — 1 and hence by inductive
hypothesis, for j = 0,1, we have a derivation ¢} of I' = N : D41 B such that sz(07%) < sz(d')
that we can extend with a (projl) rule to get a derivation §; of I' = M; : A. We have
sz(d;) = sz(6;) + 1 < sz(9).

» The last rule of ¢ is (lin) so that there is a linear context L of height 1 and terms Ny, Ny
such that M; = L[N;] and I = L[Ny + N1] : A by a derivation ¢’ such that sz(¢") = sz(d) — 1.
This implies (by a simple inspection of the various possibilities for L which has height 1)
that for some context A and some type B one has A - Ny + N; : B by a derivation ¢” such
that sz(6”) = sz(8') — k, where k;, € N* depends only on L (if for instance L = if([], Py, P1)
then k;, = 1+ ko+ k1 where k; is the size of the typing derivation of ;). So that by inductive
hypothesis we have derivations d7 of A = N; : B for j = 0,1 such that sz(d7) < sz(6").

We can extend 5}’ with exactly the typing rule associated with L to get a derivation §; of
I' = L[N;] : A such that sz(d;) = sz(d7) + ki < s2(0") + ki, = sz(¢") = sz(d) — 1 and hence
sz(d;) < sz(6). []
Theorem 4.13 (Subject reduction for multisets). Assume that I' = S : A where S €
Mﬁn(Acd) and that S _>Mﬁn(Acd) S'. Then T S : A.

Proof. The following cases are possible.

» S =250+ [M], M -5, 0and S" =Sy. We have I' - S” : A since all elements of S’ belong
to S.

» S =S50+ [M], M —a,, M and S’ = Sp+[M’]. Then we have I' - M’ : A by Theorem 4.11
and hence I' - 5" : A.

» S =Sy+ [M], M =, Mo+ M; and S = Sy + [Mo, M;]. Since I' = M : A, we have
' M;: Afori=0,1by Lemma 4.12 and hence I' - S’ : A. ]

4.4. Examples of terms. Given M such that ' M : A = B we set
DM = 71(DM)
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so that T - DM : DA = B and DM can be understood as the derivative of M taking in DA
an argument which combines the point at which it is computed and the “direction” to which
it is (linearly) applied. Given moreover N such that I' - N : A we set

(M) N = (DM) w1 (N)

so that I' = (M) N : B. This application of M to N will be “successful” only if M uses its
argument linearly. Otherwise, it will produce the result 0.

Remark 4.14. We can understand the term 0 (of any type) as an uncatchable exception
which is raised when some constraint of linearity expressed by the use of the D operator is
not respected. In the semantics, it does not seem possible to distinguish 04 from YAz4 z (an
ever-looping term) so that this exception cannot be caught within the language, but, in the
implementation, nothing forces us to enter into an infinite loop when a term reduces to 0:
we can simply abort the execution of the program and return the information that it failed
(and possibly more information about this failure: this a mere matter of implementation).

Syntactically, whether these two kinds of zero have necessarily to be identified remains
an open question, but since our approach is strongly based on denotational semantics and
since none of our models allows to distinguish them, we will stick to this identification for
the time being. Nevertheless we could even imagine that the execution of our “differential
programs” is controlled by an external “meta-program” which is allowed to handle such
exceptions.

To try to provide some intuitions about the operational behavior of our example terms,
we use the intersection typing system of Section 6.3 even if we are aware that this system
cannot be fully understood by the reader at this stage. We believe nevertheless that most of
its rules convey an intuitive meaning which can be useful to understand these terms.

The only typing derivations for Df in the intersection typing system of Section 6.3 (see
in particular Figure 11) lead to judgments of shape

Op,f:[([al,...,ak,a},b)]:A:>B|—Df:([0-&1,...,O-a1,1-a],b):[~)A:>B

where the notation 7 - a is defined in Section 6.3.2.
The only typing derivations for (f)z in the intersection typing system of Figure 11 lead
to judgments of shape

Or, f:[([a],0)] : A= B,z :[a] : AF(f)x:b: B
where a € [A]R®! and b € [B]R®! whereas the typings of (f)x are
Or, f:[(m,b)]:A=B,x:m:AF(f)z:b: B

for all m € Mg, ([A]R®) and b € [B]ReL
To illustrate this construction we define a term M such that = M : (. = ¢) = 1= ¢ by

M = YAFU=I==0 ) 1=t x gt 1etO(y, 2, if0(y, 0, succ(F) £ (f) ).

The intuition is that (M) f v iterates f : « = ¢ starting from v until the value 0 is reached,
and returns the number of steps. Moreover, the program is written in such a way that the
argument f is used as a linear morphism. In the PCS model of Section 3.4 we can see M as
implementing a random walk in a Markov chain (on the integers) represented by its first
argument (which is used as a N x N sub-stochastic matrix thanks to the linear application

(Hy).
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In the intersection typing system of Figure 11, we can derive

E M ([([i1],v2), (2], v3), -« ([Wk], 0)], (1], k) : (b = 1) = =0

if k € Nand vy,..., € Nt. For k = 0 this means in particular that = M : ([], ([0],0)) :
(t = t) = ¢ = . It is important to notice that the linearity of M in its second parameter
(called z in the definition of M) comes from our use of the let(y, z, ) construct. Then we
can take the derivative of M, typed as follows:

FDM:(v=Di)=t= 0.

We describe now a way of building an argument for such a derivative. Let 7 C N be
recursive and implemented by some term of type =T : 1 — ¢, in the sense that

[T] ={([v],0) [v e TYU{([V],1) [v € T}.
Given terms My, My such that (I' M; : « = A)i—o,1 (for some type A and typing context
I') we define a term (Mo, M1)T such that T' - (Mg, M7)T : © = DA given by

(Mo, M1)" = Az"let’(y, =, if*((T) y, 1o ((Mo) ), 11 (M) y)))
so that
veT;

fii[(k[v],a)] :e= A fii:[]:v=AF {fo, )T : ([V],i-a): 1= DA

where 7o = 7 and 71 = N\ 7. Let us take A = ¢ so that + (DM) (Mg, M1)" : v = 1. Then
one has

Jo: [([Vl]ﬂ VQ)ﬂ ([VQ]v V3)7 SR ([Vi—l]v Vi)? ([Vi-i-l]? Vi-‘r?)v SRR ([Vk]70)] L=
fi: (i, vig)] s e = o= (DM) (fo, f)T : (], k) s e =0
as soon as v; € T \ {0} for j € {1,...,%-1,%+1,...,k}, v; ¢ T and v; # 0. In other
words, in order to induce a successful computation, the stochastic matrices My and M; in
(DM) (Mo, M1)T v need to satisfy the property that the iteration of My from v will leave T°
exactly once, and M; will return in 7 from that external value. During the computation,

M is used exactly once whereas there are no restrictions on the number of uses of M.
More interesting examples should arise by considering typically a term M such that

I,g:DA=DB,z:A-M:B.
Then we have
F,f:A:B,x:AI—M[ﬁf/g} . B
and hence
TP =YOAE A M [[N)f/g}):A:B

meaning that we are defining a term P such that ' F P : A= B in terms of its own
derivative, something which looks a bit like a “differential equation”. The study of such
definitions, typical of our new coherent differential setting, seems complex and is postponed
to further work.
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5. SEMANTICS

Before explaining in Section 5.6 how types and terms are interpreted in the Kleisli category
of a coherent differential summable resource category, we provide more information about
the categorical constructions that we will need. These Sections 5.1 — 5.5 can be seen as a
complement to Section 3.1 and 3.2.

5.1. Partial derivatives. We assume to be given a summable resource category £ which is
closed (wrt. its symmetric monoidal structure) and is equipped with a differentiation
0, see Section 3.1. We generalize the lax monoidality of the D functor to a natural
transformation L, € £L(D X ® --- ® D X,,,D(Xo ® --- ® X,,)) by induction on n (there
are various possible definitions, all leading to the same morphisms), for instance Ly = ¢¢ and
Lnt1 = Lxoo-0xn,Xns: (Ln ® D Xpn+1). The resulting morphism is fully characterized by the
following property.

Lemma 5.1. mg L, =m0 ® - @mpgand 1 L, =1 QmoR® - Qmog+--+70 R - Qmg Q7.

5.1.1. Additive strength. We define morphisms ¢())(0,X1 € 5!([~) X, & X1, D (Xo & X1)) and
Uk, x, € Li(Xo & D X1,D (X0 & X1)) of D as

PXox, = Lin (SXo & 19) and ¥k, x, = Lin (10 & S X71) .
Lemma 5.2. The morphism wg(le € £i(DXo & X1,D (X0 & X1)) is natural in Xo, X1
and similarly for w}(o, Xy

Proof. Let f; € £1(X;,Y;) for i = 0,1, we must show that the two following morphisms are
equal:

=D (fo & 1) o v, x,
= (Sfo&S f1) (Slprg,S'pry) Ox,&x, (S Xo & o)
h=5ev, o (Dfo &5 11)
= (SY0 & w0) ((S fo) Ox, & f1) (Ipro, tpry)
= (SYo & 1) (Sfo & f1) (Ox, & 1X1) (Ipro, lpry)
and for this it suffices to prove that pr, g = pr; h for i = 0,1. We have
prog = (S fo) (S'prg) Ox,&x, (S Xo & o)
= (S fo) Ox, 'pro!(SXo & tp) by naturality of 0
= (S fo) Ox, 'pro = proh
and, by a similar computation
prig = (S/1) 0x, lwo'pry = (Sf1) o 'pri = w0 f1'pry
by (0-lin) and by naturality of ¢y and hence pr; g = pry h. []
There is a simple connection between this additive strength and the tensorial strength

of the monad S introduced in [Ehr23], Section 4, see also Section 3.1.1 in the present paper,
through the strong symmetric monoidal structure of !_ (Seely isomorphisms).
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Theorem 5.3. The following diagram commutes.

m2 %y x,)!
1S Xo ® 1X;] —2 1(S Xy & X1) —225 1S (X & X7)

Ox, ®!X1l laxo&xl
0
Prxg,!1 X

Sm?2

SIXo®1X; —2h S(1X @ 1X7) —25 S1(X & X7)

and similarly for 1/1}(07 x, and go}(o’ X,
Remember that (1!)9(07)(1)! is the promotion of 1/)8(07)(1 € L(1(SXo & X1),S (X0 & X1)),

so that actually (1/19(07)(1)! =1(S Xy & vp).
Proof. By (0-&) we have

aX'O&)(l = (S m%{O,Xl) L!X07!X1 (8XO ® aXl) (m%Xo,SXl)il
so that

a){O&—XI (wg((),xl)! m%X07X1
=(S mgco,xl) Lixo,ix; (Ox, ® 9x,) (mgxo,sxl)_l I(S Xo & o) m%xo,xl

(Sm%,.x,) Lixo,x: (9x0 ® 9x,)(1(S Xo) ® o)
(Smio,x1) Lixox, (Ox, @ tg) by (9-lin)
(

S m?Xo,Xl) T (S 80!1X0,!X1) SOPX(),S !Xl (aXO ® [‘0)
by definition of L in [Ehr23], Section 4

=(S mg@,xl) 7 (S 90!1X0,!X1) S(1Xo ® o) SOPXO,!Xl (0x, ®1X1)
= (Sm%, x,) 7 (St0) ¢lxux, (9x, ® 1X1)
since ¢° is a strength of the monad S whose unit is ¢

=(S m%@,xl) @?XO,!XI (0x, ®!1X1)

by one of the monad commutations. []

Lemma 5.4. The morphism @/J%O’Xl is equal to the following composition of morphisms in
L:

(m2)~1 dx,®!1X1

'(SX() & Xl) —— ISXy®!X] —— S Xy !X,
J‘P!Oxo,!xl (5-1)

Proof. By Theorem 5.3, the morphism (5.1) is equal to
(Sderx,ex,) Oxorx, (Wkyx,) = dersixoex,) ¥%,.x,)" by (0-chain)
= U%,x; O
Lemma 5.5.
T 1#9(07)(1 =mg & X7 and m w&o,xl =71 &0 (5.2)

™0 ¢}<O7X1:X0&’R’0 and ™1 ’lﬁ}%jxlzo&ﬂl. (5.3)
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Proof. Immediate consequence of the definitions. []

Theorem 5.6. The natural morphisms °, ' are strengths for the monad ([~), ¢,0) on the
category Ly.

This means that the following diagrams commute in L.
Xo & X1
&Xll wxl
DXQ &Xl —> D(X() &Xl)

0
DXO X

~ D ~
D Xo&Xl —_— D(DX()&X1> M DQ(Xo&Xl)

QXO&XI\L JHXO&Xl
0

~ P -~
DX, & X3 To » D(Xo & X1)
T/JXT ~ XO X1&X
DX&T 5L D(X&T) D Xp & X1 & Xo —2"1 5 D(Xo & X1) & X
= 0
DX D(Xo & X1 & X»)

where we keep the associativity isomorphisms of & implicit.

Proof. 1t suffices to prove the corresponding commutations in £ rather than £, since all the
involved morphisms are images of morphisms in £ through Lin;, and this is quite easy. []

The commutativity of this strength takes a particularly strong form in this setting.

Lemma 5.7. The following diagram commutes in L

O
S X, & S X, Va0 S(SXO&:Xl) BB (Xo & X1)

T/JXO S xll J/C

Syl
S(Xo & S X1) Al y $2(Xo & X1)

Proof. We prove that for each j, k € {0,1} one has
7 7 (S 1/)}(07)(1) @b?(ms x, =T T (S @Z’g(o,xl) U)}(O,sxl
which will prove our contention since 7 7; ¢ = m; 7. This amounts to proving that
T Vo, T Y0530 = 75 YXoxs T U5 x0,X,

for which we apply Equations (5.2) and (5.3). We have

0 Vo x, T0 Vo3, = (Xo & 7o) (mo & S X1) =70 & 70 = 70 ¥y x, T0 Y& x,.x,

T Uy x, T1 VXosx, = (0& 1) (11 & 0) =0 =71 ¥%, x, T1 U8 x, 3,

T 11)}(07)(1 T ¢g<o,SX1 = (Xo & mp) (m1 & 0) =71 &0

= (m1 & 0) (SXo & m0) = m1 U, x, Mo ¥s x,.x,

and the last case is symmetrical. []
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As a consequence
T(Sero™) o M = 7 (SN P XN € £(S X & S X1,S (Xo & X1)).

Thanks to our assumption that S preserves & strictly, in the sense of (3.2), this morphism
is actually the identity.

Theorem 5.8. The morphism 7 (S @ZJ}(le) wg(o,s x, =7(S @Z)g(mxl) Pl Xo.X, 5 the identity
morphism.

Proof. The first equation results from Lemma 5.7. From the proof of that lemma we get
70 T (S, x) YXos x1 = 0 0S¥, x,) o5 x4
=7y & mo
and
T T (S¥Xo.x,) YXos x0 = 71 T0 (S¥Xy.x,) YXois x1 + 70 1 (SUy x1) ¥Ro's x,
=0& 7))+ (m1 &0) =71 &my

by linearity of & on morphisms. []

More generally given objects Xg, ..., X, we have an additive strength morphism

WV eEL(Xo& - &DX; & & Xn,D(Xo & -+ & X))

which is actually linear and comes from ¢’ € L(Xo & --- & SX; & -+ & X, S(Xo & --- &
Xp)). Up to the identification of S(Xo & --- & X,,) with S X & - -+ & S X, this morphism
of £ can simply be written as

W= & &y T & X &) T & & (5.4)

When we will need to be explicit as to the list of objects X, ..., X,, we will write 1113(07.._7){”
instead of .

Lemma 5.9. Let i,l € {0,...,n}. Ifi # 1 we have

) . . A
(S %{U,...7Xn) Q/JXO,...,SX,',...,Xn =c(S ¢X0,...,Xn) wg(o,‘..,SXl,...,Xn .
And for any i,l € {0,...,n}, we have

T (S w&o,...7xn) Q/JAiXO,...,SXZ‘,...,Xn - w.iX(),...7Xn (XO & e & T & e & Xn) .

Proof. The proof of the first equation is exactly as the one of Lemma 5.7. In the case | # 1,
the second equation follows from the first one and from 7 ¢ = 7 and in the case [ = 1, it is
trivial. We prove the last equation. We have

mo 7 (S 1/&0,...,)(”)w&o,.‘.,sxi,...,xn = mo 7o (S 1/13(0,...,)(“) w&o,‘..,SXi,...,Xn

=m0 ¥y x, T0 VXS X0 X
=Xo& - & (mpmp) & -+ & X
and
mo Voo x, (Xo& &T& - &X)=Xo& - & (mo7) & -+ & Xy,
=Xo& - & (mpmp) & --- & X,y .



7:38 T. EHRHARD Vol. 19:4

Next we have
m 7 (S Tﬁg(o,...,xn)1/’3(0,...,5)(1-,...,)(”
= (w0 m1+ 71 m0) (SUy,..x0) Vo8 Xir X
=70 Y, X, T ¢§(0,...,sxi,...,xn + 71 Py X, T %{o,...,sxi,n.,xn
—(Xo& - &mo& - &X)(0& - &m & - &0)
FO&-&m& - &0)(Xo& - &mp - & Xp)
=0& - &(mpmi+m M) &--- &0

Notice that & is not a multilinear operation on morphisms, so in the last equality we are
crucially using the fact that all factors but the i¢th are equal to 0 in both summands. On
the other hand we have

T Vsx, (Xo& - &T& - &X,)=0& - &(mT)& - &0
=0& - &(mgmi+mm) & &0

proving our contention by the fact that mg, 71 are jointly monic. []

Given f € Li(Xo & --- & X,,,Y), we define the i-th partial derivative of f as [~)if =
DfodteLi(Xo& - &DX; & - & X,,,DY).

Theorem 5.10. Leti,l € {0,...,n}. If i #1 then

DiDif=coDD;f
so that for any i,l € {0,...,n} we have 0 o 5i[~)lf:0o [N)lf)if. Moreover 0 o [~)i6if:
Difo(Xo& - &0& - & Xp).

This is an immediate consequence of Lemma 5.9 and of the naturality of ¢ and of 8 in
the category L. o
Notice that the morphism 6 o D; D; f in the statement of this result belongs to £i(Xo &

& DX; & Xiy1 & & DX, & -+ & X, DY) if i <1 and to L(Xo & - & D Xi &
& X, DY) ifi=1

Theorem 5.11. Let f € L1(Xo & X1,Y) so that 5f € L!(f)XO & 6X1’ 6Y) Then
Df=0o0D;Dyf=600DoDs f.
Proof. The second equation holds by Theorem 5.10. Next we have
§oD1Dyf=600D(Dgf o ¢9{0,X1)
=fo 62f o 6¢9(0,X1 o %Xo,)ﬁ
=DfofoDyk,x, 0¥y
=Df
by Theorem 5.8. -

Remark 5.12. The intuitive meaning of this result is that the derivative of a function
acting on pairs is obtained as the sum of its partial derivatives. This sum is computed by
the 6 natural transformation.
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Given e € N we can more generally define a linear
Vo x,(€) €EL(Xo& - &D X; & -+ & X,,D Xo & - & D° X,,)
by induction on e (we give only the definition for n = 1, the generalization is easy and not
really required for our purpose): we set 1/19(07)(1 (0) = Id and wgfo,Xl(e +1)=D w%le (e) o
P typed as follows:
D° X0,X,

0

0 0
wDe X0,X1 1/’xo,xl (e) ~

~e ~e ~ D e ~e

D X0 & X, D" Xo & DX, D" X0 & D X,
and similarly for ¥!(e). We can easily give a direct description of this morphism.
Lemma 5.13. wg(o,...,Xn (e) =wle) & -+ & DX & & to(e) where 1p(e) € L(X,S°X) is
defined inductively by to(e) = 1d and p(e +1) = (Swo(e)) to.

That is, in £, tp(e +1) = ([~) to(€)) o tg. The proof is a straightforward induction.
Lemma 5.14. If f € Li(Xo & X1,Y), d € N and i € {0,1}, we have [N)jlf = [N)df o
w;{o,Xl (d)

Proof. Immediate consequence of the functoriality of D in £, and of the definition of
1/}3(0,)(1 (d) D
Lemma 5.15. If d < e we have [N)dwo og(e) =wy(e—1) and [N)dm o (e) =0.

Proof. By induction on d. Notice first that we are actually dealing with linear morphisms
so that we can do our computations in £. For the base case we have, since e > 0:
;i to(e) = m; S(wo(e — 1)) 1o = to(e — 1) m; o and we have 7; 1o = 8;0 Id.

For the inductive case observe first that since d + 1 < e we have e > 2. Then

(ST 7y) wole) = (ST ;) S(ole — 1)) o 1o
= S((8%mi) toe — 1)) 10
=S(d;0t0(e —2)) 1o by ind. hypothesis
=diot(e—1)
as contended. L]

We generalize the canonical flip ¢ € £(S? X,5? X) to an iso c(l) € £(S"7? X, S!*2 X) for
each [ € N defined inductively by
c(0)=c and c(l+1)=c(Sc()).
Lemma 5.16. Given iy, ... i1 € {0,1}, one has
Tier - Tig €(I) = Tig Tipyy -+ iy -
Proof. By induction on [. For [ = 0 the property holds by the very definition of c. Assume

that the property holds for I and let us prove it for [ + 1. So let ig, ..., 942 € {0,1}. We
have

Tippo = Tig C(l + 1) =T 7" Tig C (S C(l))
= T =" Tig Tig Ty (S C(l)
= T, " Tiy Mg ¢(I) iy by nat. of m;,

= iy Mipy **° Tiy Ty Dy ind. hyp. ]
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This means that c(/) implements a circular permutation of length [ + 2 on the indices.

k k
Lemma 5.17. Let f € Li(Xo & X1,Y) and let k: 6 N. Then Dy D0+1 7, DOJrl D, f €

~k ~ ~k+2 k
L,(D T x & DX,D " Y) satisfy the relation D, Do f =c(k)o DOJF:l D, f.

Proof. For k = 0, this is just Theorem 5.10. For the inductive step we have

Dy 6§+2 f=co 60 Dy Blgﬂ f by Theorem 5.10
— coDy(c(k) o Do D1 f) by ind. hyp.
=coDc(k)o [N)ISJr2 Dy f by def. of Dy
—c(k+1) oDy "Dif by def. of c(k+1). 0

5.2. Differentiation in the closed case. Since our purpose is to provide the categorical

foundations of Ac4, we require the category £ to be closed wrt. its SMC structure.
Remember that we consider the isos D(Z & X) ~ DZ & DX and D(X = Y) ~

X = DY as identities: this is our (S®-fun) axiom of [Ehr23] and we assume that the

corresponding iso, which is Cur(Dg Ev) = Cur((DEv) o 1/JX:>YX) e (DX =Y),X =DY),

is the identity morphism. With these identifications we have the following equation.

Lemma 5.18. Let f € £,(Z & X,Y) so that Curf € £i(Z,X = Y), Dof € Li(DZ &
X,DY) and D(Curf) eL(DZ,X = DY) Then D(Curf) Cur(Do f).

Proof. More precisely we must prove that Cur(Dg Ev) o D(Cur f) = Cur(Dy f) which boils
down to the naturality of 4/° by simple computations in the CCC L;. L]

Lemma 5.19. The following diagram commutes in L

Xoy 2. sxey

\ I

S(X®Y)
This is easily proven using as usual the fact that 7,71 are jointly monic.
Lemma 5.20. The following diagram commutes in L

(X =>DY)&DX P&, Py
wl

X=DY Xl TG

(X=D'Y)&DX P&, p’y
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Proof. We need to come back to the definition of the functor D. We expand the definition
of DEv: (X =DY)&DX — DY in L.
DEv = (SEV) 9ux—oyv)ex
= (Sev) S(derx—oy ®!X) S(m*)™" dux_y)ex by def. of Ev

) S(derix—oy ®1X) Linx—oyyix (Oix—y ® 0x) (m*)™! by (9-&)
V) Lax—oyyix (Sderix oy ® S1X) (O1x oy ® 0x) (m?) ™!

)L

v)

(Sev
=(Se

ev) Lox—oy),1x (ders(.wa) ®Jdx) (m 2)71 by (0-chain)

= (Se
= (Sev)T (590 (X—oY),1x) Plx_osyix (dersax o) ® x) (m*)~! by def. of L
.

(S*ev) (S @(!X—oy),!x) Pix s yx (dersix oyy ® 9x) (m O
=7 (Sev) pix wsy.x (dersax_yy ® dx) (m?)~!

by the identification S (!X — Y) = (1X — SY’). On the other hand we have

(DEv) o Gy x = (5ev) Lux—sy),x (dersgx—sy) ® 9x) (m*)~tyl = yx asabove

= (Sev) Lux—sy)x (dersuysy) ® dx) (m?) "' (1o & S X)

by def. of 1/1}(:>5Y7 <

= (Sev) Lux—sy)x (dersuxosy) ® 9x) (1o ©!S X) (m?) ™!

= (Sev) L ('X—oS yyix (t0 ® Ox) (dergx_sy) ®1S X) (m?)~
= (Sev) T (Soix wsy.ix) Pixsysix (o ®SIX)

(IX = SY) ® 0x) (derix—.sy) ®ISX) (m*)~" by def. of L
= (Sev) T (Siy_.s y.ax) to (derax _osy) ® 0x) (m?)™! by Lemma 5.19

= (Sev) T 10 Ply_syux (derux—sy) ® dx) (m?*) 7!

= (Sev) pix_sy,x (deraxsy) ® dx) (m*) ™!
which proves our contention. ]
5.3. The case of multilinear morphisms. For each i € {0,...,n} we can define a

tensorial generalized strength
Oxonx, ELXO® - @OSX;® - ® Xy, S(Xo® - ® X))
Letl € L(Xo® - -®X,,Y), then we define m(l) € £1(Xo & --- & X,,,Y) as the following
composition of morphisms

( RN

derXO ®---®derx,,
_—

(Xo& - & Xp) 251X ® -+ ® X, Xo® - ®X, Y

A morphism in £;(Xo & -+ & X,,,Y) definable in that way can be called an n + 1-linear
morphism (that is, a multilinear morphisms with n + 1 arguments) for the following reason.

Lemma 5.21. With these notations, we have

m(l)O(Xo&"'&Xifl&O&XiJrl"'&Xn):0
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and if fo, f1 € L(Z,X;) are summable then so are
ml)o(Xo& - & X1 & fj & Xip1--- & X5)
for 7=0,1 and
ml)o(Xo& - & X; 1 & (fo+ f1) & Xit1-- & X)
=m(l)o (Xo& - &X;1& fo& Xiy1--- & X))
+ml)o(Xo& - & Xi1 & f1& Xip1--- & X))

Proof. For the summability, we have m(l) o (Xo & -+ & X;—1 & fj & Xi1--- & X)) = m(l;)
where [; =1 (Xo®- - -®f;®- - -®X,,) and since fy, f1 are summable so are Xo®- - -Qf;®- - -®X,
for j = 0,1 by (S®-dist) of [Ehr23] with Xo® --- ® (fo + f1) ® - - - ® X, as sum. The result
follows by Lemma 12 of [Ehr23]. For the property relative to 0 we use similarly the fact that
0 is absorbing for ® and for composition in L. ]

Theorem 5.22. Let f € L(Xo & -+ & X,,,Y) be n+ 1-linear. Then DfeliDXo&-- &
D X,,,DY) is also n + 1-linear.

Proof. We assume n = 1 for the sake of readability, the general case is not more difficult. Let
l € L(Xo®X1,Y) be such that f = m(l). Then we set I’ = (SI) Lx, x, € L(SXo®S X1,SY)
and using (0-&) and (0-chain) one shows that m(I’) =D f. ]
Lemma 5.23. Given Xy,..., X, € Obj(£) and X = Xy & --- & X,,, we have

0 8X mn:mn(!ﬂ'o@)"'@!ﬂ’o)

T 8X mn:m"((m 8){0)®!7T0®'”®!7T0+'~+!7T0®'~®!7T0®(71'1 8){0)).
which both belong to LIS Xo ® --- ® 1S Xy, 1X).

Proof. For the sake of readability we assume that n = 1, the general case is not more difficult.
By Axiom (9-&) we have dx m? =Sm? Ly (0x, ® Jx,) hence

7o Ox m? =mp Sm? Ly (9x, ® Oy, )
=m? 7 Ly (Ox, ® dx,)
=m? (mp ® mp) (Dx, ® Ix,)
= m?(Imy @ Imo)
and
7 Ox m* =m? 711 Ly (9x, ® Ox,)
= m? (m1 @ mo + Mo @ m1) (Ox, ® Ox,)
=m?((m1 Ox,) ® !mo + !mo @ (m1 Ox,)). []

Theorem 5.24. With the same notations, Dm(l) € £,(DXo & - & D X,,, DY) satisfies
mooDm(l) =m(l) o (m & - - - & o)
mioDm(l) =m(l) o (i & - &)+ +m(l) o (mo & - & 7).

Proof. Immediate consequence of Lemma 5.23 and of the naturality of the m;’s wrt. S in

L. [
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For i € {1,...,n}, we have (S1) ¢’ € L(Xo® - ®SX; ® - ® X,,SY). Remember
that 7; € £L(S X, X). Given a “linear” morphism h € £L(X,Y), we use the same notation h
for the corresponding morphism Limh = h derx € £i(X,Y).

Let l € L(Xo® -+ ® X,,,Y), since m(l) is multilinear, its partial derivatives should
be “trivial”, the purpose of the next result is to state precisely this triviality. Given
i € {0,...,n}, we define the i-th “partial application” of the functor S to [ as S;l =
S eL(Xo® - ®SX; @ ®X,,SY).

Theorem 5.25. For each i € {0,...,n} we have D; m(l) = m(S; 1) and for j € {0,1}, we
have mj o Dym(l) =m(l) o (Xo & - & 7 & - & X).

Proof. For the sake of readability we take n = 1. The general case is conceptually not more

difficult to deal with, just harder to read due to cumbersome notations. We first prove the
second equation for ¢ = 1 (the case ¢ = 0 is similar), namely, in L:

m; Dim(l) = m(1) (X0 & ;)

where | € £(Xo ® X1,Y) so that m(l) = [ (derx, ® derx,) (m?)~! is a bilinear morphism in
L. We have

7'(']' 61 m(l) = 7Tj Sm(l) 8X0&X1 '1/}1 = m(l) 7Tj 8X0&X1 '¢1 .
Therefore

70 D1 m(l) = m(1) !(mo & mo) ' by (8-local)
m(l) '(X() & Tro)

since (mo & mo) ¥! = (Xo & 7). Next

m1 Dim(l) = m(l) m? (71 Ox,) ® Imo) + (1m0 @ (w1 x,))) (m?) ! Iyt
by (9-&) and def. of L
= I (derx, ® derx,) (m?) "' m? (((m1 dx,) @ m0) + (7o @ (71 Dx,))) (M)~ 1!
by def. of m(I)
((derx, m Ox,) ® (derx, !mo) + (derx, !mo) ® (derx, m 9x,)) (m?)~!1p!
((my Sderx, 0x,) ® (derx, !m)
+ (derx, 7o) ® (m1 Sdery, dx,)) (m*)~ 11! by nat. of my
=1 ((m ders x,) ® (derx, !mo) + (derx, !mo) ® (71 dersx,)) (m?)~ 11!
by (0-chain)
I ((derx, !m1) ® (derx, !mo) + (derx, !m) ® (derx, !m1)) (m*)~' !
=m(l) m? (Imy ® Imy + Iy ® lmg) (m?) ™1 1!
1) ((mo & 1) + !(m1 & o)) 19!
)N (Xo & m1) +m(1) (0 & mp)

=1
=1

=m(
=m(
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since (o & m1) Y = (Xo & 71) and (71 & 7)Y = (0 & 7p). Finally we have
m(1) (0 & mp) = I (dery, @ derx, ) (m?)~11(0 & )
=1 (derx, ® derx,) (10 ® !mg) (m?)~*
=1(0®m) (m*)~1 =0

proving our contention. Now we prove the first equation for i = 1 (the case ¢ = 0 is similar).
For j € {0,1} we have

m; m((S1) ') =7 (S1) ¢! (derx, @ ders x,) (m*)~!
=17 ¢ (dery, ® ders x,) (m?)~*
=1(Xo ® ;) (derx, @ ders x,) (m?)™* by def. of "
= [ (derx, @ derx,) (1 Xo ® !7;) (m?)~*
= [ (derx, ® derx,) (m?) ™1 (Xo & 7;)
=m(l)!(Xo & m;) by definition of m(l)
=T D; m(l) as we have just proven,

which proves our first equation by the fact that mg, w1 are jointly epic. []

5.4. The basic multilinear constructs. Now we introduce the multilinear operations
which will interpret the basic constructs of Acg. We make the following assumption about L.

(Int) The functor X — 1@ X from £ to £ has an initial algebra N.

This means that there is a morphism x € £(1@ N, N) such that for any f € L(1® X, X)
there is exactly one morphism g € £(N, X) such that f (1@ g) = g x. We know that there
is only one such morphism y, and that this morphism is an iso (Lambek’s Lemma). We
assume that y is the identity to simplify notations, so that N =1 @® N “on the nose”. Given
feL1adX,X)weuseit(f) for the unique element of £(N, X) such that it(f) = f (1Dit(f)).

We set suc =71 € L(N,1@® N) = L(N,N) which represents the successor constructor on
integers and zero = 7y € L£(1,N) which represents the zero constant. It follows that for each
v € N we can define the constants 7 € £(1,N) by 0 = zero and v + 1 = suc(v).

Next we define the predecessor morphism pred = [7g,N] € £(1 & N, N), that is pred €
L(N,N). We have pred0 = 0 and predv + 1 = 7.

Next notice that we have a morphism hy € £(N,!IN) which turns N into a !-coalgebra
(that is, an object of £', the Eilenberg-Moore category of the comonad !_). This morphism
is hy = it(f) where f = [T h1,!N] € £(1 @ IN,IN) where hy = !(m®)~! digr m® € £(1,!1)
is the canonical !_-coalgebra structure of 1. This allows one in particular to define an
erasing morphism wy = weaky hy € L£(N,1) as well as a duplicating morphism cy =
(dery ® dery) contry Ay € L(N,N ® N). Remember indeed that, for any object X of £, the
object !X has a canonical structure of cocommutative comonoid with counit weakx € L£(1X, 1)
and comultiplication contry € L(!X,!X ® 1X).

Given an object X we set let = ev vy (hy ® (IN — X)) € LIN® (IN — X), X).

Last we define if = ev(g® N) € LIN® (X & X), X) where

g = [cur(prg A), cur(pr; A)wn] € L(N, X & X — X))
where pr; A is typed as follows
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19(X &X) 25 (X & X) s X
so that the two following diagrams commute

SR (X &X)

1o (X & X) 22X Y N (x e X)) N® (X &X) N (X & X)

AJ' lﬁ wN®(X&X)l lﬁ (5.5)

X &X X IR(X&X) 25 X&X —— X

5.5. Syntactic constructs in the model. We introduce now semantic constructs on
morphisms which exactly mimic the syntax so as to make the translation from syntax to
semantics straightforward.
First, given n € N we also use the notation 7 for the morphism 7 weaky € £,(Z,N).
Given f € L£i(Z,N) we define suc(f) =suc f € Li(Z,N) and similarly pred(f) = pred f.
~d ~d
More generally given d € N and f € £,(Z,D N) we set suc?(f) = (D suc) o f €
~d S ~d
£1(Z,D°N). We define similarly pred”(f) € £i(Z, D" N).
We have defined m(if) € £i(N & (X & X)), X). So we have
~d ~d ~d
Dym(if) € L(D N& (X & X),D X)

~k
(notice that this is not a trilinear morphism, but a bilinear one, separately linear in D N
~d
and X & X). Let g € £i(Z,D N) and f; € £i(Z, X) for j =0,1. We set

(9, fo. J1) = Bam() o (g, fo, f2) € £1(Z.D" X).
Notice that Bg m(if) = rrisg if) (this notation is introduced in Section 5.3).
We have defined m(let) € £i(N & (N = X), X) so that
Do m(let) € £i(DN & (N = X),D" X).
Let g € Li(Z, D" N) and f € £i(Z & N, X) so that Cur f € £i(Z,N = X), we set

fet(g, f) = Dym(iet) o (g, Cur f) € £,(2,D" X).
If fel(Z,X=Y)andge L(Z, X) then we define (f)g € Li(Z,Y) as (f)g=Evo
(f,9)- _
If f € Li(Z,X = Y) we have Ev o (f& X) € £Li(Z & X,Y) and hence Di(Ev o
(f& X)) e Li(Z&DX,DY) so that we set

Deur(f) = Cur (D1(Evo (f & X))) € £i(Z,DX = DY).
Notice that
Di(Evo (f & X)) = DEvo (Bf & Sx) ok x
=DEvoyk yyo(f&DX)

by naturality of ¢! and hence
~ ~ XY

Deuwr(f) = Dine ©f (5.6)

where
~X

D = Cur(DEvo ¢k yx) € L(X = ¥, DX = DY)

int
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is the “internalization” of the functor D made possible by its strength.
Remember that a morphism f € £,(X,Y) is linear if f = Linjg for some g € L(X,Y)
and that, when this g exists, it is unique.

~X7Y ~ ~ ~ .
Lemma 5.26. The morphism Di,, = Cur(DEvo ¢y ) € Li(X = Y, DX = DY) is
linear.
Proof. This results from the fact that Ev is left-linear and ¢ ~y.x is linear on (X = Y) &
DX. O

So we shall also consider tacitly Diy as an element of £(X = V,DX = DY).

If f € £,(Z,D X) and j € {0,1} we set 7;(f) = 7; f € £i(Z, X), and if f € £,(Z,D" X)
we set 7(f) =7 f € £i(Z,DX) and c(f) =c f € Li(Z, D’ X). Last if f € £1(Z, X) we set
Lj(f) =lj f S El(Z, DY)

Lemma 5.27. For any object X of L we have

Dim(if)x =m(if)5, € £i(N& D (X & X),DX)
D1 m(let)x = m(let)s , € £i(N & D(N = X),D X)
Proof. We have

70 0 Dy m(if)x = mp o Dm(if)x o N x&x
= m(if)x o (7o & (w0 & m0)) © 1/},{,7)(&)( by Theorem 5.24
=m(if)x o (N & (7o & 7))

= mo o m(if)5

by naturality of if y with respect to X. Next
m1 0 Dy m(if)x = m1 o Dm(if)x o ¥y xex
= m(if)x o (m1 & (mo & m0)) © Py xex
+m(if)x o (mo & (m1 & 1)) © 1/),{,7)(&)( by Theorem 5.24
=m(if)x o (0 & (mo & m0)) + m(if)x o (N & (w1 & 1))
=m(if)x o (N & (m1 & 71)) by bilinearity of m(if)

=m om(if)g y by naturality

and the contention follows by joint monicity of 7o, 7. The case of let is completely
similar. L]

Lemma 5.28. For k € N we have

DiDy " m(M)x =c(k) oDy m(if)s
Dy Dy miet)y = c(k) o Dy m(let)s .

Proof. By Lemma 5.17 and Lemma 5.27. []
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5.5.1. Recursion. From now on we assume that £ is a differential summable resource category
which is Scott, see Section 3.2.3.

Theorem 5.29. For any object X we have
DYX = y5X o Cur (DEv)

Observe that this equation is well typed: we have Ev : X=X)& X — X and hence
DEv: (X =DX) & DX — DX so that Cur(DEv) : (X = DX) (DX = DX) and
hence both sides of the equation are morphisms (X = D X) — D X.

Proof. By induction on n € N we prove that Vn € N 5)75( = yEX o Cur (6 Ev) and the
result follows by continuity. For n = 0 the equation is obvious so assume that it holds for

some n € N.
We have

YPX o Cur (DEv) = Ev¥PX 6 (X = D X, ¥P¥) o Cur (DEvSY)
— EvXDX (Cur(D EvX), yDX o Cur(D Ev¥X))
— EvX0X o (Cur(DEvEX), DY) by ind. hyp.
— EvYDX o (Cur(DEVYY) & DX) o (X = DX,DYX)
=DEv ¥ o0 (X = DX,DYYX) by cart. closedness
=D(Evo (X = X, VX))

as contended, using also the fact that D is a functor which commutes with cartesian
products. ]

Remark 5.30. This theorem is a remarkable property of the fixpoint operator at any type
X its derivative can be simply expressed by means of a fixpoint operator at type DX.

5.6. Interpreting types and terms. The translation of any type A into an object [A] of £
(that is, of £) is given by [D%] = D' N and [A = B] = ([A] = [B]) so that [D?A] = Sd[A]]
holds for all type A and all d € N thanks to our identification of X = DY with D(X = Y).
A context I' = (z1 : Ay,...,xp @ Ag) is interpreted as [I'] = [Ai] & --- & [Ai]
considered as an object of L.
The next theorem also provides our definition of the interpretation of terms.

Theorem 5.31. Given a term M, a type A and a context ' such that T = M : A for

some typing derivation § (so that A is actually determined by M) one can define [M]r €

Li([T], [A]) in such a way that

o [M]r € Li([T'], [A]) depends only on M and not on &

e and if M = My + M; then [Mo]r, [Mi]r are summable in Li([I'], [4]) and [M]r =
[Mo]r + [Mi]r (this makes sense by Lemma 4.12).

Proof. By induction on sz(d) where ¢ is a derivation of the typing judgment I' = M : A. We
proceed by cases, according to the last rule in 9.
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» If M = x; for some i € {1,...,k} we set [M]r = pr;.

» If M = A\z® N then we have A = (B = C) and I',z: B+ N : C so that by inductive

hypothesis [N]r ..z € Li([I'] & [B], [C]) and we set [M]r = Cur [N]rq.5 € Li([I'], [B] =

[C]) by inductive hypothesis.

» If M = (N)PwithI' F N : B=Aand I' F P : B then we have by inductive

hypothesis [N]r € Li([T'], [B] = [A]) and [P]r € £i([I'], [B]) and hence we set [M]r =

(INTr) [P = Ev o ([N]r, [PIr) € Li([TT, [A]).

» If M =YN with ' - N : A= A so that by inductive hypothesis [N]r € £i([T], [A] =

[A]) and so we set [M]r = VI o [N]r € £i([T], [A]) as required.

» If M =n for some n € N, we set [M]pr =7n € Li([T'],N).

» If M = succ?(N) so that I' - N : D% and hence [N]r € E!([[I’]],f)d N) by induc-

tive hypothesis, we set [M]r = suc?([N]r) € Li([I7], D’ N). Of course we set similarly
—d ~d

[pred?(N)]r = pred”([N]r) € Li([T],D " N).

> If M = if'(N,Py,P;) with T = N : D% and T = P; : A for j = 0,1 so that by

inductive hypothesis [N]r € £([I'], B’ N) and [P;]r € Li([I'], [A]) for j =0, 1. So we set

[M]r = T (N]r, [Pl [Pi]r) € £i([T], D [A] = [D?A]) where we use the notation it

introduced in Section 5.5.

» If M = Ietd(x,N, P) with ' -V N : D% and T,z :: - P : A so that by inductive

hypothesis [N]p € E!([[F]],[N)dN) and [P]rz., € Li([I] & N,[A]) and we set [M]r =

Ed([[N]]r,Cur [Plra.) € Li([I], Bd[[A]]p) where we use the notation let” introduced in

Section 5.5.

» We set [04]r = 0 € £i([T], [A])-

b If M = 7(N) then T' - N : D1 B with A = DB so that [N]r € £,([T], D" '[B]) and

we set [M]r = D" m; o [N]r € £i([T], D’[B] = [A]).

» It M = ((N) then we have T - N : DB with A = D' B so that [N]r € £i([T], D"[B])
and we set [M]r = D" s; o [N]r € £i([T], D" [B] = [A]).

b If M = %(NV) then we have T - N : D B with A = DB so that [N]r € £([T]. D" [B])
and we set [M]r = D" 6 o [N]r € £i([T],D’[B] = [A]).

» If M = c!(N) then we have I' + N : D+2B with 4 = D**2B and [N]r €
L[], D" ?[B]) and we set [M]r = D" c() o [N]r € £i([T], D" *[B] = [A]).
» If M = DN then we have ' N : B= C and A = (DB = DC) and hence [N]r €

Ly([T], [B] = [C]) and we set [M]r = DY o (8] € 2i([T], (B[B] = BIC]) = [A]).

Assume now that M = My + M;. We distinguish the same subcases as in the proof of
Lemma 4.12.

» The last rule of § is (proj2) so that M; = 79(N), A=DIB and T N : D**'B by a
derivation & such that sz(¢') = sz(§) — 1. By inductive hypothesis we have f = [N]r €

L ([T, [~)d+1[[B]]) and we know that the morphisms D’ 7o o f = [Mp]r and B’ m oo f =

[Mi]r are summable, with sum p’o o f. We set [M]r = p’o o [N]r € £i([I7, f)d[[B]]) S0
that actually [M]r = [Mo]r + [Mi]r.
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» The last rule of ¢ is (projd) so that My = 7(No), My = 7d(Ny), A = DB and
I'F No + Ny : DB by a derivation ¢’ such that sz(¢") = sz(§) — 1. By inductive hypothesis
we have defined two summable morphisms [N;]r € £i([I'], BdH[[B]]) for j = 0,1. It follows
that the 4 morphisms (Bd ;) [N;lr (for i,j € {0,1}) are summable, and hence D’ T o
[Nolr = [Mo]r and D" 7o o [N1]r = [Mi]r are summable. We set [M]r = [Mo]r + [Mi]r.

» The last rule of § is (lin) so that there is a linear context L of height 1 and terms Ny, NV}
such that M; = L[N;] and I - L[Ny + N1] : A by a derivation ¢’ such that sz(¢') = sz(d) — 1.
This implies (by a simple inspection of the various possibilities for L which has height 1)
that for some context A and some type B one has A - Ny + N; : B by a derivation ¢” such
that sz(6”) = sz(8') — kr, where kr, € Nt depends only on L (if for instance L = if([], Py, Py)
then kr = 1+ ko + k1 where k; is the size of the typing derivation of P;). Now we consider
the various possibilities for L.

o L = \z%[] and we have A = (T, z : B), A = (C = B). By inductive hypothesis we
have [Nj]r..c € Li([T'] & [C], [B]) for j = 0,1, [No]r.:c and [Ni]rq:c are summable
and also that [No + Ni]rz.c = [No]re:c + [Ni]re:c. We have [M;]r = Cur [N;]r2.c
because we know that there is a derivation 0; of I',z : C'F N; : B such that sz(6;) < sz(d)
by Lemma 4.12. It follows that [My]r and [M;]r are summable and we can set [M]r =
[Mo]r + [Mi]r

e L=([])Pandwehave A =T, B=(C = A),I'F P : C by aderivation of size kp > 0 and
the derivation ¢’ of ' = Nog + Ny : C' = A satisfies sz(d) = sz(d’) + kp + 1. So by inductive
hypothesis [P]r € Li([T'], [C]), and [N;]r € Li([I'],[C] = [A]) (for j = 0,1) are
summable and we have [Ny + Ni]r = [No[r+[N1]r. We have [M;]r = Ev o ([N;]r, [P]r)
because the derivation 0; of I' = M; : A satisfies sz(d;) < sz(d) and hence [My]r and
[Mi]r are summable with [My]r + [Mi]r = Ev o ([No]r + [V1]r, [P]r) by left-linearity
of Ev. We set [M]r = [Mo]r + [Mi]r.

o L =if%([],Py, P1) and we have A =T, B = 6‘%, A=DIC and T+ P, : C for i = 0,1
by derivations of sizes ko and k; respectively so that, denoting by 0’ the derivation
of T'F Ng+ Ny : D%, we have sz(§) = sz(6') + ko + k1 + 1. It follows by inductive
hypothesis that [P]r € Li([I'], [C]) for ¢ = 0,1, and that [N;]r € E;([[F]],Sd N) for
J = 0,1 are summable with [Ng + Ni]r = [No]r + [N1]r. For j = 0,1 we have [M;]r =
Bgm(ﬁ) o ([Njlr, (IMo]r, [Mi]r)) because the derivation d; of I' = M; : A satisfies
sz(6;) < sz(0) (by Lemma 4.12) and hence, by left-linearity of [N)ff m(if), [Mo]r and [Mi]r
are summable and satisfy [Mo]r + [Mi]r = Dg m(if) o ([No]r + [N1]r, ([Po]r, [P]r))-
We set [M]r = [Mo]r + [Mi]r. B

o L = let’(z,[ ], P) and we have A =T, B = D%, I',z: 1+ P : C by a derivation of

size k and A = D?C so that denoting by ¢’ the derivation of I' - Ny + N : D4 we
have sz(§) = sz(¢') + k + 1. This case is completely similar to the previous one. By

inductive hypothesis we have [[P]]F,x:f)‘ib e L([T] & ﬁdN,[[C}]) and, for j = 0,1 we
have [N;]r € Li([I'], DV) which are summable with [Ny + Ni]r = [No]r + [N1]r. For
j = 0,1 we have [M;]r = 5gm(E) o ([Nj]r, Cur[P]p ,.54,) because the derivation d;
of I' = M;j : A satisfies sz(0;) < sz(d) (by Lemma 4.12) and hence, by left-linearity of
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[xi]r = pr; [[)\asB Nl = Cur[N]r«:B
[(N) Plr = Ev o {[N]r, [P]r) [YN]r = Y o [N]r
[nlr =7 [succ(N)]r = sue([N]r)
[pred?(N)]r = suc!([N]r) [if(N, Po, P)Ir = ¥ ([NTr, [Polr. [P]r)
[let*(x, N, P)]r = Tet"([N]r, Cur [P]r ) [7¢(N)]r = Dm0 [N]r
[¢(N)]e = D" 4i o [N]r [6*(N)]r = D" 6 o [N]r
[} ()] = D" (1) o [N]r [BN]r = D 'V o [N

[Mo + Mi]r = [Mo]r + [Mi]r

Figure 7: Interpretation of terms (see the proof of Theorem 5.31)

53m(|?t), [Mo]r and [M;]r are summable and satisfy [My]r + [Mi]r = f)gm(E) o
([[No]]ll—l- [[Nl]]p, Cur [[P]]F,z:0>' We set [[M]]F = [[Mo]]r + [[M1HF-~ N

e [ = D[] and we have A =T, B = (C = FE) and A = (DC = DEFE) and we use
§’ for the derivation of T' -+ Ny + Ny : C' = E so that sz(d) = sz(¢') + 1 and hence
by inductive hypothesis we have [N;]r € Li([I'],[C] = [E]) for j = 0,1, these two
morphisms are summable and we have [Ny + Ni]r = [No]r + [N1]r. For j = 0,1 we have

~[C
[M;]r = Di[[nt]]’[[E]] o [N;]r because the derivation 6; of I' - M : A satisfies sz(d;) < sz(9)
~[C
(by Lemma 4.12) and hence, by linearity of Diﬂntﬂ’ﬂEﬂ, [Mo]r and [M;]r are summable and

satisfy [Molr + [MiJr = Dipe " © ([Nol + [Nil). We set [M[r = [Molr + [Mi]r-

e L =7¢([]) and we have A =T, B = D4*'1C and A = DC and we use & for the derivation
of I'= Ny + Ny : D4*1C so that sz(8) = sz(¢') + 1 and hence by inductive hypothesis we

have [N;]r € Li([I'], p’* [C]) for j = 0,1, these two morphisms are summable and we

have [No + Ni]r = [No]r + [Ni]r. For j = 0,1 we have [M;]r = D’ m; o [INj]r because
the derivation 6; of I' = M; : A satisfies sz(d;) < sz(d) (by Lemma 4.12) and hence, by
~d ~d
linearity of D m;, [My]r and [M;]r are summable and satisfy [Mo]r + [Mi]Jr =D m; o
([[No]][‘ + [[Nl]]p). We set [[M]h" = [[Mo]]l" + [[Ml]]p.
e The remaining cases are similar: in each of them we see that we can sensibly set [M]r =

[Mo]r + [Mi]r. ]

5.6.1. Substitution lemmas. The first substitution lemma is completely standard in a A-
calculus setting.

Lemma 5.32. IfI'F M : B, so thatT',x : A+ M : B, then we have [M]r 4.4 = [M]r o prg
where pry € Li([T'] & [A], [T']) is the first projection.

Proof. By induction on the typing derivation of M. L]
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Lemma 5.33 (Ordinary substitution). If ' N : A and ',z : A+ M : B then [M [N/z]|]r €
Li([T],[B]) satisfies

[M [z/N]r = [M]ra:a o ([T], [N]r) -
Proof. By induction on the typing derivation M. ]

Lemma 5.34 (Semantics of the differential). If ',z : AF M : B then [0(z, M)] .54 €
L£y([T'] & D[A],D[B]) satisfies

[[6(%‘, M)]]F,x:BA = SIHM]]F,IZA .

Ifr= (Al,...,Ak) and A = (A17...’Aifl’BAi7A/[:+1,...’Ak) for some i € {1,,]{}}
and I' - M : B, and then we have A F 9(x;, M) : DB and in this slightly more general

~ S 7Z ~
situation the lemma states that [0(x;, M)]a = D, [M]a where D; B f=Dfo
V%, ...z, is the “ith partial derivative of f”. This shghtly more general statement is equivalent
to the lemma by the symmetry of the cartesian product &.

Proof. By induction on M, and not on its typing derivation §. This is possible thanks to
Theorem 5.31 which states that the interpretation does not depend on the typing derivation.
This point is crucial when dealing with sums. We use the following notations: f for [M]r ;. 4,
Z for [I'], U for [A], and X for [B]. Sometimes we also write I' = (z1 : Ay,..., 2 Ag)
and in that case we set Z; = [A;] so that Z =271 & --- & Z.

» Assume that M = z and hence 6 must end with (var) . We have X = U and f = pr; €
Li(Z & U,U), we have Dy f = (Dpry) o ¢* = pry o (LO & SU) = pr, € £i(Z & DU,DU)
since D commutes with cartesian products in £,. It follows that Dy f = [d(z, M )]]F,:c:ﬁ A
since O(z, M) = M.

» Assume that M = z; for some ¢ € {1,...,k} and hence 0 must end with (var) So we
have f =pr, € Li(Z1 & --- & Z, & U, Z;), X Z; and we have Dy f = Dfo¢ZU_Dfo
wéﬂu,Zk,U =Dopr;o(& - &iw&U)=pr;o (1o & - & 19 & U) = 19 o pr; using the fact
tvhat S preserves cartesian products and the expression (5.4) of the k + l-ary ¢*. Therefore
D f= [[ﬁ(x,M)]]m:BA since O(z, M) = 1o(x;).

» Assume that M = \y© P so that § must end with (abs) applied to T,z : A,y : C+- P : E
and we have B = (C = FE) and hence X = (V = Y) where [C] =V and [E] =Y. Let g=
[[P]]FJCIAJ/!C € Li(Z & U & V,Y). Notice that Dlg = Dg o wZUV e Li(Z & DU & V, DY).
We have

D, f = D1(Curg)
= D(Curg) o ¥
= Cur((Dg) o ¥%euy) © ¥y by Lemma 5.18
where ¢/, € £(DZ & DU & V,DZ & DU & DV). So Dy f = Cur((Dg) o ¥%gyy ©

(1&2[] & V)) = Cur((Dg) o ¢1Z7U,V) = Cur(D; ¢). By inductive hypothesis we have Dy g =
[0(z, P)l; .54 ,.c and hence Dy f = [M\yC o(x, P)] .54 as required.
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» Assume that M = DP so that § must end with (diff) applied to T,z: A+ P: C = E
and we have B = (C = E) and hence X = (V = Y) where [C] =V and [E] =Y. Let

9 =[Ptz € L{Z & UV = ¥) so that f = Dewr g = Diy 0 g€ Li(Z & U,DV = DY)
where DInt —Cur(DE\,ol/}V:WV) Then

I51 f= D I:~)<:ur9 ° w%,U
—DCur(DEv o @b}/éy’v) oDgo @/}1sz

= Cur([N)(f) Ev o ¢¥:>Y’V) o oDy g by Lemma 5.18.

VéYDV)

Next we have
62Evo[~)zp1 o :52Evocof)w0 ol -
V=Y,V " ¥y=y DV V=Y,V " ¥y=DY,V
~9 ~
_ 0 1
=coD BvoDyyayy oty 5y

by Lemma 5.7 and naturality of c. By our identification of f)(V = Y) with V = DY
through the iso Cur(Dg Ev) we have D Ev o @vayv —Eve L,((V=DY)&V,DY) and
hence

le Cur(coDEvow Blg

Vv=DY, V)

—coCur(DEvow [N)lg

Vv=DY, V)

:CODcurDlg

= [c(DO(@, P)]p 154 -

Notice that We have identified cV:>y with V = cy in accordance with our convention of
identifying D’ (V=Y)withV = D’Y.

» Assume that M = (P) Q@ so that § must end with (app) applied to',z: A+ P:C = B
and Iz : A F Q : Candlet Y = [C]. Let p = [P]r € Li(Z & U, Y = X) and
g = [Q]r € Li(Z & U,Y) so that f = [M]r = (p)g = Ev o (p,q) € Li(Z & U, X),
Dip € L(Z & DU, v = DX) and Dy ¢ € £i(Z & DU, BY) We have Dey D1p €

Eu(Z & DU DY = D X) so that 6 o DcurDlp € Li(Z & DU DY = DX) and hence
(0 0 Dewr D1 p) D1 g € £i(Z & DU, D X), we prove that

61((])) Q) = (9 o I:N)CUr I:~)1 p) 51 q.
‘We have

Di((p)a) = (DEv) © (D(p.q)) © ¥z
— (DEv) o (Dp,Dg) o wZU since D preserves cart. prod.

where DEv € £;((X = DY) & DX,DY) and we know by Lemma 5.20 that DEv = 6 o

(DEV) o wxlf:ﬁx , Where EV/ is the evaluation morphism in £;((Y = D X) & Y, D X).
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On the other hand
([N)cur 61 p) 61 q= Evo <6cur 61 b, 61 Q>

int

—Evo (f)Y’DX & 5X> o (D1 p, D1 q)

~Y,DX ~ ~ ~2
where we recall that D;,, = = Cur((DEV) €eLi(Y=DX,DY =D X) and

we have used Equation (5.6). Therefore

1
© ¢Y:>6 X,Y)

(DeuwrD1p)D1g=DEV 09, 5. o (DipDig).
It follows that

(9 S 6cur 61]7) I:N)l g=10o ([~)cur 61]7) I:~)1 q

=0o (f)Ev’) o 11/:>5XY o <[~)1p,61q>
=DEvo <[~)1 P, Dy q) by Lemma 5.20

=D f

where the first equation results from our identification of DY = 0 with 6 and we have also
used the fact that f = (p) ¢ = Ev o (p, q). Finally, using again Equation (5.6),
D1 f = (6 0 Dint 0 D1p) D1 g
= [(6(DO(x, P))) 0(x, Q)11 .54
as contended, using of course also the inductive hypothesis.

» Assume that M = succ?(P) so that the last rule of § is (suc) and that we have I',z : A
~ ~d ~d
P:D% = B and hence X =D N. Let g = [P]r .4 so that f =D m(5uc) o g, we have

D1 f = D1 (D" m(sue) o f)

- p™! m(suc) o Dg o w%’U

= [~)d+1 m(suc) o 619

—-p™" m(suc) o [O(x, P)[ .54 by inductive hypothesis

= [succ™ @z, Py .54

The cases where M is of shape pred(P), 7¢(P), 14(P), 6¢(P) and c(P) are similarly
dealt with.
» Assume that M = if¢(P,Qo, Q1) so that ¢ ends with (if) and that we have I,z : A F
P BdL, I''z:AFQ;: C fori=0,1so that B = DIC and X = BdY where Y = [C].
Let p = [Plraa € £(Z & U,D" 1) and (¢ = [Qilr.wa € Li(Z & U,Y))i_o1. We have
~d d ~d ~d
Dym(if)x e LD N& (Y &Y),D Y =X) and f = [M]rza = Dym(if)x o (p, (g0, q1)) €
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Li(Z & U, X). We have
D1 (B m(i)x © (p. (40, 1))
= DDy m(f)x o D{p, (g0, @) © bk by def. of Dy and functoriality of D
=f0oD, 53“ m(if)x o (D1 p, (D1 qo,D1 1)) by Theorem 5.11
—f0oc(d) oDy m(if)sy o (Dip, (Drgo,Dran)) by Lemma 5.28
therefore
Dy f=0o0c(d)oDy  m(if)sy o (Drp, (D1 go,D1ar))

—9oc(d) oDy m(gy o ([0, Pl o0 (100 Qo) o540 002, QD o5.0))

by ind. hyp.
= [[H(Cd(ifdJrl (8('%'7 P>7 8(95, QO)? 8('%'7 Ql))))ﬂr,xzﬁA
= [0(z; M)]r .54

as required. The case M = let?(y, P, Q) is completely similar.

» Assume that M = My + M;. Whatever the last rule of § is, we know that (I',z : A+ M; :
B)i—o,1 and, by Theorem 5.31, that (g; = [M;]rza € L1(Z & U, X))i=0,1 are well defined
and summable and that f = gy + g1, where f = [M]r ;.4. By inductive hypothesis we have
[0(x, M;)]r = g; for i = 0, 1. By left-linearity of composition in £;, we have

f=90+a
= [8(3:, MO)]]F@;E)A + [[8(‘7:7 MO)]]F,x:BA
= [0(x, Mo) + O(x, M1)]} .54 by Theorem 5.31

= [[6(33, M)]]F,x:BA

as required.

» Assume that M = YP so that § ends with (fix) and that we have I';z: AF P: B= B
so that, setting g = [M]r 4.4 we have g € £i(Z & U, X = X) and f = [M]rza =YX 0 g.
We have

61 f= 5yX o 51 g
— ybx Cur(DEv*¥) oDy g by Theorem 5.29

=)yPX o Cur(0 o DEvPX o w;(:f)X,X) o [~)1 g by Lemma 5.20
=)yPXo ([N)X =0)o Cur([N) Ev¥PX o 1/}}(:>5X,X) o Dy g by cartesian closedness

= ~ ~XDX ~ . ~XDX
=)PX 6o (DX =0)oD,, oDyg by definition of D;,,
~X,~

:yBXOGODintDXo[N)lg
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and hence
D1/ =Y°X 000Dy " oDig
—YPX g0 5?:{” o [0(z, P)Ip 254
= [[Y(@(ﬁa(m,P)))]]F,mBA
= [[a(':va M)]]F,a::BA
as required. .

5.6.2. Soundness theorem.

Theorem 5.35 (Soundness of the semantics). Assume that ' M : A and M —p_, M’ (so
that T'H M': A). Then we have [M]r = [M']r.

Proof. We consider the various cases in the definition of —4_,. We set Z = [I'] and X = [A].
» Assume first that M —;, M'. The fact that [M]r = [M']r results simply from the linear-
ity of the semantic constructs corresponding to the linear contexts. As an example, consider
the situation where M = Ietd(m, My + My, N) and M’ = Ietd(x, My, N) + Ietd(a:, Mi,N) (so
that we have I' - M; : D% and '+ N : B for a type B, and we have A = DYB). Then we
have

~d —
[M]r = Dgm(let) o ([Mo + Mi]r, [N]r)

— Dy m(iet) o ([Mo]r + [Mi]r, [N]r)
— By m(iet) o ([Mo]r, [Nr) + Do m(iet) o ([Mi]r, [N]r)
by the bilinearity of let.

» Assume that M = (Az? P) Q and M’ = P[Q/x], we directly apply Lemma 5.33.
» Assume that M = YN and M’ = (N) M. We directly apply Equation (3.3).

» Assume that M = D(A\z® P) and M’ = AzDB d(z, P) so that A = (DB = DC) and
'z : B+ P:C,sothat setting U = [B] and Y = [C] we have f = [Pl € Li(Z & U,Y).
Then we have

[[M]]F = Dint o Curf
= Cur(DEVYY o 9fy_yyy) o Cur f

= Cur(DEVY o gLy o (curf & BU))

= Cur([0(z, P)] ,.55) by Lemma 5.34
= [P a(z, P)]r
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» Assume that M = if®(v + 1, Py, P) and M’ = P, so that, setting p; = [Pi]r € £1(Z, X)
for i = 0,1, we have [M]r = m(if) o (v +1 00, (po, p1)) = p1 by the second diagram of (5.5),
where 0 is the unique element of £,(Z, T). The cases where M = succ’(v) —a, v +1,
M = pred®(0) —p,, 0, M = pred®(v + 1) —4_, v, and M = if°(0, P,Q) —4_, P are similar.

» Assume that M = let’(x,v, P) and M’ = P [v/z]. Let f = [P]r. € £i(Z & N, X). We
have 7 € £(Z,N) and hy 7 = 7' (actually 7 is a morphism in the Eilenberg-Moore category
of 1) from which it follows that

[M]r = EO(E, f) using the notation of Section 5.5

= m(let) o (7, Cur f)

= let (7 ® Cur f) contry

=ev vy (hn ® (IN — X)) (7 ® Cur f) contry

—ev(f®T') contry

= fo(Z,7)

= [Py/=]lr
by Lemma 5.33.
» Assume that M = 71'?()\$B P) and M’ = \zP 7¢(P) so that we must have I,z : B -
P :D™C with A=DB=0C), X = (U = B’ Y) where U = [B] and Y = [C]. Let
f = [Plras € £i(Z & U,DY) so that [\eBP]r = Curf € Li(Z,U = D' V)
and ﬁdm o f e Li(Z & U, [N)dY). Remember that, for any object V, QD%:>V7!U €
LU — V)@ !X, D((IX — U) ® X)) and that by (S®-fun) of [Ehr23] the morphism
¢ = Cur((Dev) cp?]:>V7!U) € LID(U = V),U = DV) is an iso. Thanks to this iso we

identify the objects BdH(U =Y)and U = 5d+1 Y. Under this identification the morphisms
~d ~d ~d ~d ~d ~d

D' e LD (W = Y),DU=Y) and U = D'n; € LU = D7 V,U = DY) are
identified as well. Since (U = D’ mj) o Curf = Cur([~)d m; o f) we have

[M]r = D m;([A«? P]r)
— (U= D"n;) 0 Curf
= Cur(f)dwj o f)
— Cur(D" 7} o [P]r.a:p)
= Cur([x{(P)]r.2:8)
= [\ 7{(P)]r

as required.

» Assume that M = 7¢((P)Q) and M’ = (7¢(P))Q so that we must have I' - P :
B=D™!C and ' Q : B with A = D?C. Setting U = [B], Y = [C], p = [P]r and ¢ =
[Q]r we have [M]r = B’ mi 0 (p)q € £1(Z,D%). Then, by naturality of evaluation, we have
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~d ~d ~d+1
[M]r = (B"7) 0 Bv o (p.q) = Evo (U= (B'7)) & U) o (p.q) = Evo (5" ) o p.a)
under the same identification as in the previous case. That is [M]r = [M']r.

» Assume M = W?(SUCCe(P)) and M’ = SUCCe_l(ﬂ'?(P)) so that we must have d < e,

T b succ’(P) : D% and A = D !.. We have suc € £(N,N) that we consider as usual
as a morphism in £;(N,N) so that D suc € Eg(De N,D° N) and since d < e we can write

D°N=D""D"""Nsothat D' m; € £,(D°N,D° " N) and we have
~d ~e¢ ~d ~e—d
D mioD suc=D (rj oD suc)
= Dd(ﬁe oo m;) by nat. of 7;

~e—1 ~d
=D sucoD 7y

so that [M]r = [M']r. The cases M = W?(prede(P)) and M’ = pred®~!(7;(P)) (still with
d < e) are completely similar.

» Assume that M = 7d(if*(N, Py, P1)) and M’ = if* ! (7}(N), Py, P) with d < e. We
must have I' - N : D% and T + P; : B for j = 0,1, for a type B uniquely determined

by A= D !B. Let Y = [B], we have X = D° ' Y. Let f = [N]r € £(Z,D°N) and
p; = [Pjlr € Li(Z,Y) for j =0,1. We have

D" 7; 0 Dy m(if) o (£, (po, 1))
= D" 0 D m(if) o ¥y (€) © (£, (po,p1)) by Lemma 5.14
= B"(m; 0 D m(if) 0 vy (€) © (f: (po,p1)) -

Now we have to consider the two cases ¢ = 0 and 7 = 1. The first case is dealt with as
follows.

B 70 o Dy m(if) o (£, (po, 1))
= D' (D " m(if) o (mo & m0)) 0 VY yy(€) © (F, (posp1))

by Theorems 5.22 and 5.24

o (D mo & D 7T0) o <E~)€N & Lo(e)) o (f, (po,p1))
by Lemma 5.13

( 0 & ole — 1)) o (f,{po,p1)) by Lemma 5.15
)0 (B N & (e 1) o (B 700 f. (po.p)

= Dp (i) o (D" 7o 0 £, (po, 1)) -

Let us deal with the second case.

o

D" 71 0 Dy m(if) o (£, (po,p1)) = D" (D" m(if) o (o & 1)) 0 ¥R xwx (€) © {f, (po,p1))
+ DD m(iF) o (m1 & 70)) © U xex(€) © (F, (po, p1))

by Theorems 5.22 and 5.24.
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By Lemmas 5.13 and 5.15 we have ([N)d m & B’ 77()) o z/;ON’X&X(e) = ([N)d T & 1o(e — 1)>
~d

~d ~d ~e1
and (D 7o & D 7r1) o wy’X&X(e) = (D mo & 0). It follows by bilinearity of D ! m(if)
that

D' 71 0 Dy m(if) o (f, (po, p1)) = D° m(if) o (6%1 & to(e — 1)) o (f, (po, p1))

~e—1

— o ~d
=Dy m(if) o (D w10 f,{po,p1)) -
To summarize, for ¢ = 0,1 and if d < e we have

D" 7; 0 Dy m(if) o (f, (po,p1)) = Dy m(i) o (D" mi o f, (po, p1)) -

It follows that [M]r = [M']r.

The case M = 7¢(let®(z, M, P)) and M’ = let* ! (x,7¢(M), P) with d < e is handled
similarly.
» Assume that M = 7%(if¢(N, Py, P1)) and M’ = if*(N, 74" ¢(Ry), 7¢~¢(Py)), with e < d.
We must have I' = N : D and there must be a type B such that I' = P; : B for j = 0,1
so that I' - if¢(N, Py, Py) : D¢B. Since I' - M : Afhe type B must be of shape Dié—etlC
for a (uniquely determined) type C, and then A = D?C and T F if*(N, Py, P;) : D*1C. We

~d—e ~e

set U=[Cland Y = [B] =D "' U, f = [N]r € £i(Z,D°N) and p; = [P]r € Li(Z,Y).
We have

de o [~)8 m(if) o (f, (po,p1))

= D" 0 D m() o YRy (€) o (£, (po, 1))
~e ~d

=D (D - T O m(ﬁ)) o 1/10 ~d—et1 (6) © <f’ <p07p1>>

N,D (U&U)
~e — ~d—e

=D (m(f) o (N& D" ")) o 00 acin ) (€) © (F poo)

by naturality of m(if)

= D" m(if) o (DN & D) o (BN & 10(e)) o (£, (po. 1))

=D° m(if) o (56 N & LQ(@)) o (I:N)e N& D' ° m) o (f,{po,p1)) by nat. of tp(e)

~d— ~d—e

= Dom(if) o (£, (D" “m;) o po, (D" ;) o p1))

and it follows that [M]r = [M']r since ([~)d_e m;) o p; = [74¢(P;)]r for j =0, 1.

The case where M = 7¢(let(x, M, P)) and M’ = let®(z, M, ﬂf_e(P)) with e < d is
handled similarly.
» Assume that M = 7d(0%(N)) and M’ = 7d(7d(N)) so that we must have I' - N : D*2B
for a (uniquely determined) type B such that A = DYB. Let Y = [B] so that X = %



Vol. 19:4 A COHERENT DIFFERENTIAL PCF 7:59

and f = [N]r € £i(Z, p** Y). We have

D7) 0 0"0) 0 f =D (w0 8) 0 f
:[N)d(ﬂ'gom))of
= (6d 7o) © (6d7r0) of
= [M']r.

Notice that we are using the fact that we are composing linear morphisms in £y so that the
equation 7y o @ = mg o 7y holds in £, because mg 7 = 7y 7o holds in L.

The case where M = 7¢(64(N)) and M’ = 7¢(nd(N)) + nd(7¢(N)) is similar, using the
equation m, T = m o+ w1 in L.

> Assume that M = 74(0¢(N)) and M’ = 6~} (7¢(N)) with d < e so that we must have
' N : D*"2B for a (uniquely determined) type B such that A = D°B. Let Y = [B] so
that X = D'Y. Let f = [N]pr € £i(Z.D"2Y) so that (D°8) o f € £,(2,D°" X) and
hence ([N)dm) ° ([~)e 0)o feli(Z, D’ X). We have

(D" 7)o (D 0) o f =D (w0 (D "0)) o f

(
(D 0 om;) o f by naturality of ;

— D 9 oD m)of

— [M']r.

» Assume that M = 7¢(0°(N)) and M’ = 6¢(z?*}(N)) with e < d so that we must
have I' + N : D*"2B for some type B and we have I' F 6¢(N) : D**'B. There must
be a type C such that D°t'B = D!C, and then A = DYC = D°B. In other words
B = D% ¢C and of course C is uniquely determined by A. Let Y = [C] so that we have

f =[N]r € £i(Z,D?2Y) and hence (6d 7)o (D 0) o feLi(Z, B’ Y). We have

(D" 7)o (D°0) o f=DD “mioh)of

= 58(0 o [N)d_eJrl m;) o f by nat. of 8, observing that d —e > 1

=Dfo [N)dHTri of
= [M']r.

» Assume that M = 7¢(c{(N)) and M’ = ¢/~ ' (7¢(N)) with d < e. Then there must be a

(2

type B such that T' - N : D*'*2B and hence T' F c¢(N) : D¢*2B, and T'+ M : DT+ B
since d < e +1+2. So we have A = D°V*!B. Let Y = [B] so that f = [N]r €
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Li(Z, p-Ht? Y) and we have

[M]r = <6d ) o (D c(l) o f

D' (mi 0D " c(l)) o f

(De -t ()om) f by naturality of ;
=<D€ () o (D)o f
= [M']r.

» Assume that M = 7¢(cf(N)) and M’ = c§(7¢(M)) with e + 1 + 2 < d. Then there must
be a type B such that T' - N : D*"*2B and hence T cf(N): Det+2B and therefore there
must be a type C such that D¥1C = DeT2B, that is B = D4 ¢~1C. Setting Y = [C]
we have f = [N]r € Li(Z, p**! Y) and

[M]r = (B"m) o B () o f

=D (D" “m)ocl) o f
~e , ~l4+2 ~d—e—[-2

— BB P m) o cll)) o f
= Be(c(l) o (Sdfe 7)) o f by naturality of c(I)

G ORCESEY;

= [M]r.
» Assume that M = 7T”+1(' : -wfo(cld(N))) and M’ = wfo(ﬁgﬂ(' --7r§l1 (N))) so that there
must be a type B such that I' - N : D¢+2B and hence T M DIB = A. Let Y = [B]

and f = [N]r € £,(2,0" 7 Y). We have (D" ;) 0+ o (D" m;) € £,(D"T 7 X, X)

and then

nMurz<6dm-l+1>o--~o<6dmo> o (B'ch) o f

= (Edﬂ'io) o (ﬁdmm) o - (Ddﬂ’“) of

= [M']r
by Lemma 5.16.
» Assume that M = ¢ (j(N)) M'=Nifi=jand M'=0ifi # j. We must have ' - N :
DB for a type B such that A = D?B. Setting Y = [B] we have f = [N]p € £i(Z, D’ Y)
and

(Sdm) o (Bd vj)o f= 6d(7ri ouj)o f

=0;;f

since m; o ¢ = J; ; Id

» Assume that M = ﬂ'f(bj(N)) and M’ = L;il(ﬂ'd(N)) with d < e so that we must have

7

T+ N :D°B and A = DUC with D4C = D! B so that C' = D*"“B. Let Y = [B] so that
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we have f = [N]r € £i(Z,D°Y) and
[M]r = (5%) 0 (D ) o f
mioD tj)o f

ol
~e—d—1 .
(( tj) om;) o f by naturality of ;

-1

=)o (B m)o s

= [M']r.
» Assume that M = ﬂf(L]( )) and M = i5(n] 4=1(N)) with e < d so that we must have
I+ N:DBand A = DC with D1 = D6+1B so that B = D9¢C. Let Y = [C] so that
we have f = [N]r € £(2,D"Y) and

[MIr = (0" 7)o (D" 1j) o f
=D (D “mi)o)of
= 66(53‘ ° (5d_6_1 7)) o f by naturality of ¢;
= (D)o (® 'm0
= [M']r.

» Assume that M = Wf(ﬂj(N)) and M’ = W?‘l(wf(N)) with d < e. We must have
I+ N : DB for a type B such that A = D*"!B. Let Y = [B] so that we have

= [N]r € £:(2,D°" V) and

[M]r = <6d m)o (D m)of

D(mi0 (B "m0 f

(( p mj) o m;) o f by naturality of ;
:<D“ )o@ m)or
= [M']r.

» Assume that M = ﬁg(wj( )) and M’ = 7%(n dH(N)) with e < d. We must have
L'+ N : DB for a type B and then I' - TN : D¢B so that B = D¥¢+1C for a type C

such that A = D?C. Let Y = [C] so that we have f = [N]r € £i(Z, p** Y) and
~d ~e
[M]r = (D mi) o (D mj) o f
=D (6" “m)om)of
~e ~d—e+1 .
=D (mjo (D 7;)) o f by naturality of =;

= (66 mj) o (6d+1 7)o f

= [M]r. ]
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Definition 5.36. Let S = [My, ..., Mg] € Mgn(Acg) and assume that I' S : A, that is

(T'F M; : A)k_,. We say that S is L-summable if the family ([M;]r)r_, is summable in
L([TT, [A]). When this property holds we set [S]r = S°F_ [Mi]r € £i([T], [A]).

Notice that this is not a purely syntactic notion, it depends on the notion of summability

of L.

Remark 5.37. We can introduce an absolute notion of summability by quantifying univer-
sally on £ but this will not be really useful here.

Theorem 5.38 (multiset soundness). If S € Mg, (Aeq) s such that T'H S : A and S is
L-summable and if S —pg, (A.) S then S is L-summable and [S']r = [S]r.

Remember that I' = S’ : A by Theorem 4.13.

Proof. The following cases are possible, for some Sy = [Ny, ..., Ng].

» S =50+ [M], M —a, 0and S’ = Sy. Since ([Ni]r,...,[Nelr, [M]r) is a summable
family, we know that the family ([Ni]r,...,[Ng]r) is summable by Theorem 5 of [Ehr23].
Moreover [S']r = [S]r because [M]r = [0]r = 0 by Theorem 5.35.

> S =S50+ [M], M =5, M and S = Sy + [M']. Then we have [M'|r = [M]r by
Theorem 5.35 and hence S’ is £L-summable and [S']r = [S]r.

> S = So+ [M], M =, Mo+ M; and S’ = Sp + [Mp, M;]. Then by Theorem 5.35
we know that [Mo]r, [Mi]r are summable and [M]r = [Mp]r + [M;]r. By Theorem 5
of [Ehr23] we know that ([N1]r, ..., [Ne]r, [Mo]r, [Mi]r) is a summable family with [S]r =
[Ni]r + -+ [Ne]r + [Mo]r + [Mi]r, that is S” is £-summable and [S']r = [S]r. []

Remark 5.39. This semantic notion of multiset summability seems counter to the general
philosophy of this work which is to take the notion of summability into account at a purely
syntactic level. We hope to be able to avoid it by means of a “parallel reduction” as explained
in Section 4.3.1; this does not seem trivial and is postponed to further work s