
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 14:1–14:39
https://lmcs.episciences.org/

Submitted Dec. 05, 2022
Published Nov. 27, 2023

FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES

KIRSTIN PETERS a, UWE NESTMANN b, AND CHRISTOPH WAGNER c

aAugsburg University, Germany
e-mail address: kirstin.peters@uni-a.de

bTU Berlin, Germany
e-mail address: uwe.nestmann@tu-berlin.de

cPaessler AG, Germany

Abstract. Multiparty session types are designed to abstractly capture the structure of
communication protocols and verify behavioural properties. One important such property
is progress, i.e., the absence of deadlock. Distributed algorithms often resemble multiparty
communication protocols. But proving their properties, in particular termination that
is closely related to progress, can be elaborate. Since distributed algorithms are often
designed to cope with faults, a first step towards using session types to verify distributed
algorithms is to integrate fault-tolerance.

We extend multiparty session types to cope with system failures such as unreliable
communication and process crashes. Moreover, we augment the semantics of processes
by failure patterns that can be used to represent system requirements (as, e.g., failure
detectors). To illustrate our approach we analyse a variant of the well-known rotating
coordinator algorithm by Chandra and Toueg.

1. Introduction

Multi-Party Session Types (MPST) are used to statically ensure correctly coordinated
behaviour in systems without global control ([HYC16, CDCPY15]). One important such
property is progress, i.e., the absence of deadlock. Like with every other static typing
approach, the main advantage is their efficiency, i.e., they avoid the problem of state
space explosion. MPST are designed to abstractly capture the structure of communication
protocols. They describe global behaviours as sessions, i.e., units of conversations [HYC16,
BCD+08, BHTY10]. The participants of such sessions are called roles. Global types specify
protocols from a global point of view. These types are used to reason about processes
formulated in a session calculus.

Distributed algorithms (DA) very much resemble multiparty communication protocols.
An essential behavioural property of DA is termination [Tel94, Lyn96], despite failures,
but it is often elaborate to prove. It turns out that progress (as provided by MPST) and
termination (as required by DA) are closely related.

Key words and phrases: Multiparty Session Types, Fault-Tolerance, Link and Crash Failures.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:14)2023
© K. Peters, U. Nestmann, and C. Wagner
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-4281-0074
https://orcid.org/0000−0002−8520−5448
http://creativecommons.org/about/licenses

14:2 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

Many DA were designed in a fault-tolerant way, in order to work in environments, where
they have to cope with system failures—be it links dropping messages or processes crashing.
Gärtner [Gär99] suggested four different forms of fault-tolerance, depending on whether
the safety and liveness requirements are met, or not. An algorithm is called masking in
the (best) case that both properties hold while tolerating faults transparently, i.e., without
further intervention by the programmer. It is called non-masking, however, if faults are
dealt with explicitly in order to cope with unsafe states, while still guaranteeing liveness.
The fail-safe case then captures algorithms that remain safe, but not live. (The fourth form
is just there for completeness; here neither safety nor liveness is guaranteed.) We focus on
masking fault-tolerant algorithms.

While the detection of conceptual design errors is a standard property of type systems,
proving correctness of algorithms despite the occurrence of system failures is not. Likewise,
traditional MPST do not cover fault tolerance or failure handling. There are several
approaches to integrate explicit failure handling in MPST (e.g. [CHY08, CGY16, CVB+16,
VCE+18, DHH+15, APN17]). These approaches are sometimes enhanced with recovery
mechanisms such as [CDCG17] or even provide algorithms to help find safe states to recover
from as in [NY17]. Many of these approaches introduce nested try-and-catch-blocks and a
challenge is to ensure that all participants are consistently informed about concurrent throws
of exceptions. Therefore, exceptions are propagated within the system. Though explicit
failure handling makes sense for high-level applications, the required message overhead is
too inefficient for many low-level algorithms. Instead these low-level algorithms are often
designed to tolerate a certain amount of failures. Since we focus on the communication
structure of systems, additional messages as reaction to faults (e.g. to propagate faults)
are considered non-masking failure handling. In contrast, we expect masking fault-tolerant
algorithms to cope without messages triggered by faults. We study how much unhandled
failures a well-typed system can tolerate, while maintaining the typical properties of MPST.

We propose a variant of MPST with unreliable interactions and augment the semantics
to also represent failures such as message loss and crashing processes, as well as more abstract
concepts of fault-tolerant algorithms such as the possibility to suspect a process to be faulty.
To guide the behaviour of unreliable communication, the semantics of processes uses failure
patterns that are not defined but could be instantiated by an application. This allows us to
cover requirements on the system—as, e.g., a bound on the number of faulty processes—as
well as more abstract concepts like failure detectors. It is beyond the scope of this paper to
discuss how failure patterns could be implemented.

1.1. Related Work. Type systems are usually designed for failure-free scenarios. An
exception is [KGG14] that introduces unreliable broadcast, where a transmission can be
received by multiple receivers but not necessarily all available receivers. In the latter case,
the receiver is deadlocked. In contrast, we consider fault-tolerant interactions, where in the
case of a failure the receiver is not deadlocked.

The already mentioned systems in [CHY08, CGY16, CVB+16, VCE+18, DHH+15]
extend session types with exceptions thrown by processes within try-and-catch-blocks,
interrupts, or similar syntax. They structurally and semantically encapsulate an unreliable
part of a protocol and provide some means to ’detect’ a failure and ’react’ to it. For example
[VCE+18] proposes a variant of MPST with the explicit handling of crash failures. Therefore
they coordinate asynchronous messages for run-time crash notifications using a coordinator.
Processes in [VCE+18] have access to local failure detectors which eventually detect all

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:3

failed peers and do not falsely suspect peers. In contrast we augment the semantics of the
session calculus with failure patterns that e.g. allow to implement failure detectors but may
also be used to implement system requirements. Exceptions may also describe, why a failure
occurred. Here we deliberately do not model causes of failures or how to ’detect’ a failure.
Different system architectures might provide different mechanisms to do so, for example, by
means of time-outs. As is standard for the analysis of DA, our approach allows us to port
the verified algorithms on different system architectures that satisfy the necessary system
requirements.

Another essential difference is how systems react to faults. In [CGY16], throw-messages
are propagated among nested try-and-catch-blocks to ensure that all participants are
consistently informed about concurrent throws of exceptions. Fault-tolerant DA, however,
have to deal with the problem of inconsistency that some part of a system may consider a
process/link as crashed, while at the same time the same process/link is regarded as correct
by another part. (This is one of the most challenging problems in the design and verification
of fault-tolerant DA.) The reason is that distributed processes usually cannot reliably observe
an error on another system part, unless they are informed by some system “device” (like
the “coordinator” of [VCE+18] or the “oracle” of [CGY16]). Therefore, abstractions like
unreliable failure detectors are used to model this restricted observability which can, for
example, be implemented by time-outs. Failure detectors are often considered to be local
(see previous paragraph), but they cannot ensure global consistency. Various degrees of
consistency, or [un]reliability, of failure detectors are often defined via constraints that are
expressed as global temporal properties [CT96] (see also Section 6). Abstract properties,
like the communication predicates in the Heard-Of model [CS09], can also be used to specify
minimum requirements on system behaviours at a global level of abstraction in order to be
able to guarantee correctness properties.

In previous work, we used the above-mentioned failure detector abstractions in the
context of (untyped) process calculi [NF03] to verify properties of several algorithms for
Distributed Consensus [NFM03, KN09]. Key for the respective proofs was the intricate
reconstruction of global state information from process calculus terms, as we later on
formalized in [WN14]. We conjecture that MPST could provide proof support in this
context, for example, for the methods that apply to these global states. The work by
Francalanza and Hennessy [FH07] also uses a process calculus for the analysis of DA, but
employs bisimulation proof techniques. In order to do so, however, the intended properties
need to be formulated via some global wrapper code, which provides a level of indirection to
proofs. This approach suffers from the absence of clear global state information. In contrast,
MPST supply useful global (session type) information from scratch.

1.2. Summary. The present paper is an extended version of [PNW22a] that additionally
contains the proofs of the presented results as well as some additional explanations (also
see the technical report [PNW22b]). In Section 2 we give an impression of the forms of
fault-tolerant interactions that we consider. Section 3 introduces the syntax of our version
of multiparty session types. The semantics of the session calculus is given in Section 4. In
Section 5 we provide the typing rules and show that the standard properties that are usually
required for multiparty session types versions are valid in our case. Section 6 provides an
example of using fault-tolerant multiparty session types by analysing an implementation of
a well-known Consensus algorithm.

14:4 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

(a) r1 r2

r1 r2 r1 r2 r1 r2

l⟨v⟩

l⟨v⟩ l⟨v⟩
(1) (2) (3)

(b) r1 r2

r1 r2 r1 r2

l

l

(1) (2)

Figure 1: Unreliable Communication (a) and Weakly Reliable Branching (b).

2. Fault-Tolerance in Distributed Algorithms

We consider three sources of failure in an unreliable communication (Figure 1(a)): (1) the
sender may crash before it releases the message, (2) the receiver may crash before it can
consume the message, or (3) the communication medium may lose the message. The design
of a DA may allow it to handle some kinds of failures better than others. Failures are
unpredictable events that occur at runtime. Since types consider only static and predictable
information, we do not distinguish between different kinds of failure or model their source
in types. Instead we allow types, i.e., the specifications of systems, to distinguish between
potentially faulty and reliable interactions.

A fault-tolerant algorithm has to solve its task despite such failures. Remember that
MPST analyse the communication structure. Accordingly, we need a mechanism to tolerate
faults in the communication structure. We want our type system to ensure that a faulty
interaction neither blocks the overall protocol nor influences the communication structure of
the system after this fault. We consider an unreliable communication as fault-tolerant if
a failure does not influence the guarantees for the overall communication structure except
for this particular communication. Moreover, if a potentially unreliable communication
is executed successfully, then our type system ensures the same guarantees as for reliable
communication such as e.g. the absence of communication mismatches.

To ensure that a failure does not block the algorithm, both the receiver and the sender
need to be allowed to proceed without their unreliable communication partner. Therefore,
the receiver of an unreliable communication is required to specify a default value that, in
the case of failure, is used instead of the value the process was supposed to receive. The
type system ensures the existence of such default values and checks their sort.

Moreover, we augment unreliable communication with labels that help us to avoid
communication mismatches. Assume for instance two subsequent unreliable communications
in that values of different sorts, a natural number and a boolean, are transmitted. If the first
message with its natural number is lost but the second message containing a Boolean value
is transmitted, the receiver could wrongly receive a Boolean value although it still waits for a
natural number. To avoid this mismatch, we add a label to unreliable communication, ensure
(by the typing rules) that the same label is never associated with different types, and let the
semantics inspect the label of a message before reception. Note that this problem, i.e., how
to ensure the absence of communication mismatches in the case of unreliable communication,
is one of the main challenges in structuring fault-tolerant communication.

Branching in the context of failures is more difficult, because a branch marks a decision
point in a specification, i.e., the participants of the session are supposed to behave differently
w.r.t. this decision. In an unreliable setting it is difficult to ensure that all participants are
informed consistently about such a decision.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:5

Consider a reliable branching that is decided by a process r1 and transmitted to r2. If
we try to execute such a branching despite failures, we observe that there are again three
ways in that this branching can go wrong (Figure 1(b)): (1) The sender may crash before
it releases its decision. This will block r2, because it is missing the information about the
branch it should move to. (2) The receiver might crash. (3) The message of r1 is lost. Then
again r2 is blocked.

Case (2) can be dealt with similar to unreliable communication, i.e., by marking the
branching as potentially faulty and by ensuring that a crash of r2 will not block another
process. To deal with Case (1), we declare one of the offered branches as default. If r1 has
crashed, r2 moves to the default branch. Then r2 will not necessarily move to the branch
that r1 had in mind before it crashed, but to a valid/specified branch and, since r1 is crashed,
no two processes move to different branches. The main problem is in Case (3). Let r1 move
to a non-default branch and transmit its decision to r2, this message gets lost, and r2 moves
to the default branch. Now both processes did move to branches that are described by their
types; but they are in different branches. This case violates the specification in the type and
we want to reject it. More precisely, we consider three levels of failures in interactions:

Strongly Reliable (r): Neither the sender nor the receiver can crash as long as they are
involved in this interaction. The message cannot be lost by the communication medium.
This form corresponds to reliable communication as it was described in [ACT97] in
the context of distributed algorithms. This is the standard, failure-free case.

Weakly Reliable (w): Both the sender and the receiver might crash at every possible
point during this interaction. But the communication medium cannot lose the message.

Unreliable (u): Both the sender and the receiver might crash at every possible point
during this interaction and the communication medium might lose the message. There
are no guarantees that this interaction—or any part of it—takes place. Here, it is
difficult to ensure interesting properties in branching.

We use the subscripts or superscripts r, w, or u to indicate actions of the respective kind.

3. Fault-Tolerant Types and Processes

For clarity, we often distinguish names into values, i.e., the payload of messages, shared
channels, or session channels according to their usage; there is, however, no need to formally
distinguish between different kinds of names.

We assume that the sets N of names a, s, x . . .; R of roles n, r, . . .; L of labels l , ld, . . .;
VT of type variables t ; and VP of process variables X are pairwise distinct. To simplify the
reduction semantics of our session calculus, we use natural numbers as roles (compare to
[HYC16]). Sorts S range over B,N, The set E of expressions e, v, b, . . . is constructed
from the standard Boolean operations, natural numbers, names, and (in)equalities.

Global types specify the desired communication structure from a global point of view.
In local types this global view is projected to the specification of a single role/participant.
We use standard MPST ([HYC08, HYC16]) extended by unreliable communication and
weakly reliable branching (highlighted in blue) in Figure 2.

A new session s with n roles is initialised with a[n](s).P and a[r](s).P via the shared
channel a. We identify sessions with their unique session channel.

The type r1 →r r2:⟨S⟩.G specifies a strongly reliable communication from role r1 to
role r2 to transmit a value of the sort S and then continues with G. A system with this

14:6 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

Global Types Local Types Processes

P ::= a[n](s).P

| a[r](s).P

G ::= r1 →r r2:⟨S⟩.G
T ::= [r2]!r⟨S⟩.T | s[r1, r2]!r⟨e⟩.P

| [r1]?r⟨S⟩.T | s[r2, r1]?r(x).P

| r1 →u r2:l⟨S⟩.G
| [r2]!ul⟨S⟩.T | s[r1, r2]!ul⟨e⟩.P
| [r1]?ul⟨S⟩.T | s[r2, r1]?ul⟨v⟩(x).P

| r1 →r r2:{li.Gi}i∈I
| [r2]!r{li.Ti}i∈I | s[r1, r2]!rl .P

| [r1]?r{li.Ti}i∈I | s[r2, r1]?r{li.Pi}i∈I
| r →w R:{li.Gi}i∈I,ld

| [R]!w{li.Ti}i∈I | s[r,R]!wl .P

| [r]?w{li.Ti}i∈I,ld | s[rj , r]?w{li.Pi}i∈I,ld
| G1 || G2 | P1 | P2

| (µt)G | t | end | (µt)T | t | end | (µX)P | X | 0

| if b then P1 else P2

| (νx)P | ⊥

| r1 → r2:⟨s ′[r]:T ⟩.G
| [r2]!⟨s ′[r]:T ⟩.T ′ | s[r1, r2]!⟨⟨s ′[r]⟩⟩.P
| [r1]?⟨s ′[r]:T ⟩.T ′ | s[r2, r1]?((s

′[r])).P

| sr1→r2 :M

Message Types Messages

mt ::= ⟨S⟩r | l⟨S⟩u | l r | lw | s[r]
m ::= ⟨v⟩r | l⟨v⟩u | l r

| lw | s[r]

Figure 2: Syntax of Fault-Tolerant MPST

type will be guaranteed to perform a corresponding action. In a session s this commu-
nication is implemented by the sender s[r1, r2]!r⟨e⟩.P1 (specified as [r2]!r⟨S⟩.T1) and the
receiver s[r2, r1]?r(x).P2 (specified as [r1]?r⟨S⟩.T2). As result, the receiver instantiates x in
its continuation P2 with the received value.

The type r1 →u r2:l⟨S⟩.G specifies an unreliable communication from r1 to r2 transmitting
(if successful) a label l and a value of type S and then continues (regardless of the success
of this communication) with G. The unreliable counterparts of senders and receivers are
s[r1, r2]!ul⟨e⟩.P1 (specified as [r2]!ul⟨S⟩.T1) and s[r2, r1]?ul⟨v⟩(x).P2 (specified as [r1]?ul⟨S⟩.T2).
The receiver s[r2, r1]?ul⟨v⟩(x).P2 declares a default value v that is used instead of a received
value to instantiate x after a failure. Moreover, a label is communicated that helps us to
ensure that a faulty unreliable communication has no influence on later actions.

The strongly reliable branching r1 →r r2:{li.Gi}i∈I allows r1 to pick one of the branches
offered by r2. We identify the branches with their respective label. Selection of a branch is
by s[r1, r2]!rl .P (specified as [r2]!r{li.Ti}i∈I). Upon receiving lj , s[r2, r1]?r{li.Pi}i∈I (specified
as [r1]?r{li.Ti}i∈I) continues with Pj .

As discussed in the end of Section 1, the counterpart of branching is weakly reliable and
not unreliable. It is implemented by r →w R:{li.Gi}i∈I,ld , where R ⊆ R and ld with d ∈ I is
the default branch. We use a broadcast from r to all roles in R to ensure that the sender
can influence several participants consistently. Splitting this action to inform the roles in
R separately does not work, because we cannot ensure consistency if the sender crashes
while performing these subsequent actions. The type system will ensure that no message is

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:7

lost. Because of that, all processes that are not crashed will move to the same branch. We
often abbreviate branching w.r.t. to a small set of branches by omitting the set brackets and
instead separating the branches by ⊕, where the last branch is always the default branch.
In contrast to the strongly reliable cases, s[r,R]!wl .P (specified as [R]!w{li.Ti}i∈I) allows to
broadcast its decision to R and s[rj , r]?w{li.Pi}i∈I,ld (specified as [r]?w{li.Ti}i∈I,ld) defines a
default label ld.

The ⊥ denotes a process that crashed. Similar to [HYC16], we use message queues to
implement asynchrony in sessions. Therefore, session initialisation introduces a directed and
initially empty message queue sr1→r2 :[] for each pair of roles r1 ̸= r2 of the session s. The
separate message queues ensure that messages with different sources or destinations are not
ordered, but each message queue is FIFO. Since the different forms of interaction might be
implemented differently (e.g. by TCP or UDP), it make sense to further split the message
queues into three message queues for each pair r1 ̸= r2 such that different kinds of messages
do not need to be ordered. To simplify the presentation of examples in this paper and not
to blow up the number of message queues, we stick to a single message queue for each pair
r1 ̸= r2, but the correctness of our type system does not depend on this decision. We have
five kinds of messages m and corresponding message types mt in Figure 2—one for each kind
of interaction. In strongly reliable communication a value v (of sort S) is transmitted in a
message ⟨v⟩r of type ⟨S⟩r. In unreliable communication the message l⟨v⟩u (of type l⟨S⟩u)
additionally carries a label l . For branching only the picked label l is transmitted and we add
the kind of branching as superscript, i.e., message/type l r is for strongly reliable branching
and message/type lw for weakly reliable branching. Finally, message/type s[r] is for session
delegation. A message queue M is a list of messages m and MT is a list of message types mt.

The remaining operators for independence G || G′; parallel composition P | P ′; recursion
(µt)G, (µX)P ; inaction end, 0; conditionals if b then P1 else P2; session delegation r1 →
r2:⟨s ′[r]:T ⟩.G, s[r1, r2]!⟨⟨s ′[r]⟩⟩.P , s[r2, r1]?((s

′[r])).P ; and restriction (νx)P are all standard.
As usual, we assume that recursion variables are guarded and do not occur free in types or
processes.

In types (µt)G and (µt)T the type variable t is bound. In processes (µX)P the process
variable X is bound. Similarly, all names in round brackets are bound in the remainder of the
respective process, e.g. s is bound in P by a[n](s).P and x is bound in P by s[r1, r2]?r(x).P .
A variable or name is free if it is not bound. Let FN(P) return the free names of P .

Let subterm denote a (type or process) expression that syntactically occurs within
another (type or process) term. We use ’.’ (as e.g. in a[r](s).P) to denote sequential
composition. In all operators the prefix before ’.’ guards the continuation after the ’.’. Let∏

1≤i≤n Pi abbreviate P1 | . . . | Pn.

Let R(G) return all roles that occur in G. We write nsr(G), nsr(T), and nsr(P), if none
of the prefixes in G, T , and P is strongly reliable or for delegation and if P does not contain
message queues.

Definition 3.1 (Well-Formedness, Global Type). A global type is well-formed if
(1) it neither contains free nor unguarded type variables,
(2) R(G) = {1, . . . , |R(G)|},
(3) for all its subterms of the form r1 →r r2:⟨S⟩.G or r1 →u r2:l⟨S⟩.G, we have r1 ̸= r2,
(4) for all its subterms of the form r1 →r r2:{li.Gi}i∈I or r →w R:{li.Gi}i∈I,ld , we have r1 ̸= r2,

r /∈ R, d ∈ I, and the labels li are pairwise distinct, and
(5) for all its subterms of the form G1 || G2, we have R(G1) ∩ R(G2) = ∅.

14:8 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

We restrict our attention to well-formed global types.

Definition 3.2 (Well-Formedness, Global Type). A local type is well-formed if
(1) it neither contains free nor unguarded type variables and
(2) for all its subterms of the form [r]!r{li.Ti}i∈I, [r]?r{li.Ti}i∈I, [R]!w{li.Ti}i∈I,ld , or of the

form [R]?w{li.Ti}i∈I,ld , we have d ∈ I and the labels li are pairwise distinct.

We restrict our attention to well-formed local types.
A session channel and a role together uniquely identify a participant of a session, called

an actor. A process has an actor s[r] if it has an action prefix on s that mentions r as its
first role. Let A(P) be the set of actors of P .

3.1. Examples. Consider the specification Gdice,r of a simple dice game in a bar

(µt)3 →r 1:⟨N⟩.3 →r 2:⟨N⟩.3 →r 1:{roll .3 →r 2:roll .t , exit .3 →r 2:exit .end} (1)

where the dealer Role 3 continues to roll a dice and tell its value to player 1 and then to
roll another time for player 2 until the dealer decides to exit the game.

We can combine strongly reliable communication/branching and unreliable communica-
tion, e.g. by ordering a drink before each round in Gdice,r.

(µt)3 →u 4:drink⟨N⟩.3 →r 1:⟨N⟩.3 →r 2:⟨N⟩.
3 →r 1:{roll .3 →r 2:roll .t , exit .3 →r 2:exit .end}

where role 4 represents the bar tender and the noise of the bar may swallow these orders.
Moreover, we can remove the branching and specify a variant of the dice game in that 3
keeps on rolling the dice forever, but, e.g. due to a bar fight, one of our three players might
get knocked out at some point or the noise of this fight might swallow the announcements of
role 3:

Gdice,u = (µt)3 →u 1:roll⟨N⟩.3 →u 2:roll⟨N⟩.t (2)

To restore the branching despite the bar fight that causes failures, we need the weakly
reliable branching mechanism.

Gdice = (µt)3 →w {1, 2} : play .3 →u 1:roll⟨N⟩.3 →u 2:roll⟨N⟩.t ,
⊕ end .3 →u 1:win⟨B⟩.3 →u 2:win⟨B⟩.end

(3)

If 3 is knocked out by the fight, i.e., crashes, the game cannot continue. Then 1 and 2
move to the default branch end , have to skip the respective unreliable communications,
and terminate. But the game can continue as long as 3 and at least one of the players 1, 2
participate.

An implementation of Gdice is Pdice = P3 | P1 | P2, where for i ∈ {1, 2}:
P3 = a[3](s).(µX)if x1 ≤ 21 ∧ x2 ≤ 21

then s[3, {1, 2}]!wplay .s[3, 1]!uroll⟨roll(x1)⟩.s[3, 2]!uroll⟨roll(x2)⟩.X
else s[3, {1, 2}]!wend .s[3, 1]!uwin⟨x1 ≤ 21⟩.s[3, 2]!uwin⟨x2 ≤ 21⟩.0

Pi = a[i](s).(µX)s[i, 3]?wplay .s[i, 3]?uroll⟨x ⟩(x).X ⊕ end .s[i, 3]?uwin⟨f⟩(w).0

Role 3 stores the sums of former dice rolls for the two players in its local variables x1 and x2,
and roll(xi) rolls a dice and adds its value to the respective xi. Role 3 keeps rolling dice until
the sum xi for one of the players exceeds 21. If both sums x1 and x2 exceed 21 in the same
round, then 3 wins, i.e., both players receive f; else, the player that stayed below 21 wins

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:9

and receives t. The players 1 and 2 use their respective last known sum that is stored in x
as default value for the unreliable communication in the branch play and f as default value
in the branch end . The last branch, i.e., end , is the default branch.

3.2. Projection. Our type system verifies processes, i.e., implementations, against a speci-
fication that is a global type. Since processes implement local views, local types are used as
a mediator between the global specification and the respective local end points. To ensure
that the local types correspond to the global type, they are derived by projection. Instead of
the projection function described in [HYC16] we use a more relaxed variant of projection as
introduced in [YDBH10, CDGH20, vGHH21].

Projection maps global types onto the respective local type for a given role p. The
projections of the new global types are obtained straightforwardly from the projection of
their respective strongly reliable counterparts:

(r1 →⋄ r2:S.G)↾p ≜

[r2]!⋄S.G↾p if p = r1

[r1]?⋄S.G↾p if p = r2

G↾p otherwise

where either ⋄ = r, S = ⟨S⟩ or ⋄ = u, S = l⟨S⟩ and

(
r1 →⋄ R:{li.Gi}i∈ID

)
↾p ≜

[R]!⋄{li.Gi↾p}i∈I if p = r1

[r1]?⋄{li.Gi↾p}i∈ID if B⊔
i∈I (Gi↾p) otherwise

where either ⋄ = r, R = r2, B is p = r2, D is empty or ⋄ = w, R = R, B is p ∈ R, D is , ld. In
the last case of strongly reliable or weakly reliable branching—when projecting onto a role that
does not participate in this branching—we map to

⊔
i∈{1,...,n} (Gi↾p) = (G1↾p)⊔ . . .⊔ (Gn↾p).

The ⊔ allows to unify the projections Gi↾p if all of them return the same kind of branching
input [p]?⋄ . . . were the respective sets of branches my differ as long as the same label is
always followed by the same local type. The operation ⊔ is (similar to [YDBH10]) inductively
defined as:

T ⊔ T = T

([r]?rI1) ⊔ ([r]?rI2) = [r]?r(I1 ⊔ I2)

([r]?wI1) ⊔ ([r]?wI2) = [r]?w(I1 ⊔ I2) if I1 and I2 have the same default branch

I ⊔ ∅ = I

I ⊔ ({l .T} ∪ J) =

{
{l . (T ′ ⊔ T)} ∪ ((I \ {l .T ′}) ⊔ J) if l .T ′ ∈ I

{l .T} ∪ (I ⊔ J) if l /∈ I

where T, T ′ ∈ T are local types, I, I1, I2, J are sets of branches of local types of the form l .T ,
l /∈ I is short hand for ∄T ′. l .T ′ ∈ I, and is undefined in all other cases. By the first line,
identical types can be merged. By the second and third line, local types for the reception of
a branching request can be merged if they have the same prefix and the respective sets of
branches can be merged. The third line, for the weakly reliable case, additionally requires
that the two sets of branches have the same default branch. The sets of branches, that need
to be merged according to the second and third line, contain elements of the form l .T , where
l is a label and T a local type. The last two lines above inductively define how to merge such
sets, i.e., here we overload the operator ⊔ on local types to an operator on sets of branches

14:10 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

of local types. The case distinction in the last line ensures that elements l .T with a label
that occurs in only one of the two sets can be kept, but if both sets contain an element with
the same label then the respective local types have to be merged for the resulting set.

The mergeability relation ⊔ states that two types are identical up to their branching
types, where only branches with distinct labels are allowed to be different. This ensures that
if the sender r1 in r1 →r r2:{li.Gi}i∈I decides to branch then only processes that are informed
about this decision can adapt their behaviour accordingly; else projection is not defined.

The remaining global types are projected as follows:

(r1 → r2:⟨s[r]:T ⟩.G)↾p ≜

[r2]!⟨s[r]:T ⟩.G↾p if p = r1

[r1]?⟨s[r]:T ⟩.G↾p if p = r2

G↾p otherwise

(G1 || G2)↾p ≜

{
G1↾p if p /∈ R(G2)

G2↾p if p /∈ R(G1)

((µt)G)↾p ≜

G↾p if t does not occur in G

(µt)G↾p else if p ∈ R(G)

end otherwise

t↾p ≜ t end↾p ≜ end

The projection of delegation is similar to communication. The projection of G1 || G2 on
p is not defined if p occurs on both sides of this parallel composition; it is Gi↾p if p occurs
in exactly one side i ∈ {1, 2}; or it is (G1 || G2)↾p = G1↾p = G2↾p = end if p does not occur
at all. Recursive types without their recursion variable are mapped to the projection of
their recursion body (similar to [CDGH20]), else if p occurs in the recursion body we map
to a recursive local type, or else to successful termination. Type variables and successful
termination are mapped onto themselves. We denote a global type G as projectable if for all
r ∈ R(G) the projection G↾r is defined. We restrict our attention to projectable global types.
Projection maps well-formed global types onto the respective local type for a given role p,
where the results of projection—if defined—are again well-formed.

Projecting the global type Gdice,r in (1) results in the local types

T3:dice,r = (µt)[1]!r⟨N⟩.[2]!r⟨N⟩.[1]!r{roll .[2]!rroll .t , exit .[2]!rexit .end}
Ti:dice,r = (µt)[3]?r⟨N⟩.[3]?r{roll .t , exit .end}

where the types of the two players T1:dice,r = T2:dice,r = Ti:dice,r are identical. The projection
of the outer branching in Gdice,r on 2 results in [3]?rroll .t for the first branch and [3]?rexit .end
for the second branch. These two [3]?r types are unified by ⊔ into a single [3]?r type with
two branches.

Projection maps Gdice in (3) to:

T3:dice = (µt)[{1, 2}]!w play .[1]!uroll⟨N⟩.[2]!uroll⟨N⟩.t
⊕ end .[1]!uwin⟨B⟩.[2]!uwin⟨B⟩.end

Ti:dice = (µt)[3]?w(play .[3]?uroll⟨N⟩.t ⊕ end .[3]?uwin⟨B⟩.end)

where i ∈ {1, 2} and both Ti:dice are obtained by the second case of projection. The
type system will ensure that either 3 transmits the request to branch to both players 1, 2
simultaneously and, since these messages cannot be lost, all players that are not crashed
move to same branch or 3 crashes and all remaining players move to the default branch.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:11

Assume instead that 3 can only inform one of the players 1, 2 at once.

(µt)3 →w {1} : play .3 →u 1:roll⟨N⟩.3 →u 2:roll⟨N⟩.t
⊕ end .3 →u 1:win⟨B⟩.3 →u 2:win⟨B⟩.end

is not projectable, because ⊔ does not allow to unify the projections [3]?uroll⟨N⟩.t and
[3]?uwin⟨B⟩.end of the two branches of 2. Replacing them by strongly reliable communica-
tions implies that neither 3 nor 2 fail. The type

(µt)3 →w {1} : play .3 →u 1:roll⟨N⟩.3 →w {2} :(play .3 →u 2:roll⟨N⟩.t ⊕ end .end)
⊕ end .3 →u 1:win⟨B⟩.3 →w {2} :(play .end⊕ end .3 →u 2:win⟨B⟩.end)

where 3 informs its two players subsequently about the chosen branch is projectable. But it
introduces the two additional branches end .end and play .end, i.e., 3 is allowed to choose the
branches for the players 1, 2 separately and differently, whereas in (1) as well as in (3) the
players 1, 2 are always in the same branch. Because of that, we allow for broadcast in weakly
reliable branching such that 3 can inform both players consistently without introducing
additional and not-intended branches.

3.3. Labels. We use labels for two purposes: they allow us to distinguish between different
branches, as usual in MPST-frameworks, and we assume that they may carry additional
runtime information such as timestamps. We do that because we think of labels not only as
identifiers for branching, but also as some kind of meta data of messages as they can be
often found in communication media or as they are assumed by many distributed algorithms.
A prominent example is the use of timestamps in message headers, that allow a receiver
to identify outdated messages and to discard them. Thereby, these additional runtime
information placed in the label by the sender help the receiver to implement one of the
already mentioned failure patterns; namely the one that allows a receiver to skip a message
and continue with a default value instead. We will introduce failure patterns with the
semantics in the next section. Although it is beyond the scope of this paper to discuss the
implementation of failure patterns, we have to provide the technical means to do so.

Allowing for runtime information in labels requires a subtle difference in the way labels
are used. A timestamp may be added by the sender to capture the transmission time, but for
the receiver it is hard to have this information already present in its label before or during
reception. Similarly, types in our static type system should not depend on any runtime
information. Hence, in contrast to standard MPST, we do not expect the labels of senders
and receivers as well as the labels of processes and types to match exactly. Instead we
assume a predicate =̇ that compares two labels and is satisfied if the parts of the labels
that do not refer to runtime information correspond. If labels do not contain runtime
information, =̇ can be instantiated with equality. We require that =̇ is unambiguous on
labels used in types, i.e., given two labels of processes lP , l

′
P and two labels of types lT , l

′
T

then lP =̇ l ′P ∧ lP =̇ lT ⇒ l ′P =̇ lT and lP =̇ lT ∧ lT ̸=̇ l ′T ⇒ lP ̸=̇ l ′T .
Of course, the presented type system remains valid if we use labels without additional

runtime information. Indeed all presented examples carry in their labels statically available
information only. Interestingly, also the static information in labels, that have to coincide
for senders and receivers and their types, can be exploited to guide communication. In
contrast to standard MPST and to support unreliable communication, our MPST variant
will ensure that all occurrences of the same label are associated with the same sort. This
helps us in the case of failures to ensure the absence of communication mismatches, i.e., the

14:12 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

type of a transmitted value has to be the type that the receiver expects. The global type
GNB = 1 →u 2:l1⟨N⟩.1 →u 2:l2⟨B⟩.end specifies two subsequent unreliable communications
in that values of different sorts are transmitted as discussed in Section 2. If the first
message with its natural number is lost but the second message containing a Boolean value is
transmitted, the receiver 2 should not wrongly receive a Boolean value although it still waits
for a natural number. To avoid this mismatch, we add a label to unreliable communication
and ensure (by the typing rules) that the same label is never associated with different types.
In the case of GNB, the type system associates l1 with sort N and l2 with sort B and ensures
that l1 ̸=̇ l2. Sine l1 ̸=̇ l2, the reduction rules do not allow the receiver to use the value
received in a message with label l2 for its first communication action, i.e., forces the receiver
to first skip its first communication and use a default value before its is allowed to receive
the message with label l2. Here we interpret labels again as some kind of meta data of
messages that allow a receiver to use static information in labels to guide reception. In
particular, our unreliable communication mechanism exploits such meta data to guarantee
strong properties about the communication structure including the described absence of
communication mismatches. Since the labels of the sender and the receiver are associated
with a unique sort, the type system can then ensure that received values have the expected
sort. Similarly, labels are used in [CV10] to avoid communication errors.

4. A Semantics with Failure Patterns

Before we describe the semantics, we introduce substitution and structural congruence
as auxiliary concepts. The application of a substitution {y/x} on a term A, denoted as
A{y/x}, is defined as the result of replacing all free occurrences of x in A by y , possibly
applying alpha-conversion to avoid capture or name clashes. For all names n ∈ N \ {x}
the substitution behaves as the identity mapping. We use substitution on types as well as
processes and naturally extend substitution to the substitution of variables by terms (to
unfold recursions) and names by expressions (to instantiate a bound name with a received
value). We assume an evaluation function eval(·) that evaluates expressions to values.

We use structural congruence to abstract from syntactically different processes with the
same meaning, where ≡ is the least congruence that satisfies alpha conversion and the rules:

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 (µX)0 ≡ 0
(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P (νx) (P1 | P2) ≡ P1 | (νx)P2 if x /∈ FN(P1)

The reduction semantics of the session calculus is defined in the Figures 3 and 4, where
we follow [HYC16]: session initialisation is synchronous and communication within a session
is asynchronous using message queues. The rules are standard except for the five failure
pattern and two rules for system failures: (Crash) for crash failures and (ML) for message
loss. Failure patterns are predicates that we deliberately choose not to define here (see
below). They allow us to provide information about the underlying communication medium
and the reliability of processes.

Rule (Init) initialises a session with n roles. Session initialisation introduces a fresh
session channel and unguards the participants of the session. Finally, the message queues of
this session are initialised with the empty list under the restriction of the session channel.

Rule (RSend) implements an asynchronous strongly reliable message transmission. As a
result the value eval(y) is wrapped in a message and added to the end of the corresponding
message queue and the continuation of the sender is unguarded. Rule (USend) is the

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:13

(Init) a[n](s).Pn |
∏

1≤i≤n−1 a[i](s).Pi 7−→ (νs)
(∏

1≤i≤n Pi |
∏

1≤i,j≤n,i ̸=j si→j:[]
)

if a ̸= s

(RSend) s[r1, r2]!r⟨y⟩.P | sr1→r2 :M 7−→ P | sr1→r2 :M#⟨v⟩r if eval(y) = v

(RGet) s[r1, r2]?r(x).P | sr2→r1 :⟨v⟩
r#M 7−→ P{v/x} | sr2→r1 :M

(USend) s[r1, r2]!ul⟨y⟩.P | sr1→r2 :M 7−→ P | sr1→r2 :M#l⟨v⟩u if eval(y) = v

(UGet) s[r1, r2]?ul⟨dv⟩(x).P | sr2→r1 :l
′⟨v⟩u#M 7−→ P{v/x} | sr2→r1 :M

if l =̇ l ′, FPuget(s, r1, r2, l
′, . . .)

(USkip) s[r1, r2]?ul⟨dv⟩(x).P 7−→ P{dv/x} if FPuskip(s, r1, r2, l , . . .)

(ML) sr1→r2 :l⟨v⟩
u#M 7−→ sr1→r2 :M if FPml(s, r1, r2, l , . . .)

(RSel) s[r1, r2]!rl .P | sr1→r2 :M 7−→ P | sr1→r2 :M#l r

(RBran) s[r1, r2]?r{li.Pi}i∈I | sr2→r1 :l
r#M 7−→ Pj | sr2→r1 :M if l =̇ lj , j ∈ I

(WSel) s[r,R]!wl .P |
∏

ri∈R sr→ri :Mi 7−→ P |
∏

ri∈R sr→ri :Mi#lw

(WBran) s[r1, r2]?w{li.Pi}i∈I,ld | sr2→r1 :l
w#M 7−→ Pj | sr2→r1 :M if l =̇ lj , j ∈ I

(WSkip) s[r1, r2]?w{li.Pi}i∈I,ld 7−→ Pd if FPwskip(s, r1, r2, . . .)

(Crash) P 7−→ ⊥ if FPcrash(P , . . .)

Figure 3: Reduction Rules (7−→) of Fault-Tolerant Processes (Part I).

counterpart of (RSend) for unreliable senders. (RGet) consumes a message that is marked as
strongly reliable with the index r from the head of the respective message queue and replaces
in the unguarded continuation of the receiver the bound variable x by the received value y .

There are two rules for the reception of a message in an unreliable communication that
are guided by failure patterns. Rule (UGet) is similar to Rule (RGet), but specifies a failure
pattern FPuget to decide whether this step is allowed. This failure pattern could, e.g., be used
to reject messages that are too old. Moreover, l =̇ l ′ is required to enforce that the static
information in the transmitted label matches the expectation specified in the label of the
receiver. As explained in Section 3.3, this allows to avoid communication mismatches. The
Rule (USkip) allows to skip the reception of a message in an unreliable communication using
a failure pattern FPuskip and instead substitutes the bound variable x in the continuation
with the default value dv . The failure pattern FPuskip tells us whether a reception can be
skipped (e.g. via failure detector).

Rule (RSel) puts the label l selected by r1 at the end of the message queue towards r2.
Its weakly reliable counterpart (WSel) is similar, but puts the label at the end of all relevant
message queues. With (RBran) a label is consumed from the top of a message queue and the
receiver moves to the indicated branch. There are again two weakly reliable counterparts of
(RBran). Rule (WBran) is similar to (RBran), whereas (WSkip) allows r1 to skip the message
and to move to its default branch if the failure pattern FPwskip holds. The requirement l =̇ lj
in RBran and WBran ensures as usual that indeed the branch specified by the message at the
queue is picked by the receiver. Note that this branch has to be identified by the statically
available information in the respective labels.

The Rules (Crash) for crash failures and (ML) for message loss, describe failures of a
system. With Rule (Crash) P can crash if FPcrash, where FPcrash can e.g. model immortal
processes or global bounds on the number of crashes. (ML) allows to drop an unreliable

14:14 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

(If-T) if e then P else P ′ 7−→ P if e is true

(If-F) if e then P else P ′ 7−→ P ′ if e is false

(Deleg) s[r1, r2]!⟨⟨s ′[r]⟩⟩.P | sr1→r2 :M 7−→ P | sr1→r2 :M#s ′[r]

(SRecv) s[r1, r2]?((s
′[r])).P | sr2→r1 :s

′′[r′]#M 7−→ P{s′′/s′}{r′/r} | sr1→r2 :M

(Par) P1 | P2 7−→ P ′
1 | P2 if P1 7−→ P ′

1

(Res) (νx)P 7−→ (νx)P ′ if P 7−→ P ′

(Rec) (µX)P 7−→ P{(µX)P/X}
(Struc) P1 7−→ P ′

1 if P1 ≡ P2, P2 7−→ P ′
2, P

′
2 ≡ P ′

1

Figure 4: Reduction Rules (7−→) of Fault-Tolerant Processes (Part II).

message if the failure pattern FPml is valid. FPml allows, e.g., to implement safe channels
that never lose messages or a global bound on the number of lost messages.

Figure 4 provides the remaining reduction rules for conditionals, delegation, parallel
composition, restriction, recursion, and structural congruence. They are standard.

Consider the implementation of Gdice,u in (2), i.e., an infinite variant of the dice game,
where the players 1 and 2 use their respective last known sum xi of former dice rolls as
default value:

Pdice,u = P3,u | Pi,u | P2,u

P3,u = a[3](s).(µX)s[3, 1]!uroll⟨roll(x1)⟩.s[3, 2]!uroll⟨roll(x2)⟩.X
Pi,u = a[i](s).(µX)s[i, 3]?uroll⟨xi⟩(xi).X

An unreliable communication in a global type specifies a communication that, due to system
failures, may or may not happen. Moreover, regardless of the successful completion of
this unreliable communication, the future behaviour of a well-typed system will follow its
specification in the global type. Since the players 1 and 2 repeat the same kind of unreliable
action, they may lose track of the current round. If they successfully receive a new sum of
dice rolls from 3 they cannot be sure on how often 3 actually did roll the dice. Because
of lost messages, they may have missed some former announcements of 3 and, because of
their ability to skip the reception of messages, they may have proceeded to the next round
before 3 rolled a dice. Because the information about the current round is irrelevant for the
communication structure in this case, there is no need to enforce round information.

We deliberately do not specify failure pattern, although we usually assume that the
failure patterns FPuget, FPuskip, and FPwskip use only local information, whereas FPml and
FPcrash may use global information of the system in the current run. We provide these
predicates to allow for the implementation of system requirements or abstractions like
failure detectors that are typical for distributed algorithms. Directly including them in the
semantics has the advantage that all traces satisfy the corresponding requirements, i.e., all
traces are valid w.r.t. the assumed system requirements. An example for the instantiation of
these patterns is given implicitly via the Conditions 5.2.1–5.2.6 in Section 5 and explicitly
in Section 6. If we instantiate the patterns FPuget with true and the patterns FPuskip,
FPwskip, FPcrash, FPml with false, then we obtain a system without failures. In contrast, the
instantiation of all five patterns with true results in a system where failures can happen
completely non-deterministically at any time.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:15

Note that we keep the failure patterns abstract and do not model how to check them in
producing runs. Indeed system requirements such as bounds on the number of processes
that can crash usually cannot be checked, but result from observations, i.e., system designers
ensure that a violation of this bound is very unlikely and algorithm designers are willing to
ignore these unlikely events. In particular, FPml and FPcrash are thus often implemented as
oracles for verification, whereas e.g. FPuskip and FPwskip are often implemented by system
specific time-outs. Note that we are talking about implementing these failure patterns and
not formalising them. Failure patterns are abstractions of real world system requirements or
software. We implement them by conditions providing the necessary guarantees that we
need in general (i.e., for subject reduction and progress) or for the verification of concrete
algorithms. In practice, we expect that the systems on which the verified algorithms are
running satisfy the respective conditions. Accordingly, the session channels, roles, labels, and
processes mentioned in Figure 3 are not parameters of the failure patterns, but just a vehicle
to more formally specify the conditions on failure patterns in Section 5. An implementation
may or may not use these information to implement these patterns but may also use other
information such as runtime information about time or the number of processes, as indicated
by the . . . in failure patterns in Figure 3 such as FPcrash(P , . . .).

Similarly, strongly reliable and weakly reliable interactions in potentially faulty systems
are abstractions. They are usually implemented by handshakes and redundancy; replicated
servers against crash failures and retransmission of late messages against message loss.
Algorithm designers have to be aware of the additional costs of these interactions.

5. Typing Fault-Tolerant Processes

The type of processes is checked using typing rules that define the derivation of type
judgments. Within type judgements, the type information are stored in type environments.

Definition 5.1 (Type Environments). The global and session environments are given by

Γ ::= ∅ | Γ · x :S | Γ · a:G | Γ · l :S | Γ ·X :t

∆ ::= ∅ | ∆ · s[r]:T | ∆ · sr1→r2 :MT∗

Assignments x :S of values to sorts are used to check whether transmitted values are
well-sorted, i.e., sender and receiver expect the same sort. Assignments a:G capture the
global type of a session for session initialisation via the shared channel a. Assignments l :S
link labels to sorts. Assignments X :t of process variables to type variables are used to check
the type of recursive processes.

Assignments s[r]:T of actors to local types are used to compare the behaviour of a
process that implements this actor with its local specification T . Assignments sr1→r2 :MT∗

allow to check the current content of a message queue sr1→r2 against a list of message types
MT.

We write x ♯Γ and x ♯∆ if the name x does not occur in Γ and ∆, respectively. We
use · to add an assignment provided that the new assignment is not in conflict with the
type environment. More precisely, Γ · x :S implies x ♯Γ, Γ · l :S implies l♯Γ, and Γ · X :s[r]:t
implies X , t♯Γ. Moreover, ∆ · s[r]:T implies (∄T ′. s[r]:T ′ ∈ ∆) and ∆ · sr1→r2 :M implies
(∄M′. sr1→r2 :M′ ∈ ∆). We naturally extend this operator towards sets, i.e., Γ · Γ′ implies
(∀A ∈ Γ′. Γ ·A) and ∆ · ∆′ implies (∀A ∈ ∆′. ∆ ·A). The conditions described for the
operator · for global and session environments are referred to as linearity. Accordingly, we

14:16 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

(Req)
a:G ∈ Γ |R(G)| = n Γ ⊢ P ▷∆ · s[n]:G↾n

Γ ⊢ a[n](s).P ▷∆

(Acc)
a:G ∈ Γ 0 < r < |R(G)| Γ ⊢ P ▷∆ · s[r]:G↾r

Γ ⊢ a[r](s).P ▷∆

(RSend)
Γ ⊩ y:S Γ ⊢ P ▷∆ · s[r1]:T

Γ ⊢ s[r1, r2]!r⟨y⟩.P ▷∆ · s[r1]:[r2]!r⟨S⟩.T

(RGet)
x ♯ (Γ,∆, s) Γ · x :S ⊢ P ▷∆ · s[r1]:T

Γ ⊢ s[r1, r2]?r(x).P ▷∆ · s[r1]:[r2]?r⟨S⟩.T

(USend)
Γ ⊩ y:S l =̇ l ′ l ′:S ∈ Γ Γ ⊢ P ▷∆ · s[r1]:T
Γ ⊢ s[r1, r2]!ul⟨y⟩.P ▷∆ · s[r1]:[r2]!ul ′⟨S⟩.T

(UGet)
x ♯ (Γ,∆, s) Γ ⊩ v:S l =̇ l ′ l ′:S ∈ Γ Γ · x :S ⊢ P ▷∆ · s[r1]:T

Γ ⊢ s[r1, r2]?ul⟨v⟩(x).P ▷∆ · s[r1]:[r2]?ul ′⟨S⟩.T

(RSel)
j ∈ I l =̇ lj Γ ⊢ P ▷∆ · s[r1]:Tj

Γ ⊢ s[r1, r2]!rl .P ▷∆ · s[r1]:[r2]!r{li.Ti}i∈I

(RBran)
∀j ∈ I2. ∃i ∈ I1. li =̇ l ′j ∧ Γ ⊢ Pi ▷∆ · s[r1]:Tj

Γ ⊢ s[r1, r2]?r{li.Pi}i∈I1 ▷∆ · s[r1]:[r2]?r{l ′i .Ti}i∈I2

(WSel)
j ∈ I l =̇ lj Γ ⊢ P ▷∆ · s[r]:Tj

Γ ⊢ s[r,R]!wl .P ▷∆ · s[r]:[R]!w{li.Ti}i∈I

(WBran)
ld =̇ l ′d ∀j ∈ I2. ∃i ∈ I1. li =̇ l ′j ∧ Γ ⊢ Pi ▷∆ · s[r1]:Tj

Γ ⊢ s[r1, r2]?w{li.Pi}i∈I1,ld ▷∆ · s[r1]:[r2]?w{l ′i .Ti}i∈I2,l ′d

(Deleg)
Γ ⊢ P ▷∆ · s[r1]:T

Γ ⊢ s[r1, r2]!⟨⟨s ′[r]⟩⟩.P ▷∆ · s[r1]:[r2]!⟨s ′[r]:T ′⟩.T · s ′[r]:T ′

(SRecv)
Γ ⊢ P ▷∆ · s[r1]:T · s ′[r]:T ′

Γ ⊢ s[r1, r2]?((s ′[r])).P ▷∆ · s[r1]:[r2]?⟨s ′[r]:T ′⟩.T

(End)
Γ ⊢ 0 ▷ ∅

(Crash)
nsr(∆)

Γ ⊢ ⊥ ▷∆
(If)

Γ ⊩ e:B Γ ⊢ P ▷∆ Γ ⊢ P ′ ▷∆

Γ ⊢ if e then P else P ′ ▷∆

(Par)
Γ ⊢ P ▷∆ Γ ⊢ P ′ ▷∆′

Γ ⊢ P | P ′ ▷∆ ·∆′ (Res1)
x ♯ (Γ,∆) Γ · x :S ⊢ P ▷∆

Γ ⊢ (νx)P ▷∆

(Rec)
Γ ·X :t ⊢ P ▷∆ · s[r]:T

Γ ⊢ (µX)P ▷∆ · s[r]:(µt)T
(Var)

Γ ·X :t ⊢ X ▷ s[r]:t

Figure 5: Typing Rules for Fault-Tolerant Systems.

denote type environments that satisfy these properties as linear and restrict in the following
our attention to linear environments. We abstract in session environments from assignments
towards terminated local types, i.e., ∆ · s[r]:end = ∆.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:17

A type judgement is of the form Γ ⊢ P ▷∆, where Γ is a global environment, P ∈ P is a
process, and ∆ is a session environment. We use typing rules to derive type judgements,
where we assume that all mentioned global types are well-formed and projectable, all local
types are well-formed, and all environments are linear. A process P is well-typed w.r.t. Γ
and ∆ if Γ ⊢ P ▷∆ can be derived from the rules in the Figures 5 and 6. We write nsr(∆) if
none of the prefixes in T is strongly reliable or for delegation for all local types T in ∆ and
if ∆ does not contain message queues. With Γ ⊩ y:S we check that y is an expression of the
sort S if all names x in y are replaced by arbitrary values of sort Sx for x :Sx ∈ Γ.

Let us consider the interaction cases in Figure 5. We observe that all new cases are
quite similar to their strongly reliable counterparts.

Rule (RSend) checks strongly reliable senders, i.e., requires a matching strongly reliable
sending in the local type of the actor and compares the actor with this type. With Γ ⊩ y:S
we check that y is an expression of the sort S if all names x in y are replaced by arbitrary
values of sort Sx for x :Sx ∈ Γ. Then the continuation of the process is checked against the
continuation of the type. The unreliable case is very similar, but additionally checks that
the label is assigned to the sort of the expression in Γ. Rule (RGet) type strongly reliable
receivers, where again the prefix is checked against a corresponding type prefix and the
assumption x :S is added for the continuation. Again the unreliable case is very similar, but
apart from the label also checks the sort of the default value.

Rule (RSel) checks the strongly reliable selection prefix, that the selected label matches
one of the specified labels, and that the process continuation is well-typed w.r.t. the type
continuation following the selected label. The only difference in the weakly reliable case is
the set of roles for the receivers. For strongly reliable branching in (RBran) we check the
prefix and that for each branch in the type there is a matching branch in the process that is
well-typed w.r.t. the respective branch in the type. For the weakly reliable case we have to
additionally check that the default labels of the process and the type coincide.

Rule (Crash) for crashed processes checks that nsr(∆), i.e., that for every type G or T
in ∆ the predicate nsr(G) or nsr(T) holds.

Figure 6 presents the runtime typing rules, i.e., the typing rules for processes that may
result from steps of a system that implements a global type. Since it covers only operators
that are not part of initial systems, a type checking tool might ignore them. We need these
rules however for the proofs of progress and subject reduction. Under the assumption that
initial systems cannot contain crashed processes, Rule (Crash) may be moved to the set of
runtime typing rules.

Rule (Res2) types sessions that are already initialised and that may have performed

already some of the steps described by their global type. The relation
s7→ is given in

Figure 7 and describes how a session environment evolves alongside reductions of the
system, i.e., it emulates the reduction steps of processes. As an example consider the rule

∆ · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT
s7→ ∆ · s[r1]:T · sr1→r2 :MT#⟨S⟩r that emulates (RSend). Let

sZ⇒
denote the reflexive and transitive closure of

s7→.
We have to prove that our extended type system satisfies the standard properties of

MPST, i.e., subject reduction and progress. Because of the failure pattern in the reduction
semantics in Figure 3, subject reduction and progress do not hold in general. Instead we
have to fix conditions on failure patterns that ensure these properties. Subject reduction
needs one condition on crashed processes and progress requires that no part of the system
is blocked. In fact, different instantiations of these failure patterns may allow for progress.

14:18 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

(Res2)

{s[r]:G↾r | r ∈ R(G)} · {sr→r′ :[] | r, r′ ∈ R(G′) ∧ r ̸= r′} sZ⇒ ∆′

s♯ (Γ,∆) a:G ∈ Γ Γ ⊢ P ▷∆ ·∆′

Γ ⊢ (νs)P ▷∆

(MQComR)
Γ ⊩ v:S Γ ⊢ sr1→r2 :M ▷ sr1→r2 :MT

Γ ⊢ sr1→r2 :⟨v⟩
r#M ▷ sr1→r2 :⟨S⟩

r#MT

(MQComU)
Γ ⊩ v:S l =̇ l ′ l ′:S ∈ Γ Γ ⊢ sr1→r2 :M ▷ sr1→r2 :MT

Γ ⊢ sr1→r2 :l⟨v⟩
u#M ▷ sr1→r2 :l

′⟨S⟩u#MT

(MQBranR)
l =̇ l ′ Γ ⊢ sr1→r2 :M ▷ sr1→r2 :MT

Γ ⊢ sr1→r2 :l
r#M ▷ sr1→r2 :l

′ r#MT

(MQBranW)
l =̇ l ′ Γ ⊢ sr1→r2 :M ▷ sr1→r2 :MT

Γ ⊢ sr1→r2 :l
w#M ▷ sr1→r2 :l

′w#MT

(MQDeleg)
Γ ⊢ sr1→r2 :M ▷ sr1→r2 :MT

Γ ⊢ sr1→r2 :s
′[r]#M ▷ sr1→r2 :s

′[r]#MT
(MQNil)

Γ ⊢ sr1→r2 :[] ▷ sr1→r2 :[]

Figure 6: Runtime Typing Rules for Fault-Tolerant Systems.

We leave it for future work to determine what kind of conditions on failure patterns or
requirements on their interactions are necessary. Here, we consider only one such set.

Condition 5.2 (Failure Pattern).
(1) If FPcrash(P , . . .), then nsr(P).
(2) The failure pattern FPuget(s, r1, r2, l , . . .) is always valid.
(3) The pattern FPml(s, r1, r2, l , . . .) is valid iff FPuskip(s, r2, r1, l , . . .) is valid.
(4) If FPcrash(P , . . .) and s[r] ∈ A(P) is an actor then eventually FPuskip(s, r2, r, l , . . .)

and FPwskip(s, r2, r, l , . . .) for all r2, l .
(5) If FPcrash(P , . . .) and s[r] ∈ A(P) then eventually FPml(s, r1, r, l , . . .) for all r1, l .
(6) If FPwskip(s, r1, r2, . . .) then s[r2] is crashed, i.e., the system does no longer contain

an actor s[r2] and the message queue sr2→r1 is empty.

The crash of a process should not block strongly reliable actions, i.e., only processes
with nsr(P) can crash (Condition 5.2.1). Condition 5.2.2 requires that no process can refuse
to consume a message on its queue to prevent deadlocks that may arise from refusing a
message that is never dropped. Condition 5.2.3 requires that if a message can be dropped
from a message queue then the corresponding receiver has to be able to skip this message
and vice versa. Similarly, processes that wait for messages from a crashed process have to
be able to skip (Condition 5.2.4) and all messages of a queue towards a crashed receiver
can be dropped (Condition 5.2.5). Finally, weakly reliable branching requests should not be
lost. To ensure that the receiver of such a branching request can proceed if the sender is
crashed but is not allowed to skip the reception of the branching request before the sender
crashed, we require that FPwskip(s, r1, r2, . . .) is false as long as s[r2] is alive or messages on
the respective queue are still in transit (Condition 5.2.6).

The combination of the 6 conditions in Conditions 5.2 might appear quite restrictive
as e.g. the combination of the Condition 5.2.4 and 5.2.6 ensures the correct behaviour of
weakly reliable branching such that branching messages can be skipped if and only if the

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:19

(RSend)
∆ · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT

s7→ ∆ · s[r1]:T · sr1→r2 :MT#⟨S⟩r

(RGet)
∆ · s[r1]:[r2]?r⟨S⟩.T · sr2→r1 :⟨S⟩

r#MT
s7→ ∆ · s[r1]:T · sr2→r1 :MT

(USend)
∆ · s[r1]:[r2]!ul⟨S⟩.T · sr1→r2 :MT

s7→ ∆ · s[r1]:T · sr1→r2 :MT#l⟨S⟩u

(UGet)
∆ · s[r1]:[r2]?ul⟨S⟩.T · sr2→r1 :l⟨S⟩

u#MT
s7→ ∆ · s[r1]:T · sr2→r1 :MT

(USkip)
∆ · s[r1]:[r2]?ul⟨S⟩.T

s7→ ∆ · s[r1]:T

(ML)
∆ · sr1→r2 :l⟨S⟩

u#MT
s7→ ∆ · sr1→r2 :MT

(RSel)
j ∈ I

∆ · s[r1]:[r2]!r{li.Ti}i∈I · sr1→r2 :MT
s7→ ∆ · s[r1]:Tj · sr1→r2 :MT#l rj

(RBran)
j ∈ I

∆ · s[r1]:[r2]?r{li.Ti}i∈I · sr2→r1 :l
r
j#MT

s7→ ∆ · s[r1]:Tj · sr2→r1 :MT

(WSel)
j ∈ I R = {r1, . . . , rn}

∆ · s[r]:[R]!w{li.Ti}i∈I,ld · sr→r1 :MT1 · . . . · sr→rn :MTn
s7→

∆ · s[r]:Tj · sr→r1 :MT1#lwj · . . . · sr→rn :MTn#lwj

(WBran)
j ∈ I

∆ · s[r1]:[r2]?w{li.Ti}i∈I,ld · sr2→r1 :l
w
j #MT

s7→ ∆ · s[r1]:Tj · sr2→r1 :MT

(WSkip)
∆ · s[r1]:[r2]?w{li.Ti}i∈I,ld

s7→ ∆ · s[r1]:Td

(Rec)
∆ · s[r]:(µt)T s7→ ∆ · s[r]:t{(µt)T/t}

(Deleg)
∆ · s[r1]:[r2]!⟨s ′[r]:T ′⟩.T · s ′[r]:T ′ · sr1→r2 :MT

s7→ ∆ · s[r1]:T · sr1→r2 :MT#s ′[r]

(SRecv)
∆ · s[r1]:[r2]?⟨s ′[r]:T ′⟩.T · sr2→r1 :s

′[r]#MT
s7→ ∆ · s[r1]:T · s ′[r]:T ′ · sr2→r1 :MT

Figure 7: Reduction Rules for Session Environments.

respective sender has crashed. An implementation of such a weakly reliable interaction in
an asynchronous system that is subject to message losses and process crashes, might require
something like a perfect failure detector or actually solving consensus1. It is important to
remember that these conditions are minimal assumptions on the system requirements and
that system requirements are abstractions. Parts of them may be realised by actual software-
code (which then allows to check them), whereas other parts of the system requirements

1Note that we consider in Section 6 a consensus algorithm. So, if the Condition 5.2 requires a solution of
consensus, an example on top of that solving consensus would be pointless.

14:20 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

may not be realised at all but rather observed (which then does not allow to verify them).
Weakly reliable branching is a good example of this case. The easiest way to obtain a weakly
reliable interaction, is by using a handshake communication and time-outs. If the sender
time-outs while waiting for an acknowledgement, it resends the message. If the sender does
not hear from its receiver for a long enough period of time, it assumes that the receiver has
crashed and proceeds. With carefully chosen time-frames for the time-outs, this approach
is a compromise between correctness and efficiency. In a theoretical sense, it is clearly not
correct. There is no time-frame such that the sender can be really sure that the receiver has
crashed. From a practical point of view, this is not so problematic, since in many systems
failures are very unlikely. If failures that are so severe that they are not captured by the
time-outs are extremely unlikely, then it is often much more efficient to just accept that the
algorithm is not correct in these cases. Trying to obtain an algorithm that is always correct
might be impossible or at least usually results into very inefficient algorithms. Moreover,
verifying this requires to also verify the underlying communication infrastructure and the
way in that failures may occur, which is impossible or at least impracticable. Because of
that, it is an established method to verify the correctness of algorithms w.r.t. given system
requirements (e.g. in [CT96, Lam01, vST17]), even if these system requirements are not
verified and often do not hold in all (but only nearly all) cases.

Let us have a closer look at the typing rules in the Figures 5 and 6. We observe that
all typing rules are clearly distinguished by the outermost operator of the process in the
conclusion except that there are two typing rules for restriction. With that, given a type
judgement Γ ⊢ P ▷∆, we can use the structure of P—with a case split for restriction—to
reason about the structure of the proof tree that was necessary to obtain Γ ⊢ P ▷∆ and
from that derive conditions about the nature of the involved type environments. If P is e.g.
a parallel composition P1 | P2 then, since there is only one rule to type parallel compositions
(the Rule (Par)), Γ ⊢ P1 | P2 ▷ ∆ implies that there are ∆1,∆2 such that ∆ = ∆1 · ∆2,
Γ ⊢ P1 ▷∆1, and Γ ⊢ P2 ▷∆2. In the following, we write ’by Rule (Par)’ as short hand for
’by the clear distinction of the typing rules by the process in the conclusion and Rule (Par)
in particular’ and similar for the other rules.

In the following we prove some properties of our MPST variant. We start with an
auxiliary result, proving that structural congruence preserves the validity of type judgements.
The proof is by induction on P ≡ P ′. In each case we can use the information about the
structure of the process that is provided by the considered rule of structural congruence to
conclude on the last few typing rules that had to be applied to derive the type judgement in
the assumption. From these partial proof trees we obtain enough information to construct
the proof tree for the conclusion.

Lemma 5.3 (Subject Congruence). If Γ ⊢ P ▷∆ and P ≡ P ′ then Γ ⊢ P ′ ▷∆.

Proof. The proof is by induction on P ≡ P ′.

Case P | 0 ≡ P : Assume Γ ⊢ P | 0 ▷∆. By the Rule (Par), then there are ∆P ,∆0 such
that ∆ = ∆P ·∆0, Γ ⊢ P ▷∆P , and ∆ ⊢ 0 ▷∆0. Moreover, by Rule (End), Γ ⊢ 0 ▷∆0

implies that ∆0 = ∅ and, thus, ∆ = ∆P . Then also Γ ⊢ P ▷∆.
For the opposite direction assume Γ ⊢ P ▷∆. By Rule (End), Γ ⊢ 0▷∅. With Rule (Par)
and because ∆ = ∆ · ∅, then Γ ⊢ P | 0 ▷∆.

Case P1 | P2 ≡ P2 | P1: Assume Γ ⊢ P1 | P2 ▷∆. By Rule (Par), then there are ∆P1 ,∆P2

such that ∆ = ∆P1 ·∆P2 and Γ ⊢ Pi ▷∆Pi . By Rule (Par) and since ∆ = ∆P1 ·∆P2

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:21

implies ∆ = ∆P2 ·∆P1 , then Γ ⊢ P2 | P1 ▷∆.
The opposite direction is similar.

Case P1 | (P2 | P3) ≡ (P1 | P2) | P3: Assume Γ ⊢ P1 | (P2 | P3) ▷∆.
By Rule (Par), then there are ∆P1 ,∆P2 ,∆P3 such that ∆ = ∆P1 · (∆P2 ·∆P3) and
Γ ⊢ Pi ▷∆Pi . By Rule (Par) and because ∆ = (∆P1 ·∆P2) ·∆P3 , then Γ ⊢ (P1 | P2) |
P3 ▷∆.
The opposite direction is similar.

Case (µX)0 ≡ 0: Assume Γ ⊢ (µX)0 ▷ ∆. By Rule (Rec), then ∆ = ∆′ · s[r]:(µt)T ,
Γ · X :t ⊢ 0 ▷ ∆′ · s[r]:T , and, by Rule (End), then ∆′ = ∅ and T = end. Since
(µt)end = end and ∆ · s[r]:end = ∆, then ∆ = ∅. By Rule (End), then Γ ⊢ 0 ▷∆.
For the opposite direction assume Γ ⊢ 0 ▷ ∆. By Rule (End), then ∆ = ∅. By
Rule (End), then also Γ · X :t ⊢ 0 ▷∆. By Rule (Rec) and since (µt)end = end and
∆ · s[r]:end = ∆, then Γ ⊢ (µX)0 ▷∆.

Case (νx)0 ≡ 0: Assume Γ ⊢ (νx)0 ▷∆. By one of the Rules (Res1) or (Res2), then there
are Γ′,∆′ such that Γ · Γ′ ⊢ 0 ▷∆ or Γ · Γ′ ⊢ 0 ▷∆ ·∆′. In both cases we can conclude
with Rule (End) that the session environment is empty, i.e., ∆ = ∅ and ∆ ·∆′ = ∅. By
Rule (End), then Γ ⊢ 0 ▷∆.
For the opposite direction assume Γ ⊢ 0 ▷ ∆. By Rule (End), then ∆ = ∅. By
Rule (End), then Γ · x :S ⊢ 0 ▷∆ for some sort S—regardless of whether x is a value or
a session channel. By Rule (Res1), then Γ ⊢ (νx)0 ▷∆.

Case (νx)(νy)P ≡ (νy)(νx)P : Assume Γ ⊢ (νx)(νy)P ▷∆. By alpha-conversion and the
Rules (Res1) and (Res2), then there is Γ′ and some (possibly empty) ∆′ such that—for
all combinations of the Rules (Res1) and (Res2) for the restrictions of x and y—we have
Γ · Γ′ ⊢ P ▷∆ ·∆′. By the commutativity and associativity of · and two corresponding
applications of the Rules (Res1) and (Res2), then also Γ ⊢ (νy)(νx)P ▷∆.
The opposite direction is similar.

Case (νx) (P1 | P2) ≡ P1 | (νx)P2 if x /∈ FN(P1): Assume Γ ⊢ (νx) (P1 | P2) ▷∆. By one
of the Rules (Res1) or (Res2), then x ♯ (Γ,∆) and there are Γ′,∆′ such that Γ ·Γ′ ⊢ P1 |
P2 ▷∆ ·∆′, where Γ′ assigns to x either a sort or a global type and ∆′ is either empty or
contains only actors and message queues. Since x /∈ FN(P1) and by Rule (Par), then
there are ∆P1 ,∆P2 such that ∆ = ∆P1 ·∆P2 , Γ ⊢ P1 ▷∆P1 , and Γ · Γ′ ⊢ P2 ▷∆P2 ·∆′.
With one of the Rules (Res1) or (Res2), then Γ ⊢ (νx)P2 ▷∆P2 . With Rule (Par), then
Γ ⊢ P1 | (νx)P2 ▷∆.
The opposite direction is similar.

Moreover, types are preserved modulo substitution of names by values of the same sort.
The proof is by induction on the typing rules.

Lemma 5.4 (Substitution). If Γ · c:Sc ⊢ Q ▷∆ and Γ ⊩ d:Sc, then Γ ⊢ Q{d/c} ▷∆.

Proof. The proof is by induction on the derivation of Γ · c:Sc ⊢ Q ▷∆.

(Req): Then, Q = a[n](s).P , a:G ∈ Γ, |R(G)| = n, and Γ · c:Sc ⊢ P ▷ ∆ · s[n]:G↾n.
Without loss of generality, assume s ̸= c. Because of linearity, a:G ∈ Γ implies
a ̸= c. By the induction hypothesis, Γ · c:Sc ⊢ P ▷∆ · s[n]:G↾n and Γ ⊩ d:Sc imply
Γ ⊢ P{d/c} ▷∆ · s[n]:G↾n. By (RReq), then Γ ⊢ Q{d/c} ▷∆.

(Acc): Then, Q = a[r](s).P , a:G ∈ Γ, 0 < r < |R(G)|, and Γ · c:Sc ⊢ P ▷ ∆ · s[r]:G↾r.
Without loss of generality, assume s ̸= c. Because of linearity, a:G ∈ Γ implies a ̸= c.
By the induction hypothesis, Γ ⊢ P{d/c} ▷∆ · s[r]:G↾r. By (Acc), then Γ ⊢ Q{d/c} ▷∆.

14:22 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

(RSend): Then, Q = s[r1, r2]!r⟨y⟩.P , ∆ = ∆′ · s[r1]:[r2]!r⟨S⟩.T , Γ · c:Sc ⊩ y :S, and Γ · c:Sc ⊢
P ▷∆′ · s[r1]:T . Because Γ · c:Sc ⊩ y :S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ y{d/c}:S. By
the induction hypothesis, Γ ⊢ P{d/c} ▷∆′ · s[r1]:T . By (RSend), then Γ ⊢ Q{d/c} ▷∆.

(RGet): Then, Q = s[r1, r2]?r(x).P , ∆ = ∆′ · s[r1]:[r2]?r⟨S⟩.T , x ♯ (Γ, c,∆′, s), and Γ · c:Sc ·
x :S ⊢ Pi ▷∆

′ · s[r1]:T . Because Γ · c:Sc · x :S ⊢ Pi ▷∆
′ · s[r1]:T , s ̸= c. By the induction

hypothesis, Γ · x :S ⊢ P{d/c} ▷∆′ · s[r1]:T . By (RGet), then Γ ⊢ Q{d/c} ▷∆.
(USend): Then, Q = s[r1, r2]!ul⟨y⟩.P , ∆ = ∆′ · s[r1]:[r2]!ul ′⟨S⟩.T , l =̇ l ′, Γ · c:Sc ⊩ y:S, and

Γ · c:Sc ⊢ P ▷ ∆′ · s[r1]:T . Because of Γ · c:Sc ⊩ y:S, s ̸= c. With Γ ⊩ d:Sc, then
Γ ⊩ y{d/c}:S. By the induction hypothesis, Γ ⊢ P{d/c} ▷∆′ · s[r1]:T . By (USend), then
Γ ⊢ Q{d/c} ▷∆.

(UGet): Then, Q = s[r1, r2]?ul⟨v⟩(x).P , ∆ = ∆′ · s[r1]:[r2]?ul ′⟨S⟩.T , l =̇ l ′, Γ · c:Sc ⊩ v:S,
x ♯ (Γ, c,∆′, s), and Γ ·c:Sc ·x :S ⊢ P ▷∆′ · s[r1]:T . Because of Γ ·c:Sc ⊩ v:S, s ̸= c. With
Γ ⊩ d:Sc ∈ Γ, then Γ ⊩ v{d/c}:S. By the induction hypothesis, Γ ⊢ P{d/c} ▷∆′ · s[r1]:T .
By (UGet), then Γ ⊢ Q{d/c} ▷∆.

(RSel): Then, Q = s[r1, r2]!rl .P , ∆ = ∆′ · s[r1]:[r2]!r{li.Ti}i∈I, j ∈ I, l =̇ lj , and Γ · c:Sc ⊢
P ▷∆′ · s[r1]:Tj . Because Γ · c:Sc ⊢ P ▷∆′ · s[r1]:Tj , s ̸= c. By the induction hypothesis,
Γ ⊢ P{d/c} ▷∆′ · s[r1]:Tj . By (RSel), then Γ ⊢ Q{d/c} ▷∆.

(RBran): Then, Q = s[r1, r2]?r{li.Pi}i∈I1 , ∆ = ∆′ · s[r1]:[r2]?r{li.Ti}i∈I2 , and, for all j ∈ I2
exists some i ∈ I1 such that li =̇ lj and Γ · c:Sc ⊢ Pi ▷∆

′ · s[r1]:Tj . Fix j and i. Because
Γ ·c:Sc ⊢ Pi ▷∆

′ · s[r1]:Tj , s ̸= c. By the induction hypothesis, Γ ⊢ Pi{d/c}▷∆′ · s[r1]:Tj .
By (RBran), then Γ ⊢ Q{d/c} ▷∆.

(WSel): Then, Q = s[r,R]!wl .P , ∆ = ∆′ · s[r]:[R]!w{li.Ti}i∈I,ld , j ∈ I, l =̇ lj , and Γ · c:Sc ⊢
P ▷∆′ · s[r]:Tj . Because Γ · c:Sc ⊢ P ▷∆′ · s[r]:Tj , s ̸= c. By the induction hypothesis,
Γ ⊢ P{d/c} ▷∆′ · s[r]:Tj . By (WSel), then Γ ⊢ Q{d/c} ▷∆.

(WBran): Then, Q = s[r1, r2]?w{li.Pi}i∈I1,ld , ∆ = ∆′ · s[r1]:[r2]?w{li.Ti}i∈I2,l ′d , ld =̇ l ′d, and,

for all j ∈ I2 exists some i ∈ I1 such that li =̇ lj and Γ · c:Sc ⊢ Pi ▷∆
′ · s[r1]:Tj . Fix

j and i. Because Γ · c:Sc ⊢ Pi ▷ ∆′ · s[r1]:Tj , s ̸= c. By the induction hypothesis,
Γ ⊢ Pi{d/c} ▷∆′ · s[r1]:Tj . By (WBran), then Γ ⊢ Q{d/c} ▷∆.

(If) : Then, Q = if e then P else P ′, Γ · c:Sc ⊩ e:B, Γ · c:Sc ⊢ P ▷∆, and Γ · c:Sc ⊢ P ′ ▷∆.
With Γ ⊩ d:Sc ∈ Γ, then Γ ⊩ e{d/c}:B. By the induction hypothesis, Γ ⊢ P{d/c} ▷∆
and Γ ⊢ P ′{d/c} ▷∆. By (If), then Γ ⊢ Q{d/c} ▷∆.

(Deleg): Then Q = s[r1, r2]!⟨⟨s ′[r]⟩⟩.P , ∆ = ∆′ · s[r1]:[r2]!⟨s ′[r]:T ′⟩.T · s ′[r]:T ′, and Γ · c:Sc ⊢
P ▷∆′ ·s[r1]:T . Because Γ ·c:Sc ⊢ Q ▷∆, c ̸= s and c ̸= s ′. By the induction hypothesis,
Γ ⊢ P{d/c} ▷∆′ · s[r1]:T . By (Deleg), then Γ ⊢ Q{d/c} ▷∆.

(SRecv): Then Q = s[r1, r2]?((s
′[r])).P , ∆ = ∆′ · s[r1]:[r2]?⟨s ′[r]:T ′⟩.T , and Γ · c:Sc ⊢ P ▷

∆′ · s[r1]:T · s ′[r]:T ′. Because Γ · c:Sc ⊢ P ▷ ∆′ · s[r1]:T · s ′[r]:T ′, c ̸= s and c ̸= s ′.
By the induction hypothesis, Γ ⊢ P{d/c} ▷ ∆′ · s[r1]:T · s ′[r]:T ′. By (SRecv), then
Γ ⊢ Q{d/c} ▷∆.

(Par): Then, Q = P | P ′, Γ ·c:Sc ⊢ P ▷∆, and Γ ·c:Sc ⊢ P ′ ▷∆. By the induction hypothesis,
Γ ⊢ P{d/c} ▷∆ and Γ ⊢ P ′{d/c} ▷∆. By (Par), then Γ ⊢ Q{d/c} ▷∆.

(Res1): Then, Q = (νx)P , x ♯ (Γ, c,∆), and Γ · c:Sc · x :S ⊢ P ▷ ∆. By the induction
hypothesis, Γ · x :S ⊢ P{d/c} ▷∆. By (Res1), then Γ ⊢ Q{d/c} ▷∆.

(Rec): Then, Q = (µX)P , ∆ = ∆′ · s[r]:T , and Γ · c:Sc · X :t ⊢ P ▷ ∆′ · s[r]:T . By the
induction hypothesis, Γ ·X :t ⊢ P{d/c} ▷∆′ · s[r]:T . By (Rec), then Γ ⊢ Q{d/c} ▷∆.

(Var): Then, Q = X , Γ = Γ′ ·X :s[r]:t , and ∆ = s[r]:t . By (Var), then Γ ⊢ Q{d/c} ▷∆.
(End): Then, Q = 0 and ∆ = ∅. By (End), then Γ ⊢ Q{d/c} ▷∆.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:23

(Crash): Then, Q = ⊥ and nsr(∆). By (UCrash), then Γ ⊢ Q{d/c} ▷∆.

(Res2): Then, {s[r]:G↾r | r ∈ R(G)} · {sr→r′ :[] | r, r′ ∈ R(G′) ∧ r ̸= r′} sZ⇒ ∆′, Q = (νs)P ,
s♯ (Γ, c,∆), a:G ∈ Γ, and Γ · c:Sc ⊢ P ▷ ∆ · ∆′. By the induction hypothesis, Γ ⊢
P{d/c} ▷∆ ·∆′. By (ResS), then Γ ⊢ Q{d/c} ▷∆.

(MQComR): Then, Q = sr1→r2 :⟨v⟩
r#M, ∆ = sr1→r2 :⟨S⟩

r#MT, Γ ⊩ v:S, and Γ · c:Sc ⊢
sr1→r2 :M ▷ sr1→r2 :MT. Because Γ · c:Sc ⊩ v:S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ v{d/c}:S.
By the induction hypothesis, Γ ⊢ sr1→r2 :M{d/xc} ▷ sr1→r2 :MT. By (MQComR), then
Γ ⊢ Q{d/c} ▷∆.

(MQComU): Then, Q = sr1→r2 :l⟨v⟩
u#M, ∆ = sr1→r2 :l

′⟨S⟩u#MT, l =̇ l ′, Γ ⊩ v:S, and
Γ · c:Sc ⊢ sr1→r2 :M ▷ sr1→r2 :MT. Because Γ · c:Sc ⊩ v:S, s ̸= c. With Γ ⊩ d:Sc,
then Γ ⊩ v{d/c}:S. By the induction hypothesis, Γ ⊢ sr1→r2 :M{d/xc} ▷ sr1→r2 :MT. By
(MQComU), then Γ ⊢ Q{d/c} ▷∆.

(MQBranR): Then, Q = sr1→r2 :l
r#M, ∆ = sr1→r2 :l

′ r#MT, l =̇ l ′, and Γ · c:Sc ⊢ sr1→r2 :M ▷
sr1→r2 :MT. Because Γ·c:Sc ⊢ sr1→r2 :M▷sr1→r2 :MT, s ̸= c. By the induction hypothesis,
Γ ⊢ sr1→r2 :M{d/xc} ▷ sr1→r2 :MT. By (MQBranR), then Γ ⊢ Q{d/c} ▷∆.

(MQBranW): Then, Q = sr1→r2 :l
w#M, ∆ = sr1→r2 :l

′w#MT, l =̇ l ′, and Γ·c:Sc ⊢ sr1→r2 :M▷
sr1→r2 :MT. Because Γ·c:Sc ⊢ sr1→r2 :M▷sr1→r2 :MT, s ̸= c. By the induction hypothesis,
Γ ⊢ sr1→r2 :M{d/xc} ▷ sr1→r2 :MT. By (MQBranW), then Γ ⊢ Q{d/c} ▷∆.

(MQDeleg): Then Q = sr1→r2 :s
′[r]#M, ∆ = sr1→r2 :s

′[r]#MT, and Γ · c:Sc ⊢ sr1→r2 :M ▷
sr1→r2 :MT. Because Γ·c:Sc ⊢ sr1→r2 :M▷sr1→r2 :MT, s ̸= c. By the induction hypothesis,
Γ ⊢ sr1→r2 :M{d/xc} ▷ sr1→r2 :MT. By (MQDeleg), then Γ ⊢ Q{d/c} ▷∆.

(MQNil): Then, Q = sr1→r2 :[] and ∆ = sr1→r2 :[]. By (MQNil), then we have Γ ⊢ Q{d/c} ▷
∆.

Subject reduction tells us that derivatives of well-typed systems are again well-typed.
This ensures that our formalism can be used to analyse processes by static type checking.
We extend subject reduction such that it provides some information on how the session

environment evolves alongside reductions of the system using
s7→. In Figure 7 we define the

relation
s7→ between session environments that emulates the reduction semantics.

Coherence intuitively describes that a session environment captures all local endpoints
of a collection of global types. Since we capture all relevant global types in the global
environment, we define coherence on pairs of global and session environments.

Definition 5.5 (Coherence). The type environments Γ,∆ are coherent if, for all session
channels s in ∆, there exists a global type G in Γ such that the restriction of ∆ on assignments
with s is the set ∆′ such that:

{s[r]:G↾r | r ∈ R(G)} ·
{
sr→r′ :[] | r, r′ ∈ R(G)

} sZ⇒ ∆′

We use
sZ⇒ in the above definition to define coherence for systems that already performed

some steps. We can now prove subject reduction.

Theorem 5.6 (Subject Reduction). If Γ ⊢ P ▷∆, Γ,∆ are coherent, and P 7−→ P ′, then
there is some ∆′ such that Γ ⊢ P ′ ▷∆′.

The proof is by induction on the derivation of P 7−→ P ′. In every case, we use the
information about the structure of the processes to generate partial proof trees for the
respective typing judgement. Additionally, we use Condition 5.2.1 to ensure that the type
environment of a crashed process cannot contain the types of reliable communication prefixes.

14:24 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

For the proof of subject reduction we further strengthen its goal and show additionally

that there is some s such that Γ,∆′ is coherent and ∆
sZ⇒ ∆′, i.e., that the session environment

evolves by mimicking the respective reduction step and that this emulation reduces the

session environment modulo
sZ⇒ w.r.t. a single session s. Moreover we use an additional

goal—with weak coherence instead of coherence—to obtain a stronger induction hypothesis
for the case of Rule (Par).

Definition 5.7 (Weak Coherence). The type environments Γ,∆ are weakly coherent if there
exists some ∆′ such that Γ,∆ ·∆′ are coherent.

Ultimately, we are however interested into coherence. Note that obviously the coherent
case implies the respective weakly coherent case. Our strengthened goal for subject reduction
thus becomes:

Γ ⊢ P ▷∆ ∧ Γ,∆ are coherent ∧ P 7−→ P ′ −→
∃∆′. Γ ⊢ P ′ ▷∆′ ∧ Γ,∆′ are coherent ∧∆

sZ⇒ ∆′

and
Γ ⊢ P ▷∆ ∧ Γ,∆ are weakly coherent ∧ P 7−→ P ′ −→
∃∆′. Γ ⊢ P ′ ▷∆′ ∧ Γ,∆′ are weakly coherent ∧∆

sZ⇒ ∆′

Proof of Theorem 5.6. The proof is by induction on the reduction P 7−→ P ′ that is derived
from the rules of the Figures 3 and 4.

Case of Rule (Init): In this case

P = a[n](s).Qn |
∏

1≤i≤n−1

a[i](s).Qi

P ′ = (νs)P ′′

P ′′ =
∏

1≤i≤n

Qi |
∏

1≤i,j≤n,i̸=j

si→j:[]

a ̸= s , and we use alpha conversion to ensure that s♯ (Γ,∆). By the typing Rules (Par),
(Req), and (Acc), Γ ⊢ P ▷ ∆ implies that there are G, ∆Q1 , . . . ,∆Qn such that
∆ = ∆Q1 · . . . ·∆Qn , a:G ∈ Γ, Γ ⊢ Qi ▷∆Qi

· s[i]:G↾i for all 1 ≤ i ≤ n, and |R(G)| = n.
By Rule (MQNil), Γ ⊢ si→j:[] ▷ si→j:[] for all i, j ∈ R(G) with i ̸= j. Since s♯∆,
the composition ∆ ·∆s for ∆s = {s[i]:G↾i, si→j:[] | i, j ∈ R(G) ∧ i ̸= j} is defined. By
Rule (Par), then Γ ⊢ P ′′ ▷∆ ·∆s . By Rule (Res2), where we use reflexivity to obtain

∆s
sZ⇒ ∆s , then Γ ⊢ P ′ ▷∆.

Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆
sZ⇒ ∆′.

Case of Rule (RSend): In this case P = s[r1, r2]!r⟨y⟩.Q | sr1→r2 :M, eval(y) = v, and
P ′ = Q | sr1→r2 :M#⟨v⟩r. By the Rules (Par), (RSend), and the typing rules for
message queues, Γ ⊢ P ▷ ∆ implies that there are ∆Q ,S, T,MT such that ∆ =
∆Q · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT, Γ ⊩ y:S, Γ ⊢ Q ▷ ∆Q · s[r1]:T , and Γ ⊢ sr1→r2 :M ▷
sr1→r2 :MT. By Rule (MQComR), then Γ ⊢ sr1→r2 :M#⟨y⟩r ▷ sr1→r2 :MT#⟨S⟩r. Since
∆Q · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT is defined, so is ∆′ = ∆Q · s[r1]:T · sr1→r2 :MT#⟨S⟩r.
By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (RSend) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:25

Case of Rule (RGet): In this case P = s[r1, r2]?r(x).P | sr2→r1 :⟨v⟩
r#M, P ′ = Q{v/x} |

sr2→r1 :M, and we use alpha conversion to ensure that x ♯ (Γ,∆, s). By (Par), (RGet), and
the typing rules for message queues, Γ ⊢ P ▷∆ implies that there are ∆Q , S1, S2, T,MT
such that ∆ = ∆Q · s[r1]:[r2]?r⟨S1⟩.T · sr2→r1 :⟨S2⟩

r#MT, Γ · x :S1 ⊢ Q ▷ ∆Q · s[r1]:T ,
Γ ⊩ v:S2, and Γ ⊢ sr2→r1 :M ▷ sr2→r1 :MT. Since Γ,∆ are coherent, S1 = S2. By Lemma
5.4, then Γ ⊢ Q{v/x} ▷∆Q · s[r1]:T . Since ∆Qj · s[r1]:[r2]?r⟨S⟩.T · sr2→r1 :⟨S2⟩

r#MT is
defined, so is ∆′ = ∆Q · s[r1]:T · sr2→r1 :MT. By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (RGet) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (RSend): In this case P = s[r1, r2]!ul⟨y⟩.Q | sr1→r2 :M, eval(y) = v, and
P ′ = Q | sr1→r2 :M#l⟨v⟩u. By the Rules (Par), (USend), and the typing rules for
message queues, Γ ⊢ P ▷ ∆ implies that there are ∆Q , l

′,S, T,MT such that ∆ =
∆Q · s[r1]:[r2]!ul ′⟨S⟩.T · sr1→r2 :MT, l =̇ l ′, l ′:S ∈ Γ, Γ ⊩ y:S, Γ ⊢ Q ▷ ∆Q · s[r1]:T ,
and Γ ⊢ sr1→r2 :M ▷ sr1→r2 :MT. By Rule (MQComU), then Γ ⊢ sr1→r2 :M#l⟨y⟩u ▷
sr1→r2 :MT#l ′⟨S⟩u. Since ∆Q · s[r1]:[r2]!ul ′⟨S⟩.T · sr1→r2 :MT is defined, so is ∆′ =
∆Q · s[r1]:T · sr1→r2 :MT#l ′⟨S⟩u. By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (USend) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (UGet): Here P = s[r1, r2]?ul⟨dv⟩(x).P | sr2→r1 :l
′⟨v⟩u#M, P ′ = Q{v/x} |

sr2→r1 :M, l =̇ l ′, and (using alpha conversion) x ♯ (Γ,∆, s). By (Par), (UGet), and the
typing rules for message queues, Γ ⊢ P ▷∆ implies that there are ∆Q ,S1,S2, T,MT
such that ∆ = ∆Q · s[r1]:[r2]?ul ′′⟨S1⟩.T · sr2→r1 :l

′′′⟨S2⟩u#MT, l =̇ l ′′, l ′ =̇ l ′′, l ′′:S1 ∈ Γ,
l ′′′:S2 ∈ Γ, Γ · x :S1 ⊢ Q ▷∆Q · s[r1]:T , Γ ⊩ v:S2, and Γ ⊢ sr2→r1 :M ▷ sr2→r1 :MT. Since
l ′′:S1 ∈ Γ, l ′′′:S2 ∈ Γ, and l ′′ =̇ l =̇ l ′ =̇ l ′′′, we have l ′′ = l ′′′ and S1 = S2. By
Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (UGet) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (USkip): In this case P = s[r1, r2]?ul⟨dv⟩(x).P , P ′ = Q{dv/x}, and we use
alpha conversion to ensure that x ♯ (Γ,∆, s). By (UGet), Γ ⊢ P ▷∆ implies that there
are ∆Q ,S, T such that ∆ = ∆Q · s[r1]:[r2]?ul ′⟨S⟩.T , l =̇ l ′, l ′:S ∈ Γ, Γ ⊩ dv:S, and
Γ · x :S ⊢ Q ▷∆Q · s[r1]:T . By Lemma 5.4, then Γ ⊢ P ′ ▷∆′ with ∆′ = ∆Q · s[r1]:T .
By Rule (USkip) of Figure 7, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (ML): In this case P = sr1→r2 :l⟨v⟩
u#M, P ′ = sr1→r2 :M. By the typing

rules for message queues, Γ ⊢ P ▷ ∆ implies that there are S,MT such that ∆ =
sr1→r2 :l

′⟨S⟩u#MT, l =̇ l ′, l ′:S ∈ Γ, and Γ ⊢ P ′ ▷∆′ with ∆′ = sr1→r2 :MT.

By Rule (ML) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (RSel): In this case P = s[r1, r2]!rl .Q | sr1→r2 :M, and P ′ = Q | sr1→r2 :M#l r.
By the Rules (Par), (RSel), and the typing rules for message queues, Γ ⊢ P ▷ ∆
implies that there are ∆Q , I, j,MT and for all i ∈ I there are li, Ti such that ∆ =
∆Q · s[r1]:[r2]!r{li, Ti}i∈I · sr1→r2 :MT, j ∈ I, l =̇ lj , Γ ⊢ Q ▷ ∆Q · s[r1]:Tj , and Γ ⊢
sr1→r2 :M▷sr1→r2 :MT. By Rule (MQBranR), then Γ ⊢ sr1→r2 :M#l r▷sr1→r2 :MT#l rj . Since

∆Q · s[r1]:[r2]!r{li, Ti}i∈I · sr1→r2 :MT is defined, so is ∆′ = ∆Q · s[r1]:Tj · sr1→r2 :MT#l rj .

By Rule (Par), then Γ ⊢ P ′ ▷∆′.

14:26 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

By Rule (RSel) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (RBran): In this case P = s[r1, r2]?r{li.Qi}i∈I1 | sr2→r1 :l
r#M, j ∈ I1, l =̇ lj ,

and P ′ = Qj | sr2→r1 :M. By the Rules (Par), (RBran), and the typing rules for message
queues, Γ ⊢ P ▷∆ implies that there are ∆Q , I2,MT, l ′′ and for all i ∈ I2 there are l ′i , Ti

such that ∆ = ∆Q · s[r1]:[r2]?r{l ′i , Ti}i∈I2 · sr2→r1 :l
′′ r#MT, Γ ⊢ sr2→r1 :M ▷ sr2→r1 :MT,

lj =̇ l ′′, and for all k ∈ I2 exists some m ∈ I1 such that lm =̇ l ′k, Γ ⊢ Qm ▷∆Q · s[r1]:Tk.
Since l =̇ lj =̇ l ′′ and because Γ,∆ are coherent, there is some n ∈ I2 such that
lj =̇ l ′′ = ln and Γ ⊢ Qj ▷∆Q · s[r1]:Tn. Since ∆Q · s[r1]:[r2]?r{li, Ti}i∈I · sr2→r1 :l

′′ r#MT
is defined, so is ∆′ = ∆Q · s[r1]:Tn · sr2→r1 :MT. By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (RBran) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (WSel): In this case P = s[r,R]!wl .Q |
∏

ri∈R sr→ri :M and we have P ′ = Q |∏
ri∈R sr→ri :Mi#lw. Let R = {r1, . . . , n}. By the Rules (Par), (WSel), and the typing

rules for message queues, Γ ⊢ P ▷ ∆ implies that there are ∆Q , I, j,MT1, . . . ,MTn

and for all i ∈ I there are li, Ti such that ∆ = ∆Q · s[r]:[R]!w{li, Ti}i∈I · sr→r1 :MT · . . . ·
sr→rn :MT, j ∈ I, l =̇ lj , Γ ⊢ Q ▷∆Q · s[r]:Tj , and Γ ⊢ sr→r1 :M1 ▷ sr→r1 :MT1, . . . , Γ ⊢
sr→rn :Mn ▷ sr→rn :MTn. By Rule (MQBranW), then Γ ⊢ sr→r1 :M1#lw ▷ sr→r1 :MT1#lwj ,

. . . , Γ ⊢ sr→rn :Mn#lw ▷ sr→rn :MTn#lwj . Since ∆Q · s[r]:[R]!w{li, Ti}i∈I · sr→r1 :MT1 · . . . ·
sr→rn :MTn is defined, so is ∆′ = ∆Q · s[r]:Tj · sr→r1 :MT1#lwj · . . . · sr→rn :MTn#lwj . By

Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (WSel) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (WBran): Here P = s[r1, r2]?w{li.Qi}i∈I1,ld | sr2→r1 :l
w#M, j ∈ I1, l =̇ lj ,

and P ′ = Qj | sr2→r1 :M. By the Rules (Par), (WBran), and the typing rules for
message queues, Γ ⊢ P ▷∆ implies that there are ∆Q , l

′
d, I2,MT, l ′′ and for all i ∈ I2

there are l ′i , Ti such that ∆ = ∆Q · s[r1]:[r2]?w{l ′i , Ti}i∈I2,l ′d · sr2→r1 :l
′′w#MT, ld =̇ l ′d,

Γ ⊢ sr2→r1 :M ▷ sr2→r1 :MT, lj =̇ l ′′, and for all k ∈ I2 exists some m ∈ I1 such
that lm =̇ l ′k, Γ ⊢ Qm ▷ ∆Q · s[r1]:Tk. Since l =̇ lj =̇ l ′′ and because Γ,∆ are
coherent, there is some n ∈ I2 such that lj =̇ l ′′ = ln and Γ ⊢ Qj ▷∆Q · s[r1]:Tn. Since
∆Q ·s[r1]:[r2]?w{li, Ti}i∈I,l ′d ·sr2→r1 :l

′′w#MT is defined, so is ∆′ = ∆Q ·s[r1]:Tn·sr2→r1 :MT.

By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (WBran) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (WSkip): In this case P = s[r1, r2]?w{li.Qi}i∈I1,ld and P ′ = Qd. By the

Rule(WBran), Γ ⊢ P ▷∆ implies that there are ∆Q , l
′
d, I2 and for all i ∈ I2 there are

l ′i , Ti such that ∆ = ∆Q · s[r1]:[r2]?w{l ′i , Ti}i∈I2,l ′d , ld =̇ l ′d, and for all k ∈ I2 exists some

m ∈ I1 such that lm =̇ l ′k, Γ ⊢ Qm ▷∆Q · s[r1]:Tk. Since ld =̇ l ′d, there is some n ∈ I2
such that ld =̇ l ′d = ln and Γ ⊢ P ′ ▷∆′ with ∆′ = ∆Q · s[r1]:Td.

By Rule (WSkip) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (Crash): In this case FPcrash and P ′ = ⊥. By the typing rules and Condi-
tion 5.2.1, Γ ⊢ P ▷∆ and FPcrash imply nsr(∆). By Rule (Crash), then Γ ⊢ ⊥ ▷∆.

Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆
sZ⇒ ∆′.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:27

Case of Rule (If-T): In this case P = if e then Q else Q ′ and P ′ = Q . By Rule (If),
Γ ⊢ P ▷∆ implies Γ ⊢ P ′ ▷∆.

Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆
sZ⇒ ∆′.

Case of Rule (If-F): In this case P = if e then Q else Q ′ and P ′ = Q ′. By Rule (If),
Γ ⊢ P ▷∆ implies Γ ⊢ P ′ ▷∆.

Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆
sZ⇒ ∆′.

Case of Rule (Deleg): In this case P = s[r1, r2]!⟨⟨s ′[r]⟩⟩.Q | sr1→r2 :M and P ′ = Q |
sr1→r2 :M#s ′[r]. By the Rules (Par), (Deleg), and the typing rules for message
queues, Γ ⊢ P ▷ ∆ implies that there are ∆Q , T, T

′,MT such that ∆ = ∆Q ·
s[r1]:[r2]!⟨s ′[r]:T ′⟩.T · s ′[r]:T ′ · sr1→r2 :MT, Γ ⊢ Q ▷ ∆Q · s[r1]:T , and Γ ⊢ sr1→rs :MT ▷
sr1→r2 :MT. By Rule (MQDeleg), then Γ ⊢ sr1→rs :MT#s ′[r] ▷ sr1→r2 :MT#s ′[r]. Since
∆ = ∆Q · s[r1]:[r2]!⟨s ′[r]:T ′⟩.T · s ′[r]:T ′ · sr1→r2 :MT is defined, so is ∆′ = ∆Q · s[r1]:T ·
sr1→r2 :MT#s ′[r]. By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (Deleg) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (SRecv): In this case P = s[r1, r2]?((s
′[r])).Q | sr2→r1 :s

′′[r′]#M and P ′ =
Q{s′′/s′}{r′/r} | M. We use alpha conversion to ensure that s ′ = s ′′ and r = r′′. By the
Rules (Par), (SRecv), and the typing rules for message queues, Γ ⊢ P ▷∆ implies that
there are ∆Q , T, T

′,MT such that ∆ = ∆Q · s[r1]:[r2]?⟨s ′[r]:T ′⟩.T · sr2→r1 :s
′[r]#MT,

Γ ⊢ Q ▷ ∆Q · s[r1]:T · s ′[r]:T ′, and Γ ⊢ sr2→r1 :M ▷ sr2→r1 :MT. Since ∆ = ∆Q ·
s[r1]:[r2]?⟨s ′[r]:T ′⟩.T · sr2→r1 :s

′′[r′]#MT is defined, so is ∆′ = ∆Q · s[r1]:T · s ′[r]:T ′ ·
sr2→r1 :MT. By Rule (Par), then Γ ⊢ P ′ ▷∆′.

By Rule (SRecv) of Figure 7, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (Par): In this case P = Q1 | Q2, Q1 7−→ Q ′
1, and P ′ = Q ′

1 | Q2. By
Rule (Par), Γ ⊢ P ▷ ∆ implies that there are ∆Q1 ,∆Q2 such that ∆ = ∆Q1 · ∆Q2 ,
Γ ⊢ Q1 ▷∆Q1 , and Γ ⊢ Q2 ▷∆Q2 . Since Γ,∆ are coherent, Γ,∆Q1 is weakly coherent.
By the induction hypothesis (for the weakly coherent case), Γ ⊢ Q ′

1 ▷ ∆′
Q1

with

∆Q1

sZ⇒ ∆′
Q1

. Since ∆Q1 ·∆Q2 is defined, so is ∆′ = ∆Q1 ·∆Q2 . By Rule (Par), then

Γ ⊢ P ′ ▷∆′.
By ∆Q1

sZ⇒ ∆′
Q1

, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of

sZ⇒, then

Γ,∆′ are coherent.
Case of Rule (Res): In this case P = (νx)Q , Q 7−→ Q ′, and P ′ = (νx)Q ′. Then, one of

the Rules (Res1) or (Res2) was used to type the restriction on x in P .
Case of (Res1): Then there is some S such that x ♯ (Γ,∆) and Γ · x :S ⊢ Q ▷∆. Since

Γ,∆ are coherent, so are Γ ·x :S,∆. By the induction hypothesis, Γ ·x :S ⊢ Q ′ ▷∆′

for some ∆′ such that Γ,∆′ is coherent and ∆
sZ⇒ ∆′. With Rule (Res1), then

Γ ⊢ P ′ ▷∆′.
Case of (Res2): In this case x = s and there are G, a,∆′′ such that we have s♯ (Γ,∆),

{s[r]:G↾r | r ∈ R(G)} · {sr→r′ :[] | r, r′ ∈ R(G′) ∧ r ̸= r′} sZ⇒ ∆′′, a:G ∈ Γ, and Γ ⊢
Q ▷∆ ·∆′′. Then Γ,∆ ·∆′′ are coherent. By the induction hypothesis, Γ ⊢ Q ′▷∆′′′

for some ∆′′′ such that ∆ ·∆′′ sZ⇒ ∆′′′. By Rule (Res2), then Γ ⊢ P ′ ▷∆. Since

∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆
sZ⇒ ∆′.

Case of (Rec): In this case P = (µX)Q and P ′ = Q{(µX)Q/X}. By Rule (Rec), then there
are ∆Q , s, r, t , T such that ∆ = ∆Q · s[r]:(µt)T and Γ ·X :s[r]:t ⊢ Q ▷∆Q · s[r]:T . By

14:28 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

replacing in the proof tree of Γ ·X :s[r]:t ⊢ Q ▷∆Q · s[r]:T all occurrences of Rule (Var)
by the proof tree, we obtain Γ ⊢ P ′ ▷∆′ with ∆′ = ∆Q · s[r]:T{(µt)T/t}.
By Rule (Rec) of Figure 7, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity

of
sZ⇒, then Γ,∆′ are coherent.

Case of Rule (Struc): In this case P ≡ Q , Q 7−→ Q ′, Q ′ ≡ P ′. By Lemma 5.3, Γ ⊢ P ▷∆
and P ≡ Q imply Γ ⊢ Q ▷∆. By the induction hypothesis, Γ ⊢ Q ′ ▷∆′ for some ∆′

such that ∆
sZ⇒ ∆′ and Γ,∆′ are coherent. By Lemma 5.3, then Γ ⊢ P ′ ▷∆′.

Since we restrict our attention to linear environments, type judgements ensure linearity
of session channels. With subject reduction, this holds for all derivatives of well-typed
processes.

Lemma 5.8 (Linearity). Let Γ ⊢ P ▷∆, Γ,∆ be coherent, and there are no name clashes
on session channels. Then all session channels of P are linear, i.e., for all P 7−→∗ P ′ and
all s, r, r1, r2 there is at most one unguarded actor s[r] and at most one queue sr1→r2 in P ′.

Proof. By Theorem 5.6, there is some ∆′ such that Γ ⊢ P ′ ▷∆′ and Γ,∆′ are coherent. By
the Definition 5.5 of coherence and projection, ∆′ contains at most one actor s[r] and at
most one queue sr1→r2 for each a:G ∈ Γ and r ∈ R(G). By the Figures 5 and 6, only the
Rules (Req), (Acc), and (Res2) can introduce new actors or queues. The linearity of global
environments ensures, that all new actors and queues introduced by the rules are on fresh
channel names and are pairwise distinct. The Rules (Req) and (Acc) introduce exactly one
actor each on a fresh session channel s that is bound by a prefix for session initialisation.
Rule (Res2) introduces assignments for actors and queues for pairwise different roles on a
fresh session channel s that is bound by restriction. Since there are no name clashes, the
session channels in binders are pairwise different and distinct from free session channels. By
the typing rules and because Γ ⊢ P ′ ▷∆′, all actors and queues in P ′ have to satisfy their
specification as described by an assignment of this actor or queue towards a local type. By
the linearity of session environments and since new assignments for actors result from bound
session channels, all unguarded actors and queues in P ′ are pairwise different.

For strongly reliable systems coherence ensures that for each actor there is a matching
communication partner. In the case of asynchronous communication, this means that for
each sender (or message on a queue) there is a receiver and for each receiver there is a
sender or a message on a queue, where the receiver as well as the sender or the message
queue appear under the same binder of the session channel or both are free. In the case
of unreliable communication, messages get lost, senders can crash, and receivers can crash
themselves or suspect the sender. In the case of weakly reliable branching for each sender
(or message on a queue) there are all specified receivers that are not crashed and vice versa.

We summarise these properties of strongly reliable and weakly reliable interactions in
error-freedom: for each strongly reliable sender or message there is a matching receiver and
vice versa, for each weakly reliable sender or message there is a possibly crashed receiver
and vice versa. We obtain similar requirements for session delegation.

Lemma 5.9 (Error-Freedom). If Γ ⊢ P ▷∆ and Γ,∆ is coherent then:
• for each unguarded s[r1, r2]!r⟨y⟩.Q1 and each message ⟨y⟩r on a message queue sr1→r2

in P there is some s[r2, r1]?r(x).Q2 in P,
• for each unguarded s[r2, r1]?r(x).Q2 in P there is some s[r1, r2]!r⟨y⟩.Q1 or a message
⟨y⟩r on a message queue sr1→r2 in P,

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:29

• for each unguarded s[r1, r2]!rl .Q and each message l r on a message queue sr1→r2 in
P there is some j ∈ I and s[r2, r1]?r{li.Qi}i∈I in P with lj =̇ l ,

• for each unguarded s[r2, r1]?r{li.Qi}i∈I in P there is j ∈ I and s[r1, r2]!rl .Q or a
message l r on a message queue sr1→r2 in P with lj =̇ l ,

• for each unguarded s[r,R]!wl .Q and each message lw on a message queue sr→r′ in P
and each r′ ∈ R there is some s[r′, r]?w{li.Pi}i∈I,ld and j ∈ I in P with lj =̇ l or P

does not contain an actor s[r′],
• for each unguarded s[r′, r]?w{li.Pi}i∈I,ld in P there is j ∈ I and s[r,R]!wl .Q or a

message lw on a message queue sr→r′ in P with lj =̇ l and r′ ∈ R or P does not
contain an actor s[r],

• for each unguarded s[r1, r2]!⟨⟨s ′[r]⟩⟩.Q1 and each message s ′[r] on a message queue
sr1→r2 in P there is some s[r2, r1]?((s

′′[r′])).Q2 in P, and
• for each unguarded s[r2, r1]?((s

′′[r′])).Q2 in P there is some s[r1, r2]!⟨⟨s ′[r]⟩⟩.Q1 or a
message s ′[r] on a message queue sr1→r2 in P.

Proof. By coherence and projection for each strongly reliable and each weakly reliable sender
there is initially a matching receiver for each free session channel in the session environment.
By the typing rules and Rule (Res2) in particular, this holds also for restricted session

channels. Session environments may evolve using
s7→ but all such steps preserve the above

defined requirements, i.e., strongly reliable or weakly reliable send prefixes can be mapped
onto the type of the respective message in a queue but no such message can be dropped.
The typing rules ensure that the processes follow their specification in the local types of
session environments. Then, the first four and the last two cases follow from the typing rules
and coherence, and the fact that only unreliable processes can crash. The remaining two
cases follow from the typing rules and coherence.

Session fidelity claims that the interactions of a well-typed process follow exactly the
specification described by its global types, i.e., if a system is well-typed w.r.t. to coherent
type environments then the system follows its specification in the global type. One direction
of this property already follows from the above variant of subject reduction. The steps
of well-typed systems are reflected by corresponding steps of the session environment and,
thus, respect their specification in global types. What remains to show is that the specified
interactions can indeed be performed. The above formulation of error-freedom alone is not
strong enough to show this, because it ensures only the existence of matching communication
partners and not that they can be unguarded.

To obtain session fidelity we prove progress. Progress states that no part of a well-typed
and coherent system can block other parts, that eventually all matching communication
partners as described by error-freedom are unguarded, that interactions specified by the
global type can happen, and that there are no communication mismatches. Subject reduction
and progress together then imply session fidelity, i.e., that processes behave as specified in
their global types.

To ensure that the interleaving of sessions and session delegation cannot introduce
deadlocks, we assume an interaction type system as introduced in [BCD+08, HYC16]. For
this type system it does not matter whether the considered actions are strongly reliable,
weakly reliable, or unreliable. More precisely, we can adapt the interaction type system
of [BCD+08] in a straightforward way to the above session calculus, where unreliable
communication and weakly reliable branching is treated in exactly the same way as strongly
reliable communication/branching. We say that P is free of cyclic dependencies between

14:30 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

sessions if this interaction type system does not detect any cyclic dependencies. In this
sense fault-tolerance is more flexible than explicit failure handling, which oftens requires a
more substantial revision of the interaction type system to cover the additional dependencies
that are introduced e.g. by the propagation of faults.

In the literature there are different formulations of progress. We are interested in a rather
strict definition of progress that ensures that well-typed systems cannot block. Therefore,
we need an additional assumption on session requests and acceptances. Coherence ensures
the existence of communication partners within sessions only. If we want to avoid blocking,
we need to be sure, that no participant of a session is missing during its initialisation. Note
that without action prefixes all participants either terminated or crashed.

Theorem 5.10 (Progress/Session Fidelity). Let Γ ⊢ P ▷∆, Γ,∆ be coherent, and let P be
free of cyclic dependencies between sessions. Assume that in the derivation of Γ ⊢ P ▷∆,
whenever a[n](s).Q or a[r](s).Q in P, then a:G ∈ Γ, |R(G)| = n, and there are a[n](s).Qn

as well as a[ri](s).Qi in P for all 1 ≤ ri < n.
(1) Then either P does not contain any action prefixes or P 7−→ P ′.
(2) If P does not contain recursion, then there exists P ′ such that P 7−→∗ P ′ and P ′

does not contain any action prefixes.

Proof. 1.) If P contains an unguarded conditional, then it can perform a step P 7−→ P ′ such
that Γ ⊢ P ′ ▷∆ using one of the Rules (If-T) or (If-F) as described in the corresponding cases
of the proof of Theorem 5.6. Similarly, if P contains an unguarded recursion, then it can

perform a step P 7−→ P ′ such that Γ ⊢ P ′ ▷∆′ with ∆
s7→ ∆′ using Rule (Rec) as described

in the corresponding case of the proof of Theorem 5.6. Assume that P is not structural
congruent to 0 and does not contain unguarded conditionals or recursions.

Since P is not structural congruent to 0 it contains session channels. All session channels
of P that are not contained in ∆ are bound in P , i.e., the names of ∆ are exactly the free
session channels of P . Since there are no cyclic dependencies between sessions, we can pick a
minimal session in P , i.e., a session such that its next action is not blocked by any action of
another session or session delegation. Let s denote this session channel. By the typing rules
in the Figures 5 and 6, there are some G, b such that b:G ∈ Γ and G specifies the session
s. Since the next action of this session is not blocked, P contains at least one unguarded
prefix or at least one unguarded not empty queue on s. Among all such unguarded prefixes
and messages that are head of a queue we pick a minimal, i.e., one that is typed by the
projection of a part of G such that no part of G that is guarding it is used to type another
unguarded prefix or message in P :

a[n](s).Q: Then s♯∆ and a:G ∈ Γ. By the assumption on session initialisation, then for all
1 ≤ ri < n we have a[ri](s). in P . Since s is minimal, all these session acceptances are
unguarded. By Rule (Init), then P 7−→ P ′.

a[r](s).Q: Then s♯∆ and a:G ∈ Γ. By the assumption on session initialisation, then
a[n](s).Q and for all 1 ≤ ri < n with ri ≠ r we have a[ri](s). in P . Since s is minimal,
all this session request and these session acceptances are unguarded. By Rule (Init),
then P 7−→ P ′.

s[r1, r2]!r⟨y⟩.Q: If s♯∆ then the typing rules in the Figures 5 and 6 and (Req), (Acc), and
(Res2) in particular ensure that sr1→r2 :MT in P . If s is free in ∆, then sr1→r2 :MT in
P because of coherence. Since s and the action are minimal, sr1→r2 :MT is unguarded.
By Rule (RSend), then P 7−→ P ′.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:31

sr1→r2 :⟨v⟩
r#M: By Lemma 5.9, then s[r2, r1]?r(x).Q in P . Since s and the action are minimal,

s[r2, r1]?r(x).Q is unguarded. By Rule (RGet), then P 7−→ P ′.
s[r2, r1]?r(x).Q: By Lemma 5.9, then sr1→r2 :⟨v⟩

r#M in P . Since s and the action are minimal,
sr1→r2 :⟨v⟩

r#M is unguarded. By Rule (RGet), then P 7−→ P ′.
s[r1, r2]!ul⟨y⟩.Q: If s♯∆ then the typing rules in the Figures 5 and 6 and (Req), (Acc), and

(Res2) in particular ensure that sr1→r2 :MT in P . If s is free in ∆, then sr1→r2 :MT in
P , because of coherence. Since s and the action are minimal, sr1→r2 :MT is unguarded.
By Rule (USend), then P 7−→ P ′.

sr1→r2 :l⟨v⟩
u#M: Then the typing rules and coherence ensure that either there is no actor s[r2],

the actor s[r2] skipped, or s[r2, r1]?ul⟨dv⟩(x).Q in P . If there is no actor s[r2], then it
has crashed. Then FPcrash(Q , . . .) was satisfied with s[r2] ∈ A(Q). By Condition 5.2.5,
then eventually FPml(s, r1, r2, l , . . .). By Rule (ML), then P 7−→ P ′. If the actor
s[r2] skipped this reception, then FPuskip(s, r2, r1, l , . . .). By Condition 5.2.3, then
FPml(s, r1, r2, l , . . .). By Rule (ML), then P 7−→ P ′. If s[r2, r1]?ul⟨dv⟩(x).Q in P , since
s and the action are minimal, then this term is unguarded. By Condition 5.2.2 and
Rule (UGet), then P 7−→ P ′.

s[r2, r1]?ul⟨dv⟩(x).Q: Then the typing rules and coherence ensure that there is the queue
sr1→r2 and either l⟨v⟩u is on top of it, or this message was dropped, or the sender did
not yet send this message, or the sender crashed before transmitting this message.
If l⟨v⟩u is on top of the queue, then P 7−→ P ′ by Rule (UGet) and Condition 5.2.2.
If the message was dropped, then FPml(s, r1, r2, l , . . .). By Condition 5.2.3, then
FPuskip(s, r2, r1, l , . . .). By Rule (USkip), then P 7−→ P ′. If the sender did not yet
send the message, we proceed as in the Case s[r1, r2]!ul⟨y⟩.Q above. If the sender
crashed, then FPcrash(Q , . . .) with s[r1] ∈ A(Q). By Condition 5.2.4, then eventually
FPuskip(s, r2, r1, l , . . .). By Rule (USkip), then P 7−→ P ′.

s[r1, r2]!rl .Q: If s♯∆ then the typing rules in the Figures 5 and 6 and (Req), (Acc), and
(Res2) in particular ensure that sr1→r2 :MT in P . If s is free in ∆, then sr1→r2 :MT in
P , because of coherence. Since s and the action are minimal, sr1→r2 :MT is unguarded.
By Rule (RSel), then P 7−→ P ′.

sr1→r2 :l
r#M: By Lemma 5.9, then s[r2, r1]?r{li.Qi}i∈I in P . Since s and the action are

minimal, s[r2, r1]?r{li.Qi}i∈I is unguarded. By (RBran), then P 7−→ P ′.
s[r2, r1]?r{li.Qi}i∈I: By Lemma 5.9, then sr1→r2 :l

r#M in P with j ∈ I and l =̇ lj . Since s
and the action are minimal, sr1→r2 :l

r#M is unguarded. By (RBran), then P 7−→ P ′.
s[r,R]!wl .Q: If s♯∆ then the typing rules and (Req), (Acc), and (Res2) in particular ensure

that sr→ri :MTi in P for all ri ∈ R. If s is free in ∆, then sr→ri :MTi in P for all ri ∈ R,
because of coherence. Since s and the action are minimal, all sr→ri :MTi are unguarded.
By Rule (WSel), then P 7−→ P ′.

sr1→r2 :l
w#M: Then the typing rules, coherence, and Condition 5.2.6 ensure that either there

is no actor s[r2] or s[r2, r1]?w{li.Qi}i∈I,ld in P . In the former case the actor s[r2] has
crashed. Then, since the message queue will not be needed any more, proceed with
the next session and action that are minimal if you ignore the queue sr1→r2 .

s[r2, r1]?w{li.Qi}i∈I,ld: Then the typing rules and coherence ensure that there is the queue
sr1→r2 and either lw is on top of it, or the sender did not yet send this message, or the
sender crashed before transmitting this message. If lw is on top of the queue, then
P 7−→ P ′ by Rule (WBran). If the sender did not yet send the message, we proceed
as in the Case s[r,R]!wl .Q above. If the sender crashed, then FPcrash(Q

′, . . .) with

14:32 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

s[r1] ∈ Q ′. By Condition 5.2.4, then eventually FPwskip(s, r2, r1, l , . . .) for s[r2]. By
Rule (WSkip), then P 7−→ P ′.

s[r1, r2]!⟨⟨s ′[r]⟩⟩.Q: If s♯∆ then the typing rules in the Figures 5 and 6 and (Req), (Acc), and
(Res2) in particular ensure that sr1→r2 :MT in P . If s is free in ∆, then sr1→r2 :MT in
P because of coherence. Since s and the action are minimal, sr1→r2 :MT is unguarded.
By Rule (Deleg), then P 7−→ P ′.

sr1→r2 :s
′[r]#M: By Lemma 5.9, then s[r2, r1]?((s

′′[r′])).Q in P . Since s and the action are
minimal, s[r2, r1]?((s

′′[r′])).Q is unguarded. By Rule (SRecv), then P 7−→ P ′.
s[r2, r1]?((s

′′[r′])).Q: By Lemma 5.9, then sr1→r2 :s
′[r]#M in P . Since s and the action are

minimal, sr1→r2 :s
′[r]#M is unguarded. By Rule (SRecv), then P 7−→ P ′.

2.) By Theorem 5.6, P ′ is well-typed w.r.t. coherent Γ,∆′ with ∆
sZ⇒ ∆′. If P does not

contain recursion, then the session environment strictly reduces with every reduction of
the process that does not reduce a conditional, though it may grow in cases of session
initialisation. Since P is finite and loop-free there are only finitely many possible session
initialisations. We can repeat the above proof for 1.) to show that P cannot get stuck as
long as it contains action prefixes.

The proof of progress relies on the Condition 5.2.2–5.2.6 to ensure that failures cannot
block the system: in the failure-free case unreliable messages are eventually received (5.2.2),
the receiver of a lost message can skip (5.2.3), no receiver is blocked by a crashed sender
(5.2.4), messages towards receivers that crashed or skipped can be dropped (5.2.5 + 5.2.3),
and branching requests cannot be ignored (5.2.6).

6. The Rotating Coordinator Algorithm

To illustrate our approach we study a Consensus algorithm by Chandra and Toueg (cf.
[CT96, FMN07]). This algorithm is small but not trivial. It was designed for systems
with crash failures, but the majority of the algorithm can be implemented with unreliable
communication.

As this algorithm models consensus, the goal is that every agent i eventually decides on
a proposed belief value, where no two agents decide on different values. It is a round based
algorithm, where each round consists of four phases. In each round, one process acts as a
coordinator decided by round robin, denoted by c.
In Phase 1: every agent i sends its current belief to the coordinator c.
In Phase 2: the coordinator waits until it has received at least half of the messages of the

current round and then sends the best belief to all other agents.
In Phase 3: the agents either receive the message of the coordinator or suspect the coordi-

nator to have crashed and reply with ack or nack accordingly. Suspicion can yield
false positives.

In Phase 4: the coordinator waits, as in Phase 2, until it has received at least half of the
messages of the current round and then sends a weakly reliable broadcast if at least
half of the messages contained ack.

It is possible for agents to skip rounds by suspecting the coordinator of the current
round and by proceeding to the next round. There are also no synchronisation fences thus it
is possible for the agents to be in different rounds and have messages of different rounds in
the system. Having agents in different rounds makes proving correctness much more difficult.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:33

6.1. Specification and Implementation. Let
(⊙

1≤i≤n πi

)
.G abbreviate π1.πn.G

to simplify the presentation, where G ∈ G is a global type and π1, . . . , πn are sequences of
prefixes. More precisely, each πi is of the form πi,1.πi,m and each πi,j is a type prefix of
the form r1 →u r2:l⟨S⟩ or r →w R:l1.T1 ⊕ . . .⊕ ln.Tn ⊕ ld, where the latter case represents a
weakly reliable branching prefix with the branches l1, . . . , ln, ld, the default branch ld, and
where the next global type provides the missing specification for the default case.

We assume the sorts Sbelief = {0, 1} and Sack = {t, f}. Let n be the number of agents.
We start with the specification of the algorithm as a global type.

Grc(n) ≜ (µt)
⊙

1≤c≤n

((⊙
1≤i≤n,i ̸=c

i →u c:p1⟨Sbelief⟩
)
.
(⊙

1≤i≤n,i̸=c

c →u i:p2⟨Sbelief⟩
)
.

(⊙
1≤i≤n,i̸=c

i →u c:p3⟨Sack⟩
)
.

c →w {i|1 ≤ i ≤ n, i ̸= c} :Zero.end⊕One.end⊕ ld

)
.t

It specifies a loop containing a collection of n rounds, where each process functions as
a coordinator once. This collection of n rounds is specified with the first

⊙
, i.e., the

continuation of ld in the end of the description is the specification of round r + 1 for all
rounds r < n whereas in the last round n we have ld.t . By unfolding the recursion on t , Grc(n)
starts the next n rounds. The following three

⊙
specify the Phases 1–3 of the algorithm

within one round. Phase 4 is specified by a weakly reliable branching that does not need a⊙
, since it is a broadcast.
In Phase 1 all processes except the coordinator c transmit a belief to c using label p1. In

Phase 2 c transmits a belief to all other processes using label p2. Then all processes transmit
a value of type Sack to the coordinator using label p3 in Phase 3. Finally, in Phase 4 the
coordinator broadcasts one of the labels Zero, One, or ld, where the first two labels represent
a decision and terminate the protocol, whereas the default label ld specifies the need for
another round. All interactions in the specification are unreliable or weakly reliable.

Let
(⊙

1≤i≤n πi

)
.P abbreviate the sequence π1.πn.P , where P ∈ P is a process

and π1, . . . , πn are sequences of prefixes.

Sys
(
n, V⃗ 0

)
≜ a[n](s).P

(
n, n, V⃗ 0

n

)
|

∏
1≤i<n

a[i](s).P
(
i, n, V⃗ 0

i

)
P
(
i, n, V⃗

)
≜ (µX)

(⊙
1≤c≤n

if i = c then PC
1

(
i, n, V⃗

)
else PNC

1

(
i, n, c, V⃗

))
.X

Sys
(
n, V⃗ 0

)
describes the session initialisation of a system with n participants and the initial

knowledge V⃗ 0, where V⃗ 0
i is a vector that contains only the initial knowledge of role i. Let∣∣∣V⃗ ∣∣∣ ≜ |{i | vi ̸= ⊥}| return the number of non-empty entries. P

(
i, n, V⃗

)
describes a process

i in a set of n processes. Each process then runs for at most n rounds and then loops.

PC
1

(
c, n, V⃗

)
≜

(⊙
1≤i≤n,i̸=c

s[c, i]?up1⟨⊥⟩(vi)
)
.

if
∣∣∣V⃗ ∣∣∣ ≥ ⌈

n− 1

2

⌉
then PC

2

(
c, n,best(V⃗)

)
else PC

2

(
c, n, V⃗ 0

c

)

14:34 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

PNC
1

(
i, n, c, V⃗

)
≜ s[i, c]!up1⟨vi⟩.PNC

2

(
i, n, c, V⃗

)
Every non-coordinator PNC

1

(
i, n, c, V⃗

)
sends its own belief via unreliable communication to

the coordinator and proceeds to Phase 2. The coordinator receives (some of) these messages
and proceeds to Phase 2. If the reception of at least half of the messages was successful, it is
updating its belief using the function best() that replaces all belief values with the best one.
Otherwise, it discards all beliefs except its own. We are using

⌈
n−1
2

⌉
to check for a majority,

since in our implementation processes do not transmit to themselves.

PC
2

(
c, n, V⃗

)
≜

(⊙
1≤i≤n,i ̸=c

s[c, i]!up2⟨vi⟩
)
.PC

3

(
c, n, V⃗

)
PNC
2

(
i, n, c, V⃗

)
≜ s[i, c]?up2⟨⊥⟩(x).

if x = ⊥ then PNC
3

(
i, n, c, V⃗ , f

)
else PNC

3

(
i, n, c,update(V⃗ , i, x), t

)
In Phase 2, the coordinator sends its updated belief to all other processes via unreliable
communication and proceeds. Note that, vi is either ⊥ for all i ̸= c or the best belief
identified in Phase 1. If a non-coordinator process successfully receives a belief other than ⊥,
it updates its own belief with the received value and proceeds to Phase 3, where we use the
Boolean value t for the acknowledgement. If the coordinator is suspected to have crashed or
⊥ was received, the process proceeds to Phase 3 with the Boolean value f, signalling nack.

PC
3

(
c, n, V⃗

)
≜

(⊙
1≤i≤n,i̸=c

s[c, i]?up3⟨⊥⟩(vi)
)
.PC

4

(
c, n, V⃗

)
PNC
3

(
i, n, c, V⃗ , b

)
≜ s[i, c]!up3⟨b⟩.PNC

4

(
i, n, c, V⃗

)
In Phase 3, every non-coordinator sends either ack or nack to the coordinator. If the
coordinator successfully receives the message, it writes the Boolean value at the index of
the sender into its knowledge vector. In case of failure, ⊥ is used as default. After that the
processes continue with Phase 4. Let I = {i | 1 ≤ i ≤ n, i ̸= c}.

PC
4

(
c, n, V⃗

)
≜ if ack(V⃗) ≥

⌈
n− 1

2

⌉
then (if vc = 0 then s[c, I]!wZero.0

else s[c, I]!wOne.0) else s[c, I]!wld

PNC
4

(
i, n, c, V⃗

)
≜ s[i, n]?wZero.0⊕One.0⊕ ld

In Phase 4 the coordinator checks if at least half of the non-coordinator roles signalled
acknowledgement, utilising the function ack to count. If it received enough acknowledgements
it transmits the decision via Zero or One and causes all participants to terminate. Otherwise,
the coordinator sends the default label and continues with the next round. Remember that
the missing continuation after the default label ld for coordinators and non-coordinators is
implemented by the next round.

We use a weakly reliable branching mechanism in conjunction with unreliable communi-
cation. The algorithm was modelled for systems with crash failures but without message
loss. However, as long as the branching mechanism (i.e., the specified broadcast of decisions)
is weakly reliable, we can relax the system requirements for the remainder of the algorithm.
To ensure termination, however, we have to further restrict the number of lost messages.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:35

6.2. Failure Patterns. Chandra and Toueg introduce in [CT96] also the failure detector
♢S. The failure detector ♢S is called eventually strong, meaning that (1) eventually every
process that crashes is permanently suspected by every correct process and (2) there is a
time after which some correct process is never suspected by any other process. We observe
that the suspicion of senders is only possible in Phase 3, where processes may suspect the
coordinator of the round. Accordingly, the failure pattern FPuskip implements this failure
detector to allow processes to suspect unreliable coordinators in Phase 2, i.e., with label p2.
In Phase 1 and Phase 3 FPuskip may allow to suspect processes that are not crashed after
the coordinator received enough messages. In all other cases these two patterns eventually
return true iff the respective sender is crashed. FPuget can be used to reject outdated
messages, since this is not important for this algorithm we implement it with the constant
true. To ensure that messages of wrongly suspected coordinators in Phase 2 do not block
the system, FPml is eventually true for messages with label p2 that were suspected using
♢S or skipped p1/p3-messages and otherwise returns false. By the system requirements in
[CT96], no messages get lost, but it is realistic to assume that receivers can drop messages
of skipped receptions on their incoming message queues. As there are at least half of the
processes required to be correct for this algorithm, we implement FPcrash by false if only
half of the processes are alive and true otherwise. For the weakly reliable broadcast, FPwskip
returns true if and only if the respective coordinator is crashed, i.e., not suspected but
indeed crashed. In [CT96] this broadcast, which is called just reliable in [CT96], is used to
announce the decision. Since we use it for branching even before a decision was reached, our
implementation is less efficient compared to [CT96]. We briefly discuss in the conclusions
how to regain the original algorithm. These failure patterns satisfy the Condition 5.2.1–5.2.6.

6.3. Termination, Agreement, and Validity. Following [Tel94, Lyn96], a network of
processes solves Consensus if
Termination: all non-failing participants eventually decide,
Agreement: all decision values are the same, and
Validity: each decision value is an initial value of some participant.
By [FMN07] the Rotating Coordinator algorithm solves Consensus in the presence of crash-
failures.

In the proof of termination well-typedness of the implementation and progress in
Theorem 5.10 are the main ingredients. Well-typedness ensures that the implementation
follows its specification and progress ensures that it cannot get stuck. Apart from that, we
only need to deduce from the system requirements, i.e., the used failure detector, that the
implementation will eventually exit the loop.

Lemma 6.1. The implementation of the rotating coordinator example satisfies termination.

Proof. The global type ensures progress of the system, i.e., it either loops forever or terminates
after a broadcast with Zero or One. Following the assumption of [CT96], there is eventually
a round in which the coordinator is not suspected by any correct process and in which the
coordinator does not suspect correct processes (or at least trusts a majority of them). Then
the coordinator receives enough beliefs in Phase 1, transmits the best belief in Phase 2,
receives enough acknowledgements in Phase 3, and transmits Zero or One in Phase 4. Finally,
all correct processes receive the decision and terminate. Well-typedness and progress in
Theorem 5.10 ensure that no process deadlocks along this way.

14:36 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

Validity can be checked by analysing the code of a single process and check whether
it uses (to decide and to transmit) only its own initial belief or the belief it received from
others. Session fidelity in Theorem 5.10 then ensures that there are no communication
mismatches and all steps preserve this property.

Lemma 6.2. The implementation of the rotating coordinator example satisfies validity.

Proof. Well-typedness and the global type ensure that the communication structure is as
specified. By the implementation, in Phase 1 every non-coordinator sends its own belief
to the coordinator on label p1 of which the coordinator selects the best value using the
function best, thus altering its own belief with a valid value. By assumption, best does not
modify any received belief value but only chooses one among them. Label p2 is used to
propagate the best belief of the coordinator of this round. On successful reception of this
message, the non-coordinators update their own belief with the received value, which is a
valid value. Zero and One are chosen matching to the current belief of the coordinator, i.e.,
the local belief is sent and updated on reception without alternation. As there are no more
labels left on which belief values are sent, we conclude, that validity holds for each local
process. Because of the global type and the communication protocol it ensures following
session fidelity in Theorem 5.10—there are no communication mismatches and the received
messages are of the expected sort—, then validity holds globally.

Agreement follows from the weakly reliable broadcast, because the decision is broad-
casted.

Lemma 6.3. The implementation of the rotating coordinator example satisfies agreement.

Proof. The only way to decide is via a broadcast. Let us fix a coordinator c of such a
deciding round. To decide and broadcast a value, the coordinator c needs a majority of
processes in its round. Messages Zerow and Onew cannot be dropped and the failure pattern
FPwskip does not allow to suspect a sender c of weakly reliable branching that is not crashed.
Hence, a majority of processes receive the decision. Accordingly all decision values originate
from the same broadcast. This ensures agreement.

Combining the three above lemmata, we conclude that our implementation of the
algorithm solves Consensus.

Theorem 6.4. The algorithm solves Consensus, i.e., satisfies termination, validity, and
agreement.

Proof. By the Lemmata 6.1, 6.2, and 6.3.

7. Conclusions

We present a fault-tolerant variant of MPST for systems that may suffer from message loss
or crash failures. We implement unreliable communication and weakly reliable branching.
The failure patterns in the semantics allow to verify algorithms modulo system requirements.
We prove subject reduction and progress and present a small but relevant case study.

An open question is how to conveniently type unreliable recursive parts of protocols.
Distributed algorithms are often recursive and exit this recursion if a result was successfully
computed. We present a first attempt to solve this problem using a weakly reliable branching.

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:37

In further research we want to analyse, whether or in how far branching can be extended to
the case of message loss.

Indeed our implementation of the rotating coordinator algorithm is not ideal. It
implements the decision making procedure correctly and also allows processes to be in
different rounds at the same time. So, it represents a non-trivial variant of the rotating
coordinator algorithm. But it does not allow the processes to diverge in their rounds as
freely as the original rotating coordinator algorithm, because the weakly reliable branching
implementation implies that the coordinator has always to be the first process to leave a
round. We can solve this problem by wrapping each round in an unreliable sub-session (e.g.
an unreliable variant of the sub-sessions introduced in [DH12, Dem15]). If we allow processes
to skip such an unreliable sub-session altogether, we obtain the intended behaviour.

We considered strongly reliable session delegation. Next we want to study whether and
in how far we can introduce weakly reliable or unreliable session delegation. Similarly, we
want to study unreliable variants of session initialisation including process crashes and lost
messages during session initialisation. Moreover, unreliable variants of session initialisation
open a new perspective on MPST-frameworks such as [CDA16] with dynamically changing
network topologies and sessions for that the number of roles is determined at run-time.

In Section 5 we fix one set of conditions on failure patterns to prove subject reduction,
session fidelity, and progress. We can also think of other sets of conditions. The failure
pattern FPuget can be used to reject the reception of outdated messages. Therefore, we drop
Condition 5.2.2 and instead require for each message m whose reception is refused that FPml
ensures that m is eventually dropped from the respective queue and that FPuskip allows to
skip the reception of these messages. An interesting question is to find minimal requirements
and minimal sets of conditions that allow to prove correctness in general.

It would be nice to also fully automate the remaining proofs for the distributed algorithm
in Section 6. The approach in [PWN19] sequentialises well-typed systems and gives the
much simpler remaining verification problem to a model checker. Interestingly, the main
challenges to adopt this approach are not the unreliable or weakly reliable prefixes but the
failure patterns.

References

[ACT97] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A Timeout-Free Failure
Detector for Quiescent Reliable Communication. In Proc. of WDAG, volume 1320 of LNCS,
pages 126–140. Springer, 1997. doi:10.1007/BFb0030680.

[APN17] Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session Types for Link Failures. In Proc.
of FORTE, volume 10321 of LNCS, pages 1–16, 2017. doi:10.1007/978-3-319-60225-7_1.

[BCD+08] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini,
, and Nobuko Yoshida. Global Progress in Dynamically Interleaved Multiparty Sessions. In
Proc. of CONCUR, volume 5201 of LNCS, pages 418–433. Springer, 2008. doi:10.1007/

978-3-540-85361-9_33.
[BHTY10] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A Theory of Design-by-

Contract for Distributed Multiparty Interactions. In Proc. of CONCUR, volume 6269 of LNCS,
pages 162–176. Springer, 2010. doi:10.1007/978-3-642-15375-4_12.

[CDA16] Minas Charalambides, Peter Dinges, and Gul Agha. Parameterized, concurrent session types for
asynchronous multi-actor interactions. Science of Computer Programming, 115–116:100–126,
2016. doi:10.1016/j.scico.2015.10.006.

[CDCG17] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Concurrent Reversible
Sessions. In Proc. of CONCUR, volume 85 of LIPIcs, pages 30:1–30:17, 2017. doi:10.4230/
LIPIcs.CONCUR.2017.30.

https://doi.org/10.1007/BFb0030680
https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.4230/LIPIcs.CONCUR.2017.30
https://doi.org/10.4230/LIPIcs.CONCUR.2017.30

14:38 K. Peters, U. Nestmann, and C. Wagner Vol. 19:4

[CDCPY15] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A Gentle
Introduction to Multiparty Asynchronous Session Types. In Proc. of SFM, volume 9104 of
LNCS, pages 146–178, 2015. doi:10.1007/978-3-319-18941-3_4.

[CDGH20] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global types
with internal delegation. Theoretical Computer Science, 807:128–153, 2020. doi:10.1016/j.tcs.
2019.09.027.

[CGY16] Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in multiparty sessions.Mathe-
matical Structures in Computer Science, 26(2):156–205, 2016. doi:10.1017/S0960129514000164.

[CHY08] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Interactional Exceptions in
Session Types. In Proc. of CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.
doi:10.1007/978-3-540-85361-9_32.

[CS09] Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Comput., 22(1):49–71, 2009. doi:10.1007/
s00446-009-0084-6.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.

[CV10] Lúıs Caires and Hugo Torres Vieira. Conversation types. Theoretical Computer Science, 411(51–
52):4399–4440, 2010. doi:10.1016/j.tcs.2010.09.010.

[CVB+16] Tzu-Chun Chen, Malte Viering, Andi Bejleri, Lukasz Ziarek, and Patrick Eugster. A Type
Theory for Robust Failure Handling in Distributed Systems. In Proc. of FORTE, volume 9688
of LNCS, pages 96–113. Springer, 2016. doi:10.1007/978-3-319-39570-8_7.

[Dem15] R. Demangeon. Nested Protocols in Session Types. Personal communication about an extended
version of [DH12] that is currently prepared by R. Demangeon., 2015.

[DH12] Romain Demangeon and Kohei Honda. Nested Protocols in Session Types. In Proc. of CONCUR,
volume 7454 of LNCS, pages 272–286. Springer, 2012. doi:10.1007/978-3-642-32940-1_20.

[DHH+15] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and Python. Formal Methods in System Design, 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

[FH07] Adrian Francalanza and Matthew Hennessy. A fault tolerance bisimulation proof for consensus
(extended abstract). In Rocco De Nicola, editor, Proc. of ESOP, volume 4421 of LNCS, pages
395–410. Springer, 2007. doi:10.1007/978-3-540-71316-6_27.

[FMN07] Rachele Fuzzati, Massimo Merro, and Uwe Nestmann. Distributed Consensus, revisited. Acta
Informatica, pages 377–425, 2007. doi:10.1007/s00236-007-0052-1.

[Gär99] Felix C. Gärtner. Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous
Environments. ACM Computing Surveys, 31(1):1–26, 1999. doi:10.1145/311531.311532.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
In Proc. of POPL, volume 43, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

[HYC16] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63(1), 2016. doi:10.1145/2827695.

[KGG14] Dimitrios Kouzapas, Ramūnas Gutkovas, and Simon J. Gay. Session Types for Broadcasting. In
Proc. of PLACES, volume 155 of EPTCS, pages 25–31, 2014. doi:10.4204/EPTCS.155.4.

[KN09] Morten Kühnrich and Uwe Nestmann. On Process-Algebraic Proof Methods for Fault Tolerant
Distributed Systems. In Proc. of FORTE, volume 5522 of LNCS, pages 198–212, 2009. doi:
10.1007/978-3-642-02138-1_13.

[Lam01] Leslie Lamport. Paxos Made Simple. ACM Sigact News, 32(4):18–25, 2001.
[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[NF03] Uwe Nestmann and Rachele Fuzzati. Unreliable failure detectors via operational semantics. In

Vijay A. Saraswat, editor, Proc. of ASIAN, volume 2896 of LNCS, pages 54–71. Springer, 2003.
doi:10.1007/978-3-540-40965-6_5.

[NFM03] Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in a process calculus.
In Roberto M. Amadio and Denis Lugiez, editors, Proc. of CONCUR, volume 2761 of LNCS,
pages 393–407. Springer, 2003. doi:10.1007/978-3-540-45187-7_26.

[NY17] Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In Proc. of CC, pages 98–108. ACM, 2017. doi:10.1145/3033019.3033031.

https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1145/226643.226647
https://doi.org/10.1016/j.tcs.2010.09.010
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-540-71316-6_27
https://doi.org/10.1007/s00236-007-0052-1
https://doi.org/10.1145/311531.311532
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.4204/EPTCS.155.4
https://doi.org/10.1007/978-3-642-02138-1_13
https://doi.org/10.1007/978-3-642-02138-1_13
https://doi.org/10.1007/978-3-540-40965-6_5
https://doi.org/10.1007/978-3-540-45187-7_26
https://doi.org/10.1145/3033019.3033031

Vol. 19:4 FTMPST: FAULT-TOLERANT MULTIPARTY SESSION TYPES 14:39

[PNW22a] Kirstin Peters, Uwe Nestmann, and Christoph Wagner. Fault-Tolerant Multiparty Session
Types. In Proc. of Forte, volume 13273 of LNCS, pages 93–113. Springer, 2022. doi:10.1007/
978-3-031-08679-3_7.

[PNW22b] Kirstin Peters, Uwe Nestmann, and Christoph Wagner. Fault-Tolerant Multiparty Session Types
(Technical Report). Technical report, 2022. doi:10.48550/arXiv.2204.07728.

[PWN19] Kirstin Peters, Christoph Wagner, and Uwe Nestmann. Taming Concurrency for Verification
Using Multiparty Session Types. In Proc. of ICTAC, volume 11884 of LNCS, pages 196–215,
2019. doi:10.1007/978-3-030-32505-3_12.

[Tel94] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.
[VCE+18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu, and Lukasz Ziarek. A Typing

Discipline for Statically Verified Crash Failure Handling in Distributed Systems. In Proc. of ESOP,
volume 10801 of LNCS, pages 799–826. Springer, 2018. doi:10.1007/978-3-319-89884-1_28.

[vGHH21] Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming Just Enough Fairness to make
Session Types Complete for Lock-freedom. In Proc. of LICS, pages 1–13. IEEE, 2021.

[vST17] Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. Maarten van Steen, 2017.
[WN14] Christoph Wagner and Uwe Nestmann. States in Process Calculi. In Proc. of EXPRESS/SOS,

volume 160 of EPTCS, pages 48–62, 2014. doi:10.4204/EPTCS.160.6.
[YDBH10] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised Mul-

tiparty Session Types. In Proc. of FoSSaCS, volume 6014 of LNCS, pages 128–145, 2010.
doi:10.1007/978-3-642-12032-9_10.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.48550/arXiv.2204.07728
https://doi.org/10.1007/978-3-030-32505-3_12
https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.4204/EPTCS.160.6
https://doi.org/10.1007/978-3-642-12032-9_10

	1. Introduction
	1.1. Related Work
	1.2. Summary

	2. Fault-Tolerance in Distributed Algorithms
	3. Fault-Tolerant Types and Processes
	3.1. Examples
	3.2. Projection
	3.3. Labels

	4. A Semantics with Failure Patterns
	5. Typing Fault-Tolerant Processes
	6. The Rotating Coordinator Algorithm
	6.1. Specification and Implementation
	6.2. Failure Patterns
	6.3. Termination, Agreement, and Validity

	7. Conclusions
	References

