
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 23:1–23:65
https://lmcs.episciences.org/

Submitted Feb. 01, 2023
Published Dec. 14, 2023

EXPONENTIALS AS SUBSTITUTIONS,

AND THE COST OF CUT ELIMINATION IN LINEAR LOGIC

BENIAMINO ACCATTOLI

Inria & LIX, École Polytechnique, France
e-mail address: beniamino.accattoli@inria.fr

Abstract. This paper introduces the exponential substitution calculus (ESC), a new
presentation of cut elimination for IMELL based on proof terms and building on the idea
that exponentials can be seen as explicit substitutions. The idea in itself is not new, but
here it is pushed to a new level, inspired by Accattoli and Kesner’s linear substitution
calculus (LSC).

One of the key properties of the LSC is that it naturally models the sub-term property
of abstract machines, which is the key ingredient for the study of reasonable time cost
models for the λ-calculus. The new ESC is then used to design a cut elimination strategy
with the sub-term property, providing the first polynomial cost model for cut elimination
with unconstrained exponentials.

For the ESC, we also prove untyped confluence and typed strong normalization, showing
that it is an alternative to proof nets for an advanced study of cut elimination.

1. Introduction

Two key aspects of linear logic are its resource-awareness and that it models the evaluation
of λ-terms via cut elimination, even of untyped λ-terms, if recursive formulas are allowed.
One would then expect that, given a λ-term t represented as a linear proof πt, the length of
cut elimination in πt could provide estimates about the time complexity of t. Surprisingly,
this is not (yet) the case.

Linear Logic and Complexity Classes. Linear logic is often used in implicit computational
complexity, a field that aims at characterizing complexity classes with no explicit references to
machine models. In this line of work, classes are characterized by seeing program execution
as cut elimination in fragments of, and variations on, linear logic, usually obtained by
constraining the exponential connectives in some way. Some representative papers are
[GSS92, Gir98, DJ03, Laf04, MT03].

A first limitation of these results is that the bound is given on whole fragments of linear
logic, without saying how to compute the cost of a fixed proof, which might be much lower
than the bound for the fragment. A second limitation is that, as soon as one steps out of
the fragment that characterizes the class, nothing is known.

Key words and phrases: linear logic, cut elimination, cost models, explicit substitutions.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:23)2023
© B. Accattoli
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-4944-9944
http://creativecommons.org/about/licenses

23:2 B. Accattoli Vol. 19:4

The Cut Elimination Clock. The underlying problem is that there are no known com-
plexity measures for cut elimination in linear logic. The use of linear logic for implicit
complexity is so implicit that, not only it avoids machine models, it also never states what is
the underlying logical unit for time, that is, what are the ticks of the cut elimination clock.

Formally, what is missing is a polynomial time cost model for cut elimination. That
is, a cut elimination strategy of which the number of steps is a bound, up to a polynomial
overhead, to the time complexity of implementing cut elimination according to that strategy.
But be careful, it is not the number of steps that has to be polynomial: it would not be
possible, linear logic cut elimination can take way more than polynomially many steps (in the
size of the initial proof). It is the cost of implementing the sequence of steps (on a random
access machine, or any other reasonable framework) that must be polynomial—ideally
linear—in their number (which can be whatever) and in the size of the proof. Then, the
number of steps taken by the strategy on a proof π provides a reliable measure for the time
cost of π. Roughly, the steps of such a strategy become the ticks of a cut elimination clock.

One might wonder why not any strategy would do. The point is that cut elimination
strategies often suffer of size explosion: one can build families of proofs {πn}n∈N on which
the strategy iterates duplications in malicious ways, leading to a growth of the proof size
which is exponential in the number kn of cut elimination steps taken by the strategy on
πn. Therefore, kn cannot be taken as the time cost for implementing the cut elimination
sequence (not even up to a polynomial), if the sequence has to be implemented as it is.
Intuitively, taking such strategies as clocks would correspond to having irregular ticks of
non-uniform length, some of which take a very long time. In Section 3, we shall show that
cut elimination by levels, the strategy of reference in linear logic (especially for implicit
computational complexity), suffers from size explosion.

The aim of this paper is to provide a clock of which the ticks are regular enough to
serve as a reliable time measure for unconstrained exponentials. That is, we shall provide a
new strategy of which the number of steps is a polynomial time cost model. In our pursuit,
we are inspired by developments in the study of cost models for the λ-calculus and in the
modern theory of λ-calculi with explicit substitutions.

The Linear Substitution Calculus. In the last decade, the study of reasonable time cost
models, that is, of polynomial cost models that additionally are equivalent to the time cost
model of Turing machines, has advanced considerably in the sister field of λ-calculus, starting
with Accattoli and Dal Lago’s result about the number of steps of the leftmost strategy
[ADL16]. The advances have been enabled and developed over Accattoli and Kesner’s
linear substitution calculus (shortened to LSC) [Mil06, Acc12, ABKL14], which is a neat
and compact refinement of the λ-calculus that probably can be considered the answer to
the quest for the canonical λ-calculus with explicit substitutions (shortened to ESs). The
LSC refines ESs with ideas from both proof nets, namely using contextual rewriting rules on
terms—also called at a distance—to avoid commuting constructors (taken from Accattoli
and Kesner [AK10]), and the π-calculus/bigraphs, in modeling duplication as replication in
π (following Milner [Mil06]).

The Sub-Term Property. The relevance of the LSC for cost models is due to its natural
modeling of strategies having the sub-term property often found in abstract machines:

All sub-terms duplicated or erased along an evaluation sequence from t are sub-terms of t.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:3

When a strategy→st has the sub-term property, the cost of implementing a sequence t→k
st s

is polynomial, and in general linear, in k and in the size |t| of t. Therefore, the sub-term
property implies that the number of steps is a polynomial cost model for time. Intuitively,
it states that the steps of the strategy are the regular ticks of a reliable clock. It represents,
for the study of cost models, what the sub-formula property is for proof-search, or the
cut-elimination theorem for sequent calculi.

Typically, important strategies of the λ-calculus such as weak head, head, or leftmost-
outermost reduction do not have the sub-term property (actually, we show in Section 3
that no strategy in the λ-calculus has the property), while their analogous in the LSC does.
One of the key points is that the sub-term property requires micro-steps evaluation, that
is, performing one variable replacement at a time (as in the LSC), rather than small-step
evaluation, that is, using rules resting on meta-level substitution such as β. The sub-term
property and the related degeneracy of size explosion are discussed in detail in Section 3.

Linear Logic and the Sub-Term Property. In linear logic, the problem is not just that
there are no known cut elimination strategies providing polynomial cost models. What is
worse, is that there are no known micro-step strategies with the sub-term property (as we
discuss below), despite the clear linear logical flavor of the property. Therefore, the study of
cost models is, at present, simply out of reach.

How can one recover the sub-term property in linear logic? This is the challenge
addressed by this paper. There are two natural possible routes. One is working inside
linear logic as it is usually presented, and try to recover the sub-term property. This
would inevitably mean working with proof nets, as cut elimination in the sequent calculus
requires to deal with too many commutative cases. Another one is to develop an alternative,
commutation-free presentation of linear logic akin to the LSC, and use it to design a strategy
with the sub-term property. We choose the second option, for three reasons.

(1) Terms are more easily manageable: graphical syntaxes are too hard to manage for the
long and delicate proofs typical of the study of cost models.

(2) Better rewriting : the rewriting theory of the LSC is better behaved than the one of
proof nets.

(3) Novelty : we aim at a fresh look at linear logic, importing ideas from a sister field.

This Paper. We provide three main contributions:

(1) Design: we introduce the exponential substitution calculus (ESC), which is a new
presentation of linear logic cut elimination based over the theory of ESs and the LSC
and free from commutative cases. It is a design study, done in a principled way. It is
also a stress test, as linear logic has many more constructors and rewriting rules than
the LSC. We shall see that, in order to guarantee some expected properties of ESs, one
is forced to turn to intuitionistic linear logic.

(2) Sub-term strategy : we define a new cut elimination strategy for the ESC and prove that
it has the sub-term property. Therefore, we solve the issue mentioned at the beginning of
the paper, providing the first polynomial time cost model for unconstrained exponentials.

(3) Foundations: we prove various key properties of the ESC, among which untyped
confluence and typed strong normalization, thus providing solid foundations for our
presentation. The non-trivial proofs of these properties are developed from scratch,
using elegant proof techniques developed for the LSC.

23:4 B. Accattoli Vol. 19:4

The next section provides overviews of these contributions.

Related Work. To our knowledge, there are no works in the literature studying cost models
for linear logic. Many term and process calculi for or related to linear logic have been
proposed, for instance [LM92, Abr93, BBdPH93, Wad93, BS94, BW96, RR97, MOTW99,
Sim05, OH06, CP10, Wad12, CFM16, EG16]. There are also proposals for λ-calculi with
ESs with linear features such as [GdPR00, KL07, FS14]. None of these calculi employs
rewriting rules at a distance as we do here. Mazza uses a natural deduction linear calculus
at a distance [Maz17], and Kesner develops a λ-calculus with ESs reflecting proof nets cut
elimination [Kes22] but only for the fragment representing the λ-calculus. Various authors
consider terms for proof structures [Abr93, FM99, MS08, Ehr14, CA21] which then need
correctness criteria, not required here.

The sub-term property is a folklore property first called as such by Accattoli and Dal
Lago [ADL12], who also show a surprising link with the standardization theorem in [ADL16].

Journal Version and Proofs. This paper is the journal version of the LICS 2022 conference
paper with the same title. It adds explanations, in particular Section 3 is new, and most
proofs (together with the intermediary lemmas) that were omitted from the conference
version. A few proofs are particularly long and tedious so they are still omitted or partially
omitted, but can be found on Arxiv in the technical report [Acc22] associated to the
conference paper, which is accessible as version one (”v1”, see the bibliography entry for the
link) of the present paper on Arxiv (which is instead ”v3”).

2. Overview of the Contributions

2.1. Contribution 1: The Exponential Substitution Calculus. By allowing duplication
and erasure of sub-proofs, the exponentials can be seen as a substitution device: it is the
core of the simulation of the λ-calculus into linear logic due to Girard [Gir87]. Historically,
ESs became popular with a calculus by Abadi et al. [ACCL91], later shown defective at the
rewriting level by Melliès [Mel95]. Linear logic and the exponentials were thus considered as
a more solid formalism to borrow from. Di Cosmo and Kesner were the first ones to do so
[CK97], seeing ESs as exponential cuts.

Along the years, however, the theory of ESs made progresses of its own, and here we
reverse the transfer. The idea is enforcing and pushing to the extreme the slogan:

Exponentials = Explicit Substitutions

To continue, we need to recall the very basics of ESs.

Basics of Explicit Substitutions. The idea is to extend the λ-calculus with a new term
constructor t[x�s] (which is just a compact notation for let x = s in t, but with no fixed order
of evaluation between s and t) denoting a delayed or explicit substitution, and decomposing
the β-rule:

(λx.t)s →β t{x�s}
where t{x�s} is meta-level substitution, into two rules (explicit β and substitution):

(λx.t)s →eβ t[x�s] →s t{x�s}

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:5

π :=

d

ax

c

!

d

ax

c

cut

→

d

ax

c

!

d

ax

cut

d

ax

c

!

cut

→

d

ax

c

!
ax

cut

d

ax

c

cut

→ π

Figure 1: Untyped proof net of classical LL reducing to itself in 3 micro steps.

Now, rule →s is usually further decomposed into various micro-step rules. There are many
possible sets of such substitution rules. What they all have in common, even the defective
ones mentioned above, is that, when considered separately from rule →B, they are strongly
normalizing even without types.

Design Principles. Our exponentials as substitutions design of the ESC is based on the
following principles.

Principle 1: proofs as typing derivations. Calculi with ESs are studied as untyped calculi.
Then we want the ESC to be an untyped calculus with good properties by itself, and see
proofs of linear logic as typing derivations for it.

Principle 2: ESs terminates/intuitionism. As we recalled above, the rules that manage
ESs are always strongly normalizing without types. It is possible to define also untyped
linear logic proofs, as done e.g. in de Carvalho et al. [dCPTdF11], obtaining a notion of
untyped proof net. In the case of classical linear logic à la Girard (with involutive negation),
the exponentials of such proof nets can diverge by themselves, as in Fig. 1. In such a setting,
then, exponentials are not as ESs. We then switch to intuitionistic linear logic, and prove
that therein untyped exponentials are strongly normalizing (Theorem 8.8, p. 32). To our
knowledge, this is a new result and the first time that such a discrepancy between the classical
and intuitionistic case is pointed out. The proof of the theorem requires long calculations
but it is otherwise simple. Termination is obtained via a measure defined by induction over
terms. Essentially, the result states that in the intuitionistic setting exponentials are as ESs.
It is one of the main contributions of the paper.

Principle 3: micro and small steps together. The sub-term property requires a micro-step
operational semantics. But studying micro-step ESs constantly requires to refer to meta-level
substitution, which is small-step. For linear logic, Girard originally considered micro-step
cut elimination [Gir87], but soon afterwards Regnier introduced a small-step variant, to
study the λ-calculus [Reg92], and both are frequently used in the literature. In the ESC, we
want small and micro steps to co-exist, so as to provide a comprehensive framework.

Left Splitting. The design of the ESC systematically exploits a simple fact about IMELL
proofs: they can be seen as ending on a sequence of left rules following a right rule or an
axiom. Representing a proof as a term t, one can thus uniquely split it as t = L⟨v⟩, that is,
a sub-proof ending on a right rule or an axiom, what we shall call a value v, and a possibly
empty sequence of left rules L from the last sequent of v to the last sequent of t. Such a left
splitting is a basic property of sequent proofs that is not related to polarity or focussing—it
is in fact simpler—and yet plays a crucial role in our rewriting rules at a distance for IMELL.

23:6 B. Accattoli Vol. 19:4

Promotion / contraction Promotion / auxiliary port

c

?A⊥?A⊥

cut ?A⊥!A
!

?Bk?B1

. . . →c

?A⊥?A⊥!. . .
cut

!. . . !A!A

c

?B1

c

?Bk

. . .

cut
!

!A

G

?∆cut

!

?Γ
!B

→�
!

!A

G

?∆

cut

!

?Γ

!B

!

Figure 2: The two rewriting rules that are used in the discussions on the sub-term property
and size explosion for proof nets.

Additives. We do not consider the additive connectives, and so we deal with IMELL.
The reason is that they are both trivial and challenging, depending on the approach. If
one adopts additive slices [Gir87, LTdF04], then our results lift smoothly. Without slices,
instead, it is unclear how to combine additives and LSC-style micro steps while retaining all
the good properties of the ESC.

Syntactical Variants. A number of alternative syntaxes could have been adopted, typically
Curien & Herbelin λµµ̃ calculi [CH00, CFM16], Benton’s linear-non-linear approach [Ben94],
Pfenning & Caires’ processes [CP10], and, of course, proof nets or natural deduction. We
prefer avoiding them to show that their additional ingredients (the distinguished conclusion
on the left of sequents [CH00, CFM16], the linear-non-linear separation [Ben94], and the
graphical syntax) are not required for studying cost models for linear logic, while we avoided
processes because their evaluation does not compute cut-free proofs, since they do not
evaluate under prefixes. Finally, we prefer the sequent calculus to natural deduction because
it is more commonly used for presenting linear logic, and because in this way we provide a
novel use of the LSC technology, given that the LSC is based on natural deduction. Our
study can however be adapted to any of these settings.

2.2. Contribution 2: the Sub-Term Strategy. The proof nets strategy of reference
is the notion of least level (or by levels) strategy →ll (introduced—we believe—by Girard
[Gir98] and studied for instance by de Carvalho et al. [dCPTdF11]), which reduces cuts of
minimal level, where the level is the number of !-boxes surrounding a cut.

Unfortunately,→ll is not a good candidate for a linear logic clock. Consider the following
local confluence diagram made out of micro steps at level 0 (the used rewriting rules are in
Fig. 2), which is an important sub-strategy →l0 of →ll:

c
cut

!
1

cut
!
2

c
cut

!
1 !

2

!
1

!
1

c
cut

!
2

!
1 !

2

!
1 !

2!
1

!
1

cut cut

!
2

!
2

!
1

!
1 !

2

!
2

cut

�

c

c � �

c

The right-down path shows that →l0 , and thus →ll, lacks the sub-term property, as the box
duplicated by the second step is not a sub-proof of the initial one. Moreover, iterating such
a pattern gives size explosion for →l0 , as shall we show in Section 3. The down-left path has
the sub-term property but it shows that different →l0 paths can have different lengths—that

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:7

is, →l0 is not diamond—forbidding to take its number of steps as a measure, because the
number of its steps to normal form is an ambiguously defined quantity.

The Linear Head Strategy. There actually is a micro-step strategy in the linear logic
literature which is both diamond and with the sub-term property. It is Mascari & Pedicini’s
and Danos & Regnier’s linear head strategy →lh [MP94, DR04] (which is a sub-strategy of
level 0 cut elimination) but it is defined only on the fragment representing the λ-calculus
and it does not compute cut-free proofs.

The linear head strategy is naturally modelled by the LSC, used by Accattoli and
co-authors for proving properties of →lh, design variants and extensions [Acc12, ABKL14,
ABM14, ABM15], as well as to prove that it provides a reasonable time cost model [ADL12].

The Good Strategy. The ESC strategy introduced here is simply called the good strategy
→G, because it avoids bad steps breaking the sub-term property. It is the generalization of
the linear head strategy to the whole of IMELL and extended as to compute cut-free proofs.
The good strategy is micro-step, diamond, and it has the sub-term property, thus providing
the first polynomial cost model for IMELL1. Its design is based on the creation of cuts, a
notion due to the intuitionistic arrow ⊸ and invisible in classical linear logic.

2.3. Overview of Contribution 3: Foundations. We provide a foundational study of
the ESC, ensuring that the new cut elimination rules are well behaved, but also to promote
it as an alternative to the use of proof nets for IMELL. We prove three important properties:

(1) Untyped confluence: the untyped case is possibly divergent and thus more difficult than
the typed case, as one cannot exploit termination in the proof technique. We prove
confluence using the Hindley-Rosen method, and exploit termination nonetheless by
building on the strong normalization of the exponentials, following an approach pushed
forward by Accattoli in the study of the LSC [Acc12].

(2) Untyped PSN : preservation of untyped strong normalization (shortened to PSN) is a
property typical of calculi with ESs, stating that if a term is SN for the small-step
rules (in the untyped setting where terms can also be divergent) then it is SN for the
micro-step rules. Essentially, it states that the decomposition of small steps in micro
steps does not introduce degeneracies. The proof is based on a technique due to Kesner
[Kes09]. This theorem is notoriously technical for λ-calculi with ESs. We adapt a simple
proof by Accattoli and Kesner [AK10], where the simplicity is enabled by adopting rules
at a distance. Our adaptation is even simpler than the proof in [AK10].

(3) Typed SN : we prove strong normalization (SN) of the small-step rules in the typed case,
using the reducibility method. This theorem too is notoriously technical to prove for
fragments of linear logic including the exponentials. We here provide what is probably
the simplest and cleanest proof of SN in the literature, improving the already simplified
approach of Accattoli [Acc13] based on rules at a distance. We then use PSN to transport
SN to micro steps.

1Is it a reasonable cost model? Roughly, yes. For time reasonability, the subtle part is polynomiality of
the cost model, that is, the polynomial simulation of the ESC on Turing machines/RAM. The complementary
part—here missing—is simulating Turing machines in the untyped ESC within polynomial overhead. It is
true, but for very minor reasons it does not follow from results in the literature and it has to be (tediously)
reproved from scratch. Moreover, the missing part is not relevant/cannot hold for the typed ESC, as IMELL
is not Turing-complete (IMELL cut-elimination being strongly normalizing, it cannot model diverging
computations).

23:8 B. Accattoli Vol. 19:4

Confluence and strong normalization are not usually studied for sequent calculi with
traditional cut elimination, that is, with both principal and commutative cases, because of
the following two facts:

• No SN : cut elimination is not SN, because cut commutes with itself, leading to non-
termination:

Γ ⊢ B

Π ⊢ A ∆, A,B ⊢ C
cut

∆,Π, B ⊢ C
cut

∆,Π,Γ,⊢ C

→ Π ⊢ A

Γ ⊢ B ∆, A,B ⊢ C
cut

∆, A,Γ ⊢ C
cut

∆,Π,Γ ⊢ C

• No confluence: cut elimination is not confluent, not even in IMLL (!), because commuta-
tions affect the result, as shown by this counter-example, courtesy of Olivier Laurent:

A ⊢ A B ⊢ B ⊸l
A,A ⊸ B ⊢ B

B ⊢ B C ⊢ C ⊸l
B,B ⊸ C ⊢ C

cut
A,A ⊸ B,B ⊸ C ⊢ C

+↙ ↘+

A ⊢ A
B ⊢ B C ⊢ C ⊸l
B,B ⊸ C ⊢ C

⊸l
A,A ⊸ B,B ⊸ C ⊢ C

A ⊢ A B ⊢ B ⊸l
A,A ⊸ B ⊢ B C ⊢ C

⊸l
A,A ⊸ B,B ⊸ C ⊢ C

Retrieving confluence and SN requires cut elimination modulo commutations, or via proof
nets, or adding some rigidity to proofs such as focalization. In stark contrast, the cut
elimination at a distance of the ESC, being free from commutations, achieves them without
rewriting modulo nor modifying the deductive system.

Our study thus lies a new foundation for the study of cut elimination. It also sums
up ten years of research on the rewriting of the LSC, at the same time generalizing the
developed techniques to the considerably more general setting of IMELL.

3. Sub-Term Property and Size Explosion

The sub-term property is used in many works on abstract machines, or the LSC, or reasonable
cost models for the λ-calculus. Here we aim at providing evidence of its relevance. We first
discuss it in the λ-calculus and then see an example of size explosion in proof nets.

We give a new and more accurate definition of the property than the one in the
introduction. We actually define three variants of the property.

Definition 3.1 (Sub-term property). A rewriting system (S,→) has the sub-term property
if, for every t0 ∈ S and every sequence t0 →n tn, every step of the sequence either only
involves a constant number of constructors or it duplicates or erases a term:

• Literal sub-term property : which is a sub-term of t0;
• Structural sub-term property : which is a sub-term of t0 up to variables renaming;
• Quantitative sub-term property : of size bound by |t0|.
In the case of duplications, the number of copies is also bound by |t0| (for all notions).

The literal variant is the strongest formulation, it provides the intuition, and gives the
name to the property. It is usually found in abstract machines with local environments
such as the Krivine abstract machine (KAM) or the CEK. The literal sub-term property is
crucial for studying the logarithmic space complexity of λ-terms, as it allows one to only

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:9

duplicate a pointer (of logarithmic size) to the sub-term of t0, rather than the sub-term
itself (which would have linear size). See Accattoli et al. for more details [ADLV22]. We
shall not deal with the literal variant here, since we are not dealing with logarithmic space
nor abstract machines (the adaptation of the KAM to our setting would have the literal
sub-term property).

The structural variant is often found in strategies of the LSC and in abstract machines
with global environments (such as the Milner abstract machine, or MAM), and it is the
one used for time analyses. The up to variables renaming weakening of the property is due
to α-equivalence, which might change names in sub-terms, but not their structure. For
time analyses, in fact, one only needs the quantitative version of the property. The two
formulations (structural and quantitative) are two sides of the same concept and most of
the time we shall simply refer to the sub-term property, without further specification.

λ-Calculus vs the Sub-Term Property. In the λ-calculus, no evaluation strategy has
the structural sub-term property—as we now show—because its operational semantics is
somewhat too coarse. Let τt := λy.ytt and I := λx.x. Then:

s := (λx.x(λz.τz)τx)I →β I(λz.τz)τI →β (λz.τz)τI →β ττI (3.1)

Note that the term τI duplicated by the third step is not a sub-term of s. Moreover, s is
closed and each term in the sequence has at most one β-redex, which is out of abstractions
and the argument of which is a value. Therefore, the example affects also closed weak
evaluation, and even its call-by-value variant.

What actually happens is that in the λ-calculus duplicated sub-terms are combinations
of sub-terms of the initial term, as it is the case for τI in the example above. The size of
such combinations can grow exponentially with the number of β-steps, a degeneracy called
size explosion and affecting all strategies in the λ-calculus, as we shall now recall, suggesting
that the number of β-steps might not be a polynomial cost model for any strategy.

Inevitable Size Exploding Family. In the λ-calculus, there is a size exploding family
that explodes no matter the evaluation strategy. Its definition is in two steps. Firstly, define
the following pre-family {tn}1≤n∈N, where, again, τt := λy.ytt:

t1 := λx.τx tn+1 := λx.tnτx

The size exploding family is actually given by {tnI}1≤n∈N , that is, it is obtained by
applying the term tn of the pre-family to the identity I := λy.y. Note that it is a family of
closed terms. We also define the family of results {rn}n∈N as follows:

r0 := I rn+1 := τrn

Last, let→wh be the weak head strategy, which reduces only head redexes out of abstractions
and is the simplest meaningful reduction strategy in the λ-calculus.

Proposition 3.2 (Closed and strategy-independent size explosion). Let n>0. Then

(1) Size explosion for the weak head strategy: tnI→n
wh rn and the i-th step of the sequence

makes two copies of ri−1.
(2) Strategy independent: any other reduction sequence tnI→∗

wh rn has length n, and all
redexes in these sequences are βv redexes.

Moreover, |tnI| = O(n), |rn| = Ω(2n), tnI is closed, and rn is a β normal form.

23:10 B. Accattoli Vol. 19:4

Proof. The bounds on the sizes are straightforward inductions.

(1) We prove a more general statement: tnrm →n
wh rn+m (note that r1 = I). By induction

on n. If n = 1 then (λx.τx)rm →wh τrm = rm+1. For n+ 1, tn+1rm = (λx.tnτx)rm →wh

tnτrm = tnrm+1. By i.h., tnrm+1 →n
wh rn+m+1.

(2) It is easily seen that the n redexes in tnI are all hereditarily independent and by-value:
they cannot duplicate/erase each other, their arguments are abstractions, and they all
produce terms with the same property. Then all local confluence diagrams from tnI,
as well as from the terms reachable from it, are diamonds and all reductions to normal
form have the same length.

Size explosion is the fact that the linear size term tnI reduces in n steps to the exponential
size result rn, thus doing an exponential amount of work in a linear number of steps. The
first point specifies that tnI explodes while using the weak head strategy, and that in this
case each step of the sequence (but the first one) breaks the structural sub-term property, as
it duplicates rn which is not a sub-term of the initial term tnI (up to variables renaming).
Thus, breaking the sub-term property leads to size explosion for the weak head strategy,
which breaks the quantitative sub-term property, as, for n big enough, the last duplication
of the sequence involves a term bigger than the initial one.

The second point says that the family evaluates to the same result and in the same
number of steps according to any other evaluation strategy, no matter whether strong or
weak, call-by-name or call-by-value. It is easily seen that the family is also typable with
simple types, although of types that grow in size exponentially in n. Since the family is also
closed, size explosion affects all the main variants and dialects of the λ-calculus.

Let us show a final observation about size explosion. Consider the third element t3I of
the given family, and let us reduce it in a innermost way :

t3I = (λx.(λx.(λx.τx)τx)τx)I →β (λx.(λx.ττx))τx)I →β (λx.τττx)I →β τττI (3.2)

Note that the first two steps duplicate τx and that the last step duplicates I: it looks like
the structural sub-term property is not broken. Here it plays a role the final clause in the
definition of the property: in the case of duplications, the number of copies is also bound by
|t0|. Generalizing (3.2) to n > 3, indeed, the number of copies of the duplicated sub-term
grows exponentially (note that τττx3 has eight occurrences of x3), thus still breaking the

sub-term property.

Small-Steps vs Micro-Steps. The reader might be aware of the fact that, despite what
just explained, the number of steps of some strategies of the λ-calculus do provide polynomial
cost models. How is that possible?

There is a way out, but it requires deviating from the λ-calculus. The lack of the
sub-term property in the λ-calculus stems from its small-step operational semantics, β-
reduction, which is based on meta-level substitution. To retrieve the property, one has to
add ESs (or some other form of sharing) to the λ-calculus and decompose β-reduction in
micro-steps performing one variable replacement at a time. Then, there are strategies for
the refined setting that have the sub-term property, of which the number of steps thus is a
polynomial cost model. The micro-step refinement can be formulated in various ways, the
LSC being an elegant one. Without going into too much detail, the result is then transferred
to the λ-calculus, by showing that there is a polynomial simulation (up to some form of
sharing) of a small-step strategy by a micro-step one with the sub-term property. Therefore,
small-step polynomiality is inherited from the micro-step formalism (as in Blelloch and

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:11

Greiner [BG95], Sands et al. [SGM02], Dal Lago and Martini [DLM12], Accattoli and Dal
Lago [ADL12, ADL16], Accattoli et al. [ACSC21], Biernacka et al. [BCD21]).

Summing up, the sub-term property seems to be mandatory for the study of cost
models, because even when the cost model strategy does not have the property, the proof
of its polynomiality rests on an auxiliary strategy that does indeed have it. Moreover, the
micro-step aspect seems unavoidable for unlocking polynomial time cost models.

Size Explosion in Linear Logic. We now explain how to obtain a size exploding family
for linear logic proof nets, taking as notion of evaluation cut elimination at level 0 (the level
of a link is the number of ! boxes in which it is contained), noted →l0 , which is, roughly, the
analogous of head reduction for proof nets (all head reduction redexes are redexes at level 0,
when λ-terms are translated to proof nets). We shall need only the two reduction rules for
proof nets in Fig. 2 (page 6). We shall use →c0 and →�0 for when those rules are applied to
cuts at level 0.

Size Exploding Family. For the time being, we consider untyped proof nets. We now
define various families of proof nets. The n-th net τn has the following shape:

τn

... {

2n

!

And it is defined as follows:

τ1 :=
ax

ax

⊗dd

!

τn+1 :=

ax

ax

⊗dd

cut

τn

...

{

2n

!

τn

...

{

2n

!

cut
!

Then we define the family πn, which is obtained from τn by contracting all its 2n auxiliary
conclusions via a tree of contractions:

πn :=

τn

...

c

!
also noted

πn

!
, for instance: π1 =

τ1

!

c
=

ax

ax

⊗dd

c
!

.

Finally, define the following family of nets:

ρ1 := π1 ρn+1 :=
π1

!

ρn

!

cut

Proposition 3.3 (Size explosion in MELL). ρn →3(n−1)
l0

πn, |ρn| = O(n), and |πn| = Ω(2n).

Proof. By induction on n. The bounds on the sizes follow immediately from the definition
and the i.h. For n = 1, we have ρ1 = π1, so the statement holds. For n+ 1, we have that by

i.h. ρn →3(n−1)
l0

πn. Therefore, we obtain:

23:12 B. Accattoli Vol. 19:4

ρn+1 =
π1

!

ρn

!

cut

→3(n−1)
l0

π1

!

πn

!

cut

=

ax

ax

⊗dd

c
!τn

...

c

!

cut

→c0

ax

ax

⊗dd

!

cut

τn

... !

τn

... !

cut

...

c c...

c

...

→�0→�0

ax

ax

⊗dd

cut

τn

... !

τn

... !

cut
!

c c...

c

...

=

τn+1

...

c

!
=

πn+1

!
.

The size exploding family of Prop. 3.3 is a chain of what Roversi and Vercelli in
[RV09] call spindles, which they identify as the problematic configurations for representing
polynomial time.

Typing the Size Exploding Family. The proof net ρ1 = π1 used to build the family
can be typed by assigning type A, for an arbitrary type A, to the right conclusion of the
axioms (thus having A⊥ on the left conclusion of the axioms), and A1 :=!(A⊗A) for the
right conclusions of ρ1 (and ?A⊥ on the left conclusion of ρ1). To type the second term of
the family ρ2, and assuming that the left occurrence of π1 in ρ2 is typed as just described,
the right one needs to be typed using A1 as type of the axioms, thus obtaining as type of
the right conclusion, A2 :=!(A1 ⊗A1) =!(!(A⊗A)⊗!(A⊗A)). It is then easily seen that the
type An+1 of the right conclusion of ρn+1 is given by An+1 =!(An ⊗An), that is, the type
size grows exponentially with n.

Size Explosion and Elementary Linear Logic. The proofs ρn of the size exploding
family actually belong to elementary linear logic (ELL): they use derelictions—which are
forbidden in ELL—but those derelictions can be seen as the auxiliary ports of functorial
promotions associated to the !s, which are allowed in ELL. Therefore, size explosion affects
ELL as well. We mention this fact because ELL has some interesting properties with respect
to Lévy’s optimal reduction. On the one hand, ELL provides a much simpler implementation
of optimal reduction, because the technical oracle part of the implementation is not needed
in ELL, as pointed out by Asperti [Asp98]. On the other hand, the complex behaviour of
duplication responsible for the unreasonability of optimal reduction is already fully present in
ELL, and it is thus independent of the oracle, as shown by Asperti et al. [ACM00]. For the
study of time cost models, restricting to E(ME)LL does not seem to simplify the problem,
as size explosion affects both MELL and EMELL with respect to reduction at level 0. This
is rather in line with the results of [ACM00].

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:13

4. The Linear Substitution Calculus

Here we recall the basics of the linear substitution calculus, which is the footprint of the
exponential substitution calculus that shall be introduced in the next section.

There are various ingredients. First of all, the syntax of the λ-calculus is extended with
explicit substitutions t[x�s] (shortened to ESs), which is a constructor binding x in t (meant
to be substituted by s)—and a compact notation for let x = s in t—while we use t{x�s} for
meta-level substitution.

LSC Terms t, s, u ::= x | λx.t | ts | t[x�s]

The LSC is based on the rejection of commuting rules for ESs. In traditional λ-calculi with
ESs, a term such as (ts)[x�u] would rewrite to t[x�u]s[x�u] by commuting the ES and the
application. In the LSC it does not: ESs interact directly with variable occurrences, using
contexts to specify a commutation-free rewriting system. Contexts, used pervasively in the
study of the LSC, are terms with a hole ⟨·⟩ intuitively standing for a removed sub-term.
Here, we need (general) contexts C and the special case of substitution contexts L (standing
for List of substitutions).

Contexts C ::= ⟨·⟩ | Ct | tC | λx.C | C[x�t] | t[x�C]
Substitution contexts L ::= ⟨·⟩ | L[x�t]

Replacing the hole of a context C with a term t (or another context C ′) is called plugging
and noted C⟨t⟩ (resp. C⟨C ′⟩). In general, plugging does capture free variables, that is,
(λx.⟨·⟩x)⟨x⟩ = λx.xx. We use C⟨⟨t⟩⟩ for a plugging with on-the-fly renaming of bound
variables of C to avoid capture in t. For instance, (λx.⟨·⟩x)⟨⟨x⟩⟩ = λy.xy.

The LSC has three rewriting rules. As usual, the root rules are extended to be applied
everywhere in a term via a context closure. An unusual aspect is that two of the rules also
use contexts in the definition of the root rules.

LSC Root rewriting rules
Beta at a distance L⟨λx.t⟩s 7→dB L⟨t[x�s]⟩

Linear Substitution C⟨⟨x⟩⟩[x�s] 7→ls C⟨⟨s⟩⟩[x�s]
Garbage Collection t[x�s] 7→gc t if x /∈ fv(t)

Contextual closure: t 7→a t′

C⟨t⟩ →a C⟨t′⟩(a ∈ {dB, ls, gc})
For →ls, the notation means that given t[x�s] with x ∈ fv(t) we consider a decomposition
t = C⟨⟨x⟩⟩ isolating a free occurrence of x (one among possibly many). The rule is inspired
by replication in the π-calculus. Examples of steps:

(λx.xy)[y�t]su →dB (xy)[x�s][y�t]u
λx.((λy.xx)[z�t]) →gc λx.λy.xx
(λy.xx)[x�t][z�s] →ls (λy.xt)[x�t][z�s]
(λy.xx)[x�t][z�s] →ls (λy.tx)[x�t][z�s]

The LSC is a very well behaved rewriting system (see [Acc12, ABKL14, BB17]), conserva-
tively extending the λ-calculus, and improving it in various respects.

Micro-Step Simulates Small-Step. Let |t|x the number of free occurrences of x in t. The
LSC simulates meta-level substitution as follows:

t[x�s] →|t|x
ls t{x�s}[x�s] →gc t{x�s}

23:14 B. Accattoli Vol. 19:4

that is, by first replacing one by one the occurrences of x using→ls, and then collecting [x�s]
when none are left. Therefore, the LSC simulates β reduction, as (λx.t)s→dB t[x�s]→∗

ls→gc

t{x�s}.

Strong Normalization. We define strong normalization as it is relevant for the next
property, and shall be used also later on. Given a reduction relation →, the predicate t is
SN→ , also noted t ∈ SN→ , is defined inductively as follows:

• t is SN→ if t is →-normal, i.e., has no → redexes.
• t is SN→ if s is SN→ for all s such that t→ s.

We use SN→ for the set of terms that are SN→ , and say that → is strongly normalizing (or
SN) if t ∈ SN→ for all terms t.

Local Termination. While terms in the LSC can be divergent, because the LSC simulates
the λ-calculus, an important property is that the rewriting rules of the LSC are strongly
normalizing when considered separately.

Proposition 4.1 (Local termination, [Acc12]). Let →∈ {→dB,→ls,→gc}. Then → is
strongly normalizing.

The only non-trivial point is the strong normalization of →ls, which requires a measure.
It easily extends to the one of →ls ∪ →gc, that is, of the sub-system rewriting ESs. The
ESC shall preserve this key property, as we shall prove in Section 8.

Structural Equivalence. The LSC is often enriched with the following equivalence.

Definition 4.2 (Structural equivalence). Define head contexts as follows:

Head contexts H ::= ⟨·⟩ | Ht | λx.H | H[x�s]

If x /∈ fv(H) and H does not capture variables in fv(s), set:

H⟨t⟩[x�s] ∼ H⟨t[x�s]⟩
Structural equivalence ≡ is the closure of ∼ by reflexivity, symmetry, transitivity, and
contexts C.

Its key property is that it commutes with evaluation in the following strong sense.

Proposition 4.3 (≡ is a strong bisimulation wrt →LSC [ABKL14]). Let a ∈ {dB, ls, gc}.
If t ≡ s→a u then exists r such that t→a r ≡ u.

Essentially, ≡ never creates redexes, it can be postponed, and vanishes on normal
forms (that have no ESs). Accattoli shows that ≡ is exactly the quotient induced by the
(call-by-name) translation of λ-terms with ESs to proof nets [Acc18].

Linear Head Reduction. One of the key properties of the LSC is that it admits a neat
definition of linear head reduction, a notion first studied by Danos and Regnier [DR04] and
Mascari and Pedicini [MP94]. Before the introduction of the LSC, the presentations of linear
head reduction (in [DR04, MP94]) were very technical and hard to manage. To define it in
the LSC, we need the head contexts of Definition 4.2. They are used twice. Firstly, head
contexts are used to define the root linear head substitution rule:

Linear head substitution H⟨⟨x⟩⟩[x�s] 7→lhs H⟨⟨s⟩⟩[x�s]

Secondly, the root rules 7→dB, 7→lhs, and 7→gc are closed by head contexts:

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:15

Contextual closures
t 7→dB t

′

H⟨t⟩ →lhdB H⟨t′⟩
t 7→lhs t

′

H⟨t⟩ →lhs H⟨t′⟩
t 7→gc t

′

H⟨t⟩ →lhgc H⟨t′⟩

Linear head reduction →lh := →lhdB ∪ →lhs ∪ →lhgc

Linear head reduction has many interesting property. For the present paper, the most relevant
one is the sub-term property, which, for the given presentation, is proved by Accattoli and
Dal Lago in [ADL12] (it was already used by Danos and Regnier and Mascari and Pedicini,
but not exploited for complexity analyses).

Theorem 4.4 (Sub-term property for →lh, [ADL12]). All the sub-terms duplicated by →lhs

along a linear head evaluation sequence t→∗
lh s are sub-terms of t (up to variables renaming).

The good strategy for IMELL that we shall define in Section 11 generalizes linear
head reduction to the whole of IMELL and preserves its sub-term property. For that, note
that →lh never evaluates inside ESs. Similarly, the good strategy shall not evaluate inside
cuts. Note also that →lh does not compute normal forms, as it never evaluates arguments.
Since we want the good strategy to compute cut-free proofs, we shall have to evaluate the
analogous of arguments in our framework (namely, the left premises of subtractions). This
shall be obtained by entering into arguments only under some conditions, similarly to how
→lh is generalized to enter inside arguments by Accattoli and co-authors [ADL16, ABM15],
obtaining linear leftmost-outermost reduction.

5. Towards Exponentials as Substitutions

This section is an informal and hopefully intuitive introduction to our cut elimination for
IMELL. The logical rules we refer to are standard (but decorated with terms), see Fig. 4.

Splitting Terms. For the moment, we prefer to avoid giving grammars, but we want
nonetheless to fix some terminologies and intuitions. We distinguish variables into mul-
tiplicatives, noted m,n, o, and exponentials, noted e, f, g, and use x, y, z for variables of
unspecified kind. Proof terms for axioms and right introduction rules shall be called values,
and noted v. We borrow from the LSC the notation L (here standing for Left context) and
generalize it to a context corresponding to (the term annotations induced by) a sequence
of left rules of the sequent calculus. Exactly as IMELL proofs can be seen as ending on a
sequence of left rules following a right rule or an axiom, every proof term t shall uniquely
(on-the-fly) decompose as L⟨v⟩, called its splitting.

Meta-Level Substitution. For the design of our system, the first step is understanding
the subtle interplay between linearity and substitution. Consider a cut on an exponential
formula, and a first attempt at decorating it with terms:

Γ ⊢ s : !A ∆, e : !A ⊢ t :B
cut

Γ,∆ ⊢ [s�e]t :B

Note that the notation [s�e]t for cuts is similar but opposite to the one for ESs in the
LSC, as the arrow goes from left to right and it binds on the right (in t), to better reflect
the structure of sequent proofs. We seek a notion of meta-level substitution {s�e}t and a
small-step rule such as:

[s�e]t → {s�e}t (5.1)

23:16 B. Accattoli Vol. 19:4

Perhaps surprisingly, linear logic does not validate this rule. Despite the !A type, not all of
s, indeed, might be allowed to be duplicated. Let’s refine the example and consider the case
in which the last rule contributing to s is, say, the left rule for ⊗, what we shall call a par
and annotate with [m`x, y]:

Γ, x :B, y :C ⊢ s′ : !A ⊗l
Γ,m :B ⊗ C ⊢ [m`x, y]s′ : !A ∆, e : !A ⊢ t :B

cut
Γ,m :B ⊗ C,∆ ⊢ [[m`x, y]s′�e]t :B

Now we can see why (5.1) is not valid: the annotation [m`x, y] being linear, it should not be
duplicated. The proof nets approach to this issue is marking with a box the sub-term/proof
net of s′ that can be duplicated. The usual sequent calculus approach, instead, is commuting
the cut with ⊗l, which on proof terms corresponds to have a rule such as:

[[m`x, y]s′�e]t → [m`x, y][s′�e]t

and then keep commuting the cut with left rules until an introduction of a ! connective on
the right—what we call an exponential value, noted ve—is reached, which can then trigger
the substitution. But these commutative rules are a burden, and exactly what the LSC
philosophy rejects.

The idea is to exploit the splitting of terms into values and left contexts, so as to import
on terms the proof nets approach. A term s of exponential type, in fact, shall always be
splittable as L⟨ve⟩, that is, as a left context and an exponential value. We then refine (5.1)
as follows:

[s�e]t = [L⟨ve⟩�e]t → L⟨{ve�e}t⟩
Meta-level substitution thus concerns only exponential values ve—playing the role of proof
nets boxes—and not the surrounding left context L. This same mechanism is used in
Accattoli and Paolini’s value substitution calculus [AP12].

Split Cuts. In fact, we adopt a further refinement. We restrict cuts to have only values
as left sub-terms, that is, of being of shape [v�x]t. Since we want to stick to the standard
sequent calculus for IMELL, we do not restrict the typing rule, we do instead modify its
decoration:

Γ ⊢ s = L⟨v⟩ : !A ∆, e : !A ⊢ t :B
cut

Γ,∆ ⊢ L⟨[v�e]t⟩ :B
And we shall do the same for the left rule ⊸l for ⊸ (see Fig. 4). This refinement simplifies
various technical points, in particular it enables a simple definition of the good strategy.

Micro-Step Substitution. For micro-step substitution we simply borrow the LSC approach,
adopting rules such as:

[ve�e]C⟨⟨e⟩⟩ → [ve�e]C⟨⟨ve⟩⟩
While in line with the LSC, this is not how cut elimination is usually performed in both
proof nets and the sequent calculus. There are three main differences:

(1) LSC-style duplications: in our case duplication happens also when there are no con-
tractions involved, for instance we shall have [ve�e]e→ [ve�e]ve, and there shall be a
rule (→!) duplicating and interacting with derelictions at the same time (see the next
section). Not only this approach is perfectly sound, it actually has better rewriting
properties than the traditional one.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:17

Multiplicative vars m,n, o ∈ Vm
Exponential vars e, f, g ∈ Ve

Variables x, y, z ∈ V := Vm ⊎ Ve
Multiplicative values vm ::= m ∈ Vm | (t, s) | λx.t

Exponential values ve ::= e ∈ Ve | !t
Values v ::= vm | ve

Terms t, s, u ::= v | [v�x]t | [m`x, y]t | [m5v, x]t | [e?x]t

Left ctxs L ::= ⟨·⟩ | [v�x]L | [m`x, y]L | [m5v, x]L | [e?x]L
Value ctxs V ::= ⟨·⟩ | (C, s) | (t, C) | λx.C | !C

General ctxs C ::= V | [V �x]t | [m5V, x]t | L⟨C⟩
Mult. value ctxs Vm ::= ⟨·⟩ | (M, s) | (t,M) | λx.M

Mul. ctxs M ::= Vm | [Vm�x]t | [m5Vm, x]t | L⟨M⟩

Figure 3: Grammars of the exponential substitution calculus.

(2) No commutations: there are no commutations with !. Even in proof nets, where most
commutative cuts vanish, micro-step cut elimination usually relies on a commutative
rule for !-boxes (namely →� in Fig. 1), that on terms looks as follows (when e ∈ fv(t)):

[ve�e]!t → ![ve�e]t

The LSC philosophy rejects such a commutative rule.
(3) Axioms : in the proof nets literature, cut elimination of exponential axioms is identical to

the one for multiplicative axioms (there is in fact no distinction between the two kinds
of axioms) and simply amounts to the removal of the cut and the axiom, in both the
small-step (à la Regnier) and the micro-step (à la Girard) approaches. In (asymmetric)
intuitionistic settings, axioms have two rewriting rules, depending on whether they
are substituted, or substituted upon. In our syntax, the traditional approach to cut
elimination for exponential axioms would take the following form:

[f�e]t → {f�e}t
When written with terms, one immediately notices that such a rule is small-step. At the
end of Section 10, we shall show that such a small-step rule generates a closable but
unpleasant local confluence diagram with the other micro-step exponential rules, which
is avoided by adopting a LSC-duplication style also for exponential axioms/variables.

6. The Exponential Substitution Calculus

Values and Terms. The grammars of the ESC are in Fig. 3. First of all, a disclaimer. The
constructors of the calculus are an untyped minimalist encoding of the sequent calculus
rules, and not an intuitively readable calculus. For that aim, one would rather use let-in
notations. Variables are of two disjoint kinds, multiplicative and exponential, and we often
refer to variables of unspecified kind using the notations x, y, z. Values are the proof terms
associated to axioms or to the right rules and, beyond variables, are abstractions λx.t, tensor
pairs (t, s), and promotions !t. The proof terms decorating left rules are pars [m`x, y]t,
subtractions [m5v, x]t, derelictions [e?x]t, and cuts [v�x]t, which is in red because of its
special role. Note that cuts and subtractions are split, that is, have values (rather than

23:18 B. Accattoli Vol. 19:4

terms) as left sub-terms. Back to readability, subtraction might also be decorated with
let x = mv in t, but note that this notation is less faithful to the logical rule because the
two premises are represented asymmetrically, and that it uses an application constructor
that rather belongs to natural deduction.

In λx.t, [m5v, x]t, [e?x]t, and [v�x]t we have that x is bound in t, and in [m`x, y]t
both x and y are bound in t. We identify terms up to α-renaming. Free variables (resp.
multiplicative/exponential variables) are defined as expected, and noted fv(t) (resp. mfv(t)
and efv(t)). We use |t|x for the number of free occurrences of x in t. There is a notion of
proper term ensuring the linearity of multiplicative variables. The only relevant case is: !t is
proper if t is proper and mfv(t) = ∅.

Definition 6.1 (Proper terms). Proper terms are defined by induction on t as follows:

• Variables: m and e are proper.
• Tensor : (t, s) is proper if t is proper, s is proper, and mfv(t) ∩ mfv(s) = ∅
• Par : [m`x, y]t is proper if t is proper, m /∈ (mfv(t) \ x, y), x ̸= y, and if x (resp. y) is a
multiplicative variable then x ∈ mfv(t) (resp. y ∈ mfv(t)).
• Implication: λx.t is proper if t is proper and if x is a multiplicative variable then x ∈ mfv(t).
• Subtraction: [m5v, x]t is proper if t is proper, v is proper, mfv(v) ∩ (mfv(t) \ {x}) = ∅,
m /∈ mfv(t), and if x is a multiplicative variable then x ∈ mfv(t).
• Bang : !t is proper if t is proper and mfv(t) = ∅.
• Dereliction: [e?x]t is proper if t is proper and if x is a multiplicative variable then
x ∈ mfv(t).
• Cut : [v�x]t is proper if t is proper, v is proper, mfv(v) ∩ (mfv(t) \ {x}) = ∅, and if x is a
multiplicative variable then x ∈ mfv(t).

Typing System. The typing rules are in Fig. 4. The formulas of IMELL and the deductive
rules of the sequent calculus are standard, but for the decoration with proof terms and the side
conditions about variable names of the form Γ#∆, which is a shortcut for dom(Γ)∩dom(∆) = ∅.
Linear implication ⊸ is also referred to as lolli. The only atomic formula that we consider,
Xm, is multiplicative. There is no multiplicative unit because in presence of the exponentials
1 can be simulated by !(Xm ⊸ Xm). We distinguish between multiplicative and exponential
axioms, in order to decorate them with the corresponding kind of variable.

Note that the weakening and contraction rules do not add constructors to terms. This
is crucial in order to keep the calculus manageable. Note also that the decorations of the
cut and ⊸l rules are split, as explained in the previous section. Clearly, typed terms are
proper. We use π ▷ Γ ⊢ t :A for a proof/typing derivation π ending in that sequent.

Contexts and Plugging. The broadest notion of context that we consider is general
contexts C, which simply allow the hole ⟨·⟩ to replace any sub-term in a term. Because of
split cuts and subtractions, the definition relies on the auxiliary notion of value context V .
The definition also uses left contexts L, which are contexts under left constructors (or, for
binary left constructors, under the right sub-term) that play a key role in the system—their
use in defining C is just to keep the grammar compact (to fit it in the figure).

A fact used pervasively is that every term t writes, or splits uniquely as t = L⟨v⟩.
For instance [e?m][v�n](m,n) splits as L = [e?m][v�n]⟨·⟩ and v = (m,n). We also have
multiplicative contexts M , that the proof nets literature would call level 0 contexts, that is,
contexts with the hole out of all !, and which also rely on their own value contexts Vm.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:19

Formulas A,B,C ::= Xm | A⊗B | A ⊸ B | !A

Multiplicative right rules

A ̸= !B
axm

m :A ⊢ m :A

Γ ⊢ t :A ∆ ⊢ s :B Γ#∆ ⊗r
Γ,∆ ⊢ (t, s) :A⊗B

x :A,Γ ⊢ t :B
⊸r

Γ ⊢ λx.t :A ⊸ B

Multiplicative left rules

Γ ⊢ L⟨v⟩ :A ∆, x :A ⊢ t :B Γ#(∆, x :A)
cut

Γ,∆ ⊢ L⟨[v�x]t⟩ :B

Γ, x :A, y :B ⊢ t :C m fresh ⊗l
Γ,m :A⊗B ⊢ [m`x, y]t :C

Γ ⊢ L⟨v⟩ :A ∆, x :B ⊢ t :C Γ#(∆, x :B), m fresh
⊸l

Γ,∆,m :A ⊸ B ⊢ L⟨[m5v, x]t⟩ :C

Exponential rules

axe
e : !A ⊢ e : !A

Γ, x :A ⊢ t :B e fresh
!l

Γ, e : !A ⊢ [e?x]t :B
!Γ ⊢ t :A !r!Γ ⊢ !t : !A

Γ ⊢ t :A e fresh w
Γ, e : !B ⊢ t :A

Γ, e : !B, f : !B ⊢ t :A
c

Γ, e : !B ⊢ {e�f}t :A

Figure 4: IMELL typing rules for the ESC, where Γ#∆ is a shortcut for dom(Γ)∩dom(∆) = ∅.

Because of split cuts and subtractions, plugging is slightly tricky, as it has to preserve
the split shape. For instance, we have ([⟨·⟩�o]t)⟨[e?m](m,n)⟩ = [e?m][(m,n)�o]t. A similar
approach to plugging is also used by Accattoli et al. in [ACGSC19]. The full definition
follows. It is mostly as expected, the only two subtle cases are for [⟨·⟩�x]t and [m5⟨·⟩, x].

Definition 6.2 (Plugging). Plugging C⟨t⟩ is defined as follows:

Plugging
⟨·⟩⟨t⟩ := t (λx.C)⟨t⟩ := λx.C⟨t⟩

(C, s)⟨t⟩ := (C⟨t⟩, s) (s, C)⟨t⟩ := (s, C⟨t⟩)
(!C)⟨t⟩ := !C⟨t⟩ ([e?x]C)⟨t⟩ := [e?x]C⟨t⟩

([m`x, y]C)⟨t⟩ := [m`x, y]C⟨t⟩ ([m5v, x]C)⟨t⟩ := [m5v, x]C⟨t⟩
([v�x]C)⟨t⟩ := [v�x]C⟨t⟩

23:20 B. Accattoli Vol. 19:4

([m5V, x]s)⟨t⟩ :=

{
L⟨[m5v, x]s⟩ if V = ⟨·⟩ and t = L⟨v⟩
[m5V ⟨t⟩, x]s otherwise

([V �x]s)⟨t⟩ :=

{
L⟨[v�x]s⟩ if V = ⟨·⟩ and t = L⟨v⟩
[V ⟨t⟩�x]s otherwise

Plugging C⟨C ′⟩ of contexts is defined similarly, and plugging is extended to all forms of
contexts by seeing them as general contexts. As for the LSC, plugging can capture variables
and we use C⟨⟨t⟩⟩ when we want to prevent it.

With our notion of plugging, a left constructor in a term might be identified via plugging
of a term in a context in various ways, e.g. for t := ([e?m][m�n]n, f) we have t = C⟨[e?m]m⟩
with C := ([⟨·⟩�n]n, f), and t = C ′⟨[e?m][m�n]n⟩ with C ′ := (⟨·⟩, f). For most uses, in
particular for defining the rewriting rules, this is harmless. It shall play a role, however, for
defining the good strategy, because it shall be important whether the hole of the context
is inside or outside a cut. To this purpose, note that in the first decomposition the term
[e?m]m is not a sub-term of t. This suggest the following notion.

Definition 6.3 (Positions). A position in a term t is a decomposition t = C⟨s⟩ such that s
is a sub-term of t (as for C ′⟨[e?m][m�n]n⟩ above).

We can now state the property ensured by properness.

Lemma 6.4 (Structural linearity). Let t be a proper term and m ∈ mfv(t). Then |t|m = 1
and t = M⟨⟨m⟩⟩ for some M .

Proof. By induction on t.

Multiplicative Cut Elimination Rules. The rewriting rules are in Fig. 5. The ESC has
four multiplicative rules, in particular two for axioms, depending on whether they are acted
upon (→axm1) or used to rename another multiplicative (thus linear) variable (→axm2). Rule
→axm1 is expressed generically for multiplicative values vm (that is, multiplicative variables
m, abstractions λm.t, and tensor pairs (t, s)). For →axm2 , we abuse notations and use a
form of meta-level substitution {n�m}t for the renaming operation. There is also a slight
superposition between →axm1 and →axm2 , for instance in [m�n]λe.n→ λe.m, which can be
both kinds of steps. To disambiguate, one should refine →axm2 into two rules:

[n�m]M⟨[m`x, y]t⟩ →axm′2
M⟨[n`x, y]t⟩

[n�m]M⟨[m5v, x]t⟩ →axm′′2
M⟨[n5v, x]t⟩

But the ambiguity is harmless and the notation is convenient. Note that in →axm1 , →⊗, and
→⊸ (and →axm′2/axm

′′
2
), the cut acts on a sub-term inside a multiplicative context M , that is,

out of !. Moreover, it is silently assumed that M does not capture m in →⊗ and →⊸ (and
→axm′2/axm

′′
2
), but it might capture other variables in t and v.

In both →⊗ and →⊸ the rule has to respect split cuts, which is why, for writing the
reduct, the sub-terms s and u get split on-the-fly. We suggest to have a look at the proof
of subject reduction on page 24, which shows how some of the rewriting steps act on the
decorated proof. An example of →⊸ step follows:

[λe.[e?m]m�n][n5!f, o]o →⊸ [!f�e][e?m][m�o]o.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:21

Root multiplicative rules

[vm�m]M⟨⟨m⟩⟩ 7→axm1 M⟨⟨vm⟩⟩
[n�m]t 7→axm2 {n�m}t

[(s, u)�m]M⟨[m`x, y]t⟩ 7→⊗ M⟨L⟨[v�x]L′⟨[v′�y]t⟩⟩⟩
with s = L⟨v⟩ and u = L′⟨v′⟩

[λy.s�m]M⟨[m5v, x]t⟩ 7→⊸ M⟨[v�y]L⟨[v′�x]t⟩⟩
with s = L⟨v′⟩

Micro-step root exponential rules

[ve�e]C⟨⟨e⟩⟩ 7→axe1 [ve�e]C⟨⟨ve⟩⟩
[f�e]C⟨[e?x]t⟩ 7→axe2 [f�e]C⟨[f?x]t⟩
[!s�e]C⟨[e?x]t⟩ 7→! [!s�e]C⟨L⟨[v�x]t⟩⟩

with s = L⟨v⟩
[ve�e]t 7→w t if e /∈ fv(t)

Small-step root exponential rule

[ve�e]t 7→ess {ve�e}t

Contextual closure

t 7→a s

C⟨t⟩ →a C⟨s⟩
for a ∈

{
axm1, axm2,⊗,⊸,

axe1, axe2, !, w, e
ss

}

Notations
Multiplicative →m := →axm1 ∪ →axm2 ∪ →⊗ ∪ →⊸

Exponential micro-step →ems := →axe1 ∪ →axe2 ∪ →! ∪ →w

Small-step →ss := →m ∪ →ess

Micro-step →ms := →m ∪ →ems

Non-erasing micro-step →ms¬w := →m ∪ →axe1 ∪ →axe2 ∪ →!

Non-lolli micro-step →ms¬⊸ := →axm1 ∪ →axm2 ∪ →⊗ ∪ →ems

Non-lolli small-step →ss¬⊸ := →axm1 ∪ →axm2 ∪ →⊗ ∪ →ess

Figure 5: Rewriting rules of the ESC.

Micro-Step Exponential Rules. There are also four micro-step exponential rules, with
again two rules for axioms. Replacement of variables (→axe1) and erasure (→w) are expressed
generically for exponential values ve (that is, exponential variables f and promotions !t),
interaction with derelictions (in →axe2 and →!) instead requires inspecting ve.

Rule →! removes the dereliction, copies the promotion body, and puts it in a cut—in
proof nets jargon, it opens the box. To preserve the split shape, the body of the promotion
is split and only the value is cut. An example:

23:22 B. Accattoli Vol. 19:4

[![f�g]g�e]λm.[e?e′](e′,m) →! [![f�g]g�e]λm.[f�g][g�e′](e′,m).

Note that →! entangles interaction with a dereliction and duplication, which is not what
proof nets usually do, as mentioned in Section 5. It is silently assumed that C does not
capture e in →axe2 and →! but it might capture other variables in t.

Meta-Level Substitution and the Small-Step Exponential Rule. For defining the
small-step exponential cut elimination we need meta-level substitution {ve�e}t, which is
defined only for exponential values. The long definition is mostly as expected, but for the
case of derelictions, explained after the definition.

Definition 6.5 (Meta-level exponential substitution). The meta-level (exponential) substi-
tution {ve�e}t of the exponential value ve for the free occurrences of e in t is defined by
induction on t as follows (assuming on-the-fly α-renaming to avoid capture of free variables,
omitted for ease of reading and manipulation):

Meta-level substitution

{ve�e}m := m
{ve�e}f := f
{ve�e}e := ve

{ve�e}(t, u) := ({ve�e}t, {ve�e}u)
{ve�e}λx.t := λx.{ve�e}t
{ve�e}!t := !{ve�e}t

{ve�e}[m`x, y]t := [m`x, y]{ve�e}t
{ve�e}[m5v, x]t := [m5{ve�e}v, x]{ve�e}t
{ve�e}[f?x]t := [f?x]{ve�e}t
{f�e}[e?x]t := [f?x]{f�e}t

{!L⟨v⟩�e}[e?x]t := L⟨[v�x]{!L⟨v⟩�e}t⟩
{ve�e}[v�x]t := [{ve�e}v�x]{ve�e}t

The key cases are the substitution of a value for a dereliction (the second and third
to last in the right column), where the definition depends on the shape of the value. For
promotions, the definition mimics the micro-step rule →!, making a copy of the content of
the box and splitting it on-the-fly. An example:

{![f�g]g�e}[e?e′](e′, e) = [f�g][g�e′](e′, ![f�g]g).

Our definition verifies the expected properties of meta-level substitution. Some are given
by the next two lemmas.

Lemma 6.6 (Basic properties of meta-level substitution).

(1) If ve and t are proper then {ve�e}t is proper.
(2) {ve�e}v′e is an exponential value and {ve�e}vm is a multiplicatie value.
(3) If C does not capture free variables of ve then {ve�e}C⟨t⟩ = ({ve�e}C)⟨{ve�e}t⟩.
(4) {ve�e}s = s if e /∈ fv(s).
(5) {ve�f}{v′e�e}t = {{ve�f}v′e�e}{ve�f}t.
(6) {ve�e}{v′e�f}u = {v′e�f}{ve�e}u if e /∈ fv(s) and e /∈ fv(u).
(7) {ve�e}{n�m}u = {n�m}{ve�e}u.
(8) {!u�e}{!u�f}t = {!u�e}{e�f}t.

Lemma 6.7 (Stability of steps under substitution).

(1) If t→a s then {ve�e}t→a {ve�e}s for a ∈ {axm1, axm2,⊗,⊸, ess, ems}.
(2) If ve →a v′e then {ve�e}t→∗

a {v′e�e}t for a ∈ {axm1, axm2,⊗,⊸, ess, axe1, axe2, !, w}.

Proof.

(1) By induction on t →a s. Details are in [Acc22]. The only subtle case is the one for
7→axe2 , which has a sub-case where the step might become a 7→! step after subtitution.
Let t = [g�f]C⟨[f?x]u⟩ 7→axe2 [g�f]C⟨[g?x]u⟩ = s, g = e, and ve = !L⟨v⟩. Then:

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:23

{ve�g}t = {ve�g}[g�f]C⟨[f?x]u⟩
= [ve�f]{ve�g}C⟨[f?x]u⟩
=L.6.6.3 [ve�f]({ve�g}C)⟨[f?x]{ve�g}u⟩
7→! [ve�f]({ve�g}C)⟨L⟨[v�x]{ve�g}u⟩⟩
= [ve�f]({ve�g}C)⟨{ve�g}[g?x]u⟩
=L.6.6.3 [ve�f]{ve�g}C⟨[g?x]u⟩
= {ve�g}[g�f]C⟨[g?x]u⟩ = {ve�g}s

(2) By induction on t.

The small-step exponential rule →ess then simply turns a cut [ve�e]t into the corre-
sponding meta-level substitution.

Linear Implication and Cut Creations. Rule →⊸ is special in that it is the only rule of
the ESC that creates cuts. Note indeed that in the root 7→⊸ rule:

[λy.L⟨v⟩�m]M⟨[m5v′, x]t⟩ 7→⊸ M⟨[v′�y]L⟨[v�x]t⟩⟩
the cut [v′�y] in the reduct is not a cut of the reducing term. One might argue that also
7→⊗ and 7→! do create cuts, because in their root rules, recalled here:

[(L⟨v⟩, L′⟨v′⟩)�m]M⟨[m`x, y]t⟩ 7→⊗ M⟨L⟨[v�x]L′⟨[v′�y]t⟩⟩⟩

[!L⟨v⟩�e]C⟨[e?x]t⟩ 7→! [!L⟨v⟩�e]C⟨L⟨[v�x]t⟩⟩
the cuts [v�x] and [v′�y] of the reducts are not in the reducing terms. The difference is
that v and v′ do occur as sub-terms of cuts in the reducing terms of 7→⊗ and 7→!, while in
7→⊸ the value v′ does not. We then say that [v′�y] is created in 7→⊸. This fact shall play a
key role for local termination (Theorem 8.8 below) and for the good strategy. Being specific
to →⊸, cut creations are a feature of the intuitionistic setting. That is, they are invisible in
classical linear logic.

Variable Occurrences and Redex Positions. For later defining the good strategy, we
identify a redex with its position, which is a context, as it is done for the LSC by Accattoli
and Dal Lago [ADL16]. Every step t→ms¬w s reduces a redex of shape t = C⟨[v�x]C ′⟨tx⟩⟩
where tx is an occurrence of x, i.e. a sub-term of t of shape x, [x`y, z]s, [x5v, y]s, or [x?y]s.
The redex position of →ms¬w steps is the context C⟨[ve�x]C ′⟩. The redex position of →w

and →ess steps is the context closing the root step. We write C : t→ms/ss s for a redex of
position C in t, the reduction of which produces s.

We conclude the section with the fact that proper terms are stable by reduction.

Lemma 6.8. Let C⟨t⟩ be a proper term. Then:

(1) t is proper.
(2) If s is proper and such that mfv(s) = mfv(t) then C⟨s⟩ is proper.

Proof. By induction on C.

Lemma 6.9. Let t be a proper term and t→ms s. Then s is proper.

Proof. Let t = C⟨u⟩ →ms C⟨r⟩ = s. By Lemma 6.8, u is proper, and to prove the statement it
is enough to prove that if u→ms r is a root step then r is proper and mfv(r) = mfv(u). Note
that all the root rules preserve the set of multiplicative variables, that is, mfv(r) = mfv(u)
holds. Proving that the root rules preserve being proper is straightforward.

23:24 B. Accattoli Vol. 19:4

Preservation of properness by →ess follows from full composition (Prop. 7.1), just below.

7. Basic Properties

We now prove various basic properties of the ESC. An expected property that we do not
prove is the simulation of the LSC by the ESC. It can be obtained via Girard’s (call-by-name)
encoding of intuitionistic logic into linear logic. It is not surprising and yet it is technical, for
reasons (the encoding of applications via subtractions) that are intrinsic to the translation
of natural deduction to sequent calculus and orthogonal to the features of the ESC, which is
why it is omitted.

Full Composition. First of all, micro-step exponential rules simulate the small-step one.
The ESs literature calls this fact full composition.

Proposition 7.1 (Full composition, or micro-step simulates small-step). If t→ess s then
t→+

ems s.

Proof. Let t = C⟨[ve�e]u⟩ →ess C⟨{ve�e}u⟩ = s. We treat the case ve = !r, the case ve = f
is analogous. The proof is by induction on k := |u|e. If k = 0 then C⟨[ve�e]u⟩ →w C⟨u⟩ =
C⟨{ve�e}u⟩. Otherwise, u writes has C ′⟨e⟩ or C ′⟨[e?x]u′⟩. Consider the first case. Then:

C⟨[!u′�e]C ′⟨e⟩⟩ →axe1 C⟨[!u′�e]C ′⟨!u′⟩⟩ =: s′

Now note that s′ →ess s and that in s′ we have |C⟨!u′⟩|e < k. Then we can apply the i.h.,
obtaining s′ →+

ems s, that is, t→+
ems s. The case u = C ′⟨[e?x]u′⟩ is analogous, simply using

→! instead of →axe1 .

Corollary 7.2. Let t be a proper term and t→ss s. Then s is proper.

Subject Reduction. The next property is that the defined untyped cut elimination respects
the typing system, that is, subject reduction holds. We first need a lemma.

Lemma 7.3. Let π ▷ Γ ⊢ t :A. We have A = !B if and only if t = L⟨ve⟩.

Proof. If A = !B, then consider t = L⟨v⟩. The proof is by induction on L. Clearly, if L = ⟨·⟩
then the last rule of π is necessarily an exponential axiom or a right introduction of !, that
is, v = e or v = !s, that is, v is an exponential value. If L ≠ ⟨·⟩ then it follows from the i.h.

The reasoning is analogous if A ̸= !B.

Theorem 7.4 (Subject reduction). Let Γ ⊢ t :A and t→ms s. Then Γ ⊢ s :A.

Proof. By induction on π ▷ Γ ⊢ t :A. If π is an axiom then t cannot reduce. If the last rule
is a cut then t = L⟨[v�x]s⟩. If it is the root cut that it is reduced there are a number of
cases given next. Otherwise (that is, if the last rule is not a cut, or if the reduced cut is not
the one of the last rule) the statement follows by the i.h.

By Lemma 7.3, if the cut formula is !B for some B then x = e and v = ve, and otherwise
x = m and v = vm. We show two representative cases, the →⊸ one, which shows how to
interpret the splitting of terms into value and left contexts on proofs, and →axe2 , which
shows how LSC-style duplication acts on proofs. The other cases are similar.

• 7→⊸.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:25

Γ ⊢ v :B
L

Γ′, y :A ⊢ L⟨v⟩ :B
⊸r

Γ′ ⊢ λy.L⟨v⟩ :A⊸B
L′

Γ′′ ⊢ L′⟨λy.L⟨v⟩⟩ :A⊸B

∆ ⊢ v′ :A
L′′

∆′ ⊢ L′′⟨v′⟩ :A Π, x :B ⊢ t :C ′
⊸l

∆′,Π,m :A⊸B ⊢ L′′⟨[m5v′, x, t]⟩ :C ′
M

Π′,m :A⊸B ⊢M⟨L′′⟨[m5v′, x, t]⟩⟩ :C ′
cut

Γ′′,Π′ ⊢ L′⟨[λy.L⟨v⟩�m]M⟨L′′⟨[m5v′, x, t]⟩⟩⟩ :C ′

→⊸

∆ ⊢ v′ :A
L′′

∆′ ⊢ L′′⟨v′⟩ :A

Γ ⊢ v :B
L

Γ′, y :A ⊢ L⟨v⟩ :B Π, y :A, x :B ⊢ t :C
cut

∆′, y :A,Π ⊢ L⟨[v�x]t⟩ :C ′
cut

Γ′,∆′,Π ⊢ L′′⟨[v′�y]L⟨[v�x]t⟩⟩
M

Γ′,Π′ ⊢M⟨L′′⟨[v′�y]L⟨[v�x]t⟩⟩⟩ :C ′

L′
Γ′′,Π′ ⊢ L′⟨M⟨L′′⟨[v′�y]L⟨[v�x]t⟩⟩⟩⟩ :C ′

• →axe2 . The step is L⟨[f�e]C⟨[e?x]t⟩⟩ :B →axe2 L⟨[f�e]C⟨[f?x]t⟩⟩ :B. To avoid analyzing
many similar (simple) sub-cases, let us assume that L does not capture f and that
f /∈ fv(L). Now there still are two cases, depending on the multiplicity of e in C⟨[e?x]t⟩.
– e /∈ fv(C). Then:

axe
f : !A ⊢ f : !A

L
Γ, f : !A ⊢ L⟨f⟩ :A

Π, x :A ⊢ t :B
!l

Π, e : !A ⊢ [e?x]t :B
C

∆, e : !A ⊢ C⟨[e?x]t⟩ :B
cut

Γ, f : !A,∆ ⊢ L⟨[f�e]C⟨[e?x]t⟩⟩ :B

→axe2

axe
f : !A ⊢ f : !A

L
Γ, f : !A ⊢ L⟨f⟩ :A

Π, x :A ⊢ t :B
!l

Π, g : !A ⊢ [g?x]t :B
C

∆, g : !A ⊢ C⟨[g?x]t⟩ :B
w

∆, g : !A, e : !A ⊢ C⟨[g?x]t⟩ :B
cut

Γ, f : !A, g : !A,∆ ⊢ L⟨[f�e]C⟨[g?x]t⟩⟩ :B
c

Γ, f : !A,∆ ⊢ L⟨[f�e]C⟨[f?x]t⟩⟩ :B
– e ∈ fv(C). Then in the sequence of rules corresponding to the context C there is a first

contraction acting on the dereliction which splits the sequence of rules in two, that is,
there exists C ′ and C ′′ such that C = C ′⟨C ′′⟩ and:

axe
f : !A ⊢ f : !A

L
Γ, f : !A ⊢ L⟨f⟩ :A

Π, x :A ⊢ t :B
!l

Π, g : !A ⊢ [g?x]t :B
C ′′

∆′, e′ : !A, g : !A ⊢ C ′′⟨[g?x]t⟩ :B
c

∆′, e′ : !A ⊢ C ′′⟨[e′?x]t⟩ :B
C ′

∆, e : !A ⊢ C ′⟨C ′′⟨[e?x]t⟩⟩ :B
cut

Γ, f : !A,∆ ⊢ L⟨[f�e]C⟨[e?x]t⟩⟩ :B

→axe2

axe
f : !A ⊢ f : !A

L
Γ, f : !A ⊢ L⟨f⟩ :A

Π, x :A ⊢ t :B
!l

Π, g : !A ⊢ [g?x]t :B
C ′′

∆′, e′ : !A, g : !A ⊢ C ′′⟨[g?x]t⟩ :B
C ′

∆, e : !A, g : !A ⊢ C ′⟨C ′′⟨[g?x]t⟩⟩ :B
cut

Γ, f : !A, g : !A,∆ ⊢ L⟨[f�e]C⟨[g?x]t⟩⟩ :B
c

Γ, f : !A,∆ ⊢ L⟨[f�e]C⟨[f?x]t⟩⟩ :B

23:26 B. Accattoli Vol. 19:4

Full composition extends subject reduction to →ess .

Clashes. The presence of many constructors in an untyped setting gives rise to clashes,
that is, irreducible cuts.

Definition 7.5 (Clash, clash-free terms). A clash is a term of the form [vm�e]t, [ve�m]t,
[(t, s)�m]M⟨[m5v, y]u⟩, or [λx.t�m]M⟨[m`y, z]u⟩ and in these cases we also say that the
root cut is clashing. A term t is clash-free if, co-inductively,

(1) No sub-terms of t are clashes, and
(2) If t→ms s then s is clash-free.

Note that there are no purely exponential clashes. The second point of the next lemma
uses subject reduction.

Lemma 7.6. Let t be a proper term.

(1) If t has no clashes and t ̸→ms then t is cut-free.
(2) If t is typable then it is clash-free.

Proof.

(1) Suppose by contradiction that t has a cut. Then t = C⟨[v�x]s⟩. If x is exponential
then, since there are no clashes, v is also exponential. Then there is a →ess redex, and,
by full composition, a →ems redex, absurd. If x = m is multiplicative then so is v. By
structural linearity (Lemma 6.4), s has one of the following shapes:
• M⟨m⟩. Then there is a →axm1 redex, absurd.
• M⟨[m`y, z]s⟩. Since t has no clashes, v is either a multiplicative variable, and then
there is a →axm2 redex, or a tensor pair, and then there is a →⊗ redex, absurd.
• M⟨[m5v, y]s⟩. Since t has no clashes, v is either a multiplicative variable, and then
there is a →axm2 redex, or an abstraction, and then there is a →⊸ redex, absurd.

(2) By co-induction on the definition of being clash-free. It is easily seen that clashes are
not typable. So if t is typable then it has no clashes. Now, if t→ms s then by subject
reduction (Theorem 7.4) s is typable. By the co-inductive hypothesis, s is clash-free.
Therefore, t is clash-free.

Postponement of Garbage Collection. The micro-step rule →w, that models garbage
collection, can be postponed. The same happens in the LSC, but not in the λ-calculus: for
instance, the first step in the sequence (λx.λy.y)su→β (λy.y)u→β u is erasing but cannot
be postponed.

Lemma 7.7 (Local postponement of garbage collection). If t→w→ms¬w s then t→ms¬w→+
w s.

Proof. By induction on t→w u and case analysis of u→ms¬w s. Cases:

• Root : t = [ve�e]u→w u→ms¬w s. Then [ve�e]u→ms¬w [ve�e]s→w s.
• Inductive cases different from cut : we treat the case of tensor, the others are similar.
Let t = (r, p) →w (r′, p) = u. If the →ms¬w step takes place in r′ then we apply the i.h.,
otherwise (r′, p)→ms¬w (r

′, p′) = s and we simply have (r, p)→ms¬w (r, p
′)→w (r

′, p′).
• Inductive case left of cut : t = [v�x]p →w [v′�x]p = s. If the →ms¬w step takes place in
v′ we use the i.h., and if it is in p then the two steps are disjoint and swap. The last
possibility is that the root cut itself is the active one in the →ms¬w redex. Now, the key
observation is that swapping the step s→ms¬w u before the →w one amounts to add a cut
(the erased one) to both u and s, and to remove it with the postponed →w step, which can

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:27

be done smoothly because the rewriting rules do not depend on the cuts surrounding the
sub-terms of the redex nor those surrounding the redex. The only cases where something
interesting happens are those for →axe1 and →! when the →w step is in the duplicated
exponential value. For instance, if f /∈ fv(t) we have the following diagram.

[V ⟨[ve�f]t⟩�e]C⟨⟨e⟩⟩ [V ⟨t⟩�e]C⟨⟨e⟩⟩

[V ⟨[ve�f]t⟩�e]C⟨⟨V ⟨[ve�f]t⟩⟩⟩ [V ⟨t⟩�e]C⟨⟨V ⟨t⟩⟩⟩[V ⟨t⟩�e]C⟨⟨V ⟨[ve�f]t⟩⟩⟩

w

axe1axe1

w w

• Inductive case right of cut : t = [v�x]p →w [v�x]p′ = s. If the →ms¬w step takes place
in p′ we use the i.h., and if it is in v then the two steps are disjoint and swap. The
last possibility is that the root cut itself is the active one in the →ms¬w redex. As in the
previous case the swap happens smoothly because the rewriting rules do not depend on
the cuts surrounding the subterms of the redex nor those surrounding the redex. There
are no interesting cases.

Proposition 7.8 (Postponement of garbage collection). if t→∗
ms s then t→∗

ms¬w
→∗

w s.

Proof. It is an instance of a well-known rewriting property: the local swap in Lemma 7.7 is
an instance of Hindley’s strong postponement property, which implies postponement.

Cut Equivalence. Similarly to the structural equivalence of the LSC, we consider a notion
of cut equivalence, which is a strong bisimulation and it is postponable.

Definition 7.9 (Cut equivalence). If x /∈ fv(M) and M does not capture variables in fv(v),
define:

[v�x]M⟨t⟩ ∼cut M⟨[v�x]t⟩.
Cut equivalence ≡cut is the closure of ∼cut by reflexivity, symmetry, transitivity, and general
contexts.

To prove that cut equivalence is a strong bisimulation in the small-step case, we need
the following substitutivity property.

Lemma 7.10 (Stability by substitution of ≡cut).

(1) If t ≡cut s then {ve�e}t ≡cut {ve�e}s for all ve.
(2) If ve ≡cut v

′
e then {ve�e}t ≡cut {v′e�e}t.

Proof. Easy inductions on t ≡cut s and t. Details in [Acc22].

Proposition 7.11. Let →∈ {→ss,→ms}.
(1) Strong bisimulation: ≡cut is a strong bisimulation with respect to →, preserving also

the kind of step.
(2) Structural stability of SN: if t ≡cut s and t ∈ SN→ then s ∈ SN→.
(3) Postponement of ≡cut: if t(≡cut→≡cut)

ks then t→k≡cut s.

Proof.

(1) It is a very long but otherwise straightforward check of all possible diagrams, spelled
out in [Acc22]. The following two diagrams for →ess are where Lemma 7.10 is used.

23:28 B. Accattoli Vol. 19:4

[v�y]s {v�y}s

[v�y]s′ {v�y}s′
≡cut ≡cut

ess

ess

[v�y]s {v�y}s

[v′�y]s {v′�y}s
≡cut ≡cut

ess

ess

(2) By induction on t ∈ SN→ . One simply uses the fact that ≡cut is a strong bisimulation,
given by the previous point, and the i.h.

(3) By induction on k, using the strong bisimulation property.

Cut equivalence shall play a role in the following sections. Note that its postponement
property means that it is never needed for cut elimination to progress. And on cut-free
terms, obviously, it vanishes.

There is also a larger left equivalence ≡left defined as ≡cut but including every left
constructor (cut, par, subtraction, and dereliction), which is also a strong bisimulation. As
mentioned in Section 4, ≡ is the quotient induced by proof nets on the LSC. Intuitively,
≡left is the quotient induced by proof nets on the ESC. There are, however, no notions of
proof nets realizing such a quotient, as weakenings require non-canonical jumps for IMELL,
that can instead be avoided for the LSC, as shown by Accattoli [Acc18].

A possibly interesting point is that we shall need cut equivalence, in particular for
the proof of strong normalization, while there is no need of left equivalence for any of the
properties studied in this paper.

Stability Under Renaming. The last basic property that we prove is the stability of the
rules and of their strong normalization under renaming.

Lemma 7.12 (Renaming). Let →∈ {→ss,→ms} and x and y be two variables of the same
multiplicative/exponential kind such that {x�y}t is proper.

(1) Stability of steps under renaming: if C : t→a s then {y�x}C : {y�x}t→a {y�x}s for
a ∈ {axm1, axm2,⊗,⊸, axe1, axe2, !, w, e

ss}.
(2) Stability of SN under renaming: if t ∈ SN→ then {x�y}t ∈ SN→.

Proof.

(1) Straightforward induction on the rewriting step.
(2) By induction on t ∈ SN→ . Since renaming cannot create, erase, duplicate, or change

the kind of redexes, if {x�y}t→ s then there exists u such that t→ u and {x�y}u = s.
Then by i.h. on u we obtain {x�y}u = s ∈ SN→ .

8. Local termination

Here we are going to prove that the ESC has the same local termination property of the LSC,
thus showing that one can claim that it realizes the slogan exponentials as substitutions.

Divergence. Let us first show that evaluation in the untyped ESC can diverge. We adapt
the usual looping combinator Ω of the λ-calculus. Let δ := λe.[e?m][m5e, n]n and consider:

Ω := [δ�o][o5!δ, o′]o′ →⊸ [!δ�e][e?m][m5e, n][n�o′]o′

→axe1 [!δ�e][e?m][m5!δ, n][n�o′]o′

→! [!δ�e][δ�m][m5!δ, n][n�o′]o′

→w [δ�m][m5!δ, n][n�o′]o′

→axm1 [δ�m][m5!δ, n]n =α Ω

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:29

Local Termination. A key feature of the untyped ESC (inherited from the LSC) is local
termination, that is, every rewriting rule is strongly normalizing (SN) when considered
separately (not valid in the λ-calculus which has only one rule). Additionally, the groups
of multiplicative rules →m and of micro-step exponential rules →ems are also SN separately,
which is instead not valid in untyped classical proof nets, where the exponential rule can
diverge as shown by the untyped classical proof net in Fig. 1 (page 5).

Even the union of all the micro-step rules except →⊸, noted →ms¬⊸ , is SN. This is due
to the fact that →⊸ is the only rule that creates cuts, as explained in Section 6. Strong
normalization of →ms¬⊸ is a deep property, pointed out here for the first time. It shows
that, for expressivity, rule →⊸ is as important as duplication, and thus, non-linearity. It
also shows that ⊸ and ⊗ have completely different computational properties. This is
remarkable because in classical linear logic à la Girard, the two are collapsed and managed
by a single cut elimination rule, the one for `/⊗, and creations are not visible. Together
with (non-)termination of untyped exponentials, it is a sign that the intuitionistic setting is
sharper than the classical one for studying cut elimination.

Proving Local Termination. The proofs of local termination and of the termination of
→ms¬⊸ require various definitions. In particular, we need an auxiliary notion of variable
potential, which is used to define a measure. The measure is then showed to decrease with
every micro-step rewriting rule but →⊸. A number of auxiliary lemmas are also required.

The intuition behind the potential px(t) of a variable x in t is that it is the maximum
number of occurrences of x that can appear during the cut elimination of t, plus the same
number for all the variables that are recursively ’nested’ under x, where for instance x nests
under e in [e?x]t. The key clause is the one for cuts [v�x]t, which multiplies the potential
in v for the one of x in t.

Definition 8.1 (Variable potential). The potential px(t) of a variable x in t is given by:

px(y) := 0
px(x) := 1

px((t, s)) := px(t) + px(s)
px(!t) := px(t)

px(λy.t) := px(t)

px([m`y, z]t) :=

{
1 + py(t) + pz(t) if x = m

px(t) otherwise.

px([m5v, y]t) :=

{
1 if x = m

px(v) + px(t) otherwise.

px([e?y]t) :=

{
1 + px(t) + py(t) if x = e

px(t) otherwise.

px([v�y]t) := px(t) + px(v) · (py(t) + 1)

The potential is extended to contexts by considering ⟨·⟩ as a (fresh) exponential variable,
that is, having px(⟨·⟩) := 0, p⟨·⟩(x) := 0, and p⟨·⟩(⟨·⟩) := 1, plus all the expected inductive
cases for contexts.

In the definition of the potential, the clause for cut multiplies px(v) for py(t) + 1 where,
for exponential variables, the +1 accounts for the garbage copy of v that survives the
replacement of all the occurrences of x with v. Such a +1 is not needed in the case of
multiplicative cuts, but the clause does not distinguish between cuts on multiplicative or
exponential variables, treating all variables as if they were exponential. Such an over-estimate
is harmless and provides a more compact definition of the potential.

23:30 B. Accattoli Vol. 19:4

Note also the clause for subtractions: when x = m, one could define it as 0, because
anyway cuts on subtractions are ignored, given that we shall prove termination of all rules
but →⊸. But it simpler to set it to 1, as to obtain the useful property of Lemma 8.3.2 below.

Definition 8.2 (Termination measure). The termination measure ms(t) of a term t is defined
as follows (and extended to contexts by defining it also for ⟨·⟩):

ms(x) := 1 ms(⟨·⟩) := 0
ms([m`x, y]t) := ms(t) + 1 ms((t, s)) := ms(t) + ms(s)
ms([m5v, x]t) := ms(v) + ms(t) + 1 ms(λx.t) := ms(t)

ms([e?x]t) := ms(t) + 1 ms(!t) := ms(t)
ms([v�x]t) := ms(v) · (px(t) + 1) + ms(t)

The idea behind the measure is that it counts all variable occurrences (that is, variables,
pars, derelictions, and subtractions), multiplying for the potential of x the occurrences
appearing in a value cut on x, as for the potential. Each rewriting step removes a variable
occurrence, which makes the measure decrease. An exponential rewriting step can also
duplicate a sub-term and increase the number of occurrences, but this increment is anticipated
by the measure by means of the potential.

For proving that the measure decreases, we need some basic properties of the potential
and of the measure plus some lemmas about their decomposition with respect to contexts.

Lemma 8.3 (Basic properties).

(1) if x /∈ fv(t) then px(t) = 0.
(2) if x ∈ fv(t) then px(t) ≥ 1.
(3) p⟨·⟩(C) ≥ 1.
(4) ms(t) ≥ 1.
(5) ms(t) = ms({n�m}t).
Proof. Points 1, 2, 4, and 5 are easy inductions on t. Point 3 follows from Point 2, since,
when looking at the hole ⟨·⟩ as a variable, one has ⟨·⟩ ∈ fv(C) for every context C.

Lemma 8.4 (Properties for the →axe1 and →axm1 cases).

(1) px(C⟨⟨t⟩⟩) = px(C) + p⟨·⟩(C) · px(t).
(2) ms(C⟨⟨t⟩⟩) = ms(C) + p⟨·⟩(C) · ms(t).
Proof. Both points are by induction on C, and the second one uses the first one in the cut
case. Details are in [Acc22].

Lemma 8.5 (Properties for the →⊗, →axe2 , →! cases).

(1) If C does not capture variables in fv(L) and x /∈ fv(L) then px(C⟨L⟨t⟩⟩) = px(C⟨t⟩).
(2) If C does not capture e and f then:

(a) Potential: pe(C⟨[e?x]t⟩) = pe(C⟨t⟩) + (1 + px(t)) · p⟨·⟩(C) and pe(C⟨[f?x]t⟩) <
pe(C⟨[e?x]t⟩).

(b) Measure: ms(C⟨[e?x]t⟩) > ms(C⟨t⟩) and ms(C⟨[e?x]t⟩) = ms(C⟨[f?x]t⟩).
(3) If M does not capture m then:

(a) Potential: pm(M⟨[m`x, y]t⟩) = (1 + px(t) + py(t)) · p⟨·⟩(M).
(b) Measure: ms(M⟨[m`x, y]t⟩) > ms(M⟨t⟩).

Proof. All points are by induction on the context of the statement. The only non-trivial case,
for each point, is the one for cut, which is treated in [Acc22]. The others follow immediately
from the i.h.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:31

The fourth point of the next lemma shall be used in the proof that the measure decreases
for the the →⊗ and →! cases. The first three point are intermediate properties to obtain
the fourth one.

Lemma 8.6 (Inequalities for the →⊗ and →! cases). Let C be a context that does not
capture free variables in L nor v, and L does not capture variables of t.

(1) py(L⟨[v�x]t⟩) ≤ py(t) + py(L⟨v⟩) · (1 + px(t)).
(2) ms(L⟨[v�x]t⟩) ≤ ms(t) + ms(L⟨v⟩) · (1 + px(t)).
(3) py(C⟨L⟨[v�x]t⟩⟩) ≤ py(C⟨t⟩) + py(L⟨v⟩) · (1 + px(t)) · p⟨·⟩(C).
(4) ms(C⟨L⟨[v�x]t⟩⟩) ≤ ms(C⟨t⟩) + ms(L⟨v⟩) · (1 + px(t)) · p⟨·⟩(C).

Proof. Point 1 is by induction on L, point 2 uses point 1, point 3 and 4 are by induction on
C using point 1 and 2 in the base case. Details are in [Acc22].

Proposition 8.7 (Measure decreases). If t→a s with a ∈ {axm1, axm2,⊗, axe1, axe2, !, w}
then ms(t) > ms(s).

Proof. By induction on t →a s. All the inductive cases follow immediately from the i.h.
Root cases:

• 7→axm1 , that is, [vm�m]M⟨⟨m⟩⟩ 7→axm1 M⟨⟨vm⟩⟩. Then:
ms([vm�m]M⟨⟨m⟩⟩) = ms(vm) · (pm(M⟨⟨m⟩⟩) + 1) + ms(M⟨⟨m⟩⟩) =L.8.4.1

ms(vm) · (pm(M)︸ ︷︷ ︸
=L.8.3.10

+p⟨·⟩(M) · pm(m)︸ ︷︷ ︸
=1

+1) + ms(M⟨⟨m⟩⟩) =

ms(vm) · (p⟨·⟩(M) + 1) + ms(M⟨⟨m⟩⟩) =L.8.4.2

ms(vm)︸ ︷︷ ︸
=L.8.3.41

·(p⟨·⟩(M) + 1) + ms(M) + p⟨·⟩(M)︸ ︷︷ ︸
≥L.8.3.31

·ms(m) >

ms(vm) · p⟨·⟩(M) + ms(M) =L.8.4.2

ms(M⟨⟨vm⟩⟩)
• 7→axm2 , that is, [n�m]u 7→axm2 {n�m}u. Then:

ms([n�m]u) = ms(n)︸ ︷︷ ︸
=1

·(pm(u) + 1) + ms(u) =

pm(u) + 1 + ms(u) > ms(u) =L.8.3.5 ms({n�m}u)
• 7→⊗, that is, [(u, r)�m]M⟨[m`x, y]p⟩ 7→⊗ M⟨L⟨[v�x]L′⟨[v′�y]p⟩⟩⟩ with u = L⟨v⟩ and
r = L′⟨v′⟩. Then:

ms([(u, r)�m]M⟨[m`x, y]p⟩) =

ms(M⟨[m`x, y]p⟩) + ms((u, r)) · (pm(M⟨[m`x, y]p⟩) + 1) >L.8.5.3b

ms(M⟨p⟩) + ms((u, r)) · (pm(M⟨[m`x, y]p⟩) + 1) =

ms(M⟨p⟩) + (ms(u) + ms(r)) · (pm(M⟨[m`x, y]p⟩) + 1) =L.8.5.3a

ms(M⟨p⟩) + (ms(u) + ms(r)︸ ︷︷ ︸
≥L.8.3.41

) · ((1 + px(p) + py(p)) · p⟨·⟩(M) + 1) >

ms(M⟨p⟩) + (ms(u) + ms(r)) · (1 + px(p) + py(p)) · p⟨·⟩(M) =

ms(M⟨p⟩) + ms(u) · (1 + px(p) + py(p)) · p⟨·⟩(M) + ms(r) · (1 + px(p) + py(p)) · p⟨·⟩(M) ≥
ms(M⟨p⟩) + ms(u) · (1 + py(p)) · p⟨·⟩(M) + ms(r) · (1 + px(p)) · p⟨·⟩(M) =

ms(M⟨p⟩) + ms(L′⟨v′⟩) · (1 + py(p)) · p⟨·⟩(M)︸ ︷︷ ︸
=L.8.6.4ms(M⟨L′⟨[v′�y]p⟩⟩)

+ms(L⟨v⟩) · (1 + px(p)) · p⟨·⟩(M) =

ms(M⟨L′⟨[v′�y]p⟩⟩) + ms(L⟨v⟩) · (1 + px(p)) · p⟨·⟩(M) =L.8.5.1

ms(M⟨L′⟨[v′�y]p⟩⟩) + ms(L⟨v⟩) · (1 + px(L
′⟨[v′�y]p⟩)) · p⟨·⟩(M) =L.8.6.4

ms(M⟨L⟨[v�x]L′⟨[v′�y]p⟩⟩⟩)

23:32 B. Accattoli Vol. 19:4

• 7→axe1 , that is, [ve�e]C⟨⟨e⟩⟩ 7→axe1 [ve�e]C⟨⟨ve⟩⟩.
ms([ve�e]C⟨⟨e⟩⟩) =
ms(ve) · (pe(C⟨⟨e⟩⟩) + 1) + ms(C⟨⟨e⟩⟩) =L.8.4.1

ms(ve) · (pe(C) + p⟨·⟩(C) · pe(e)︸ ︷︷ ︸
=1

+1) + ms(C⟨⟨e⟩⟩) =

ms(ve) · (pe(C) + p⟨·⟩(C) + 1) + ms(C⟨⟨e⟩⟩) =

ms(ve) · (pe(C) + 1) + ms(ve) · p⟨·⟩(C) + ms(C⟨⟨e⟩⟩) =L.8.4.2

ms(ve) · (pe(C) + 1) + ms(ve) · p⟨·⟩(C) + ms(C) + p⟨·⟩(C) · ms(e)︸ ︷︷ ︸
=1

=

ms(ve) · (pe(C) + 1) + ms(ve) · p⟨·⟩(C) + ms(C)︸ ︷︷ ︸
=L.8.4.2ms(C⟨ve⟩)

+p⟨·⟩(C) =

ms(ve) · (pe(C) + 1) + ms(C⟨ve⟩) + p⟨·⟩(C)︸ ︷︷ ︸
>L.8.3.30

>

ms(ve) · (pe(C) + 1) + ms(C⟨ve⟩) =L.8.3.1

ms(ve) · (pe(C) + p⟨·⟩(C) · pe(ve)︸ ︷︷ ︸
=L.8.3.10

+1) + ms(C⟨⟨ve⟩⟩) =L.8.4.1

ms(ve) · (pe(C⟨⟨ve⟩⟩) + 1) + ms(C⟨⟨ve⟩⟩) =
ms([ve�e]C⟨⟨ve⟩⟩)

• 7→axe2 , that is, [f�e]C⟨[e?x]t⟩ 7→axe2 [f�e]C⟨[f?x]t⟩. Then:
ms([f�e]C⟨[e?x]t⟩) = ms(f) · (pe(C⟨[e?x]t⟩) + 1) + ms(C⟨[e?x]t⟩) >L.8.5.2a

ms(f) · (pe(C⟨[f?x]t⟩) + 1) + ms(C⟨[e?x]t⟩) =L.8.5.2b

ms(f) · (pe(C⟨[f?x]t⟩) + 1) + ms(C⟨[f?x]t⟩) =
ms([f�e]C⟨[f?x]t⟩)

• 7→!, that is, [!s�e]C⟨[e?x]t⟩ 7→! [!s�e]C⟨L⟨[v�x]t⟩⟩ with s = L⟨v⟩. Then:
ms([!s�e]C⟨[e?x]t⟩) =
ms(!s) · (pe(C⟨[e?x]t⟩) + 1) + ms(C⟨[e?x]t⟩) >L.8.5.2b

ms(!s) · (pe(C⟨[e?x]t⟩) + 1) + ms(C⟨t⟩) =L.8.5.2a

ms(!s) · (pe(C⟨t⟩) + (1 + px(t)) · p⟨·⟩(C) + 1) + ms(C⟨t⟩) =

ms(!s) · (pe(C⟨t⟩) + 1) + ms(!s) · (1 + px(t)) · p⟨·⟩(C) + ms(C⟨t⟩) =

ms(!s) · (pe(C⟨t⟩) + 1) + ms(s) · (1 + px(t)) · p⟨·⟩(C) + ms(C⟨t⟩) =

ms(!s) · (pe(C⟨t⟩) + 1) + ms(L⟨v⟩) · (1 + px(t)) · p⟨·⟩(C) + ms(C⟨t⟩)︸ ︷︷ ︸
=L.8.6.4 ms(C⟨L⟨[v�x]t⟩⟩)

=

ms(!s) · (pe(C⟨t⟩) + 1) + ms(C⟨L⟨[v�x]t⟩⟩) =L.8.5.1

ms(!s) · (pe(C⟨L⟨[v�x]t⟩⟩) + 1) + ms(C⟨L⟨[v�x]t⟩⟩) =
ms([!s�e]C⟨L⟨[v�x]t⟩⟩)

• 7→w, that is, [ve�e]t 7→w t with e /∈ fv(t). Then:

ms([ve�e]t) = ms(ve) · (pe(t) + 1) + ms(t) =L.8.3.1 ms(ve) + ms(t) >L.8.3.4 ms(t).

Theorem 8.8 (Local termination). Let a ∈ {m, ems, ess, ms¬⊸, ss¬⊸}. Then →a is strongly
normalizing.

Proof. For →ems and →ms¬⊸ it is an immediate consequence of the fact that the measure
decreases (Prop. 8.7) and that it is always positive (Lemma 8.3.4). The result is extended
to →ess and →ss¬⊸ by full composition (Prop. 7.1). For →m, the statement is obvious, as at
each step →m decreases the number of constructors.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:33

The literature contains other partitions of linear logic cut elimination in strongly
normalizing reductions: Danos [Dan90] and Joinet [Joi93] split it into axiom and non-
axiom rewriting rules, Pagani and Tortora de Falco [PTdF10] into structural (a subset of
exponential) and logical (i.e. non-structural). We are interested in the lolli/non-lolli partition
because it mimics what happens in λ-calculi with ESs, and also because of the future work
described in the next step paragraph of the conclusions, for which the mentioned alternative
partitions in the literature would not work.

Next. Three independent topics follow: confluence (Section 10), the good strategy (Sec-
tion 11), and strong normalization (Sections 12 and 13). They can be read in any order.
First, however, we need to develop some technical tools for dealing with contexts in proofs.

9. Some Technicalities

This section develops definitions and technical tools that are used in the proofs of the
following sections to manage contexts, namely the outside-in order on contexts, contexts
with two holes (called double contexts), and a technical but important deformation lemma.
At a first (or even second) reading, the reader can skip this section.

Definition 9.1 (Outside-in context order, disjoint contexts). We define the partial outside-in
order ≺ over contexts as follows:

⟨·⟩ ≺ C
C ≺ C ′

C ′′⟨C⟩ ≺ C ′′⟨C ′⟩
And say that C is outer than C ′ if C ≺ C ′. If C ̸≺ C ′ and C ′ ̸≺ C we say that C and C ′

are disjoint, and write C ∥ C ′.

Double Contexts. Double contexts shall be used to compare two contexts on the same term.
They have as base cases binary constructors (that is, tensor pairs, cuts, and subtractions)
having contexts replacing their subterms, and as inductive cases they are simply closed by
an ordinary context.

Definition 9.2 (Double contexts). Double contexts C are defined by the following grammar.

Double contexts C := (C,C ′) | [m5C, x]C ′ | [C�x]C ′ | C⟨C⟩

Some easy facts about double contexts.

• Plugging : the plugging C⟨t, s⟩ of two terms t and s into a double context C is defined
as expected and gives a term. The two ways of plugging one term C⟨t, ⟨·⟩⟩ and C⟨⟨·⟩, s⟩
into a double context give instead a context. We often use C⟨t, ·⟩ and C⟨·, s⟩ as compact
notations for C⟨t, ⟨·⟩⟩ and C⟨⟨·⟩, s⟩.
• Pairs of disjoint positions and double contexts : every pair of positions C⟨t⟩ = C ′⟨s⟩ which
are disjoint, that is, such that C ∥ C ′, gives rise to a double context CC,C′ such that
CC,C′⟨·, s⟩ = C and CC,C′⟨t, ·⟩ = C ′. Conversely, every double context C and every pair of

terms t and s gives rise to two context Ct,s
l := C⟨·, s⟩ and Ct,s

r := C⟨t, ·⟩. Note that the
two constructions are inverse of each other, that is, given C, we have CCt,s

l ,Ct,s
r

= C, and,
conversely, given C⟨t⟩ = C ′⟨s⟩ we have (CC,C′)t,sl = C and (CC,C′)t,sr = C ′.

Lemma 9.3. C⟨C⟨t, ·⟩⟩ = C⟨C⟩⟨t, ·⟩ and C⟨C⟨·, t⟩⟩ = C⟨C⟩⟨·, t⟩.

Proof. By induction on C.

23:34 B. Accattoli Vol. 19:4

Deformation Lemma. We need a set of deformation lemmas, collected together in
Lemma 9.4, that say what happens to a variable occurrence under the action of a rewriting
step: for instance, given a step M⟨⟨m⟩⟩ →ms s, one lemma states that s has shape M ′⟨⟨m⟩⟩
unless the step reduces a cut containing m. The idea is that then M ′ is the residual of M ,
but the statement(s) avoid using any form of residuals of steps, sub-terms, or constructors.
The residual aspect is captured by specifying the preservation modulo a parameter—in the
case mentioned above, this is obtained stating that there is a step M⟨⟨vm⟩⟩ →a M ′⟨⟨vm⟩⟩ for
every vm.

The deformation lemmas shall be used in the following sections, namely in the proofs
of local confluence (where preservation modulo a parameter is exploited), for the diamond
property of the good strategy (for which the deformation lemmas shall have to be strength-
ened), and for the root cut expansion property (Prop. 12.2) at work in both the preservation
of untyped strong normalization and typed normalization.

Lemma 9.4 (Deformation properties). Let →∈ {→ss,→ms}.

(1) Let C : t = M⟨⟨m⟩⟩ →a s and →a be a → step. Then:
(a) either s = M ′⟨⟨m⟩⟩ for some M ′ such that m /∈ fv(M ′) and there is a step C ′

vm :
M⟨⟨vm⟩⟩ →a M ′⟨⟨vm⟩⟩ for every vm,

(b) or M = M ′⟨[⟨·⟩�n]u⟩ for some M ′ and C reduces the cut on n.
(2) Let C : t = M⟨⟨tm⟩⟩ →a s where tm is a par or a subtraction of conclusion m, M ′ does

not capture n, and →a be a → step. Then s = M ′⟨⟨sm⟩⟩ where sm is an occurrence of
m of the same kind of tm, M ′ does not capture m and m /∈ fv(M ′), and there is a step
C ′
n : M⟨⟨{n�m}tm⟩⟩ →a M ′⟨⟨{n�m}sm⟩⟩ for every fresh multiplicative variable n.

(3) If C : M⟨[m`x, y]t⟩ →a s is a →-step and M does not capture m then
s = M ′⟨[m`x, y]t′⟩ with M ′ not capturing m and such that there is a step C ′

C′′ :
M⟨C ′′⟨t⟩⟩ →a M ′⟨C ′′⟨t′⟩⟩ for every context C ′′ capturing no more than x and y in t and
such that M does not capture variables of C ′′.

(4) If C : M⟨[m5v, x]r⟩ →a s is a →-step and M does not capture m then either
• s = M ′⟨[m5v, x]r′⟩ with C ′

C′′ : M⟨C ′′⟨r⟩⟩ →a M ′⟨C ′′⟨r′⟩⟩ for every context C ′′

capturing no more than x in r and such that M does not capture in C ′′ more variables
than those in fv(v), or
• s = M ′⟨[m5v′, x]r⟩ with C ′

C′′ : M⟨C ′′⟨v⟩⟩ →a M ′⟨C ′′⟨v′⟩⟩ for every context C ′′ not
capturing variables of v and such that M does not capture in C ′′ more variables than
those in fv(r) \ {x}.

In both cases M ′ does not capture m.
(5) Let C : t = C ′⟨⟨e⟩⟩ →a s and →a be a →ms step. Then:

(a) either s = C ′′⟨⟨e⟩⟩ for some C ′′ such that there is a step C•
ve : C ′⟨⟨ve⟩⟩ →a C ′′⟨⟨ve⟩⟩

for every ve,
(b) or C ′ = C ′′⟨[C ′′′�f]u⟩ for some C ′′ and C ′′′, and C reduces a redex where the active

cut is the one on f .
(6) Let C : t = C ′⟨[e?x]u⟩ →a s with C ′ not capturing e and →a be a →ms step. Then:

(a) either s = C ′′⟨[e?x]u′⟩ for some C ′′ such that there is a step C•
C′′ : C ′⟨C ′′⟨u⟩⟩ →a

C ′′⟨C ′′⟨u′⟩⟩ for every C ′′ capturing no more than x in u and u′,
(b) or C ′ = C ′′⟨[C ′′′�f]u⟩ for some C ′′ and C ′′′, and C reduces a redex given by the

cut on f .

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:35

Proof. The proof is by induction on the rewriting step in each point, and is a tedious check.
In [Acc22], we give all the (many!) details for the first deformation property. The proofs of
the others are minor variations.

10. Untyped Confluence

Here we prove confluence for the untyped ESC, using an elegant technique based on local
diagrams and local termination. The technique is the Hindley-Rosen method. In our case, it
amounts to prove that the multiplicative and exponential rules →m and →ems are confluent
separately, proved by local termination and Newman lemma, and commute, proved by local
termination and Hindley’s strong commutation. Confluence then follows by Hindley-Rosen
lemma, for which the union of confluent and commuting reductions is confluent.

The Hindley-Rosen method is a modular technique often used for confluence of extensions
of the λ-calculus, for instance in [AD17, FR19, Sau08, CG14, Rév92, BKR21, AFM+95,
AP12]. It is also used for untyped proof nets by Pagani and Tortora de Falco [PTdF10].
Confluence for untyped proof nets is also proved by Danos [Dan90] and Tranquilli [Tra09]
via finite developments. Essentially, local termination internalizes finite developments.

The Glitch. For the untyped ESC there is a slight flaw due to clashes. The following local
diagram, indeed, can be closed only if [v�m] is not a clashing cut (precisely, when v is not
an exponential value nor an abstraction), or with cut equivalence ≡cut:

[v�m]M ′⟨[m�n]M⟨[n`x, y]t⟩⟩ M ′⟨[v�n]M⟨[n`x, y]t⟩⟩

[v�m]M ′⟨M⟨[m`x, y]t⟩⟩

axm1

axm2

A second similarly problematic diagram is obtained by replacing the par with a subtraction.
Now, if there is a clash, the fact that confluence holds only up to ≡cut is irrelevant: the

clash is a bigger issue. Moreover:

(1) (Recursive) types remove clashes: clashes are ruled out by our typing (Lemma 7.6), but
also by recursive types such as those used for typing the untyped λ-calculus, or even the
more general weak recursive typing considered by Ehrhard and Regnier in [ER06].

(2) Proof nets are not better : because of weakenings, IMELL proof nets need jumps and
jump rewiring rules. Confluence should then be proved up to jump rewiring, which is
analogous to confluence up to ≡cut.

(3) Good steps are glitch-free: anticipating from the next section, the glitch does not affect
good steps, as the axm1 steps in the diagram above is bad.

The Proof. We first prove the local properties.

Proposition 10.1 (Local confluence).

(1) Multiplicative clash-free diamond: →m is diamond on clash-free terms.
(2) Exponential local confluence: →ess and →ems are both locally confluent.

Proof.

23:36 B. Accattoli Vol. 19:4

(1) The formal statement is: t1 m←t0 →m t2 with t1 ̸= t2 implies that there exists t3 such
that t1 →m t3 m←t2. Let a, b ∈ {axm2, axm1,⊗,⊸}, t0 →a t1, and t0 →b t2. The proof is
by induction on t0 →a t1, that is, by induction on the context C closing the root rule
7→a, and case analysis of t0 →b t2. Here we show only the case for 7→axm1 , which is the
most interesting one, requiring the deformation lemma and allowing us to discuss the
case of clashes. The other cases are in [Acc22].

We have t0 = [vm�m]M⟨⟨m⟩⟩ 7→axm1 M⟨⟨vm⟩⟩ = t1. If →b takes place entirely in vm
then the diagram closes in one step on both sides. If →b takes place in M⟨⟨m⟩⟩, that is,
M⟨⟨m⟩⟩ →b s then by deformation (Lemma 9.4.1) there are two mutually exclusive cases:
(a) s = M ′⟨⟨m⟩⟩ for some M ′ such that m /∈ fv(M ′) and M⟨⟨vm⟩⟩ →b M

′⟨⟨vm⟩⟩ for every
vm. Then:

[vm�m]M⟨⟨m⟩⟩ M⟨⟨vm⟩⟩

[vm�m]M ′⟨⟨m⟩⟩ M ′⟨⟨vm⟩⟩

axm1

b b
axm1

(b) M = M ′⟨[⟨·⟩�n]u⟩ and →b reduces the cut on n, which then is a →axm2 step. Then
u = M ′′⟨un⟩ and diagram depends on the occurrence un that interacts with the cut:
• Variable, that is, un = n. Then:

[vm�m]M ′⟨[m�n]M ′′⟨n⟩⟩ M ′⟨[vm�n]M ′′⟨n⟩⟩

[vm�m]M ′⟨M ′′⟨m⟩⟩ M ′⟨M ′′⟨vm⟩⟩

axm1

axm2 axm1
axm1

Note a curious fact: the diagram turns a →axm2 step into a →axm1 step, that is,
→axm2 and →axm1 do not commute. Note however that the →axm2 step can also
be seen as a →axm1 step, as the two rules superpose in this case.
• Par , that is, un = [n`x, y]r, and the span is:

[vm�m]M ′⟨[m�n]M ′′⟨[n`x, y]r⟩⟩ M ′⟨[vm�n]M ′′⟨[n`x, y]r⟩⟩

[vm�m]M ′⟨M ′′⟨[m`x, y]r⟩⟩

axm1

axm2

By clash-freeness, vm = (L⟨v⟩, L′⟨v′⟩), and the diagram is:

[vm�m]M ′⟨[m�n]M ′′⟨[n`x, y]r⟩⟩ M ′⟨[vm�n]M ′′⟨[n`x, y]r⟩⟩

[vm�m]M ′⟨M ′′⟨[m`x, y]r⟩⟩ M ′⟨M ′′⟨L⟨[v�x]L′⟨[v′�y]r⟩⟩⟩⟩

axm1

axm2 ⊗
⊗

Note that the diagram closes using →⊗ rather than →axm2 or →axm1 , showing
that →axm2 and →axm1 do not commute. In absence of clash-freeness, note that
the diagram closes also with ≡cut.
• Subtraction, that is, un = [n5v, x]r, and the span is:

[vm�m]M ′⟨[m�n]M ′′⟨[n5v, x]r⟩⟩ M ′⟨[vm�n]M ′′⟨[n5v, x]r⟩⟩

[vm�m]M ′⟨M ′′⟨[m5v, x]r⟩⟩

axm1

axm2

By clash-freeness, vm = λy.L⟨v′⟩, and the diagram is:

[vm�m]M ′⟨[m�n]M ′′⟨[n5v, x]r⟩⟩ M ′⟨[vm�n]M ′′⟨[n5v, x]r⟩⟩

[vm�m]M ′⟨M ′′⟨[m5v, x]r⟩⟩ M ′⟨M ′′⟨[v�y]L⟨[v′�x]r⟩⟩⟩

axm1

axm2 ⊸
⊸

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:37

Note that the diagram closes using →⊸ rather than →axm2 or →axm1 . In absence
of clash-freeness, note that the diagram closes also with ≡cut.

(2) The proof follows the same structure as for →m. Again, we show only the root case
of →axe1 , that is, 7→axe1 , which is the most interesting one, in particular because it
shows that →axe1 and →axe2 do not commute. The other cases are in [Acc22]. We have
t0 = [ve�e]C⟨⟨e⟩⟩ 7→axe1 [ve�e]C⟨⟨ve⟩⟩ = t1. Three cases:
(a) →b takes place in ve. Then the diagram is (note that it is not a diamond diagram):

[ve�e]C⟨⟨e⟩⟩ [ve�e]C⟨⟨ve⟩⟩

[v′e�e]C⟨⟨e⟩⟩ [v′e�e]C⟨⟨ve⟩⟩[v′e�e]C⟨⟨v′e⟩⟩

axe1

b b
axe1 b

(b) →b takes place in C⟨⟨e⟩⟩. Then by the deformation lemma (Lemma 9.4.5) there are
two mutually exclusive cases:
• s = C ′⟨⟨e⟩⟩ for some C ′ such that C⟨⟨ve⟩⟩ →a C ′⟨⟨ve⟩⟩ for every ve. Then:

[ve�e]C⟨⟨e⟩⟩ [ve�e]C⟨⟨ve⟩⟩

[ve�e]C ′⟨⟨e⟩⟩ [ve�e]C ′⟨⟨ve⟩⟩

axe1

b b
axe1

• or C = C ′⟨[C ′′�f]u⟩ for some C ′ and C ′′, and →b reduces a redex given by the
cut on f . Cases of the reduced redex:
– →axe1 . Then we have C⟨⟨e⟩⟩ = C ′⟨[e�f]C ′′′⟨⟨f⟩⟩⟩ for some C ′′′ (and C ′′ is empty),

and the diagram closes as follows (it is not diamond):

[ve�e]C ′⟨[e�f]C ′′′⟨⟨f⟩⟩⟩ [ve�e]C ′⟨[ve�f]C ′′′⟨⟨f⟩⟩⟩

[ve�e]C ′⟨[e�f]C ′′′⟨⟨e⟩⟩⟩ [ve�e]C ′⟨[ve�f]C ′′′⟨⟨ve⟩⟩⟩

[ve�e]C ′⟨[ve�f]C ′′′⟨⟨e⟩⟩⟩

axe1

axe1 axe1

axe1 axe1

– →axe2 . Then we have C⟨⟨e⟩⟩ = C ′⟨[e�f]C ′′′⟨[f?x]t⟩⟩ for some C ′′′ (and C ′′ is
empty). Two sub-cases, depending on ve:

(i) ve is a variable g:

[g�e]C ′⟨[e�f]C ′′′⟨[f?x]t⟩⟩ [g�e]C ′⟨[g�f]C ′′′⟨[f?x]t⟩⟩

[g�e]C ′⟨[e�f]C ′′′⟨[e?x]t⟩⟩ [g�e]C ′⟨[g�f]C ′′′⟨[g?x]t⟩⟩

[g�e]C ′⟨[g�f]C ′′′⟨[e?x]t⟩⟩

axe1

axe2 axe2

axe1 axe2

(ii) ve is a promotion !s = !L⟨v′e⟩:
[!s�e]C ′⟨[e�f]C ′′′⟨[f?x]t⟩⟩ [!s�e]C ′⟨[!s�f]C ′′′⟨[f?x]t⟩⟩

[!s�e]C ′⟨[e�f]C ′′′⟨[e?x]t⟩⟩ [!s�e]C ′⟨[!s�f]C ′′′⟨L⟨[v′e�x]t⟩⟩⟩

[!s�e]C ′⟨[!s�f]C ′′′⟨[e?x]t⟩⟩

axe1

axe2 !

axe1 !

Note that the two sub-cases above show that→axe1 and→axe2 do not commute.
– →!. Then we have C⟨⟨e⟩⟩ = C ′⟨[!r�f]C ′′′⟨[f?x]u⟩⟩ for some C ′′′ and with e

occurring in r. To write down the rewriting step we have to decompose r as

23:38 B. Accattoli Vol. 19:4

a left context and a value, that is, r = L⟨v⟩. Now, e can be in either L or v.
We consider the latter case, which is easier to spell out in symbols, the former
case is analogous, just heavier to write down. Then assume that v = C ′′⟨⟨e⟩⟩,
so that r = L⟨C ′′⟨⟨e⟩⟩⟩. We have the following (non-diamond) diagram:

[ve�e]C′⟨[!L⟨C′′⟨⟨e⟩⟩⟩�f]C′′′⟨[f?x]u⟩⟩ [ve�e]C′⟨[!L⟨C′′⟨⟨ve⟩⟩⟩�f]C′′′⟨[f?x]u⟩⟩

[ve�e]C′⟨[!L⟨C′′⟨⟨e⟩⟩⟩�f]C′′′⟨L⟨[C′′⟨⟨e⟩⟩�x]u⟩⟩⟩ [ve�e]C′⟨[!L⟨C′′⟨⟨ve⟩⟩⟩�f]C′′′⟨L⟨[C′′⟨⟨ve⟩⟩�x]u⟩⟩⟩

[ve�e]C′⟨[!L⟨C′′⟨⟨ve⟩⟩⟩�f]C′′′⟨L⟨[C′′⟨⟨e⟩⟩�x]u⟩⟩⟩

axe1

! !

axe1 axe1

– →w. Then C⟨⟨e⟩⟩ = C ′⟨[C ′′⟨e⟩�f]s⟩ →w C
′⟨s⟩ and we have the following (non-

diamond) diagram:

[ve�e]C ′⟨[C ′′⟨e⟩�f]s⟩ [ve�e]C ′⟨[C ′′⟨ve⟩�f]s⟩

[ve�e]C ′⟨s⟩

axe1

w
w

(c) →b involves the same root cut of →a. Then t0 = [ve�e]C⟨⟨e⟩⟩ = [ve�e]C ′⟨te⟩ for a
context C ′ ̸= C that does not capture e and te is an occurrence of e. Two sub-cases:
• Variable occurrence, that is, te = e. Then →b is also a 7→axe1 step. Note that C
and C ′ are disjoint, that is, C ∥ C ′, so that there is a double context CC,C′ such
that CC,C′⟨·, e⟩ = C and CC,C′⟨e, ·⟩ = C ′. Then t0 = [ve�e]CC,C′⟨e, e⟩ and the
diagram closes as follows:

[ve�e]CC,C′⟨e, e⟩ [ve�e]CC,C′⟨ve, e⟩

[ve�e]CC,C′⟨e, ve⟩ [ve�e]CC,C′⟨ve, ve⟩

axe1

axe1 axe1
axe1

• Dereliction occurrence, that is, te = [e?x]s. Two sub-cases, depending on the
relationship between C and C ′.

(i) C nests under C ′, that is, C ′ ≺ C. Then, there exists C ′′ such that
C = C ′⟨[e?x]C ′′⟩. Two sub-cases, depending on ve.
(A) ve is a variable, that is, ve = f . Then:

[f�e]C ′⟨[e?x]C ′′⟨⟨e⟩⟩⟩ [f�e]C ′⟨[e?x]C ′′⟨⟨f⟩⟩⟩

[f�e]C ′⟨[f?x]C ′′⟨⟨e⟩⟩⟩ [f�e]C ′⟨[f?x]C ′′⟨⟨f⟩⟩⟩

axe1

axe2 axe2
axe1

(B) ve is a promotion, that is, ve = !s = !L⟨v′e⟩. Then:
[!s�e]C ′⟨[e?x]C ′′⟨⟨e⟩⟩⟩ [!s�e]C ′⟨[e?x]C ′′⟨⟨!s⟩⟩⟩

[!s�e]C ′⟨L⟨[v′e�x]C ′′⟨⟨e⟩⟩⟩⟩ [!s�e]C ′⟨L⟨[v′e�x]C ′′⟨⟨!s⟩⟩⟩⟩

axe1

! !
axe1

(ii) C and C ′ are disjoint . Then, the reasoning goes similarly to the case where
te is a variable occurrence, resting on a double context, and it has two
straightforward sub-cases depending on ve, as when C nests under C ′.

In contrast to confluence, commutation of two reductions →1 and →2 does not follow
from their local commutation and strong normalization. Here however the rules verify a
linear form of Hindley’s strong (local) commutation [Hin64] of →1 over →2, defined as:

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:39

Dominating free variables of contexts

dv(⟨·⟩) := ∅
dv((C, v)) := dv(C)
dv((v, C)) := dv(C)
dv(λx.C) := dv(C) \ {x}

dv(!C) := dv(C)
dv([v�x]C) := dv(C) \ {x}
dv([V �x]t) := dv(V)

dv([m`x, y]C) :=

{m} ∪ (dv(C) \ {x, y}) if x ∈ dv(C)

or y ∈ dv(C)

dv(C) otherwise.

dv([m5V, x]t) := {m} ∪ dv(V)

dv([m5v, x]C) :=

{{m} ∪ (dv(C) \ {x}) if x ∈ dv(C)

dv(C) otherwise.

dv([e?x]C) :=

{{e} ∪ (dv(C) \ {x}) if x ∈ dv(C)

dv(C) otherwise.

Good value contexts
VG ::= ⟨·⟩ | (G, t) | (t, G) | λx.G | !G

Good contexts
G ::= VG | [m`x, y]G | [m5v, x]G | [m5VG, x]t | [e?x]G | [v�x]G if x /∈ dv(G)

Bad contexts
B ::= [V �x]t | [v�x]C if x ∈ dv(C) | C⟨B⟩

Figure 6: Definitions for the good strategy: dominating free variables, good and bad contexts.

t s1

s2

1

2 implies that there exists u such that
t s1

s2 u

1

2
*

2
1

That is, →2 cannot duplicate nor erase →1. Linear commutation and strong normalization
do imply commutation.

Proposition 10.2 (Linear commutation). →ess and →ems both linearly commute over →m.

Proof. The proof is an analysis of cases very similar to the one for local confluence. Some
details are in [Acc22].

Then we lift the local properties using local termination and conclude using Hindley-
Rosen lemma.

Theorem 10.3 (Confluence). The relations →ss and →ms are confluent on clash-free terms.

Proof. We treat →ms, the case of →ss is identical. By Newman lemma, local confluence
(Prop. 10.1), and local termination (Theorem 8.8), →m and →ems are confluent separately.
By a result of Hindley [Hin64], linear commutation (Prop. 10.2) and local termination imply
that →m and →ems commute. By Hindley-Rosen lemma, →ms=→m ∪ →ems is confluent.

On the Traditional Proof Nets Rewriting Rule for Axioms. As it was mentioned at
the end of Section 5, our micro-step rules for exponential axioms are different from the one
at work in proof nets. The proof net micro-step rule, when formulated on terms, looks as a
small-step rule:

[f�e]t → {f�e}t

23:40 B. Accattoli Vol. 19:4

If considered with our other micro-step rules, in particular our →!, it generates a closable
but unpleasant local confluence diagram:

[!v�f]C⟨[f�e]t⟩ [!v�f]C⟨[!v�e]t⟩ [!v�f]C⟨{!v�e}t⟩

[!v�f]C⟨{f�e}t⟩ {!v�f}C⟨{!v�e}t⟩{!v�f}C⟨{f�e}t⟩

! +ems

+
ems

+ems L.6.6

In order to close the local diagram one needs to fully develop some exponential cuts (note
99K+ems), which is a small-step concept and not a micro-step one. This is why we adopt different
axiom rules, for which local confluence diagrams never need small-step developments.

11. The Good Strategy

In this section, we define the good cut elimination strategy →G for the micro-step untyped
ESC, show various of its properties, including the sub-term property, and prove that it
provides a polynomial cost model.

Breaking the Sub-Term Property. When does the sub-term property not hold? One
has to duplicate an exponential value ve touched by previous steps. In our setting, touched
can mean two things. Either a redex fully contained in ve is reduced, obtaining v′e, and then
v′e is duplicated (or erased), as in the step marked with ⋆ in the following diagram (the
other, dashed path of which has the sub-term property):

[ve�e]C⟨⟨e⟩⟩ [v′e�e]C⟨⟨e⟩⟩

[ve�e]C⟨⟨ve⟩⟩ [v′e�e]C⟨⟨v′e⟩⟩[v′e�e]C⟨⟨ve⟩⟩

ms

axe1 ⋆axe1

ms ms

The other way of touching ve is when a cut [v′e�e] external to ve acts on some exponential
variable e in ve = V ⟨⟨e⟩⟩, as in the following diagram:

[v′e�e]C⟨[V ⟨⟨e⟩⟩�f]C′⟨⟨f⟩⟩⟩ [v′e�e]C⟨[V ⟨⟨v′e⟩⟩�f]C′⟨⟨f⟩⟩⟩

[v′e�e]C⟨[V ⟨⟨e⟩⟩�f]C′⟨⟨V ⟨⟨e⟩⟩⟩⟩⟩ [v′e�e]C⟨[V ⟨⟨v′e⟩⟩�f]C′⟨⟨V ⟨⟨v′e⟩⟩⟩⟩⟩[v′e�e]C⟨[V ⟨⟨v′e⟩⟩�f]C′⟨⟨V ⟨⟨e⟩⟩⟩⟩⟩

axe1

axe1 ⋆axe1

axe1 axe1

Similar diagrams can be obtained using →! and →axe2 rather than →axe1 , and these are all
the local confluence diagrams for →ms that are not squares nor triangles (see Prop. 10.1 and
Prop. 10.2).

Preventing these situations from happening, thus forcing evaluation to follow the other
(dashed) side of the diagram, is easy. It is enough to forbid the position of the reduced redex
to be inside the left sub-term of a cut—we say inside a cut value for short. It is however not
enough, because cuts are also created. Consider:

[λe.(e, e)�m][m5ve, x]t →ms [λe.(e, e)�m][m5v′e, x]t →⊸

[v′e�e][(e, e)�x]t
⋆→axe1 [v′e�e][(v′e, e)�x]t

Reducing inside the subtraction value ve leads to a later breaking of the sub-term property
by the axe1 step, because the →⊸ step creates a cut with v′e inside. Preventing these cases
is tricky, because forbidding reducing subtraction values leads to cut elimination stopping
too soon, without producing a cut-free term. In the λ-calculus, it corresponds to forbidding
reducing inside arguments, which leads to head reduction, that does not compute normal

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:41

λ-terms. We shall then forbid reducing only subtraction values which are at risk of becoming
cuts. It might look like the dangerous positions are those in v in [vm�m]M⟨[m5v, x]t⟩, i.e.
those where the surrounding subtraction is involved in a cut. They are in fact more general,
as a chain of dependencies can be involved. Consider the positions inside v in t here:

t := [!vm�e][e?m][m5v, x]s →! [!vm�e][vm�m][m5v, x]s

they are also dangerous, because they reduce to those of the previous kind. Thus, we need
to ensure that the conclusion m of the subtraction is not hereditarely involved in a cut.

Dominating Variables. The key notion is the one of dominating (free) variables dv(C)
of a context (where C is meant to be the position of a redex), defined in Fig. 6, the base
case of which is for [m5V, x]t. If C is a position and x ∈ dv(C) then [v�x]C turns C into a
dangerous position, that is, a redex of position [v�x]C : t→ms s might lead to a breaking of
the sub-term property later on during cut elimination. In the example, e belongs to dv(C)
for every context C := [e?m][m5V, x]s of [e?m][m5v, x]s, for every V .

Good and Bad Contexts and Steps. The previous considerations lead to the notions
of good and bad contexts in Fig. 6. A good context forbids the two ways of breaking the
sub-term property: its hole cannot be in a cut value (note the absence of the production
[VG�x]t) nor in a subtraction value such that one of its dominating variables is cut (because
of the production [v�x]G if x /∈ dv(G)). Every other step is allowed. The next lemma
ensures that bad and good contexts are indeed complementary concepts.

Lemma 11.1 (Good/bad partition). Let C be a context. Then C is either good or bad.

Proof. By induction on C. The empty context ⟨·⟩ is good and not bad. For all inductive
cases but cut, it follows from the i.h. The cut cases:

• C = [V �x]t. Then C is bad and not good.
• C = [v�x]C ′. By i.h., C ′ is either good or bad. If C ′ is bad then C is bad, and C is not
good because C ′ is not good. If C ′ is good, consider whether x ∈ dv(C ′). If it does, then
C is bad and not good. If instead x /∈ dv(C ′) then C is good and not bad.

Definition 11.2 (Good/bad step, good strategy). A micro step C : t→ms s is good if its
position C is good. In such a case, we write t→G s. The good cut elimination strategy is
simply→G. A step t→ms s is bad if it is not good, and we then write t→B s. We also use→Ga

and →Ba to stress that the good/bad step is of kind a ∈ {axm1, axm2,⊗,⊸, axe1, axe2, !, w}.

A Technical Remark About Goodness. The notions of good and bad steps are inherently
micro-step, as the next example shows. Consider the following term:

t := [f�e][e?g][o�m][m5e, n]n

In t, the cut [f�e] gives rise to two redexes, one for each occurrence of e. The redex
concerning [e?g] is good while the one concerning [m5e, n] is bad, because its position
[f�e][e?g][o�m][m5⟨·⟩, n]n is a bad context (m dominates the hole, and there is a cut on
m). Thus, being good/bad is not a property of the cut [f�e], that is, it is not a small-step
concept, because not all the micro-step redexes in which a cut is involved share the same
character. Consider now:

s := [f�e][e?m][m5e, n]n

23:42 B. Accattoli Vol. 19:4

In s, again, there are two redexes on e, a good one and a bad one. The difference is that now
it is the good occurrence of e that turns the other occurrence into a bad one (by dominating
m, which dominates the second occurrence).

Basic Properties of Good Contexts. The next three lemmas collect basic facts about
good contexts that are used in the proof of the rest of the section.

Lemma 11.3 (Good context decomposition). Let C⟨C ′⟩ be a good context. Then C and C ′

are good contexts.

Lemma 11.4 (Bad cannot outer good). Let G⟨t⟩ = B⟨s⟩. Then B ̸≺ G, that is, either
G ≺ B or G ∥ B.

Proof. By induction on G. Note that B cannot be empty, otherwise it would be good. Cases:

• G = ⟨·⟩. Then t = B⟨s⟩ and so B ̸≺ G.
• The abstraction, bang, par, and dereliction cases follow from the i.h.
• G = (G′, u). If B = (B′, u) then it follows from the i.h. If B = (r,B′) then B ∥ G.
• G = (u,G′). It goes as the previous case.
• The subtraction cases are as the tensor cases.
• G = [v�x]G′. If B = [v�x]B′ it follows from the i.h. If B = [B′�x]u then B ∥ G.

Lemma 11.5 (Double contexts and replacements). Let C be a double context and t and s
be two terms. Then:

(1) C⟨·, t⟩ is as capturing as C⟨·, s⟩;
(2) dv(C⟨·, t⟩) = dv(C⟨·, s⟩);
(3) C⟨·, t⟩ is good if and only if C⟨·, s⟩ is good.

Note that the last point of Lemma 11.5 could have be equivalently stated with respect
to being bad.

Proof. By induction on C. The base cases are straightforward, and the inductive cases follow
from the i.h. In the inductive case C = [v�x]C′, the third point uses the second one.

Sub-Term Property. We are ready for the key point of the paper, the sub-term property
of the good strategy. The proof is based on a natural local invariant about bad values, which
are the sub-terms at risk of being duplicated or erased.

Definition 11.6 (Bad values). Given t = C⟨v⟩, v is a bad value of t if C is a bad context.

The local invariant shows that one good step cannot create bad values. The sub-term
property follows by induction on the length of cut elimination sequences.

Since strict equality of sub-terms is not preserved by reduction (because of on-the-fly
α-renaming), the local invariant concerns the size of bad values, which is what is important
for cost analyses. In other words, we prove the quantitative form of the sub-term property,
but one could equivalently prove the structural form and then obtain the quantitative one
as a corollary (the literal sub-term property instead does not hold).

Lemma 11.7.

(1) If C⟨[v�x]C ′⟩ is good then C⟨C ′⟩ is good.
(2) If C⟨C ′⟩ is bad then C⟨[v�x]C ′⟩ is bad.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:43

Proof. Point 1 is by induction on C. Since a context is either good or bad (Lemma 11.1),
Point 2 is simply the contrapositive of Point 1.

Proposition 11.8 (Local sub-term invariant). Let t →G s = B⟨v⟩. Then t = B′⟨v′⟩ for
some B′ and v′ such that |v| = |v′|.

Proof. Cases of t→G s = B⟨v⟩:

• →axm1 . We have t = C⟨[vm�m]M⟨⟨m⟩⟩⟩ →Gaxm1 C⟨M⟨⟨vm⟩⟩⟩ = s = B⟨v⟩. Since C⟨[vm�m]M⟩
is good, C⟨M⟩ is good by Lemma 11.7, and by Lemma 11.3 both C and M are good. By
Lemma 11.4, B ̸≺ C and there are two cases:
– C ∥ B. Then there is a double context CC,B such that CC,B⟨·, v⟩ = C and

CC,B⟨M⟨⟨vm⟩⟩, ·⟩ = B. By Lemma 11.5, the context B′ := CC,B⟨[vm�m]M⟨⟨m⟩⟩, ·⟩ is bad.
Note that B′⟨v⟩ = CC,B⟨[vm�m]M⟨⟨m⟩⟩, v⟩ = C⟨[vm�m]M⟨⟨m⟩⟩⟩ = t, and so B′ isolates
v in t.

– C ≺ B. By Lemma 11.4, B ̸≺ C⟨M⟩ and there are two sub-cases:
∗ C⟨M⟩ ∥ B. Then B = C⟨C ′⟩ for some C ′ such that M ∥ C ′. There is a dou-
ble context CM,C′ such that CM,C′⟨·, v⟩ = M and CM,C′⟨vm, ·⟩ = C ′. Note that
C⟨CM,C′⟩⟨vm, ·⟩ =L.9.3 C⟨CM,C′⟨vm, ·⟩⟩ = C⟨C ′⟩ = B. By Lemma 11.5, the con-
text B′ := C⟨CM,C′⟩⟨m, ·⟩ is bad. Now, B′ =L.9.3 C⟨CM,C′⟨m, ·⟩⟩ and let C ′′ :=
CM,C′⟨m, ·⟩, so that B′ = C⟨C ′′⟩. Note that B′⟨v⟩ = C⟨CM,C′⟨m, v⟩⟩ = C⟨M⟨m⟩⟩
and also B′⟨v⟩ = C⟨C ′′⟨v⟩⟩. Then t = C⟨[vm�m]M⟨m⟩⟩ = C⟨[vm�m]C ′′⟨v⟩⟩. Thus,
C⟨[vm�m]C ′′⟩ isolates v in t and it is bad because of Lemma 11.7.2 and the fact that
B′ = C⟨C ′′⟩ is bad.
∗ C⟨M⟩ ≺ B. Then B = C⟨M⟨C ′⟩⟩ for C ′ such that vm = C ′⟨v⟩. The context
C⟨[C ′�m]M⟨⟨m⟩⟩⟩ is bad and isolates v in t.

• →axm2 . We have t = C⟨[m�n]r⟩ →Gaxm2 C⟨{m�n}r⟩ = s = B⟨v⟩. All bad values of s
coming from C are obviously also in t. Let B = C⟨{m�n}C ′⟩ be the position of a bad
value v in s. Two cases:
– C⟨C ′⟩ is a bad context . Then v occurs in t as a bad value at position C⟨[vm�m]C⟩
(which is bad by Lemma 11.7.2).

– C⟨C ′⟩ is a good context . Since it is the addition of {m�n} that makes B bad, necessarily
m ∈ dv(C ′). Now, note that then [vm�m]C ′ is bad, and so is C⟨[vm�m]C ′⟩, which isolates
v in t, making it a bad value.

• →⊗. We have t = C⟨[vm�m]M⟨[m`x, y]r⟩⟩ →G⊗ C⟨M⟨L⟨[v′�x]L′⟨[v′′�y]r⟩⟩⟩⟩ = s with
vm = (L⟨v′⟩, L′⟨v′′⟩) and s = B⟨v⟩. If the hole of B falls in C, M , or L⟨[v′�x]L′⟨[v′′�y]⟨·⟩⟩⟩
then the reasoning is as in the →axm1 case. The only potentially delicate point is about
the bad values in r. Let B = C⟨M⟨L⟨[v′�x]L′⟨[v′′�y]C ′⟩⟩⟩⟩ be the position of one such
bad value v. Two cases:
– C⟨M⟨C ′⟩⟩ is a bad context . Then v occurs in t as bad value at position C⟨[vm�m]M⟨C ′⟩⟩.
– C⟨M⟨C ′⟩⟩ is a good context . Note that the only variables of C ′ that can be captured by

L⟨[v′�x]L′⟨[v′′�y]⟨·⟩⟩⟩ are x and y. Since it is the addition of L⟨[v′�x]L′⟨[v′′�y]⟨·⟩⟩⟩
that makes B bad, necessarily x ∈ dv(C ′) or y ∈ dv(C ′). Now, note that then m ∈
dv(M⟨[m`x, y]C ′⟩) and so that C⟨[vm�m]M⟨[m`x, y]C ′⟩⟩ is a bad context isolating v
in t.

• →⊸. As for →⊗.
• →axe1 . We have t = C⟨[ve�e]C ′⟨⟨e⟩⟩⟩ →Gaxe1 C⟨[ve�f]C ′⟨⟨ve⟩⟩⟩ = s = B⟨v⟩. Since
C⟨[ve�e]C ′⟩ is good, by Lemma 11.4, B ̸≺ C⟨[ve�e]C ′⟩ and there are two cases:

23:44 B. Accattoli Vol. 19:4

– C⟨[ve�e]C ′⟩ ∥ B. Then there is a double context CC⟨[ve�e]C′⟩,B such that
CC⟨[ve�e]C′⟩,B⟨ve, ·⟩ = B. By Lemma 11.5, the context B′ := CC⟨[ve�e]C′⟩,B⟨e, ·⟩ is bad.
Note that B′ isolates v in t.

– C⟨[ve�e]C ′⟩ ≺ B. Then B = C⟨[ve�e]C ′⟨C ′′⟩⟩ for C ′′ such that ve = C ′′⟨v⟩. Note that
the context C⟨[C ′′�e]C ′⟨⟨e⟩⟩⟩ is bad and isolates v in t.

• →axe2 . We have t = C⟨[f�e]C ′⟨[e?x]u⟩⟩ →Gaxe2 C⟨[f�e]C ′⟨[f?x]u⟩⟩ = s = B⟨v⟩ with C ′

not capturing e nor f . If the hole of B falls in C⟨[f�e]C ′⟩ then the reasoning is as in
the →axe1 case. The only potentially delicate point is about the bad values in u. Let
B = C⟨[f�e]C ′⟨[f?x]C ′′⟩⟩ be the position of one such bad value v. The same value is
isolated in t by B′ = C⟨[f�e]C ′⟨[e?x]C ′′⟩⟩. Note that B′ cannot be good: since the only
thing that has changed is the renaming of f as e in the dereliction, then:
– either f is irrelevant for the badness of B, and so B′ is bad,
– or B is bad because f ∈ dv([f?x]C ′′) and f is cut in C. Note that then e ∈ dv([e?x]C ′′)

and e is cut in B′, so that B′ is bad.
• →!. We have t = C⟨[!u�e]C ′⟨[e?x]r⟩⟩ →G! C⟨[!u�e]C ′⟨L⟨[v′�x]r⟩⟩⟩ = s = B⟨v⟩ with
u = L⟨v′⟩. If the hole of B falls in C⟨[!u�e]C ′⟩ then the reasoning is as in the →axe1

case. If it falls in L⟨[v′�x]⟨·⟩⟩, then a bad context with the hole in u isolates the
same value in t. The only potentially delicate point is about the bad values in r. Let
B = C⟨[!u�e]C ′⟨L⟨[v′�x]C ′′⟩⟩⟩ be the position of one such bad value v. The same value
is isolated in t by B′ = C⟨[!u�e]C ′⟨[e?x]C ′′⟩⟩ which cannot be good because:
– either x is irrelevant for the badness of B, and so B′ is bad because x is the only variable

of C ′′ that can be captured by L⟨[v′�x]⟨·⟩⟩ (which is the only difference between B and
B′);

– or B is bad because x ∈ dv(C ′′) and x is cut in B. Note that then e ∈ dv([e?x]C ′′) and
e is cut in B′, so that then B′ is also bad.

• →w. We have t = C⟨[ve�e]r⟩ →Gw C⟨r⟩ = s = B⟨v⟩ with e /∈ fv(r). Since C⟨[ve�e]⟨·⟩⟩ is
good, C is good. By Lemma 11.4, B ̸≺ C and there are two cases:
– C ∥ B. Then there is a double context CC,B such that CC,B⟨r, ⟨·⟩⟩ = B. By Lemma 11.5,

the context B′ := CC,B⟨[ve�e]r, ·⟩ is bad. Note that B′ isolates v in t.
– C ≺ B. Then B = C⟨C ′′⟩ for C ′′ such that r = C ′′⟨v⟩. Note that the context

C⟨[ve�e]C ′′⟩ is bad and isolates v in t.

The statement of the next theorem expresses the quantitative sub-term property for
→ms because the sub-terms duplicated and erased by →ms are values, and in particular are
values that are left sub-terms of cuts (which are bad contexts), that is, they are bad values.

Theorem 11.9 (Sub-term property). Let t→∗
G s and v be a bad value of s. Then |v| ≤ |t|.

Proof. By induction on the length k of the reduction t→k
G s. If k = 0 then the statement

trivially holds. If k > 0 then consider the last step u →G s of the sequence. By the local
sub-term invariant (Prop. 11.8), the size of every bad value v of s is bound by the size of a
bad value v′ of u, which by i.h. satisfy the statement.

Good Diamond. The good strategy is not deterministic, as for instance if t→G s then:

(s, t) G← (t, t) →G (t, s).

Note also, however, that the local diagrams that are not squares nor triangles are forbidden
by design for good steps (see above). Triangles are also forbidden: it is easily seen that they

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:45

all involve touching the cut value of a →w step, which is bad. Intuitively, this is the reason
why all local diagrams for good steps are diamonds.

Proposition 11.10 (Good diamond). s1 G←t →G s2 and s1 ̸= s2 then s1 →G u G←s2 for
some u.

Proof. For the proof to go through, we need to slightly strengthen the statement adding
a clause about dominating free variables, for the inductive cases. We also reformulate the
statement using different meta variables. The new statement is:

If G1 : t0 →G t1 and G2 : t0 →G t2 with t1 ̸= t2 then that there exists t3 such that
G′

2 : t1 →G t3 with dv(G′
2) = dv(G2) and G′

1 : t2 →G t3 with dv(G′
1) = dv(G1).

Let a, b ∈ {axm2, axm1,⊗,⊸, axe1, axe2, !, w}, t0 →Ga t1, and t0 →Gb t2. The proof is by
induction on t0 →Ga t1, that is, by induction on the context closing the root rule 7→a, and
case analysis of t0 →Gb t2. It is a check of diagrams similar to the proof of local confluence.
As for local confluence, the deformation lemmas are used, but their statements have to be
strengthened because they have to preserve goodness and dominating variables. About the
diagrams, there are less cases, none of which is surprising. Details are in [Acc22].

Two well known consequences of being diamond are uniform normalization, that is, if
there is a normalizing reduction sequence then there are no diverging sequences, and random
descent, that is, when a term is normalizable, all sequences to normal form have the same
length. These two consequences are the reason why the diamond property embodies a more
liberal form of determinism. Additionally, these properties are essential for the study of cost
models, as otherwise the number of steps of the strategy is an ambiguously defined measure.

Fullness. The sub-term property expresses the correctness of our design. We also need to
prove a simple form of completeness, ensuring that the good strategy does not stop when
there is still work left to do. This is given by fullness, that is, the fact that as long as t is not
normal then t has a good redex. We need to assume that t has no clashes, because terms
with clashes such as [([e�f]f, e)�m][m5e, n]n, where the tensor pair and the subtraction
clash, are not normal (note that [e�f]f is a redex) but have no good redexes, as all their
redexes are inside cut values of clashing cuts (a tensor pair cut on a subtraction is a clash).

We recall that an occurrence of x in t is given by a position t = C⟨tx⟩ where tx is a
sub-term of t of shape x, [x`y, z]s, [x5v, y]s, or [x?y]s. Note that the shapes of tx are the
kind of terms with which a cut on x can interact at a distance to form a redex.

Definition 11.11 (Outermost variable occurrence). An occurrence t = C⟨tx⟩ of x in t is
outermost if C ′ ̸≺ C for all other occurrences t = C ′⟨t′x⟩ of x.

Lemma 11.12. Let t = C⟨tx⟩ be an outermost occurrence of x in t with C not capturing x.
Then x /∈ dv(C).

Proof. By induction on the number |C|x of free occurrences of x in C. If |C|x = 0 then
x /∈ fv(C) ⊃ dv(C). If |C|x > 0 consider another occurrence C ′⟨t′x⟩ of x in t such that
C ̸≺ C ′, which exists because |C|x > 0 (indeed if C ≺ C ′ then t′x is a sub-term of tx and
does not contribute to |C|x). Since tx is outermost, we have C ′ ∥ C. Now, consider the
double context CC,C′ such that CC,C′⟨·, t′x⟩ = C and CC,C′⟨tx, ·⟩ = C ′. By Lemma 11.5, the
context C ′′ := CC,C′⟨·, λm.m⟩ verifies dv(C ′′) = dv(C) and |C ′′|x ≤ |C|x − 1. Then by i.h.
we have x /∈ dv(C ′′) = dv(C).

23:46 B. Accattoli Vol. 19:4

Lemma 11.13. Let x ∈ dv(C). Then one of the following cases hold:

(1) C = M⟨[m`y, z]C ′⟩ and x = m;
(2) C = M⟨[m5v, y]C ′⟩ and x = m;
(3) C = M⟨[m5V, y]t⟩ and x = m;
(4) C = C ′⟨[e?y]C ′′⟩, x = e, and e /∈ dv(C ′).

Proof. The first three points are simply the observation that if x = m is multiplicative and
m ∈ dv(C) then

• m ∈ fv(C) and so the position of m has to be a multiplicative context M ;
• the occurrence has to be a par or subtraction occurrence by definition of dv(C) (that is, it
cannot be a variable occurrence).

The fourth point is similar but it says something more so we need a bit more. It is by
induction on C. If x = e is exponential and e ∈ dv(C) then C = C ′′⟨[e?y]C ′′′⟩. Now, if
e /∈ dv(C ′′) the statement holds with C ′ := C ′′. Otherwise, by i.h., C ′′ = C ′′′⟨[e?z]C ′′′′⟩ with
e /∈ dv(C ′′′). Then C = C ′′′⟨[e?z]C ′′′′⟨[e?y]C ′′′⟩⟩, which satisfies the statement with respect
to C ′ := C ′′′.

Proposition 11.14 (Fullness). Let t be clash-free. If t is not →ms-normal then t→G s for
some s.

Proof. By induction on t. For variables the statement trivially holds, because they are →ms-
normal. All inductive cases but cut immediately follow from the i.h. Then let t = [v�x]u.
Two cases:

(1) x /∈ fv(u). Then t = [v�x]u→w u. Note that this step is good, so the statement holds
with s := u.

(2) x ∈ fv(u). Two sub-cases:
(a) u is →ms-normal . Let u = C⟨ux⟩ with ux an outermost occurrence of x in u (clearly

C does not capture x). We show that the context [v�x]C is good. By Lemma 7.6,
u is cut-free (because t is clash-free and →ms-normal). Since there are no cuts in C,
C is good. By Lemma 11.12, x /∈ dv(C). Then [v�x]C is good. By clash-freeness,
[v�x]C is the position of a redex, which is then good.

(b) u is not →ms-normal . By i.h., u has a good redex. Let its position be G, with
u = G⟨r⟩. If [v�x]G is a good context then it induces the redex for the statement.
If instead it is a bad context then it must be that x ∈ dv(G). By Lemma 11.13, G
can have 4 possible shapes:

(i) x has a par occurrence: G = M⟨[m`y, z]C⟩ and x = m. By Lemma 11.3 and
the fact that G is good, M is good. Then [v�m]M is good, because (being a
multiplicative variable) m /∈ fv(M) ⊇ dv(M). Since t has no clashes, v is a
tensor pair and [v�m]M is the position of a good redex.

(ii) x has a subtraction occurrence 1 : G = M⟨[m5v, y]C⟩ and x = m. Analo-
gously to the par occurrence.

(iii) x has a subtraction occurrence 2 : G = M⟨[m5C, y]t⟩ and x = m. Analogously
to the par occurrence.

(iv) x has a dereliction occurrence: G = C⟨[e?C ′]⟩, x = e, and e /∈ dv(C).
This case is also similar to the par occurrence, the only difference is that
e /∈ dv(C) is given by Lemma 11.13.4 instead that obtained by linearity as in
the multiplicative cases.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:47

Summing Up. Together with typed strong normalization (anticipating from Section 13),
the properties of the good strategy imply our main result.

Theorem 11.15 (Good polynomial cost model). Let Γ ⊢ t :A be a typed term. Then there
exist k and a cut-free term s such that t →k

G s. Moreover, such a reduction sequence is
implementable on a random access machine in time polynomial in k and |t|.

Proof. By typed strong normalization (Corollary 13.13), →G terminates on t, let s be its →G

normal form. Since typable implies clash-freeness (Lemma 7.6), t is clash-free, and thus so is
s. By fullness (Prop. 11.14) and →G normality, s is →ms-normal, which with clash-freeness
implies that it is cut-free (Lemma 7.6).

Now, about the cost. Let t = t0 →G t1 →G . . . →G tk = s. All steps ti →G ti+1 of
the sequence that are multiplicative, as well as all →axe2 step, do only manipulation of a
constant number of constructors of the term. Therefore, they can clearly be implemented in
time polynomial in |ti|, as searching for a redex and checking that its position is good are
clearly polynomial problems, and there is at most a linear number of redexes in a term. By
a straightforward induction using the sub-term property (Theorem 11.9), one obtains that
|ti| ≤ i · |t0|, and so all those steps have cost polynomial in k and |t0|. Again by the sub-term
property, the cost of duplication/erasure of values in non-linear steps (namely, →axe1 , →!,
and →w steps) is bound by t0, so they have polynomial cost in k and |t0| as well.

About the degree of the polynomial, Accattoli et al. [ABM14, ABM15] show that
strategies with the sub-term property are usually implementable via abstract machines in
time linear in both k and |t|. We expect the linear bound to hold here as well, but we leave
the design of an abstract machine to future work.

12. Untyped Preservation of Strong Normalization

In the ESs literature, the crucial property for a calculus with ESs is preservation of β
strong normalization (shortened to PSN) on untyped terms, that is, that if a λ-term is
SNβ then it is SN when evaluated with ESs. In our setting, it is rephrased as t ∈ SN→ss

implies t ∈ SN→ms . The property ensures that switching to micro-steps does not introduces
unexpected divergence, as it was surprisingly the case, historically, for the first λ-calculus
with ESs by Abadi et al. [ACCL91], as shown by Melliès [Mel95].

Proofs of PSN are often demanding, see Kesner’s survey [Kes07]. Rewriting rules at a
distance enable short proofs, as first showed by Accattoli and Kesner [AK10]. We adapt
and further simplify that proof, that here rests on just two natural properties of micro steps,
here referred to as extension and root cut expansion (Kesner calls the latter IE property),
the latter resting on structural stability of SN, that is, the fact that cut equivalence ≡cut

preserves SN (Prop. 7.11.2).
Extension and root cut expansion shall be used also in the next section, for proving

typed strong normalization for →ss, which is why the statements are given as to cover both
→ms (relevant here for untyped PSN) and →ss (relevant in the next section for typed SN).

Extension. The extension property is the easy fact that, for all root constructs but (non
clashing) cuts, SN follows from SN of the root sub-terms.

Lemma 12.1 (Extension). Let →∈ {→ss,→ms} and t, s, v ∈ SN→. Then:

(1) Neutral: (t, s), λx.t, !t, [m`x, y]t, [m5v, x]t, and [e?x]t are in SN→;

23:48 B. Accattoli Vol. 19:4

(2) Clash: if the root cut of [v�x]t is clashing then [v�x]t ∈ SN→.

Proof. By induction on (in the cases with more than one induction the order between the
components is irrelevant):

• t ∈ SN→ for λx.t, !t, [m`x, y]t, and [e?x]t,
• (t ∈ SN→ , s ∈ SN→) for (t, s),
• (t ∈ SN→ , v ∈ SN→) for [m5v, x]t,
• (t ∈ SN→ , vm ∈ SN→) for [vm�e]t,
• (t ∈ SN→ , ve ∈ SN→) for [ve�m]t.

In each case one shows that all reducts are in SN→ , which follows immediately from the
i.h., because there cannot be interaction between the immediate sub-terms.

Root Cut Expansion. The root cut expansion property is the less obvious fact that if the
reduct of a root small-step cut is SN→ms then the reducing term also is. Kesner isolated the
importance of this property for PSN [Kes09], calling it IE property. Accattoli and Kesner
[AK10, Acc13] show that, with rules at a distance, it is proved via simple inductions (here
even simpler than in [AK10, Acc13] thanks to LSC-style duplication and structural stability),
while commutative rules (such as Girard’s box commutation →� for proof nets) break those
inductions and require more complex techniques.

Proposition 12.2 (Root cut expansion). Let →∈ {→ss,→ms}
(1) Multiplicative: if t 7→m s and s ∈ SN→ then t ∈ SN→.
(2) Exponential: if ve ∈ SN→ and {ve�e}t ∈ SN→ then [ve�e]t ∈ SN→.

Proof.

(1) By induction on s ∈ SN→ , showing that any reduct of t is in SN→ . Cases of the
multiplicative root step:
• 7→axm1 , that is, t = [vm�m]M⟨⟨m⟩⟩ 7→axm1 M⟨⟨vm⟩⟩ = s. If t → t′ by reducing the root
cut then t′ = s ∈ SN→ by hypothesis. The other cases of t→ t′ are:
– Reduction of a cut of M⟨⟨m⟩⟩: that is, [vm�m]M⟨⟨m⟩⟩ → [vm�m]u because M⟨⟨m⟩⟩ →

u. By deformation (Lemma 9.4.1), there are two cases:
(a) u = M ′⟨⟨m⟩⟩ and M⟨⟨vm⟩⟩ → M ′⟨⟨vm⟩⟩. Then we have the following diagram:

[vm�m]M⟨⟨m⟩⟩ M⟨⟨vm⟩⟩

[vm�m]M ′⟨⟨m⟩⟩ M ′⟨⟨vm⟩⟩

axm1

axm1

t = = s

t′ = =: s′

Note that s′ ∈ SN→ because s ∈ SN→ . By i.h. applied to the bottom side of
the diagram, t′ ∈ SN→ .

(b) M = M ′⟨[⟨·⟩�n]u′⟩ for some M ′ and the step M⟨⟨m⟩⟩ → u reduces the cut
on n, that is, u′ = M ′′⟨un⟩ for some M ′′ and variable occurrence un, and
M⟨⟨m⟩⟩ = M ′⟨[m�n]M ′′⟨un⟩⟩ →axm2 M ′⟨M ′′⟨{m�n}un⟩⟩ = u. We have:

[vm�m]M ′⟨[m�n]M ′′⟨un⟩⟩ M ′⟨[vm�n]M ′′⟨un⟩⟩

[vm�m]M ′⟨M ′′⟨{m�n}un⟩⟩

axm1
t = = s

t′ =

Note that t′ ≡cut s. By s ∈ SN→ and structural stability of SN (Prop. 7.11),
we obtain t′ ∈ SN→ .

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:49

– Reduction of a cut of vm: then [vm�m]M⟨⟨m⟩⟩ → [v′m�m]M⟨⟨m⟩⟩ with vm → v′m. We
have the following diagram:

[vm�m]M⟨⟨m⟩⟩ M⟨⟨vm⟩⟩

[v′m�m]M⟨⟨m⟩⟩ M⟨⟨v′m⟩⟩

axm1

axm1

t = = s

t′ = =: s′

Note that s′ ∈ SN→ because s ∈ SN→ . By i.h. applied to the bottom side of the
diagram, t′ ∈ SN→ .

• 7→axm2 , that is, t = [y�x]u 7→axm2 {y�x}u = s. If t→ t′ by reducing the root cut then
t′ = s ∈ SN→ by hypothesis. The other cases of t→ t′ are:
– Reduction of a cut of u, that is [y�x]u→ [y�x]u′ because u→ u′. We have:

[y�x]u {y�x}u

[y�x]u′ {y�x}u′

axm2

axm2

t = = s

t′ = =: s′

where the step from s is given by the stability of steps under renaming (Lemma 7.12.1).
Note that s′ ∈ SN→ because s ∈ SN→ . By i.h. applied to the bottom side of the
diagram, t′ ∈ SN→ .

• 7→⊗, that is, t = [vm�m]M⟨[m`x, y]p⟩ 7→⊗ M⟨L⟨[v�x]L′⟨[v′�y]p⟩⟩⟩ with vm =
(u, r) = (L⟨v⟩, L′⟨v′⟩). If t → t′ by reducing the root cut then t′ = s ∈ SN→
by hypothesis. The other cases of t→ t′ are:
– Reduction of a cut of M⟨[m`x, y]p⟩: then t = [vm�m]M⟨[m`x, y]p⟩ → [vm�m]q

because M⟨[m`x, y]p⟩ → q. By deformation (Lemma 9.4.3), q = M ′⟨[m`x, y]p′⟩
for some M ′ and p′ and also M⟨L⟨[v�x]L′⟨[v′�y]p⟩⟩⟩ → M ′⟨L⟨[v�x]L′⟨[v′�y]p′⟩⟩⟩.
Then we have the following diagram:

[vm�m]M⟨[m`x, y]p⟩ M⟨L⟨[v�x]L′⟨[v′�y]p⟩⟩⟩

[vm�m]M ′⟨[m`x, y]p′⟩ M ′⟨L⟨[v�x]L′⟨[v′�y]p′⟩⟩⟩

⊗

⊗

t = = s

t′ = =: s′

Note that s′ ∈ SN→ because s ∈ SN→ . By i.h. applied to the bottom side of the
diagram, t′ ∈ SN→ .

– Reduction of a cut of vm: if the redex affects only v, v′, L, or L′, then the obvious
diagram together with the i.h. gives the statement.
If the redex is given by a cut in L acting on a variable occurrence in v, that is,
vm = (L⟨v⟩, L′⟨v′⟩) → (L′′⟨v′′⟩, L′⟨v′⟩) = v′m then we have L⟨[v�x]L′⟨[v′�y]p′⟩⟩ →
L′′⟨[v′′�x]L′⟨[v′�y]p′⟩⟩. The diagram is as follows:

[vm�m]M⟨[m`x, y]p⟩ M⟨L⟨[v�x]L′⟨[v′�y]p⟩⟩⟩

[(L′′⟨v′′⟩, L′⟨v′⟩)�m]M ′⟨[m`x, y]p′⟩ L′′⟨[v′′�x]L′⟨[v′�y]p′⟩⟩

⊗

⊗

t = = s

t′ = =: s′

Note that s′ ∈ SN→ because s ∈ SN→ . By i.h. applied to the bottom side of the
diagram, t′ ∈ SN→ .
If the redex is given by a cut in L′ acting on a variable occurrence in v′ the reasoning
is analogous.

• 7→⊸: as the previous case, simply using Lemma 9.4.4 instead of Lemma 9.4.3 at the
corresponding point of the proof.

23:50 B. Accattoli Vol. 19:4

(2) We first treat the case of→ss. By induction on (ve ∈ SN→ss , {ve�e}t ∈ SN→ss), proving
that any reduct of [ve�e]t is in SN→ss . Cases:
• Reduction of the root cut : [ve�e]t 7→! {ve�e}t, which is in SN→ss by hypothesis.
• Reduction of a cut of t: that is, [ve�e]t→ss [ve�e]t′ with t→ss t

′. By stability under
substitution (Lemma 6.7.1), {ve�e}t→ss {ve�e}t′ and so {ve�e}t′ ∈ SN→ . By i.h.
(2nd component, the 1st is unchanged), [ve�e]t′ ∈ SN→ss .
• Reduction of a cut of ve: that is, [ve�e]t→ss [v

′
e�e]t with ve →ss v

′
e. By Lemma 6.7.1,

{ve�e}t→∗
ss {v′e�e}t, and so {v′e�e}t ∈ SN→ss . By i.h. (1st component), [v′e�e]t ∈

SN→ss .
Now, the case of →ms, which is similar. By induction on (ve ∈ SN→ms , {ve�e}t ∈
SN→ms , |t|e), proving that any reduct of [ve�e]t is in SN→ms . The cases where reduction
takes place in t or ve go exactly as for →ss, because by full composition (Prop. 7.1) →ms

simulates →ss. What changes is when the root cut is reduced. Cases:
• 7→axe1 , that is, [ve�e]t = [ve�e]C⟨⟨e⟩⟩ 7→axe1 [ve�e]C⟨⟨ve⟩⟩. Note that we can assume
that e /∈ fv(ve). Since {ve�e}C⟨⟨e⟩⟩ = {ve�e}C⟨⟨ve⟩⟩ (by Lemma 6.6.3) and |C⟨⟨ve⟩⟩|e <
|C⟨⟨e⟩⟩|e, we can apply the i.h. to {ve�e}C⟨⟨ve⟩⟩ (3rd component decreases, 1st and
2nd unchanged), obtaining [ve�e]C⟨⟨ve⟩⟩ ∈ SN→ms .
• 7→axe2 , that is, ve = f and the step is [f�e]t = [f�e]C⟨[e?x]u⟩ 7→axe2 [f�e]C⟨[f?x]u⟩.
Since {f�e}C⟨[e?x]u⟩ = {f�e}C⟨[f?x]u⟩ (by Lemma 6.6.3) and |C⟨[f?x]u⟩|e <
|C⟨[e?x]u⟩|e, we can apply the i.h. to {f�e}C⟨[f?x]u⟩ (3rd component decreases, 1st
and 2nd unchanged), obtaining [f�e]C⟨[f?x]u⟩ ∈ SN→ms .
• 7→!, that is, ve = !s = !L⟨v⟩ and the step is:

[!s�e]t = [!s�e]C⟨[e?x]u⟩ 7→! [!s�e]C⟨L⟨[v�x]u⟩⟩
Note that we can assume e /∈ fv(ve). Since {!s�e}C⟨[e?x]u⟩ = {!s�e}C⟨L⟨[v�x]u⟩⟩
(by Lemma 6.6.3) and |C⟨L⟨[v�x]u⟩⟩|e < |C⟨[e?x]u⟩|e, we can apply the i.h. to
{!s�e}C⟨L⟨[v�x]u⟩⟩ (3rd component decreases, 1st and 2nd unchanged), obtaining
[!s�e]C⟨L⟨[v�x]u⟩⟩ ∈ SN→ms .
• 7→w, that is, e /∈ fv(t) and [ve�e]t 7→w t. Note that t = {ve�e}t, which is in SN→ms

by hypothesis.

PSN. Now, PSN is proved via a very easy induction over t ∈ SN→ss and the size |t| of t,
using the two properties.

Theorem 12.3 (Untyped PSN). If t ∈ SN→ss then t ∈ SN→ms.

Proof. By induction on (t ∈ SN→ss , |t|). Cases of t:
• All cases but cut : they follow from the i.h. and neutral extension (Lemma 12.1). We give
the details of one case. Let t = [m5v, x]s. By i.h. (2nd component), v, s ∈ SN→ms . By
extension, t ∈ SN→ms .
• Root cut , that is, t = [v�x]s. There are three cases, handled by either clashing extension
(Lemma 12.1) or root cut expansion (Prop. 12.2):
(1) The root cut is clashing . By i.h. (2nd component), v, s ∈ SN→ms . By clashing

extension, t ∈ SN→ms .
(2) The root cut is multiplicative and not clashing . Then t 7→m u. By i.h. (1st component),

u ∈ SN→ms . By multiplicative root cut expansion, t ∈ SN→ms .
(3) The root cut is exponential . By i.h. (2nd component), v ∈ SN→ms . We have t =

[ve�e]s→ess {ve�e}s. By i.h. (1st component), {ve�e}s ∈ SN→ms . By exponential
root cut expansion, [ve�e]s ∈ SN→ms .

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:51

The next section proves typed SN for →ss, which then transfers to →ms by PSN. The
relevance of PSN, however, is that it holds in the untyped setting, thus it transfers SN also
if proved with respect to other type systems, such as intersection types, polymorphic types,
and so on.

13. Typed Strong Normalization

Here we prove strong normalization (SN) of the IMELL-typed small-step ESC (then trans-
ferred to the micro-step ESC by PSN) using the reducibility method. We do it following
the bi-orthogonal schema for proof nets by Girard [Gir87], see also Pagani and Tortora de
Falco [PTdF10]. We actually adopt here the variant by Accattoli [Acc13], the main point of
which is that without commutative exponential rules (as it is also the case here) there is
a simpler proof of adequacy (the key step of the method) based on the root cut expansion
property of the previous section. There are three differences between the present proof and
[Acc13] (beyond a neater technical development here):

(1) Formal : the study in [Acc13] uses proof nets and an informal term notation with explicit
and meta-level substitutions. That informal notation is here replaced by a formal one,
the ESC;

(2) Exponential rules: both studies use rules without commutative cases, but here we use
LSC-style duplications, obtaining a simpler proof of root cut expansion.

(3) Quotient vs cut equivalence: the quotient on proofs given by proof nets plays a subtle
role in the proof of adequacy. The argument is here replaced by structural stability of
SN, that is, the stability by cut equivalence ≡cut of SN.

We are also inspired by Riba’s dissection of reducibility [Rib08], and refer to [Acc13] for
extensive discussions and references about SN in linear logic.

To our knowledge, the literature contains only two studies of SN for a linear term
calculus:

• Benton [Ben95], who, as he points out, does not deal with commutative cases—that are
nonetheless crucial in his presentation—thus not really proving SN;
• Pérez et al. [PCPT14], where cut elimination is seriously restricted because they use it
to model process communication, which does not take place under prefixes. Logically, it
means that their notion of cut elimination does not compute cut-free proofs.

Key Properties. The reducibility method requires a number of definitions, detailed in the
next paragraphs. Because of the many technicalities, it is easy to loose sight of what are the
crucial concepts at work in the proof. From a high-level perspective, our proof is based only
on three key properties of →ss:

(1) Structural stability of SN : if t ∈ SN→ss and t ≡cut s then s ∈ SN→ss (Prop. 7.11),
(2) Extension (Lemma 12.1), and
(3) Root cut expansion (Prop. 12.2).

Since they also hold for micro-step cut elimination →ms, our proof works with only minor
changes also for micro-steps, without really needing PSN.

23:52 B. Accattoli Vol. 19:4

Elimination Contexts and Duality. The bi-orthogonal technique we follow is based on a
notion of duality defined via elimination contexts, that are contexts of the form L⟨[⟨·⟩�x]t⟩,
noted E. Types can be extended to contexts by considering ⟨·⟩ as a free variable and typing
it via an axiom, as follows:

axctx⟨·⟩ :A ⊢ ⟨·⟩ :A
Let us set some notations:

• Terms⊢A for the set of terms t of type A, that is, such that Γ ⊢ t :A, and also VA :=
Terms⊢A ∩ V.
• ElCtxsA := {E | Γ, ⟨·⟩ :A ⊢ E :B} the set of typed elimination contexts with hole of type
A, and say that E has co-type A.
• ElVarsA := {E ∈ ElCtxsA | E = [⟨·⟩�x]x}.
• E ∈ SN→ss if E = L⟨[⟨·⟩�x]t⟩ and L⟨{y�x}t⟩ ∈ SN→ss for every variable y of the same
kind as x which is not captured by L.

Remark 13.1. Checking that E = L⟨[⟨·⟩�x]t⟩ is in SN→ss amounts to prove that
L⟨{y�x}t⟩ = {y�x}L⟨t⟩ ∈ SN→ss for every appropriate y. By the stability of SN by
renamings (Lemma 7.12.2), it is enough to prove that L⟨t⟩ ∈ SN→ss .

Definition 13.2 (Duality). Given a set S ⊆ Terms⊢A of terms of type A, the dual set
S⊥ ⊆ ElCtxsA contains the elimination contexts E of co-type A such that E⟨⟨t⟩⟩ is proper
and in SN→ss for every t ∈ S. The dual of a set of elimination contexts E ⊆ ElCtxsA of
co-type A is a set of terms E⊥ defined symmetrically.

Note the use of ⟨⟨·⟩⟩ in the definition of duality: the plugging in contexts at work in
duality does not capture the variables of the plugged term, this is crucial, and standard in
the reducibility method.

The following properties of duality are standard.

Lemma 13.3 (Basic properties of duality). If S ⊆ Terms⊢A or S ⊆ ElCtxsA then:

(1) Closure: S ⊆ S⊥⊥;
(2) Bi-orthogonal: S⊥⊥⊥ = S⊥.

Generators, Candidates, and Formulas. The definition of reducibility candidates comes
together with a notion of generator, justified by the proposition that follows (which requires
an auxiliary lemma).

Definition 13.4 (Generators and candidates). A generator of type A (resp. co-type A) is a
sub-set S ⊆ Terms⊢A (resp. S ⊆ ElCtxsA) such that:

(1) Non-emptyness: S ≠ ∅, and
(2) Strong normalization: S ⊆ SN→ss .

A generator S of type A (resp. co-type A) is a candidate if

(1) Variables: VA ⊆ S (resp. ElVarsA ⊆ S), and
(2) Bi-orthogonal : S = S⊥⊥.

Lemma 13.5 (Duality and SN). Let t ∈ Terms⊢A and E ∈ ElCtxsA.

(1) If E⟨⟨t⟩⟩ ∈ SN→ss then t ∈ SN→ss and E ∈ SN→ss.
(2) If t ∈ SN→ss and E ∈ ElVarsA then E⟨⟨t⟩⟩ ∈ SN→ss.
(3) If E ∈ SN→ss and y ∈ VA then E⟨⟨y⟩⟩ ∈ SN→ss.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:53

Proof.

(1) By induction on E⟨⟨t⟩⟩ ∈ SN→ss . Let t = L⟨v⟩ and E = L′⟨[⟨·⟩�x]s⟩, so that E⟨⟨t⟩⟩ =
L′⟨L⟨[v�x]s⟩⟩. The proof of the statement is based on the obvious fact that every step
from t or L′⟨s⟩ (we rely on Remark 13.1) can be mimicked on L′⟨L⟨[v�x]s⟩⟩, so that
one can then apply the i.h.

(2) If E ∈ ElVarsA then E = [⟨·⟩�x]x. Let t = L⟨v⟩. We have to prove that E⟨⟨t⟩⟩ =
L⟨[v�x]x⟩ ∈ SN→ss . By induction on t ∈ SN→ss we show that all the reducts of s are in
SN→ss . If E⟨⟨t⟩⟩ →ss t by reducing the cut on x, then the reduct is t, which is in SN→ss

by hypothesis. Otherwise, E⟨⟨t⟩⟩ makes a step in v, or in L, or involving both L and v.
The same step can be done on t, and thus by i.h. the reduct is in SN→ss .

(3) Let L⟨[⟨·⟩�x]t⟩ ∈ E, so that E⟨⟨y⟩⟩ = L⟨[y�x]t⟩. If E⟨⟨y⟩⟩ →ss L⟨{y�x}t⟩ then the
reduct is in SN→ss by the hypothesis on E. Otherwise, E⟨⟨y⟩⟩ makes a step in t, or in L,
or involving both L and t. The same step can be done on L⟨t⟩ (we rely on Remark 13.1),
and thus by i.h. the reduct is in SN→ss .

Proposition 13.6. If S is a generator then S⊥ is a candidate.

Proof. We first consider the case S ⊆ Terms⊢A. Properties:

• Strong normalization: let E = L′⟨[⟨·⟩�x]s⟩ ∈ S⊥ and t = L⟨v⟩ ∈ S ̸= ∅. By duality,
E⟨⟨t⟩⟩ ∈ SN→ss . By Lemma 13.5.1, E ∈ SN→ss .
• Variables (which subsumes non-emptyness): let t = L⟨v⟩ ∈ S and [⟨·⟩�x]x ∈ ElVarsA. By
S ⊆ SN→ss and Lemma 13.5.2 we obtain L⟨[v�x]x⟩ ∈ SN→ss , that is, [⟨·⟩�x]x ∈ S⊥.
• Bi-orthogonal : by the by-orthogonal property of duality (Lemma 13.3).

Now, the case S ⊆ ElCtxsA. Properties:

• Strong normalization: let t = L⟨v⟩ ∈ S⊥ and E = L′⟨[⟨·⟩�x]s⟩ ∈ S ̸= ∅. By duality,
E⟨⟨t⟩⟩ ∈ SN→ss . By Lemma 13.5.1, t ∈ SN→ss .
• Variables (which subsumes non-emptyness): let E ∈ S and x ∈ VA. By S ⊆ SN→ss and
Lemma 13.5.3 we obtain E⟨⟨x⟩⟩ ∈ SN→ss , that is, x ∈ S⊥.
• Bi-orthogonal : by the by-orthogonal property of duality (Lemma 13.3).

We now associate to every formula A a set SJAK that we then prove to be a generator, so
that its bi-orthogonal is a candidate by Prop. 13.6. A minor unusual point is that we define
the set SJXmK for the atomic formula as the set of multiplicative variables. The literature
rather defines it as TermsXm ∩ SN→ss , which is wacky, as this is actually what the method is
meant to prove!

Definition 13.7 (Formulas candidates). Set JAK := S⊥⊥
JAK , where SJAK is defined by induction

on A:

• SJXmK := Vm;
• SJA⊗BK := {(t, s) | t ∈ JAK, s ∈ JBK, (t, s) is proper};

• SJA⊸BK :=

λx.t

∣∣∣∣∣ Γ, x :A ⊢ t :B,
L⟨[v�x]t⟩ ∈ JBK∀s = L⟨v⟩ ∈ JAK, and
λx.t is proper

;

• SJ!AK := {!t | t ∈ JAK, !t is proper}.

The proof that JAK is a candidate for every A requires a lemma for the lolli case.

Lemma 13.8. If JAK ⊆ SN→ss and VB ⊆ JBK then SJA⊸BK ̸= ∅.

23:54 B. Accattoli Vol. 19:4

Proof. We show that λx.[m5x, y]y ∈ SJA⊸BK. The idea is that the body [m5x, y]y of that
abstraction is the smallest term t verifying the typing requirement Γ, x :A ⊢ t :B when
A ̸= B. By definition, λx.[m5x, y]y ∈ SJA⊸BK holds if L⟨[v�x][m5x, y]y⟩ ∈ JBK for every

L⟨v⟩ ∈ JAK, that is, E⟨⟨L⟨[v�x][m5x, y]y⟩⟩⟩ ∈ SN→ss for every E ∈ JBK⊥. By hypothesis,
VB ⊆ JBK, and duality gives E⟨⟨y⟩⟩ ∈ SN→ss . By hypothesis, we also have L⟨v⟩ ∈ SN→ss .
The proof is in two steps:

• Proving t := E⟨⟨L⟨[m5v, y]y⟩⟩⟩ ∈ SN→ss : note that the two components L⟨v⟩ and E⟨⟨y⟩⟩
cannot interact in any way, so that every step of t comes from a step of either L⟨v⟩ or
E⟨⟨y⟩⟩, as in the proof of the extension property. Formally, the proof is by induction on
(L⟨v⟩ ∈ SN→ss , E⟨⟨y⟩⟩ ∈ SN→ss).
• Proving s := E⟨⟨L⟨[v�x][m5x, y]y⟩⟩⟩ ∈ SN→ss : note that t = E⟨⟨L⟨[m5v, y]y⟩⟩⟩ =
{v�x}E⟨⟨L⟨[m5x, y]y⟩⟩⟩, thus by root cut expansion we obtain [v�x]E⟨⟨L⟨[m5x, y]y⟩⟩⟩ ∈
SN→ss . By structural stability, [v�x]E⟨⟨L⟨[m5x, y]y⟩⟩⟩ ≡cut s ∈ SN→ss .

Therefore, λx.[m5x, y]y ∈ SJA⊸BK ̸= ∅.

The proof of the next proposition is simple and yet tricky: by induction on A, it uses
Prop. 13.6 to prove 2 from 1, and 3 from 2, but it also needs 3 (on sub-formulas) to prove 1.

Proposition 13.9 (Formulas induce reducibility candidates). Let A be a IMELL formula.

(1) Generators: SJAK is a generator.

(2) Dual candidates: JAK⊥ is a candidate.
(3) Candidates: JAK is a candidate.

Proof. We prove the first point, the second follows from the first and Prop. 13.6, the third
one follows from the second and Prop. 13.6. By induction on A. All the inductive cases of
the proof use the extension property (Lemma 12.1). Cases:

• Base, i.e. A = Xm. Note that SJXmK is non-empty by definition and that all its elements
are normal.
• Tensor , i.e. A = B⊗C. By point 3 of the i.h., JBK, JCK ⊆ SN→ss and they are non-empty.
Then SJB⊗CK is non-empty. By extension, SJB⊗CK ⊆ SN→ss .
• Implication, i.e. A = B ⊸ C. Proving that SJB⊸CK is non-empty requires the previous
lemma, because by definition it does not contains the variables of type B ⊸ C, nor it is
defined by abstracting terms in JCK. By i.h. (point 3) applied to C, VC ⊆ JCK, and By
i.h. (point 3) applied to B, L⟨v⟩ ∈ SN→ss . Then by Lemma 13.8, SJB⊸CK ̸= ∅.

Since variables are in JBK (by Point 3 of the i.h.), if λx.u ∈ SJB⊸CK then [x�x]u ∈ JCK.
By i.h. (Point 3), [x�x]u ∈ SN→ss and so does u. By extension, λx.u ∈ SN→ss . Therefore
SJB⊸CK ⊆ SN→ss .
• Bang , i.e. A = !B. By point 3 of the i.h., JBK ⊆ SN→ss and it is non-empty. Then SJ!BK
is non-empty. By extension, SJ!BK ⊆ SN→ss .

Reducibility and Adequacy. In the following notion of reducible derivations, the rigid
structure of terms forces an order between the assignments in the typing context Γ, that is,
it treats Γ as a list rather than as a multi-set. The proof of adequacy then considers that
the sequent calculus comes with an exchange rule, treated by one of the cases.

Definition 13.10 (Reducible derivations). Let π ▷ Γ ⊢ t :A be a typing derivation, and
Γ = x1 :B1, .., xk :Bk. Then π is reducible if [v1�x1] . . . [vk�xk]t ∈ JAK for every value

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:55

vi ∈ SJBiK such that the introduced cuts are independent, that is, fv(vi) ∩ dom(Γ) = ∅. To
ease notations, we shorten [v1�x1] . . . [vk�xk]t to [vi�xi]Γt.

Before proving adequacy, we provide an equivalent but slightly extended reformulation of
the reducibility clause, in which the variables xi are cut with arbitrary terms, not necessarily
with values. The variant is used in the proof of adequacy below when dealing with:

• the left rules, as they either have L⟨v⟩ as hypothesis (cut and subtraction) or their
associated rewriting rules (which are used in the proof) split terms on-the-fly (par and
dereliction);
• the right rule for ⊸, because split terms are used in the definition of SJA⊸BK.

Notations: if s = L⟨v⟩, we use [⟨s⟩�x]t for L⟨[v�x]t⟩, and given Γ = x1 :B1, .., xk :Bk and
si of type Bi for i = 1, . . . , k we use [⟨si⟩�xi]Γt for [⟨s1⟩�x1] . . . [⟨sk⟩�xk]t.

Lemma 13.11 (Extended reducibility clause). Let π ▷ Γ ⊢ t :A with Γ = x1 :B1, .., xk :Bk

be a typed derivation. Then π is reducible if and only if [⟨s⟩�xi]Γt ∈ JAK for every s ∈ JBiK
such that the introduced cuts are independent.

Proof. Direction ⇐ is obvious because SJBiK ⊆ JBiK, we prove direction ⇒. Let Γ =
∆, x :B,Π. The hypothesis is

E⟨⟨[vi�yi]Π[v�x][vj�zj]∆t⟩⟩ ∈ SN→ss . (13.1)

for every v ∈ SJBK and appropriate vi and vj . We show that we can replace v with s ∈ JBK,
that is, that the following holds:

E⟨⟨[vi�yi]Π[⟨s⟩�x][vj�zj]∆t⟩⟩ ∈ SN→ss . (13.2)

By iterating the reasoning on all other values vi and vj one obtains the statement. Since

(13.1) holds for all v ∈ SJBK we have that E′ := E⟨⟨[vi�yi]Π[⟨·⟩�x][vj�zj]∆t⟩⟩ ∈ S⊥JBK = JBK⊥.
Note that the cuts [vi�yi]Π and [vj�zj]∆ can be added to the elimination context exactly
because they are independent. Now, by duality we obtain E′⟨⟨s⟩⟩ ∈ SN→ss for every s ∈ JBK,
which is exactly (13.2).

Theorem 13.12 (Adequacy). Let π ▷ Γ ⊢ t :A a type derivation. Then π is reducible.

Proof. By induction on π. The proof rests on the three rewriting properties mentioned at the
beginning of the section, namely extension, root cut expansion, and structural stability. Let
Γ = x1 :B1, .., xk :Bk. We show the most relevant cases, the other ones are in Appendix A,
page 64. Cases of the last rule of π:

• Exponential axiom:
axe

e : !A ⊢ e : !A
We need to show that E⟨⟨[!s�e]e⟩⟩ ∈ SN→ss for every term s ∈ JAK ⊆ SN→ss and every
elimination context E ∈ J!AK⊥. Note that E⟨⟨[!s�e]e⟩⟩ →! E⟨⟨!s⟩⟩ which is in SN→ss by
duality. Note also that E⟨⟨!s⟩⟩ = E⟨⟨{!s�e}e⟩⟩ = {!s�e}E⟨⟨e⟩⟩. By extension, !s ∈ SN→ss .
Since both !s and {!s�e}E⟨⟨e⟩⟩ are in SN→ss , root cut expansion gives [!s�e]E⟨⟨e⟩⟩ ∈ SN→ss .
By structural stability, [!s�e]E⟨⟨e⟩⟩ ≡cut E⟨⟨[!s�e]e⟩⟩ ∈ SN→ss .

Note that the two terms [!s�e]E⟨⟨e⟩⟩ and E⟨⟨[!s�e]e⟩⟩ do translate to the same proof net,
which is why structural stability does not appear in the proofs of SN for proof nets. In
the intuitionistic case with weakenings, however, one needs some form of jumps and jump
rewiring rules, so an analogous of structural stability would be most probably needed.
There are no proofs of SN for intuitionistic proof nets in the literature.

23:56 B. Accattoli Vol. 19:4

• Exponential inductive cases . We show the promotion and contraction cases, the weakening
and dereliction cases are minor variations over the contraction one.
– Promotion:

ρ ▷ !∆ ⊢ s :C
!r!∆ ⊢ !s : !C

With t = !s and Γ = !∆. Let !∆ = e1 : !B1, . . . , ek : !Bk. We need to prove that
[!ui�ei]!∆!s ∈ J!CK for every term ui ∈ JBiK, that is, E⟨⟨[!ui�ei]!∆!s⟩⟩ ∈ SN→ss for every
elimination context E ∈ J!CK⊥. By i.h., ρ is reducible, therefore [!ui�ei]!∆s ∈ JCK, and
so ![!ui�ei]!∆s ∈ J!CK, that is, E⟨⟨![!ui�ei]!∆s⟩⟩ ∈ SN→ss . Note that we have
E⟨⟨![!ui�ei]!∆s⟩⟩ →∗

ess E⟨⟨!{!ui�ei}!∆s⟩⟩ = E⟨⟨{!ui�ei}!∆!s⟩⟩ = {!ui�ei}!∆E⟨⟨!s⟩⟩
which is then in SN→ss . By hypothesis, ui ∈ JBiK, which implies ui ∈ SN→ss by the
properties of candidates (Prop. 13.9), thus !ui ∈ SN→ss by extension. By root cut
expansion, [!ui�ei]!∆E⟨⟨!s⟩⟩ ∈ SN→ss . By structural stability,

[!ui�ei]!∆E⟨⟨!s⟩⟩ ≡cut E⟨⟨[!ui�ei]!∆!s⟩⟩ ∈ SN→ss .
– Contraction:

∆, e : !B, f : !B ⊢ s :A
c

∆, e : !B ⊢ {e�f}s :A
with t = {e�f}s and Γ = ∆, e : !B. We use the notation xi :Bi for the assignments in ∆.
By i.h., s′ := E⟨⟨[vi�xi]∆[!u�e][!u�f]s⟩⟩ ∈ SN→ss for every u ∈ JBK, every vi ∈ SJBiK
for i ∈ {1, . . . , k}, and every E ∈ JAK⊥. We have:

s′ →∗
ess E⟨⟨[vi�xi]∆{!u�e}{!u�f}s⟩⟩ ∈ SN→ss .

By the properties of meta-level substitution (namely Lemma 6.6.8), we have
E⟨⟨[vi�xi]∆{!u�e}{!u�f}s⟩⟩ = E⟨⟨[vi�xi]∆{!u�e}{e�f}s⟩⟩

which is equal to E⟨⟨{!u�e}[vi�xi]∆{e�f}s⟩⟩ by the independence of cuts in the defi-
nition of reducibility, in turn equal to {!u�e}E⟨⟨[vi�xi]∆{e�f}s⟩⟩. Since u ∈ JBK, we
have u ∈ SN→ss by the properties of candidates (Prop. 13.9), thus !u ∈ SN→ss by
extension. By root cut expansion, [!u�e]E⟨⟨[vi�xi]∆{e�f}s⟩⟩ ∈ SN→ss . By structural
stability,

[!u�e]E⟨⟨[vi�xi]∆{e�f}s⟩⟩ ≡cut E⟨⟨[vi�xi]∆[!u�e]{e�f}s⟩⟩ ∈ SN→ss .
which is exactly what is required.

• Multiplicative inductive cases. We show the lolli and subtraction cases. The subtraction
case, in particular, combines the reasoning at work in both the simpler cut and par cases,
which are in the appendix.
– Lolli :

ρ ▷ x :B,Γ ⊢ s :C
⊸r

Γ ⊢ λx.s :B ⊸ C
with t = λx.s and A = B ⊸ C. We have to show that t′ := E⟨⟨[vi�xi]Γλx.s⟩⟩ ∈ SN→ss

for every vi ∈ SJBiK for i ∈ {1, . . . , k} and every E ∈ JB ⊸ CK⊥. By i.h. on ρ and
the extended reducibility clause (Lemma 13.11), we have L′⟨[v�x][vi�xi]Γs⟩ ∈ JCK
for every L′⟨v⟩ ∈ JBK and with x /∈ fv(vi) for all i because of the independence of
cuts in the definition of reducibility. Then λx.[vi�xi]Γs ∈ JB ⊸ CK. By duality,
E⟨⟨λx.[vi�xi]Γs⟩⟩ ∈ SN→ss . By structural stability and x /∈ fv(vi),

E⟨⟨λx.[vi�xi]Γs⟩⟩ ≡cut E⟨⟨[vi�xi]Γλx.s⟩⟩ = t′ ∈ SN→ss .
– Subtraction:

πl ▷ Γl ⊢ L⟨v⟩ :C πr ▷ Γr, x :B ⊢ s :A Γ#(Γr, x :B), m fresh
⊸l

Γl,Γr,m :C ⊸ B ⊢ L⟨[m5v, x]s⟩ :A
with t = L⟨[m5v, x]s⟩ and Γ = Γl,Γr,m :C ⊸ B. This case combines the reasoning
for the unary left rules with the one for cut. We have to show that

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:57

t′ := E⟨⟨[vi�xi]Γ[λy.r�m]L⟨[m5v, x]s⟩⟩⟩ ∈ SN→ss .

for every vi ∈ SJBiK for i ∈ {1, . . . , k}, every λy.r ∈ SJC⊸BK, and every E ∈ JAK⊥.
By i.h. on πl, we have [vi�xi]Γl

L⟨v⟩ ∈ JCK. By definition of λy.r ∈ SJC⊸BK, we
obtain [vi�xi]Γl

L⟨[v�y]r⟩ ∈ JBK. Let r = L′⟨v′⟩. Then [vi�xi]Γl
L⟨[v�y]L′⟨v′⟩⟩ ∈

JBK. By i.h. πr is reducible. By the extended reducibility clause (Lemma 13.11),
[vi�xi]Γr [vi�xi]Γl

L⟨[v�y]L′⟨[v′�x]s⟩⟩ ∈ JAK, that is,
E⟨⟨[vi�xi]Γr [vi�xi]Γl

L⟨[v�y]L′⟨[v′�x]s⟩⟩⟩⟩ =
E⟨⟨[vi�xi]ΓL⟨[v�y]L′⟨[v′�x]s⟩⟩⟩⟩ ∈ SN→ss .

By root cut expansion, [λy.L′⟨v′⟩�m]E⟨⟨[vi�xi]ΓL⟨[m5v, x]s⟩⟩⟩ ∈ SN→ss . By structural
stability, [λy.L′⟨v′⟩�m]E⟨⟨[vi�xi]ΓL⟨[m5v, x]s⟩⟩⟩ ≡cut t

′ ∈ SN→ss .

Corollary 13.13 (Typable terms are SN). Let t be a typable term. Then t ∈ SN→ss and
t ∈ SN→ms.

Proof. Since t is typable, we have π ▷ x1 :B1, . . . , xk :Bk ⊢ t :A, for some derivation π. By
adequacy (Theorem 13.12), π is reducible. By Prop. 13.9, xi ∈ JBiK for i ∈ {1, . . . , k} and
[⟨·⟩�y]y ∈ JAK⊥. Let t = L⟨v⟩. By reducibility of π, s := [x1�x1] . . . [xk�xk]L⟨[v�y]y⟩ ∈
SN→ss . Note that s→∗

ss t, thus t ∈ SN→ss . By PSN (Theorem 12.3), t ∈ SN→ms .

14. Conclusions

This work lifts Accattoli and Kesner’s linear substitution calculus to the sequent calculus for
IMELL via three generalizations: adding explicit (non-)linearity, a simple form of pattern
matching (⊗), and replacing applications with subtractions.

We provide three main contributions for the new exponential substitution calculus.
Firstly, we show that IMELL untyped exponentials, in contrast to the classical case, are
strongly normalizing. Secondly, we define the good evaluation strategy and show that it
has the sub-term property, obtaining the first polynomial cost model for IMELL. Thirdly,
we provide elegant proofs of confluence, strong normalization, and preservation of strong
normalization.

Methodologically, we provide an extensive study of linear logic cut elimination that is
not based on proof nets.

The Next Step. In the λ-calculus, the number of (leftmost) β-steps is a polynomial cost
model [ADL16]. Since one β-steps is simulated in IMELL by one multilicative step (actually
a →⊸ step) followed by possibly many exponential steps, it means that one can count
only the number of multiplicative (or even →⊸) steps, that is, one can count zero for
exponential steps. Such a surprising fact is enabled by a sophisticated technique called
useful sharing [ADL16, ACSC21, AL22]. Can useful sharing be generalized to the ESC as
to turn the number of multiplicative/→⊸ good steps into a polynomial time cost model?
For this, termination of untyped exponentials is mandatory, thus, the results of this paper
suggest that it might be possible. Still, the question is far from obvious, as in the λ-calculus
there is a strong, hardcoded correlation between multiplicatives and exponentials, not
present in IMELL. In the standard call-by-name/value encodings of λ-calculus in IMELL,
indeed, multiplicatives and exponentials connectives rigidly alternate, while IMELL enables
consecutive exponentials, as in !!A, enabling wilder exponential behaviour.

23:58 B. Accattoli Vol. 19:4

Further Future Work. Beyond refining the cost model, there are many possible directions
for future work. Is the good strategy normalizing on untyped (clash-free) terms (that is,
does it reach a cut-free reduct whenever there is one)? Good redexes are not stable by
cut/left-equivalence: is there a generalization that is stable? Is it possible to measure
good steps via relational semantics/multi types, refining the work of de Carvalho et al.
[dCPTdF11]? Being a generalization of linear head reduction, does the good strategy have
a similar connection to game semantics (see [DHR96, Cla15])? Can the good strategy be
exploited for implicit computational complexity? Can the left context/value splitting be
given a logical status? What about a LSC/cost-aware approach for the additives?

Acknowledgments

To Delia Kesner, for asking the question that triggered this work. To Giulio Guerrieri,
Claudio Sacerdoti Coen, and Olivier Laurent for feedback.

References

[ABKL14] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard
standardization theorem. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 659–670. ACM, 2014. doi:10.1145/2535838.
2535886.

[ABM14] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract machines. In
Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN
international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014,
pages 363–376. ACM, 2014. doi:10.1145/2628136.2628154.

[ABM15] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. A strong distillery. In Xinyu Feng
and Sungwoo Park, editors, Programming Languages and Systems - 13th Asian Symposium,
APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings, volume
9458 of Lecture Notes in Computer Science, pages 231–250. Springer, 2015. doi:10.1007/
978-3-319-26529-2_13.

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci.,
111(1&2):3–57, 1993. doi:10.1016/0304-3975(93)90181-R.

[Acc12] Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In Ashish Ti-
wari, editor, 23rd International Conference on Rewriting Techniques and Applications (RTA’12),
RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15 of LIPIcs, pages 6–21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.RTA.2012.6.

[Acc13] Beniamino Accattoli. Linear logic and strong normalization. In Femke van Raamsdonk, editor,
24th International Conference on Rewriting Techniques and Applications, RTA 2013, June
24-26, 2013, Eindhoven, The Netherlands, volume 21 of LIPIcs, pages 39–54. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.RTA.2013.39.

[Acc18] Beniamino Accattoli. Proof nets and the linear substitution calculus. In Bernd Fischer and Tarmo
Uustalu, editors, Theoretical Aspects of Computing - ICTAC 2018 - 15th International Collo-
quium, Stellenbosch, South Africa, October 16-19, 2018, Proceedings, volume 11187 of Lecture
Notes in Computer Science, pages 37–61. Springer, 2018. doi:10.1007/978-3-030-02508-3_3.

[Acc22] Beniamino Accattoli. Exponentials as substitutions and the cost of cut elimination in linear
logic (v1), 2022. URL: https://arxiv.org/abs/2205.15203v1.

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
J. Funct. Program., 1(4):375–416, 1991. doi:10.1017/S0956796800000186.

https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1016/0304-3975(93)90181-R
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.4230/LIPIcs.RTA.2013.39
https://doi.org/10.1007/978-3-030-02508-3_3
https://arxiv.org/abs/2205.15203v1
https://doi.org/10.1017/S0956796800000186

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:59

[ACGSC19] Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, and Claudio Sacerdoti Coen. Crum-
bling abstract machines. In Ekaterina Komendantskaya, editor, Proceedings of the 21st Interna-
tional Symposium on Principles and Practice of Programming Languages, PPDP 2019, Porto,
Portugal, October 7-9, 2019, pages 4:1–4:15. ACM, 2019. doi:10.1145/3354166.3354169.

[ACM00] Andrea Asperti, Paolo Coppola, and Simone Martini. (Optimal) Duplication is not Elementary
Recursive. In POPL 2000, pages 96–107, 2000. doi:10.1145/325694.325707.

[ACSC21] Beniamino Accattoli, Andrea Condoluci, and Claudio Sacerdoti Coen. Strong call-by-value
is reasonable, implosively. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14. IEEE, 2021. doi:
10.1109/LICS52264.2021.9470630.

[AD17] Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Log. Methods
Comput. Sci., 13(1), 2017. doi:10.23638/LMCS-13(1:8)2017.

[ADL12] Beniamino Accattoli and Ugo Dal Lago. On the invariance of the unitary cost model for head
reduction. In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques
and Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15 of
LIPIcs, pages 22–37. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:10.4230/
LIPIcs.RTA.2012.22.

[ADL16] Beniamino Accattoli and Ugo Dal Lago. (Leftmost-Outermost) Beta-Reduction is Invariant,
Indeed. Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

[ADLV22] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Reasonable space for the λ-calculus,
logarithmically. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 47:1–47:13.
ACM, 2022. doi:10.1145/3531130.3533362.

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-
by-need lambda calculus. In 22nd ACM Symposium on Principles of Programming Languages,
POPL’95, pages 233–246. ACM Press, 1995. doi:10.1145/199448.199507.

[AK10] Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj Dawar and
Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010, 19th
Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings,
volume 6247 of Lecture Notes in Computer Science, pages 381–395. Springer, 2010. doi:

10.1007/978-3-642-15205-4_30.
[AL22] Beniamino Accattoli and Maico Leberle. Useful open call-by-need. In Florin Manea and Alex

Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022,
February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages
4:1–4:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.
2022.4.

[AP12] Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Tom Schrijvers and
Peter Thiemann, editors, Functional and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, volume 7294 of Lecture Notes in
Computer Science, pages 4–16. Springer, 2012. doi:10.1007/978-3-642-29822-6_4.

[Asp98] Andrea Asperti. Light affine logic. In Thirteenth Annual IEEE Symposium on Logic in Computer
Science, Indianapolis, Indiana, USA, June 21-24, 1998, pages 300–308. IEEE Computer Society,
1998. doi:10.1109/LICS.1998.705666.

[BB17] Pablo Barenbaum and Eduardo Bonelli. Optimality and the linear substitution calculus. In
Dale Miller, editor, 2nd International Conference on Formal Structures for Computation and
Deduction, FSCD 2017, September 3-9, 2017, Oxford, UK, volume 84 of LIPIcs, pages 9:1–9:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.FSCD.2017.9.

[BBdPH93] Nick Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland. A term calculus for
intuitionistic linear logic. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi
and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA
’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings, volume 664 of Lecture Notes in
Computer Science, pages 75–90. Springer, 1993. doi:10.1007/BFb0037099.

https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1145/325694.325707
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.4230/LIPIcs.RTA.2012.22
https://doi.org/10.4230/LIPIcs.RTA.2012.22
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1145/3531130.3533362
https://doi.org/10.1145/199448.199507
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.4230/LIPIcs.CSL.2022.4
https://doi.org/10.4230/LIPIcs.CSL.2022.4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1109/LICS.1998.705666
https://doi.org/10.4230/LIPIcs.FSCD.2017.9
https://doi.org/10.1007/BFb0037099

23:60 B. Accattoli Vol. 19:4

[BCD21] Malgorzata Biernacka, Witold Charatonik, and Tomasz Drab. A derived reasonable abstract
machine for strong call by value. In Niccolò Veltri, Nick Benton, and Silvia Ghilezan, ed-
itors, PPDP 2021: 23rd International Symposium on Principles and Practice of Declar-
ative Programming, Tallinn, Estonia, September 6-8, 2021, pages 6:1–6:14. ACM, 2021.
doi:10.1145/3479394.3479401.

[Ben94] Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models (extended abstract).
In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, 8th International
Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers, volume 933 of
Lecture Notes in Computer Science, pages 121–135. Springer, 1994. doi:10.1007/BFb0022251.

[Ben95] Nick Benton. Strong normalisation for the linear term calculus. J. Funct. Program., 5(1):65–80,
1995. doi:10.1017/S0956796800001246.

[BG95] Guy E. Blelloch and John Greiner. Parallelism in sequential functional languages. In John
Williams, editor, Proceedings of the seventh international conference on Functional programming
languages and computer architecture, FPCA 1995, La Jolla, California, USA, June 25-28, 1995,
pages 226–237. ACM, 1995. doi:10.1145/224164.224210.

[BKR21] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Solvability = typability +
inhabitation. Log. Methods Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences.org/
7141.

[BS94] Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. Theor. Comput. Sci.,
135(1):11–65, 1994. doi:10.1016/0304-3975(94)00104-9.

[BW96] Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27-30, 1996, pages 420–431. IEEE Computer Society, 1996. doi:10.1109/LICS.1996.
561458.

[CA21] Jules Chouquet and Lionel Vaux Auclair. An application of parallel cut elimination in multi-
plicative linear logic to the taylor expansion of proof nets. Log. Methods Comput. Sci., 17(4),
2021. doi:10.46298/lmcs-17(4:22)2021.

[CFM16] Pierre-Louis Curien, Marcelo P. Fiore, and Guillaume Munch-Maccagnoni. A theory of effects
and resources: adjunction models and polarised calculi. In Rastislav Bod́ık and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
44–56. ACM, 2016. doi:10.1145/2837614.2837652.

[CG14] Alberto Carraro and Giulio Guerrieri. A semantical and operational account of call-by-value
solvability. In Anca Muscholl, editor, Foundations of Software Science and Computation Struc-
tures - 17th International Conference, FOSSACS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, volume 8412 of Lecture Notes in Computer Science, pages 103–118. Springer,
2014. doi:10.1007/978-3-642-54830-7_7.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Martin Odersky and
Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000, pages 233–243.
ACM, 2000. doi:10.1145/351240.351262.

[CK97] Roberto Di Cosmo and Delia Kesner. Strong normalization of explicit substitutions via cut
elimination in proof nets (extended abstract). In Proceedings, 12th Annual IEEE Symposium
on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997, pages 35–46. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614927.

[Cla15] Pierre Clairambault. Bounding linear head reduction and visible interaction through skeletons.
Log. Methods Comput. Sci., 11(2), 2015. doi:10.2168/LMCS-11(2:6)2015.

[CP10] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Paul Gastin
and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, 21th International
Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, volume
6269 of Lecture Notes in Computer Science, pages 222–236. Springer, 2010. doi:10.1007/
978-3-642-15375-4_16.

[Dan90] Vincent Danos. La Logique Linéaire appliqué à l’étude de divers processus de normalisation
(principalement du λ-calcul). Phd thesis, Université Paris 7, 1990.

https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1017/S0956796800001246
https://doi.org/10.1145/224164.224210
https://lmcs.episciences.org/7141
https://lmcs.episciences.org/7141
https://doi.org/10.1016/0304-3975(94)00104-9
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.46298/lmcs-17(4:22)2021
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1145/351240.351262
https://doi.org/10.1109/LICS.1997.614927
https://doi.org/10.2168/LMCS-11(2:6)2015
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:61

[dCPTdF11] Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure
of the execution time in linear logic. Theor. Comput. Sci., 412(20):1884–1902, 2011. doi:
10.1016/j.tcs.2010.12.017.

[DHR96] Vincent Danos, Hugo Herbelin, and Laurent Regnier. Game semantics & abstract machines. In
Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, pages 394–405. IEEE Computer Society, 1996. doi:
10.1109/LICS.1996.561456.

[DJ03] Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf. Comput.,
183(1):123–137, 2003. doi:10.1016/S0890-5401(03)00010-5.

[DLM12] Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the lambda calculus.
Logical Methods in Computer Science, 8(3), 2012. doi:10.2168/LMCS-8(3:12)2012.

[DR04] Vincent Danos and Laurent Regnier. Head linear reduction. Technical report, 2004.
[EG16] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus gen-

eralizing call-by-name and call-by-value. In James Cheney and Germán Vidal, editors, Pro-
ceedings of the 18th International Symposium on Principles and Practice of Declarative Pro-
gramming, Edinburgh, United Kingdom, September 5-7, 2016, pages 174–187. ACM, 2016.
doi:10.1145/2967973.2968608.

[Ehr14] Thomas Ehrhard. A new correctness criterion for MLL proof nets. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
38:1–38:10. ACM, 2014. doi:10.1145/2603088.2603125.

[ER06] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006. doi:10.1016/j.tcs.2006.08.003.

[FM99] Maribel Fernández and Ian Mackie. A calculus for interaction nets. In Gopalan Nadathur,
editor, Principles and Practice of Declarative Programming, International Conference PPDP’99,
Paris, France, September 29 - October 1, 1999, Proceedings, volume 1702 of Lecture Notes in
Computer Science, pages 170–187. Springer, 1999. doi:10.1007/10704567_10.

[FR19] Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic computa-
tion. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancou-
ver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785699.

[FS14] Maribel Fernández and Nikolaos Siafakas. Labelled calculi of resources. J. Log. Comput.,
24(3):591–613, 2014. doi:10.1093/logcom/exs021.

[GdPR00] Neil Ghani, Valeria de Paiva, and Eike Ritter. Linear explicit substitutions. Log. J. IGPL,
8(1):7–31, 2000. doi:10.1093/jigpal/8.1.7.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/

0304-3975(87)90045-4.
[Gir98] Jean-Yves Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998. doi:10.1006/inco.

1998.2700.
[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular

approach to polynomial-time computability. Theor. Comput. Sci., 97(1):1–66, 1992. doi:10.
1016/0304-3975(92)90386-T.

[Hin64] J.R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[Joi93] Jean-Baptiste Joinet. Étude de la normalisation du calcul des séquents. Phd thesis, Université
Paris 7, 1993.

[Kes07] Delia Kesner. The theory of calculi with explicit substitutions revisited. In Jacques Duparc and
Thomas A. Henzinger, editors, Computer Science Logic, 21st International Workshop, CSL
2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007,
Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 238–252. Springer, 2007.
doi:10.1007/978-3-540-74915-8_20.

[Kes09] Delia Kesner. A theory of explicit substitutions with safe and full composition. Log. Methods
Comput. Sci., 5(3), 2009. URL: http://arxiv.org/abs/0905.2539.

[Kes22] Delia Kesner. A fine-grained computational interpretation of girard’s intuitionistic proof-nets.
Proc. ACM Program. Lang., 6(POPL):1–28, 2022. doi:10.1145/3498669.

https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.2168/LMCS-8(3:12)2012
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1145/2603088.2603125
https://doi.org/10.1016/j.tcs.2006.08.003
https://doi.org/10.1007/10704567_10
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1093/logcom/exs021
https://doi.org/10.1093/jigpal/8.1.7
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1007/978-3-540-74915-8_20
http://arxiv.org/abs/0905.2539
https://doi.org/10.1145/3498669

23:62 B. Accattoli Vol. 19:4

[KL07] Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Inf. Comput.,
205(4):419–473, 2007. doi:10.1016/j.ic.2006.08.008.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci., 318(1-2):163–180,
2004. doi:10.1016/j.tcs.2003.10.018.

[LM92] Patrick Lincoln and John C. Mitchell. Operational aspects of linear lambda calculus. In
Proceedings of the Seventh Annual Symposium on Logic in Computer Science (LICS ’92),
Santa Cruz, California, USA, June 22-25, 1992, pages 235–246. IEEE Computer Society, 1992.
doi:10.1109/LICS.1992.185536.

[LTdF04] Olivier Laurent and Lorenzo Tortora de Falco. Slicing Polarized Additive Normalization. In Lin-
ear Logic in Computer Science, volume 316 of London Mathematical Society Lecture Note Series,
pages 247–282. Cambridge University Press, November 2004. doi:10.1017/CBO9780511550850.
008.

[Maz17] Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation à diriger des
recherches, Université Paris 13, November 2017. URL: https://hal.science/tel-04238579.

[Mel95] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In
Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, editors, Typed Lambda Calculi and
Applications, Second International Conference on Typed Lambda Calculi and Applications,
TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings, volume 902 of Lecture Notes in
Computer Science, pages 328–334. Springer, 1995. doi:10.1007/BFb0014062.

[Mil06] Robin Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). In
Roberto M. Amadio and Iain Phillips, editors, Proceedings of the 13th International Workshop
on Expressiveness in Concurrency, EXPRESS 2006, Bonn, Germany, August 26, 2006, volume
175 of Electronic Notes in Theoretical Computer Science, pages 65–73. Elsevier, 2006. doi:
10.1016/j.entcs.2006.07.035.

[MOTW99] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175–210, 1999.
doi:10.1016/S0304-3975(98)00358-2.

[MP94] Gianfranco Mascari and Marco Pedicini. Head linear reduction and pure proof net extraction.
Theor. Comput. Sci., 135(1):111–137, 1994. doi:10.1016/0304-3975(94)90263-1.

[MS08] Ian Mackie and Shinya Sato. A calculus for interaction nets based on the linear chemical
abstract machine. Electron. Notes Theor. Comput. Sci., 192(3):59–70, 2008. doi:10.1016/j.
entcs.2008.10.027.

[MT03] Harry G. Mairson and Kazushige Terui. On the computational complexity of cut-elimination
in linear logic. In Carlo Blundo and Cosimo Laneve, editors, Theoretical Computer Science,
8th Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003, Proceedings,
volume 2841 of Lecture Notes in Computer Science, pages 23–36. Springer, 2003. doi:10.1007/
978-3-540-45208-9_4.

[OH06] Yo Ohta and Masahito Hasegawa. A terminating and confluent linear lambda calculus. In Frank
Pfenning, editor, Term Rewriting and Applications, 17th International Conference, RTA 2006,
Seattle, WA, USA, August 12-14, 2006, Proceedings, volume 4098 of Lecture Notes in Computer
Science, pages 166–180. Springer, 2006. doi:10.1007/11805618_13.

[PCPT14] Jorge A. Pérez, Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Inf. Comput., 239:254–302, 2014.
doi:10.1016/j.ic.2014.08.001.

[PTdF10] Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second order
linear logic. Theor. Comput. Sci., 411(2):410–444, 2010. doi:10.1016/j.tcs.2009.07.053.

[Reg92] Laurent Regnier. Lambda-calcul et réseaux. PhD thesis, Univ. Paris VII, 1992.
[Rév92] György E. Révész. A list-oriented extension of the lambda-calculus satisfying the Church-Rosser

theorem. Theor. Comput. Sci., 93(1):75–89, 1992. doi:10.1016/0304-3975(92)90212-X.
[Rib08] Colin Riba. Toward a General Rewriting-Based Framework for Reducibility. Technical report,

December 2008. URL: https://hal.archives-ouvertes.fr/hal-00779623.
[RR97] Simona Ronchi Della Rocca and Luca Roversi. Lambda calculus and intuitionistic linear logic.

Stud Logica, 59(3):417–448, 1997. doi:10.1023/A:1005092630115.
[RV09] Luca Roversi and Luca Vercelli. A local criterion for polynomial-time stratified computations.

In Marko C. J. D. van Eekelen and Olha Shkaravska, editors, Foundational and Practical

https://doi.org/10.1016/j.ic.2006.08.008
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1109/LICS.1992.185536
https://doi.org/10.1017/CBO9780511550850.008
https://doi.org/10.1017/CBO9780511550850.008
https://hal.science/tel-04238579
https://doi.org/10.1007/BFb0014062
https://doi.org/10.1016/j.entcs.2006.07.035
https://doi.org/10.1016/j.entcs.2006.07.035
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1016/0304-3975(94)90263-1
https://doi.org/10.1016/j.entcs.2008.10.027
https://doi.org/10.1016/j.entcs.2008.10.027
https://doi.org/10.1007/978-3-540-45208-9_4
https://doi.org/10.1007/978-3-540-45208-9_4
https://doi.org/10.1007/11805618_13
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.1016/0304-3975(92)90212-X
https://hal.archives-ouvertes.fr/hal-00779623
https://doi.org/10.1023/A:1005092630115

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:63

Aspects of Resource Analysis - First International Workshop, FOPARA 2009, Eindhoven, The
Netherlands, November 6, 2009, Revised Selected Papers, volume 6324 of Lecture Notes in
Computer Science, pages 114–130. Springer, 2009. doi:10.1007/978-3-642-15331-0_8.

[Sau08] Alexis Saurin. On the relations between the syntactic theories of lambda-mu-calculi. In Michael
Kaminski and Simone Martini, editors, Computer Science Logic, 22nd International Workshop,
CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008.
Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 154–168. Springer, 2008.
doi:10.1007/978-3-540-87531-4_13.

[SGM02] David Sands, Jörgen Gustavsson, and Andrew Moran. Lambda calculi and linear speedups. In
Torben Æ. Mogensen, David A. Schmidt, and Ivan Hal Sudborough, editors, The Essence of
Computation, Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones [on
occasion of his 60th birthday], volume 2566 of Lecture Notes in Computer Science, pages 60–84.
Springer, 2002. doi:10.1007/3-540-36377-7_4.

[Sim05] Alex K. Simpson. Reduction in a linear lambda-calculus with applications to operational seman-
tics. In Jürgen Giesl, editor, Term Rewriting and Applications, 16th International Conference,
RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, volume 3467 of Lecture Notes in
Computer Science, pages 219–234. Springer, 2005. doi:10.1007/978-3-540-32033-3_17.

[Tra09] Paolo Tranquilli. Confluence of pure differential nets with promotion. In Erich Grädel and
Reinhard Kahle, editors, Computer Science Logic, 23rd international Workshop, CSL 2009,
18th Annual Conference of the EACSL, Coimbra, Portugal, September 7-11, 2009. Proceedings,
volume 5771 of Lecture Notes in Computer Science, pages 500–514. Springer, 2009. doi:

10.1007/978-3-642-04027-6_36.
[Wad93] Philip Wadler. A syntax for linear logic. In Stephen D. Brookes, Michael G. Main, Austin

Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical Foundations of
Programming Semantics, 9th International Conference, New Orleans, LA, USA, April 7-10,
1993, Proceedings, volume 802 of Lecture Notes in Computer Science, pages 513–529. Springer,
1993. doi:10.1007/3-540-58027-1_24.

[Wad12] Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Findler, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

https://doi.org/10.1007/978-3-642-15331-0_8
https://doi.org/10.1007/978-3-540-87531-4_13
https://doi.org/10.1007/3-540-36377-7_4
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1007/978-3-642-04027-6_36
https://doi.org/10.1007/978-3-642-04027-6_36
https://doi.org/10.1007/3-540-58027-1_24
https://doi.org/10.1145/2364527.2364568

23:64 B. Accattoli Vol. 19:4

Appendix A. Appendix of Section 13 (Typed Strong Normalization)

Theorem 13.12 (Adequacy). Let π ▷ Γ ⊢ t :A a type derivation. Then π is reducible.

Proof. Here we give the cases that are omitted from the body of the paper. Let Γ =
x1 :B1, .., xk :Bk. Cases of the last rule of π:

• Multiplicative axiom:

A ̸= !B
axm

m :A ⊢ m :A

We need to show that E⟨⟨[vm�m]m⟩⟩ ∈ SN→ss for vm ∈ SJAK ⊆ SN→ss and E ∈ JAK⊥. Note
that E⟨⟨[vm�m]m⟩⟩ →axm1 E⟨⟨{vm�m}m⟩⟩ = E⟨⟨vm⟩⟩ which is in SN→ss by duality, and that
E⟨⟨vm⟩⟩ = E⟨⟨{vm�m}m⟩⟩ = {vm�m}E⟨⟨m⟩⟩. By root cut expansion, [vm�m]E⟨⟨m⟩⟩ ∈ SN→ss .
By structural stability, [vm�m]E⟨⟨m⟩⟩ ≡cut E⟨⟨[vm�m]m⟩⟩ ∈ SN→ss .
• Exchange:

ρ ▷∆, x :B, y :C,Π ⊢ t :A
exch

∆, y :C, x :B,Π ⊢ t :A

with Γ = ∆, y :C, x :B,Π. Let ∆ = x1 :B1, .., xk :Bk and Π = y1 :C1, .., yh :Ch. We have
to show that

t′ := E⟨⟨[vi�xi]∆[v�y][v′�x][v′j�yj]Πt⟩⟩ ∈ SN→ss .

for every v ∈ SJCK, v
′ ∈ SJBK, vi ∈ SJBiK for i ∈ {1, . . . , k}, every v′j ∈ SJCjK for i ∈

{1, . . . , h}, and every E ∈ JAK⊥. By i.h. on ρ, we have

t′′ := E⟨⟨[vi�xi]∆[v
′�x][v�y][v′j�yj]Πt⟩⟩ ∈ SN→ss .

By structural stability and the independence of cuts in the definition of reducibility,
t′′ ≡cut t

′ ∈ SN→ss .
• Cut :

πl ▷ Γl ⊢ L⟨v⟩ :B πs ▷ Γs, x :B ⊢ s :A Γl#(Γs, x :B)
cut

Γl,Γs ⊢ L⟨[v�x]s⟩ :A
with t = L⟨[v�x]s⟩ and Γ = Γl,Γs. We have to show that

t′ := E⟨⟨[vi�xi]ΓL⟨[v�x]s⟩⟩⟩ ∈ SN→ss .

for every vi ∈ SJBiK for i ∈ {1, . . . , k} and every E ∈ JAK⊥. By i.h. on πl, we have
[vi�xi]Γl

L⟨v⟩ ∈ JBK. By i.h., πs is reducible, and by the extended reducibility clause
(Lemma 13.11) we obtain [vi�xi]Γs [vi�xi]Γl

L⟨[v�x]s⟩ ∈ JAK, that is,
E⟨⟨[vi�xi]Γs [vi�xi]Γl

L⟨[v�x]s⟩⟩⟩ ∈ SN→ss .

By structural stability and the independence of cuts in the definition of reducibility,

E⟨⟨[vi�xi]Γs [vi�xi]Γl
L⟨[v�x]s⟩⟩⟩ ≡cut t′ ∈ SN→ss .

• Exponential inductive cases.
– Weakening :

ρ ▷∆ ⊢ t :A e fresh
w

∆, e : !B ⊢ t :A
with Γ = ∆, e : !B. We use the notation xi :Bi for the assignments in ∆. We have
to show that E⟨⟨[vi�xi]∆[!u�e]t⟩⟩ ∈ SN→ss for every u ∈ JBK, every vi ∈ SJBiK for

i ∈ {1, . . . , k}, and every E ∈ JAK⊥. By i.h. on ρ, E⟨⟨[vi�xi]∆t⟩⟩ ∈ SN→ss . By freshness
of e,

E⟨⟨[vi�xi]∆t⟩⟩ = E⟨⟨{!u�e}[vi�xi]∆t⟩⟩ = {!u�e}E⟨⟨[vi�xi]∆t⟩⟩.

Vol. 19:4 EXPONENTIALS AS SUBSTITUTIONS 23:65

Since u ∈ JBK, we have u ∈ SN→ss by the properties of candidates (Prop. 13.9),
thus !u ∈ SN→ss by extension. By root cut expansion, [!u�e]E⟨⟨[vi�xi]∆t⟩⟩ ∈ SN→ss .
By structural stability and the independence of cuts in the definition of reducibility,
[!u�e]E⟨⟨[vi�xi]∆t⟩⟩ ≡cut E⟨⟨[vi�xi]∆[!u�e]t⟩⟩ ∈ SN→ss .

– Dereliction:
ρ ▷∆, x :B ⊢ s :A e fresh

!l
∆, e : !B ⊢ [e?x]s :A

with t = [e?x]s and Γ = ∆, e : !B. We use the notation xi :Bi for the assignments in ∆.
We have to show that

E⟨⟨[vi�xi]∆[!u�e][e?x]s⟩⟩ ∈ SN→ss .

for every u ∈ JBK, every vi ∈ SJBiK for i ∈ {1, . . . , k}, and every E ∈ JAK⊥. Let
u = L⟨v⟩. By i.h., ρ is reducible. by the extended reducibility clause (Lemma 13.11),
[vi�xi]∆L⟨[v�x]s⟩ ∈ JAK, that is,

E⟨⟨[vi�xi]∆L⟨[v�x]s⟩⟩⟩ ∈ SN→ss .
Note that by freshness of e and the independence of cuts in the definition of reducibility,
we have
E⟨⟨[vi�xi]∆L⟨[v�x]s⟩⟩⟩ = E⟨⟨[vi�xi]∆{!u�e}[e?x]s⟩⟩ = {!u�e}E⟨⟨[vi�xi]∆[e?x]s⟩⟩.

Since u ∈ JBK, we have u ∈ SN→ss by the properties of candidates (Prop. 13.9), thus
!u ∈ SN→ss by extension. By root cut expansion, [!u�e]E⟨⟨[vi�xi]∆[e?x]s⟩⟩ ∈ SN→ss .
By structural stability,

[!u�e]E⟨⟨[vi�xi]∆[e?x]s⟩⟩ ≡cut E⟨⟨[vi�xi]∆[!u�e][e?x]s⟩⟩ ∈ SN→ss .
• Multiplicative inductive cases.
– Tensor :

πs ▷ Γs ⊢ s :B πu ▷ Γu ⊢ u :C Γs#Γu ⊗r
Γs,Γu ⊢ (s, u) :B ⊗ C

with t = (s, u), A = B⊗C, and Γ = Γs,Γu. We have to show that t′ := E⟨⟨[vi�xi]Γ(s, u)⟩⟩
is SN→ss for every vi ∈ SJBiK for i ∈ {1, . . . , k} and every E ∈ JB ⊗CK⊥. By i.h. on πs
and πu, s

′ := [vi�xi]Γss ∈ JBK and u′ := [vi�xi]Γuu ∈ JCK, and so (s′, u′) ∈ SJB⊗CK ⊆
JB ⊗ CK, that is, E⟨⟨(s′, u′)⟩⟩ ∈ SN→ss . By structural stability,

E⟨⟨(s′, u′)⟩⟩ =
E⟨⟨([vi�xi]Γss, [vi�xi]Γuu)⟩⟩ ≡cut

E⟨⟨[vi�xi]Γs [vi�xi]Γu(s, u)⟩⟩ =
t′ ∈ SN→ss .

– Par :
ρ ▷∆, x :B, y :C ⊢ s :A m fresh ⊗l

∆,m :B ⊗ C ⊢ [m`x, y]s :A
with t = [m`x, y]s and Γ = ∆,m :B⊗C. We use the notation xi :Bi for the assignments
in ∆. The reducibility clause to prove is

t′ := E⟨⟨[vi�xi]∆[(u, r)�m][m`x, y]s⟩⟩ ∈ SN→ss

for every vi ∈ SJBiK for i ∈ {1, . . . , k}, every (u, r) ∈ SJB⊗CK, and every E ∈ JAK⊥. Let
u = L⟨v⟩ and r = L′⟨v′⟩. By i.h., ρ is reducible, and by the extended reducibility clause
(Lemma 13.11), [vi�xi]∆L

′⟨[v�x]L′′⟨[v′�y]s⟩⟩ ∈ JAK, that is,
t′′ := E⟨⟨[vi�xi]∆L

′⟨[v�x]L′′⟨[v′�y]s⟩⟩⟩⟩ ∈ SN→ss .
By root cut expansion, we have [(u, r)�m]E⟨⟨[vi�xi]∆[m`x, y]s⟩⟩ ∈ SN→ss . By struc-
tural stability and the independence of cuts in the definition of reducibility,

[E⟨⟨[vi�xi]∆[(u, r)�m][m`x, y]s⟩⟩ ∈ SN→ss .

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Overview of the Contributions
	2.1. Contribution 1: The Exponential Substitution Calculus
	2.2. Contribution 2: the Sub-Term Strategy
	2.3. Overview of Contribution 3: Foundations

	3. Sub-Term Property and Size Explosion
	4. The Linear Substitution Calculus
	5. Towards Exponentials as Substitutions
	6. The Exponential Substitution Calculus
	7. Basic Properties
	8. Local termination
	9. Some Technicalities
	10. Untyped Confluence
	11. The Good Strategy
	12. Untyped Preservation of Strong Normalization
	13. Typed Strong Normalization
	14. Conclusions
	Acknowledgments
	References
	Appendix A. Appendix of Section 13 (Typed Strong Normalization)

