
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 24:1–24:30
https://lmcs.episciences.org/

Submitted Sep. 12, 2022
Published Dec. 15, 2023

MODEL CHECKING TEMPORAL PROPERTIES OF

RECURSIVE PROBABILISTIC PROGRAMS

TOBIAS WINKLER , CHRISTINA GEHNEN , AND JOOST-PIETER KATOEN

RWTH Aachen University, Aachen, Germany
e-mail address: {tobias.winkler,christina.gehnen,katoen}@cs.rwth-aachen.de

Abstract. Probabilistic pushdown automata (pPDA) are a standard operational model
for programming languages involving discrete random choices and recursive procedures.
Temporal properties are useful for specifying the chronological order of events during
program execution. Existing approaches for model checking pPDA against temporal
properties have focused mostly on ω-regular and LTL properties. In this paper, we give
decidability and complexity results for the model checking problem of pPDA against ω-
visibly pushdown languages that can be described by specification logics such as CaRet.
These logical formulae allow specifying properties that explicitly take the structured
computations arising from procedural programs into account. For example, CaRet is able
to match procedure calls with their corresponding future returns, and thus allows to express
fundamental program properties such as total and partial correctness.

1. Introduction

Probabilistic programs extend traditional programs with the ability to flip coins or, more
generally, sample values from probability distributions. These programs can be used to
encode randomized algorithms and mechanisms in security [BKOB13] in a natural way. The
interest in probabilistic programs has significantly increased in recent years. To a large
extent, this is due to the search in AI for more expressive and succinct languages than
probabilistic graphical models for Bayesian inference [GHNR14]. Probabilistic programs have
many applications [vdMPYW18]. They are used in, among other areas, machine learning,
systems biology, security, planning and control, quantum computing, and software–defined
networks. Probabilistic variants of many programming languages exist.

Key words and phrases: Probabilistic Recursive Programs and Model Checking and Probabilistic Pushdown
Automata and Visibly Pushdown Languages and CaRet.

∗This is an extended version of a conference paper with the same title published at FoSSaCS 2022 [WGK22].
This work is supported by the DFG Research Training Group 2236 UnRAVeL and the ERC Advanced

Grant 787914 FRAPPANT.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:24)2023
© T. Winkler, C. Gehnen, and J.-P. Katoen
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-1084-6408
https://orcid.org/0000-0002-6548-3432
https://orcid.org/0000-0002-6143-1926
http://creativecommons.org/about/licenses

24:2 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

proc void infectYoung() :

y := uniform(0, 3)

repeat y times :

infectYoung()

e := uniform(0, 2)

repeat e times :

f := infectElder()

return

proc bool infectElder() :

y := uniform(0, 1)

repeat y times :

infectYoung()

e := uniform(0, 4)

repeat e times :

infectElder()

f := bernoulli(0.01)

return f

Figure 1: Recursive probabilistic program modeling the outbreak of an infectious disease.
uniform(a, b) stands for the discrete uniform distribution on [a, b].

Recursion. Procedural programs allow for the declaration of procedures—small independent
code blocks—and the ability to call procedures from one another, possibly in a recursive
fashion. Most common programming languages such as C, Python, or Java support proce-
dures. It is thus not surprising that recursion is also present in many modern probabilistic
programming languages (PPL) such as WebPPL [GS14] or Church [SG12]. In fact, there
have been numerous approaches to extend Bayesian networks with recursion even before
PPL became popular [PK00, Jae01, CIRW11]. Randomized algorithms such as Hoare’s
quicksort (see, e.g., [Kar91]) with random pivot selection can be readily implemented using
recursion. Finally, recursion in form of branching processes is an important tool to model
reproduction of cells or molecules in systems biology [AK15].

Y E

Y 1.5 1

E 0.5 2

Figure 2: Example infection rates
by age groups.

Motivating example. This paper studies the auto-
mated verification of probabilistic pushdown automata
(pPDA) [EKM04] as an explicit-state operational model
of procedural probabilistic programs against temporal
specifications. As a motivating example we consider a
simple epidemiological model for the outbreak of an in-
fectious disease in a large population where the number
of susceptible individuals can be assumed to be infinite.
Our example model distinguishes young and elderly persons. Each affected individual infects
a uniformly distributed number of others, with varying rates (expected values) according
to the age groups (Figure 2). The fatality rate for infected elderly and young persons is
1% and 0%, respectively. Procedure infectElder() returns a Boolean in order to signal to
its callers whether the infection has led to fatality. Initially, we assume there is a single
infected young person, i.e., the overall program is started by calling infectYoung(). It is
an easy exercise to specify this model as a discrete probabilistic program with mutually
recursive procedures (Figure 1). Note that this program can be easily amended to more
realistic scenarios involving, e.g., more age or gender groups, hospitalization rate, etc.

The behavior of such recursive probabilistic programs can be naturally described by
pPDA. Roughly, the local states of the procedures—the values of the variables in the
procedure’s scope and the position of the program counter—constitute both the state space

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:3

and the stack alphabet of the automaton. Procedure calls correspond to push transitions in
the pPDA in such a way that the program’s procedure stack is simulated by the automaton’s
pushdown stack, i.e., the caller’s current local state is saved on top of the stack. Accordingly,
returning from a procedure corresponds to taking a pop transition in order to restore the
local state of the caller. Returning a value can be handled similarly. Clearly, if the reachable
local state spaces of the involved procedures are finite, then the resulting automaton will be
finite as well. We refer to [ABE18] for more details.

A number of natural questions such as “Will the virus eventually become extinct?”
(termination probability) or “What is the expected number of fatalities?” (expected costs)
are decidable for finite pPDA (see [BEKK13] for a survey). In this work, we focus on
temporal properties, i.e., questions that involve reasoning about the chronological order of
events during the epidemic. An example are chains of infection: For instance, we might ask

What’s the probability that eventually a young person with only young persons in
their chain of infection passes the virus on to an elderly person who then dies?

On the level of the program in Figure 1, this corresponds to the probability of reaching a
global program configuration where the call stack only contains infectYoung() invocations
and during execution of the current infectYoung(), the local variable f is eventually set to
true. This requires reasoning about the nestings of calls and returns of a computation. In
fact, in order to decide if f = true in the current procedure, we must “skip” over all calls
within it and only consider their local return values. This requirement (and many others)
can be naturally expressed in the logic CaRet [AEM04], an extension of LTL:

♢g (□−pY ∧ pY ∧ ♢af) .

Here, pY is an atomic proposition that holds at states which correspond to being in
procedure infectYoung , and f indicates that f = true. Intuitively, the above formula states
that eventually (outer ♢g), the computation reaches a (global) state where only infectYoung
is on the call stack and the current procedure is infectYoung as well (□−pY ∧ pY), and
moreover the local—aka abstract—path within in the current procedure reaches a state
where f is true (♢af). Such properties are in general context-free but not always regular
and thus cannot be expressed in LTL [AEM04].

Contributions. The contribution of this paper is a solution to the following problem:

Given a (finite) pPDA ∆ and an ω-visibly pushdown language (VPL) L in terms
of either a CaRet formula or an automaton, determine the probability that a
random trajectory of ∆ is in L.

The complexity results for the associated decision problems are summarized in Table 1. As
common in the literature, we consider the special case of qualitative, i.e., almost-sure model
checking separately. To the best of our knowledge, none of the problems in Table 1 was
known to be decidable before. The work of [DBB12] proved decidability of model checking
against deterministic Muller visibly pushdown automata (VPA) which capture a strict subset
of the CaRet-definable languages [AM04]. The most important technical insight of this paper
is that two existing (but independently developed) constructions from the literature can be
combined to enable effective model checking of pPDA against ω-VPL: The deterministic
stair-parity VPA introduced in [LMS04], and a certain finite Markov chain associated with
a pPDA [EKM04]. We provide some more details in the next paragraph.

24:4 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

Table 1: Complexity results established in this paper.

ω-VPL given in terms of ... qualitative quantitative

Deterministic stair-parity VPA [Theorem 4.16] in PSPACE in PSPACE

Non-deterministic Büchi VPA [Theorem 5.1] EXPTIME-compl. in EXPSPACE

CaRet formula [Theorem 5.2] in 2EXPTIME in 2EXPSPACE

CaRet
formula φ
(Def. 2.9)

Büchi
NVPA A
(Def. 2.1)

Stair-parity
DVPA D
(Def. 2.6)

Product
∆×D

(Def. 4.1)

pVPA ∆
(Def. 3.1)

Program

Step chain
M∆×D

(Def. 4.14)
ETR

Figure 3: Chain of reductions used in this paper. ETR stands for existential theory of the
reals, i.e., the existentially quantified fragment of the FO-theory over (R,+, ·,≤).

Techniques and tools. We briefly outline our approach which is built on a number of
existing constructions and results from the literature. In order for the model checking
problems to be decidable [DBB12], we need to impose a mild visibility restriction on ∆,
yielding a probabilistic visibly pushdown automaton (pVPA). Just like several previous
works on model checking pPDA against ω-regular specifications [EKM04, BKS05, KEM06],
we follow an automata-based approach (see Figure 3). More specifically, we first translate φ
into an equivalent non-deterministic Büchi VPA [AM04] A and then determinize it using a
procedure introduced by Löding et al. [LMS04]. The resulting DVPA D uses a so-called stair-
parity [LMS04] acceptance condition that is strictly more expressive than standard parity or
Muller DVPA [AM04]. Stair-parity differs from usual parity in that it only considers certain
positions—called steps [LMS04]—of an infinite word where the stack height never decreases
again. We then construct a standard product ∆×D. Here, the visibility conditions ensure
that the automata synchronize their stack actions, yielding a product automaton that uses a
single stack instead of two independent stacks, which would lead to undecidability [DBB12].
Finally, we are left with computing a stair-parity acceptance probability in the product.
This is achieved by constructing a specific finite Markov chain associated to ∆×D, called
step chain in this paper. Intuitively, the step chain “jumps” from one step of a run to the
next, hence we only need to evaluate standard parity on the step chain. The idea of step
chains was introduced by Esparza et al. [EKM04] who used them to show decidability of
the model checking problem against deterministic (non-pushdown) Büchi automata. For
constructing the step chain, certain reachability probabilities in the given pPDA need to be
computed. These probabilities are algebraic numbers (i.e., solutions of polynomial equations)
that may be irrational in general. However, the relevant problems are still decidable via an
encoding in the existential fragment of the FO-theory of the reals (ETR) [KEM06].

Related work. We have already mentioned various works on recursion in probabilistic
graphical models and PPL as well as on verifying pPDA and the equivalent model of recursive

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:5

Markov chains [EY09]. The analysis of these models focuses on reachability probabilities,
ω-regular properties or (fragments of) probabilistic CTL, expected costs, and termination
probabilities. The computation of termination probabilities in recursive Markov chains and
variations thereof with non-determinism is supported by the software tool PReMo [WE07].
Our paper can be seen as a natural extension from checking pPDA against ω-regular
properties to ω-visibly pushdown languages. In contrast to these algorithmic approaches,
various deductive reasoning methods have been developed for recursive probabilistic programs.
Proof rules for recursion were first provided in [Jon90], and later extended to proof rules in
a weakest-precondition reasoning style [MM01, OKKM16]. The authors of [OKKM16] also
address the connection to pPDA and provide proof rules for expected run-time analysis. A
mechanized method for proving properties of randomized algorithms, including recursive
ones, for the Coq proof assistant is presented in [AP09]. The Coq approach is based on
higher-order logic using a monadic interpretation of programs as probabilistic distributions.

Conference version. A preliminary version of this article was published at FoSSaCS
2022 [WGK22]. The present journal version extends the conference paper by the full proofs
as well as further examples and explanations.

Paper structure. This paper is structured as follows. We review the basics about VPA and
CaRet in Section 2. Section 3 introduces probabilistic visibly pushdown automata (pVPA).
The stair-parity DVPA model checking procedure is presented in Section 4, and the results
for Büchi VPA and CaRet in Section 5. We conclude the paper in Section 6.

2. Visibly Pushdown Languages

In this section, we summarize some preliminary results on visibly pushdown languages and
their corresponding automata models, and we recall the syntax and semantics of CaRet.

We use the following notation for words. Given a non-empty alphabet Σ, let Σ∗ be the
set of all finite words (including the empty word ϵ), and let Σω be the set of all infinite
words over Σ. For i ≥ 0, the i-th symbol of a word w ∈ Σ∗ ∪ Σω is denoted w(i) if it exists.
|w| denotes the length of w. For n ∈ N0 we write Σn = {w ∈ Σ∗ | |w| = n}. For sets of
words A ⊆ Σ∗ and B ⊆ Σ∗ ∪ Σω, the concatenation of all words from A with those from B
is denoted A.B. We also use a.B and A.b as shorthands for {a}.B and A.{b}, respectively.

2.1. Visibly Pushdown Automata. A finite alphabet Σ is called pushdown alphabet if
it is equipped with a partition Σ = Σcall ⊎ Σint ⊎ Σret into three—possibly empty—subsets
of call, internal, and return symbols. A visibly pushdown automaton (VPA) over Σ is like
a standard pushdown automaton with the additional syntactic restriction that reading a
call, internal, or return symbol triggers a push, internal, or pop transition, respectively (an
internal transition is one that does not change the stack height). Formally:

Definition 2.1 (VPA [AM04]). Let Σ be a pushdown alphabet. A visibly pushdown
automaton (VPA) over Σ is a tuple A = (S, s0, Γ, ⊥, δ, Σ) with S a finite set of states,
s0 ∈ S an initial state, Γ a finite stack alphabet, ⊥ ∈ Γ a special bottom-of-stack symbol,
and δ = (δcall, δint, δret) a triple of relations such that

δcall ⊆ (S × Σcall)× (S × Γ-⊥) , δint ⊆ (S × Σint)× S , δret ⊆ (S × Σret × Γ)× S

where Γ-⊥ = Γ \ {⊥}. △

24:6 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

For s, t ∈ S, Z ∈ Γ, and a ∈ Σ, we write s
a−→ tZ, s

a−→ t, sZ
a−→ t to indicate that there

exist transitions (s, a, t, Z) ∈ δcall, (s, a, t) ∈ δint, (s, a, Z, t) ∈ δret, respectively.
The semantics of a VPA is defined as usual via configurations and runs. A configuration

of VPA A is a tuple (s, γ) ∈ S×Γ∗
-⊥.⊥, written more succinctly as sγ in the sequel. Intuitively,

being in configuration sγ means that the automaton is currently in state s and has the word
γ on its stack. If sγ = sZγ′ for some Z ∈ Γ, then sZ is called the head of sγ. A bottom
configuration is a configuration with head s⊥ for some s ∈ S. Let w ∈ Σω be an infinite
input word. An infinite sequence ρ = s0γ0, s1γ1 . . . of configurations is called a run of A on
w if s0γ0 = s0⊥ and for all i ≥ 0, exactly one of the following cases applies:

• w(i) ∈ Σcall and γi+1 = Zγi for some Z ∈ Γ-⊥ such that si
w(i)−−→ si+1Z; or

• w(i) ∈ Σint and γi+1 = γi and si
w(i)−−→ si+1; or

• w(i) ∈ Σret and Zγi+1 = γi for some Z ∈ Γ-⊥ such that siZ
w(i)−−→ si+1; or

• w(i) ∈ Σret and γi = γi+1 = ⊥ and si⊥
w(i)−−→ si+1.

In other words, if A reads a call (or internal) symbol a while being in configuration sγ and

there exists a suitable call transition s
a−→ tZ (or internal transition s

a−→ t), then a run of A
may evolve from configuration sγ to tZγ (or tγ, respectively). Similarly, if A reads a return

symbol a in configuration sZγ where Z ̸= ⊥ and there is a transition sZ
a−→ t, then a run

can move from sZγ to tγ. Note that invoking a return transition in a bottom configuration
s⊥ does not remove the topmost symbol ⊥ from the stack.

A Büchi acceptance condition for A is a subset F ⊆ S. A VPA equipped with a Büchi
condition is called a Büchi VPA. An infinite word w ∈ Σω is accepted by a Büchi VPA if
there exists a run s0γ0, s1γ1, . . . of A on w such that si ∈ F for infinitely many i ≥ 0. The
ω-language of words accepted by a Büchi VPA A is denoted L(A) ⊆ Σω.

Definition 2.2 (ω-VPL [AM04]). Let Σ be a pushdown alphabet. L ⊆ Σω is an
ω-visibly pushdown language (ω-VPL) if L = L(A) for a Büchi VPA A over Σ. △

A VPA is deterministic (DVPA) if the relations δcall, δint, and δret are total functions,
i.e., δcall : (S × Σcall) → (S × Γ-⊥), δint : (S × Σint) → S, and δret : (S × Σret × Γ) → S. Note
that DVPA have exactly one run on each input word. As for standard NBA, the class
of languages recognized by Büchi DVPA is a strict subset of the languages recognized by
non-deterministic Büchi VPA. Unlike in the non-pushdown case, DVPA with Muller or
parity conditions are also strictly less expressive than non-deterministic Büchi VPA [AM04].
A deterministic automaton model for ω-VPL was given in [LMS04]. It uses a so-called
stair-parity acceptance condition which we explain in the upcoming Section 2.2.

2.2. Steps and Stair-parity Conditions. In the remainder of this section, Σ denotes a
pushdown alphabet and A a VPA over Σ. Consider a run ρ = s0γ0, s1γ1, . . . of A on an
infinite word w ∈ Σω. We define the stack height of the i-th configuration as sh(ρ(i)) = |γi|−1
(i.e., the bottom symbol ⊥ does not count to the stack height). The stair-parity condition
relies on the notion of steps:

Definition 2.3 (Step). Let ρ be a run of A. Position i ≥ 0 is a step of ρ if

∀n ≥ i : sh(ρ(n)) ≥ sh(ρ(i)) . △

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:7

s0 s1
c, Z

⊥, r
Z, r
τ

⊥, r
Z, r
τ

c, Z

τ r c τ τ c r c c r r c c c r r r ...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

Z
Z Z Z Z

Z Z Z Z Z Z Z Z Z ...
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ...

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ...

s0 s1 s1 s0 s1 s1 s0 s1 s0 s0 s1 s1 s0 s0 s0 s1 s1 s1 ...

Figure 4: Left: An example VPA (in fact, a DVPA) with Γ = {Z,⊥} over input alphabet
Σ = {c} ⊎ {τ} ⊎ {r}. Transitions labeled c, Z are call transitions that push Z on
the stack. The transitions labeled τ are internal transitions; they ignore the stack
completely. Transitions labeled Z, r and ⊥, r are return transitions that are only
enabled if Z (⊥, respectively) is on top of the stack. When executing Z, r, the
symbol Z is popped from the stack. However, the special bottom-of-stack symbol
⊥ can never be popped (e.g., position 1 in the run). Right: The unique run of the
DVPA on input word τ r c τ τ c r c2 r2 c3 r3 Steps are underlined.

Intuitively, a step is a position of a run such that there is no future position where the
stack height is strictly smaller. Slightly abusing terminology, we also say that a configuration
siγi of a given run ρ = s0γ0, s1γ1, . . . is a step if position i is a step.

Example 2.4. Figure 4 depicts a DVPA and the initial fragment of its unique run ρ on the
input word τ r c τ τ c r c2 r2 c3 r3 The step positions are underlined, i.e., positions 0-5, 7,
11, and 17 are steps. Note that if ρ(i) = s⊥ for some s ∈ S then i is a step, i.e., bottom
configurations are always steps.

Steps play a central role in the rest of the paper. We therefore explain some of their
fundamental properties. Suppose that ρ is a run of A on an infinite word w ∈ Σ∗.

• If positions i < j are adjacent steps, i.e., there is no step k strictly in between i and j,
then sh(ρ(j))− sh(ρ(i)) ∈ {0, 1}, i.e., the stack height from one step to the next increases
by either zero or one.

• Each step i has a next step j > i: If the symbol at step i is internal (e.g., i = 0, 3, 4 in
Figure 4) or a return (e.g., i = 1) then the next step is simply the next position j = i+ 1
and the stack height does not increase. If the symbol at position i is a call, then one of
two cases occurs: Either the call has no matching future return (e.g., i = 2); in this case,
the next step is the next position j = i+ 1. Otherwise the call is eventually matched (e.g.,
i = 5, 7, 11) and the next step j > i+ 1 occurs after the corresponding matching return is
read and has the same stack height.

• As a consequence, each infinite run has infinitely many steps. Notice though that the
difference between two adjacent step positions may grow unboundedly as in Figure 4.

• The stack height at the steps either grows unboundedly or eventually stabilizes (the latter
occurs in Figure 4; the stack heights at the steps induce the sequence 0, 0, 0, 1ω).

Remark 2.5. We can also define the steps of a word w ∈ Σω as the positions where a run
of any arbitrary VPA on w has a step. Due to the visibility restriction, the actual behavior
of the VPA does not influence the step positions [LMS04]. In other words, the step positions
are predetermined by the input word. Thus, we can also speak of the stack height sh(w(i))
of word w at position i.

24:8 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

We need one last notion before defining stair-parity. The footprint of an infinite run
ρ = s0γ0, s1γ1, . . . is the infinite sequence ρ↓Steps = sn0sn1 . . . ∈ Sω where for all i ≥ 0 the
position ni is the i-th step of ρ. In words, ρ↓Steps is the projection of the run ρ onto the
states occurring at its steps. For the example run in Figure 4, ρ↓Steps = s0s1s1s0s

ω
1 .

Definition 2.6 (Stair-parity [LMS04]). Let A be a VPA over pushdown alphabet Σ. A
stair-parity acceptance condition for A is defined in terms of a priority function Ω: S → N0.
A word w ∈ Σω is accepted if A has a run ρ on w such that

min { k |
∞
∃ i ≥ 0: Ω(ρ↓Steps(i)) = k } is even.

The language accepted by A is denoted L(A). △

Intuitively, L(A) contains all words that have a run ρ on A such that the minimum
priority occurring infinitely often at states in the footprint ρ↓Steps is even.

Example 2.7. The DVPA in Figure 4 with Ω(s0) = 1 and Ω(s1) = 2 accepts

Lrepbdd = {w ∈ Σω | ∃B ≥ 0,
∞
∃ i ≥ 0: sh(w(i)) = B } ,

the language of repeatedly bounded words [LMS04], i.e., words whose stack height (cf.
Remark 2.5) is infinitely often equal to some constant B. The example word from Figure 4
satisfies this property with B = 1. To see why the automaton accepts Lrepbdd , note that a
word is repeatedly bounded iff the stack height at the steps stabilizes eventually. The latter
occurs iff in just finitely many cases, the transition before reaching a step was a call. The
DVPA in Figure 4 detects this behavior; when reading a call symbol, it always moves to state
s0 which has odd priority, and it accepts iff s0 is visited finitely often at call positions. It is
known that Lrepbdd is not expressible through DVPA with usual parity conditions [AM04].

Theorem 2.8 [LMS04, Theorem 1]. For every non-deterministic Büchi VPA A there exists

a deterministic stair-parity DVPA D with 2O(|S|2) states such that L(A) = L(D). Moreover,
D can be constructed in exponential time in the size of A.

It was also shown in [LMS04] that stair-parity DVPA characterize exactly the class of
ω-VPL (and are thus not more expressive than non-deterministic Büchi VPA).

2.3. CaRet, a Temporal Logic of Calls and Returns. Specifying requirements directly
in terms of automata is tedious in practice. CaRet [AEM04] is an extension of Linear
Temporal Logic (LTL) [Pnu77] that can be used to describe certain ω-VPL.

Definition 2.9 (Syntax of CaRet [AEM04]). Let AP be a finite set of atomic propositions.
The logic CaRet adheres to the grammar

φ := p | φ ∨ φ | ¬φ | ⃝gφ | φUgφ | ⃝aφ | φUaφ | ⃝−φ | φU−φ ,

where p ∈ AP ∪ {call, int, ret}. △

Other common modalities such as ♢b and □b for b ∈ {g, a,−} are defined as usual via
♢bφ = true Ub φ, and □bφ = ¬♢b¬φ. We now explain the intuitive semantics of CaRet, the
formal definition is stated further below in Definition 2.10. We assume familiarity with
LTL (see, e.g., [BK08, Ch. 5] for an introduction). CaRet formulae are interpreted over
infinite words from the pushdown alphabet Σ = 2AP × {call, int, ret}. ⃝g and Ug are the
standard next and until modalities from LTL (called global next and until in CaRet). CaRet

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:9

0

1 2

3 4

5 ...⃝g

cal
l

⃝g/a

int

⃝−

⃝g

cal
l

⃝−

⃝a

⃝g

int

⃝−

⃝g/a

ret

⃝−

⃝−

Figure 5: CaRet’s various next modalities applied to the initial fragment of an example word.
Call, internal, and return positions are depicted as boxes, circles, and rhombs,
respectively. Note that ⃝a of position 3 is undefined because ⃝g is a return.
Whether or not ⃝a of position 0 is defined depends on how the words continues
after position 5; more specifically, it is defined iff there occurs a return position
on the same height as position 5. In this case, ⃝a of position 0 will point to the
first such occurrence.

extends LTL by two key operators, the caller modality ⃝− and the abstract successor ⃝a.
The semantics of these operators is visually explained in Figure 5. The caller ⃝− is a past
modality that points to the position of the last pending call (if such a call exists). For
internal and return symbols, the abstract successor ⃝a behaves like ⃝g unless the latter
is a return, in which case ⃝a is undefined (e.g., position 3 in Figure 5). On the other
hand, the abstract successor of a call symbol is its matching return if it exists, or undefined
otherwise. The caller and abstract successor modalities induce sequences of positions which
we call caller path and abstract path, respectively. The caller path is always finite and the
abstract path can be either finite or infinite. The until modalities U− and Ua are then
defined analogously to the standard until Ug with the difference that they are interpreted
over the caller and abstract path, respectively.

A prime application of CaRet is to express total correctness of a procedure F [AEM04]:

φtotal = □g (call ∧ p ∧ pF → ⃝aq)

where p and q are atomic propositions that hold at the states where the pre- and post-
condition is satisfied, respectively, and pF is an atomic proposition marking the calls to
F . Another example is the language of repeatedly bounded words from Example 2.7; it is
described by the formula φrepbdd = ♢g□g(call → ⃝aret) which states that all but finitely
many calls have a matching return. Further examples are given in [AEM04].

We now define the semantics of CaRet formally. Let Σ = 2AP × {call, int, ret} be the
pushdown alphabet and w ∈ Σω. If w(i) ∈ Σcall, then let MRw(i) be the position of the
matching return of w(i), or undef if there is no matching return. The abstract successor
succaw(i) of position i in word w is defined as follows:

succaw(i) =

MRw(i) if w(i) ∈ Σcall

i+ 1 if w(i) /∈ Σcall ∧ w(i+1) /∈ Σret

undef if w(i) /∈ Σcall ∧ w(i+1) ∈ Σret

24:10 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

The caller succ−w(i) of position i in word w is defined as the innermost (“closest”) unmatched
call position j < i, or undef if there was no previous open call.

Definition 2.10 (Semantics of CaRet). Let Σ = 2AP × {call, int, ret} and w ∈ Σω. For all
CaRet formulae φ and i ∈ N0, we define w(i) |= φ by induction over the structure of φ as
follows:

• w(i) |= p iff w(i) = (X, type) and either p ∈ X or p = type
• w(i) |= φ1 ∨ φ2 iff w(i) |= φ1 or w(i) |= φ2

• w(i) |= ¬φ iff w(i) ⊭ φ
• w(i) |= ⃝gφ1 iff w(i+ 1) |= φ1

• w(i) |= ⃝aφ1 iff succaw(i) = j ∈ N0 is defined and w(j) |= φ1

• w(i) |= ⃝−φ1 iff succ−w(i) = j ∈ N0 is defined and w(j) |= φ1

• w(i) |= φ1 Ubφ2 for b ∈ {a, g,−} if there exist positions i = i0, i1, . . . , ik, k ∈ N0, such that
(1) w(ik) |= φ2, and
(2) for all 0 ≤ j < k, w(ij) |= φ1 and ij+1 = succbw(ij).

Furthermore, we write w |= φ if w(0) |= φ. The language of all words satisfying a CaRet
formula φ is denoted L(φ) = {w ∈ Σω | w |= φ}. △

Theorem 2.11 [AAB+07, Theorem 5.1]. CaRet-definable languages are ω-VPL: For each
CaRet formula φ there exists a (non-deterministic) Büchi VPA A such that L(φ) = L(A),

and A can be constructed in time 2O(|φ|).

The above theorem is well-known in the literature [AAB+07, ABE18] even though it is
usually stated for Nested Word Automata (NWA) which are equivalent to VPA, and it is more
common to state a space bound on A rather than a time bound for the construction. The
theorem even applies to the logic NWTL+, an FO-complete extension of CaRet [AAB+07]
which we do not consider here for the sake of simplicity.

Theorems 2.8 and 2.11 together imply that each CaRet formula can be translated to a
deterministic stair-parity VPA of doubly-exponential size.

3. Probabilistic Visibly Pushdown Automata

As explained in the introduction, we employ probabilistic pushdown automata [EKM04]
(pPDA) as an operational model for procedural probabilistic programs. pPDA thus play a
fundamentally different role in this paper than VPA (cf. Definition 2.1): pPDA are used
to model the system, while VPA encode the specification. Consequently, our pPDA do not
read an input word like VPA do, but instead take their transitions randomly, according
to fixed probability distributions. In this way, they define a probability space over their
possible traces, i.e., runs projected on their labeling sequence. These traces constitute the
input words of the VPA. In order for the model checking problems to be decidable [DBB12],
a syntactic visibility restriction needs to be imposed on pPDA. In a nutshell, the condition
is that each state only has outgoing transitions of one type, i.e., push, internal, or pop.
This means that the stack operation is visible in the states (recall that for VPA, the stack
operation is visible in the input symbol). This restriction is not severe in the context of
modeling programs (see Remark 3.4 further below) and leads to our notion of probabilistic
visibly pushdown automata (pVPA) which we now define formally.

Given a finite set X, we write Dist(X) = { f : X → [0, 1] |
∑

a∈X f(a) = 1 } for the set
of probability distributions over X.

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:11

Definition 3.1 (pVPA). A probabilistic visibly pushdown automaton (pVPA) is a tuple ∆ =
(Q, q0, Γ, ⊥, P, Σ, λ) where Q is a finite set of states partitioned into Q = Qcall⊎Qint⊎Qret,
q0 ∈ Q is an initial state, Γ is a finite stack alphabet, ⊥ ∈ Γ is a special bottom-of-stack
symbol, P = (Pcall, Pint, Pret) is a triple of functions

Pcall : Qcall → Dist(Q× Γ-⊥) , Pint : Qint → Dist(Q) , Pret : Qret × Γ → Dist(Q) ,

Σ = Σcall ⊎ Σint ⊎ Σret is a pushdown alphabet, and λ : Q → Σ is a state labeling function
consistent with the visibility condition, i.e., for all type ∈ {call, int, ret} and all q ∈ Q, it is
required that q ∈ Qtype iff λ(q) ∈ Σtype. △

Similar to VPA, we use the notation q
p−→ rZ, q

p−→ r, and qZ
p−→ r to indicate that

Pcall(q)(r, Z) = p, Pint(q)(r) = p, and Pret(q, Z)(r) = p, respectively.
Intuitively, the behavior of a pVPA ∆ is as follows. If the current state q is a call state,

then the probability distribution Pcall(q) determines a random successor state and stack
symbol to be pushed on the stack (⊥ cannot be pushed). Similarly, if the current state q is
internal, then Pint(q) is the distribution over possible successor states and no stack operation
is performed. Lastly, if the current state q is a return state and symbol Z ∈ Γ-⊥ is on top of
the stack, then Z is popped and ∆ moves to a successor state with probability according
to Pret(q, Z). As in VPA, the special symbol ⊥ is not popped from the stack if a return
transition occurs in a bottom configuration.

The formal semantics of a pVPA is defined in terms of a countably infinite discrete-time
Markov chain. A (labeled) Markov chain is essentially the special case of a pVPA where
Q = Qint, with the only difference that we allow for countably infinite Q and do not impose
the restriction on the labeling function λ. A Markov chain can thus be specified as a 5-tuple
(Q, q0, P,Σ, λ), i.e., we omit ⊥ and Γ from the definition of pVPA because a Markov chain
does not use a stack. A run of a Markov chain is an infinite sequence of states, i.e., an
element from Qω. Note that in our definition, runs do not necessarily start in q0; this is just
for technical convenience—impossible runs starting in a state other than q0 will simply have
probability 0. We extend the labeling function λ from states to runs in the natural way.

We define the Markov chain generated by a pVPA ∆ = (Q, q0, Γ, ⊥, P, Σ, λ) as

D∆ = (Q× Γ∗
-⊥.⊥, q0⊥, P∆, Σ, λ∆) ,

i.e., the state space of D∆ is the set of configurations of ∆, and the transition probability
function P∆ is defined as follows. P∆(qγ)(rγ

′) = p > 0 iff exactly one of the following cases
applies:

• q ∈ Qcall and γ′ = Zγ for some Z ∈ Γ-⊥ and q
p−→ rZ; or

• q ∈ Qint and γ′ = γ and q
p−→ r; or

• q ∈ Qret and Zγ′ = γ for some Z ∈ Γ-⊥ and qZ
p−→ q; or

• q ∈ Qret and γ′ = γ = ⊥ and q⊥ p−→ r.

Moreover, the labeling function of D∆ is λ∆(qγ) = λ(q) for all qγ ∈ Q× (Γ-⊥)
∗.⊥.

Example 3.2. Figure 6 depicts a pVPA ∆ and a fragment of its generated Markov chain
D∆. Even though D∆ is infinite, many problems remain decidable, including in particular
questions about reachability probabilities which can be characterized as the least solution of
a system of polynomial equations [EKM04]. We will use this extensively in Section 4.

We define the set Runs∆ of a pVPA ∆ as the runs of the Markov chain D∆, i.e.,
Runs∆ = (Q × Γ∗

-⊥.⊥)ω. Steps of pVPA runs are defined as in Definition 2.3. A further
example pVPA and its possible runs are depicted in Figure 7 on page 16.

24:12 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

q0

q1

2/3, Z

Z, 1/2
⊥, 1

1/3, Z Z, 1/2

q0⊥

q1⊥

q0Z⊥ q0ZZ⊥ · · ·

q1Z⊥ q1ZZ⊥ · · ·

2/3

1/3

2/3

1/3

2/3

1/3

1/2

1/2

1/2

1/2

1

Figure 6: Left: A pVPA ∆ (labeling function omitted) with Γ = {⊥, Z}. Call and return
states are drawn as squares and rhombs, respectively. Transitions labeled p, Z for
p ∈ [0, 1] mean that with probability p symbol Z is pushed. Transitions labeled
X, p, for X ∈ Γ and p ∈ [0, 1], indicate that if X is on top of the stack, then the
transition is taken with probability p (and X is popped if X ̸= ⊥). Note that the
visibility restriction on pVPA enforces that a state may not have both outgoing
push and outgoing pop transitions. Right: The infinite-state Markov chain D∆

generated by ∆.

We associate a probability space with Runs∆ in the usual way (see, e.g., [BK08, Ch. 10]).
To this end, we define the σ-algebra F ⊆ 2Runs∆ as the smallest set that contains all the
cylinder sets ρ.Runs∆, where ρ is an arbitrary finite prefix ρ ∈ (Q× Γ∗

-⊥.⊥)∗ of a run, and
that is closed under complement and countable union. The sets in F are called measurable
and there is a unique probability measure P∆ : F → [0, 1] satisfying

P∆(ρ.Runs∆) =

{∏|ρ|−2
i=0 P∆(ρ(i), ρ(i+1)) if |ρ| = 0 or (|ρ| > 0 and ρ(0) = q0⊥),

0 otherwise,

where an empty product (which occurs if |ρ| ≤ 1) is defined to be equal to 1. We omit the
subscript in P∆ whenever ∆ is given by the context.

In the following two remarks, we summarize the technical differences between our pVPA
model and existing models in the literature.

Remark 3.3. Unlike the pPDA from [EKM04], our pVPA only generate infinite runs, i.e.,
they do not “terminate” when reaching the empty stack. Indeed, in our pVPA, the stack
can never be empty because the special bottom symbol ⊥ cannot be popped. We have
chosen this semantics for compatibility with CaRet which describes ω-languages by definition.
Nonetheless, terminating behavior can be easily simulated in our framework by moving to a
dedicated sink state once the pVPA attempts to pop ⊥ for the first time. Another technical
difference between our pVPA and the pPDA introduced in [EKM04] is that in pVPA, only
pop transitions can read the stack, whereas in pPDA, all types of transitions can read, and
possibly exchange, the current topmost stack symbol. We have chosen this definition (which
is not a true restriction) for compatibility with VPA as defined in [AM04].

Remark 3.4. The visibility restriction of our pVPA is slightly different from the definition
given in [DBB12] which requires all incoming transitions to a state to be of the same
type, i.e., call, internal, or return. Our definition, on the other hand, imposes the same
requirement on the states’ outgoing transitions. We believe that our condition is more
natural for pVPA obtained from procedural programs, such as the one in Figure 1. In fact,

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:13

programs where randomness is restricted to internal statements such as x := bernoulli(0.5)
or x := uniform(0, 3) naturally comply with our visibility condition because all call and
return states of such programs are deterministic and thus cannot violate visibility. However,
the alternative condition of [DBB12] is not necessarily fulfilled for such programs.

We can now formally state our main problem of interest:

Definition 3.5 (Probabilistic CaRet Model Checking). Let AP be a finite set of atomic
propositions, φ be a CaRet formula over AP , ∆ be a pVPA with labels from the pushdown
alphabet Σ = 2AP ×{call, int, ret}, and θ ∈ [0, 1]∩Q. The quantitative CaRet Model Checking
problem is to decide whether

P({ ρ ∈ Runs∆ | λ(ρ) ∈ L(φ) }) ≥? θ .

The qualitative CaRet Model Checking problem is the special case where θ = 1. △

The probabilities in Definition 3.5 are well-defined as ω-VPL are measurable [LMS04].

4. Model Checking pVPA against Stair-parity DVPA

In this section, we show that model checking pVPA (Definition 3.1) against VPL given
in terms of a stair-parity DVPA (Definition 2.6) is decidable. This is achieved by first
computing an automata-theoretic product of the pVPA and the DVPA and then evaluating
the acceptance condition in the product automaton.

4.1. Products of Visibly Pushdown Automata. In general, pushdown automata are
not closed under taking products as this would require two independent stacks. However,
the visibility conditions on VPA and pVPA ensure that their product is again an automaton
with just a single stack because the stack operations (push, internal, or pop) are forced to
synchronize.

We now define the product formally. An unlabeled pVPA is a pVPA where the labeling
function λ and alphabet Σ are omitted.

Definition 4.1 (Product ∆ × D). Let ∆ = (Q, q0, Γ, ⊥, P, Σ, λ) be a pVPA, and D =
(S, s0, Γ

′, ⊥, δ, Σ) be a DVPA over pushdown alphabet Σ. The product of ∆ and D is the
unlabeled pVPA

∆×D = (Q× S, (q0, s0), Γ× Γ′, ⟨⊥,⊥⟩, P∆×D) ,

where P∆×D is the smallest set of transitions satisfying the following rules for all q, r ∈ Q,
Z ∈ Γ, s, t ∈ S, and Y ∈ Γ′:

(call)
q

p−→∆ rZ ∧ s
λ(q)−−→D tY

(q, s)
p−→∆×D (r, t)⟨Z, Y ⟩

(return)
qZ

p−→∆ r ∧ sY
λ(q)−−→D t

(q, s)⟨Z, Y ⟩ p−→∆×D (r, t)

(internal)
q

p−→∆ r ∧ s
λ(q)−−→D t

(q, s)
p−→∆×D (r, t)

.

If the DVPA D is equipped with a priority function Ω: S → N0, then we extend Ω to
Ω′ : Q× S → N0 via Ω′(q, s) = Ω(s). △

It is not difficult to show that ∆ × D is indeed a well-defined pVPA and moreover
satisfies the following property (the proof is standard, see [WGK21, Appendix B.1]):

24:14 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

Lemma 4.2 (Soundness of ∆×D). Let ∆ be a pVPA and D be a stair-parity DVPA with
priority function Ω, both over pushdown alphabet Σ. Then the product pVPA ∆×D with
priority function Ω′ as in Definition 4.1 satisfies

P({ ρ ∈ Runs∆ | λ(ρ) ∈ L(D) }) = P({ ρ ∈ Runs∆×D | ρ↓Steps ∈ ParityΩ′ }),
where ParityΩ′ denotes the set of words in (Q× S)ω satisfying the standard parity condition
induced by Ω′. Moreover, ∆×D can be constructed in polynomial time.

Remark 4.3. It is not actually important that the product pVPA again satisfies the
visibility condition, even though this happens to be the case. All techniques we apply to the
product also work for general pPDA.

4.2. Stair-parity Acceptance Probabilities in pVPA. Lemma 4.2 effectively reduces
model checking pVPA against stair-parity DVPA to computing stair-parity acceptance in the
product, which is again an (unlabeled) pVPA. We therefore focus on pVPA in this section
and do not consider DVPA.

Throughout the rest of this section, let ∆ = (Q, q0, Γ, ⊥, P) be an unlabeled pVPA.
On the next pages we describe the construction of a finite Markov chain M∆ that we call the
step chain of ∆. Loosely speaking, M∆ simulates jumping from one step (see Definition 2.3)
of a run of ∆ to the next.

Remark 4.4. The idea of the step Markov chain M∆ first appeared in [EKM04]. However,
the step chain as presented here differs from the original definition in [EKM04] in at least
two important aspects. First, we have to take the semantics of our special bottom symbol ⊥
into account. This is why our chain uses a subset of Q ∪Q⊥ as states—it must distinguish
whether a step occurs at a bottom configuration. The pPDA in [EKM04], on the other
hand, may have both finite and infinite runs, and this needs to be handled differently in
the step chain. Second, we use step chains for a different purpose than [EKM04], namely to
show that general measurable properties defined on steps—this includes stair-parity—can
be evaluated on pVPA (Lemma 4.15).

4.2.1. Steps as events. For all n ∈ N0, we define a random variable V (n) on Runs∆ whose
value is either the state q of ∆ at the n-th step, or the extended state q⊥ in the special case
where the n-th step occurs at a bottom configuration q⊥, for some q ∈ Q. We denote the set
of all such extended states with Q⊥ = { q⊥ | q ∈ Q }. Formally, V (n) : Runs∆ → Q ∪Q⊥
is defined as

V (n)(ρ) =

{
q if stepn(ρ) = qγ and γ ̸= ⊥
q⊥ if stepn(ρ) = q⊥ ,

where stepn(ρ) denotes the configuration at the n-th step of ρ.

Lemma 4.5. For all n ∈ N0 and v ∈ Q ∪Q⊥, the event V (n) = v is measurable, and thus
V (n) is a well-defined random variable.

Proof. This was proved more generally in [EKM04]. Here we give an alternative proof using
the fact that all ω-VPL are measurable [LMS04]. We view Q ∪Q⊥ as a pushdown alphabet
(the partition is induced by the partition on Q). We can construct a non-deterministic
Büchi VPA that accepts a word w ∈ (Q ∪Q⊥)ω iff the n-th step of w is v (the size of this

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:15

automaton depends on n). To this end, the VPA guesses the first n positions that are steps
and goes to an accepting state s if the n-th step was v. The automaton can verify that it
guessed correctly as follows. If it believes a call symbol is a step, it pushes a special marker
on the stack; if this marker is ever popped, then the call was no step and the guess was
wrong. If it detects a wrong guess in this way, then it leaves the accepting state s, otherwise
it loops there forever. The claim follows because the function f : Runs∆ → (Q ∪Q⊥)ω that
maps runs to the sequence of their (extended) states is measurable (indeed, the preimage
f−1(w) of every w ∈ (Q ∪Q⊥)ω is

f−1(w) =
⋂
i≥0

⋃
γ0...γi ∈Γ∗

-⊥.⊥
w(0)γ0 . . . w(i)γi.Runs∆

which is a countable intersection of countable unions of basic cylinder sets).

We can view the sequence V (0), V (1) . . . of random variables as a stochastic process. It
is intuitively clear that for all n ∈ N0, the value of V (n+1) depends only on V (n), but not
on V (i) for i < n. This is due to the more general observation that only the state q at any
step configuration qγ (with γ ̸= ⊥) fully determines the future of the run because being a
step already implies that no symbol in γ can ever be read, as reading it implies popping it
from the stack. In particular, q determines the probability distribution over possible next
steps. A similar observation applies to bottom configurations of the form q⊥. Phrased in
the language of probability theory, the process V (0), V (1) . . . has the Markov property, i.e.,

P(V (n) = vn | V (n−1) = vn−1 ∧ . . . ∧ V (0) = v0) = P(V (n) = vn | V (n−1) = vn−1) (4.1)

holds for all values of v0, . . . , vn such that the conditional probabilities are well-defined1. This
was proved in detail in [EKM04]. It is also clear that the Markov process is time-homogeneous
in the sense that

P(V (n+1) = v′ | V (n) = v) = P(V (m+1) = v′ | V (m) = v) (4.2)

holds for all n,m ∈ N0 for which the two conditional probabilities are well-defined. The
following example provides some intuition on these facts.

Example 4.6. Consider the pVPA in Figure 7 (left). The initial fragments of its two
equiprobable runs are depicted in the middle. In this example, it is easy to read off the
next-step probabilities P(V (n) = vn | V (n−1) = vn−1) for all n ∈ N0 and vn, vn−1 ∈ Q ∪Q⊥.

They are summarized in the Markov chain on the right. For example, V (0) = q0⊥ holds
with probability 1, and V (1) = q1 and V (1) = q3⊥ hold with probability 1/2 each because
the second step occurs either at position 1 with configuration q1⊥Z or at position 3 with
configuration q3⊥, and both options are equally likely. The case P(V (2) = q2 | V (1) = q1) = 1
is slightly more interesting: Given that a configuration q1γ with γ ̸= ⊥ is a step, we know
that the next state must be q2 (which is then also a step). Even though there is a transition
from q1 to q3 in ∆, the next state cannot be q3 because the latter is a return state which
would immediately decrease the stack height of γ. This shows that, intuitively speaking,
conditioning on being a step influences the probabilities of a state’s outgoing transitions.

1A conditional probability is well-defined if the condition, i.e., the event on the right hand side of the
vertical bar, has positive probability. Expressions like the one in (4.1) are thus not necessarily well-defined

because the probability that V (n−1) = vn−1 might be zero for certain values of n and vn−1.

24:16 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

q0 q1

q2

q3

1, Z

1/2

1/2

1, Z

Z, 1
⊥, 1

0 1 2 3 4 5

...
Z ...

Z Z ...
Z Z Z Z ...

⊥ ⊥ ⊥ ⊥ ⊥ ...
q0 q1 q2 q2 q2 ...

Z Z
⊥ ⊥ ⊥ ⊥ ⊥ ...
q0 q1 q3 q3 q3 ...

q0⊥

q3⊥

q1 q2

1/2

1/2

1

1

1

Figure 7: Left: An example (unlabeled) pVPA ∆. Recall that call and return states are
drawn as squares and rhombs, respectively, whereas internal states are depicted
as circles. Middle: Initial fragments of the two possible runs of ∆. Steps are
underlined. Right: The step Markov chain M∆ (Definition 4.14, page 22).

4.2.2. Probabilities of next steps, returns, and diverges. Our next goal is to provide expres-
sions for the next-step probabilities P(V (n+1) = v′ | V (n) = v) as we did in Example 4.6. It
turns out that those can be stated in terms of the return and diverge probabilities of ∆.

Definition 4.7. Let q, r ∈ Q be states, and Z ∈ Γ-⊥ be a stack symbol of pVPA ∆. We
define the following probabilities:

• The return probability [qZ↓r] is the probability to reach configuration r⊥ from qZ⊥
without visiting another bottom configuration t⊥ for some t ̸= r in between. Formally,

[qZ↓r] = PqZ⊥({ q′γ⊥ | q′ ∈ Q, γ ∈ Γ+
-⊥ } U {r⊥})

where PqZ⊥ is the probability measure associated with the infinite Markov chain D∆

assuming initial state qZ⊥, and U is the standard until operator from LTL.
• The diverge probability [q↑] = 1−

∑
t∈Q[qZ↓t], i.e., the probability to never pop Z from

the stack when starting in qZ⊥. Note that [q↑] is indeed independent of Z because the
only way to read Z is by popping it from the stack. Recall that this is due to our specific
definition of pVPA (Definition 3.1) in which only pop transitions can read from the stack
just like in VPA (Definition 2.1); we remark that in traditional (p)PDA, all types of
transition can read —and possibly replace— the topmost stack symbol [EKM04]. △

The diverge probabilities are closely related to steps. In fact, the probability that a
non-bottom configuration with head qZ is a step is equal to [q↑]. For example, in the pVPA
in Figure 7 the configuration q1Z⊥ is a step with probability [q1↑] = 1/2.

Example 4.8. It is well known that the return and diverge probabilities are not necessarily
rational. We give a minimal example to illustrate this fact. Consider the following pVPA:

q0 q1 q2q3
1/2 1, Z1/2

1, ZZ, 1 | ⊥, 1

Intuitively, this pVPA either pops the topmost symbol with probability 1/2, or it pushes
two times the symbol Z. Note that all return probabilities of the form [. . . ↓qi] for i ̸= 0

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:17

are equal to zero. In [EKM04] it was shown that the remaining return probabilities are the
component-wise least non-negative solution of the polynomial system:

[q0Z↓q0] =
1

2
· [q1Z↓q0] +

1

2
· [q3Z↓q0]

[q1Z↓q0] = [q2Z↓q0] · [q0Z↓q0]
[q2Z↓q0] = [q0Z↓q0] · [q0Z↓q0]
[q3Z↓q0] = 1 .

It follows that [q0Z↓q0] must be the least non-negative solution of

[q0Z↓q0] =
1

2
· [q0Z↓q0]3 +

1

2

which is [q0Z↓q0] =
√
5−1
2 ≈ 0.618, the reciprocal of the golden ratio. △

The probabilities in Example 4.8 can still be expressed by radicals (square roots, cubic
roots, and so on) which allows for certain effective computations. However, in general, the
probabilities cannot even be expressed in this way. For example, consider a pVPA that
repeats the following steps until emptying its stack or getting stuck in a sink state: (i) It
pushes four symbols with probability 1

6 , or (ii) pops one symbol with probability 1
2 , or (iii)

gets stuck otherwise. The resulting return probability is the least x ≥ 0 with x = 1
6x

5 + 1
2 ,

which is an algebraic number not solvable by radicals [EY09, Theorem 3.2(1)].

Remark 4.9. The probabilities [qZ↓r] from Definition 4.7 were called termination proba-
bilities in previous work [BEKK13]. However, we believe that return probability is more
appropriate. When modeling procedural probabilistic programs as pVPA, [qZ↓r] is just the
probability to eventually return from local state q of the current procedure to local state r
of the calling procedure (the return address is stored on the stack in Z). We believe that the
term termination probability is more adequate for referring to the quantity

∑
r∈Q[q0Z0↓r],

where Z0 is some initial stack symbol, i.e., the probability that some initial procedure
indentified by Z0 returns at all when started in local state q0.

We now state the technical key lemma of this section, the characterization of the next
step probabilities P(V (n+1) = v′ | V (n) = v) as given in Table 2. The upcoming section is
devoted to proving that the entries in the table are correct.

Lemma 4.10. The conditional next-step probabilities in Table 2 are correct in the sense
that if P(V (n+1) = v′ | V (n) = v) is defined for n ∈ N0 and v, v′ ∈ Q ∪Q⊥, then it is equal
to the probability in the respective column v → v′.

4.2.3. Proof of Lemma 4.10. We first explain the trivial entries in Table 2. Further below,
we give a self-contained proof of the two non-trivial expressions in the left-most column of
Table 2. Throughout the whole proof we fix an (unlabed) pVPA ∆ = (Q, q0, Γ, ⊥, P), with
P = (Pcall, Pint, Pret) the call, internal, and return transition functions, respectively. The
following items correspond to the trivial entries in Table 2 and are ordered column-by-column,
from left to right:

• The probability P(V (n+1) = r | V (n) = q) with q ∈ Qret is never well-defined because it is
impossible that steps occur at non-bottom configurations with a return state.

24:18 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

Table 2: Next-step probabilities of the step Markov chain. Ptype for type ∈ {call, int, ret} are
the probabilities of the pVPA’s call, internal, and return transitions, respectively.
The values [r′Z↓r] and [q↑] are the return and diverge probabilities from Defini-
tion 4.7.

q → r q⊥ → r q⊥ → r⊥ q → r⊥

q ∈ Qcall
[r↑]
[q↑]

(∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r] +

∑
Z

Pcall(q, rZ)

) ∑
Z

Pcall(q, rZ)[r↑]
∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r] 0

q ∈ Qint
[r↑]
[q↑]

Pint(q, r) 0 Pint(q, r) 0

q ∈ Qret undef. 0 Pret(q⊥, r) undef.

• The probability P(V (n+1) = r | V (n) = q⊥) with q ∈ Qint is trivially zero because if q is
internal then the next step after a bottom configuration q⊥ is necessarily also a bottom
configuration.

• The probability P(V (n+1) = r | V (n) = q⊥) with q ∈ Qret is trivially zero because if q
is a return state at a bottom configuration then the next step occurs at the immediate
successor configuration which is a bottom configuration as well.

• The probability P(V (n+1) = r⊥ | V (n) = q⊥) with q ∈ Qint is straightforward because q⊥
and r⊥ are both steps and the probability that the next state after q⊥ is r⊥ is Pint(q, r).

• The probability P(V (n+1) = r⊥ | V (n) = q⊥) with q ∈ Qret is simply Pret(q⊥, r) for the
same reason as in the previous case (recall that a return state at a bottom-configuration
behaves exactly like an internal one).

• All the remaining probabilities in the rightmost column “ q → r⊥ ” are trivially zero or
ill-defined because if a step occurs at non-bottom configuration, then the next step can
never occur at a bottom configuration.

We now focus on the following non-trivial cases. Let r ∈ Q and n ∈ N0 be arbitrary.

(1) If q ∈ Qint then,

P(V (n+1) = r | V (n) = q) =
[r↑]
[q↑]

Pint(q, r) .

(2) If q ∈ Qcall then,

P(V (n+1) = r | V (n) = q) =
[r↑]
[q↑]

∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r] +

∑
Z

Pcall(q, rZ)

 .

The other two non-trivial cases are easier variants of case (2), hence we omit them here
(see [WGK21, p. 30] for details). Next we provide some intuition about cases (1) and (2):

• For (1), suppose that the n-th step is at position i of the run. Since the n-th step
occurs at an internal state q ∈ Qint, the n+1-st step must necessarily occur immediately
at position i+1. The factor Pint(q, r)[r↑] is proportional to the probability to take an
(internal) transition from q to r and then diverge in r, which is necessary in order for the
next configuration to be a step. However, the values {Pint(q, r)[r↑] | r ∈ Q } do not form
a probability distribution in general. Therefore we divide by the normalizing constant
[q↑] =

∑
r∈Q Pint(q, r)[r↑].

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:19

• In (2), the two summands correspond to the following case distinction: Since the n-th step
occurs at the call state q ∈ Qcall, the n+1-st step either (i) occurs at the same stack height
as the current step n (which means that the current call has a matching return), or (ii)
the stack height at the next step n+1 is incremented by 1 compared to the stack height
at step n. In case (ii), the next step occurs immediately at the next position, which is
why the second summand is just the 1-step probability to go from q to r. In case (i), the
symbols pushed by the outgoing transitions of q must be eventually popped. For instance,
if we assume that q takes a transition to an immediate successor r′ and pushes Z on the
stack, then the probability that the next step occurs at r is precisely the return probability

[r′Z↓r] (see Definition 4.7). The factor [r↑]
[q↑] is needed for similar reasons as in (1).

We now give the formal proofs for (1) and (2). In the following, we often use equations
involving conditional probabilities such as P(A | B) = P(C | D). These conditional
probabilities are not necessarily well-defined in all cases. Therefore, the meaning of our
equations is that they hold only if all probabilities involved are well-defined. We need some
definitions and (simple) lemmas first.

Definition 4.11. Let i ∈ N0 and q ∈ Q. We introduce the following events:

• q@i is the set of all runs ρ ∈ Runs∆ such that ρ(i) = qγ with γ ̸= ⊥, i.e., the runs whose
i-th configuration has state q and stack unequal to ⊥.

• Similarly, q⊥@i denotes the set of all runs ρ ∈ Runs∆ such that ρ(i) = q⊥, i.e., the runs
whose i-th configuration is a bottom configuration with state q.

• step@i denotes the set of all runs such that the i-th configuration is a step.
• We define sh@i = sh(ρ(i)) ∈ N0, i.e., the stack height of the i-th configuration. Strictly
speaking, sh@i is a random variable, not an event. Note that step@i is by definition
equivalent to ∀j > i : sh@j ≥ sh@i.

These events are all measurable. △
Lemma 4.12. For all i ∈ N0, and q ∈ Q, the following identities hold:

P(step@i | q@i) = [q↑] (4.3)

P(step@i | q⊥@i) = 1 (4.4)

Further, for q ∈ Qint and r ∈ Q,

P(r@(i+1) | q@i) = Pint(q, r) (4.5)

P(step@(i+1) ∧ step@i | r@(i+1) ∧ q@i) = P(step@(i+1) | r@(i+1)) (4.6)

Proof. The first three equations follow immediately from the definitions. For (4.6) we have:

P(step@(i+1) ∧ step@i | r@(i+1) ∧ q@i)

= P(step@(i+1) | r@(i+1) ∧ q@i)

= P(step@(i+1) | r@(i+1))

The first equation holds because if q ∈ Qint and q@i, then step@(i+1)∧ step@i is already im-
plied by step@(i+1), and the second equation holds because the probability that step@(i+1)
depends only on the state at position i+1, not on the state at position i.

To prove equation for case (1) we argue as follows. By time-homogeneity (see (4.2)) and

the definition of V (n), we have for all i, n ∈ N0, q ∈ Qint and r ∈ Q that

P(V (n+1) = r | V (n) = q) = P(r@(i+1) ∧ step@(i+1) | q@i ∧ step@i) (4.7)

24:20 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

Now:

P(V (n+1) = r | V (n) = q)

= P(r@(i+1) ∧ step@(i+1) | q@i ∧ step@i) (by (4.7))

=
P(r@(i+1) ∧ step@(i+1) ∧ q@i ∧ step@i)

P(q@i ∧ step@i)
(cond. probability)

=
P(r@(i+1) ∧ step@(i+1) ∧ step@i | q@i) · P(q@i)

P(step@i | q@i) · P(q@i)
(cond. probability)

=
P(r@(i+1) ∧ step@(i+1) ∧ step@i | q@i)

P(step@i | q@i)
(simplification)

=
P(step@(i+1) ∧ step@i | r@(i+1) ∧ q@i) · P(r@(i+1) | q@i)

P(step@i | q@i)
(cond. probability)

=
P(step@(i+1) | r@(i+1)) · P(r@(i+1) | q@i)

P(step@i | q@i)
(by (4.6))

=
[r↑] · Pint(q, r)

[q↑]
. (by (4.3), (4.5))

This concludes the proof for case (1).
We now turn to case (2). For all i, n ∈ N0, q ∈ Qcall and r ∈ Q, it holds that

P(V (n+1) = r | V (n) = q)

= P(∃k > i : step@k ∧ r@k ∧ ∀i < j < k : ¬step@j | step@i ∧ q@i)

(by time homogeneity and definition of V (n))

= P(∃k > i+1 : step@k ∧ r@k ∧ ∀i < j < k : ¬step@j | step@i ∧ q@i)

+ P(r@(i+1) ∧ step@(i+1) | q@i ∧ step@i)
(4.8)

The last equality results from a split in two disjoint events. For the second summand in
(4.8) it can be shown that

P(r@(i+1) ∧ step@(i+1) | q@i ∧ step@i) =
[r↑]
[q↑]

∑
Z

Pcall(q, rZ)

by a similar derivation as in case (1) (the sum over all stack symbols Z is because q ∈ Qcall,
so that there may be multiple —up to |Γ-⊥| many— direct transitions from q to r).

We need a couple of lemmas before deriving an equation for the first summand in (4.8).

Lemma 4.13. For all q ∈ Qcall, r ∈ Q, and i ∈ N0 it holds that:∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r] =

∑
k>i+1

P(r@k ∧ ∀i<j<k : sh@j > sh@k = sh@i | q@i) (4.9)

Moreoever, for all q ∈ Qcall, i ∈ N0, and k ∈ N0, we have:

P(step@k ∧ ∀i<j<k : ¬step@j ∧ step@i | q@i)

= P(step@k ∧ ∀i<j<k : sh@j > sh@i = sh@k | q@i)
(4.10)

and

P(∀i<j<k : sh@j > sh@i = sh@k | q@i ∧ r@k ∧ step@k)

= P(∀i<j<k : sh@j > sh@i = sh@k | q@i ∧ r@k)
(4.11)

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:21

Proof. For (4.9), note that
∑

r′,Z Pcall(q, r
′Z)[r′Z↓r] is the probability to go from q (with

empty stack) to a successor state r′, push Z ∈ Γ and then later reach r with empty stack
within finitely many steps. If we assume that q@i, then this is the same as summing over
all positions k > i+ 1 (we can exclude k = i+ 1 because is not possible because to push
and pop Z within one transition) such that r@k and for all i < j < k the stack height is
greater than at position i and k. Positions i and k have the same stack height because in the
transition from i the symbol Z is pushed, and k is the position directly after Z is popped.
In between those two transitions, the stack below Z cannot change, so the stack is the same
at both positions.

For (4.10) we argue as follows:

P(step@k ∧ ∀i<j<k : ¬step@j ∧ step@i | q@i)

= P(step@k ∧ ∀i<j<k : sh@j > sh@i = sh@k ∧ step@i | q@i)

= P(step@k ∧ ∀i<j<k : sh@j>sh@i = sh@k | q@i)

The first equality holds because if no position between i and k is a step, then the stack at
those positions must be higher than at position k. Furthermore, since i is a step, we have
sh@i ≤ sh@k; and moreover, since i+1 is not a step and q is a call state, we even have
sh@i = sh@k. The second equality holds because if i and k have the same stack height and
all positions between them have a higher stack, then i is a step if and only of k is a step.

Equation (4.11) is somewhat counter-intuitive because conditioning on step@k is like
“conditioning on the future”: The stack height after position k should never be smaller than
at position k. Knowing that step@k gives information about the (extended) state at position
k. However, in (4.11) we also condition on the fact that r@k, i.e., at position k, the run is
in step r and the topmost stack symbol is not ⊥. Hence, in the context of (4.11), we can
drop step@k from the condition.

We conclude the proof of case (2) and thus of the whole Lemma 4.10 by deriving the
desired equation for the first summand in (4.8):

P(∃k>i+1 : step@k ∧ r@k ∧ ∀i<j<k : ¬step@j | step@i ∧ q@i)

=
P(∃k>i+1 : step@k ∧ r@k ∧ ∀i<j<k : ¬step@j ∧ step@i | q@i) · P(q@i)

P(step@i | q@i) · P(q@i)
(cond. probability twice)

=
P(∃k>i+1 : step@k ∧ r@k ∧ ∀i<j<k : ¬step@j ∧ step@i | q@i)

P(step@i | q@i)
(simplification)

=
∑

k>i+1

P(step@k ∧ r@k ∧ ∀i<j<k : ¬step@j ∧ step@i | q@i)

P(step@i | q@i)
(split disjoint events)

=
∑

k>i+1

P(step@k ∧ r@k ∧ ∀i<j<k : sh@j > sh@i = sh@k | q@i)

P(step@i | q@i)
(by (4.10))

=
∑

k>i+1

(
P(step@k ∧ r@k | q@i)

· P(∀i<j<k : sh@j > sh@i = sh@k | q@i ∧ step@k ∧ r@k)

P(step@i | q@i)

) (cond. probability)

24:22 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

τ

r c

1/3 2/3

Z, 2/3
⊥, 2/3

1/3, Z

Z, 1/3
⊥, 1/3

2/3, Z

τ⊥

r⊥ c⊥ c

τ
1/3 2/3

1/3

2/3

1/3

1/6

1/2

1

1

Figure 8: Left: Example pVPA ∆ with the following return and diverge probabilities:
[cZ↓c] = 1/6, [cZ↓r] = 1/12, [rZ↓r] = 1/3, [rZ↓c] = 2/3, and [c↑] = 3/4, [τ↑] = 1/2,
[r↑] = 0. In general, these probabilities may be irrational numbers [EY09]. Right:
The step chain M∆ according to Definition 4.14. The transition probabilities can
be computed using the return and diverge probabilities and Table 2.

=
∑

k>i+1

P(step@k ∧ r@k | q@i) · P(∀i<j<k : sh@j > sh@i = sh@k | q@i ∧ r@k)

P(step@i | q@i)

(by (4.11))

=
∑

k>i+1

P(step@k | q@i ∧ r@k)

P(step@i | q@i)
· P(∀i<j<k : sh@j > sh@i = sh@k ∧ r@k | q@i)

(rewriting)

=
[r↑]
[q↑]

∑
k>i+1

P(r@k ∧ ∀i<j<k : sh@j > sh@i = sh@k | q@i)

(by (4.3) and noticing that P(step@k | q@i ∧ r@k) = P(step@k | r@k))

=
[r↑]
[q↑]

∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r] (by (4.9))

This concludes the proof of Lemma 4.10.

4.2.4. The step chain. Recall from (4.1) that the stochastic process V (0), V (1) . . ., where

V (i) ∈ Q∪Q⊥ is the extended state at the ith step, has the Markov property. Since Q∪Q⊥
is a finite set, we can now use Lemma 4.10 to construct the underlying finite Markov chain
explicitly.

Definition 4.14 (The Step Chain M∆). M∆ is the Markov chain with states

M = { q ∈ Qcall ∪Qint | [q↑] > 0 } ∪ Q⊥ ,

initial state q0⊥, and for all v, v′ ∈ M , the probability of transition v → v′ is defined
according to Table 2. △

Figure 8 depicts a non-trivial pVPA and its step chain. In this example, all return and
diverge probabilities are rational. In general, however, the return and diverge probabilities
(Definition 4.7) are algebraic numbers that are not always rational or even expressible by
radicals [EY09] (cf. Example 4.8). As a consequence, one cannot easily perform numerical
computations on the step chain. However, the probabilities can be encoded implicitly as
the unique solution of an existential theory of the reals (ETR) formula, i.e., an existentially

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:23

quantified FO-formula over (R,+, ·,≤) [EKM04]. Since the ETR is decidable in PSPACE,
many questions about the step chain are in PSPACE as well. We will make use of this in
Theorem 4.16 below.

The property of M∆ that is most relevant to us is given by the following Lemma 4.15.
For ρ ∈ Runs∆, we let ρ⇓Steps = V (0)(ρ)V (1)(ρ) . . . ∈ (Q∪Q⊥)ω (note that this is a slightly
different “footprint” than the one introduced in Section 2.2).

Lemma 4.15 (Soundness of M∆). Let ∆ be a pVPA with step chain M∆. Let M be the
states of the step chain and let R ⊆ Mω be measurable. Then

P∆({ ρ ∈ Runs∆ | ρ⇓Steps ∈ R }) = PM∆
(R)

where P∆ and PM∆
are the probability measures associated with ∆ and M∆, respectively.

Proof. The formal proof requires some basic notions from measure theory. In fact, Lemma 4.15
is actually an instance of the following more general statement:

(⋆) Let (X,A, µ) and (Y,B, ν) be probability spaces such that B = σ(G), where G ⊆ 2Y , i.e.,
B is the σ-algebra generated by the sets in G. Assume furthermore that G is a π-system,
i.e., G is non-empty and closed under finite intersections. Let f : X → Y be such that
for all G ∈ G, f−1(G) ∈ A and µ(f−1(G)) = ν(G). Then f is a measurable function
and the pushforward measure ν ′ = µ ◦ f−1 coincides with ν.

We now explain how to prove (⋆) using fundamental measure theory. The fact that f is
measurable follows because the inverse image f−1 preserves set operations (see, e.g., [ADD00,
below Definition 1.5.1]). For the claim that ν ′ = ν it suffices to note that by assumption we
have for all G ∈ G that ν ′(G) = ν(G), and since G is a π-system, an application of the π-λ
theorem (see, e.g., [Pan09, Proposition 2.10]) implies that ν ′ = ν.

We instantiate (⋆) as follows to prove Lemma 4.15: The probability spaces are the ones
associated with the measures P∆ and PM∆

. In particular, the σ-algebra on which PM∆
is

defined is the one generated by the cylinder sets C = {w.Mω | w ∈ M∗} ⊆ 2M
ω
. It is easy

to see that G = C ∪ {∅} is a π-system, and σ(C) = σ(G). We define f : (Q × Γ∗
-⊥.⊥)ω →

Mω, f(ρ) = ρ⇓Steps , i.e., f projects a run from ∆ to its footprint of steps (which is a run
in M∆). To apply (⋆) it remains to show that for all cylinder sets w.Mω, w ∈ M∗, we
have that (i) f−1(w.Mω) is measurable, and (ii) P∆(f

−1(w.Mω)) = PM∆
(w.Mω). For (i)

notice that f−1(w.Mω) =
∧|w|−1

i=0 (V (i) = w(i)) is indeed measurable because it is a finite

intersection of measurable events by Lemma 4.5; recall that V (i) denotes the (extended)
state at the ith step. (ii) is trivial in the case where |w| = 0, so we let |w| = n+ 1, n ≥ 0,
and exploit the properties of the step chain M∆. If w(0) ̸= q0⊥ (the initial state of M∆)

then P∆(V
(0) = w(0)) = PM∆

(w.Mω) = 0. Otherwise w(0) = q0⊥. In this case, if n = 0

(i.e., |w| = 1), then P∆(V
(0) = w(0)) = PM∆

(w.Mω) = 1. Else, if n > 0 (|w| > 1), by the
Markov property from equation (4.1), we have

P∆(V
(n) = w(n) ∧ . . . ∧ V (0) = w(0))

= P∆(V
(n) = w(n) | V (n−1) = w(n− 1)) · . . . · P∆(V

(1) = w(1) | V (0) = w(0))

= P (w(n− 1), w(n)) · . . . · P (w(0), w(1)) (By Lemma 4.10)

= PM∆
(w.Mω)

where P is the transition probability function in the Markov chain M∆ and the last equality
holds by definition of the probability measure PM∆

.

24:24 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

Table 3: The underlying graph of the step chain. The condition in each cell is true iff the
corresponding transition probability in Table 2 is non-zero.

q → r q⊥ → r q⊥ → r⊥ q → r⊥

q ∈ Qcall

[r↑] > 0 ∧ (
(∃r′, Z : Pcall(q, r

′Z) > 0 ∧ [r′Z↓r]) > 0)
∨ ∃Z : Pcall(q, rZ) > 0)

∃Z : Pcall(q, rZ) > 0
∧ [r↑] > 0

∃r′, Z : Pcall(q, rZ) > 0
∧ [r′Z↓r] > 0

false

q ∈ Qint [r↑] > 0 ∧ Pint(q, r) > 0 false Pint(q, r) > 0 false

q ∈ Qret false false Pret(q⊥, r) > 0 false

4.3. Main Result of Section 4. The following is the main result of Section 4:

Theorem 4.16. Let ∆ be a pVPA and D be a stair-parity DVPA, both over the same
pushdown alphabet Σ. Then for all θ ∈ [0, 1] ∩Q, the following is decidable in PSPACE:

P({ρ ∈ Runs∆ | λ(ρ) ∈ L(D)}) ≥? θ .

The rest of Section 4.3 is devoted to the proof of Theorem 4.16. We first provide a brief
overview. The first step is to construct the product ∆×D according to Definition 4.1. By
Lemma 4.2 we need to compute the stair-parity acceptance probability of ∆×D. Lemma 4.15
reduces this to computing a usual parity acceptance probability in the step chain M∆×D.
This can be achieved through finding the bottom strongly connected components (BSCC) of
M∆×D, classifying them as good (the minimum priority of a BSCC state is even) or otherwise
as bad, and running a standard reachability analysis w.r.t. the good BSCCs (see Figure 9
for an example). The remaining technical difficulty is that the transition probabilities of
M∆×D are not rational in general. We handle this using the fact that these probabilities
are expressible in the ETR [EKM04].

We now present the formal proof. We use the following result about return probabilities
of pPDA, which is originally due to [EKM04]:

Lemma 4.17 (as stated in [BEKK13, Theorem 2]). The return probabilities [pZ↓q] are
expressible in ETR. More specifically, there exists an FO-formula Φ over (R,+, ·,≤) which
uses just existential quantifiers and free variables ⟨pZ↓q⟩p,q∈Q,Z∈Γ such that Φ becomes a
true FO-sentence iff each free variable ⟨pZ↓q⟩ is substituted by the actual return probability
[pZ↓q]. Moreover, Φ can be effectively constructed in polynomial space.

Lemma 4.18. The next-step probabilities (i.e., the transition probabilities of the step chain)
in Table 2 are expressible in ETR.

Proof. With Lemma 4.17 it suffices to note that ETR expressible numbers are closed under
addition, multiplication and division. Let x, y ∈ R be expressed by ETR formulae Φ(x) and
Φ′(y), respectively. Then the formula Φ′′(z) := ∃x, y : Φ(x) ∧ Φ′(y) ∧ z = x+ y where z is
a fresh variable expresses the sum of x and y, and similar for multiplication. For division,
we have that Φ′′(z) := ∃x, y : Φ(x) ∧ Φ′(y) ∧ z · y = x expresses x/y provided that y ̸= 0 (if
y = 0 then Φ′′ does not express a unique real number as it is then either unsatisfiable or
trivial).

We now describe our PSPACE algorithm to prove Theorem 4.16.
Step 1. We first construct the product pVPA ∆̃ = ∆ × D with priority function

Ω′ : Q → N0 where Q are the states of ∆̃ as in Definition 4.1. By Lemma 4.2 it suffices to

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:25

compute the probability

P({π ∈ Runs∆̃ | ρ↓Steps ∈ ParityΩ′ }) (4.12)

that the footprint of a run in the product ∆̃ satisfies the parity condition induced by Ω′. ∆̃
can be constructed in polynomial time.

Step 2. We express (4.12) using the step chain M∆̃. Let M ⊆ Q ∪ Q⊥ be the
states of the step chain M∆̃. Let Ω′′ : M → N0 be the extension of Ω′ to the states of
M via Ω′′(q) = Ω′′(q⊥) = Ω′(q) for all q ∈ Q. That is, Ω′′ induces a parity acceptance
set ParityΩ′′ ⊆ Mω which is ω-regular and thus measurable. Let ρ ∈ Runs∆̃. Clearly,
ρ↓Steps ∈ ParityΩ′ iff ρ⇓Steps ∈ ParityΩ′′ . Thus by Lemma 4.15, (4.12) is equal to

P({π ∈ Runs∆̃ | ρ↓Steps ∈ ParityΩ′ }) = P(ParityΩ′′)

where the right hand side is the probability that a run of the step chain M∆̃ satisfies
the parity condition induced by Ω′′. We have thus reduced the problem of computing a
stair-parity acceptance probability in the product pPDA ∆̃ to computing a standard parity
acceptance probability in the finite Markov chain M∆̃.

The rest of the proof uses standard techniques and is similar to the proof of [EKM04,
Theorem 5.15]. The main technical difficulty is that the transition probabilities of M∆̃
cannot be written in an explicit numerical form since they are in general algebraic numbers.

Step 3. We construct the underlying graph G∆̃ of the step chain M∆̃, i.e., we determine
the set M of states and include a directed edge between states v, v′ ∈ M iff the probability
of transition v → v′ is positive. Table 3 gives sufficient and necessary conditions for this in
all cases (Table 3 can be seen as the “qualitative” version of Table 2). The conditions in
Table 3 (as well as constructing the state space of M∆̃) require checking if [q↑] > 0 for states

q ∈ Q of ∆̃. The latter is equivalent to checking if
∑

r∈Q[qZ↓r] < 1, which is reducible to
ETR by Lemma 4.17 and hence decidable in PSPACE.

Step 4. We determine the bottom strongly connected components (BSCC) of G∆̃ from
the previous step by a standard (efficient) graph analysis. We mark the BSCCs B ⊆ M such
that minv∈B Ω′′(v) is even as “good”, the others as “bad”. It is well-known that in the finite
Markov chain M∆̃ it holds that

P(ρ ∈ ParityΩ′′ | ρ reaches a good BSCC) = 1

due to the Long-Run Theorem of finite Markov chains: Each state of a BSCC is visited
infinitely often almost-surely, provided that this BSCC is reached at all. Moreover, if a run
ρ reaches a bad BSCC, than the probability to satisfy the parity condition is zero and thus

P(ρ ∈ ParityΩ′′) = P(ρ ∈ ParityΩ′′ | ρ reaches a good BSCC) · P(ρ reaches a good BSCC)

= P(ρ reaches a good BSCC)

Thus it only remains to compute the probability to reach a good BSCC in M∆̃.
Step 5. We use the previous step to classify the states M of the step chain M∆̃ into

three categories: M=0 contains all states from which no good BSCC is reachable in the graph
G∆̃, M=1 contains all good BSCCs, and M? contains all other states. We recall that the
probabilities to reach M=1 are the unique solution of the following linear equation system

24:26 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

τs0 rs1

cs1

cs0 rs0

1/3

2/3
⟨∗, ∗⟩, 1/3

⟨∗,
∗⟩,

2/3

2/3, ⟨Z,Z⟩

1/3, ⟨Z,Z⟩

2/3, ⟨Z,Z⟩
1/3, ⟨Z,Z⟩

⟨∗, ∗⟩, 2/3

⟨∗, ∗⟩, 1/3

τs0⊥ rs1⊥

cs1⊥ cs1

cs0

1/3

2/3

1/3

2/3

1/3

1/6

1/2
1/3

2/3

2/3

1/3

Figure 9: Left: The product of the pVPA from Figure 8 (left) and the DVPA from Figure 4
on page 7. Right: Its step chain according to Definition 4.14. The dashed region is
the only BSCC. It violates the parity condition Ω(s0) = 1 and Ω(s1) = 2 inherited
from the DVPA (see Example 2.7 on page 8) since every run reaching the BSCC
visits cs0 infinitely often with probability 1. Only reachable states are depicted. ∗
is a placeholder that stands for an arbitrary stack symbol.

(see, e.g., [BK08, Ch. 10]):

xv = 0 if v ∈ M=0

∧ xv = 1 if v ∈ M=1

∧ xv =
∑
v

p−→v′

pxv′ if v ∈ M? .

We can treat the vectors of probabilities p⃗ and the variables x⃗ in this equation system as
free variables of an ETR formula R(p⃗, x⃗). By Lemma 4.18, there is an ETR formula Φ(p⃗)
expressing p⃗. The ETR formula

∃p⃗, x⃗ : Φ(p⃗) ∧ R(p⃗, x⃗) ∧ xv0 ≥ θ

is thus true iff the probability to reach a good BSCC from initial state v0 ∈ M is at
least θ. Truth of this formula can be decided in PSPACE, which concludes the proof of
Theorem 4.16.

4.4. Implications for Probabilistic One-counter Automata. A probabilistic visibly
one-counter automaton (pVOC) is the special case of a pVPA with unary stack alphabet,
i.e., |Γ-⊥| = 1. For example, the pVPA in Figure 8 (left) is a pVOC. For many problems,
better complexity bounds are known for pVOC than for the general case. In particular,
[p↑] >? 0, i.e., the question whether a pVOC started in state p never reaches counter value
(or stack height) zero with positive probability, can be decided in P [BEKK13, Theorem 4].
We can exploit this to improve Theorem 4.16 in the pVOC case:

Corollary 4.19. Let ∆ be a pVOC and D be a stair-parity DVPA over pushdown alphabet
Σ. The problem P({ρ ∈ Runs∆ | λ(ρ) ∈ L(D)}) =? 1 is decidable in P.

Proof. The key observation is that, since we can efficiently decide [p↑] >? 0, we can efficiently
(in polynomial time) construct the underlying graph G∆×D of the step chain of ∆×D (as

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:27

in the proof of Theorem 4.16), and then apply polynomial-time graph analysis algorithms to
check if only good BSCCs are reachable in G∆×D.

Corollary 4.19 implies that there exist efficient algorithms for many properties of
pVOC-expressible random walks on N0. In fact, almost-sure satisfaction of each fixed visibly-
pushdown property can be decided in P. For instance, using the DVPA from Figure 4 we
can decide if a random walk is repeatedly bounded with probability 1.

5. Model Checking against Büchi VPA and CaRet

With Theorem 2.8 and theorem 4.16 it follows immediately that quantitative model checking
of pVPA against non-deterministic Büchi VPA is decidable in EXPSPACE. We can improve
the complexity in the qualitative case:

Theorem 5.1. Let ∆ be a pVPA and A be a (non-deterministic) Büchi VPA over the same
pushdown alphabet. The problem P({ρ ∈ Runs∆ | λ(ρ) ∈ L(A)}) =? 1 is EXPTIME-complete.

Proof. The lower bound is due to [EY05, Theorem 8] and already holds for non-pushdown
Büchi automata. We now describe an EXPTIME decision procedure:

• We first determinize A using Theorem 2.8 which is possible in time exponential in |A|.
Let D be the resulting stair-parity DVPA and consider the product ∆×D (Definition 4.1).
Note that the product can be constructed in polynomial time in |D| and |∆|, and thus in
exponential time in the overall size of the input.

• The crucial observation for the next step is that [q↑] = [(q, s)↑] for all states (q, s) of
∆×D. This holds because by definition of the product, D merely observes the runs of ∆,
and thus the diverge probabilities of ∆×D and ∆ are essentially the same. We compute
the set Div∆ = {q | [q↑] > 0} ⊆ Q, where Q are the states of ∆, in exponential time
in |∆| using a PSPACE decision procedure for the ETR [EKM04]. Note that computing
Div∆×D = {(q, s) | [(q, s)↑] > 0} directly would take doubly-exponential time in |A|; the
proposed “optimization” is thus essential for obtaining the EXPTIME upper bound.

• We now determine the set of triples Ret∆×D = {(q, Z, p) | [qZ↓p] > 0} in ∆×D. Unlike
the diverge probabilities, this set can be computed in polynomial time in the size of ∆×D
(hence exponential in the size of the input) because we may disregard the exact transition
probabilities and conduct a standard reachability analysis in a non-deterministic pushdown
automaton [ABE18], also see [BEKK13, p. 136].

• The next step is to construct the underlying graph G∆×D of the step chain M∆×D, i.e.,
the directed graph that has the same vertices as M∆×D and includes an edge (u, v) iff
the 1-step transition probability from u to v is positive in the Markov chain. This can be
done in polynomial time in |∆×D| using the sets Div∆ and Ret∆×D defined above and
Table 3.

• The final step is, as in Theorem 4.16, to determine the BSCCs of G∆×D, classify them as
good or bad according to whether they satisfy the (standard) parity condition inherited
from D, and then check if there is a bad BSCC reachable from the initial state. All these
steps can be done in polynomial time in |∆×D|.

In the above result, membership in EXPTIME relies on the fact that one can construct the
underlying graph of a step chain M∆×D in time exponential in the size of ∆ but polynomial in
the size of D. EXPTIME-hardness follows from [EY05, Theorem 8]. In fact, qualitative model
checking of pPDA against non-pushdown Büchi automata is also EXPTIME-complete [EY05].

24:28 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

With Theorems 2.8 and 2.11 and theorems 4.16 and 5.1 we immediately obtain the following
complexity results for CaRet model checking:

Theorem 5.2. The quantitative and qualitative probabilistic CaRet model checking problems
(Definition 3.5) are decidable in 2EXPSPACE and 2EXPTIME, respectively.

Both problems are known to be EXPTIME-hard [YE05].

6. Conclusion

We have presented the first decidability result for model checking probabilistic pushdown
automata—an operational model of recursive discrete probabilistic programs—against CaRet,
or more generally, against the class of ω-VPL. We heavily rely on the determinization
procedure from [LMS04, Theorem 1] and the notion of a step chain used in previous
works [EKM04, KEM06]. These two constructions turn out to be a natural match.

We conjecture that the upper bounds from Theorem 5.2 are not tight due to the
exponential blow up incurred by applying the VPA determinization from [LMS04, Theorem 1].
Future work is thus to investigate whether the doubly-exponential complexity can be lowered
to singly-exponential, e.g., by generalizing the automata-less algorithm from [YE05]. Another
open question is whether existing results [EY09, EKL10, SEY15] for approximately computing
the probabilities [qZ↓r] can be used for approximate quantitative CaRet and ω-VPL model
checking. We also plan to extend our recent work on certificates [WK23a, WK23b] to
temporal and other logical properties. Such certificates can be approximate as well.

Other future work includes exploring to what extent algorithms for probabilistic CTL
can be generalized to the branching-time variant of CaReT [GMN18], considering more
expressive logics such as visibly LTL [BS18] or OPTL [CMP20], and studying the interplay
of conditioning and recursion [SG12] through the lens of pPDA.

Acknowledgement. The authors thank Christof Löding for his pointer to stair-parity VPA,
and the anonymous reviewers for their useful suggestions and feedback. We also thank
Darion Haase for helpful discussions regarding the proof of Lemma 4.15.

References

[AAB+07] Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami, Neil Immerman, and Leonid
Libkin. First-Order and Temporal Logics for Nested Words. In LICS, pages 151–160. IEEE
Computer Society, 2007. doi:10.1109/LICS.2007.19.

[ABE18] Rajeev Alur, Ahmed Bouajjani, and Javier Esparza. Model Checking Procedural Programs. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Hand-
book of Model Checking, pages 541–572. Springer, 2018. doi:10.1007/978-3-319-10575-8\
_17.

[ADD00] Robert B Ash and Catherine A Doléans-Dade. Probability and Measure Theory. Academic
press, 2000.

[AEM04] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A Temporal Logic of Nested Calls and
Returns. In TACAS, volume 2988 of Lecture Notes in Computer Science, pages 467–481.
Springer, 2004. doi:10.1007/978-3-540-24730-2_35.

[AK15] David Axelrod and Marek Kimmel. Branching Processes in Biology. Springer-Verlag, 2015.
doi:10.1007/978-1-4939-1559-0.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–211.
ACM, 2004. doi:10.1145/1007352.1007390.

https://doi.org/10.1109/LICS.2007.19
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-1-4939-1559-0
https://doi.org/10.1145/1007352.1007390

Vol. 19:4 MODEL CHECKING RECURSIVE PROBABILISTIC PROGRAMS 24:29

[AP09] Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized algorithms in Coq.
Sci. Comput. Program., 74(8):568–589, 2009. doi:10.1016/j.scico.2007.09.002.

[BEKK13] Tomás Brázdil, Javier Esparza, Stefan Kiefer, and Antońın Kucera. Analyzing probabilis-
tic pushdown automata. Formal Methods Syst. Des., 43(2):124–163, 2013. doi:10.1007/
s10703-012-0166-0.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
[BKOB13] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic

Relational Reasoning for Differential Privacy. ACM Trans. Program. Lang. Syst., 35(3):9:1–
9:49, 2013. doi:10.1145/2492061.

[BKS05] Tomás Brázdil, Antońın Kucera, and Oldrich Strazovský. On the Decidability of Temporal
Properties of Probabilistic Pushdown Automata. In STACS, volume 3404 of Lecture Notes in
Computer Science, pages 145–157. Springer, 2005. doi:10.1007/978-3-540-31856-9_12.

[BS18] Laura Bozzelli and César Sánchez. Visibly Linear Temporal Logic. J. Autom. Reason., 60(2):177–
220, 2018. doi:10.1007/s10817-017-9410-z.

[CIRW11] Lorenzo Casini, Phyllis McKay Illari, Federica Russo, and Jon Williamson. Models for
prediction, explanation and control: recursive Bayesian networks. THEORIA. Revista de
Teoŕıa, Historia y Fundamentos de la Ciencia, 26(1):5–33, 2011.

[CMP20] Michele Chiari, Dino Mandrioli, and Matteo Pradella. Operator precedence temporal logic and
model checking. Theor. Comput. Sci., 848:47–81, 2020. doi:10.1016/j.tcs.2020.08.034.

[DBB12] Clemens Dubslaff, Christel Baier, and Manuela Berg. Model checking probabilistic systems
against pushdown specifications. Inf. Process. Lett., 112(8-9):320–328, 2012. doi:10.1016/j.
ipl.2012.01.006.

[EKL10] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Computing the Least Fixed Point
of Positive Polynomial Systems. SIAM J. Comput., 39(6):2282–2335, 2010. doi:10.1137/
090749591.

[EKM04] Javier Esparza, Antońın Kucera, and Richard Mayr. Model checking probabilistic pushdown
automata. In LICS, pages 12–21. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.
1319596.

[EY05] Kousha Etessami and Mihalis Yannakakis. Algorithmic Verification of Recursive Probabilistic
State Machines. In TACAS, volume 3440 of Lecture Notes in Computer Science, pages 253–270.
Springer, 2005. doi:10.1007/978-3-540-31980-1_17.

[EY09] Kousha Etessami and Mihalis Yannakakis. Recursive markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, 2009. doi:10.1145/
1462153.1462154.

[GHNR14] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Proba-
bilistic programming. In FOSE, pages 167–181. ACM, 2014. doi:10.1145/2593882.2593900.

[GMN18] Jens Oliver Gutsfeld, Markus Müller-Olm, and Benedikt Nordhoff. A Branching Time Variant
of CaRet. In SPIN, volume 10869 of Lecture Notes in Computer Science, pages 153–170.
Springer, 2018. doi:10.1007/978-3-319-94111-0_9.

[GS14] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org, 2014. Accessed: 2023-7-25.

[Jae01] Manfred Jaeger. Complex Probabilistic Modeling with Recursive Relational Bayesian Networks.
Ann. Math. Artif. Intell., 32(1-4):179–220, 2001. doi:10.1023/A:1016713501153.

[Jon90] Claire Jones. Probabilistic non-determinism. PhD thesis, University of Edinburgh, UK, 1990.
URL: http://hdl.handle.net/1842/413.

[Kar91] Richard M. Karp. An introduction to randomized algorithms. Discret. Appl. Math., 34(1-
3):165–201, 1991. doi:10.1016/0166-218X(91)90086-C.

[KEM06] Antońın Kucera, Javier Esparza, and Richard Mayr. Model Checking Probabilistic Pushdown
Automata. Log. Methods Comput. Sci., 2(1), 2006. doi:10.2168/LMCS-2(1:2)2006.

[LMS04] Christof Löding, P. Madhusudan, and Olivier Serre. Visibly Pushdown Games. In FSTTCS,
volume 3328 of Lecture Notes in Computer Science, pages 408–420. Springer, 2004. doi:
10.1007/978-3-540-30538-5_34.

[MM01] Annabelle McIver and Carroll Morgan. Partial correctness for probabilistic demonic programs.
Theor. Comput. Sci., 266(1-2):513–541, 2001. doi:10.1016/S0304-3975(00)00208-5.

https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1007/s10703-012-0166-0
https://doi.org/10.1007/s10703-012-0166-0
https://doi.org/10.1145/2492061
https://doi.org/10.1007/978-3-540-31856-9_12
https://doi.org/10.1007/s10817-017-9410-z
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1016/j.ipl.2012.01.006
https://doi.org/10.1016/j.ipl.2012.01.006
https://doi.org/10.1137/090749591
https://doi.org/10.1137/090749591
https://doi.org/10.1109/LICS.2004.1319596
https://doi.org/10.1109/LICS.2004.1319596
https://doi.org/10.1007/978-3-540-31980-1_17
https://doi.org/10.1145/1462153.1462154
https://doi.org/10.1145/1462153.1462154
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-319-94111-0_9
http://dippl.org
https://doi.org/10.1023/A:1016713501153
http://hdl.handle.net/1842/413
https://doi.org/10.1016/0166-218X(91)90086-C
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.1007/978-3-540-30538-5_34
https://doi.org/10.1007/978-3-540-30538-5_34
https://doi.org/10.1016/S0304-3975(00)00208-5

24:30 T. Winkler, C. Gehnen, and J.-P. Katoen Vol. 19:4

[OKKM16] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
Reasoning about Recursive Probabilistic Programs. In LICS, pages 672–681. ACM, 2016.
doi:10.1145/2933575.2935317.

[Pan09] Prakash Panangaden. Labelled Markov Processes. World Scientific, 2009.
[PK00] Avi Pfeffer and Daphne Koller. Semantics and Inference for Recursive Probability Models. In

AAAI/IAAI, pages 538–544. AAAI Press / The MIT Press, 2000. URL: http://www.aaai.
org/Library/AAAI/2000/aaai00-082.php.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57. IEEE Computer
Society, 1977. doi:10.1109/SFCS.1977.32.

[SEY15] Alistair Stewart, Kousha Etessami, and Mihalis Yannakakis. Upper bounds for newton’s
method on monotone polynomial systems, and p-time model checking of probabilistic one-
counter automata. J. ACM, 62(4):30:1–30:33, 2015. doi:10.1145/2789208.

[SG12] Andreas Stuhlmüller and Noah D. Goodman. A Dynamic Programming Algorithm for Infer-
ence in Recursive Probabilistic Programs. In StarAI@UAI, 2012. URL: https://starai.cs.
kuleuven.be/2012/accepted/stuhlmuller.pdf.

[vdMPYW18] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An Introduction
to Probabilistic Programming. CoRR, abs/1809.10756, 2018. URL: http://arxiv.org/abs/
1809.10756, arXiv:1809.10756.

[WE07] Dominik Wojtczak and Kousha Etessami. PReMo: An Analyzer for Probabilistic Recursive
Models. In TACAS, volume 4424 of Lecture Notes in Computer Science, pages 66–71. Springer,
2007. doi:10.1007/978-3-540-71209-1_7.

[WGK21] Tobias Winkler, Christina Gehnen, and Joost-Pieter Katoen. Model Checking Temporal
Properties of Recursive Probabilistic Programs. CoRR, abs/2111.03501v2, 2021. arXiv:2111.
03501v2.

[WGK22] Tobias Winkler, Christina Gehnen, and Joost-Pieter Katoen. Model checking temporal prop-
erties of recursive probabilistic programs. In FoSSaCS, volume 13242 of Lecture Notes in
Computer Science, pages 449–469. Springer, 2022. doi:10.1007/978-3-030-99253-8_23.

[WK23a] Tobias Winkler and Joost-Pieter Katoen. Certificates for Probabilistic Pushdown Automata
via Optimistic Value Iteration. In TACAS (2), volume 13994 of Lecture Notes in Computer
Science, pages 391–409. Springer, 2023. doi:10.1007/978-3-031-30820-8_24.

[WK23b] Tobias Winkler and Joost-Pieter Katoen. On certificates, expected runtimes, and termination
in probabilistic pushdown automata. In LICS, pages 1–13, 2023. doi:10.1109/LICS56636.
2023.10175714.

[YE05] Mihalis Yannakakis and Kousha Etessami. Checking LTL Properties of Recursive Markov
Chains. In QEST, pages 155–165. IEEE Computer Society, 2005. doi:10.1109/QEST.2005.8.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1145/2933575.2935317
http://www.aaai.org/Library/AAAI/2000/aaai00-082.php
http://www.aaai.org/Library/AAAI/2000/aaai00-082.php
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2789208
https://starai.cs.kuleuven.be/2012/accepted/stuhlmuller.pdf
https://starai.cs.kuleuven.be/2012/accepted/stuhlmuller.pdf
http://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
https://doi.org/10.1007/978-3-540-71209-1_7
http://arxiv.org/abs/2111.03501v2
http://arxiv.org/abs/2111.03501v2
https://doi.org/10.1007/978-3-030-99253-8_23
https://doi.org/10.1007/978-3-031-30820-8_24
https://doi.org/10.1109/LICS56636.2023.10175714
https://doi.org/10.1109/LICS56636.2023.10175714
https://doi.org/10.1109/QEST.2005.8

	1. Introduction
	2. Visibly Pushdown Languages
	2.1. Visibly Pushdown Automata
	2.2. Steps and Stair-parity Conditions
	2.3. CaRet, a Temporal Logic of Calls and Returns

	3. Probabilistic Visibly Pushdown Automata
	4. Model Checking pVPA against Stair-parity DVPA
	4.1. Products of Visibly Pushdown Automata
	4.2. Stair-parity Acceptance Probabilities in pVPA
	4.3. Main Result of Section 4
	4.4. Implications for Probabilistic One-counter Automata

	5. Model Checking against Büchi VPA and CaRet
	6. Conclusion
	References

