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Abstract. We formalize the simulation paradigm of cryptography in terms of category
theory and show that protocols secure against abstract attacks form a symmetric monoidal
category, thus giving an abstract model of composable security definitions in cryptography.
Our model is able to incorporate computational security, set-up assumptions and various
attack models such as colluding or independently acting subsets of adversaries in a modular,
flexible fashion. We conclude by using string diagrams to rederive the security of the
one-time pad, correctness of Diffie-Hellman key exchange and no-go results concerning the
limits of bipartite and tripartite cryptography, ruling out e.g., composable commitments
and broadcasting. On the way, we exhibit two categorical constructions of resource theories
that might be of independent interest: one capturing resources shared among multiple
parties and one capturing resource conversions that succeed asymptotically.

This is a corrected version of the paper https://arxiv.org/abs/2208.13232 published
originally on December 18, 2023.

1. Introduction

Modern cryptographic protocols are complicated algorithmic entities, and their security
analyses are often no simpler than the protocols themselves. Given this complexity, it would
be highly desirable to be able to design protocols and reason about them compositionally,
i.e., by breaking them down into smaller constituent parts. In particular, one would hope
that combining protocols proven secure results in a secure protocol without need for further
security proofs. However, this is not the case for stand-alone security notions that are
common in cryptography. To illustrate such failures of composability, let us consider the
history of quantum key distribution (QKD), as recounted in [PR14]: QKD was originally
proposed in the 80s [BB84]. The first security proofs against unbounded adversaries followed
a decade later [May96, BBB+00, SP00, May01]. However, since composability was originally
not a concern, it was later realized that the original security definitions did not provide a
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good enough level of security [KRBM07]—they didn’t guarantee security if the keys were to
be actually used, since even a partial leak of the key would compromise the rest. The story
ends on a positive note, as eventually a new security criterion was proposed, together with
stronger proofs [Ren05, BOHL+05].

In this work we initiate a categorical study of composable security definitions in cryp-
tography. In the viewpoint developed here one thinks of cryptography as a resource theory:
cryptographic functionalities (e.g. secure communication channels) are viewed as resources
and cryptographic protocols let one transform some starting resources to others. For instance,
one can view the one-time-pad as a protocol that transforms an authenticated channel and
a shared secret key into a secure channel. For a given protocol, one can then study whether
it is secure against some (set of) attack model(s), and protocols secure against a fixed set of
models can always be composed sequentially and in parallel.

This is in fact the viewpoint taken in constructive cryptography [Mau11], which also
develops the one-time-pad example above in more detail. However [Mau11] does not make
a formal connection to resource theories as usually understood, whether as in quantum
physics [HO13, CG19], or more generally as defined in order theoretic [Fri15] or categori-
cal [CFS16] terms. Instead, constructive cryptography is usually combined with abstract
cryptography [MR11] which is formalized in terms of a novel algebraic theory of sys-
tems [MMP+18].

Our work can be seen as a particular formalization of the ideas behind constructive
cryptography, or alternatively as giving a categorical account of the real-world-ideal-world
paradigm (also known as the simulation paradigm [Lin17]), which underlies more concrete
frameworks for composable security, such as universally composable cryptography [Can01]
and others [PW00, BPW04, BPW07, MT13, HS15, LHM19, KTR20]. We will discuss these
approaches and abstract and constructive cryptography in more detail in Section 1.1

Our long-term goal is to enable cryptographers to reason about composable security at
the same level of formality as stand-alone security, without having to fix all the details of a
machine model nor having to master category theory. Indeed, our current results already
let one define multipartite protocols and security against arbitrary subsets of malicious
adversaries in any symmetric monoidal category C. Thus, as long as one’s model of
interactive computation results in a symmetric monoidal category, or more informally, one
is willing to use pictures such as Figure 1d to depict connections between computational
processes without further specifying the order in which the picture was drawn, one can use
the simulation paradigm to reason about multipartite security against malicious participants
composably—and specifying finer details of the computational model is only needed to the
extent that it affects the validity of one’s argument. Moreover, as our attack models and
composition theorems are fairly general, we hope that more refined models of adversaries
can be incorporated.

We now highlight our contributions to cryptography:

• We show how to adapt resource theories as categorically formulated [CFS16] in order
to reason abstractly about secure transformations between resources. This is done in
Section 4 by formalizing the simulation paradigm in terms of an abstract attack model
(Definition 4.1), designed to be general enough to capture standard attack models of
interest (and more) while still structured enough to guarantee composability. This section
culminates in Corollary 4.7, which shows that for any fixed set of attack models, the
class of protocols secure against each of them results in a symmetric monoidal category.
In Theorem 4.10 we observe that under suitable conditions, images of secure protocols
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under monoidal functors remain secure, which gives an abstract variant of the lifting
theorem [Unr10, Theorem 15] that states that perfectly UC-secure protocols are quantum
UC-secure.

• We adapt this framework to model computational security in Section 5 in two ways: either
by replacing equations with an equivalence relation, abstracting the idea of computational
indistinguishability, or by working with a notion of distance. In the case of a distance,
one can then either explicitly bound the distance between desired and actually achieved
behavior, or work with sequences of protocols that converge to the target in the limit: the
former models working in the finite-key regimen [TLGR12] and the latter models the kinds
of asymptotic security and complexity statements that are common in cryptography. In
the former case we show that errors compose additively in Lemma 5.8, and in Theorem 5.9
and in Corollary 5.10 we show that protocols that are correct in the limit can be composed
at will.

• We then apply the framework developed to study bipartite and tripartite cryptography.
We begin by giving a purely pictorial proof of the security of the one-time pad in
Section 6, valid for any Hopf algebra in any symmetric monoidal category. We then
discuss the Diffie-Hellman key exchange in Section 7. In Section 8, we reprove the
no-go-theorems of [PR08, MR11, MMP+18] concerning two-party commitments (resp.
three-party broadcasting) in our setting, and reinterpret them as limits on what can be
achieved securely in any compact closed category (resp. symmetric monoidal category).
The key steps of the proof are done graphically, thus opening the door for cryptographers
to use such pictorial representations as rigorous tools rather than merely as illustrations.

• We conclude by discussing choice of a model in Section 9 and further questions in Section 10.

Moreover, we discuss some categorical constructions capturing aspects of resource theo-
ries appearing in the physics literature. These contributions may be relevant for further
categorical studies on resource theories, independently of their usage here.

• In [CFS16] it is observed that many resource theories arise from an inclusion CF ↪→ C of
free transformations into a larger monoidal category, by taking the resource theory of states.
We observe that this amounts to applying the monoidal Grothendieck construction [MV20]

to the functor CF → C
hom(I,−)−−−−−−→ Set. This suggests applying this construction more

generally to the composite of monoidal functors F : D → C and R : C → Set.
• In Example 3.1 we note that choosing F to be the n-fold monoidal product Cn → C

captures resources shared by n parties and n-partite transformations between them.
• In Section 5.2 we model categorically situations where there is a notion of distance

between resources, and instead of exact resource conversions one either studies approximate
transformations or sequences of transformations that succeed in the limit.

• In Section 5.4 we discuss a variant of a construction on monoidal categories, used in special
cases in [FST19] and discussed in more detail in [CGG+22], that allows one to declare
some resources to be free and thus enlarge the set of possible resource conversions.

1.1. Related work. We have already mentioned that cryptographers have developed a
plethora of frameworks for composable security, such as universally composable cryptog-
raphy [Can01], reactive simulatability [PW00, BPW04, BPW07] and others [MT13, HS15,
LHM19, KTR20]. Moreover, some of these frameworks have been adapted to the quantum
setting [BOM04, Unr10, MQR09]. One might hence be tempted to think that the problem
of composability in cryptography has been solved. However, it is fair to say that most
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mainstream cryptography is not formulated composably and that composable cryptography
has yet to realize its full potential. Moreover, this proliferation of frameworks should be
taken as evidence of the continued importance of the issue, and is in fact reflected by the
existence of a recent Dagstuhl seminar on this matter [CKLS19]. Indeed, the aforementioned
frameworks mostly consist of setting up fairly detailed models of interacting machines, which
as an approach suffers from two drawbacks:

• In order to be more realistic, the detailed models are often complicated, both to reason in
terms of and to define, thus making practicing cryptographers less willing to use them.
Perhaps more importantly, it is not always clear whether the results proven in a particular
model apply more generally for other kinds of machines, whether those of a competing
framework or those in the real world. It is true that the choice of a concrete machine
model does affect what can be securely achieved—for instance, quantum cryptography
differs from classical cryptography and similarly classical cryptography behaves differently
in synchronous and asynchronous settings [BOCG93, KMTZ13]. Nevertheless, one might
hope that composable cryptography could be studied at a similar level of formality as
complexity theory, where one rarely worries about the number of tapes in a Turing machine
or of other low-level details of machine models.

• Changing the model slightly (to e.g. model different kinds of adversaries or to incorporate
a different notion of efficiency) often requires reproving “composition theorems” of the
framework or at least checking that the existing proof is not broken by the modification.

In contrast to frameworks based on detailed machine models, there are two closely related
top-down approaches to cryptography: constructive cryptography [Mau11] and its cousin
abstract cryptography [MR11]. We are indebted to both of these approaches, and indeed
our framework could be seen as formalizing the key idea of constructive cryptography—
namely, cryptography as a resource theory—and thus occupying a similar space as abstract
cryptography. A key difference is that constructive cryptography is usually instantiated in
terms of abstract cryptography [MR11], which in turn is based on a novel algebraic theory
of systems [MMP+18]. However, our work is not merely a translation from this theory
to categorical language, as there are important differences and benefits that stem from
formalizing cryptography in terms of a well-established and well-studied algebraic theory of
systems—that of (symmetric) monoidal categories:

• The fact that cryptographers wish to compose their protocols sequentially and in parallel
strongly suggests using monoidal categories, that have these composition operations as
primitives. In our framework, protocols secure against a fixed set of attack models results
in a symmetric monoidal category. In contrast, the algebraic theory of systems [MMP+18]
on which abstract cryptography is based on takes parallel composition and internal wiring
as its primitives. This design choice results in some technical kinks and tangles that
are natural with any novel theory but have already been smoothed out in the case of
category theory. For instance, in the algebraic theory of systems of [MMP+18] the parallel
composition is a partial operation and in particular the parallel composite of a system
with itself is never defined1 and the set of wires coming out of a system is fixed once and

1While the suggested fix is to assume that one has “copies” of the same system with disjoint wire labels,
it is unclear how one recognizes or even defines in terms of the system algebra that two distinct systems are
copies of each other.
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for all2. In contrast, in a monoidal category parallel composition is a total operation and
whether one draws a box with n output wires of types A1, . . . An or single output wire of
type

⊗n
i=1Ai is a matter of convenience. Technical differences such as these make a direct

formal comparison or translation between the frameworks difficult, even if informally and
superficially there are similarities.

• We do not abstract away from an attacker model, but rather make it an explicit part
of the formalism that can be modified without worrying about composability. This
makes it possible to consider and combine very easily different security properties, and in
particular paves the way to model attackers with limited powers such as honest-but-curious
adversaries. In our framework, one can first fix a protocol transforming some resource
to another one, and then discuss whether this transformation is secure against different
attack models. In contrast, in abstract cryptography a cryptographic resource is a tuple of
functionalities, one for each set of dishonest parties, and thus has no prior existence before
fixing the attack model. This makes the question “what attack models is this protocol
secure against?” difficult to formalize.

• As category theory is de facto the lingua franca between several subfields of mathematics
and computer science, elucidating the categorical structures present in cryptography
opens up the door to further connections between cryptography and other fields. For
instance, game semantics readily gives models of interactive, asynchronous and probabilistic
(or quantum) computation [Win13, CDVW19b, CdVW19a] in which our theory can be
instantiated, and thus further paves the way for programming language theory to inform
cryptographic models of concurrency.

• Category theory comes with existing theory, results and tools that can readily be applied
to questions of cryptographic interest. In particular the graphical calculi of symmetric
monoidal and compact closed categories [Sel10] enables one to rederive impossibility
results shown in [PR08, MR11, MMP+18] purely pictorially. In fact, such pictures were
already used as heuristic devices that illuminate the official proofs in [PR08, MMP+18],
and viewing these pictures categorically lets us promote them from mere illustrations to
rigorous yet intuitive proofs. Indeed, in [MR11, Footnote 27] the authors suggest moving
from a 1-dimensional symbolic presentation to a 2-dimensional one, and this is exactly
what the graphical calculus already achieves.

The approaches above result in a framework where security is defined so as to guar-
antee composability. In contrast, approaches based on various protocol logics [DMP01,
DMP03, DDMP03b, DDMP03a, DDMP05, DDMR07] aim to characterize situations where
composition can be done securely, even if one does not use composable security definitions
throughout. As these approaches are based on process calculi, they are categorical under the
hood [Pav97, MMP95] even if not overtly so. There is also earlier work explicitly discussing
category theory in the context of cryptography [BMR19, CWW+11, SHW20, BKM18, Heu08,
Hil11, CP12, KTW17, SV13, Pav14, Hin20, Pav12], but they concern stand-alone security of
particular (kinds of) cryptographic protocols, rather than categorical aspects of composable
security definitions.

2Indeed, while [PMM+17] manages to bundle and unbundle ports along isomorphism when convenient, it
seems like the chosen technical foundation makes this more of a struggle than it should be.
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2. Background on monoidal categories and string diagrams

We assume that the reader is familiar with category theory in general and with monoidal and
compact closed categories in particular, so we will recall the main concepts very briefly, mostly
to explain the notation and string diagrams used. General references for category theory
include [Mac71, Awo10, Bor94a, Bor94b, Rie17, Lei14] and string diagrams are surveyed
in [Sel10]. However, a working cryptographer might find it easier to consult texts which are
written with some applications in mind and introduce string diagrams concurrently with
categories, such as [CP10, FS19, HV19].

Let C be a symmetric monoidal category (SMC). Roughly speaking, this means that
we have a class of objects A,B,C, . . . , and a class of morphisms f, g, h, . . . . We also have
functions dom and cod that give us the domain and codomain of morphisms, and we write
f : A → B to express that A = dom(f) and B = cod(f). Morphisms can be composed
sequentially, i.e., whenever f : A → B and g : B → C there is a morphism g◦f = gf : A → C.
In addition, there is a monoidal product ⊗ on objects and morphisms, that sends f : A → B
and g : C → D to f ⊗ g : A ⊗ C → B ⊗ D. For each object there should be an identity
morphism idA : A → A, and there should be a special object I, called the tensor unit. This
data is subject to some constraints: composition should be (strictly) associative and unital,
and ◦ and ⊗ should cooperate in that the equations (g ◦ f) ⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h) and
idA⊗B = idA⊗idB hold. Moreover, the monoidal product should be associative, commutative
and unital up to coherent isomorphisms, see [Bor94b, Section 6.1] for the precise details. We
will often assume that the variables C and D denote strict SMCs, meaning that associativity
and unitality of ⊗ holds up to equality. This is mainly for notational convenience—first, any
SMC is equivalent to a strict one and second, the theory we put forward could be developed
without assuming strictness at the cost of some notational overhead. As an example of
a (non-strict) SMC the reader could think e.g. of the category Set of sets and functions
between them, with the monoidal structure given by cartesian product, or the category
VectR of real vector spaces and linear maps between them, with the monoidal structure
given by tensor product.

The tersely sketched structure of an SMC is naturally internalized in the graphical
calculus we use, which provides a sound and complete method for reasoning about them.
Thus the reader less familiar with SMCs is invited to trust their visual intuition as it is
unlikely to lead them astray. In this graphical calculus, we will denote a morphism f : A → B
as

A

B

f

and composition and monoidal product as

A

C

g ◦ f =

A

C

g

f

A ⊗ C

B ⊗ D

f ⊗ g =

A

B

C

D

f g
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Special morphisms get special pictures: identities and symmetries are depicted as

A

A

A

A

B

B

whereas the identity on the tensor unit is denoted by the empty picture. In general, a
morphism might have multiple input/output wires, so that f : A1⊗· · ·⊗An → B1⊗· · ·⊗Bm

is drawn as

. . .

. . .

A1

B1

An

Bm

f

In particular a morphism I → A1 ⊗ · · · ⊗An will have no incoming wires. We will call such
morphisms states on A1 ⊗ · · · ⊗An and depict them as triangles instead of boxes:

f

. . .
A1 An

Note that the property idA⊗B = idA ⊗ idB becomes

A ⊗ B

A ⊗ B

=
A

A

B

B

so that whether multiple wires are packaged into one or not is largely a matter of convenience.
We will often omit labeling wires with the name of the object unless necessary, and at times
the label will only give partial information.

For Theorem 8.1 we will assume that our ambient category C is in fact a compact closed
category. This means that C is an SMC, and we are also given for every object A an object
A∗ and morphisms

A∗ A
and A A∗ ,

called cups and caps respectively, satisfying

=

A

A

and =

A∗

A∗

Informally, this somewhat blurs the distinction between input and output wires, as one
expects to happen if the boxes represent interactive and open computational processes. In
particular, morphisms A → B correspond bijectively to states on A∗⊗B, where the bijection
is given by bending and unbending wires, and this correspondence should be seen as the
categorical counterpart to the Choi–Jamio lkowski isomorphism from quantum information
(see e.g. [CK17, Section 3.1.2.] or [HV19, Section 3.1]).

We will briefly conclude this section by discussing functors between SMCs. A lax
monoidal functor C → D between monoidal categories is a functor F : C → D equipped
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with natural maps F (A) ⊗ F (B) → F (A ⊗ B) and a morphism ID → F (IC) subject to
certain coherence equations that roughly say that it cooperates with the monoidal structures
on C,D in a well-behaved manner. A strong monoidal functor is a lax monoidal one for
which the structure maps F (A) ⊗ F (B) → F (A⊗ B) and ID → F (IC) are isomorphisms.
A monoidal functor (in either sense) is symmetric if it additionally cooperates with the
symmetries. We will use graphical calculus of strong monoidal functors in the proof of
Theorem 4.10, but otherwise do not refer to the detailed definitions nor use this graphical
language, and hence we do not go into more detail here. Full definitions can be found e.g.
at [Lei04, Section I.1.2] or at [Bor94b, Section 6.4], and a graphical calculus for them is
discussed in [Mel06]. For us, all functors will be symmetric and either strong or lax monoidal,
and we will specify which we mean whenever it makes a difference.

3. Resource theories

We briefly review the categorical viewpoint on resource theories of [CFS16]. Roughly speaking,
a resource theory can be seen as an SMC but the change in terminology corresponds to a
change in viewpoint: usually in category theory one studies global properties of a category,
such as the existence of (co)limits, relationships to other categories, etc. In contrast, when
one views a particular SMC C as resource theory, one is interested in local questions. One
thinks of objects of C as resources, and morphisms as processes that transform a resource
to another. From this point of view, one mostly wishes to understand whether homC(X,Y )
is empty or not for resources X and Y of interest. Thus from the resource-theoretic point of
view, most of the interesting information in C is already present in its preorder collapse. As
concrete examples of resource-theoretic questions, one might wonder if

• some noisy channels can simulate a (almost) noiseless channel [CFS16, Example 3.13.],
• there is a protocol that uses only local quantum operations and classical communication

and transforms a particular quantum state to another one [CLM+14],
• some non-classical statistical behavior can simulate some other such behavior [ABKM19].

In [CFS16] the authors show how many familiar resource theories arise in a uniform fashion:
starting from an SMC C of processes equipped with a wide sub-SMC CF , the morphisms of
which correspond to “free” processes, they build several resource theories (=SMCs). Here,
the “free” processes should be understood as giving the morphisms that do not increase
the resource at hand: for instance, deterministic processes form a natural choice of free
operations in order to form a resource theory of randomness. Formally, the resource theory
is specified by giving any CF ↪→ C and then applying one of the constructions building
a resource theory out of it. Perhaps the most important of these constructions is the
resource theory of states: given CF ↪→ C, the corresponding resource theory of states can
be explicitly constructed by taking the objects of this resource theory to be states of C, i.e.,
maps r : I → A for some A, and maps r → s are maps f : A → B in CF that transform r to
s as in Figure 1a.

We now turn our attention towards cryptography. As contemporary cryptography
is both broad and complex in scope, any faithful model of it is likely to be complicated
as well. A benefit of the categorical idiom is that we can build up to more complicated
models in stages, which is what we will do in the sequel. We phrase our constructions in
terms of an arbitrary SMC C, but in order to model actual cryptographic protocols, the
morphisms of C should represent interactive computational machines with open “ports”,
with composition then amounting to connecting such machines together. Different choices of
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C set the background for different kinds of cryptography, so that quantum cryptographers
want C to include quantum systems whereas in classical cryptography it is sufficient that
these computational machines are probabilistic. Constructing such categories C in detail is
not trivial but is outside our scope—we will discuss this in more detail in Section 10.

Our first observation is that there is no reason to restrict to inclusions CF ↪→ C in order
to construct a resource theory of states. Indeed, while it is straightforward to verify explicitly
that the resource theory of states is a symmetric monoidal category, it is instructive to
understand more abstractly why this is so: in effect, the constructed category is something

known as the category of elements of the composite functor CF → C
hom(I,−)−−−−−−→ Set. Moreover,

this composite is lax symmetric monoidal, and it has been proven abstractly that the category
of elements of any lax symmetric monoidal functor is symmetric monoidal [MV20]. Thus
this construction goes through for any symmetric (lax) monoidal functor into Set. In this

work, such functors will arise as composites D
F−→ C

R−→ Set with C equipped with further
structure in order to discuss security. Here it may be helpful to think of F as interpreting
free processes into an ambient category of all processes, and R : C → Set as an operation
that gives for each object A of C the set R(A) of resources of type A.

Explicitly, given symmetric monoidal functors D
F−→ C

R−→ Set, the category of elements∫
RF has as its objects pairs (A, r) where A is an object of D and r ∈ RF (A), the intuition

being that r is a resource of type F (A). A morphism (A, r) → (B, s) is given by a morphism
f : A → B in D that takes r to s, i.e., satisfies RF (f)(r) = s. The symmetric monoidal
structure comes from the symmetric monoidal structures of D,Set and RF . Somewhat
more explicitly, (A, r) ⊗ (B, s) is defined by (A⊗B, r ⊗ s) where r ⊗ s is the image of (r, s)
under the function RF (A) ×RF (B) → RF (A⊗B) that is part of the monoidal structure
on RF , and on morphisms of

∫
RF the monoidal product is defined from that of D.

From now on we will assume that F is strong monoidal, and while R = hom(I,−)
captures our main examples of interest, we will phrase our results for an arbitrary lax
monoidal R. Allowing F to be an arbitrary strong monoidal functor instead of an inclusion
lets us capture the n-partite structure often used when studying cryptography, as shown
next.

Example 3.1. Consider the resource theory induced by Cn ⊗−→ C
hom(I,−)−−−−−−→ Set, where

we write
⊗

for the n-fold monoidal product3. The resulting resource theory has a natural
interpretation in terms of n agents trying to transform resources to others: an object of
this resource theory corresponds to a pair ((Ai)

n
i=1, r : I →

⊗
Ai), and can be thought of

as an n-partite state, depicted in Figure 1b, where the ith agent has access to a port of
type Ai. A morphism f̄ = (f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) between such resources

then amounts to a protocol that prescribes, for each agent i a process fi that they should
perform so that r gets transformed to s as in Figure 1c.

In this resource theory, all of the agents are equally powerful and can perform all processes
allowed by C, and this might be unrealistic: first of all, C might include computational
processes that are too powerful/expensive for us to use in our cryptographic protocols.
Moreover, having agents with different computational powers is important to model e.g.
blind quantum computing [BFK09] where a client with access only to limited, if any, quantum
computation tries to securely delegate computations to a server with a powerful quantum

3As C is symmetric, the functor
⊗

is strong monoidal.
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r

f

=
s

(a) A map in the re-
source theory of states

r

. . .
A1 An

(b) An n-partite state

r

. . .
f1 fn

=
s

. . .
B1 Bn

(c) An n-partite trans-
formation

g′ f ′

h′

(d) Factorization of an
attack on f ⊗ g

Figure 1. Some resource transformations

computer. This limitation is easily remedied: we could take the ith agent to be able to
implement computations in some sub-SMC Ci of C, and then consider

∏n
i=1Ci → C.

A more serious limitation is that such transformations have no security guarantees—they
only work if each agent performs fi as prescribed by the protocol. We will fix this in the
next section.

First we address another limitation: for a given C, one might want to view morphisms
of C as resources, instead of just working with the resource theory of states. This can be
achieved by “the resource theory of universally-combinable processes” of [CFS16, Section
3.4], which we will now show to arise as the resource theory of states of another category.

Definition 3.2. Given an SMC C, the category n-comb(C) is defined as follows: objects
of n-comb(C) are finite lists (Ai, Bi)

m
i=1 of pairs of objects of C. Morphisms are defined

in two stages: A morphism (Ai, Bi)
m
i=1 → (C,D) is given by permutation σ : {1, . . . ,m} →

{1, . . . ,m} and an m-comb

.

.

.
.
.
.

Bσ(1)

Aσ(1)

Aσ(2)

C

Bσ(m−1)

Aσ(m)

Bσ(m)

D

g1

g0

gm−1

gm

in C. Formally, an m-comb is an equivalence class of tuples (g0, . . . gm) of maps in C, where
g0 : C → Aσ(1)⊗Y1, gi : Bσ(i)⊗Yi → Aσ(i+1)⊗Yi+1 for i = 1 . . .m−1 and gm : Bσ(m)⊗Ym →
D for some objects Yi. Two such tuples are identified if, whenever one “plugs the holes”
with maps of the form Zi ⊗Aσ(i) → Zi ⊗Bσ(i), the resulting maps in C are equal.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

D

C

hm1

hm0

hmnm−1

hmnm

h11

h10

h1n1−1

h1n1

g1

g0

gm−1

gm

Figure 2. Nested combs arising when composing morphisms in n-comb(C)

A morphism (Ai, Bi)
m
i=1 → (Cj , Dj)

k
j=1 is given by a function f : {1, . . . ,m} → {1, . . . , k}

and a morphism (Ai, Bi)i∈f−1(j) → (Cj , Dj) for each j. Composition is defined by nesting
circuits into circuits, and the monoidal product is given by concatenation of lists.

We will elaborate on the sequential composition in n-comb(C) in the following paradig-
matic situation: consider a morphism (σ, g) : (Ai, Bi)

m
i=1 → (C,D) as depicted above, and

morphisms (τi, h
i) : (Xi, Yj)

ni
j=1 → (Aσ(i), Bσ(i)) for i = 1, . . . ,m. The morphisms (τi, h

i)

can be composed in parallel to result in a map to (Ai, Bi)
m
i=1. The circuit representing the

composite of this map with our starting map (Ai, Bi)
m
i=1 → (C,D) is depicted in Figure 2.

Remark 3.3. As remarked in [CFS16, Section 3.4], these n-combs form naturally a sym-
metric multicategory, a kind of category-like structure where the domain of a morphism is a
list of objects but the codomain is always a single object (see e.g. [Lei04, Section 2.2.21]
for the precise definition). The SMC n-comb(C) arises by a standard method of turning a
symmetric multicategory into an SMC.
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The tensor unit of n-comb(C) is given by the empty sequence, and a state of type
(A,B) is just a morphism A → B in C. Thus a state of type (Ai, Bi)

m
i=1 consists of a list

of morphisms (fi : Ai → Bi)
m
i=1 in C. Given a subcategory CF of C, the resource theory

induced by n-comb(CF ) ↪→ n-comb(C)
hom(I,−)−−−−−−→ Set is the “resource theory of universally-

combinable processes” of [CFS16, Section 3.4]: its objects are now lists of morphisms in
C, and a resource conversion between two such lists consists of a map in n-comb(CF ) that
converts the first list to the second one. In particular, the maps gi appearing in such n-combs
have to be maps of CF .

We can add a multipartite structure to this resource theory just like we did for the
resource theory of states in Example 3.1. The k-fold tensor product Ck → C induces
a monoidal functor n-comb(Ck) → n-comb(C) (and again, one could have a different
subcategory of C for each of the parties). In the resource theory induced by n-comb(Ck) →
n-comb(C)

hom(I,−)−−−−−−→ Set, resources are now lists of morphisms, each equipped with the
structure of a k-fold tensor product on its domain and codomain. Intuitively, such a
morphism corresponds to a box shared by the k parties, each with a specified (possibly
trivial) input and output port. When k = 3 and the three parties are labeled Eve, Alice and
Bob, any map of the form

E1

E2

A1

A2

B1

B2

f

is an example of such a resource, and general resources in this theory are then tuples of
such maps. As another example, a channel letting Alice broadcast any message over a fixed
message space to Eve and Bob as in Figure 4c is an example of such a resource, where now
some of the input and output ports of the parties are trivial (i.e., equal to the tensor unit)
and hence not drawn.

In this resource theory, all resources are “single-use” by design. This is both true for
the combs, which must use each of the resources going into them exactly once, and for the
general maps, which partition the starting resources to be used for each target resource. One
can modify the construction of n-comb(C) so as to result in a cartesian monoidal category
n-comb!(C) (i.e., a monoidal category where the monoidal product is given by the categorical
product). In the resulting resource theory, all the resources are then usable arbitrarily many
times. We will give the definition below, but won’t use this in the sequel. The reason for
this is that the protocols we study use their starting resources exactly once and hence fit
already in n-comb(C). However, there is a natural embedding n-comb(C) → n-comb!(C),
and using this one could view our protocols as transformations in the resource theory of
reusable processes, and our security claims carry over through this inclusion.

Definition 3.4. Given an SMC C, the category n-comb!(C) is defined as follows: objects of
n-comb!(C) are finite lists (Ai, Bi)

n
i=1 of pairs of objects of C. Morphisms are defined in two

stages: A morphism (Ai, Bi)
n
i=1 → (C,D) is given by a function σ : {1, . . . ,m} → {1, . . . , n}
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r

. . .
f1 fk a

or
r

[k] (k, n]

f̄ |[k] a

(a) Attack by the parties k+
1, . . . , n

r

[k] (k, n]

f̄ |[k] a

=
s

[k] (k, n]

b

(b) Security against the par-
ties k + 1, . . . , n

r

[k] (k, n]

f̄ |[k]

=
s

[k] (k, n]

b

(c) Security against the ini-
tial attack

Figure 3. Attacks and security constraints

for some m ∈ N and an m-comb

.

.

.
.
.
.

Bσ(1)

Aσ(1)

Aσ(2)

C

Bσ(m−1)

Aσ(m)

Bσ(m)

D

g1

g0

gm−1

gm

in C, where two such m-combs are identified as in Definition 3.2.
A morphism (Ai, Bi)

m
i=1 → (Cj , Dj)

k
j=1 is given by a relation R : {1, . . . ,m} → {1, . . . , k}

and a morphism (Ai, Bi)i∈R−1(j) → (Cj , Dj) for each j. Composition is defined by nesting
circuits into circuits, and the monoidal product is given by concatenation of lists.

4. Cryptography as a resource theory

4.1. Attack models and security. In order for a protocol f̄ = (f1, . . . , fn) : ((Ai)
n
i=1, r) →

((Bi)
n
i=1, s) to be secure, we should have some guarantees about what happens if, as a result

of an attack on the protocol, something else than (f1, . . . , fn) happens. For instance, some
subset of the parties might deviate from the protocol and do something else instead. In the
simulation paradigm [Lin17], security is then defined by saying that, anything that could
happen when running the real protocol, i.e., f̄ with r, could also happen in the ideal world,
i.e., with s. A given protocol might be secure against some kinds of attacks and insecure
against others, so we define security against an abstract attack model. This abstract notion
of an attack model is one of the main definitions of our paper. It isolates conditions needed
for the composition theorem (Theorem 4.6). It also captures our key examples that we use
to illustrate the definition after giving it.
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Definition 4.1. An attack model A on an SMC C consists of giving for each morphism f
of C a class A(f) of morphisms of C such that

(i) f ∈ A(f) for every f .
(ii) For any f : A → B and g : B → C and composable g′ ∈ A(g), f ′ ∈ A(f) we have

g′ ◦ f ′ ∈ A(g ◦ f). Moreover, any h ∈ A(g ◦ f) factorizes as g′ ◦ f ′ with g′ ∈ A(g) and
f ′ ∈ A(f).

(iii) For any f : A → B, g : C → D in C and f ′ ∈ A(f), g′ ∈ A(g) we have f ′⊗g′ ∈ A(f⊗g).
Moreover, any h ∈ A(f ⊗ g) factorizes as h′ ◦ (f ′ ⊗ g′) with f ′ ∈ A(f), g′ ∈ A(g)
and h′ ∈ A(idB⊗D). In addition, if dom(h) = A⊗ C, we can choose the factorization
h = h′ ◦ (f ′ ⊗ g′) so that dom(f ′) = A and dom(g′) = C.

Let x : (A, r) → (B, s) define a morphism in the resource theory
∫
RF induced by F : D → C

and R : C → Set. We say that x is secure against an attack model A on C (or A-secure) if
for any a ∈ A(F (x)) with dom(a) = F (A) there is b ∈ A(idF (B)) with dom(b) = F (B) such
that R(a)r = R(b)s, i.e., for any such a there is a b making the following square commute:

ISet = {∗} RF (B)

RF (A) R(X)

r

s

R(b)

R(a)

The above definition of security asks for perfect equality and corresponds to information-
theoretic security in cryptography. This is often too much to hope for, and we will relax
this requirement in Section 5.

The intuition is that A gives, for each process in C, the set of behaviors that the
attackers could force to happen instead of honest behavior. In particular, A(idB) gives the
behaviors that are available to attackers given access to a system of type B. Then property
(i) amounts to the assumption that the adversaries could behave honestly. The first halves
of properties (ii) and (iii) say that, given an attack on g and one on f , both attacks could
happen when composing g and f sequentially or in parallel. The second parts of these say
that attacks on composite processes can be understood as composites of attacks. However,
note that (iii) does not say that an attack on a product has to be a product of attacks: the
factorization says that any h ∈ A(g⊗ f) factorizes as in Figure 1d with g′ ∈ A(g), f ′ ∈ A(f)
and h′ ∈ A(idB⊗D). The intuition is that an attacker does not have to attack two parallel
protocols independently of each other, but might play the protocols against each other in
complicated ways. This intuition also explains why we do not require that all morphisms
in A(f) have F (A) as their domain, despite the definition of A-security quantifying only
against those: when factoring h ∈ A(g ◦ f) as g′ ◦ f ′ with g′ ∈ A(g) and f ′ ∈ A(f), we
can no longer guarantee that F (B) is the domain of g′—perhaps the attackers take us
elsewhere when they perform f ′. Finally, the security definition is directly abstracted from
the real-world-ideal-world paradigm, and can be seen as saying that a protocol realizes some
target functionality securely if, for any attack on the protocol, there is an attack on the
target functionality with identical end results. In other words, the attackers can not achieve
anything during the protocol that they could not achieve with the target functionality, so
that the protocol is at least as secure as the target functionality.

If one thinks of F : D → C as representing the inclusion of free processes into general
processes, one also gets an explanation why we do not insist that free processes and attacks
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live in the same category, i.e., that F = idC. This is simply because we might wish to prove
that some protocols are secure against attackers that can use more resources than we wish
or can use in the protocols.

Remark 4.2. One can rewrite condition (ii) as A(g) ◦ A(f) = A(g ◦ f), if one defines
A(g) ◦ A(f) as {g′ ◦ f ′ : g′ ∈ A(g), f ′ ∈ A(f), g′ ◦ f ′ is defined}. Similarly, A(f ⊗ g) =
A(idB⊗D)◦ (A(f)⊗A(g)) captures most of condition (iii). These equations look suspiciously
close to stating that A is some kind of a functor, except that

• We do not require that identities are preserved. Intuitively, this corresponds to the fact
that even if a protocol tells everyone to do nothing, dishonest parties might deviate
arbitrarily.

• Given f : A → B, the class A(f) is not required to be a subset of C(A,B), making it difficult
to see what the codomain of A is supposed to be. We do not require A(f) ⊆ C(A,B) as
we cannot expect attackers to respect our type system: for instance, if a given party is
supposed to map their system to the tensor unit (representing them discarding information),
they might not do so if they’re not honest.

We leave understanding attack models in more familiar categorical terms for future work.

Example 4.3. For any SMC C there are two trivial attack models: the minimal one defined
by A(f) = {f} and the maximal one sending f to the class of all morphisms of C. We
interpret the minimal attack model as representing honest behavior, and the maximal one
as representing arbitrary malicious behavior.

Proposition 4.4. If A1, . . . ,An are attack models on SMCs C1, . . . ,Cn respectively, then
there is a product

∏n
i=1Ai attack model on

∏n
i=1Ci defined by (

∏n
i=1Ai)(f1, . . . , fn) =∏n

i=1Ai(fi).

Proof. The required properties of
∏n

i=1Ai follow from those of each Ai and the fact that
operations in

∏n
i=1Ci are defined pointwise.

This proposition, together with the minimal and maximal attack models, is already
expressive enough to model multi-party computation where some subset of the parties might
do arbitrary malicious behavior. Indeed, consider the n-partite resource theory induced by

Cn ⊗−→ C
hom(I,−)−−−−−−→ Set. Let us first model a situation where the first n− 1 participants are

honest and the last participant is dishonest. In this case we can set A =
∏n

i=1Ai where each
of A1, . . . ,An−1 is the minimal attack model on C and An is the maximal attack model.
Then, an attack on f̄ = (f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) can be represented by the

first n− 1 parties obeying the protocol and the nth party doing an arbitrary computation a,
as depicted in the two pictures of Figure 3a, where [n] := {1, . . . , n}, (k, n] := {k + 1, . . . n},

f̄ |[k] :=
⊗k

i=1 fi, and here k = n− 1. The latter representation will be used when we do not
need to emphasize pictorially the fact that the honest parties are each performing their own
individual computations.

If instead of just one attacker, there are several independently acting adversaries, we
can take A =

∏n
i=1Ai where Ai is the minimal or maximal attack structure depending on

whether the ith participant is honest or not. If the set of dishonest parties can collude and
communicate arbitrarily during the process, we need the flexibility given in Definition 4.1
and have the attack structure live in a different category than where our protocols live. For
simplicity of notation, assume that the first k agents are honest but the remaining parties are
malicious and might do arbitrary (joint) processes in C. In particular, the action done by the
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dishonest parties k + 1, . . . , n need not be describable as a product
⊗n

i=k+1(ai) of individual
actions. In that case we define A as follows: we first consider our resource theory as arising

from Cn idk×⊗−−−−→ Ck ×C
⊗−→ C

hom(I,−)−−−−−−→ Set, and define A on Ck ×C as the product of the
minimal attack model on Ck and the maximal one on C. Concretely, this means that the
first k agents always obey the protocol, but the remaining agents can choose to perform
arbitrary joint behaviors in C. Then a generic attack on a protocol f̄ can be represented
exactly as before in Figure 3a, except we no longer insist that k = n− 1. Now a protocol
f̄ is A-secure if for any a with dom(a) = (Ai)

n
i=k+1 there is a b with dom(b) = (Bi)

n
i=k+1

satisfying the equation of Figure 3b.
If one is willing to draw more wire crossings, one can easily depict and define security

against an arbitrary subset of the parties behaving maliciously, and henceforward this is
the attack model we have in mind when we say that some n-partite protocol is secure
against some subset of the parties. Moreover, for any subset J of dishonest agents, one
could consider more limited kinds of attacks: for instance, the agents might have limited
computational power or limited abilities to perform joint computations—as long as the
attack model satisfies the conditions of Definition 4.1 one automatically gets a composable
notion of secure protocols by Theorem 4.6 in Section 4.2.

We’ve seen that one party acting maliciously defines an attack model on Ck. We now
show that this also defines an attack model A on n-comb(Ck). Informally, A lets the ith
party change their part of any m-comb arbitrarily, leaving everything else about morphisms
of n-comb(Ck) fixed.

Definition 4.5. For a fixed i ∈ {1, . . . k), we define an attack model A on n-comb(Ck)
corresponding to a malicious ith party as follows. Consider first a basic morphism

(σ, (g0, . . . gm)) : (Ai, Bi)
m
i=1 → (C,D)

in n-comb(Ck) given by a permutation σ : {1, . . . ,m} → {1, . . . ,m} and an m-comb given
by a tuple (g0, . . . gm) of morphisms in Ck. Note that each gj is a morphism in Ck, and

hence a tuple of morphisms of C. Let us write πj : Ck → C for the jth projection. We can
now define

A((σ, (g0, . . . gm))) := {(σ, (h0, . . . hm)) | πj(hℓ) = πj(gℓ) for all ℓ and all j ̸= i}.

We note that this is well-defined, as equality of morphisms in Ck is defined pointwise, so
that modifying the ith coordinate of an m-comb in a particular way respects the equivalence
relation on m-combs.

A morphism (Ai, Bi)
m
i=1 → (Cj , Dj)

n
j=1 is given by a function f : {1, . . . ,m} → {1, . . . , n}

and morphisms xj : (Ai, Bi)i∈f−1(j) → (Cj , Dj) for each j. For such a morphism (f, (xi)
n
i=1)

we define

A(f, (xi)
n
i=1) := {(f, (yi)

n
i=1) | yi ∈ A(xi) for i = 1, . . . , n}.

To see that this is an attack model in the sense of Definition 4.1, note first that f ∈ A(f)
for any morphism f , satisfying condition (i). We also note that if one composes sequentially
a composable pair of attacks, the result is also an attack, so the first half of (ii) holds. For
the other direction it suffices to consider an attack on a nested comb as in Figure 2. Such
an attack corresponds to the ith party replacing their resulting m-comb with an arbitrary
m-comb: however, we may think of this as resulting from the ith party first replacing each
nested comb with something else, and then replacing the outer comb appropriately. This
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gives the other direction of (ii). Condition (iii) is clear, as by construction attacks on a
parallel composite are parallel composites of attacks.

4.2. Composition theorems.

Theorem 4.6. Given symmetric monoidal functors F : D → C, R : C → Set with F strong
monoidal and R lax monoidal, and an attack model A on C, the class of A-secure maps
forms a wide sub-SMC of the resource theory

∫
RF induced by RF .

Proof. We first prove the claim when F = idC. As the class of A-secure maps is a subclass
of maps inside an SMC, it suffices to show it contains all coherence isomorphisms (and thus
all identities) and is closed under ◦ and ⊗.

For coherence isomorphisms we prove a stronger claim and show that all isomorphisms are
A-secure. Let f : (A, r) → (B, s) be an isomorphism so that f is an isomorphism A → B in C,
and consider a ∈ A(f) with dom(a) = A. Then R(a)r = R(a)R(f−1)R(f)r = R(a)R(f−1)s,
so it suffices to show that af−1 ∈ A(idB). Property (i) of A implies that (f−1) ∈ A(f−1) so
that property (ii) gives us af−1 ∈ A(ff−1) = A(idB), as desired.

Assume now that f : (A, r) → (B, s) and g : (B, s) → (C, t) are A-secure. Given
h ∈ A(g ◦ f) with domain A, factorize it as g′ ◦ f ′ as guaranteed by (ii). As f is A-
secure, there is some b ∈ A(idB) with R(f ′)r = R(b)s and by (ii) g′b ∈ A(g), so that
security of g implies the existence of c ∈ A(idB) such that R(g′b)(s) = R(c)t. Thus
R(g′f ′)r = R(g′)R(b)s = R(c)t showing that g ◦ f is A-secure.

To show that secure maps are closed under ⊗, let f : (A, r) → (B, s) and g : (C, t) →
(D,u) be A-secure. Given h ∈ A(f ⊗ g) with domain A⊗ C, factorize it as h′ ◦ (f ′ ⊗ g′) as
guaranteed by (iii). Then security of f and g gives us b ∈ A(idB) and d ∈ A(idD) so that
R(f ′)r = R(b)s and R(g′)t = R(d)u. We now claim that the diagram

ISet = {∗} R(A) ×R(C) R(A⊗ C)

R(B) ×R(D) R(Y ) ×R(Z) R(Y ⊗ Z) R(X)

R(B ⊗D)

(s, u)

(r, t)

R(f ′) ×R(g′) R(f ′ ⊗ g′)

R(h)

R(b) ×R(d)

R(h′)

R(b⊗
d)

commutes, where the unlabelled arrows come from the natural transformation R(−)×R(−) →
R(−⊗−) that is part of the lax monoidal structure on R. The top left square commutes by
security of f and g, and the rightmost shape commutes by the factorization h = h′ ◦ (f ′⊗ g′).
The remaining two sub-diagrams are naturality squares and hence commute. Hence the
whole diagram commutes. As the top path equals R(h)(r ⊗ t) and the bottom path equals
R(h′ ◦ (b⊗d))(s⊗u), we see that h′ ◦ (b⊗d) ∈ A(idB ⊗ idD) witnesses that f ⊗ g is A-secure.

To prove the claim for an arbitrary strong monoidal F , observe first that f : (A, r) →
(B, s) is A-secure in

∫
RF if, and only if F (f) : (F (A), r) → (F (B), s) is A-secure in

∫
R.

The claim can now be deduced from the existence and description of pullbacks in the category
of SMCs, but we give an explicit proof: the class of A-secure maps in

∫
RF contains all

isomorphisms and is closed under composition because it is so in
∫
R. As F is strong
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monoidal, the square

F (A⊗ C) F (B ⊗D)

F (A) ⊗ F (C) F (B) ⊗ F (D)

∼=

F (f ⊗ g)

∼=

F (f) ⊗ F (g)

commutes in C. If f : (A, r) → (B, s) and g : (C, t) → (D,u) are A-secure in
∫
RF , then

F (f) and F (g) are A-secure in
∫
R. The case F = idC implies that F (f)⊗F (g) is A-secure

so that F (f ⊗ g) is A-secure as a composite of secure maps, which means that f ⊗ g is
A-secure in

∫
RF as desired.

So far we have discussed security only against a single, fixed subset of dishonest parties, while
in multi-party computation it is common to consider security against any subset containing
e.g. at most n/3 or n/2 of the parties. However, as monoidal subcategories are closed under
intersection, we immediately obtain composability against multiple attack models.

Corollary 4.7. Given a non-empty family of functors (D
Fi−→ Ci

Ri−→ Set)i∈I with RiFi =
RjFj =: R for all i, j ∈ I and attack models Ai on Ci for each i, the class of maps in

∫
R

that is secure against every Ai is a sub-SMC of
∫
R.

Using Corollary 4.7 one readily obtains composability of protocols that are simultaneously
secure against different attack models Ai. Thus one could, in principle, consider composable
cryptography in an n-party setting where some subsets are honest-but-curious, some might
be outright malicious but have limited computational power, and some subsets might be
outright malicious but not willing or able to coordinate with each other, without reproving
any composition theorems.

While the security definition of f quantifies over A(f), which may be infinite, under
suitable conditions it is sufficient to check security only on a subset of A(f), so that whether
f is A-secure often reduces to finitely many equations.

Definition 4.8. Given f : A → B, a subset X of A(f) is said to be initial if any f ′ ∈ A(f)
with dom(f ′) = A can be factorized as b ◦ a with a ∈ X and b ∈ A(idB).

Theorem 4.9. Let f : (A, r) → (B, s) define a morphism in the resource theory induced by
F : D → C and R : C → Set and let A be an attack model on C. If X ⊂ A(F (f)) is initial,
then f is A-secure if, and only if the security condition holds against attacks in X, i.e., if
for any f ′ ∈ X with dom(f ′) = F (A) there is b ∈ A(idF (B)) such that R(f ′)r = R(b)s.

Proof. Let f ′ ∈ A(F (f)) be an attack satisfying dom(f ′) = F (A). As X is initial, we can
factorize f ′ as b ◦ a with a ∈ X and b ∈ A(idF (B)). As f is secure against attacks in X
and a ∈ X, there is a c ∈ A(idF (B)) such that R(a)r = R(c)s. Then R(f ′)r = R(b)R(a)r =
R(b)R(c)s = R(b ◦ c)s so that b ◦ a ∈ A(idF (B)) witnesses security against f ′.

Let us return to the example of Cn → C with the first k agents being honest and
the final n − k dishonest and collaborating. Then we can take a singleton as our initial
subset of attacks on f̄ , and this is given by f̄ |[k] ⊗ (

⊗n
i=k+1 id). Intuitively, this represents a

situation where the dishonest parties k + 1, . . . , n merely stand by and forward messages
between the environment and the functionality, so that initiality can be seen as explaining
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“completeness of the dummy adversary” [Can01, Claim 11] in UC-security. In this case
the security condition can be equivalently phrased by saying that there exists b ∈ A([idb])
satisfying the equation of Figure 3c, which reproduces the pictures of [MT13]. Similarly, for
classical honest-but-curious adversaries one usually only considers the initial such adversary,
who follows the protocol otherwise except that they keep track of the protocol transcript.

Theorem 4.10. In the resource theory of n-partite states, if (f1, . . . fn) is secure against
some subset J of [n] and F is a strong monoidal, then (Ff1, . . . , Ffn) is secure against J as
well.

Proof. Let us first spell out explicitly how the domain and codomain of (Ff1, . . . , Ffn)
depend on those of f̄ : if f̄ : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s), then Fr : F (IC) → F (

⊗n
i=1Ai)

induces a state on
⊗n

i=1 F (Ai) by precomposing with the isomorphism ID → F (IC) and
postcomposing with the isomorphism F (

⊗n
i=1Ai) ∼=

⊗n
i=1 F (Ai) stemming from the strong

monoidal structure of F . This is the state that (Ff1, . . . , Ffn) transforms to the one induced
by F (s). Let us now show that this transformation is secure provided that f̄ is.

The heart of the argument is already apparent in the case of n = 2, so let us first show
that if (fA, fB) is secure against a malicious Bob, so is (FfA, FfB). For this attack model,
there is an initial attack, and the corresponding security constraint is depicted in Figure 3c.
Then security of (FfA, FfB) can be shown graphically using the functorial boxes of [Mel06]
by considering the equations

F

fA

r

A B =
fA

r

A B

F

=
b

s

A B

F

=
b

s

A B

F

where the second equation is security of the original protocol and the other two equations
rely on F being strong monoidal. The case of an arbitrary n can be shown similarly by
drawing a similar picture with n− 1 dips in the box.

For instance, if the inclusion of classical interactive computations into quantum ones is
strong monoidal, i.e., respects sequential and parallel composition (up to isomorphism), then
unconditionally secure classical protocols are also secure in the quantum setting, as shown
in the context of UC-security in [Unr10, Theorem 15]. More generally, this result implies
that the construction of the category of n-partite transformations secure against any fixed
subset of [n] is functorial in C, and this is in fact also true for any family of subsets of [n]
by Corollary 4.7.

5. Further extensions of the framework

The discussion above has been focused on perfect security, so that the equations defining
security hold exactly. This is often too high a standard for security to hope for, and
consequently cryptographers routinely work with computational or approximate security.
We model this in two ways. The first approach replaces equations with an equivalence
relation abstracting from the idea that the end results are “computationally indistinguish-
able” rather than strictly equal. The latter approach amounts to working in terms of a
(pseudo)metric, that quantifies how close we are to the ideal resource, so that one can
discuss approximately correct transformations or sequences of transformations that succeed
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in the limit. The first approach is mathematically straightforward and we discuss it next,
while the second approach is discussed in Sections 5.2 and 5.3. The second approach, while
mathematically more involved, is needed to model protocols that are “close enough” to
being computationally indistinguishable from the ideal, and thus to model statements in
finite-key cryptography [TLGR12].

5.1. Security up to indistinguishability. We let Equ stand for the category of equiv-
alence relations: its objects are sets (X,≈X) equipped with an equivalence relation, and
morphisms (X,≈X) → (Y,≈Y ) are given by functions f : X → Y that respect the equivalence
relation in that x ≈X x′ ⇒ f(x) ≈Y f(x′). From now on, we will omit the subscript and write
≈ for the equivalence relation associated with any object of Equ. The cartesian product of
sets with the equivalence relations defined pointwise induces a symmetric monoidal structure
on this category, and the operation (X,≈) 7→ X/ ≈X of forming quotients gives a (strong)
symmetric monoidal functor E : Equ → Set. We now relax our notions of correctness and
security when we have a symmetric monoidal functor R : C → Equ.

Definition 5.1. Let R : C → Equ be a symmetric monoidal functor. Given r ∈ R(A)
and s ∈ R(B), a morphism f : A → B is an ≈-correct transformation (A, r) → (B, s) if

R(f)r ≈ s. We let
∫ Equ

R denote the resource theory of ≈-correct transformations.
Consider now symmetric monoidal functors F : D → C, R : C → Equ with F strong

monoidal and R lax monoidal and an attack model A on C. Let f : (A, r) → (B, s) define

a morphism in the resource theory
∫ Equ

RF . We say that f is secure up to ≈ against an
attack model A on C (or A-secure up to ≈) if for any a ∈ A(F (f)) with dom(a) = F (A)
there is b ∈ A(idF (B)) with dom(b) = F (B) such that R(a)r ≈ R(b)s, i.e., the square from
Definition 4.1 commutes up to ≈.

Corollary 5.2. Let R,F,A be as in Definition 5.1. The category
∫ Equ

RF is a symmetric
monoidal category, and the category of ≈-secure transformations against A is a wide sub-SMC
of it.

Proof. Consider the composite ERF , where E : Equ → Set sends a set with an equivalence
relation to its set of equivalence classes. It is straightforward to check that f : A → B

defines a map (A, r) → (B, s) in
∫ Equ

RF iff it defines a map (A, [r]) → (B, [s]) in
∫
ERF ,

implying the first claim. Similarly, f is secure up to ≈ in
∫ Equ

RF iff it is secure in
∫
ERF ,

so the second claim follows from Theorem 4.6.

It is also straightforward to adapt and prove Corollary 4.7 in order to state that maps
that are secure up to ≈ against a set of attack models form an SMC.

Example 5.3. Let C be a category equipped with a monoidal congruence: a family of
equivalence relations ≈ on each hom-set of C that respects ⊗ and ◦ in that f ≈ f ′ and
g ≈ g′ imply gf ≈ g′f ′ (whenever defined) and g ⊗ f ≈ g′ ⊗ f ′. In other words, let C be
an SMC enriched in Equ. Then hom(I,−) gives a symmetric monoidal functor C → Equ,
so one can work with ≈-correct resource theory of states and with ≈-security against a
malicious subset of parties. Moreover, in this situation we also obtain a symmetric monoidal
functor

hom(I,−) : n-comb(C) → Equ,

enabling us to work with ≈-correct and ≈-secure transformations of morphisms of C.
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In Section 7 we will give an example of this example, where ≈ will denote computational
indistinguishability i.e., the inability of efficient computational systems to tell two systems
apart (except for a negligible advantage), with Diffie-Hellman key exchange then giving rise
to a transformation that is secure up to ≈.

5.2. Approximately correct transformations. We now move to the metric case. If for
each A the set of resources R(A) associated to it is not just a set but has the structure of a
metric space, using this additional structure enables one to construct other resource theories
where instead of transforming r ∈ R(A) to s ∈ R(B) exactly we are happy to be able to get
(arbitrarily) close. While such approximate (or asymptotic) conversions are readily studied
in the physics literature (see e.g. [CG19, V.A and V.B]), as far as we are aware this has
not been formalized in the categorical context, so we first describe the situation without
security constraints. As many interesting measures of distance in cryptography are in fact
pseudometrics (non-equal functionalities might have distance 0), we work in a more general
setting.

Definition 5.4. An extended pseudometric space is a pair (X, d) where X is a set and
d : X × X → [0,∞] is a function satisfying (i) d(x, x) = 0, (ii) d(x, y) = d(y, x) and (iii)
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. A short map (X, d) → (Y, e) is a function
f : X → Y satisfying d(x, y) ≥ e(f(x), f(y)). We will denote the category of extended
pseudometric spaces and short maps simply by Met. We equip Met with a monoidal
structure where (X, d) ⊗ (Y, e) is given by equipping X × Y with ℓ1-distance, i.e., the
distance between (x, y) and (x′, y′) is given by d(x, x′) + e(y, y′).

Let R : C → Met be a symmetric monoidal functor. Given r ∈ R(A), s ∈ R(B) and
ϵ > 0, a morphism f : A → B is an ϵ-correct transformation (A, r) → (B, s) if d(R(f)r, s) < ϵ.

The resource theory
∫Met

R of asymptotically correct conversions is defined as follows: an
object is given by a pair (A, r) where A is an object of C and r ∈ R(A). A morphism
(A, r) → (B, s) is given by a sequence (fn)n∈N of maps A → B in C that is eventually
ϵ-correct for any ϵ > 0, i.e., for which R(fn)r → s as n → ∞.

In some resource theories, the relevant asymptotic transformations are allowed to use
more and more copies of the resource, so that instead of a sequence of maps A → B we have
a sequence (fn)n∈N of maps A⊗n → B taking r⊗n to s in the limit. The theory developed
here adapts easily to this variant as well, with essentially the same proofs.

Lemma 5.5. Let R : C → Met be symmetric monoidal. The composite or tensor product
of an ϵ-correct map with an ϵ′-correct map is ϵ + ϵ′-correct.

Proof. Assume that f is an ϵ-correct transformation (A, r) → (B, s) and that g is an ϵ′-
correct transformation (B, s) → (C, t). As R(g) is a short map, this gives d(R(gf)r, s) ≤
d(R(gf)r,R(g)s) + d(R(g)s, t) < ϵ + ϵ′.

Assume now that f : (A, r) → (B, s) is ϵ-correct and that g : (C, t) → (D,u) is ϵ′-correct.
Then d(R(f⊗g)r⊗t, s⊗u) ≤ d((R(f)r,R(g)t), (s, u)) = d(R(f)r, s)+d(R(g)t, u) < ϵ+ϵ′.

Theorem 5.6. The resource theory
∫Met

R of asymptotically correct conversions induced
by R : C → Met is a symmetric monoidal category.

Proof. The coherence isomorphisms are given by constant sequences of coherence isomor-

phisms of the resource theory induced by C
R−→ Met → Set, and this implies that they satisfy
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the required equations of an SMC. Moreover, as they are exact resource conversions, they are
also asymptotically correct. Thus it suffices to check that asymptotically correct conversions
are closed under ◦ and ⊗. But this follows from Lemma 5.5: given two asymptotically
correct transformations and ϵ > 0, the two transformations are eventually ϵ/2-correct after
which their composite (whether ◦ or ⊗) is ϵ-correct.

In particular, if C is Met-enriched, the functor hom(I,−) lands in Met so that one
can discuss asymptotic transformations between states.

While in resource theories one first tries to understand whether a given transformation
is possible at all, once some resource conversion has been shown to be possible one might
ask for more. In particular, in the asymptotic setting one might want the sequence (fn)n∈N
to be efficient (and in particular computable) in n, and to converge to the target fast in
terms of some measure of cost of implementing fn. One might even want to be able to
give an explicit bound on the distance between R(fn)r and s, as is done for instance in
finite-key cryptography [TLGR12]. However, such considerations are best addressed when
working inside a specific resource theory rather than being hardwired into the definitions at
the abstract level. Conversely, if one can show that a given asymptotic transformation is
impossible even for such a permissive notion of transformation, the resulting no-go theorem
is stronger than if one worked with “efficient” sequences.

5.3. Computational security. We now show that one can reason composably about
computational security in such a metric setting. The proofs follow rather straightforwardly
from the definitions we have by using the structure at hand: most importantly, from the
triangle inequality of any metric space and the fact that our maps between metric spaces
are contractive. For concrete models of cryptography, one might need to do nontrivial work
to show that one has all this structure, after which our theorems apply.

Definition 5.7. Consider F : D → C and R : C → Met and an attack model A on C. For
an ϵ > 0 and an ϵ-correct map f : (A, r) → (B, s), we say that f is an ϵ-secure transformation
(A, r) → (B, s) against A if for any a ∈ A(F (f)) with dom(a) = F (A) there is b ∈ A(idF (B))
such that d(R(a)r,R(b)s) < ϵ.

Let (fn)n∈N : (A, r) → (B, s) now define an asymptotically correct conversion in
∫Met

RF .
We say that (f)n∈N is asymptotically secure against A (or asymptotically A-secure) if it is
eventually ϵ-secure for any ϵ > 0. Explicitly, (fn)n∈N : (A, r) → (B, s) is asymptotically se-
cure if for any ϵ > 0 there is a threshold k ∈ N such that for any n > k and any a ∈ A(F (fn))
with dom(a) = F (A) there is b ∈ A(idF (B)) such that d(R(a)r,R(b)s) < ϵ.

Note that while we changed our notion of security both in the presence of ≈ and in the
(pseudo)metric setting, we kept our notion of an attack model the same. We expect that the
theory would carry over even if one defined “attack models up to ≈” (and “metric attack
models”) by relaxing Definition 4.1 to state that the required factorizations only exist up to
≈ (up to every ϵ > 0). However, we do not pursue these generalizations here as they are not
needed for the present work.

We now show that bounds on security compose additively.

Lemma 5.8. Let R : C → Met be lax monoidal and A an attack model on C. The composite
or tensor product of an ϵ-secure map with an ϵ′-secure map is ϵ + ϵ′-secure.
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Proof. We have already seen that ϵ-correctness behaves as desired in Lemma 5.5. Assume
that f is an ϵ-secure transformation (A, r) → (B, s) and that g is an ϵ′-secure transformation
(B, s) → (C, t) against A. Given h ∈ A(g ◦ f) with domain A, factorize it as g′ ◦ f ′ as
guaranteed by (ii). As f is A-secure there is some b ∈ A(idB) with d(R(f ′)r,R(b)s) < ϵ.
Now g′b ∈ A(g) by (ii) so that security of g implies the existence of c ∈ A(idB) such that
d(R(g′b)(s), R(c)t) < ϵ′. Thus

d(R(h)r,R(c)t) = d(R(g′f ′)r,R(c)t) ≤ d(R(g′f ′)r,R(g′)R(b)s)+d(R(g′)R(b)s,R(c)t) < ϵ+ϵ′

as desired.
Assume now that f is ϵ-secure transformation (A, r) → (B, s) against A and that g is

ϵ′-secure transformation (C, t) → (D,u) against A. Given h ∈ A(f ⊗ g) with domain A⊗C
factorize it as h′ ◦ (f ′⊗ g′) as guaranteed by (iii). Then ϵ-security of f (ϵ′-security of g) gives
us b ∈ A(idB) so that d(R(f ′)r,R(b)s) < ϵ (c ∈ A(idD) so that d(R(g′)t, R(c)u) < ϵ′). Now

d(R(h)(r ⊗ t), R(h′ ◦ (b⊗ c))(s⊗ u)) = d(R(h′) ◦R(f ′ ⊗ g′)(r ⊗ t), R(h′) ◦R(b⊗ c)(s⊗ u))

≤ d(R(f ′ ⊗ g′)(r ⊗ t), R(b⊗ c)(s⊗ u))

= d(R(f ′)r,R(b)s) + d(R(g′)t, R(c)u) < ϵ + ϵ′

as desired.

We now give a composition theorem for asymptotically secure protocols.

Theorem 5.9. Given symmetric monoidal functors F : D → C, R : C → Met with F strong
monoidal and R lax monoidal, and an attack model A on C, the class of asymptotically

A-secure maps forms a wide sub-SMC of the asymptotic resource theory
∫Met

RF induced
by F and R.

Proof. As with Theorem 4.6, it suffices to show that asymptotically secure maps contain all
coherence isomorphisms and are closed under ◦ and ⊗. Moreover, the reduction from the
general case to F = id is the same, so we assume that F = id. It is easy to see that whenever

f is A-secure in the resource theory induced by C
R−→ Met → Set, the constant sequence

(f)n∈N is asymptotically A-secure. Thus security of coherence isomorphisms implies their
asymptotic security.

Assume now that (fn)n∈N : (A, r) → (B, s) and (gn)n∈N : (B, s) → (C, t) are asymp-
totically A-secure. Given ϵ > 0, for sufficiently large n both fn and gn are ϵ/2-secure
so that their composite is ϵ-secure by Lemma 5.8. The case for ⊗ follows similarly from
Lemma 5.8.

Corollary 5.10. Given a non-empty family of functors (D
Fi−→ Ci

Ri−→ Met)i∈I with
R := RiFi = RjFj for all i, j ∈ I and attack models Ai on Ci for each i, the class of maps

in
∫Met

R that is asymptotically secure against each Ai is a sub-SMC of
∫Met

R.

To make these abstract results closer to cryptographic practice, one would work within
some explicit C and with (pseudo)metrics relevant for cryptographers. A paradigmatic
case is given by metrics induced by distinguisher advantage, where one defines the distance
between two behaviors by first taking the supremum over all (efficient) distinguishers d of the
probability of d distinguishing the two behaviors and then normalizing this value from [1/2, 1]
to [0, 1]. If our starting category C contains processes that are not (efficiently) computable,
such distinguisher metrics might not be contractive as composing two distinct behaviors
with a very powerful behavior might help a distinguisher trying to tell them apart. However,
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as long as one restricts C (and consequently the behaviors available as resources, protocols
and attacks) to behaviors that the relevant class of distinguishers can freely implement, this
readily results in a Met-enrichment, as composing two morphisms with a fixed morphism
available to the distinguishers cannot increase distinguisher advantage. For instance, if the
metric is induced by distinguisher advantage of polynomial-time distinguishers, one should
get a Met-enrichment on the subcategory of C corresponding to polynomial-time behaviors.
Once one has specified a concrete C and a Met-enrichment on it, for any asymptotically
secure protocol one can then discuss its speed of convergence, and in principle discuss which
actual value of the security parameter is sufficiently secure for the task at hand.

We now wish to prove a variant of Theorem 4.10 in the approximate setting, abstracting
from [Unr10, Theorem 18]. Again, we specialize to the n-partite resource theory of states,
where our attack models consist of some subset J ⊂ {1, . . . , n} behaving maliciously. In
this case, we assume our base categories to be Met-enriched, so that hom(I,−) lands in
Met. In such a setting, a protocol is a sequence (f̄i)i∈N where each f̄i := (fi,1, . . . fi,n) is an
n-tuple of morphisms.

Theorem 5.11. Let C and D be Met-enriched SMCs, and let F : C → D be a strong
monoidal Met-enriched functor. If (f̄i)i∈N is an asymptotic transformation between two
states of C that is asymptotically secure against J ⊂ {1, . . . , n}, so is (F f̄i)i∈N.

Proof. Again, it suffices to prove security against initial attacks. Now, the proof of Theo-
rem 4.10 implies that if the desired equation in C holds up to ϵ > 0, so does the equation
in D, so the claim follows.

As discussed in [Unr10], the computational version above is not as strong as the result
in the case of perfect security, as the assumptions of Theorem 5.11 are rather strong. For
instance, if a protocol is secure against polynomial-time classical adversaries, it does not
follow that it is secure against polynomial-time quantum adversaries. Correspondingly, if
we use the metric induced by “polynomial-time distinguishers”, the inclusion of classical
computations into quantum computations is not Met-enriched, as the distances might
increase. However, if on the quantum side we use polynomial-time distinguishers, but on
the classical side we use distinguishers that are able to simulate quantum polynomial-time
machines, then protocols that are classically secure remain secure when thought of as
quantum computations.

5.4. Setup assumptions and freely usable resources. Cryptographers often prove
results saying that a given functionality is impossible to realize in the plain model but is
possible with some setup. For instance, in [CF01] they show that bit commitment (BC)
is impossible in the plain UC-framework but it is possible assuming a common reference
string (CRS)—a functionality that gives all parties the same string drawn from some fixed
distribution. In our viewpoint, claims such as these can be interpreted in the categories we
have already built: for instance, impossibility of commitments amounts to non-existence of a
secure map I → BC that builds bit commitments out of a trivial resource I, and possibility
of bit commitments given a common reference string amounts to the existence of a secure
protocol CRS → BC.

A related, but distinct matter is that sometimes cryptographers wish to make some
(possibly shared) functionalities freely available to all parties without having to explicitly
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mention them being used as a resource. For instance, so far in our framework all communi-
cation between the honest parties has been mediated by the functionality r that they start
from. However, one might want to model situations where e.g. pairwise communication
between parties is freely available (as is standard in multi-party computation) and does not
need to be provided explicitly by the functionality one starts from. Put more abstractly,
one might wish to declare some set X of functionalities “free” and think of secure protocols
that build s from r and some functionalities from X just as maps r → s, without having to
explicitly keep track of how many copies of which x ∈ X was used. This is in fact something
that happens quite often in resource theories even before any security conditions arise, as it
could happen that the free processes CF are not quite expressive enough for the resource
theory at hand. While one could try to define a larger category of free processes directly, it
might be technically more convenient to obtain a larger class of free processes by allowing
resource transformations to consume a resource from some class that is considered free. This
can be achieved via a general construction on SMCs, a special case used in [FST19] when
constructing the category of learners. A special case also appears in the resource theory of
contextuality as defined in [ABKM19], where one first defines deterministic free processes,
and probabilistic (but classical) transformations d → e are then defined as transformations
d⊗c → e where c is a non-contextual (and thus free) resource. This construction is discussed
more generally in [CGG+22], but we modify it slightly by allowing one to choose a class of
objects as “parameters” instead of taking that class to consist of all objects: this modification
is important for resource theories as it lets one control which resources are made freely
available.

Proposition 5.12. Let C be an SMC and X a class of objects that contains I and is
closed under ⊗. Then there is an SMC whose objects are those of C, and whose morphisms
A → B are given by equivalence classes of morphisms A⊗X → B in C with X ∈ X , where
f : A⊗X → B,f ′ : A⊗X ′ → B are equivalent if there is an isomorphism g : X → X ′ such
that f = f ′ ◦ (idA ⊗ g)

Proof sketch. The composites g ◦ f and g ⊗ f are depicted by

A X Y

C

f

g

A
X

B D

C
Y

f g

It is easy to show graphically that these are well-defined and that this results in an SMC.

Using Proposition 5.12 we can easily model protocols that have free access to some
cryptographic functionalities: one just declares a class X of functionalities (e.g. pairwise
communication channels) that is closed under ⊗ to be free. In that case a protocol acting
on (An

i=1, r) can be depicted by

r x

. . .

. . . . . .

f1 fn
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(a) The copy map

A

AA

(b) Alice’s copy map

A

BE

(c) Alice broadcasting
to Bob and Eve

$

A B

(d) Random shared key

Figure 4. Variants of the copy map

where x ∈ X is a free resource. For example, if we are in a multi-party setting and want
to treat secure pairwise communication as a solved problem as is common in multi-party
computation, we could let X be generated by all pairwise channels.

6. The one-time pad

We will now explore how the one-time pad (OTP) fits into our framework, paralleling
the discussion of the OTP in [Mau11]. We will start from the category FinStoch of
finite sets and stochastic maps between them, with ⊗ given by cartesian product of sets.
This is sufficient for the OTP over a fixed message space, even if more complicated and
interactive cryptographic protocols will need a different starting category. However, the
actual category C we work in is built from FinStoch as we want our resources to be
morphisms of FinStoch with a tripartite structure. As we’ve seen at the end of Section 3,
this can be achieved by working with the resource theory C induced by

n-comb(FinStoch3)
n-comb(⊗)−−−−−−→ n-comb(FinStoch)

hom(I,−)−−−−−−→ Set,

with the three parties named Eve, Alice and Bob. We will equip n-comb(FinStoch3) with
the attack model from Definition 4.5, with Eve being the malicious party.

To recap, a basic resource in this resource theory is given by finite sets Ei,Ai, Bi for
i = 1, 2, and a map f : E1 ⊗A1 ⊗B1 → E2 ⊗A2 ⊗B2 in FinStoch, depicted as

E1

E2

A1

A2

B1

B2

f

The intuition is that ⟨(Ai, Bi, Ei)i∈{1,2}, f⟩ represents a box shared by Alice, Bob and Eve,
with Alice’s inputs and outputs ranging over A1 and A2 respectively, and similarly for Bob
and Eve. A general object of C then consists of a list of such basic objects, representing
a list of such resources shared between Alice, Bob and Eve. We will often label the ports
just by the party who accesses it, and omit labeling trivial ports. For example, if Figure 4a
depicts the copy map X → X ⊗X for some set X in FinStoch, then Figure 4b denotes
an object of C representing Alice copying data in X privately, whereas Figure 4c denotes
an object C that sends Alice’s input unchanged to Bob and to Eve—which we view as an
insecure (but authenticated) channel from Alice to Bob.
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In the version of the one-time pad we discuss, our starting resources consist of an
insecure but authenticated channel4 from Alice to Bob as in Figure 4c and of a random key
over the same message space, shared by Alice and Bob, depicted in Figure 4d. Here Alice
and Bob having access to both of these resources is modelled by them sharing the monoidal

product of these resources. The goal is to build a secure channel

A

B

from Alice to Bob

from these.
We will next describe the local ingredients needed for OTP. First of all, Alice and Bob

must agree on a group structure on the message space: this consists of a multiplication
with unit that is associative and unital, i.e., satisfies the equations

= = = (6.1)

Note that copying and deleting, denoted by a different color for convenience, satisfy similar
equations

= = = (6.2)

In addition, multiplication and copying interact:

= (6.3)

and the map i giving inverses5 satisfies

i = = i (6.4)

That the key is uniformly random is captured by

$

=
$

=
$

, (6.5)

4If the insecure channel allows Eve to tamper with the message, the analysis changes, as the resulting
channel still lets Eve flip bits in the sent message, even if she cannot read the message. Consequently, one
can study the OTP with a different domain and codomain than chosen here.

5Usually for OTP one works over a power of Z2 so that i is given by the identity map.
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which amounts to saying that “adding uniform noise to a channel results in uniform noise”.
Moreover, producing a random key and deleting it amounts to doing nothing:

$
= (6.6)

Taken together, the equations describe a structure known as a Hopf algebra with an
integral [Swe69] in a symmetric monoidal category. In FinStoch, if one keeps the meaning
of the copy maps fixed, such structures correspond exactly to finite groups equipped with
the uniform distribution, and any such group can be used to implement the one-time pad
with the message space given by the set underlying the group. Concretely, this means that
Alice and Bob must agree on a group structure on the message space, and the fact that this
multiplication forms a group and that the key is random can be captured by these equations.

The OTP protocol is then depicted as follows:

$A

B

B

i

A

E B

i.e., Alice adds the key to her message, broadcasts it to Eve and Bob. Eve deletes her part
and Bob adds the inverse of the key to the ciphertext to recover the message.

That the protocol is correct (i.e., works when everyone follows it) can be proven as
follows:

$A

B

i (6.2)
=

$

A

B

i (6.1)
=

$

B

A

i
(6.4)
=

$

B

A

(6.1) & (6.6)
=

A

B

However, we also need to show that the protocol is secure. In this case, Eve has an
initial attack given by just reading the ciphertext. We can now prove security pictorially as
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follows:

$A

E
B

i (6.3)
=

E

A
$

B

i
(6.1) & (6.2)

=

B

$

E

A

i
(6.4)
=

B

$

E

A

(6.1) & (6.2)
=

E

$

A

B

(6.5)
=

$

E

A

B

(6.2)
=

A

B

$

E

Taken together, these show that Eve’s initial attack is equal to her just producing a random
message herself when Alice and Bob share the target resource.

Thus OTP represents a map

authenticated channel ⊗ shared key → secure channel

that is secure against Eve. In pictures, we might say that OTP is a map

A

BE

⊗
$

A B

OTP−−−→
A

B

7. Diffie-Hellman key exchange

We now turn our attention to the problem of obtaining keys in the first place, by modelling
Diffie-Hellman key exchange (DHKE). Let us first recall DHKE as usually described. First of
all, Alice and Bob agree on a finite cyclic group G with generator g (in fact, the group might
depend on the security parameter, so one could think of them as agreeing on a sequence of
groups). Alice and Bob uniformly sample a and b from Zn where n = |G|. Alice and Bob
then broadcast ga and gb over a public channel, after which Alice computes ka := (gb)a and
Bob computes kb := (ga)b. As ka = kb = gab, they’ve now agreed on a key. If the group
(or sequence of them) is chosen well, the distribution (ga, gb, gab) for uniformly sampled a, b
“looks like” the distribution (ga, gb, gc) for uniformly sampled a, b, c, and this is in fact often
taken as the definition of security [KL15, Section 7.3.2].

7.1. The category of efficient probabilistic computations. We will now build the
category we will work in. While FinStoch was a workable starting point for the OTP, it is
no longer good enough for DHKE as the security constraints are computational and hence
require asymptotic notions. Informally, we will work with the category whose maps are
“efficient sequences of stochastic maps”, where we identify efficiency with computability in
polynomial-time as usual. As a first approximation, one might think of the larger category
[N,FinStoch] of all sequences of stochastic maps (here N is viewed as a discrete category)
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and then restrict to the efficient sequences therein. However, one usually defines polynomial-
time computability for functions on some standard set (e.g. N or {0, 1}∗) and then lifts this
to other sets by encoding. We capture this in the following definition6.

Definition 7.1. An efficient sequence of finite sets consists of a sequence of injections
(J−Kn : An → {0, 1}∗) where each An is a finite set and the characteristic functions of the sets
JAnKn ⊂ {0, 1}∗ can be computed in polynomial time. When there is no risk of confusion,
we will often drop the subscript and write J−K instead of J−Kn, and similarly we won’t
disambiguate notationally between the encoding functions J−K of different sets unless we
really have to. When we think of the index as security parameter, we will often index with
λ rather than with n.

An efficient stochastic map (An, J−K)n∈N → (Bn, J−K)n∈N consists of a sequence of
stochastic maps (fn : An → Bn)n∈N such that sequence of maps (JfnK : JAnKn → JBnKn)n∈N
defined by JfnK(JaK) = Jfn(a)K can be computed in probabilistic polynomial time.

We denote the category of efficient sequences of finite sets and efficient stochastic maps
between them by Eff . Fixing some efficient bijective pairing function ⟨− , −⟩ : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗, we will equip Eff with the structure of a symmetric monoidal category,
where the monoidal structure on objects is induced by the cartesian product of sets, and the
encoding of (a, b) ∈ An ×Bn is given by ⟨JaK , JbK⟩.

We will now formalize the notion of “computational indistinguishability” as a congruence
on Eff . Recall that a function f : N → R+ is negligible if for any exponent c ∈ N the function
f is eventually smaller than 1/xc.

Definition 7.2. Given two objects A and B of Eff , a distinguisher of type A → B is
informally speaking a program that tries to tell apart programs of type A → B. More
precisely, a distinguisher of type A → B is a probabilistic polynomial-time algorithm that
queries an oracle (taking inputs in A and giving outputs in B), and outputs a single bit. In
particular, it can query the oracle multiple repeatedly, albeit only polynomially many times.
Given a distinguisher D of type A → B and a map f : A → B in Eff , we let D(f) denote
the function N → R+ that given n, outputs the probability that D outputs 1 given access fn
as its oracle. Two parallel maps f, g : A ⇒ B in Eff are computationally indistinguishable,
written f ≈ g, if for any distinguisher D of type A → B, the function |D(f) −D(g)| is
negligible.

As morphisms of Eff and our chosen distinguishers are by definition polynomial-time,
for any morphism f of Eff one can always construct distinguishers that use f as a subroutine.
This is at the heart of the following proposition.

Proposition 7.3. Computational indistinguishability is a monoidal congruence on Eff .

Proof. It is obvious that ≈ is reflexive and symmetric. To see that it is transitive, assume
that f, g, h are maps A → B with f ≈ g ≈ h. Consider an arbitrary distinguisher D of type
A → B. Then

|D(f) −D(h)| = |D(f) −D(g) + D(g) −D(h)| ≤ |D(f) −D(g)| + |D(g) −D(h)|

6Our construction is a variant of a special case from [Pav14]—the most important difference is that we
define indistinguishability in terms of negligible distinguisher advantage (as is standard), rather than in terms
of negligible ℓ∞-distance.
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G

Zn G

act

(a) The action Zn ⊗G → G.

$

(b) Uniform distribution on Zn

g

(c) The generator g of G

Figure 5. Private computations used in Diffie-Hellman key exchange

As the sum of two negligible functions is negligible, we have f ≈ h.
We now check that ≈ respects sequential composition. Consider morphisms f, f ′ : A ⇒ B

and g, g′ : B ⇒ C with f ≈ f ′ and g ≈ g′. Now, as f ≈ f ′ we must have gf ≈ gf ′, as any
distinguisher D of type A → C can be used to construct a new distinguisher Dg◦− of type
A → B, that behaves otherwise as D but whenever it receives an answer in B from the
oracle, uses g to transform it to an answer in C. Similarly, gf ≈ g′f ′. Taken together, we
have gf ≈ gf ′ ≈ g′f ′, so that by transitivity we have gf ≈ g′f ′. The argument for parallel
composition is similar.

7.2. Resources needed for DHKE. As with the one-time pad, we want our resources to
be morphisms of this base category (equipped with a chosen labeling of input and output
ports telling which parties control/access which). Consequently, we will work with the

resource theory given by n-comb(Eff3)
n-comb(⊗)−−−−−−→ n-comb(Eff)

hom(I,−)−−−−−−→ Equ, with the
attack model on n-comb(Eff3) as in Definition 4.5, with the malicious party called Eve.
While our protocol will actually be correct up to =, DHKE is only secure up to ≈, so we are
working with security up to computational indistinguishability as in Section 5.1.

We will now discuss the ingredients of the DHKE protocol. First of all, we can think of
the sequence of groups G = (Gλ)λ∈N as an object in Eff , with the group structure giving
rise to a similar structure as for the OTP, and the element g ∈ G (i.e., gλ ∈ Gλ for λ ∈ N)
is then modeled as a (deterministic) map I → G ∈ Eff .

However, Alice and Bob don’t really need to use the whole group structure of G: rather,
it’s sufficient that they can compute the map (a, h) 7→ ha, where h is any element of the group
and a is an integer (modulo |G|). We will model this by defining the object Zn := (Zn(λ))
where n(λ) = |Gλ| equipped with some encoding, so that the map (a, h) 7→ ha becomes
a map act : Zn ⊗ G → G as in Figure 5a. In addition to these, Alice and Bob both need
the availability to sample uniformly from Zn, which then becomes a state r : I → Zn as in
Figure 5b, and to compute the generator g as in Figure 5c.

The shared resources needed for the protocol amount to just the broadcasting maps
of type G, with one for Alice and one for Bob. Alice’s broadcasting map is depicted in
Figure 4c, and a depiction of Bob’s broadcasting map is obtained by switching the roles of
A and B in the pictures. Similarly, the target resource is a uniformly random key k sampled
from G, depicted in Fig 4d.

We now discuss some properties enjoyed by these structures. First of all, both Zn and
G are groups on their own right, so that together with their copy maps they satisfy the
equations (6.1)-(6.4) from the previous section. Similarly, the fact that the private random
distribution used by Alice and Bob is uniform is captured by the equation (6.5). Now, the
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map act : Zn ⊗G → G makes G into a module over Zn, which pictorially corresponds to the
following two equations

G

GZn Zn

act

=

G

Zn Zn G

act

act

and

G

G

act
=

G

(7.1)

Moreover, we need the following general fact: copying the result of a deterministic
function (whether g or the action) is equal to copying the inputs and applying the function
twice7. In pictures, this amounts to saying that if f : A → B is deterministic, then

A

B B

f f

=

A

B B

f (7.2)

The final properties that we need are that multiplication on Zn is commutative and
that copying is “cocommutative”. In pictures, these are captured by

= (7.3)

and

= (7.4)

7.3. Correctness and security of DHKE. We have now discussed all of the building
blocks of DHKE, and can now depict the protocol pictorially as follows.

$

g

$

g

Eve Alice Bob

act

act

act

act

7In fact, this is often taken as the definition of deterministic morphisms in categorical approaches
probability [Fri20, Definition 10.1].
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This picture corresponds to our earlier description of the protocol, where Alice and Bob first
uniformly sample a and b from Zn where n = |G|. Alice and Bob then broadcast ga and gb

over a public channel, after which Alice computes ka := (gb)a and Bob computes kb := (ga)b,
with Eve supposed to delete the public messages. We can now prove that the protocol is
correct using the properties we have laid out.

$

g

$

g

act

act

act

act

(6.2)
=

$

g

$

g

act act

act act

(7.4)
=

$

g

$

g

act act

act act

(7.1)
=

g

b

$

a

$

g

act act

(7.3)
=

g

b

$

a

$

g

act act

(6.3)
=

g g

$$

act act

(6.5)
= g g

$ $

act act

(6.6)
= g g

$

act act

(7.2)
=

$ g

act

This shows that when everyone follows the protocol, the end result is Alice and Bob
sharing an element of the form ga for a chosen uniformly from {1, . . . , |G|}. As this gives
the uniform distribution on G, the protocol is indeed correct.

We will now discuss the security of the protocol. The usual formulation of the DH-
assumption is given by saying that when a, b, c are sampled uniformly, we have (ga, gb, gab) ≈
(ga, gb, gc). For us, it’s easier to work with an equivalent formulation of assuming that
(ga, gb, gab, gab) ≈ (ga, gb, gc, gc), as either joint probability distribution can be derived from
the other efficiently, just by copying or discarding the last element as appropriate.

Now, when one turns a claim like (ga, gb, gab, gab) ≈ (ga, gb, gc, gc) into an axiom relating
two pictures, one has some choices to make: after all, there are many possible diagrams that
depict the probability distributions appearing in this claim. One could create a long-winded
pictorial proof akin to the correctness proof by choosing appropriate starting pictures.
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However, we can make things easier for us, and formalize the DH-assumption by stating that

a

$

gab

g b

$

gab

g

ga
gb

act

act

act

act

≈
ga

a

$ g

gb

b

$ g

c

$ g

gc gc

act act act

as the left-hand side indeed depicts the distribution (ga, gb, gab, gab) and the right hand side
the distribution (ga, gb, gc, gc). From this assumption, the security of DHKE is immediate:
the left-hand side depicts the initial attack by Eve, and up to ≈, this is the same result
as Eve sampling ga and gb on her own while Alice and Bob share gc, which is uniformly
distributed. Consequently, DHKE is a secure protocol that takes two broadcast channels
(one from Alice and one from Bob) and constructs a shared secret key out of them. In
pictures, one might then say that DHKE is a transformation

A

BE

⊗
B

AE
DHKE−−−−−→

$

A B

Alternatively, one could have formulated the DH-assumption as stating that

ga

g

gb

g

b

$

a

$

g

gab gab

act act act

≈
ga

a

$ g

gb

b

$ g

c

$ g

gc gc

act act act

For this formulation, security is no longer immediate: to conclude that the protocol is
secure, one must first transform the LHS of our prior security definition into the LHS of this
equation. We leave developing such a pictorial proof for the interested reader.

It is well-known that DHKE is vulnerable to an attacker-in-the-middle, where Eve
pretends to be Bob when communicating with Alice and vice versa, establishing a shared
secret key with both. How does this look like in our approach, especially since DHKE as
analyzed above was deemed secure? The reason for this is that in our simplistic setting,
the channels used by Alice and Bob are authenticated, in that both parties know that any
message sent along the channel goes to the other party as-is. Moreover, these starting
resources do not allow Eve to send messages to Alice and Bob. Consequently, in our model
Eve simply cannot perform such an attack. However, we could instead have our starting
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resources to be channels between the honest parties and Eve. One could then consider the
DHKE protocol in this setting, where Eve is supposed to just wire the messages onward
passively. In this case, the protocol is no longer secure. For instance, if Eve behaves as an
attacker-in-the-middle, both Alice and Bob end up sharing a key with Eve and not with
each other, whereas there is no attack Eve can perform on the ideal key resource with an
indistinguishable end result.

7.4. Composing with other protocols. Now, DHKE gives a transformation

A

BE

⊗
B

AE
DHKE−−−−−→

$

A B

and the OTP from the previous section gives a map

A

BE

⊗
$

A B

OTP−−−→
A

B

so one would like to form the composite

A

BE

⊗
A

BE

⊗
B

AE
id⊗DHKE−−−−−−−→

A

BE

⊗
$

A B

OTP−−−→
A

B

There is only one problem: in the previous section we worked with the resource theory

induced by n-comb(FinStoch3)
n-comb(⊗)−−−−−−→ n-comb(FinStoch)

hom(I,−)−−−−−−→ Set, whereas in
this section we replaced FinStoch with Eff and moved to security up to ≈. However, it
is easy to lift the OTP to Eff for any efficient sequence of groups G. Indeed, if G is our
sequence of groups, it satisfies all the equations we used in the security proof of the OTP
and hence results in a secure protocol in the resource theory of this section. Concretely, this
amounts to thinking of the one-time pad as follows: Alice and Bob agree on an efficient
sequence of groups G, and then OTP is a protocol that transforms a broadcasting map (of
type G) and shared uniformly random key over G into a secure communication channel (of
type G). As a result, the above composite makes sense and is computationally secure by our
composition theorems.

We now illustrate a further use of the composition theorems, similar to the example
in [Mau11]. A major drawback of OTP, despite its perfect security, is the fact that one
needs a key that is as long as the message. Now, Alice and Bob might want to use DHKE to
obtain a key in the first place, but perhaps they want to communicate a longer message than
allowed by the key. If they agree on a pseudo-random number generator (PRNG) with their
key as the seed, they can map the short key to a longer key. If the PRNG is computationally
secure, then the end-result is computationally indistinguishable from a long key, depicted by

short

BA

PRNGPRNG

≈
long

BA
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One could then form a long composite of protocols, where one first uses DHKE to obtain a
key, then PRNG to expand it, and finally, the OTP to use it.

There is one difference with our analysis of OTP to that of [Mau11] which we should
comment on: in [Mau11], the resulting secret channel is slightly weaker, as it gives some
information to Eve—namely, the length of the message. Concretely, this makes perfect sense,
since Eve learns the length of the message upon seeing the ciphertext. Similarly, one might
model the ideal shared key resulting from DHKE as a slightly weaker resource, that gives a
uniformly random shared key to Alice and Bob, but lets Eve know the size of the key space.
Why is this feature seemingly absent from our analysis, even when we work with Eff , where
the message is no longer over a fixed message space? In a sense, this feature is implicit in
our setting, as Eve’s behavior can depend on the security parameter and consequently on
the message/key length. If one thinks of Alice and Bob choosing the concrete value of the
security parameter they actually use, this dependency lets Eve’s behavior depend on the
message length. However, it might be desirable to work in a slightly different category where
this information leakage is made more explicit. We leave developing such an analysis for
future work.

8. No-go results

Composable security is a stronger constraint than stand-alone security, and indeed many
cryptographic functionalities are known to be impossible to achieve “in the plain model”,
i.e., without set-up assumptions. A case in point is bit commitment, which was shown to be
impossible in the UC-framework in [CF01]. This result was later generalized in [PR08] to
show that any two-party functionality that can be realized in the plain UC-framework is
“splittable”. While the authors of [PR08] remark that their result applies more generally than
just to the UC-framework, this wasn’t made precise until [MR11]8. We present a categorical
proof of this result in our framework, which promotes the pictures “illustrating the proof”
in [PR08] into a full proof—the main difference is that in [PR08] the pictures explicitly keep
track of an environment trying to distinguish between different functionalities, whereas we
prove our result in the case of perfect security and then deduce the asymptotic claim.

We now assume that C, our ambient category of interactive computations is compact
closed9. As we are in the 2-party setting, we take our free computations to be given by C2,
and we consider two attack models: one where Alice cheats and Bob is honest, and one where
Bob cheats and Alice is honest. We think of as representing a two-way communication
channel, but this interpretation is not needed for the formal result.

Theorem 8.1. For Alice and Bob (one of whom might cheat), if a bipartite functionality
r can be securely realized from a communication channel between them, i.e., from , then
there is a g such that

r

A B

= r r

g

. (∗)

8Except that in their framework the 2-party case seems to require security constraints also when both
parties cheat.

9We do not view this as overtly restrictive, as many theoretical models of concurrent interactive (proba-
bilistic/quantum) computation are compact closed [Win13, CDVW19b, CdVW19a].



Vol. 19:4 CATEGORICAL COMPOSABLE CRYPTOGRAPHY: EXTENDED VERSION 30:37

Proof. A secure protocol transforming to r consists of maps fA, fB satisfying

fA fB = r

and the security constraints against attacks by Alice or Bob. In particular, security against
Alice’s and Bob’s initial attacks give us sA and sB such that

fA =
r

sB

and fB =
r

sA

so that r = fA fB = fA fB =
r r

sB sA

We now wish to use this result to rule out functionalities that do not satisfy this equation
for any g. Notable examples of this include bit commitment, which lets Alice commit to a
bit that will be revealed to Bob later, and oblivious transfer, which lets Alice choose two
bits, of which Bob can choose to learn exactly one, with Alice not learning Bob’s choice.

Corollary 8.2. Given a compact closed C modeling computation in which wires model
communication channels, (composable) bit commitment and oblivious transfer are impossible
in that model without setup, even asymptotically in terms of distinguisher advantage.

Proof. If r represents bit commitment from Alice to Bob, it does not satisfy the equation
required by Theorem 8.1 for any g, and the two sides of (∗) can be distinguished efficiently
with at least probability 1/2. Indeed, take any g and let us compare the two sides of (∗):
if the distinguisher commits to a random bit b, then Bob gets a notification of this on the
left hand-side, so that g has to commit to a bit on the right side of (∗) to avoid being
distinguished from the left side. But this bit coincides with b with probability at most 1/2,
so that the difference becomes apparent at the reveal stage. The case of OT is similar.

We now discuss a similar result in the tripartite case, which rules out building a
broadcasting channel from pairwise channels securely against any single party cheating.
In [MMP+18] comparable pictures are used to illustrate the official, symbolically rather
involved, proof, whereas in our framework the pictures are the proof. Another key difference
is that [MMP+18] rules out broadcasting directly, whereas we show that any tripartite
functionality realizable from pairwise channels satisfies some equations, and then use these
equations to rule out broadcasting.

Formally, we are working with the resource theory given by C3 ⊗−→ C
hom(I,−)−−−−−−→ Set

where C is an SMC, and reason about protocols that are secure against three kinds of
attacks: one for each party behaving dishonestly while the rest obey the protocol. Note that
we do not need to assume compact closure for this result, and the result goes through for
any state on A⊗A shared between each pair of parties: we will denote such a state by by
convention.

Theorem 8.3. If a tripartite functionality r can be realized from each pair of parties sharing
a state , securely against any single party, then there are simulators sA, sB, sC such that

r

sA

=
r

sB

=
r

sC

.
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Proof. Any tripartite protocol building on top of each pair of parties sharing can be drawn
as in the left side of

fA fB fC fA fB fB fC

Consider now the morphism in C depicted on the right: it can be seen as the result of three
different attacks on the protocol (fA, fB, fC) in C3: one where Alice cheats and performs fA
and fB (and the wire connecting them), one where Bob performs fB twice, and one where
Charlie performs fB and fC . The security of (fA, fB, fC) against each of these gives the
required simulators.

Corollary 8.4. Given an SMC C modeling interactive computation, and a state on A⊗A
modeling pairwise communication, it is impossible to build broadcasting channels securely
(even asymptotically in terms of distinguisher advantage) from pairwise channels.

Proof. We show that a channel r that enables Bob to broadcast an input bit to Alice and
Charlie never satisfies the required equations for any sA, sB, sC . Indeed, assume otherwise
and let the environment plug “broadcast 0” and “broadcast 1” to the two wires in the middle.
The leftmost picture then says that Charlie receives 1, the rightmost picture implies that
Alice gets 0 and the middle picture that Alice and Bob get the same output (if anything
at all)—a contradiction. Indeed, one cannot satisfy all of these simultaneously with high
probability, which rules out an asymptotic transformation.

9. On the choice of a model

In this section we will discuss the choice of the category C in which to work in. As we
believe that one of the advantages of the current framework is how it allows one to separate
the concern for composability from the choice of a model of computation, we do not think
that choosing or building suitable models C is central to the work at hand. Moreover, we
do not believe that there is a single model suitable for all cryptographic purposes, as some
assumptions that simplify the model mathematically might be justified for some tasks but
not for others. Consequently, we will refer to the existing literature to explain where to find
some models that are expressive enough for cryptography and result in an SMC, even when
the original works are not expressed in categorical terms.

Note that in Section 7, we worked with n-comb(Eff3) equipped with the equivalence
relation of computational indistinguishability. We believe that this a reasonable setting
to study many protocols in classical cryptography, as many functionalities of interest can
be modelled by shared (probabilistic) functions, and many protocols can be modelled as
(shared) n-combs. Similarly, one could get an analogous setting for k-partite quantum
cryptography by starting e.g. from efficient sequences of quantum channels before applying
the n-comb-construction. However, both of these categories have some limitations, of which
we’ll mention some:

• In this setting, resources consist of shared functions. However, some cryptographic
functionalities of interest fall outside of this: for instance, bit commitment is more
naturally modelled as a two-round functionality.

• The shared resources used as building blocks are used in synchronized rounds.
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• The number of rounds for a protocol is fixed in advance, as opposed to being decided e.g.
probabilistically during the protocol.

• The number of parties is fixed in advance, as opposed to some real-world protocols where
the number of parties can change dynamically during the protocol.

Let us now explain why choosing (let alone building) a starting category is not trivial.
In general, the following desiderata pull in opposite directions

• The computational model should be mathematically tractable.
• The computational model should be sufficiently expressive. One should be able to model

both cryptographic protocols and realistic attacks in the model. In particular, any
adversarial behavior simply assumed away creates room for side-channel attacks.

To elaborate on the required expressiveness, cryptographically reasonable models of compu-
tation should have most of the following features:

• computation should be probabilistic (or quantum) as there’s no security without random-
ness,

• in general, concurrent computation should be asynchronous: after all cryptography behaves
differently in synchronous and asynchronous settings [BOCG93, KMTZ13] and we cannot
assume synchronicity throughout,

• cryptographic protocols need not have a fixed number of communication rounds, and
might instead be repeated until a success condition occurs,

• the number of parties need not be fixed in advance, but can change during the protocol.

In particular, the requirement of asynchronous probabilistic computation causes some
difficulties for modelling cryptography, as discussed in [MT13]. To paraphrase, the issue
is that traditionally concurrency in asynchronous systems is modelled by nondeterminism,
so that a system describes the set of all possible behaviors. Unfortunately, this does not
work too well for cryptography, where one wants to bound the probability of a successful
attack. Cryptographers often solve this by letting an adversary be responsible for scheduling.
This is not always a reasonable assumption, and makes the resulting models inherently
less compositional. However, one can still achieve categorical models that achieve most
of these features, even if many existing models are not phrased categorically. Indeed, the
aforementioned [MT13] builds a model of interactive, asynchronous probabilistic computation,
where composition of computations is associative (resulting in a category), with the cartesian
product of sets inducing a parallel composition operation (resulting in an SMC). The resulting
framework is rich enough to study many cryptographic protocols such as broadcasting and
secret sharing.

Another possible source of a model stems from cryptHOL [BLS20], an approach to
formally verified cryptographic protocols using higher-order-logic. While [BLS20] does not
give an explicit category of probabilistic and stateful computations, we expect it to induce
one despite not having verified this in detail. We base our optimism on the fact that the
monadic and coalgebraic techniques used in [BLS20] are inherently categorical. Moreover
cryptHOL has also been used to formalize constructive cryptography [LSBM19], and as a
consequence one would expect that the same model could be phrased in categorical terms.
We leave verifying this for future work as it is outside the scope of this paper.

Additional models can be found in the literature on programming language theory, and
particularly from game semantics [Win13]. While these models are more often expressed
categorically, and even result in compact closed categories so that Theorem 8.1 applies
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directly, they run the risk of being too involved mathematically, at least in order to gain
mainstream traction among cryptographers.

We now turn our attention to modelling quantum cryptography. Again, one can use
models coming from game semantics [CDVW19b, CdVW19a] with the aforementioned
caveats. Another model, this time built by and for quantum cryptographers, can be obtained
from [PMM+17]. The model is rather general, as it is intended to be also suitable for
relativistic quantum protocols, and indeed it has been used for such purposes in [VPDR19].
As the constructions are rather involved, we restrict ourselves to giving a high-level description.
As [PMM+17] is not expressed in categorical words, we will explain why their model can
equally well be interpreted as a category.

In this work, the authors work over a countable but otherwise arbitrary partial order T ,
and then define for each (finite-dimensional) Hilbert space A a new Hilbert-space F (A)
modelling a wire with A-messages being sent/received at times given by t ∈ T . They then
define causal maps A → B as certain families of CPTP-maps {F (A) → F (B)C} where C
ranges over downward-closed subsets of T—the intuition being that for a causal map the
output at time t ∈ T depends only on the past of t with some delay. The authors then define
two ways of combining causal boxes:

• parallel composition, which we will denote by ⊗, which takes causal boxes A → B and
C → D and produces a causal box A⊗ C → B ⊗D.

• An internal wiring operation, which takes as input a causal box A ⊗ B → B ⊗ C, and
produces a causal box A⊗ C. The intuition is that the resulting causal box is obtained
by wiring the output B-wire into the the input B-wire.

Moreover, the authors prove that these composition operations satisfy “composition
order invariance”, so that adding loops commutes with parallel composition, and the
order in which loops was added does not affect the end result. While the authors phrase
their constructions in terms of the algebraic theory of systems of [MMP+18], the parallel
composition operation they define is in fact a total operation, whereas in a system algebra
f ⊗ f is never defined [MMP+18, Definition 3.1]. This allows us to extract a category
from [PMM+17]. The objects of this category are given by (finite-dimensional) message
spaces A,B,C, . . . , and morphisms A → B are given by T -causal maps A → B. The
composite of f : A → B and g : B → C is given internally wiring the B-ports together in
g ⊗ f , pictorially represented by

A

C

g ◦ f :=

A

D

f g

Now, composition order invariance implies that this composition operation is associative.
As identity-maps are not causal (informally this is because they’re delay-free), this results
only in a semicategory—i.e., a category-like structure without identities. However, we
can formally add identities, resulting in a symmetric monoidal category.10 Moreover, the
authors equip these causal boxes with an explicit pseudometric. This pseudometric is a

10One might be tempted to guess that any model of abstract cryptography yields a category in an
analogous manner. We make the more reserved but less precise guess that this holds for those models of
abstract cryptography that are “reasonable” or arise “naturally”. However, we don’t think there exists a
simple construction of an SMC directly from any (composition-order-invariant) system algebra in the sense
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cryptographically well-motivated one, as the distance between f and g is defined in terms of
the ability of an environment to guess whether it interacts with f or g. Consequently one
can also apply the asymptotic definitions of Sections 5.2 and 5.3 in this category.

10. Outlook

We have presented a categorical framework providing a general, flexible and mathematically
robust way of reasoning about composability in cryptography. Besides contributing a
further approach to composable cryptography and potentially helping with cross-talk and
comparisons between existing approaches [CKLS19], we believe that the current work opens
the door for several further questions.

First, due to the generality of our approach we hope that one can, besides honest
and malicious participants, reason about more refined kinds of adversaries composably.
Indeed, we expect that Definition 4.1 is general enough to capture e.g. honest-but-curious
adversaries11. It would also be interesting to see if this captures even more general attacks,
e.g. situations where the sets of participants and dishonest parties can change during the
protocol. This might require understanding our axiomatization of attack models more
structurally and perhaps generalizing it. Does this structure (or a variant thereof) already
arise in category theory? While we define an attack model on a category, perhaps one
could define an attack model on a (strong) monoidal functor F , the current definition being
recovered when F = id. Another approach would be to generalize the definitions and results
of Section 5 into general enriched notions of an attack model and of security, with Section 5
then giving the special cases enriched over Equ and Met.

Second, we expect that rephrasing cryptographic questions categorically would enable
more cross-talk between cryptography and other fields already using category theory as
an organizing principle. For instance, many existing approaches to composable cryptogra-
phy develop their own models of concurrent, asynchronous, probabilistic and interactive
computations. As categorical models of such computation exist in the context of game
semantics [Win13, CDVW19b, CdVW19a], one is left wondering whether the models of the
semanticists’ could be used to study and answer cryptographic questions, or conversely if
the models developed by cryptographers contain valuable insights for programming language
semantics.

Besides working inside concrete models—which ultimately blends into “just doing
composable cryptography”—one could study axiomatically how properties of a category
relate to cryptographic properties in it. As a specific conjecture in this direction, if one has an
environment structure [CP12], i.e., coherent families of maps

A
for each A that axiomatize

the idea of deleting a system, one might be able to talk about honest-but-curious adversaries at
an abstract level. Similarly, having agents purify their actions is an important tool in quantum
cryptography [LC97]—can categorical accounts of purification [CDP10, CH17, CP12] be
used to elucidate this?

Finally, we hope to get more mileage out of the tools brought in with the categorical
viewpoint. For instance, can one prove further no-go results pictorially? More specifically,

of [MMP+18]: for one, in a system algebra f ⊗ f is never defined, whereas in a monoidal category f ⊗ f is
always defined. Rather, we believe that natural sources of system algebras are also natural sources of SMCs.

11Heuristically speaking this is the case: an honest-but-curious attack on g ◦ f should be factorizable as
one on g and one on f , and similarly an honest-but-curious attack on g ⊗ f should be factorizable into ones
on g and f that then forward their transcripts to an attack on id ⊗ id.
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given the impossibility results for two and three parties, one wonders if the “only topology
matters” approach of string diagrams can be used to derive general impossibility results
for n parties sharing pairwise channels. Similarly, while diagrammatic languages have been
used to reason about positive cryptographic results in the stand-alone setting [KTW17,
BMR19, BKM18], can one push such approaches further now that composable security
definitions have a clear categorical meaning? Besides the graphical methods, thinking of
cryptography as a resource theory suggests using resource-theoretic tools such as monotones.
While monotones have already been applied in cryptography [WW08], a full understanding
of cryptographically relevant monotones is still lacking.
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