
Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 2:1–2:33
https://lmcs.episciences.org/

Submitted Dec. 07, 2022
Published Jan. 11, 2024

OFFLINE AND ONLINE ENERGY-EFFICIENT MONITORING OF

SCATTERED UNCERTAIN LOGS USING A BOUNDING MODEL

BINEET GHOSH a,b AND ÉTIENNE ANDRÉ c,d

aThe University of Alabama, AL, The United States of America
e-mail address: bineet@ua.edu

bThe University of North Carolina at Chapel Hill, NC, The United States of America

cUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

dUniversité Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France

Abstract. Monitoring the correctness of distributed cyber-physical systems is essential.
Detecting possible safety violations can be hard when some samples are uncertain or missing.
We monitor here black-box cyber-physical system, with logs being uncertain both in the
state and timestamp dimensions: that is, not only the logged value is known with some
uncertainty, but the time at which the log was made is uncertain too. In addition, we
make use of an over-approximated yet expressive model, given by a non-linear extension of
dynamical systems. Given an offline log, our approach is able to monitor the log against
safety specifications with a limited number of false alarms. As a second contribution, we
show that our approach can be used online to minimize the number of sample triggers, with
the aim at energetic efficiency. We apply our approach to three benchmarks, an anesthesia
model, an adaptive cruise controller and an aircraft orbiting system.

1. Introduction

The pervasiveness of distributed cyber-physical systems is highly increasing, accompanied
by associated safety concerns. Formal verification techniques usually require a (white-box)
model, which may not often available, because some components are black-box, or because
the entire system has no formal model. In addition, despite some success in verifying formal
models from the industry in the recent past (e.g., [BCM+92, KGN+09, LLN18, ACF+21]),
formal verification techniques for cyber-physical systems are often subject to state space
explosion, often preventing a satisfactory scalability (see e.g., [Pel08, CKNZ11]). Therefore,
monitoring, as a lightweight yet feasible verification technique, can bring practical results of
high importance for larger models.

Monitoring aims at analyzing the log of a concrete system, so as to deduce whether
a specification (e.g., a safety property) is violated [BDD+18]. Monitoring can be done
offline (i.e., after the system execution, assuming the knowledge of the entire log, see e.g.,

Key words and phrases: offline monitoring, online monitoring, energy-aware monitoring, cyber-physical
systems, formal methods.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:2)2024
© B. Ghosh and É. André
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-1371-2803
https://orcid.org/0000-0001-8473-9555
http://creativecommons.org/about/licenses

2:2 B. Ghosh and É. André Vol. 20:1

x

t

(a) Full set of samples

x

t

(b) Monitored samples

x

t

(c) Piecewise-const. extrapo.

x

t

(d) Linear extrapolation

x

t

(e) Unlikely safety violation

x

t

(f) Uncertain samples

Figure 1. Monitoring at discrete time steps

[BCE+16]), or online (at runtime, assuming a partial log); see [Mal16] for a discussion on
online verification. When the log is an aperiodic timed sequence of valuations of continuous
variables, with a logging not occurring at every discrete time step, and when the system
under monitoring is a black box, a major issue is: how to be certain that, in between two
discrete valuations, the specification was not violated at another discrete time step at which
no logging was performed? For example, consider a system for which a logging at every
discrete time step would yield the log depicted in Fig. 1a. Assume the logging was done at
only some time steps, given in Fig. 1b, due to some sensor faults, or to save energy with only
a sparse, scattered logging. How to be certain that, in between two discrete samples, another
discrete sample (not recorded) did not violate the specification? For example, by just looking
at the discrete samples in Fig. 1b, there is no way to formally guarantee that the unsafe
zone (i.e., above the red, dashed line) was never reached by another discrete sample which
was not recorded. In many practical cases, a piecewise-constant or linear approximation
(see, e.g., Figs. 1c and 1d, where the large blue dots denote actual samples, while the small
green dots denote reconstructed samples using some extrapolation) is arbitrary and not
appropriate; even worse, it can yield a “safe” answer, while the actual system could actually
have been unsafe at some of the missing time steps. On the contrary, assuming a completely
arbitrary dynamics will always yield “potentially unsafe”—thus removing the interest of
monitoring. For example, from the samples in Fig. 1b, without any knowledge of the model,
one can always envision the situation in Fig. 1e, which shows the variable x crossing the
unsafe region (dashed) at some unlogged discrete time step—even though this is unlikely if
the dynamics is known to vary “not very fast”.

Contributions. In this work, we address the problem of performing monitoring over a set
of scattered and uncertain samples. First, we cope with uncertainties from the sensors by
allowing for uncertain samples, given by zonotopes over the continuous variables; that is, at
each logged timestamp, the log gives not a constant value for the continuous variables, but
a zonotope.1 For example, let us examine the case of an adaptive cruise control (ACC). In
ACC, it is crucial to accurately measure the distance to the vehicle in front for maintaining
safety. Nonetheless, due to uncertainties in the sensors, it may not always be feasible to

1A zonotope is a special form of a convex polyhedron that is centrally symmetric.

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:3

obtain the precise distance of the lead vehicle. However, it may still be possible to measure
this distance within a certain margin of error. Consequently, the measured distance of the
lead vehicle becomes an interval of values that more accurately represents the true distance,
taking into account the potential inaccuracies inherent in the sensor’s error range. For
instance, when the reading is taken using a sensor with a ±5% error and the value read by
the sensor is 1, the uncertain value can be calculated by accounting for the sensor’s error
tolerance, resulting in a range of [0.95, 1.05]. In this work, to represent all state variable
values along with their uncertainties, we choose zonotopes to represent our samples. A
simple case of an uncertain log over a single variable x is depicted in Fig. 1f in the form of
simple intervals. The uncertainty can come from the error margin of a sensor: even though
the read value is constant, one may need to turn it into an interval, when the sensor only
guarantees a limited precision. In addition, the timestamp at each discrete sample of the log
can itself be uncertain, in the form of an interval (not shown in Fig. 1f, where the timestamp
is punctual). This second form of uncertainty can come from network latency, or clocks with
limited precision.

Second, to over-approximate the system behavior, and in the spirit of the “model-
bounded monitoring” proposed in [WAH22a], we use an extension of linear dynamical
systems, extended with uncertainty, i.e., allowing uncertainty in the dynamics matrix [LP15].
Having some over-approximated knowledge of the system is a natural assumption in practice:
when monitoring a car, one generally knows an upper-bound on its maximum speed, or on
its maximum acceleration (perhaps depending on its current speed). To cope with the liberal
dynamics of our extension of linear dynamical systems, we use a recent technique [GD21b],
that performs an efficient reachability analysis for such uncertain linear dynamical systems.
The use of such an over-approximation of the actual system is the crux of our approach,
allowing us to discard unlikely behaviors, such as the unlikely safety violation depicted in
Fig. 1e.

Our first main contribution is to propose a new rigorous analysis technique for offline
monitoring of safety properties over scattered uncertain samples, using uncertain linear
systems as an over-approximation of the system. This over-approximation allows us to
extrapolate the behavior since the latest known sample, and to rule out safety violations
at some missing discrete samples. Note that our approach uses some discrete analysis as
underlying reachability computation technique, and will not however guarantee the absence
of safety violations at arbitrary (continuous) timestamps; its main advantage is to offer
formal guarantees in the context of missing discrete samples for a given logging granularity.

Our second main contribution focuses on energy-efficient online monitoring. For each
recorded sample, we run a reachability analysis, and we derive the smallest next discrete
time step t in the future at which the safety property may be violated depending on the
latest known sample and the over-approximated model dynamics. In a context in which
monitoring simply observes the behavior and does not lead to corrective actions, any sample
before t is useless because we know from the over-approximated model dynamics that no
safety violation can happen before t. Therefore, we can schedule the next sample at time t,
which reduces the number of discrete samples, and therefore the energy consumption and
bandwidth use. We show that our method is correct, i.e., we can safely discard discrete
samples without missing any unsafe behavior.

Our third contribution is the implementation of our algorithms into an original tool
MoULDyS [GA23]. We then show the practical applicability of our approach on three bench-
marks: an anesthesia model, an adaptive cruise controller, and an aircraft orbiting system.

2:4 B. Ghosh and É. André Vol. 20:1

We conduct various experiments to showcase the effectiveness and scalability of our approach
across multiple factors. Specifically, these experiments highlight how uncertainty in log
samples, uncertainty in timestamps, and the number of log samples affect the performance
of our algorithms. This encompasses both the scalability of the algorithms and their ability
to accurately verify the correctness of the systems behavior.

About this manuscript. This manuscript is an extension of [GA22]. In addition to several
details, we significantly increased the content in two main directions. 1) We enhance the
uncertainty by considering not only uncertainty over the sample valuations (as in [GA22]),
but also over the sample timestamps: in [GA22], the timestamp at each discrete sample of
the log was supposed to be constant (i.e., a single point). Here, we extend this notion to an
interval, making our work able to address a bi-dimensional uncertainty. 2) We consider an
additional case study of an aircraft orbiting system (new Section 5.4), to which we notably
apply our offline algorithm extended with uncertainty over the timestamps. 3) We redid
all experiments from [GA22] to remove their randomness: in short, in [GA22], our tool
was first generating a random log, and then applying our monitoring algorithms to this
log. We decoupled this aspect in the newer version of MoULDyS [GA23], and we generated
random logs once for all, and then our tool applies monitoring on these statically generated
logs—this allows for exact reproducibility of our results.

Outline. We review related works in Section 2. We recall uncertain linear dynamical systems
in Section 3. We introduce our offline and online monitoring frameworks in Section 4, and
run experiments in Section 5. We draw perspectives in Section 6.

2. Related works

Monitoring. Monitoring complex systems, and notably cyber-physical systems, drew a lot
of attention in the last decades, e.g., [MN04, BKZ17, BDD+18, WAH22a, MCW21]. While
the main drawback of monitoring is a lack of formal guarantees on the global behavior of
a system, its advantage is a much more scalable efficiency compared to techniques such
as model checking (see, e.g., [FBCI20]). In addition, monitoring can be performed on
black-box systems, the source code (and therefore a model) of which is unavailable. In
parallel to monitoring specifications using signal temporal logics (see e.g., [DFM13, JBG+18,
QD20]), monitoring using automata-based specifications drew recent attention. Complex,
quantitative extensions of automata were studied in the recent years: after timed pattern
matching on timed regular expressions [UFAM14] was proposed by Ulus et al., Waga et al.
proposed a technique for timed pattern matching [WAH16, WHS17, WHS18, Wag19] (with
an additional work by Bakhirkin et al. [BFN+18]) and then for parametric timed pattern
matching [WA19, WAH22b], with application to offline monitoring. Then, techniques for
pattern matching were lifted to monitoring against complex specification making use of
timing parameters and data parameters [WAH19].

Monitoring cyber-physical systems also shares some similarities (using different tech-
niques and goals) with conformance testing cyber-physical systems (e.g., [Dan11, DMP17,
ACM+18]).

In [WAH22a], we proposed model-bounded monitoring : instead of monitoring a black-
box system against a sole specification, we use in addition a (limited, over-approximated)
knowledge of the system, to eliminate false positives. This over-approximated knowledge is

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:5

given in [WAH22a] in the form of a linear hybrid automaton (LHA) [HPR94], an extension
of finite-state automata with continuous variables; their flow in each location (“mode”) is
given as a linear constraint over derivatives; location invariants and transition guards are
given by linear constraints over the system variables. We use in [WAH22a] both an ad-hoc
implementation, and another one based on PHAVerLite [Fre08, BZ19]. In this work, we
share with [WAH22a] the principle of using an over-approximation of the model to rule out
some violation of the specification. However, we consider here a different formalism, and we
work on discrete samples. In terms of expressiveness of the over-approximated model: i) our
approach can be seen as less expressive than [WAH22a], in the sense that we have a single
(uncertain) dynamics, as opposed to LHAs, where a different dynamics can be defined in
each mode; this also allows us to propose a simpler (therefore more efficient) analysis, as each
new sample allows us to restart from an exact basis, while in [WAH22a] at each new sample,
the system (from an algorithmic point of view) can be in “different modes at the same time”;
ii) conversely, our dynamics is also significantly more expressive than the LHA dynamics
of [WAH22a]; we consider not only the class of linear dynamical systems, but even fit into
a special case of non-linear systems, by allowing uncertainty in the model dynamics—this
is what makes our model an over-approximation of the actual behavior. In addition, we
also allow for uncertain logs in two dimensions: 1) uncertain values—coping with sensor
uncertainties, and 2) uncertain timestamps—coping with local clock uncertainties and/or
network delays. None of these notions of uncertainty were considered in [WAH22a]. We also
propose a new ad-hoc implementation based on [GD21b].

In [MP16, MP18], a monitor is constructed from a system model in differential dynamic
logic [Pla12]. The main difference between [MP16, MP18] and our approach relies in the
system model: in [MP16, MP18], the compliance between the model and the behavior
is checked at runtime, while our model is assumed to be an over-approximation of the
behavior—which is by assumption compliant with the model.

In [SWS21], black-box checking—combining active automata learning and model
checking—is improved with specification strengthening, increasing the chances to obtain an
input violating the specification.

Reachability in linear dynamical systems. In [ALGK11], given a continuous time
linear system with input, the system is discretized and reachable sets for consecutive time
intervals are computed. At each step, the state transition matrix is expressed using the
Peano-Baker series. The series is then numerically approximated iteratively using Riemann
sums. Then a zonotope-based convex hull is computed over-approximating the result of all
possible matrices in the uncertain matrix. In [CR11], Combastel and Raka extend an existing
algorithm based on zonotopes so that it can efficiently propagate structured parametric
uncertainties. As a result, they provide an algorithm for computation of envelopes enclosing
the possible states and/or outputs of a class of uncertain linear dynamical systems. In [LP15],
given an uncertain linear dynamical system ẋ = Λux, Lal et al. provide a sampling interval
δ > 0, given an ϵ > 0, s.t. the piecewise bilinear function, approximating the solution by
interpolating at these sample values, is within ϵ of the original trajectory. [GD19] identifies
a class of uncertainties by a set of sufficient conditions on the structure of the dynamics
matrix Λu. For such classes of uncertainties, the exact reachable set of the linear dynamical
system can be computed very efficiently. But this method is not applicable for arbitrary
classes of uncertainties. In [GD21b], given an uncertain linear dynamical system, we provide
two algorithms to compute reachable sets. The first method is based on perturbation theory,

2:6 B. Ghosh and É. André Vol. 20:1

and the second method leverages a property of linear systems with inputs by representing
them as Minkowski sums. In [GD21a], given an uncertain linear dynamical system, we
provide an algorithm to compute statistically correct over-approximate reachable sets using
Jeffries Bayes Factor. Note that uncertain linear dynamical systems are a special subset
of non-linear systems. Thus, uncertain linear dynamical systems can also be modeled as
a non-linear system. Some additional works that deal with computing reachable sets of
non-linear systems are [CÁS13, TD13, CSÁ14, DMVP15, Alt15, KGCC15, CS16].

3. Preliminaries

In this section, we layout the notations and definitions used in the rest of the paper. Formal
analysis of safety critical systems requires a precise mathematical model of the system,
such as linear dynamical systems. But in reality, the precise, exact model is almost never
available—parameter variations, sensor and measurement errors, unaccounted parameters
are few such causes that make the availability of a precise model impossible. Presence of such
uncertainties in the model makes the safety analysis of these systems useless using traditional
methods. Thus, for the analysis to be indeed useful, the safety analysis must consider all
possible uncertainties. In [LP15], the authors provide a model, known as uncertain linear
dynamical systems, to capture such uncertainties. Consider the following example of an
uncertain linear dynamical system.

Example 3.1 [GD19, Example 1.1]. Let a discrete linear dynamical system x+ = Λx,
where Λ =

[
1 α
0 2

]
and α represents either the modeling uncertainty or a parameter, assuming

2 ≤ α ≤ 3. Note that any safety analysis assuming a fixed value of α will render the analysis
useless—for the safety analysis to be indeed sound, it must consider all possible values of α,
and they cannot be enumerated.

Intuitively, uncertain linear dynamical systems model the uncertainties in the system by
representing all possible dynamics matrices of the system—clearly, this forms a special class
of non-linear dynamical systems. To perform safety analysis of uncertain linear dynamical
systems, these works provide reachable set computation techniques that account for all
possible uncertainties.

Definition 3.2 (Uncertain linear dynamical systems ([GD19, Definition 2.4])). An uncertain
linear dynamical system is denoted as

x+ = Λx (3.1)

where Λ ⊂ Rn×n is the uncertain dynamics matrix.

Definition 3.3 (Reachable set of an uncertain linear dynamical systems ([GD19, Defini-
tions 2.3 and 2.4])). Given an initial set θ0 and time step t ∈ Z, the reachable set of an
uncertain linear dynamical system is defined as:

RS(Λ, θ0, t) = θt = {θ | θ = ξA(θ0, t), A ∈ Λ}. (3.2)

where ξA(θ0, t) = Atθ0. An alternative definition is:

RS(Λ, θ0, t) = θt =
⋃
A∈Λ

ξA(θ0, t). (3.3)

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:7

Note that uncertain linear dynamical systems are capable of modeling systems with
parameters or when the system dynamics is not perfectly known—the system has modeling
uncertainties. [LP15, GD19, GD21b, GD21a] propose various algorithms to compute reach-
able sets of these systems that account for uncertainties. In this work, we leverage a recently
proposed reachable set computation technique, given in [GD21b], to propose our offline and
online monitoring algorithm, primarily due to its efficiency vis-à-vis our setting.

Given an initial set θ0 ⊂ Rn and given a time step t, we denote by θt ⊂ Rn the reachable
set of the system (given by Eq. (3.1)) at time step t. Next, we define a log of the system
with uncertainties in both in system states and timestamps.

Definition 3.4 (Uncertain log). Given an uncertain linear dynamical system as in Eq. (3.1),
a finite length uncertain log is defined as follows:

ℓ =
{(
θ̂t, [t

lb, tub]
)
| θt ⊆ θ̂t, for some t ∈ [tlb, tub], tlb ≤ tub ≤ H

}
,

where H is a given time bound.

Each tuple
(
θ̂t, [t

lb, tub]
)
is called a sample. Observe that, both the system state θ̂t

and timestamp [tlb, tub], in a sample are not necessarily reduced to a point. The length of
log ℓ—number of samples in ℓ—is given by |ℓ|. When considering an uncertain log ℓ, the

k-th sample from ℓ, where 1 ≤ k ≤ |ℓ|, can be represented as ℓk =
(
θ̂tk , [t

lb
k , t

ub
k]

)
. Here,

θ̂tk denotes an over-approximation of the system state at a specific time step tk, where tk
lies within the interval [tlbk , t

ub
k]. Such a sample denotes that over-approximate state of the

system was observed to be θ̂tk , for some time step tk, where tk ∈ [tlbk , t
ub
k] (but the exact

tk is not known). This formalism facilitates modeling of situations when the samples are
collected over an uncertain channel (such as a shared network with delays) and the precise
timestamp is unknown. Note that the log can be scattered—it does not necessarily contain
a sample for each t ∈ {1, . . . ,H}, i.e.,

{1, · · · , H} ̸⊆
⋃
k

[tlbk , t
ub
k].

We further note that the uncertainties in the logs, arising from the sensor uncertainties of the
logging system, are independent of the uncertainties in the system modeling (Definition 3.2).

Given two consecutive samples ℓk =
(
θ̂tk , [t

lb
k , t

ub
k]

)
and ℓk+1 =

(
θ̂tk+1

, [tlbk+1, t
ub
k+1]

)
, we assume

that their timestamps do not intersect, i.e., [tlbk , t
ub
k] ∩ [tlbk+1, t

ub
k+1] = ∅; or, put differently,

tubk < tlbk+1.
When the samples are being collected locally, timestamps can be precisely known (for

all practical purposes). In such cases—while we still can have uncertainties in the system
state—the timestamp can be known precisely. This leads to a simpler case of logs as defined
as follows.

Definition 3.5 (Fixed timestamp uncertain log). A finite length uncertain log with fixed

timestamps is defined as follows: ℓ = {(θ̂t, t) | θt ⊆ θ̂t, t ≤ H}, where H is a given time
bound.

We call a fixed timestamp uncertain log ℓ accurate if it satisfies the following condition:
∀1 ≤ k ≤ |ℓ| : θ̂tk = θtk . Given an uncertain linear dynamical system, x+ = Λx with an initial
set θ0 ⊂ Rn, an over-approximate reachable set of x+ at time step t is overReach(Λ, θ0, t),
such that θt ⊆ overReach(Λ, θ0, t).

2:8 B. Ghosh and É. André Vol. 20:1

In this work, we use the technique proposed in [GD21b] to compute overReach(Λ, θ0, t).
The algorithm from [GD21b] first computes the reachable set of the nominal dynamics (which
excludes uncertainties), and then computes the reachable set related to the uncertainties in
the dynamics. These two sets are then combined using the Minkowski sum to obtain the
reachable set of the entire dynamics. Although computing the reachable set of the nominal
dynamics is straightforward, the reachable set related to uncertainties is challenging to
compute. The technique proposed in [GD21b] is sound and demonstrates good scalability,
as reported in [GD21b], and confirmed by the experiments conducted in our study (see
Section 5). Finally note that any technique can be employed to compute reachable sets
of uncertain linear systems as long as it is sound. In other words, as long as the utilized
technique is sound, our proposed algorithms remain sound as well.

Safety properties. In this work, we are concerned with safety properties. While in many
practical cases, a simple threshold over a single variable (or a set of variables) is enough, as
in e.g., Fig. 1, we propose a more expressive definition: a safety property is defined as a
zonotope over the system variables. Since our reachable sets are encoded using zonotopes,
safety verification will consist in checking intersection over zonotopes.

4. Monitoring using uncertain linear dynamical systems as bounding model

In this section, we propose the two main contributions of this work: 1) Offline monitoring :
Given an uncertain log—arising, e.g., due to faulty sensors and collected over a shared
network—we propose an algorithm to infer the safety of a system as given in Eq. (3.1).
We prove our method’s soundness. 2) Online monitoring : We propose a framework to
infer safety of a system, as in Eq. (3.1), that triggers the logging system to sample only
when needed. Note that, as we only consider the system at discrete time steps, the method
cannot be sound nor complete, i.e., there always exists a small possibility that the system
might violate the safety specification in between two concrete samples (this will be discussed
in Section 6.2). However, our online method is both sound and complete at the discrete
timestamps, and under the assumption that the samples are free from uncertainties. That is,
our method infers the system to be safe if and only if the actual behavior of the system is
safe at any discrete timestamp, when the logging system can generate accurate samples of
the system. Put it differently, we guarantee that skipping some logging in the future using
our method will not remove any sample where a violation could have been observed.

4.1. Offline monitoring over fixed timestamp uncertain logs. Our first contribution
addresses offline monitoring: in this setting, we assume full knowledge of the (possibly
scattered) uncertain log, usually after an execution is completely over. In a first step, we
assume that logs are known with full certainty regarding the time step; that is, the input
is a fixed timestamp uncertain log. (The case of a fully uncertain log will be addressed in
Section 4.2.)

Before we propose our offline algorithm, we illustrate the approach in Fig. 2a. Consider
two consecutive samples k and k + 1, marked in black, at time steps t and t+ 5 respectively.
The reachable sets, in blue, represent the over-approximate behaviors possible by the system
between time steps t and t+5. Consider the case where at time step t+2 the over-approximate
reachable set intersects with the unsafe region. Once our algorithm detects a possible unsafe
behavior, it computes the intersection between the over-approximate reachable set (here, the

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:9

𝑡

sample𝑘 = (, 𝑡)

𝑡 + 1
𝑡 + 2

𝑡 + 5

Unsafe Setsample𝑘+1 = (, 𝑡 + 5)

Unsafe Region

(a) Offline

𝑡 + 4
𝑡 𝑡 + 1

𝑡 + 2 𝑡 + 3

Sample at this time step

Unsafe Set

(b) Online

Figure 2. (2a): Offline Monitoring. Black: Two consecutive samples, k
and k+1, at time steps t and t+5 respectively. Blue: The over-approximate
reachable set computed from sample k using overReach(.). (2b): Online
Monitoring. Blue: Over-approximate reachable set computed, at each step,
using overReach(.).

reachable set at time-step t+ 2) and the unsafe set. Then it checks whether the reachable
set, given in the next sample (k + 1), is reachable from the unsafe region—if yes, it infers
unsafe; if not, it infers safe. Now, we formally propose our offline monitoring method in
Algorithm 1 for a given fixed timestamp uncertain log ℓ.

Description. As we first consider an input log given in the form of a fixed timestamp
uncertain log (Definition 3.5), we consider a simpler version of Algorithm 1 without the
highlighted lines: at line 2, we have tlbk = tubk = tk, and at line 3 we have tlbk+1 = tubk+1 = tk+1;
in addition, the for loops at lines 4 and 5 can be discarded.

Let us now describe this simpler version of the algorithm. The for loop, starting
in line 1, traverses through each sample, and checks if the system can reach a possibly
unsafe behavior between two consecutive samples (computed in lines 2 and 3), using over-
approximate reachable set computation. If the over-approximate reachable set between
two consecutive samples intersect with the unsafe set (line 8), we perform a refinement as
follows (line 9–line 13): We compute the unsafe region (intersection between unsafe set and
over-approximate reachable set) in line 9, then check if we can reach the next sample from

2:10 B. Ghosh and É. André Vol. 20:1

Algorithm 1: Offline monitoring

input :An uncertain log ℓ of a system x+ = Λx, and an unsafe set U .
output :Return safe (resp. unsafe) if the actual system behavior is safe (resp.

potentially unsafe).
1 for k ∈ {1, . . . , |ℓ| − 1} do
2

(
θ̂tk ,

[
tlbk , t

ub
k

])
← ℓk ; // current sample, with interval time step

3

(
θ̂tk+1

,
[
tlbk+1, t

ub
k+1

])
← ℓk+1 ; // next sample, with interval time step

4 for tk ∈
{
tlbk , . . . , t

ub
k

}
do

5 for tk+1 ∈
{
tlbk+1, . . . , t

ub
k+1

}
do

6 t∆ = tk+1 − tk − 1 ; // time gap between two possible time steps of the

two samples

/* Compute reachable set for all possible time steps (from the two

intervals of time steps) between two samples. Check if any of the

sets intersect with the unsafe set */

7 for p ∈ {1, . . . , t∆ − 1} do

8 if θ̂tk+p ∩ U ̸= ∅ then
/* Refinement process starts */

9 ψ ← θ̂tk+p ∩ U ; // compute the unsafe region of the system

10 td = tk+1 − (tk + p) ;

11 ϑ← overReach(Λ, ψ, td) ;
/* Check if the next sample is reachable from the unsafe region */

12 if ϑ ∩ θ̂tk+1
̸= ∅ then

13 return unsafe ; // the next sample is reachable from the

unsafe region

14 θ̂tk+p+1 ← overReach(Λ, θ̂tk+p, 1) ;

15 return safe ;

the unsafe region (line 11–line 13). If the next sample is reachable from the unsafe behavior,
we conclude the system is unsafe (line 12–line 13).

Soundness and incompleteness. Our proposed offline monitoring approach is sound at
discrete time steps, but not complete—there might be cases where our algorithm returns
unsafe even though the actual system is safe. The primary reason for its incompleteness is
due to the fact that overReach(.) computes an over-approximate reachable set. Formally:

Theorem 4.1 (soundness at discrete time steps for a fixed timestamp uncertain log). If
the actual system is unsafe at some discrete time step, then Algorithm 1 returns unsafe.
Equivalently, if Algorithm 1 returns safe, then the actual system is safe at every discrete
time step.

Proof. We consider a fixed timestamp uncertain log. Let the actual trajectory τ , between
two samples k and k + 1, become unsafe at time step tun. Therefore, the over-approximate
reachable set, computed by overReach(·) at time step tun, will also intersect with the unsafe

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:11

set (due to soundness of overReach(·)). Note that the actual trajectory τ , originating from
the sample k, intersects the unsafe region at time step tun, and reaches the sample k + 1.
The refinement module (Algorithm 1, line 9–line 13), using over-approximate reachable sets
will therefore infer the same, concluding the system behavior to be unsafe.

4.2. Offline monitoring over uncertain logs. We now extend our offline monitoring to
logs with uncertainty not only in the state dimension, but also in the timestamp dimension
(as in Definition 3.4). The extended version of the algorithm is the full Algorithm 1, including
the highlighted parts. We namely add a pair of for loops at lines 4 and 5, iterating over each
(concrete) timestamp in the current uncertain sample ([tlbk , t

ub
k]) and over the next uncertain

sample ([tlbk+1, t
ub
k+1]). That is, we handle uncertainty over the logging times by iterating over

each possible concrete log time in the logged interval. This is a crux to ensure soundness
of our approach, and guarantee that a safe answer indeed guarantees safety of the actual
system (at all discrete time steps).

Conversely, and as in Section 4.1, our algorithm is not necessarily complete (our algorithm
might return unsafe even though the actual system is safe) due to the over-approximation
of the reachable set computation.

We prove formally the soundness of Algorithm 1 below:

Theorem 4.2 (soundness at discrete time steps for an uncertain log). If the actual system is
unsafe at some discrete uncertain time step, then Algorithm 1 returns unsafe. Equivalently,
if Algorithm 1 returns safe, then the actual system is safe at every discrete uncertain time
step.

Proof. Let the actual trajectory τ , between two samples k and k + 1, with uncertain time
steps [tlbk , t

ub
k] and [tlbk+1, t

ub
k+1], become unsafe at time step tun. Algorithm 1 computes the

reachable set of all possible time steps between [tlbk , t
ub
k] and [tlbk+1, t

ub
k+1]. Therefore, the over-

approximate reachable set, computed by overReach(·) at time step tun, will also intersect
with the unsafe set (due to soundness of overReach(·)). Note that the actual trajectory τ ,
originating from the sample k, intersects the unsafe region at time step tun, and reaches the
sample k + 1. The refinement module (Algorithm 1, line 9–line 13), using over-approximate
reachable sets will therefore infer the same, concluding the system behavior to be unsafe.

4.3. Online monitoring over fixed timestamp uncertain logs. We now move to online
monitoring. In contrast to Section 4.2, in our online setting, timestamps are necessarily exact,
as we suppose we can trigger (instantaneously) a sample. (Still, there could be cases where
uncertainty in the timestamps could be useful in an online setting—this will be discussed
in Section 6.2.) However, the logged states are still uncertain (as in Definition 3.5). We
propose our online monitoring method in Algorithm 2.

2:12 B. Ghosh and É. André Vol. 20:1

Algorithm 2: Online monitoring

input :An uncertain system x+ = Λx, an unsafe set U , time bound H.
output :Return safe iff the actual system behavior is safe.

1 θ̂0 ← Sampling at time step 0 ; // initial behavior of the system.

/* Check whether the initial behavior is safe */

2 if θ̂0 ∩ U ̸= ∅ then return unsafe ;

3 for t ∈ {1, 2, . . . ,H − 1} do

4 θ̂t+1 ← overReach(Λ, θ̂t, 1) ; // over-approximate reachable set at next step

/* Check whether the over-approximate reachable set is unsafe */

5 if θ̂t+1 ∩ U ̸= ∅ then
6 ℓt+1 ← Sample at time step t+ 1 ;

/* Check whether the actual reachable set is unsafe */

7 if ℓt+1 ∩ U ̸= ∅ then
8 return unsafe ;

9 θ̂t+1 = ℓt+1 ; // reset to actual behavior

10 return safe;

Description. The online monitoring algorithm begins by sampling the system at the initial
time step, say 0, in line 1. As a sanity check, we confirm if the initial behavior of the system
is safe in line 2. The for loop starting in line 2—where each iteration corresponds to the set
of actions for a time step t—performs the following: At a given time step t, we compute
the over-approximate reachable set at the next time step t + 1 (line 6). If the computed
over-approximate reachable set intersects with the unsafe set, we sample the system at time
step t+ 1 to check if the actual behavior is also unsafe (line 5–line 9). If safe, we reset the
behavior (line 9); if unsafe, we return unsafe (line 8). Intuitively, this method samples the
actual system only when the over-approximate reachable set, computed by overReach(.),
intersects the unsafe set. This process is illustrated in Fig. 2b.

Soundness and completeness. Our online monitoring algorithm is correct (safe and
complete) at discrete time steps, provided the samples are accurate—it returns safe if and
only if the actual behavior of the system is safe at all discrete time steps, when accurate
samples are obtained. Intuitively, we get the completeness from the fact that it returns
unsafe if and only if the (accurate) sample is unsafe. Formally:

Theorem 4.3 (correctness at discrete time steps). Algorithm 2 returns safe iff the actual
behavior at all discrete time steps is safe.

Proof. The soundness proof—if the actual behavior is unsafe, Algorithm 2 infers unsafe—is
straightforward. Hence, we now argue the completeness—if the actual behavior is safe,
Algorithm 2 infers safe. Note that, Algorithm 2 infers the system behavior as unsafe only
when a sampled log (actual behavior) becomes unsafe: therefore, if the samples are free
from uncertainties (i.e., exact), Algorithm 2 is complete.

Remark 4.4. While our aim is to consider continuous systems, note that, for discrete-time
systems, our approach is entirely correct (sound and complete), without the need for a
restriction to “discrete time steps”, since we can find a granularity small enough for the

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:13

discrete-time evolution. This is notably the case for systems where the behavior does not
change faster than a given frequency (e.g., the processor clock). In the case of controllers,
the granularity can be chosen by selecting the sampling period (the period at which a control
input is applied).

Remark 4.5. Given our reliance on enumerating time steps in both offline and online
monitoring approaches, an increase in the granularity of sampling periods will necessitate
the computation of a larger number of reachable sets. Consequently, this may slow down
the analysis process. Nonetheless, the reachable set computation method employed in this
work exhibits excellent scalability when dealing with small time steps, as shown in [GD21b].
In other words, if the time interval between two samples in a log is not significantly large
(e.g., an order of 500 steps), this technique can easily compute reachable sets. Moreover,
if the time gaps do exceed 500 steps, one can enhance the scalability of the reachable set
computation by utilizing the interval-based or zonotope-based reduction methods proposed
in [GD21b, Section 5.2].

We will study the scalability of our approach in the next section.

5. Case studies

We demonstrate the applicability and usability of our approach on three benchmarks: a
medical device (Section 5.2), an adaptive cruise control (Section 5.3), and an aircraft orbiting
system (Section 5.4).

5.1. Implementation and environment. We implemented our offline (both using a fixed
timestamp uncertain log and a fully uncertain log) and online monitoring algorithms in a
Python-based prototype tool, named MoULDyS [GA23]. Tool source and binaries, models
and raw results are publicly available on GitHub2. Further, the results in this paper can be
easily recreated using the scripts provided in the Github repository3 and the reproducible
artifact4.

Experimental environment. All our experiments were performed on a Lenovo ThinkPad
Mobile Workstation with i7-8750H CPU with 2.20 GHz and 32GiB memory on Ubuntu
20.04 LTS operating system (64 bit). Our tool uses numpy [Oli06], scipy [VGO+20],
mpmath [mdt23] for matrix multiplications, [GD21b] to compute overReach(.), and the
Gurobi [GO20] engine for visualization of the reachable sets.

2https://github.com/bineet-coderep/MoULDyS/tree/uncertain_timestamp
3https://github.com/bineet-coderep/MoULDyS/tree/uncertain_timestamp/src/recreate_results_

from_paper
4https://zenodo.org/doi/10.5281/zenodo.7888501

https://github.com/bineet-coderep/MoULDyS/tree/uncertain_timestamp
https://github.com/bineet-coderep/MoULDyS/tree/uncertain_timestamp/src/recreate_results_from_paper
https://github.com/bineet-coderep/MoULDyS/tree/uncertain_timestamp/src/recreate_results_from_paper
https://zenodo.org/doi/10.5281/zenodo.7888501

2:14 B. Ghosh and É. André Vol. 20:1

Implementation details vis-à-vis Algorithms 1 and 2. The intersection checking
between two sets in Algorithms 1 and 2 has been implemented as an optimization formulation
in Gurobi. That is, given two sets, our implementation of intersection check returns true
iff the two sets intersect. In other words, our intersection check is exact. In contrast,
computing the result of the intersection between two sets adds an over-approximation in our
implementation. Given two sets, we compute a box hull of the two sets and then compute
intersection of the two box hulls. Therefore, the only over-approximate operation we perform
in Algorithms 1 and 2—apart from overReach(·)—is line 9 in Algorithm 1.

Generating scattered uncertain logs for offline monitoring. At each time step, the
logging system may take a snapshot of the system evolution at that time step; the logging
occurs with a probability p (given). However, it is impossible to determine the precise
timestamp of the log if it is being transmitted across a shared network or if the clock tracking
the time has errors. Instead, the timestamp then changes into an interval that contains all
potential timestamps—this can be referred to as an uncertain timestamp. Given a possible
timing delay of tδ (as per the network’s quality), the size of the interval representing the
timestamp associated with the log can be anywhere between 0 to tδ (not necessarily exactly
equal to tδ). In other words, at each such uncertain timestamp, it records the evolution
of the system with probability p. Clearly, due to the probabilistic logging, this logger
is not guaranteed to generate periodic samples. In each of our three case studies, it is
important to highlight that the state variables under monitoring encompass the following:
i) concentration levels within the anesthesia system, ii) distance, acceleration, and velocity
within an ACC model, iii) positional data of an aircraft. It is evident that in practical
scenarios, it becomes nearly impossible to measure the precise values of these variables due
to the inherent susceptibility of the sensors used to errors. Nonetheless, considering a specific
error margin for a sensor, it becomes feasible to calculate the uncertain value of the variables
by adjusting the error tolerance of the sensor. Consequently, we also do not assume that the
samples logged by the logging system, at each timestamp, are accurate—the logging system,
due to sensor uncertainties, logs an over-approximate sample of the system at that time step.
In our experiments, each uncertain log was generated statically from our bounding model
(the uncertain linear dynamical system) by simulating its evolution from an uncertain initial
set (i.e., not reduced to a point). In the end, we get an uncertain log (as in Definition 3.4).

For the first two out of three case studies, we chose two values for the logging probability p
of 20% and 40% respectively. They were selected empirically, as our experiments showed
that these two values led to quite different behaviors for our offline algorithm: 40% can
be considered as a frequent sampling, while 20% is more sporadic. We used the same
probabilities throughout these two case studies to allow for fair comparison, and for general
observations on the effect of sampling probability and uncertainty across experiments.

Logging system for online monitoring. When the logging system is triggered, at a
time step, to generate a sample, the logging system records the evolution of the system and
sends it to the online monitoring algorithm. Similar to the offline logging system, we do not
assume that the samples logged by the logging system are perfectly accurate—the logging
system, due to sensor uncertainties, logs an over-approximate sample of the system at that
time step. That is, we use the same method—as the offline logging system—to generate
logs (statically), but unlike the offline algorithm, the online algorithm uses the samples only
when required. For all our case studies, all the generated logs are safe.

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:15

Research questions. We consider the following research questions in our case studies:
1) Effect of logging probability (number of log samples) on the rate of false alarms raised

by the offline monitoring—inferring a behavior as “potentially unsafe” when the actual
behavior is “safe”.

2) For offline monitoring, does the size of the samples (in other words, volume of the set
obtained as sample), gathered at each step, have an impact on the rate of false alarms? Put
it differently, what is the effect, vis-à-vis false alarms, of the amount of the uncertainty in
the log?

3) For online monitoring, how frequent is the logging system triggered to generate a
sample?

4) For the same execution, how do the outcome (in terms of verdict on safety by the
monitoring algorithms) and the efficiency (in terms of number of samples needed) of the
offline and online monitoring algorithms compare?

5) The effect of timing uncertainty on the rate of false alarms raised by the offline
monitoring?

Using the first two case studies, automated anesthetic delivery and adaptive cruise
control, Questions (1)-(4) will be addressed. The airplane orbiting benchmark will be used
to provide the answer to Question (5). This design decision was made because, unlike the
other two benchmarks, only the airplane orbiting benchmark transmits logs through a shared
network; in the other two examples, logs are collected locally over a reliable channel.

5.2. First benchmark: Anesthesia.

5.2.1. System description. We first demonstrate our approach on an automated anesthesia
delivery model [GDM14]. The anesthetic drug considered in this model is propofol. Such
safety critical systems are extremely important to be verified formally before they are
deployed, as under or overdose of the anesthetic drug can be fatal to the patient.

Model. The model as in [GDM14] has two components: 1) Pharmacokinetics (PK): models
the change in concentration of the drug as the body metabolizes it. 2) Pharmacodynamics
(PD): models the effect of drug on the body. The PK component is further divided into three
compartments: i) first peripheral compartment c1, ii) second peripheral compartment c2,
iii) plasma compartment cp. The PD component has one compartment, called ce. The set of

state variables of this system is [cp c1 c2 ce]⊤. The input to the system is the infusion rate of
the drug (propofol) u. The complete state-space model of this system in given in [GDM14,
Equation 5].

Model parameters. The evolution of state variables cp, c1, c2 is dependent on a number
of parameters, such as: the weight of the patient (weight), and a number of “first order rate
constants” between the compartments (called k10, k12, k13, k21 and k31 in [GDM14], where
their value is given). The evolution of the fourth state variable ce is dependent on the rate
constant between plasma and effect site (called parameter kd in [GDM14]).

2:16 B. Ghosh and É. André Vol. 20:1

0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e
0

(a) Frequent samples, low uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e
0

(b) Frequent samples, high uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e
0

(c) Sporadic samples, low uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

1

2

3

4

5

6
St

at
e

0

(d) Sporadic samples, high uncertainty

Figure 3. Offline Monitoring (Anesthesia). We plot the change in
concentration level of cp with time. The volume of the samples increases
from left to right, and the probability of logging increases from bottom to
top. The blue regions are the reachable sets showing the over-approximate
reachable sets as computed by the offline monitoring, the black regions are
the samples from the log given to the offline monitoring algorithm, and the
red dotted line represents safe distance level. Note that although Figs. 3b
and 3c reachable sets’ seem to intersect with the red line (unsafe set), the
refinement module infers them to be unreachable, therefore concluding the
system behavior as safe—unlike Fig. 3d.

Safety. The system is considered safe (as suggested in [GDM14]) if the following concentra-
tion levels are maintained at all time steps: cp ∈ [1, 6], c1 ∈ [1, 10], c2 ∈ [1, 10], ce ∈ [1, 8].
Note that this safety property is a hypercube, i.e., a simple form of a zonotope.

In this case study, we focus our attention on the effect of perturbation, in the weight of
the patient (weight), on the concentration level of plasma compartment cp. Only the weight
of the patient is subject to perturbation. We assume that the weight of the patient has an
additive perturbation of ±0.8 kg in this case study—at each time step, the weight of the

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:17

0 250 500 750 1000 1250 1500 1750 2000
Time

1

2

3

4

5

6

St
at

e
0

(a) Online monitoring

0 250 500 750 1000 1250 1500 1750 2000
Time

0

1

2

3

4

5

6

St
at

e
0

(b) Comparing online and offline monitoring

Figure 4. Online Monitoring (Anesthesia). We plot the change in
concentration level of cp with time. The blue regions are the reachable sets
showing the over-approximate reachable sets as computed by the online
monitoring, the black regions are the samples generated when the logging
system was triggered by the online monitoring algorithm, and the red dotted
line represents safe concentration levels. Online monitoring (Fig. 4a): We
apply our online monitoring to the anesthesia model. Comparison (Fig. 4b):
We compare our online and offline algorithms. The green regions are the
reachable sets showing the over-approximate reachable sets between two
consecutive samples from the offline logs, the magenta regions are the offline
logs, given as an input to the offline monitoring algorithm, generated by
the logging system, and the red dotted line represents safe concentration
levels. The blue regions are the reachable sets showing the over-approximate
reachable sets as computed by the online monitoring, the black regions are
the samples generated when the logging system was triggered by the online
monitoring algorithm, and the red dotted line represents safe concentration
levels.

patient is weight + δw, δw ∈ [0, 0.8]. With perturbation in the weight, we want to infer safety
of this system using monitoring.

Clearly, monitoring of this system vis-à-vis safety is crucial. It is not practical for
a busy human doctor or a practitioner to monitor each patient continuously at all time
steps—monitoring, either offline or online, provides them an efficient way to save their time
and treat their patients without compromising their safety.

The logs for this case study are uncertain “only” in the “valuation” dimension: that is,
the logged valuation are known only with a finite precision, but the timestamps are exact;
in other words, the input logs are fixed timestamp uncertain logs.

5.2.2. Experiments. We now answer questions (1)-(4), using Figs. 3 and 4. In Fig. 3:
i) the plots in the bottom row have logging probability of 20%, and the plots in top row
have a logging probability of 40%; ii) the plots in left column and the right column have

2:18 B. Ghosh and É. André Vol. 20:1

been simulated with an initial set of [[3,4] [3,4] [4,5] [3,4]]⊤, u ∈ [2, 5] and [[2,4] [3,6] [3,6] [2,4]]⊤,
u ∈ [2, 10] respectively. That is, the volume of the samples increases from left to right. In
Fig. 4, we simulated the trajectory with an initial set [[3,4] [3,4] [4,5] [3,4]]⊤, u ∈ [2, 5].

Initial state. The initial set is chosen such that the system starts from a safe specification.
For each generated log, we start from the initial set, and add the uncertainty depending on
our experimental context.

Answer to Question 1. We answer this question by comparing two sets figures in the
left column (Figs. 3a and 3c) and the right column (Figs. 3b and 3d) of Fig. 3. For the left
column, i.e., with smaller sample size: Fig. 3c took 51.40 s and concluded the system to be
safe. The analysis in this plot invoked the refinement module of the offline algorithm. But
increasing the probability of logging, i.e., more number of samples, as in Fig. 3a, resulted in
not invoking the refinement module at all, thus taking 32.92 s. For the right column, i.e.,
with larger sample size: this analysis, as shown in Fig. 3d, took 1.73 s to complete, and
concluded the system behavior to be unsafe. The behavior of the system, shown in Fig. 3b
with 40% probability of logging, results in inferring the behavior of the system as safe, by
invoking the refinement module several times. Overall, this analysis, as shown in Fig. 3b,
took 35.93 s to complete, and concluded the system behavior to be safe.

Answer to Question 2. We answer this question by comparing two sets figures in the
top row (Figs. 3a and 3b) and the bottom row (Figs. 3c and 3d) of Fig. 3. For the bottom
row, i.e., with smaller logging probability : Increasing the volume of the samples results in
inferring the behavior from safe (Fig. 3c) to unsafe (Fig. 3d), as per the offline monitoring
algorithm. For the top row, i.e., with higher logging probability : Increasing the volume of the
samples results in not invoking the refinement module (Fig. 3a) to invoking the refinement
module several times (Fig. 3b), as per the offline monitoring algorithm.

Answer to Question 3. The result is given in Fig. 4a. Using our online algorithm, we were
able to prove safety of the system in 109.04 s. The online algorithm triggered the logging
system to generate samples for 83 time steps—this is less than 5% of total time steps. We
observe, as shown in Fig. 4a, that the logging system is triggered more when the trajectory
is closer to the unsafe region.

Answer to Question 4. We compare our offline and online algorithms, for 2 000 time steps,
on the same trajectory. The result is given in Fig. 4b. Note that, using our online algorithm,
we were able to prove safety of the system in 107.99 s. The online algorithm triggered the
logging system to generate samples only 84 times. In contrast, the offline algorithm, with a
log size of 115 (5% logging probability) stopped at the 35th sample, (wrongly) inferring the
system as unsafe, taking 71.37 s.

5.3. Second benchmark: Adaptive Cruise Control. We now apply our offline and
online monitoring algorithms to an adaptive cruise control (ACC) model [NHB+16].

5.3.1. System description. An adaptive cruise control behaves like an ordinary cruise control
when there is no car in the sight of its sensor, and when there is a car in its sight, it maintains
a safe distance.

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:19

Model. The model as in [NHB+16] has the following state variables: i) velocity of the
vehicle v, ii) distance between the two vehicles h, and iii) velocity of the lead vehicle vL.
The state space of the system is given in [NHB+16, Equation 3]. The set of state variables
of this system is [v h vL]⊤.

Model parameters. The model is dependent on two parameters: i) acceleration of the
lead vehicle aL, and ii) breaking force and torque applied to the wheels as a lumped net
force F . Note that the model is dependent on acceleration of the vehicle aL, which is very
hard to accurately measure due to sensor uncertainties. Similarly the torque F applied to
the wheels is also dependent of the coefficient of friction of the ground. To reflect such
uncertainties, we consider aL ∈ [−0.9, 0.6] and F ∈ [−0.6, 2.46]. These parameters were
chosen as per [NHB+16, Tab. 1, Eq. (6)].

Safety. We selected the following safety constraint: The system is considered safe if the
distance between vehicles h > 0.5. (The unit is, as in [NHB+16], meters.)

Consider an event of a car crash, where the log stored by the car before the crash, is
the only data available to analyze the crash; such an analysis might benefit police, insurance
companies, vehicle manufacturers, etc. Using our offline algorithm one can figure out if the
car might have shown unsafe behavior or not. Similarly, consider a vehicle on a highway
with a lead vehicle in its sight. The ACC in such a case needs to continuously read sensor
values to track several parameters, such as acceleration of the lead vehicle, braking force,
etc.—this results in wastage of energy. Using our online monitoring algorithm, the car reads
sensor values only when there is a potential unsafe behavior. This intermittent behavior will
result in saving energy without compromising safety of the system.

With the aforementioned reasons for applying our offline and online monitoring, we
apply our algorithms on the ACC model and answer questions (1)-(4). We think that the
answers to these questions will help the car designers to design efficient ACC models without
compromising safety. Again, the logs for this second case study are uncertain “only” in the
“valuation” dimension: that is, they are fixed timestamps uncertain logs.

5.3.2. Experiments. Next, we answer questions (1)-(4), using Figs. 5 and 6. In Fig. 5:
i) the plots in the bottom row have logging probability of 20%, and the plots in top row
have a logging probability of 40%; ii) the plots in left column and the right column have
been simulated with an initial set of [[15,15.01] [3,3.03] [14.9,15]]⊤ and [[15,15.1] [3,3.5] [14.9,15.1]]⊤

respectively.

Initial state. In Fig. 4, we simulated the trajectory with an initial set
[[15,15.01] [3,3.03] [14.9,15]]⊤, u ∈ [2, 5]. These initial conditions are chosen such that the
cars start from a safe specification.

Answer to Question 1. We answer this question by comparing two sets figures in the
left column (Figs. 5a and 5c) and the right column (Figs. 5b and 5d) of Fig. 5. For the left
column, i.e., with smaller sample size: Fig. 5c took 19.08 s and concluded the system to be
safe. This analysis in this plot invoked the refinement module of the offline algorithm. But
increasing the probability of logging, i.e., more number of samples, as in Fig. 5a, resulted in
not invoking the refinement module at all, thus taking 16.5 s. For the right column, i.e., with
larger sample size: The analysis is similar to that of the left column. Fig. 5d invoked the

2:20 B. Ghosh and É. André Vol. 20:1

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e
1

(a) Frequent samples, low uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e
1

(b) Frequent samples, high uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e
1

(c) Sporadic samples, low uncertainty

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

St
at

e
1

(d) Sporadic samples, high uncertainty

Figure 5. Offline Monitoring (ACC). We plot the change in distance h
between the vehicles with time. The volume of the samples increases from
left to right, and the probability of logging increases from bottom to top.

refinement module several times, thus taking 20.84 s, while Fig. 5b took 17.5 s, as it invoked
the refinement module a smaller number of times.

Answer to Question 2. We answer this question by comparing two sets figures in the top
row (Figs. 5a and 5b) and the bottom row (Figs. 5c and 5d) of Fig. 5. For the bottom row,
i.e., with smaller logging probability : Comparing Fig. 5c and Fig. 5d shows that increasing
sample volume results in invoking the refinement module more frequently. A very similar
behavior is seen by comparing the top row (i.e., with higher logging probability).

Answer to Question 3. Using our online algorithm, we were able to prove safety of the
system in 104.58 s. The online algorithm triggered the logging system to generate samples
for 53 time steps—this is less than 3% of total time steps. This is shown in Fig. 6a.

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:21

0 250 500 750 1000 1250 1500 1750 2000
Time

0

50

100

150

200

250

300

350

400

St
at

e
1

(a) Online monitoring

0 250 500 750 1000 1250 1500 1750 2000
Time

0

100

200

300

400

St
at

e
1

(b) Comparing online and offline monitoring

Figure 6. Online Monitoring (ACC). We plot the change in distance
between two vehicle h with time. The color coding is same as Fig. 4. Online
monitoring (Fig. 6a): We apply our online monitoring to the ACC model.
Comparison (Fig. 6b): We compare our online and offline algorithms.

Answer to Question 4. We compare our offline and online algorithm, for 2 000 time steps,
on the same trajectory. The result is given in Fig. 6b. Note that, using our online algorithm,
we were able to prove safety of the system in 124.46 s. The online algorithm triggered the
logging system to generate samples only 50 times. In contrast, the offline algorithm, with a
log size of 281 (14% logging probability) took 28.54 s to infer that the system is safe.

5.4. Third benchmark: Aircraft Orbiting. Next, we apply our offline algorithm to an
aircraft orbiting case study. Unlike the former two case studies, we consider in this third
benchmark not only uncertain valuations, but also uncertain timestamps. That is, logs for
this benchmark are uncertain logs (as in Definition 3.4).

5.4.1. System description. In this case study, an aircraft is orbiting an object to gather
information about the object—depicted in Fig. 7. The aircraft orbits the object by controlling
its angular velocity. Since the aircraft operates in an uncertain environment, the angular
velocity of the aircraft can have added noise. That is, the model of the aircraft used in this
case study can have uncertainties in its angular velocity. The axis of Fig. 7 denotes the
position of the aircraft in (x, y) plane (we assume a fixed altitude). The ideal (planned) path
of the aircraft, orbiting the object (black), is shown in green. The aircraft must always stay
sufficiently close to the object for the data collected about it to be considered reliable. One
such bound is shown in the plot with red dashed lines—the aircraft must not cross these
lines at any time step. The aircraft transmits its positional data (the x, y values) to the local
station at aperiodic intervals. Since the data is transmitted over a shared, long-distance
network, a delay is experienced when the data reaches the local station. In other words, the
timestamps of the log (behavioral data) can have added noise. Additionally, the behavioral
data can also have added noise due to sensor uncertainties. Therefore, this case study is
an ideal candidate to demonstrate the applicability of our offline monitoring approach with
added noise in timestamps (Section 4.2).

2:22 B. Ghosh and É. André Vol. 20:1

Model. The model as in [LP15, PC09] has the following state variables: i) position of the
aircraft in two dimensional plane (x1, x2), ii) and velocity (d1, d2). The state space of the
system is given in [LP15]. The set of state variables of this system is [x1 x2 d1 d2]⊤.

Model parameters. The model is dependent on the angular velocity ω of the aircraft. We
assume ω ∈ 1.5± 1%.

Safety. The behavior of the aircraft is considered safe, under the presence of model un-
certainties, if x ∈ [−49.5, 11]. The safety condition is defined as the state in which the
radius of the aircraft orbiting the object remains within a reasonable range. This constraint
is necessary to ensure that the sensors can effectively gather data on the object without
encountering difficulties caused by an excessively large radius.

5.4.2. Experiments. Recall that in the first two case studies (Anesthesia and ACC), we
selected logging probabilities of 20% and 40% to represent sporadic and frequent logging,
respectively. However, in this particular case study, we have chosen a logging probability
of 5% for sporadic logging and 10% for frequent logging. This choice was made because this
case study differs significantly from the two others: through our empirical observations, we
found that the former logging probabilities (20% and 40%) never provided an opportunity
to observe any unsafe behavior in this case study. The computed reachable sets, which
represent the possible system states between two logs, were so tightly over-approximated
that they never intersected with the unsafe region. Consequently, we had to decrease the
logging probability in order to expand the reachable sets and increase the likelihood of
identifying potential unsafe conditions. To incorporate this different notion of sporadicity in
our experiments, we have empirically chosen logging probabilities of 5% for sporadic logging
and 10% for frequent logging.

Additionally, to further evaluate the impact of logging probabilities and the uncertainty in
sample timestamps, we also conducted experiments using an intermediate logging probability
of 7% with three different choices of timestamp uncertainties. In Fig. 8, the plots in
the bottom and top rows have a logging probability of 5% (sporadic sampling) and 10%
(frequent sampling) respectively, and the plots in the left column and the right column have
a timing delay of 2 units and 10 units respectively. Fig. 9 contains unsafe samples and has a
logging probability of 10% (with no time delay), which distinguishes it from the plots in
Fig. 8. In Fig. 10, the plots within it have a logging probability of 7%, while the time delay
progressively increases from left to right, with time delays of 2, 6, and 8 units respectively.

Initial state. All the plots in Figs. 8 to 10 have been generated with an initial set of
[[1.1,1.11] [1.1,1.11] [20,20.1] [20,20.1]]⊤. The initial set is chosen as per the orbiting path of the
aircraft, and such that it remains sufficiently close to the object.

We now answer Questions (1) and (5) using Figs. 8 to 10.

Answer to Question 1. The observations vis-à-vis this question are very similar to previous
two case studies. We answer this question by comparing two sets figures in the left column
(Figs. 8a and 8c) and the right column (Figs. 8b and 8d) of Fig. 8. For the left column, i.e.,
with smaller timing delay : Fig. 8c took 111.6 s and concluded the system to be safe. The
analysis in this plot invoked the refinement module of the offline algorithm. But increasing
the probability of logging, i.e., more number of samples, as in Fig. 8a, resulted in not invoking

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:23

the refinement module at all, thus taking 31.61 s. For the right column, i.e., with larger
timing delay : this analysis, as shown in Fig. 8d, took 2.33 s to complete, and concluded
the system behavior to be unsafe. The behavior of the system, shown in Fig. 8b with 10%
probability of logging, results in inferring the behavior of the system as safe, by invoking
the refinement module. Overall, this analysis, as shown in Fig. 8b, took 48.39 s to complete,
and concluded the system behavior to be safe. Although none of the plots depicted in Fig. 8
exhibited any unsafe samples, the inclusion of Fig. 9 demonstrates how our offline monitoring
approach can trivially identify such unsafe samples and label the system’s behavior as unsafe.
Fig. 9 accurately labeled the system’s behavior as unsafe within a detection time of 4.98 s
upon encountering the unsafe sample.

Answer to Question 5. We answer this question by comparing two sets figures in the top
row (Figs. 8a and 8b) and the bottom row (Figs. 8c and 8d) of Fig. 8. For the bottom row,
i.e., with smaller logging probability : Increasing the timing delay of the samples results in
inferring the behavior from safe (Fig. 8c) to unsafe (Fig. 8d), as per the offline monitoring
algorithm. For the top row, i.e., with higher logging probability : Increasing the timing
delay the samples results in not invoking the refinement module (Fig. 8a) to invoking the
refinement module several times (Fig. 8b), as per the offline monitoring algorithm. The same
observation is further reinforced by Fig. 10. Specifically, Figs. 10a to 10c exhibit timing
delays of 2, 6, and 8 units respectively, while maintaining the same logging probability across
all plots. Notably, we observe that when the timing delays were 2 and 6 units (Figs. 10a
and 10b respectively), our offline monitor inferred the behavior to be safe in 48.38 s and
56.48 s respectively. It is worth mentioning that the time required by the offline monitor
increases as the time delay of the sample increases. However, in contrast, Fig. 10c illustrates
an instance where the offline monitor inferred the system behavior as unsafe, accomplishing
this in 4.97 s. Consequently, as also observed in Fig. 8, Fig. 10 demonstrates that an increase
in the time delay of the samples can potentially lead to false alarms by the offline monitor,
along with an increase in computation time.

Let us now discuss the reasons behind selecting a logging probability of 7% to generate
Fig. 10 (while logging probabilities of 5% and 10% were chosen for Fig. 8). A higher logging
probability results in fewer false alarms, while a higher timing delay also reduces false alarms.
Consequently, with a logging probability of 5% and a timing delay of 10 units, the system is
inferred as unsafe. However, with a logging probability of 10%, a timing delay of 10 units
was successfully verified. In contrast, for Fig. 10, we chose a logging probability of 7% to
empirically determine the tolerable amount of timing delay. Through our experiments, we
discovered that with a logging probability of 7%, the system was able to tolerate timing
delays of 2 and 6 units. However, at a timing delay of 8 units, the system was deemed
unsafe.

5.5. General observations. In the following, we provide general answers to questions
(1)-(5) based on our observations from our three case studies.

Answer to Question 1. Increasing the probability of logging reduces the chances of
inclusion of spurious behaviors due to over-approximate reachable set computation over
longer time horizon. Therefore, it has a reduced chance of spuriously inferring the system
unsafe, also fewer chance of invoking the refinement module (as there are less spurious
behaviors).

2:24 B. Ghosh and É. André Vol. 20:1

Figure 7. Planned behavior of the aircraft : The axis of the plot denotes
the position of the aircraft in (x, y) plane (with a fixed altitude). The ideal
(planned) path of the aircraft, orbiting the object (black), is shown in green.
The red dashed lines indicate the safety constraint of the aircraft—these lines
must not be crossed at any time step.

Answer to Question 2. Increasing the size of samples (due to uncertainties or inherent
nature of the system) results in increasing chances of invoking the refinement module more
frequently. It also increases the chance of (wrongly) inferring the system to be unsafe, as
the refinement module can in itself add to the overapproximation.

Answer to Question 3. We observed that our online algorithm is able to prove the system’s
safety very efficiently with very few samples.

Answer to Question 4. We observed that for a given random log, the offline algorithm
was unable to prove safety of the system, whereas our online algorithm was able to prove
safety of the system, using fewer samples, by intelligently sampling the system only when
needed. We also note that, though here we just demonstrated the result for one random
log, but our internal experiments showed that the online algorithm always needed fewer
samples to prove safety—which is unsurprising, as it is designed to sample the system only
when needed. This can also result in energy saving, as sampling usually requires energy and
bandwidth.

Answer to Question 5. Increasing the timing delay of samples results in increasing
chances of invoking the refinement module more frequently. It also increases the chance of
(wrongly) inferring the system to be unsafe, as the refinement module can in itself add to
the overapproximation. Further, it increase in computation time—as it requires exploring
all possible combinations of timing delays.

Discussion: Reachable sets computation using Flow*. As uncertain linear dynamical
systems are a special type of non-linear systems, Flow* [CÁS13] would have been a natural
candidate to benchmark our offline and online monitoring implementation by comparing
various methods to compute overReach(·). However, we ran into the following issues: i) To

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:25

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

(a) Frequent samples, low uncertainty

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

(b) Frequent samples, high uncertainty

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

(c) Sporadic samples, low uncertainty

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

20

St
at

e
0

(d) Sporadic samples, high uncertainty

Figure 8. Offline monitoring (Aircraft Orbiting): We plot the position
of the aircraft, along x axis, with time. The timing delay of the samples
increases from left to right, and the probability of logging increases from
bottom to top. The color coding is same as Fig. 3.

the best of our understanding, Flow* expects the model of the continuous dynamics to
be given as input, along with a discretization parameter. Therefore, trying to encode the
time-varying uncertainties in the system as state variables will lead to discretization of the
variables encoding uncertainties; such discretization leads to undesired behavior, as those
uncertain variables will fail to capture the actual range of values that are possible at any
time step. ii) However, Flow* does allow time varying uncertainties, but only additive5.
Unfortunately, all our case studies require multiplicative uncertainties. Still, we believe
Flow* could be compared with our implementation when the bounding model has a simpler
dynamics than our uncertain linear dynamical systems.

5See example at https://flowstar.org/benchmarks/2-dimensional-ltv-system/

https://flowstar.org/benchmarks/2-dimensional-ltv-system/

2:26 B. Ghosh and É. André Vol. 20:1

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

Figure 9. Offline monitoring with unsafe samples (Aircraft Orbiting): We
plot the position of the aircraft, along x axis, with time. We perform offline
monitoring on a log containing unsafe samples. The color coding is same as
Fig. 3.

6. Conclusion

6.1. Summary. We presented a new approach for monitoring cyber-physical systems against
safety specifications, using the additional knowledge of an over-approximation of the system
expressed using an uncertain linear dynamical system. Our approach assumes as first input
a log with scattered timestamps (either exact or given in the form of intervals) and uncertain
variable samplings (in the form of zonotopes), and as second input an over-approximated
model, bounding the possible behaviors. The over-approximation is modeled by uncertainty
in the variables of the dynamics.

In the offline setting, we are thus able to detect possible violations of safety properties,
by extrapolating the known samples with the over-approximated dynamics, and if needed
using a second reachability analysis to check whether the next sample is “compatible” with
the possible unsafe behavior, i.e., can be reached from the unsafe zone. In the online setting,
we are capable of decreasing the number of samples, triggering a sample only when there
might be a safety violation in a near future, based on the latest known sample and on the
over-approximated model dynamics—increasing the energetic efficiency.

Our methods are sound in the sense that an absence of detection of violation by our
method indeed guarantees the absence of an actual violation at any discrete time step. In
the online method, provided the samples are accurate, our method is in addition complete,
i.e., the method outputs safe iff the actual system is safe at all discrete time steps. Put it
differently, we guarantee that not triggering a sample at some time steps is harmless and
will not lead to missing a safety violation.

6.2. Future works.
Bounding model. The presence of an over-approximated model makes sense, as proposed
in [WAH22a]; in our setting of an over-approximated model given by an uncertain linear
dynamical system, some formal guarantees that this model indeed represents an over-
approximation of the actual system remain to be exhibited.

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:27

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

(a) Time delay of 2 units.

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

(b) Time delay of 6 units.

0 100 200 300 400 500 600
Time

50

40

30

20

10

0

10

St
at

e
0

(c) Time delay of 8 units.

Figure 10. Effect of timing delay of samples on offline monitoring (Aircraft
Orbiting): We plot the position of the aircraft, along x axis, with time. The
timing delay of the samples increases from left to right, while the probability
of logging remains constant at 7% across all plots. The color coding is same
as Fig. 3.

In addition, the assumption of the presence of an over-approximated model is central
to our work, and we used it in all our experiments, in the sense that the logs were indeed
instances of the over-approximated model. However, an interesting future work will be to
partially lift this assumption, by allowing the log to (temporarily, locally) differ from the
over-approximated model, allowing for more freedom. In that case, a special care must be
made on the approach’s soundness.

Enumeration of time steps. A possible threat to validity remains the enumeration of time
steps in both our algorithms (line 7 in Algorithm 1 and line 3 in Algorithm 2), which could
slow down the analysis for very sparse logs—even though this did not seem critical in our
experiments. It is worth recalling that the reachable set computation method from [GD21b]
that we use in this paper scales very well when computing reachable sets for smaller time
steps. Consequently, if the time gap between two samples in a log is not very large (e.g.,

2:28 B. Ghosh and É. André Vol. 20:1

x

t

(a) Discrete samples

x

t

(b) Continuous behavior

Figure 11. Incompleteness

an order of 500 steps), this technique computes reachable sets very quickly. Further, if the
time gaps become large, one can use the interval-based or the zonotope-based reduction
methods proposed in [GD21b, Section 5.2] to improve the scalability of the reachable set
computation.

In addition, using skipping methods (as in, e.g., [WHS17]) may help improving the
efficiency of our approach.

It would also be interesting to use refinement approaches such as CEGAR [CGJ+00]
(Counterexample-Guided Abstraction Refinement) to refine both the time step and the
bounding model.

Uncertain timestamps for online monitoring. In contrast to our offline algorithm, our
online algorithm monitoring assumes exact timestamps: this is not always realistic in all
applications. For example, triggering a sample via a shared network, or a long-distance
communication (e.g., with a satellite), can take a non-0 time, and result in a sample known
with some uncertainty over the timestamp. In that case, a future work is to not wait for
the “last second” before triggering a new sample (as in Algorithm 2) but rather trigger a
sample ∆ time units prior to a possible safety violation, where ∆ is some upper bound on
the return delay between the monitor and the actual system under monitoring.

Discrete time vs. continuous time. Another future work consists in increasing our
guarantees, notably due to the continuous nature of cyber-physical systems under monitoring.
Indeed, even with a rather fine-grained sampling showing no specification violation (e.g., in
Fig. 11a), it can always happen that the actual continuous behavior violated the specification
(e.g., in Fig. 11b). While setting discrete time steps at a sufficiently fine-grained scale will help
to increase the confidence in the results of our approach, no absolutely formal guarantee can
be derived. Therefore, one of our future works is to propose some additional conditions for
extrapolating (continuous) behaviors between consecutive discrete samples. Also, improving
the scope of our guarantees (in the line of, e.g., [DFS21]) is on our agenda.

Finally, in [WAH22a], the bounding model is given using linear hybrid automata, a
formalism with a much more restricted dynamics than our approach, but featuring modes,
i.e., changes of dynamics guarded by some constraints over the variables—which is not
considered in our approach. Extending our approach with modes (as in [WAH22a]) is on our
agenda, yielding a very expressive bounding model with dynamics beyond linear dynamics,
and modes. However, this poses some technical difficulties, as the intersection of a set of
behaviors with a guard (necessary to check a change of mode) is not proposed by the method
from [GD21b]. A future work will be to envision over-approximated intersections.

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:29

Acknowledgment

Bineet Ghosh was supported by the National Science Foundation (NSF) of the United States

of America under grant number 2038960. Étienne André is partially supported by the
ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015 / 2019 ANR
NRF 0092) and ANR BisoUS (ANR-22-CE48-0012).

References

[ACF+21] Étienne André, Emmanuel Coquard, Laurent Fribourg, Jawher Jerray, and David Lesens. Para-
metric schedulability analysis of a launcher flight control system under reactivity constraints.
Fundamenta Informaticae, 182(1):31–67, September 2021. doi:10.3233/FI-2021-2065.

[ACM+18] Hugo L. S. Araujo, Gustavo Carvalho, Morteza Mohaqeqi, Mohammad Reza Mousavi, and Augusto
Sampaio. Sound conformance testing for cyber-physical systems: Theory and implementation.
Science of Computer Programming, 162:35–54, 2018. doi:10.1016/j.scico.2017.07.002.

[ALGK11] Matthias Althoff, Colas Le Guernic, and Bruce H. Krogh. Reachable set computation for uncertain
time-varying linear systems. In Marco Caccamo, Emilio Frazzoli, and Radu Grosu, editors,
Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC 2011), pages 93–102. ACM, 2011. doi:10.1145/1967701.1967717.

[Alt15] Matthias Althoff. An introduction to CORA 2015. In Goran Frehse and Matthias Althoff, editors,
Proceedings of the 1st and 2nd International Workshops on Applied veRification for Continuous
and Hybrid Systems (ARCH@CPSWeek 2014 and ARCH@CPSWeek 2015), volume 34 of EPiC
Series in Computing, pages 120–151. EasyChair, 2015. doi:10.29007/zbkv.

[BCE+16] David A. Basin, Germano Caronni, Sarah Ereth, Matús Harvan, Felix Klaedtke, and Heiko
Mantel. Scalable offline monitoring of temporal specifications. Formal Methods in System Design,
49(1-2):75–108, 2016. doi:10.1007/s10703-016-0242-y.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Computation, 98(2):142–170,
1992. doi:10.1016/0890-5401(92)90017-A.

[BDD+18] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E. Fainekos, Oded Maler,
Dejan Nickovic, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical
systems: A survey on theory, tools and applications. In Ezio Bartocci and Yliès Falcone, editors,
Lectures on Runtime Verification – Introductory and Advanced Topics, volume 10457 of Lecture
Notes in Computer Science, pages 135–175. Springer, 2018. doi:10.1007/978-3-319-75632-5_5.

[BFN+18] Alexey Bakhirkin, Thomas Ferrère, Dejan Nickovic, Oded Maler, and Eugene Asarin. Online
timed pattern matching using automata. In David N. Jansen and Prabhakar Pavithra, editors,
Proceedings of the 16th International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS 2018), volume 11022 of Lecture Notes in Computer Science, pages 215–232.
Springer, 2018. doi:10.1007/978-3-030-00151-3_13.

[BKZ17] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. The MonPoly monitoring tool. In Giles
Reger and Klaus Havelund, editors, Proceedings of An International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CuBES 2017), volume 3 of Kalpa Publications in Computing, pages 19–28. EasyChair, 2017.

[BZ19] Anna Becchi and Enea Zaffanella. Revisiting polyhedral analysis for hybrid systems. In Bor-
Yuh Evan Chang, editor, Proceedings of the 26th International Symposium on Static Analysis
(SAS 2019), volume 11822 of Lecture Notes in Computer Science, pages 183–202. Springer, 2019.
doi:10.1007/978-3-030-32304-2_10.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Natasha Sharygina and Helmut Veith, editors, Proceedings of the 25th
International Conference on Computer Aided Verification (CAV 2013), volume 8044 of Lecture
Notes in Computer Science, pages 258–263. Springer, 2013. doi:10.1007/978-3-642-39799-8_18.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement. In E. Allen Emerson and A. Prasad Sistla, editors, Proceedings of

https://doi.org/10.3233/FI-2021-2065
https://doi.org/10.1016/j.scico.2017.07.002
https://doi.org/10.1145/1967701.1967717
https://doi.org/10.29007/zbkv
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1007/978-3-642-39799-8_18

2:30 B. Ghosh and É. André Vol. 20:1

the 12th International Conference on Computer Aided Verification (CAV 2000), volume 1855 of
Lecture Notes in Computer Science, pages 154–169. Springer, 2000. doi:10.1007/10722167_15.

[CKNZ11] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model checking and
the state explosion problem. In Bertrand Meyer and Martin Nordio, editors, Revised Tutorial
Lectures from the LASER International Summer School 2011 (Tools for Practical Software
Verification), volume 7682 of Lecture Notes in Computer Science, pages 1–30. Springer, 2011.
doi:10.1007/978-3-642-35746-6_1.

[CR11] Christophe Combastel and Sid-Ahmed Raka. On computing envelopes for discrete-time lin-
ear systems with affine parametric uncertainties and bounded inputs. IFAC Proceedings Vol-
umes, 44(1):4525–4533, 2011. Proceedings of the 18th IFAC World Congress. doi:10.3182/
20110828-6-IT-1002.02585.

[CS16] Xin Chen and Sriram Sankaranarayanan. Decomposed reachability analysis for nonlinear systems.
In Proceedings of the 2016 IEEE Real-Time Systems Symposium (RTSS 2016), pages 13–24. IEEE
Computer Society, 2016. doi:10.1109/RTSS.2016.011.

[CSÁ14] Xin Chen, Sriram Sankaranarayanan, and Erika Ábrahám. Under-approximate flowpipes for
non-linear continuous systems. In Proceedings of the Formal Methods in Computer-Aided Design
(FMCAD 2014), pages 59–66. IEEE, 2014. doi:10.1109/FMCAD.2014.6987596.

[Dan11] Thao Dang. Model-based testing of hybrid systems. In Justyna Zander, Ina Schieferdecker,
and Pieter J. Mosterman, editors, Model-Based Testing for Embedded Systems, Computational
Analysis, Synthesis, & Design Dynamic Systems. CRC Press, 2011. doi:10.1201/b11321-15.

[DFM13] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring for STL. In
Natasha Sharygina and Helmut Veith, editors, Proceedings of the 25th International Conference
on Computer Aided Verification (CAV 2013), volume 8044 of Lecture Notes in Computer Science,
pages 264–279. Springer, 2013. doi:10.1007/978-3-642-39799-8_19.

[DFS21] Johann C. Dauer, Bernd Finkbeiner, and Sebastian Schirmer. Monitoring with verified guarantees.
In Lu Feng and Dana Fisman, editors, Proceedings of the 21st International Conference on
Runtime Verification (RV 2021), volume 12974 of Lecture Notes in Computer Science, pages
62–80. Springer, 2021. doi:10.1007/978-3-030-88494-9_4.

[DMP17] Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu. Quantifying conformance
using the Skorokhod metric. Formal Methods in System Design, 50(2-3):168–206, 2017. doi:
10.1007/s10703-016-0261-8.

[DMVP15] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew Potok. C2E2: A
verification tool for stateflow models. In Christel Baier and Cesare Tinelli, editors, Proceedings of
the 21st International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2015), Held as Part of the European Joint Conferences on Theory and Practice
of Software (ETAPS 2015), volume 9035 of Lecture Notes in Computer Science, pages 68–82.
Springer, 2015. doi:10.1007/978-3-662-46681-0_5.

[FBCI20] Mohammed Foughali, Saddek Bensalem, Jacques Combaz, and Félix Ingrand. Runtime verification
of timed properties in autonomous robots. In Proceedings of the 18th ACM/IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE 2020), pages 1–12.
IEEE, 2020. doi:10.1109/MEMOCODE51338.2020.9315156.

[Fre08] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. International
Journal on Software Tools for Technology Transfer, 10(3):263–279, May 2008. doi:10.1007/
s10009-007-0062-x.

[GA22] Bineet Ghosh and Étienne André. Monitoring of scattered uncertain logs using uncertain linear
dynamical systems. In Mohammad Mousavi and Anna Philippou, editors, Proceedings of the 42nd
International Conference on Formal Techniques for Distributed Objects, Components, and Systems
(FORTE 2022), volume 13273 of Lecture Notes in Computer Science, pages 67–87. Springer, 2022.
doi:10.1007/978-3-031-08679-3_5.

[GA23] Bineet Ghosh and Étienne André. MoULDyS: Monitoring of autonomous systems in the presence
of uncertainties. Science of Computer Programming, 230, August 2023. doi:10.1016/j.scico.
2023.102976.

[GD19] Bineet Ghosh and Parasara Sridhar Duggirala. Robust reachable set: Accounting for uncertainties
in linear dynamical systems. ACM Transactions on Embedded Computing Systems, 18(5s):97:1–
97:22, 2019. doi:10.1145/3358229.

https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.3182/20110828-6-IT-1002.02585
https://doi.org/10.3182/20110828-6-IT-1002.02585
https://doi.org/10.1109/RTSS.2016.011
https://doi.org/10.1109/FMCAD.2014.6987596
https://doi.org/10.1201/b11321-15
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-030-88494-9_4
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1109/MEMOCODE51338.2020.9315156
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/978-3-031-08679-3_5
https://doi.org/10.1016/j.scico.2023.102976
https://doi.org/10.1016/j.scico.2023.102976
https://doi.org/10.1145/3358229

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:31

[GD21a] Bineet Ghosh and Parasara Sridhar Duggirala. Reachability of linear uncertain systems: Sampling
based approaches. Technical Report 2109.07638, arXiv, 2021. URL: https://arxiv.org/abs/
2109.07638, arXiv:2109.07638.

[GD21b] Bineet Ghosh and Parasara Sridhar Duggirala. Robustness of safety for linear dynamical systems:
Symbolic and numerical approaches. Technical Report 2109.07632, arXiv, 2021. URL: https:
//arxiv.org/abs/2109.07632, arXiv:2109.07632.

[GDM14] Victor Gan, Guy Albert Dumont, and Ian Mitchell. Benchmark problem: A PK/PD model
and safety constraints for anesthesia delivery. In Goran Frehse and Matthias Althoff, editors,
Proceedings of the 1st and 2nd International Workshops on Applied veRification for Continuous
and Hybrid Systems (ARCH@CPSWeek 2014 and ARCH@CPSWeek 2015), volume 34 of EPiC
Series in Computing, pages 1–8. EasyChair, 2014. doi:10.29007/8drm.

[GO20] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2020. URL: http://www.gurobi.
com.

[HPR94] Nicolas Halbwachs, Yann-Éric Proy, and Pascal Raymond. Verification of linear hybrid systems
by means of convex approximations. In Baudouin Le Charlier, editor, Proceedings of the First
International Static Analysis Symposium (SAS 1994), volume 864 of Lecture Notes in Computer
Science, pages 223–237. Springer, 1994. doi:10.1007/3-540-58485-4_43.

[JBG+18] Stefan Jakšić, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Ničković. Quantitative
monitoring of STL with edit distance. Formal Methods in System Design, 53(1):83–112, 2018.
doi:10.1007/s10703-018-0319-x.

[KGCC15] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke. dReach: δ-reachability analysis for
hybrid systems. In Christel Baier and Cesare Tinelli, editors, Proceedings of the 21st International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2015), Held as Part of the European Joint Conferences on Theory and Practice of Software
(ETAPS 2015), volume 9035 of Lecture Notes in Computer Science, pages 200–205. Springer,
2015. doi:10.1007/978-3-662-46681-0_15.

[KGN+09] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra
Pandav, Anna Slobodová, Christopher Taylor, Vladimir A. Frolov, Erik Reeber, and Armaghan
Naik. Replacing testing with formal verification in Intel CoreTM i7 processor execution engine
validation. In Ahmed Bouajjani and Oded Maler, editors, Proceedings of the 21st International
Conference on Computer Aided Verification (CAV 2009), volume 5643 of Lecture Notes in
Computer Science, pages 414–429. Springer, 2009. doi:10.1007/978-3-642-02658-4_32.

[LLN18] Kim Guldstrand Larsen, Florian Lorber, and Brian Nielsen. 20 years of UPPAAL enabled
industrial model-based validation and beyond. In Tiziana Margaria and Bernhard Steffen, editors,
Proceedings of the 8th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice (ISoLA 2018), Part IV, volume 11247 of Lecture
Notes in Computer Science, pages 212–229. Springer, 2018. doi:10.1007/978-3-030-03427-6_18.

[LP15] Ratan Lal and Pavithra Prabhakar. Bounded error flowpipe computation of parameterized linear
systems. In Alain Girault and Nan Guan, editors, Proceedings of the 2015 International Conference
on Embedded Software (EMSOFT 2015), pages 237–246. IEEE, 2015. doi:10.1109/EMSOFT.2015.
7318279.

[Mal16] Oded Maler. Some thoughts on runtime verification. In Yliès Falcone and César Sánchez, ed-
itors, Proceedings of the 16th International Conference on Runtime Verification (RV 2016),
volume 10012 of Lecture Notes in Computer Science, pages 3–14. Springer, 2016. doi:10.1007/
978-3-319-46982-9_1.

[MCW21] Konstantinos Mamouras, Agnishom Chattopadhyay, and Zhifu Wang. A compositional framework
for quantitative online monitoring over continuous-time signals. In Lu Feng and Dana Fisman,
editors, Proceedings of the 21st International Conference on Runtime Verification (RV 2021),
volume 12974 of Lecture Notes in Computer Science, pages 142–163. Springer, 2021. doi:10.
1007/978-3-030-88494-9_8.

[mdt23] The mpmath development team. mpmath: a Python library for arbitrary-precision floating-point
arithmetic (version 1.3.0), 2023. https://mpmath.org/.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Yassine
Lakhnech and Sergio Yovine, editors, Proceedings of the Joint International Conferences on
Formal Modelling and Analysis of Timed Systems (FORMATS 2004) and Formal Techniques

https://arxiv.org/abs/2109.07638
https://arxiv.org/abs/2109.07638
http://arxiv.org/abs/2109.07638
https://arxiv.org/abs/2109.07632
https://arxiv.org/abs/2109.07632
http://arxiv.org/abs/2109.07632
https://doi.org/10.29007/8drm
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/3-540-58485-4_43
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1109/EMSOFT.2015.7318279
https://doi.org/10.1109/EMSOFT.2015.7318279
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://mpmath.org/

2:32 B. Ghosh and É. André Vol. 20:1

in Real-Time and Fault-Tolerant Systems (FTRTFT 2004), volume 3253 of Lecture Notes in
Computer Science, pages 152–166. Springer, 2004. doi:10.1007/978-3-540-30206-3_12.

[MP16] Stefan Mitsch and André Platzer. ModelPlex: verified runtime validation of verified cyber-
physical system models. Formal Methods in System Design, 49(1-2):33–74, 2016. doi:10.1007/
s10703-016-0241-z.

[MP18] Stefan Mitsch and André Platzer. Verified runtime validation for partially observable hybrid
systems. Technical report, 2018. URL: http://arxiv.org/abs/1811.06502, arXiv:1811.06502.

[NHB+16] Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D. Ames, Jessy W. Grizzle,
Necmiye Ozay, Huei Peng, and Paulo Tabuada. Correct-by-construction adaptive cruise control:
Two approaches. IEEE Transactions on Control Systems Technology, 24(4):1294–1307, 2016.
doi:10.1109/TCST.2015.2501351.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.
[PC09] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision avoidance

maneuvers: A case study. In Ana Cavalcanti and Dennis Dams, editors, Proceedings of the Second
World Congress on Formal Methods (FM 2009), volume 5850 of Lecture Notes in Computer
Science, pages 547–562. Springer, 2009. doi:10.1007/978-3-642-05089-3_35.

[Pel08] Radek Pelánek. Fighting state space explosion: Review and evaluation. In Darren D.and Alessan-
dro Fantechi Cofer, editor, Proceedings of the 13th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 2008), volume 5596 of Lecture Notes in Computer Science,
pages 37–52. Springer, 2008. doi:10.1007/978-3-642-03240-0_7.

[Pla12] André Platzer. The complete proof theory of hybrid systems. In Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science (LICS 2012), pages 541–550. IEEE Computer
Society, 2012. doi:10.1109/LICS.2012.64.

[QD20] Xin Qin and Jyotirmoy V. Deshmukh. Clairvoyant monitoring for signal temporal logic. In Nathalie
Bertrand and Nils Jansen, editors, Proceedings of the 18th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS 2020), volume 12288 of Lecture Notes in
Computer Science, pages 178–195. Springer, 2020. doi:10.1007/978-3-030-57628-8_11.

[SWS21] Junya Shijubo, Masaki Waga, and Kohei Suenaga. Efficient black-box checking via model checking
with strengthened specifications. In Lu Feng and Dana Fisman, editors, Proceedings of the 21st
International Conference on Runtime Verification (RV 2021), volume 12974 of Lecture Notes in
Computer Science, pages 100–120. Springer, 2021. doi:10.1007/978-3-030-88494-9_6.

[TD13] Romain Testylier and Thao Dang. NLTOOLBOX: A library for reachability computation of
nonlinear dynamical systems. In Dang Van Hung and Mizuhito Ogawa, editors, Proceedings
of the 11th International Symposium on Automated Technology for Verification and Analysis
(ATVA 2013), volume 8172 of Lecture Notes in Computer Science, pages 469–473. Springer, 2013.
doi:10.1007/978-3-319-02444-8_37.

[UFAM14] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern matching. In Axel
Legay and Marius Bozga, editors, Proceedings of the 12th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS 2014), volume 8711 of Lecture Notes in
Computer Science, pages 222–236. Springer, 2014. doi:10.1007/978-3-319-10512-3_16.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[WA19] Masaki Waga and Étienne André. Online parametric timed pattern matching with automata-based
skipping. In Julia Badger and Kristin Yvonne Rozier, editors, Proceedings of the 11th Annual
NASA Formal Methods Symposium (NFM 2019), volume 11460 of Lecture Notes in Computer
Science, pages 371–389. Springer, 2019. doi:10.1007/978-3-030-20652-9_26.

[Wag19] Masaki Waga. Online quantitative timed pattern matching with semiring-valued weighted

automata. In Étienne André and Mariëlle Stoelinga, editors, Proceedings of the 17th In-
ternational Conference on Formal Modeling and Analysis of Timed Systems (FORMATS

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
http://arxiv.org/abs/1811.06502
http://arxiv.org/abs/1811.06502
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1007/978-3-642-05089-3_35
https://doi.org/10.1007/978-3-642-03240-0_7
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/978-3-030-57628-8_11
https://doi.org/10.1007/978-3-030-88494-9_6
https://doi.org/10.1007/978-3-319-02444-8_37
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-030-20652-9_26

Vol. 20:1 MONITORING OF UNCERTAIN LOGS USING A BOUNDING MODEL 2:33

2019), volume 11750 of Lecture Notes in Computer Science, pages 3–22. Springer, 2019.
doi:10.1007/978-3-030-29662-9_1.

[WAH16] Masaki Waga, Takumi Akazaki, and Ichiro Hasuo. A Boyer-Moore type algorithm for timed
pattern matching. In Martin Fränzle and Nicolas Markey, editors, Proceedings of the 14th
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2016), volume 9884 of Lecture Notes in Computer Science, pages 121–139. Springer, 2016.
doi:10.1007/978-3-319-44878-7_8.

[WAH19] Masaki Waga, Étienne André, and Ichiro Hasuo. Symbolic monitoring against specifications
parametric in time and data. In Işil Dillig and Serdar Tasiran, editors, Proceedings of the
31st International Conference on Computer-Aided Verification (CAV 2019), Part I, volume
11561 of Lecture Notes in Computer Science, pages 520–539. Springer, 2019. doi:10.1007/
978-3-030-25540-4_30.

[WAH22a] Masaki Waga, Étienne André, and Ichiro Hasuo. Model-bounded monitoring of hybrid systems.
ACM Transactions on Cyber-Physical Systems, 6(4):30:1–30:26, November 2022. doi:10.1145/
3529095.

[WAH22b] Masaki Waga, Étienne André, and Ichiro Hasuo. Parametric timed pattern matching. ACM
Transactions on Software Engineering and Methodology, 32(1):10:1–10:35, February 2022. doi:
10.1145/3517194.

[WHS17] Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. Efficient online timed pattern matching by
automata-based skipping. In Alessandro Abate and Gilles Geeraerts, editors, Proceedings of the
15th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2017), volume 10419 of Lecture Notes in Computer Science, pages 224–243. Springer, 2017.
doi:10.1007/978-3-319-65765-3_13.

[WHS18] Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. MONAA: A tool for timed pattern matching
with automata-based acceleration. In Proceedings of the 3rd Workshop on Monitoring and Testing
of Cyber-Physical Systems (MT@CPSWeek 2018), pages 14–15. IEEE, 2018. doi:10.1109/MT-CPS.
2018.00014.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-030-29662-9_1
https://doi.org/10.1007/978-3-319-44878-7_8
https://doi.org/10.1007/978-3-030-25540-4_30
https://doi.org/10.1007/978-3-030-25540-4_30
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3529095
https://doi.org/10.1145/3517194
https://doi.org/10.1145/3517194
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1109/MT-CPS.2018.00014
https://doi.org/10.1109/MT-CPS.2018.00014

	1. Introduction
	2. Related works
	3. Preliminaries
	4. Monitoring using uncertain linear dynamical systems as bounding model
	4.1. Offline monitoring over fixed timestamp uncertain logs
	4.2. Offline monitoring over uncertain logs
	4.3. Online monitoring over fixed timestamp uncertain logs

	5. Case studies
	5.1. Implementation and environment
	5.2. First benchmark: Anesthesia
	5.3. Second benchmark: Adaptive Cruise Control
	5.4. Third benchmark: Aircraft Orbiting
	5.5. General observations

	6. Conclusion
	6.1. Summary
	6.2. Future works

	Acknowledgment
	References

