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Abstract. This work introduces a novel cause-effect relation in Markov decision processes
using the probability-raising principle. Initially, sets of states as causes and effects are
considered, which is subsequently extended to regular path properties as effects and then
as causes. The paper lays the mathematical foundations and analyzes the algorithmic
properties of these cause-effect relations. This includes algorithms for checking cause
conditions given an effect and deciding the existence of probability-raising causes. As the
definition allows for sub-optimal coverage properties, quality measures for causes inspired
by concepts of statistical analysis are studied. These include recall, coverage ratio and
f-score. The computational complexity for finding optimal causes with respect to these
measures is analyzed.

1. Introduction

In recent years, scientific and technological advancement in computer science and engineering
led to an ever increasing influence of computer systems on our everyday lives. A lot
of decisions which were historically done by humans are now in the hands of intelligent
systems. At the same time, these systems grow more and more complex, and thus, harder
to understand. This poses a huge challenge in the development of reliable and trustworthy
systems. Therefore, an important task of computer science today is the development of
comprehensive and versatile ways to understand modern software and cyber physical systems.

The area of formal verification aims to prove the correctness of a system with respect to
a specification. While the formal verification process can provide guarantees on the behavior
of a system, such a result alone does not tell much about the inner workings of the system.
To give some additional insight, counterexamples, invariants or related certificates as a form
of verifiable justification that a system does or does not behave according to a specification
have been studied extensively (see e.g., [MP95, CGP99, Nam01]). These kinds of certificates,
however, do not allow us to understand the system behavior to a full extend. In epistemic
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terms, the outcome of model checking applied to a system and a specification provides
knowledge that a system satisfies a specification (or not) in terms of an assertion (whether
the system satisfies the specification) and a justification (certificate or counterexample)
to increase the belief in the result. However, model checking usually does not provide
understanding on why a system behaves in a certain way. This establishes a desideratum for
a more comprehensive understanding of why a system satisfies or violates a specification.
Explications of the system are needed to assess how different components influence its
behavior and performance. Causal relations between occurring events during the execution
of a system can constitute a strong tool to form such an understanding. Moreover, causality
is fundamental for determining moral responsibility [CH04, BvH12] or legal accountability
[FHJ+11], and ultimately fosters user acceptance through an increased level of transparency
[Mil17].

The majority of prior work in this direction relies on causality notions based on Lewis’
counterfactual principle [Lew73] which states that the effect would not have occurred if the
cause would not have happened. A prominent formalization of the counterfactual principle
is given by Halpern and Pearl [HP01] via structural equation models. This inspired formal
definitions of causality and related notions of blameworthiness and responsibility in Kripke
and game structures as well as reactive systems (see, e.g., [CHK08, BBC+12, Cho16, YD16,
FH19, YDJ+19, BFM21, CFF+22]).

A lot of systems are to a certain extend influenced by probabilistic events. Thus, a
branch of formal methods is studying probabilistic models such as Markov chains (MCs)
which are purely probabilistic or Markov decision processes (MDPs) which combine non-
determinism and probabilistic choice. This gives rise to another approach to the concept of
causality in a probabilistic setting, since the statement of counterfactual reasoning can be
interpreted more gently in a probabilistic setting: Instead of saying “the effect would not
have occurred, if the cause had not happened”, we can say “the probability of the effect
would have been lower if the cause would not have occurred”. This interpretation leads
to the widely accepted probability-raising principle which also has its roots in philosophy
[Rei56, Sup70, Eel91, Hit16] and has been refined by Pearl [Pea09] for causal and probabilistic
reasoning in intelligent systems. The different notions of probability-raising cause-effect
relations discussed in the literature share the following two main principles:

(C1): Causes raise the probabilities for their effects, informally expressed by the requirement
“Pr( effect | cause ) > Pr( effect )”.

(C2): Causes must happen before their effects.

Despite the huge amount of work on probabilistic causation in other disciplines, research
on probability-raising causality in the context of formal methods is comparably rare and
has concentrated on the purely probabilistic setting in Markov chains (see, e.g., [KM09,
Kle12, ZPF+22] and the discussion of related work below). To the best of our knowledge,
probabilistic causation for probabilistic operational models with nondeterminism has not
been studied before.

In this work, we formalize principles (C1) and (C2) for Markov decision processes. We
start in a basic setting by focusing on reachability properties where both effect and cause are
sets of states. Later, we naturally extend this framework by considering the effect to be an
ω-regular path property while causes can either still be state-based or ω-regular co-safety
path properties.
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As the probability-raising is inherent in the MDP, we require (C1) under every scheduler.
Thus, the cause-effect relation holds for every resolution of non-deterministic choices. We
consider two natural ways to interpret condition (C1): On one hand, the probability-raising
property can be required locally for each element of the cause. This results in a strict
property which requires that after each execution showing the cause the probability of effect
has been raised. Such causes are strict probability-raising (SPR) causes in our framework.
This interpretation is especially suited when the task is to identify system states that have
to be avoided for lowering the effect probability. On the other hand, we can treat the cause
globally as a unit in (C1) leading to the notion of global probability-raising (GPR) cause.
This way, the causal relation can also be formulated between properties without considering
individual elements or executions to be causal. Considering the cause as a whole is also
better suited when further constraints are imposed on the candidates for cause sets. E.g. if
the set of non-terminal states of the given MDP is partitioned into sets of states Si under
control of different agents i, 1 ⩽ i ⩽ k and the task is to identify which agent’s decisions
might cause the effect, only the subsets of S1, . . . ,Sk are candidates for causes. Furthermore,
GPR causes are more appropriate when causes are used for monitoring purposes under
partial observability as then the cause candidates are sets of indistinguishable states.

Despite the distinction between strict and global probability-raising causality, different
causes can still vary substantially in how well they predict the effect. Within Markov
decision processes this intuitively coincides with how well the executions exhibiting the cause
cover executions showing the effect. However, solely focusing on broader coverage might
lead to more trivial causal relations. In order to take this trade off into account, we take
inspiration from measures for binary classifiers used in statistical analysis (see, e.g., [Pow11])
to introduce quality measures for causes. These allow us to compare different causes and to
look for optimal causes: The recall captures the probability that the effect is indeed preceded
by the cause. The coverage-ratio is the fraction of the probability that cause and effect
are observed and the probability of the effect without a cause. The f-score, a widely used
quality measure for binary classifiers, is the harmonic mean of recall and precision, where
the precision is the probability that the cause is followed by the effect. Finally, we address
the computation of quality measures which can be represented as algebraic functions.

Contributions. In this work we build mathematical and algorithmic foundations for
probabilistic causation in Markov decision processes based on the principles (C1) and (C2).
In the setting where the effect is represented as a set of terminal states, we introduce strict
and global probability-raising cause sets in MDPs (Section 3). Algorithms are provided to
check whether given cause and effect sets satisfy (one of) the probability-raising conditions
(Section 4.1 and 4.2) and to check the existence of a cause set for a given effect set (Section 4.1).
In order to evaluate the coverage properties of a cause, we subsequently introduce the above-
mentioned quality measures (Section 5.1). We give algorithms for computing these values
for given cause-effect sets (Section 5.2) and characterize the computational complexity of
finding optimal cause sets with respect to the different measures (Section 5.3). We then
extend the setting to ω-regular effects (Section 6.1), and evaluate how established properties
transfer to this setting. We observe that in this extension SPR causes can be viewed as a
collection of GPR causes. Finally we discuss the case where causes are also path properties,
namely, ω-regular co-safety properties and investigate how this more general perspective
affects cause-effect relations (Section 6.2). Here, the class of potential cause candidates is
greatly increased. Table 1 summarizes our complexity results.
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Table 1: Complexity results for MDPs and Markov chains (MC) with fixed effects. The
ω-regular effects are given as deterministic Rabin automata, ω-regular co-safety
properties as causes are given as deterministic finite automata accepting good
prefixes.

sets of states as causes and effects

for fixed set Cause find optimal cause
compute quality valuescheck PR

condition
covratio-optimal
= recall-optimal(recall, covratio, f-score) f-score-optimal

SPR ∈ P poly-time poly-time
poly-space

poly-time for MC
threshold problem ∈ NP ∩ coNP

GPR
∈ coNP

and ∈ P for MC
poly-time

poly-space
threshold problems ∈ ΣP

2 and NP-hard
and NP-complete for MC

sets of states as causes and ω-regular effects

for fixed set Cause find optimal cause
compute quality valuescheck PR

condition
covratio-optimal
= recall-optimal(recall, covratio, f-score) f-score-optimal

SPR
∈ coNP

and ∈ P for MC
poly-time PFNP (as def. in [Sel94])

threshold problems ∈ coNP
poly-space

threshold problem ∈ ΣP
2

GPR
∈ coNP

and ∈ P for MC
poly-time

poly-space
threshold problems ∈ ΣP

2

NP-hard

ω-regular co-safety properties as causes and ω-regular effects

for fixed cause property rCause find optimal cause
compute quality valuescheck PR

condition
covratio-optimal
= recall-optimal(recall, covratio, f-score) f-score-optimal

SPR
difficulty illustrated
in Example 6.14

poly-time
optimal cause known,
computation unclear

open

GPR
∈ coNP

and ∈ P for MC
poly-time

in general,
no optimal causes

open

Related work. Previous work in the direction of probabilistic causation in stochastic
operational models has mainly concentrated on Markov chains. Kleinberg [KM09, Kle12]
introduced prima facie causes in finite Markov chains where both causes and effects are
formalized as PCTL state formulae, and thus they can be seen as sets of states as in our
approach. The correspondence of Kleinberg’s PCTL constraints for prima facie causes
and the strict probability-raising condition formalized using conditional probabilities has
been worked out in the survey article [BDF+21]. Our notion of strict probability-raising
causes interpreted in Markov chains corresponds to Kleinberg’s prima facie causes with
the exception of a minimality condition forbidding redundant elements in our definition.
Ábrahám et al [ÁB18] introduces a hyperlogic for Markov chains and gives a formalization
of probabilistic causation in Markov chains as a hyperproperty, which is consistent with
Kleinberg’s prima facie causes, and with strict probability-raising causes up to minimality.
Cause-effect relations in Markov chains where effects are ω-regular properties and the
causes are sets of paths have been introduced in [ZPF+22]. These relations rely on a strict
probability-raising condition, but use a probability threshold p instead of directly requiring
probability-raising. Therefore, [ZPF+22] permits a non-strict inequality in the PR condition
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with the consequence that causes always exist, which is not the case for our notions. However,
a minimal good prefix of a co-safety strict probability-raising cause in a Markov chains
corresponds to a probability-raising path in [ZPF+22].

The survey article [BDF+21] introduces notions of global probability-raising causes
for Markov chains, where causes and effects can be path properties. [BDF+21]’s notion of
reachability causes in Markov chains directly corresponds to our notion of PR causes, the
only difference being that [BDF+21] deals with a relaxed minimality condition and requires
that the cause set is reachable without visiting an effect state before. The latter is inherent
in our approach as we suppose that all states are reachable and the effect states are terminal.
On the other hand if we restrict [BDF+21]’s notion of global PR-cause to ω-regular effects
and co-safety causes, this corresponds to our notion of a co-safety GPR cause with the
exception of the minimality condition. The same can be said about the correspondence of
local PR-causes from [BDF+21] and co-safety SPR causes.

To the best of our knowledge, probabilistic causation in MDPs has not been studied
before. The only work in this direction we are aware of is the recent paper by Dimitrova et al
[DFT20] on a hyperlogic, called PHL, for MDPs. While the paper focuses on the foundation
of PHL, it contains an example illustrating how action causality can be formalized as a PHL
formula. Roughly, the presented formula expresses that taking a specific action α increases
the probability for reaching effect states. Thus, it also relies on the probability-raising
principle, but compares the “effect probabilities” under different schedulers (which either
schedule α or not) rather than comparing probabilities under the same scheduler as in our
PR condition. However, to some extent our notions of PR causes can reason about action
causality as well.

There has also been work on causality-based explanations of counterexamples in proba-
bilistic models [KLL11, Lei15]. The underlying causality notion of this work, however, relies
on the non-probabilistic counterfactual principle rather than the probability-raising condition.
The same applies to the notions of forward and backward responsibility in stochastic games
in extensive form introduced in the recent work [BFM21].

2. Preliminaries

Throughout the paper, we will assume familiarity with basic concepts of Markov decision
processes. Here, we present a brief summary of the notations used in the paper. For more
details, we refer to [Put94, BK08, Kal20].

2.1. Markov decision processes. A Markov decision process (MDP) constitutes a tuple
M = (S,Act ,P, init) where S is a finite set of states, Act a finite set of actions, init ∈ S a
unique initial state and P : S×Act × S→ [0, 1] the transition probability function such that∑

t∈S P(s,α, t) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act .
For α ∈ Act and T ⊆ S, P(s,α, T) is a shortform notation for

∑
t∈t P(s,α, t). An action α

is enabled in state s ∈ S if
∑

t∈S P(s,α, t) = 1. Then, Act(s) = {α ∈ Act | α is enabled in s}.
A state t is terminal if Act(t) = ∅. A Markov chain (MC) is a special case of MDP where
Act is a singleton (we then write P(s, t) rather than P(s,α, t)). A path in an MDP M is a
(finite or infinite) alternating sequence π = s0 α0 s1 α1 s2 · · · ∈ (S×Act)∗ × S ∪ (S×Act)ω

such that P(si,αi, si+1) > 0 for all indices i. A path is called maximal if it is infinite or
finite and ends in a terminal state. If π is a finite path in M then last(π) denotes the last
state of π. That is, if π = s0 α0 . . .αn−1 sn then last(π) = sn.
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A (randomized) scheduler S is a function that maps each finite non-maximal path
s0α0 . . . sn to a distribution over Act(sn). S is called deterministic if S(π) is a Dirac
distribution for all finite non-maximal paths π. If the chosen action only depends on the
last state of the path, S is called memoryless. We write MR for the class of memoryless
(randomized) and MD for the class of memoryless deterministic schedulers. Finite-memory
schedulers are those that are representable by a finite-state automaton. A path π is
said to be a S-path if S(s0 α0 . . .αi−1 si)(αi) > 0 for each i ∈ {0, . . . ,n−1}. Given a
path π = s0 α0 . . . αn−1 sn, the residual scheduler res(S,π) of S after π is defined by
res(S,π)(ζ) = S(π ◦ ζ) for all finite paths ζ starting in sn. Here, π ◦ ζ denotes the
concatenation of the paths π and ζ. Intuitively speaking, res(S,π) behaves like S after π
has already been seen.

A scheduler S of M induces a (possibly infinite) Markov chain. We write PrSM,s for the
standard probability measure on measurable sets of maximal paths in the Markov chain
induced by S with initial state s. If φ is a measurable set of maximal paths, then Prmax

M,s(φ)

and Prmin
M,s(φ) denote the supremum resp. infimum of the probabilities for φ under all

schedulers. We use the abbreviation PrSM = PrSM,init and notations Prmax
M and Prmin

M for
extremal probabilities. Analogous notations will be used for expectations. So, if f is a
random variable, then, e.g., ES

M(f) denotes the expectation of f under S and Emax
M (f) its

supremum over all schedulers.
We use LTL-like temporal modalities such as ♢ (eventually) and U (until) to denote

path properties. For X, T ⊆ S the formula XU T is satisfied by paths π = s0s1 . . . such
that there exists j ⩾ 0 such that for all i < j : si ∈ X and sj ∈ T and ♢T = SU T . It is

well-known that Prmin
M (XU T) and Prmax

M (XU T) and corresponding optimal MD-schedulers
are computable in polynomial time.

We also use conditional probabilities in MDPs cf. [BKKM14, Mär20]. For two measur-
able sets of maximal paths φ and ψ we have

Prmax
M,s(φ | ψ) = max

S
PrSM,s(φ | ψ) = max

S

PrSM,s(φ∧ψ)

PrSM,s(ψ)
,

where S ranges over all scheduler for which PrS(ψ) > 0. We define Prmin
M,s(φ | ψ) likewise.

If both φ and ψ are reachability properties then maximal conditional probabilities are
computable in polynomial time [BKKM14]. The proposed algorithm for maximal conditional
probabilities Prmax

M,init(♢G | ♢F) relies on a model transformation generating a new MDP N

that distinguishes the modes ”before G and F” (where N essentially behaves as M with
additional reset transitions from end components to the initial state), ”before G, after F”
(where N maximizes the probability to reach G), ”before F, after G” (where N maximizes
the probability to reach F). Essentially the reset transitions serve to “discard” paths that
never reach G and F. For further details we refer to [BKKM14, MBKK17, Mär20].

If s ∈ S and α ∈ Act(s), then (s,α) is said to be a state-action pair of M. Given
a scheduler S for M, the expected frequencies (i.e., expected number of occurrences in
maximal paths) of state action-pairs (s,α), states s ∈ S and state-sets T ⊆ S under S are
defined by:

freqS(s,α)
def
= ES

M(number of visits to s in which α is taken),

freqS(s)
def
=

∑
α∈Act(s)

freqS(s,α), freqS(T)
def
=

∑
s∈T

freqS(s).
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An end component (EC) of an MDP M is a strongly connected sub-MDP containing at
least one state-action pair. ECs will be often identified with the set of their state-action
pairs. An EC E is called maximal (abbreviated MEC) if there is no proper superset E ′ of
(the set of state-action pairs of) E which is an EC.

2.2. MR-scheduler in MDPs without ECs. The following preliminary lemma is folklore
(see, e.g., [Kal20, Theorem 9.16]) and used in the paper in the following form.

Lemma 2.1 (From general schedulers to MR-schedulers in MDPs without ECs). Consider
an MDP M = (S,Act ,P, init) without end components. Then, for each scheduler S for M,
there exists an MR-scheduler T such that:

PrSM(♢t) = PrTM(♢t) for each terminal state t.

As a consequence we can build linear combinations of scheduler in such MDPs.

Lemma 2.2 (Convex combination of MR-schedulers). Let M be an MDP without end
components and let S and T be schedulers for M and λ a real number in the open interval
]0, 1[. Then, there exists an MR-scheduler U such that:

PrUM(♢t) = λ · PrSM(♢t) + (1−λ) · PrTM(♢t)

for each terminal state t.

Proof. Thanks to Lemma 2.1 we may suppose that S and T are MR-schedulers. Let

f∗ = λ · freqS(∗) + (1−λ) · freqT(∗)
where ∗ stands for a state or a state-action pair in M. Let U be an MR-scheduler defined by

U(s)(α) =
fs,α
fs

for each non-terminal state s where fs > 0 and each action α ∈ Act(s). If

fs = 0 then U selects an arbitrary distribution over Act(s).
Using Lemma 2.1 we then obtain f∗ = freqU(∗) where ∗ ranges over all states and

state-action pairs in M. But this yields:

PrUM(♢t) = ft = λ · freqS(t) + (1−λ) · freqT(t) = λ · PrSM(♢t) + (1−λ) · PrTM(♢t)

for each terminal state t.

Let M,S,T, λ be as in Lemma 2.2. Then, the notation λS ⊕ (1−λ)T will be used to
denote any MR-scheduler U as in Lemma 2.2.

2.3. MEC-quotient. We recall the definition of the MEC-quotient, which is a standard
concept for the analysis of MDPs [dA97]. Intuitively, the MEC-quotient of an MDP collapses
all maximal end components, ignoring the actions in the end component while keeping
outgoing transitions. More concretely, we use a modified version with an additional trap
state as in [BBD+18] that serves to mimic behaviors inside an end component of the original
MDP.

Definition 2.3 (MEC-quotient of an MDP). Let M = (S,Act ,P, init) be an MDP with
end components. Let E1, . . . ,Ek be the maximal end components (MECs) of M. We may
suppose without loss of generality that enabled actions of states are pairwise disjoint, i.e.,
whenever s1, s2 are states in M with s1 ̸= s2 then ActM(s1) ∩ActM(s2) = ∅. This permits
to consider Ei as a subset of Act . Let Ui denote the set of states that belong to Ei and let
U = U1 ∪ . . . ∪ Uk. The MEC-quotient of M is the MDP N = (S ′,Act ′,P ′, init ′) and the
function ι : S→ S ′ are defined as follows.



4:8 C. Baier, J. Piribauer, and R. Ziemek Vol. 20:1

• The state space S ′ is S \U ∪ {sE1
, . . . , sEk

,⊥} where sE1
, . . . , sEk

,⊥ are pairwise distinct
fresh states.

• The function ι is given by ι(s) = s if s ∈ S \U and ι(u) = sEi
if u ∈ Ui.

• The initial state of N is init ′ = ι(init).
• The action set Act ′ is Act ∪ {τ} where τ is a fresh action symbol.
• The set of actions enabled in state s ∈ S ′ of N and the transition probabilities are as
follows:
– If s is a state of M that does not belong to an MEC of M (i.e., s ∈ S ∩ S ′) then
ActN(s) = ActM(s) and P ′(s,α, s ′) = P(s,α, ι−1(s ′)) for all s ′ ∈ S ′ and α ∈ ActM(s).

– If s = sEi
is a state representing MEC Ei of M then (as we view Ei as a set of actions):

ActN
(
sEi

)
=

⋃
u∈Ui

(ActM(u) \ Ei) ∪ {τ}

The τ-action is the deterministic transition to the fresh state ⊥, i.e.: P ′(sEi
, τ,⊥) = 1.

For u ∈ Ui and α ∈ ActM(u) \ Ei we set P ′(sEi
,α, s ′) = P(u,α, ι−1(s ′)) for all s ′ ∈ S ′.

– The state ⊥ is terminal, i.e., ActN(⊥) = ∅. ◁

Thus, each terminal state of M is terminal in its MEC-quotient N too. Vice versa,
every terminal state of N is either a terminal state of M or ⊥. Moreover, N has no end
components, which implies that under every scheduler T for N, a terminal state will be
reached with probability 1. In Section 4.2, we use the notation noefftn rather than ⊥.

The original MDP and its MEC-quotient have been found to be connected by the
following lemma (see also [dA97, dA99]). For the sake of completeness we present the proof
for our version of the MEC-quotient.

Lemma 2.4 (Correspondence of an MDP and its MEC-quotient). Let M be an MDP and N

its MEC-quotient. Then, for each scheduler S for M there is a scheduler T for N such that

PrSM(♢t) = PrTN(♢t) for each terminal state t of M (2.1)

and vice versa. Moreover, if (2.1) holds then PrTN(♢⊥) equals the probability for S to
generate an infinite path in M that eventually enters and stays forever in an end component.

Proof. Given a scheduler T for N, we pick an MD-scheduler U such that U(u) ∈ Ei for each
u ∈ Ui. Then, the corresponding scheduler S for M behaves as T as long as T does not
choose the τ-transition to ⊥. As soon as T schedules τ then S behaves as U from this
moment on.

Vice versa, given a scheduler S for M then a corresponding scheduler T for N mimics
S as long as S has not visited a state belong to an end component Ei of M. Scheduler T
ignores S’s transitions inside an MEC Ei and takes β ∈

⋃
u∈Ui

(ActM(u) \ Ei) with the
same probability as S leaves Ei. With the remaining probability mass, S stays forever
inside Ei, which is mimicked by T by taking the τ-transition to ⊥.

For the formal definition of T, we use the following notation. For simplicity, let
us assume that init /∈ U1 ∪ . . . ∪ Uk. This yields init = init ′. Consider a finite path
π = s0 α0 s1 α1 . . .αm−1 sm in M with s0 = init, then πN is the path in N resulting from
by replacing each maximal path fragment shαh . . .αj−1sj consisting of actions inside an
Ei with state sEi

. (Here, maximality means if h > 0 then αh−1 /∈ Ei and if j < m then

αj+1 /∈ Ei.) Furthermore, let pSπ denote the probability for S to generate the path π when
starting in the first state of π.
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Let ρ be a finite path in N with first state init (recall that we suppose that M’s initial
state does not belong to an MEC, which yields init = init ′) and last(ρ) ̸= ⊥. Then, Πρ

denotes the set of finite paths π = s0 α0 s1 α1 . . .αm−1 sm in M such that (i) πN = ρ and
(ii) if sm ∈ Ui then αm−1 /∈ Ei. The formal definition of scheduler T is as follows. Let ρ be
a finite path in N where the last state s of ρ is non-terminal. If s is a state of M and does
not belong to an MEC of M and β ∈ ActM(s) then:

T(ρ)(β) =
∑
π∈Πρ

pSπ ·S(π)(β)

If s = sEi
and β ∈ ActN

(
sEi

)
\ {τ} then

T(ρ)(β) =
∑
π∈Πρ

pSπ · Prres(S,π)
M,last(π)

(
“leave Ei via action β”

)
where “leave Ei via action β” means the existence of a prefix whose action sequence consists
of actions inside Ei followed by action β. The last state of this prefix, however, could be a
state of Ui. (Note β ∈ ActN(sEi

) means that β could have reached a state outside Ui, but
there might be states inside Ui that are accessible via β.) Similarly,

T(ρ)(τ) =
∑
π∈Πρ

pSπ · Prres(S,π)
M,last(π)

(
“stay forever in Ei”

)
where “stay forever in Ei” means that only actions inside Ei are performed. By induction
on the length of ρ we obtain:

pTρ =
∑
π∈Πρ

pSπ

But this yields PrSM(♢t) = PrTN(♢t) for each terminal state t of M. Moreover the probability
under S to eventually enter and stay forever in Ei equals the probability for T to reach the
terminal state ⊥ via a path of the form ρ τ⊥ where last(ρ) = sEi

.

2.4. Automata and ω-regular languages. In order have a representation of an ω-
regular language, we use deterministic Rabin automata (DRA). A DRA constitutes a tuple
A = (Q,Σ,q0, δ, Acc) where Q is a finite set of states, Σ an alphabet, q0 the initial state,
δ : Q × Σ → Q the transition function and Acc ⊆ 2Q × 2Q the acceptance set. The
run of A on a word w = w0w1 · · · ∈ Σω is the sequence τ = q0q1 . . . of states such that
δ(qi,wi) = qi+1 for all i. It is accepting if there exists a pair (L,K) ∈ Acc such that L is
only visited finitely often and K is visited infinitely often by τ. The language L(A) is the set
of all words w ∈ Σω on which the run of A is accepting.

A good prefix π for an ω-regular language L is a finite word such that all infinite
extensions of π belong to L. An ω-regular language L is called a co-safety language if all
words in L have a prefix that is a good prefix for L. A co-safety language L is uniquely
determined by the regular set of minimal good prefixes of words in L.

The regular language of minimal good prefixes of a co-safety L which uniquely determines
L can be represented by a deterministic finite automaton (DFA). A DFA constitutes a
tuple A = (Q,Σ,q0, δ, Acc) where Q is a finite set of states, Σ an alphabet, q0 the initial
state, δ : Q × Σ → Q the transition function and Acc ⊆ Q the acceptance set. The run
of A on a finite word w = w0w1 . . .wn is the sequence τ = q0q1 . . .qn of states such that
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δ(qi,wi) = qi+1 for all i. It is accepting if qn ∈ Acc. The language L(A) is the set of all
words w ∈ Σ∗ on which the run of A is accepting.

Given an MDP M = (S,Act ,P, init) and a DFA A = (Q,Σ,q0, δ,Acc) with Σ ⊆ S∗ we
define the product MDP M⊗A = (S×Q,Act ,P ′, init ′) with P ′(<s,q>,α,<t, r>) = P(s,α, t)
if r = δ(q, s) and 0 otherwise, and init ′ = δ(q0, init). The same construction works for the
product of an MDP with a DRA. The difference comes from the acceptance condition
encoded in the second components of states of the product MDP.

3. Strict and global probability-raising causes

Our contribution starts by providing novel formal definitions for cause-effect relations in
MDPs which rely on the probability-raising (PR) principle P(E | C) > P(C) (C1) which
states that the probability of the effect is higher after the cause. Additionally, we include
temporal priority of causes (C2), stating that causes must happen before the effect. Here,
we focus on the case where both causes and effects are state properties, i.e., sets of states.

In the sequel, let M = (S,Act ,P, init) be an MDP and Eff ⊆ S \ {init} a nonempty set of
terminal states. As the effect set is fixed, the assumption that all effect states are terminal
contributes to the temporal priority (C2). We may also assume that every state s ∈ S is
reachable from init.

We consider two variants of the probability-raising condition: the global setting treats
the set Cause as a unit, while the strict view requires (C1) for all states in Cause individually.

Definition 3.1 (Global and strict probability-raising cause (GPR/SPR cause)). Let M and
Eff be as above and Cause a nonempty subset of S \Eff such that for each c ∈ Cause we have
Prmax

M ((¬Cause)U c) > 0. Then, Cause is said to be a GPR cause for Eff iff the following
condition (G) holds:

(G): For each scheduler S where PrSM(♢Cause) > 0:

PrSM( ♢Eff | ♢Cause ) > PrSM(♢Eff). (GPR)

Cause is called an SPR cause for Eff iff the following condition (S) holds:

(S) : For each state c ∈ Cause and each scheduler S where PrSM((¬Cause)U c) > 0:

PrSM( ♢Eff | (¬Cause)U c ) > PrSM(♢Eff). (SPR)

Note that we only consider sets Cause as PR cause when each state in c ∈ Cause is
accessible from init without traversing other states in Cause. This can be seen as a minimality
condition ensuring that a cause does not contain redundant elements. However, we could
omit this requirement without affecting the covered effects (events where an effect state is
reached after visiting a cause state) or uncovered effects (events where an effect state is
reached without visiting a cause state before). More concretely, whenever a set C ⊆ S \ Eff
satisfies conditions (G) or (S) then the set of states c ∈ C where M has a path from init
satisfying (¬C)U c is a GPR resp. an SPR cause. On the other hand the set Cause is disjoint
of the effect Eff to ensure temporal priority (C2).
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init

c1 c2eff noeff
1/3 1/3

1/12 1/4

1

3/4
1/4

Figure 1: A MC allowing for non-strict GPR causes

init

eff

1

Figure 2: A MC with no
PR cause

3.1. Examples and simple properties of probability-raising causes. We first observe
that SPR and GPR causes cannot contain the initial state init, since otherwise an equality
instead of an inequality would hold in (GPR) and (SPR). Furthermore as a direct consequence
of the definitions and using the equivalence of the LTL formulas ♢Cause and (¬Cause)UCause
we obtain:

Lemma 3.2 (Singleton PR causes). If Cause is a singleton then Cause is a SPR cause for
Eff if and only if Cause is a GPR cause for Eff.

The direction from SPR cause to GPR cause even holds in general as the event ♢Cause
can be expressed as a disjoint union of all events (¬Cause)U c where c ∈ Cause. Therefore, the
probability for covered effects PrSM( ♢Eff | ♢Cause ) is a weighted average of the probabilities

PrSM( ♢Eff | (¬Cause)U c ) for c ∈ Cause, which yields:

Lemma 3.3. Every SPR cause for Eff is a GPR cause for Eff.

Proof. Assume that Cause is a SPR cause for Eff in M and let S be a scheduler that reaches
Cause with positive probability. Further, let

CS
def
= {c ∈ Cause | PrSM((¬Cause)U c) > 0} and m

def
= min

c∈CS

PrSM( ♢Eff | (¬Cause)U c ).

As Cause is a SPR cause, m > PrSM(♢Eff). The set of S-paths satisfying ♢Cause is the
disjoint union of the sets of S-paths satisfying (¬Cause)U c with c ∈ CS. Hence,

PrSM(♢Eff | ♢Cause) =

∑
c∈CS

PrSM(♢Eff | (¬Cause)U c) · PrSM((¬Cause)U c)∑
c∈CS

PrSM((¬Cause)U c)
⩾ m.

As m > PrSM(♢Eff), the GPR condition (GPR) is satisfied under S.

Example 3.4 (Non-strict GPR cause). Consider the Markov chain M depicted in Figure 1
where the nodes represent states and the directed edges represent transitions labeled with
their respective probabilities. Let Eff = {eff}. Then,

PrM(♢Eff) = 1
3 + 1

3 · 1
4 + 1

12 = 1
2 , PrM(♢Eff |♢c1) = PrM,c1

(♢eff) = 1 and

PrM(♢Eff |♢c2) = PrM,c2
(♢eff) = 1

4 .

Thus, {c1} is both an SPR and a GPR cause for Eff, while {c2} is not. The set Cause = {c1, c2}
is a non-strict GPR cause for Eff as:

PrM( ♢Eff | ♢Cause ) = (13 + 1
3 · 1

4)/(
1
3 + 1

3) = ( 5
12)/(

2
3) =

5
8 >

1
2 = PrM(♢Eff).

Non-strictness follows from the fact that the SPR condition does not hold for state c2. ◁



4:12 C. Baier, J. Piribauer, and R. Ziemek Vol. 20:1

init

noeff

s

eff c

γ | 1/2

γ | 1/2

3/4 1/4 1/2 1/2

γ | 1

α β

Figure 3: MDP M from Remark 3.6
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Figure 4: MDP M from Remark 3.7

Example 3.5 (Probability-raising causes might not exist). PR causes might not exist, even
if M is a Markov chain. This applies, e.g., to the MC in Figure 2 and the effect set Eff = {eff}.
The only cause candidate is the singleton {init}. However, the strict inequality in (GPR)
or (SPR) forbids {init} to be a PR cause. The same phenomenon occurs if all non-terminal
states of a MC reach the effect states with the same probability. In such cases, however, the
non-existence of PR causes is well justified as the events ♢Eff and ♢Cause are stochastically
independent for every set Cause ⊆ S \ Eff. ◁

Remark 3.6 (Memory needed for refuting PR condition). Let M be the MDP in Figure 3,
where the notation is similar to Example 3.4 with the addition of actions α,β and γ. Let
Cause = {c} and Eff = {eff}. Only state s has a nondeterministic choice. Cause is not an PR
cause. To see this, regard the finite-memory deterministic scheduler T that schedules β only
for the first visit of s and α for the second visit of s. Then:

PrTM(♢eff) =
1

2
· 1
2
+

1

2
· 1
2
· 1 · 1

4
=

5

16
>

1

4
= PrTM(♢eff |♢c)

Denote the MR schedulers reaching c with positive probability as Sλ with Sλ(s)(α) = λ

and Sλ(s)(β) = 1−λ for some λ ∈ [0, 1[. Then, PrSλ

M,s(♢eff) > 0 and:

PrSλ

M (♢eff) =
1

2
· PrSλ

M,s(♢eff) < PrSλ

M,s(♢eff) = PrSλ

M,c(♢eff) = PrSλ

M (♢eff |♢c)

Thus, the SPR/GPR condition holds for Cause and Eff under all memoryless schedulers
reaching Cause with positive probability, although Cause is not an PR cause. ◁

Remark 3.7 (Randomization needed for refuting PR condition). Consider the MDP M in
Figure 4. Let Eff = {effunc, effcov} and Cause = {c}. Here the state effunc is not covered by
the cause whereas effcov is, hence their names. The two MD-schedulers Sα and Sβ which
select α resp. β for the initial state init are the only deterministic schedulers. As Sα does
not reach c, it is irrelevant for the PR conditions. On the other hand Sβ satisfies (SPR)
and (GPR) since

Pr
Sβ

M (♢Eff |♢c) =
1

2
>

1

4
= Pr

Sβ

M (♢Eff).

The MR scheduler T which selects α and β with probability 1
2 in init also reaches c with

positive probability but violates (SPR) and (GPR) as

PrTM(♢Eff |♢c) =
1

2
<

5

8
=

1

2
+

1

2
· 1
2
· 1
2
= PrTM(♢Eff).
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Remark 3.8 (Cause-effect relations for regular classes of schedulers). The definitions of
PR causes in MDPs impose constraints for all schedulers reaching a cause state. This
condition is fairly strong and can often lead to the phenomenon that no PR cause exists.
E.g, in order for Cause to not be a PR cause of any kind it suffices if there is a scheduler S
which reaches a cause state but also reaches Eff from the initial state with some extreme
probability of 0 or 1. Replacing M with an MDP resulting from the synchronous parallel
composition of M with a deterministic finite automaton representing a regular constraint on
the scheduled state-action sequences (e.g., “alternate between actions α and β in state s”
or “take α on every third visit to state s and actions β or γ otherwise”) leads to a weaker
notion of PR causality. In such a construction the considered class of schedulers can be
significantly reduced. This can be useful to obtain more detailed information on cause-effect
relationships in special scenarios, be it at design time where multiple scenarios (regular
classes of schedulers) are considered or for a post-hoc analysis where one seeks for the causes
of an occurred effect and where information about the scheduled actions is extractable from
log files or the information gathered by a monitor. ◁

Remark 3.9 (Action PR causality). Our notions of PR causes are purely state-based
with PR conditions that compare probabilities under the same scheduler. However, in
combination with model transformations, the proposed notions of PR causes are also
applicable for reasoning about other forms of PR causality.

Suppose, the task is to check whether taking action α in state s raises the effect
probabilities compared to never scheduling α in state s. This form of action causality was
discussed in an example in [DFT20]. We argue that we can deal with this kind of causality
too.

For this we assume there are no cycles in M containing s. This is a strong assumption
as we do not want to force the action α to be taken in the first visit to s or to be always
taken when visiting s. Therefore, our framework can not handle this kind of action causality
if the state in question is part of a cycle.

Let M0 and M1 be copies of M with the following modifications: In M0, the only
enabled action of state s is α, while in M1 the enabled actions of state s are the elements of
ActM(s) \ {α}. The MDP N then has a fresh initial state init which transitions with equal
probabilities 1/2 to the copies of s in M0 and M1. The action α raises the effect probability
in M if and only if for all scheduler S of N the copy of s in M0 satisfies (SPR) for the union
of effect sets of both copies in N. This idea can be generalized to check whether scheduler
classes satisfying a regular constraint have higher effect probability compared to all other
schedulers. In this case, we deal with an MDP N as above where M0 and M1 are defined as
the synchronous product of deterministic finite automata and M.

To demonstrate this consider the MDP M from Figure 5. We are interested whether
taking α in s raises the probability to reach the effect state eff. The constructed MDP N

with two adapted copies of M is depicted in Figure 6. For all scheduler S of N the state s0
satisfies (SPR) by

PrSN(♢{eff0, eff1} | ♢s0) = 1/4 > 1/8 = PrSN(♢{eff0, eff1}),

which means that the action α does indeed raise the probability of reaching eff in M. ◁
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Figure 5: MDP M from Remark 3.9
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Figure 6: N with the two copies M0 and M1

4. Checking the existence of PR causes and the PR conditions

We now turn to algorithms for checking whether a given set Cause is an SPR or GPR cause
for Eff in M. Since the minimality condition (for all c ∈ Cause : Prmax

M (¬CauseU c) > 0)
of PR causes is verifiable by standard model checking techniques in polynomial time, we
concentrate on checking the probability-raising conditions (S) and (G). In the special case
where M is a Markov chain, both conditions (SPR) and (GPR) can be checked in polynomial
time by computing the corresponding probabilities. Thus, the interesting case is checking the
PR conditions in MDPs. In case of SPR causality this is closely related to the existence of
PR causes and decidable in polynomial time (Section 4.1), while checking the GPR condition
is more complex and polynomially reducible to (the non-solvability of) a quadratic constraint
system (Section 4.2).

We start with the preliminary consideration that for both conditions (S) and (G), it
suffices to consider a class of worst-case schedulers, which are minimizing the probability to
reach an effect state from every cause state. For this we transform the MDP in question
according to the cause candidate in question.

Notation 4.1 (MDP with minimal effect probabilities from cause candidates). If C ⊆ S
then we write M[C] for the MDP resulting from M by removing all enabled actions and
transitions of the states in C. Instead, M[C] has a fresh action γ which is enabled exactly

in the states s ∈ C with the transition probabilities PM[C]
(s,γ, eff) = Prmin

M,s(♢Eff) and

PM[C]
(s,γ, noeff) = 1−Prmin

M,s(♢Eff). Here, eff is a fixed state in Eff and noeff a (possibly

fresh) terminal state not in Eff. We write M[c] if C = {c} is a singleton. ◁

As an example for the model transformation consider the abstract MDP M from Figure
7 for the singleton set C = {c}. The transformed MDP M[c] is seen in Figure 8, where a fresh
state noeff is added. Furthermore, all outgoing transitions from c are deleted a replaced by
a fresh action γ with exactly two transitions corresponding to PM[c]

(c,γ, eff) = Prmin
M,c(♢Eff)

and PM[c]
(c,γ, noeff) = 1−Prmin

M,c(♢Eff).

Lemma 4.2. Let M = (S,Act ,P, init) be an MDP and Eff ⊆ S a set of terminal states. Let
Cause ⊆ S \Eff. Then, Cause is an SPR cause (resp. a GPR cause) for Eff in M if and only
if Cause is an SPR cause (resp. a GPR cause) for Eff in M[Cause].

Obviously, for all c ∈ Cause : Prmax
M (¬CauseU c) > 0 holds for Cause in M if and only if

it holds for Cause in M[Cause]. Furthermore, it is clear all SPR resp. GPR causes of M are
also SPR resp. GPR causes in M[Cause]. So, it remains to prove the converse direction. This
will be done in Lemma 4.3 for SPR causes and in Lemma 4.4 for GPR causes.
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Figure 8: Transformed MDP M[c]

Lemma 4.3 (Criterion for strict probability-raising causes). Suppose Cause is an SPR cause
for Eff in M[Cause]. Then, Cause is an SPR cause for Eff in M.

Proof. We show that Cause is an SPR cause in M by showing (S) for all states in Cause.
Thus, we fix a state c ∈ Cause. Recall also that we assume the states in Eff to be terminal.
Let ψc = (¬Cause)U c, wc = Prmin

M,c(♢Eff) and let Υc denote the set of all schedulers U for
M such that

• PrUM(ψc) > 0 and

• Pr
res(U,π)
M,c (♢Eff) = wc for each finite U-path π from init to c.

Clearly, PrUM(♢c∧ ♢Eff) = PrUM(♢c) ·wc for U ∈ Υc. As Cause is an SPR cause in M[Cause]

we have:

wc > PrUM(♢Eff) for all schedulers U ∈ Υc. (4.1)

The task is to prove that (S) holds for c and all schedulers of M with PrSM(ψc) > 0.

Suppose S is a scheduler for M with PrSM(ψc) > 0. Then PrSM(ψc∧♢Eff) ⩾ PrSM(ψc) ·
wc. Moreover, there exists a scheduler U = US ∈ Υc with

PrSM(ψc) = PrUM(ψc) and PrSM((¬ψc)∧ ♢Eff) = PrUM((¬ψc)∧ ♢Eff).

To see this, consider the scheduler U that behaves as S as long as c is not reached. As soon
as U has reached c, scheduler U switches mode and behaves as an MD-scheduler minimizing
the probability to reach an effect state. The SPR condition (S) holds for c and S if and
only if

PrSM(ψc ∧ ♢Eff)

PrSM(ψc)
> PrSM(♢Eff) (4.2)

Using PrSM(♢Eff) = PrSM(ψc ∧ ♢Eff) + PrSM((¬ψc) ∧ ♢Eff), we can equivalently convert
condition (4.2) for c and S to

PrSM(ψc ∧ ♢Eff) · 1− PrSM(ψc)

PrSM(ψc)
> PrSM((¬ψc)∧ ♢Eff) (4.3)
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The remaining task is now to derive (4.3) from (4.1). Applying (4.1) to scheduler U = US

yields:

wc > PrUM(ψc ∧ ♢Eff) + PrUM((¬ψc)∧ ♢Eff)

= PrSM(ψc) ·wc + PrSM((¬ψc)∧ ♢Eff).

We conclude:

PrSM(ψc ∧ ♢Eff) · 1− PrSM(ψc)

PrSM(ψc)
⩾ PrSM(ψc) ·wc ·

1− PrSM(ψc)

PrSM(ψc)

=
(
1− PrSM(ψc)

)
·wc

> PrSM((¬ψc)∧ ♢Eff).

Thus, (4.3) holds for c and S.

Lemma 4.4 (Criterion for GPR causes). Suppose Cause is a GPR cause for Eff in M[Cause].
Then, Cause is a GPR cause for Eff in M.

Proof. From the assumption that Cause is a GPR cause for Eff in M[Cause], we can conclude
that the GPR condition (GPR) holds for all schedulers S that satisfy

PrSM(♢Cause) > 0 and Pr
res(S,π)
M,c (♢Eff) = Prmin

M,c(♢Eff)

for each finite S-path from the initial state init to a state c ∈ Cause. To prove that (GPR)
holds for all schedulers S that satisfy PrSM(♢Cause) > 0, we introduce the following notation:
We write

• Σ>0 for the set of all schedulers S such that PrSM(♢Cause) > 0,

• Σ>0,min for the set of all schedulers with PrSM(♢Cause) > 0 such that

Pr
res(S,π)
M,c (♢Eff) = Prmin

M,c(♢Eff)

for each finite S-path from the initial state init to a state c ∈ Cause.

It now suffices to show that for each scheduler S ∈ Σ>0 there exists a scheduler S ′ ∈ Σ>0,min

such that if (GPR) holds for S ′ then (GPR) holds for S. So, let S ∈ Σ>0.
For c ∈ Cause, let Πc denote the set of finite paths π = s0 α0 s1 α1 . . .αn−1 sn with

s0 = init, sn = c and {s0, . . . , sn−1} ∩ (Cause ∪ Eff) = ∅. Let

wS
π = Pr

res(S,π)
M,c (♢Eff)

Furthermore, let pSπ denote the probability for (the cylinder set of) π under scheduler S.
Then

PrSM((¬Cause)U c) =
∑
π∈Πc

pSπ .

Moreover:

PrSM(♢Eff) = PrSM(¬CauseUEff) +
∑

c∈Cause

∑
π∈Πc

pSπ ·wS
π and

PrSM( ♢Eff | ♢Cause ) =
1

PrSM(♢Cause)
·

∑
c∈Cause

∑
π∈Πc

pSπ ·wS
π
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Thus, the condition (GPR) holds for the scheduler S ∈ Σ>0 if and only if

PrSM(¬CauseUEff) +
∑

c∈Cause

∑
π∈Πc

pSπ ·wS
π <

1

PrSM(♢Cause)
·
∑

c∈Cause

∑
π∈Πc

pSπ ·wS
π .

The latter is equivalent to:

PrSM(♢Cause)·PrSM(¬CauseUEff) + PrSM(♢Cause)·
∑

c∈Cause

∑
π∈Πc

pSπ ·wS
π <

∑
c∈Cause

∑
π∈Πc

pSπ ·wS
π ,

which again is equivalent to:

PrSM(♢Cause) · PrSM(¬CauseUEff) <
(
1− PrSM(♢Cause)

)
·
∑

c∈Cause

∑
π∈Πc

pSπ ·wS
π . (4.4)

Pick an MD-scheduler T that minimizes the probability to reach Eff from every state. In
particular, wc = wT

π ⩽ wS
π for every state c ∈ Cause and every path π ∈ Πc (recall

that wc = Prmin
M,c(♢Eff)). Moreover, the scheduler S can be transformed into a scheduler

ST ∈ Σ>0,min that is “equivalent” to S with respect to the global probability-raising
condition. More concretely, let ST denote the scheduler that behaves as S as long as S has
not yet visited a state in Cause and behaves as T as soon as a state in Cause has been reached.

Thus, pSπ = pST
π and res(ST,π) = T for each π ∈ Πc. This yields that the probability to

reach c ∈ Cause from init is the same under S and ST, i.e., Pr
S
M(♢c) = PrST

M (♢c). Therefore

PrSM(♢Cause) = PrST
M (♢Cause). The latter implies that ST ∈ Σ>0, and hence ST ∈ Σ>0,min.

Moreover, S and ST reach Eff without visiting Cause with the same probability, i.e.,

PrSM(¬CauseUEff) = PrST
M (¬CauseUEff). But this yields: if (4.4) holds for ST then (4.4)

holds for S. As (4.4) holds for ST by assumption, this completes the proof.

4.1. Checking the strict probability-raising condition and the existence of causes.
The basis of both checking the existence of PR causes or checking the SPR condition (S) for
a given cause candidate is the following polynomial time algorithm to check whether (S)
holds in a given state c of M for all schedulers S with PrSM(♢c) > 0:

Algorithm 4.5.

Input: state c ∈ S, set of terminal states Eff ⊆ S
Task: Decide whether (SPR) holds in c for all schedulers S.

0. Compute qs = Prmax
M[c],s

(♢Eff) and wc = Prmin
M,c(♢Eff) for each state s in M[c] .

1. If qinit < wc, then return “yes, (SPR) holds for c”.
2. If qinit > wc, then return “no, (SPR) does not hold for c”.
3. Suppose qinit = wc. Let A(s) = {α ∈ ActM[c]

(s) | qs =
∑

t∈S[c]
PM[c]

(s,α, t) · qt} for
each non-terminal state s. Let Mmax

[c] denote the sub-MDP of M[c] induced by the

state-action pairs (s,α) where α ∈ A(s).
3.1 If c is reachable from init in Mmax

[c] , then return “no, (SPR) does not hold for c”.

3.2 If c is not reachable from init in Mmax
[c] , then return “yes, (SPR) holds for c”.

As the construction of the MDP M[c] suggests, the two values compared by the algorithm
are instances of worst-case scheduler. On one hand, the probability to reach Eff starting in
c is minimized, while it is maximized if c was not seen yet. If in such a scenario we have
case 1. qinit < wc then c obviously satisfies (SPR). In the case 2. qinit > wc we can build a
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Figure 9: Example MDP M[c]
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Figure 10: Transformed MDP Mmax
[c]

scheduler which refuses (SPR) for c. Lastly, in the corner case 3. qinit = wc a treatment by
a reachability analysis is needed, as seen in the following Example 4.6.

Example 4.6. For the transformation to Mmax
[c] consider M[c] from Figure 9. For Cause = {c}

we are in case 3. of Algorithm 4.5 as qinit = Prmax
M[c],s

(♢Eff) = 1/4 = Prmin
M,c(♢Eff) = wc. The

only non-deterministic choice is in the state init. We have A(init) = {α} since α is the only
maximizing action for ♢eff in init. Thus, in the resulting MDP Mmax

[c] , depicted in Figure 10,

all other actions in init are deleted. We are actually in case 3.2 as c is not reachable from
the initial state in Mmax

[c] which means that (SPR) holds for c. ◁

Lemma 4.7. Algorithm 4.5 is sound and runs in polynomial time.

Proof. First, we show the soundness of Algorithm 4.5. By the virtue of Lemma 4.2 stating
the soundness of the transformation M to M[c] it suffices to show that Algorithm 4.5 returns
the correct answers “yes” or “no” when the task is to check whether the singleton Cause = {c}
is an SPR cause in N = M[c]. Recall the notation qs = Prmax

M[c],s
(♢Eff). We abbreviate

q = qinit. Note that (¬Cause)U c is equivalent to ♢c as c ∈ Cause.
For every scheduler S of N we have PrSN,c(♢Eff) = wc. Thus, Pr

S
N(♢Eff | ♢c) = wc if

S is a scheduler of N with PrSN(♢c) > 0.
Algorithm 4.5 correctly answers “no” (case 2 or 3.1) if wc = 0. Suppose that wc > 0.

Thus, the SPR condition for c reduces to PrSN(♢Eff) < wc for all schedulers S of N with

PrSN(♢c) > 0.

1. of Algorithm 4.5 (i.e., if q < wc), the answer “yes” is sound as Prmax
N (♢Eff) = q < wc.

2. (i.e., if q > wc) Let T be an MD-scheduler with PrTN,s(♢Eff) = qs for each state s and

pick an MD-scheduler S with PrSN(♢c) > 0. It is no restriction to suppose that T and S
realize the same end components of N. (Note that if state s belongs to an end component
that is realized by T then s contained in a bottom strongly connected component of the
Markov chain induced by T. But then qs = 0, i.e., no effect state is reachable from s in
N. Recall that all effect states are terminal and thus not contained in end components.
But then we can safely assume that T and S schedule the same action for state s.) Let
λ be any real number with 1 > λ > wc

q and let K denote the sub-MDP of N with state
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space S where the enabled actions of state s are the actions scheduled for s under one
of the schedulers T or S. Let now U be the MR-scheduler λT⊕ (1−λ)S defined as in
Lemma 2.2 for the EC-free MDP resulting from K when collapsing K’s end components
into a single terminal state. For the states belonging to an end component of K, U
schedules the same action as T and S. Then, PrUN(♢t) = λPrTN(♢t) + (1−λ)PrSN(♢t) for
all terminal states t of N and t = c. Hence:

PrUN(♢c) ⩾ (1−λ) · PrSM(♢c) > 0 and

PrUN(♢Eff) ⩾ λ · PrTM(♢Eff) = λ · q > wc

Thus, scheduler U is a witness why (SPR) does not hold for c.
3.1 Pick an MD-scheduler S of Mmax

[c] such that c is reachable from init via S and

PrSN,s(♢Eff) = qs for all states. Thus, (SPR) does not hold for c and scheduler S.

3.2 We have PrSN(♢c) = 0 for all schedulers S for N with PrSN(♢Eff) = q = wc. But then

PrSN(♢c) > 0 implies PrSN(♢Eff) < wc as required in (SPR).

The polynomial runtime of Algorithm 4.5 follows from the fact that minimal and maximal
reachability probabilities and hence also the MDPs N = M[c] and its sub-MDP Mmax

[c] can

be computed in polynomial time.

By applying Algorithm 4.5 to all states c ∈ Cause and standard algorithms to check the
existence of a path satisfying (¬Cause)U c for every state c ∈ Cause, we obtain:

Theorem 4.8 (Checking SPR causes). The problem “given M, Cause and Eff, check whether
Cause is a SPR cause for Eff in M” is solvable in polynomial-time.

Remark 4.9 (Memory requirements for (S)). As the soundness proof for Algorithm 4.5
shows: If Cause does not satisfy (S), then there is an MR-scheduler S for M[Cause] witnessing
the violation of (SPR). Scheduler S corresponds to a finite-memory (randomized) scheduler
T with two memory cells for M: “before Cause” (where T behaves as S) and “after Cause”
(where T behaves as an MD-scheduler minimizing the effect probability). ◁

Lemma 4.10 (Criterion for the existence of PR causes). Let M be an MDP and Eff a
nonempty set of states. The following statements are equivalent:

(a) Eff has an SPR cause in M,
(b) Eff has a GPR cause in M,
(c) there is a state c0 ∈ S \ Eff such that the singleton {c0} is an SPR cause (and therefore a

GPR cause) for Eff in M.

Thus, the existence of SPR and GPR causes can be checked with Algorithm 4.5 in polynomial
time.

Proof. Obviously, statement (c) implies statements (a) and (b). The implication “(a) =⇒
(b)” follows from Lemma 3.3. We now turn to the proof of “(b) =⇒ (c)”. For this, we assume
that we are given a GPR cause Cause for Eff in M. For c ∈ Cause, let wc = Prmin

M,c(♢Eff).
Pick a state c0 ∈ Cause such that wc0 = max{wc : c ∈ Cause}. For every scheduler S for M
that minimizes the effect probability whenever it visits a state in Cause, and visits Cause with
positive probability, the conditional probability PrSM(♢Eff |♢Cause) is a weighted average of
the values wc, c ∈ Cause, and thus bounded by wc0 . Using Lemma 4.2 we see that it is
sufficient to only consider the minimal probabilities wc = Prmin

M,c(♢Eff). Thus, we conclude

that {c0} is both an SPR and a GPR cause for Eff.
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4.2. Checking the global probability-raising condition. Throughout this section, we
suppose that both the effect set Eff and the cause candidate Cause are fixed disjoint subsets
of the state space of the MDP M = (S,Act ,P, init), and address the task to check whether
Cause is a global probability-raising cause for Eff in M. As the minimality condition (for
all c ∈ Cause : Prmax

M (¬CauseU c) > 0) can be checked in polynomial time using a standard
graph algorithm, we will concentrate on an algorithm to check the probability-raising
condition (GPR). We start by stating the main results of this section.

Theorem 4.11. Given M, Cause and Eff, deciding whether Cause is a GPR cause for Eff
in M can be done in coNP.

In order to provide an algorithm, we perform a model transformation after which the
violation of (GPR) by a scheduler S can be expressed solely in terms of the expected
frequencies of the state-action pairs of the transformed MDP under S. This allows us to
express the existence of a scheduler witnessing the non-causality of Cause in terms of the
satisfiability of a quadratic constraint system. Thus, we can restrict the quantification in
(G) to MR-schedulers in the transformed model. We trace back the memory requirements
to M[Cause] and to the original MDP M yielding the second main result.

Theorem 4.12. Let M be an MDP with effect set Eff as before and Cause a set of non-effect
states which satisfies for all c ∈ Cause : Prmax

M (¬CauseU c) > 0. If Cause is not a GPR cause
for Eff, then there is an MR-scheduler for M[Cause] refuting the GPR condition for Cause
in M[Cause] and a finite-memory scheduler for M with two memory cells refuting the GPR
condition for Cause in M.

The remainder of this section is concerned with the proofs of both Theorem 4.11 and The-
orem 4.12. For this, we suppose that Cause satisfies for all c ∈ Cause : Prmax

M (¬CauseU c) > 0
which can be checked preemptively in polynomial time as argued before.

Checking the GPR condition (Proof of Theorem 4.11). We will start with a
polynomial-time model transformation into a kind of “canonical form” after which we
can make the following assumptions when checking the GPR condition of Cause for Eff

(A1): Eff = {effunc, effcov} consists of two terminal states.
(A2): For every c ∈ Cause, there is a single enabled action Act(c) = {γ}, and there is

wc ∈ [0, 1] ∩ Q such that P(c,γ, effcov) = wc and P(c,γ, noefffp) = 1−wc, where
noefffp is a terminal non-effect state and noefffp and effcov are only accessible via
γ-transition from the c ∈ Cause.

(A3): M has no end components and there is a further terminal state noefftn and an action
τ such that τ ∈ Act(s) implies P(s, τ, noefftn) = 1.

The terminal states effunc, effcov, noefffp and noefftn are pairwise distinct. M can have further
terminal states representing true negatives. However, these can be identified with noefftn.

Intuitively, effcov stands for covered effects (“Eff after Cause”) and can be seen as a true
positive, while effunc represents the uncovered effects (“Eff without preceding Cause”) and
corresponds to a false negative. Let S be a scheduler in M. Note that PrSM((¬Cause)UEff) =

PrSM(♢effunc) and PrSM(♢(Cause∧♢Eff)) = PrSM(♢effcov). As the cause states can not reach

each other we also have PrSM((¬Cause)U c) = PrSM(♢c) for each c ∈ Cause. The intuitive
meaning of noefffp is a false positive (“no effect after Cause”), while noefftn stands for true

negatives where neither the effect nor the cause is observed. Note that PrSM(♢(Cause ∧
¬♢Eff)) = PrSM(♢noefffp) and PrSM(¬♢Cause∧ ¬♢Eff)) = PrSM(♢noefftn).
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Figure 12: Transformed MDP N satisfying
assumptions (A1)-(A3)

Establishing assumptions (A1)-(A3): We justify the assumptions as we can transform
M into a new MDP of the same asymptotic size satisfying the above assumptions. Thanks
to Lemma 4.2, we may suppose that M = M[Cause] without changing the satisfaction of
(G). Thus, from cause states c ∈ Cause there are only two outgoing transitions, either to a
terminal effect state eff with probability Prmin

c (♢Eff) or to a terminal non-effect state noeff
with the remaining probability (see Notation 4.1). We then may rename the effect state
eff and the non-effect state noeff reachable from Cause into effcov and noefffp, respectively.
Furthermore, we collapse all other effect states into a single state effunc and all true negative
states into a single state noefftn. Similarly, by renaming and possibly duplicating terminal
states we also suppose that noefffp has no other incoming transitions than the γ-transitions
from the states in Cause. This ensures (A1) and (A2). For (A3) consider the set T of terminal
states in the MDP obtained so far. We remove all non-trivial end components by switching
to the MEC-quotient [dA97], i.e., we collapse all states that belong to the same MEC E into
a single state sE representing the MEC while ignoring the actions inside E. Additionally, we
add a fresh deterministic τ-transition from the states sE representing MECs to noefftn (i.e.,
P(sE, τ, noefftn) = 1). The τ-transitions from states sE to noefftn can then be used to mimic
cases where the scheduler of the original MDP enters the end component E and stays there
forever.

In particular, consider the MEC-quotient N of M[Cause] (see Definition 2.3). Let noefftn

be the state to which we add a τ-transition with probability 1 from each MEC that we
collapse in the MEC-quotient. That is, noefftn = ⊥ with the notations of Definition 2.3.

We demonstrate these transformations on the abstract MDP M from Figure 11, where
the dotted circles correspond to sets of states in the MDP. The MDP already satisfies
M = M[c]. We rename eff reachable from Cause to effcov and noeff to noefffp. Effect states
not reachable from Cause collapse to effunc. There are no terminal non-effect states not
reachable from c, which would collapse to noefftn. The MEC quotient collapses MECs to
states sEi

only keeping outgoing transitions. There is a fresh action τ in states sEi
to noefftn.

Thus, we get N from Figure 12.
The following Lemma 4.13 and Corollary 4.14 prove the soundness of the model trans-

formation.
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Lemma 4.13. For each scheduler S for M[Cause], there is a scheduler T for N, and vice
versa, such that

• PrSM[Cause]
(♢Eff) = PrTN(♢Eff),

• PrSM[Cause]
(♢Cause) = PrTN(♢Cause), and

• PrSM[Cause]
(♢Cause∧ ♢Eff) = PrTN(♢effcov).

Proof. By Lemma 2.4, there is a scheduler T for N for each scheduler S for M[Cause] such
that each terminal state is reached with the same probability under T in N and under S
in M[Cause]. The state effcov is present in M[Cause] under the name eff. The state eff is
furthermore reached in M[Cause] if and only if ♢Cause∧ ♢Eff is satisfied along a run. The
set of terminal states in Eff is obtained from the set Eff in M[Cause] by collapsing states. As
a scheduler S can be viewed as a scheduler for both MDPs and these MDPs agree except
for the terminal states, the first equality follows as well. As the probability to reach Cause
is the sum of the probabilities to reach the terminal states effcov and noefffp in N and as
these states are only renamed in N in comparison to M[Cause], the claim follows.

From Lemma 4.13 and Lemma 4.2, we conclude the following corollary that justifies
working under assumptions (A1)-(A3).

Corollary 4.14. The set Cause is a GPR cause for Eff in M if and only if Cause is a GPR
cause for Eff in N.

Proof. By Lemma 4.13, for each scheduler S for M[Cause], there is a scheduler T for N such
that all relevant probabilities agree, and vice versa. So, Cause is a GPR cause for Eff in
M[Cause] if and only if it is a GPR cause in N. By Lemma 4.2, Cause is a GPR cause for Eff
in M[Cause] if and only if it is a GPR cause in M.

Note, however, that the transformation changes the memory-requirements of schedulers
witnessing that Cause is not a GPR cause for Eff. We will address the memory requirements
in the original MDP later. With assumptions (A1)-(A3), condition (G) can be reformulated
as follows:

Lemma 4.15. Under assumptions (A1)-(A3), Cause satisfies (G) if and only if for each
scheduler S with PrSM(♢Cause) > 0 the following condition holds:

PrSM(♢Cause) · PrSM(♢effunc) <
(
1−PrSM(♢Cause)

)
·
∑

c∈Cause

PrSM(♢c) ·wc (GPR-1)

With assumptions (A1)-(A3), a terminal state of M is reached almost surely under any
scheduler after finitely many steps in expectation. Given a scheduler S for M recall the
definition of expected frequencies of state action-pairs (s,α), states s ∈ S and state-sets
T ⊆ S under S:

freqS(s,α)
def
= ES

M(number of visits to s in which α is taken)

freqS(s)
def
=

∑
α∈Act(s)

freqS(s,α), freqS(T)
def
=

∑
s∈T

freqS(s).

Let T be one of the sets {effcov}, {effunc}, Cause, or a singleton {c} with c ∈ Cause. As
T is visited at most once during each run of M (assumptions (A1) and (A2)), we have
PrSN(♢T) = freqS(T) for each scheduler S. This allows us to express the violation of (G)
in terms of a quadratic constraint system over variables for the expected frequencies of



Vol. 20:1 PROBABILITY-RAISING CAUSALITY IN MDPS 4:23

state-action pairs. Let StAct denote the set of state-action pairs in M. We consider the
following constraint system over the variables xs,α for each (s,α) ∈ StAct where we use the
short form notation xs =

∑
α∈Act(s) xs,α:

xs,α ⩾ 0 for all (s,α) ∈ StAct (S1)

xinit = 1+
∑

(t,α)∈StAct

xt,α · P(t,α, init) (S2)

xs =
∑

(t,α)∈StAct

xt,α · P(t,α, s) for all s ∈ S \ {init} (S3)

Using well-known results for MDPs without ECs (see, e.g., [Kal20, Theorem 9.16]), given a
vector x ∈ RStAct , then x is a solution to (S1) and the balance equations (S2) and (S3) if and
only if there is a (possibly history-dependent) scheduler S for M with xs,α = freqS(s,α) for
all (s,α) ∈ StAct if and only if there is an MR-scheduler S for M with xs,α = freqS(s,α)
for all (s,α) ∈ StAct .

The violation of (GPR-1) in Lemma 4.15 and the condition PrSM(♢Cause) > 0 can be
reformulated in terms of the frequency-variables as follows where xCause is an abbreviation
for

∑
c∈Cause xc:

0 ⩾
(
1− xCause

)
·
∑

c∈Cause

xc ·wc − xCause · xeffunc (S4)

xCause > 0 (S5)

Lemma 4.16. Under assumptions (A1)-(A3), the set Cause is not a GPR cause for Eff in
M iff the constructed quadratic system of inequalities (S1)-(S5) has a solution.

We can now prove our first main Theorem 4.11 of this subsection, stating that deciding
the GPR condition can be done in coNP.

Proof of Theorem 4.11. The quadratic system of inequalities can be constructed from M,
Cause, and Eff in polynomial time. Except for the strict inequality constraint in (S5), it has
the form of a quadratic program, for which the threshold problem can be decided in NP by
[Vav90]. We will prove that also with this strict inequality, it can be checked in NP whether
the system (S1)-(S5) has a solution. As the system of inequalities is expressing the violation
of (GPR), deciding whether a set Cause is a GPR cause can then be done in coNP.

To show that satisfiability of the system (S1)-(S5) is in NP, we will provide a non-
deterministic algorithm that runs in polynomial time and finds a solution if one exists. Some
of the arguments are similar to the arguments used in [Vav90]. Additionally, we will rely on
the implicit function theorem.

We begin by proving what a solution to (S1)-(S5) can be assumed to look like. Thus
assume that a solution to (S1)-(S5) exists. There are two possible cases:

Case 1: All solutions to (S1)-(S3) and (S5) satisfy (S4). Then, in particular, the frequency
values of an MD-scheduler maximizing the probability to reach Cause are a solution
to (S1)-(S3) and (S5) and hence to (S4) in this case.



4:24 C. Baier, J. Piribauer, and R. Ziemek Vol. 20:1

Case 2: There are solutions to (S1)-(S3) and (S5) that violate (S4). The space of feasible
points for conditions (S1)-(S3) and (S5) is connected. The right hand side of (S4)(

1− xCause
)
·
∑

c∈Cause

xc ·wc − xCause · xeffunc

is continuous. Hence, as there are also solutions to (S1)-(S3) and (S5) that satisfy (S4)
by assumption, there is a solution to (S1)-(S3) and (S5) that satisfies(

1− xCause
)
·
∑

c∈Cause

xc ·wc − xCause · xeffunc = 0. (S4’)

Now, let us take a closer look at Case 2: First of all, we add the equation

xCause =
∑

c∈Cause

xc (S6)

to our system. Thus, the variables are xCause and xs,α for each (s,α) ∈ StAct . Obviously,
this does not influence the satisfiability. Equation (S4’) now contains the new variable xCause,
which is not an abbreviation anymore. We write x for the vector of variables xs,α with
(s,α) ∈ StAct .

In Case 2, there is a solution (x∗, x∗Cause) such that the maximal possible number of
variables is 0 and such that x∗Cause is maximal among all such solutions. Let X′ be the set of
variables that are 0 in (x∗, x∗Cause). We remove all variables from X′ from all constraints by
setting them to 0 and call the resulting system (T1)-(T6) where (T4) is obtained from (S4’),
while all other equations (Ti) are obtained from (Si), by removing the chosen variables. We
then collect the remaining variables in the vector v = (y,yCause). Let (y∗,y∗Cause) be the
solution (x∗, x∗Cause) after the variables in X′ have been removed. Thus, all values in this
vector are positive.

Define the function f as the right hand side of (T4):

f(y,yCause) =
(
1− yCause

)
·
∑

c∈Cause

yc ·wc − yCause · yeffunc ,

where the variables y are as the original variables x after the variables in X′ have been
removed.

Now, we apply the implicit function theorem: Observe that

∂f(y,yCause)

∂yCause
= −

∑
c∈Cause

yc ·wc − yeffunc .

Evaluated at (y∗,y∗Cause), this value is non-zero as all summands are negative and there
are at least some of the variables in the abbreviation yc with c ∈ Cause left, i.e., not
removed because they were not 0 due to the original constraint (S5). So, we can apply the
implicit function theorem, which guarantees us the existence of a function g(y), such that
g(y∗) = y∗Cause and, for all y′ in an open ball B1 around y∗, we have

f(y′,g(y′)) = 0.

By the implicit function theorem, we can explicitly compute the gradient

∇g =

(
∂g(y)

∂y1
, . . . ,

∂g(y)

∂yk

)
= −

(
∂f(y,yCause)

∂yCause

)−1

·
(
∂f(y,yCause)

∂y1
, . . . ,

∂f(y,yCause)

∂yk

)
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of the derivatives on B1 for the appropriate k from the derivatives of f. Note that on B1,
the gradient ∇g is 0 iff

H(y,yCause)
def
=

(
∂f(y,yCause)

∂y1
, . . . ,

∂f(y,yCause)

∂yk

)
is 0. Furthermore, all entries of H(y,yCause) are linear in the variables v as the function f is
quadratic. As the function g has a local maximum in y∗, we know that ∇g evaluated at y∗

is 0.
Equations (T2), (T3), and (T6) are linear equations in the remaining variables v. We

can rewrite these three equations with a matrixM and a vector b whose entries can easily be
expressed in terms of the coefficients of the original system (again, after the set of variables
X′ has been removed) as

Mv = b.

The solutions to this equation form an r-dimensional affine space W. It can be written as

W = {c0 + c1 · z1 + · · ·+ cr · zr︸ ︷︷ ︸
def
=h(z1,...,zr)

| (z1, . . . , zr) ∈ Rr}

for some vectors c0, c1, . . . , cr which can be computed from M and b in polynomial time.
Let B2 be an open ball in Rr such that h(B2) ⊆ B1 and such that h(B2) contains

(y∗,y∗Cause). We claim that g ◦ h : B2 → R has an isolated local maximum at z∗
def
=

h−1(y∗,y∗Cause). It is clear that g ◦ h has a local maximum since g has a local maxi-
mum at (y∗,y∗Cause). Suppose now, that g ◦ h does not have an isolated local maximum at
h−1(y∗,y∗Cause). As h is an affine map and the graph of g is the solution to a quadratic
equation, this is only possible if there is a direction d ∈ Rr \ {0} such that

g ◦ h(z∗) = g ◦ h(z∗ + t · d) (4.5)

for all t ∈ R. Due to the boundedness of the polyhedron described by conditions (T1)-(T3),
(T5) and (T6) and since z∗ lies in the interior of this polyhedron, this means that there
must be a value q ∈ R such that (h(z∗ + q · d),g ◦ h(z∗ + q · d)) provides a solution v to
equations (T1)-(T3), (T5) and (T6) with an additional 0. By the definition of g, this solution
furthermore satisfies (T4) and, by equation (4.5), it still satisfies (T5). This contradicts the
choice of the original solution (x∗, x∗Cause).

So, g ◦ h : B2 → R has an isolated local maximum at z∗. This implies that on an open
ball around z∗, the point z∗ is the only solution to

∇g(h(z)) = 0

and consequently, the only solution to

H(h(z)) = 0.

Since H(h(z)) is a vector of linear expressions in z, this implies that z∗ is the only solution
on Rr to H(h(z)) = 0. This is the key result that we need to provide a non-deterministic
polynomial-time algorithm to check the satisfiability of the original constraint system.

Let us now describe the algorithm: The algorithm begins by computing the frequency
values of an MD-scheduler as in Case 1 in polynomial time and checks whether the resulting
vector of frequency values satisfies (S1)-(S5). If this is the case, the algorithm returns that
the system is satisfiable.
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If this is not the case, the algorithm tries to compute a solution to (S1)-(S3), (S5), and
(S4’) as in Case 2. The algorithm non-deterministically guesses a subset of the variables and
removes them from all constraints by replacing them with 0.

Suppose we guess the set X′ as above. We show that we then compute a solution.
After the variables from X′ have been removed, H(y,yCause) can be computed in polynomial
time as all the derivatives of f are linear expressions in the variables which require basic
arithmetic and can be computed in polynomial time. Likewise,M and b can be computed in
polynomial time from the original constraints after the guessed variables have been removed.
The vectors c0, c1, . . . , cr describing the solution space toMv = b can then also be computed
in polynomial time.

Thus, also the vector H(h(z)) of linear expressions in the variables z can be computed
in polynomial time. The equation system H(h(z)) = 0 has a unique solution if the guessed
variables were indeed X′. In this case, the solution z∗ can be computed in polynomial time
as well. If the guess of variables was not X′, then either there is no unique solution to
this equation system which can be detected in polynomial time, or the solution, which is
computed in the sequel in polynomial time, might not satisfy the original constraints, which
is checked in the end.

From z∗, we can compute y∗ = h(z∗) using the vectors c0, c1, . . . , cr. The solution x∗ is
then obtained by plugging in 0s for the removed variables. Checking whether the resulting
vector satisfies all constraints can also be done in polynomial time in the end. If X′ was
guessed correctly, this vector x∗ indeed forms a solution to the original constraints as we
have seen.

In summary, the algorithm needs to guess the set X′ of variables which are 0 in a
solution to the original constraints with the maximal number of zeroes. All other steps are
deterministic polynomial-time computations. Thus, satisfiability of (S1)-(S5) can be checked
in NP.

Memory requirements of schedulers in the original MDP (Proof of Theorem
4.12). Every solution to the linear system of inequalities (S1), (S2), and (S3) corresponds
to the expected frequencies of state-action pairs of an MR-scheduler in the transformed
model satisfying (A1)-(A3). Hence:

Corollary 4.17. Under assumptions (A1)-(A3), Cause is no GPR cause for Eff iff there
exists an MR-scheduler T with PrTM(♢Cause) > 0 violating (GPR).

The model transformation we used for assumptions (A1)-(A3), however, does affect the
memory requirements of a violating scheduler. We may further restrict the MR-schedulers
necessary to witness non-causality under assumptions (A1)-(A3). For the following lemma,
recall that τ is the action of the MEC quotient used for the extra transition from states
representing MECs to a new trap state (see also assumption (A3)).

Lemma 4.18. Assume (A1)-(A3). Given an MR-scheduler U with PrUM(♢Cause) > 0 that
violates (GPR), an MR-scheduler T with T(s)(τ) ∈ {0, 1} for each state s with τ ∈ Act(s)
that satifies PrTM(♢Cause) > 0 and violates (GPR) is computable in polynomial time.

Proof. Let U be a scheduler with PrUM(♢Cause) > 0 violating (GPR-1), i.e.:

PrUM(♢Cause) · PrUM(♢effunc) <
(
1−PrUM(♢Cause)

)
·
∑

c∈Cause

PrUM(♢c) ·wc.
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We will show how to transform U into an MR-scheduler T that schedules the τ-transitions to
noefftn with probability 0 or 1. We regard the set U of states u which have a τ-transition to
noefftn (recall that then P(u, τ, noefftn) = 1) and where 0 < U(u)(τ) < 1. We now process the
U-states in an arbitrary order, say u1, . . . ,uk, and generate a sequence T0 = U,T1, . . . ,Tk

of MR-schedulers such that for i ∈ {1, . . . ,k}:

• Ti refutes (GPR) (or equivalently condition (GPR-1) from Lemma 4.15)
• Ti agrees with Ti−1 for all states but ui,
• Ti(ui)(τ) ∈ {0, 1}.

Thus, the final scheduler Tk satisfies the desired properties.
To explain how to derive Ti from Ti−1, let i ∈ {1, . . . ,k}, V = Ti−1, u = ui and

y = 1−V(u)(τ). By definition we have, 0 < y < 1 (as u ∈ U and by definition of U) and
y =

∑
α∈Act(u)\{τ}V(u)(α). For x ∈ [0, 1], let Vx denote the MR-scheduler that agrees

with V for all states but u, for which Vx’s decision is:

Vx(u)(τ) = 1−x, Vx(u)(α) = V(u)(α) · x
y

for α ∈ Act(u) \ {τ}

Obviously, Vy = V. We now show that at least one of the two MR-schedulers V0 or V1

also refutes (GPR). For this, we suppose by contraction that this is not the case, which
means that (GPR) holds for both. Let f : [0, 1] → Q be defined by

f(x) = PrVx

M (♢Cause) · PrVx

M (♢effunc) −
(
1−PrVx

M (♢Cause)
)
·
∑

c∈Cause

PrVx

M (♢c) ·wc

As V = Vy violates (GPR-1), while V0 and V1 satisfy (GPR-1) we obtain:

f(0), f(1) < 0 and f(y) ⩾ 0

We now split Cause into the set C of states c ∈ Cause such that there is a V-path from
init to c that traverses u and D = Cause \ C. Thus, PrVx

M (♢Cause) = px + p where

px = PrVx(♢C) and p = PrV(♢D). Similarly, PrVx

M (♢effunc) has the form qx + q where

qx = PrSx

M (♢(u∧ ♢effunc)) and q = PrSx

M ((¬u)U effunc). With px,c = PrVx

M (♢c) for c ∈ C
and pd = PrVM(♢d) for d ∈ D, let

vx =
∑
c∈C

px,c ·wc and v =
∑
d∈D

pd ·wd

As y is fixed, the values py,py,c,qy, vy can be seen as constants. Moreover, px,px,c,qx, vx
differ from py,py,c,qy, vy only by the factor x

y . That is:

px = py
x
y , px,c = py,c

x
y , qx = qy

x
y and vx = vy

x
y .

Thus, f(x) has the following form:

f(x) = (px+p)(qx+q) −
(
1−(px+p)

)
(vx+v)

= pxqx+pxvx︸ ︷︷ ︸
ax2

+px(q+ v) + qxp− vx︸ ︷︷ ︸
bx

+pq− v+ pv︸ ︷︷ ︸
c

= ax2 + bx+ c

For the value a, we have ax2 = pxqx+pxvx and hence a = 1
y2 (pyqy + pyvy) > 0. But then

the second derivative f ′′(x) = 2a of f is positive, which yields that f has a global minimum
at some point x0 and is strictly decreasing for x < x0 and strictly increasing for x > x0.
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Since f(0) and f(1) are both negative, we obtain f(x) < 0 for all x in the interval [0, 1]. But
this contradicts f(y) ⩾ 0.

This yields that at least one of the schedulers V0 or V1 witnesses the violation of (GPR).
Thus, we can define Ti ∈ {V0,V1} accordingly.

The number of states k in U is bounded by the number of states in S. In each iteration of
the above construction, the function value f(0) is sufficient to determine one of the schedulers
V0 and V1 witnessing the violation of (GPR). So, the procedure has to compute the values
in condition (GPR-1) for k-many MR-schedulers and update the scheduler afterwards. As
the update can easily be carried out in polynomial time, the run-time of all k iterations is
polynomial as well.

The condition that τ only has to be scheduled with probability 0 or 1 in each state
is the key to transfer the sufficiency of MR-schedulers to the MDP M[Cause]. This fact is
of general interest as well and stated in the following theorem where τ again is the action
added to move from a state sE to the new trap state in the MEC-quotient.

Theorem 4.19. Let M be an MDP with pairwise disjoint action sets for all states. Then,
for each MR-scheduler S for the MEC-quotient of M with S(sE)(τ) ∈ {0, 1} for each MEC E

of M there is an MR-scheduler T for M such that every action α of M that does not belong
to an MEC of M, has the same expected frequency under S and T.

Proof. Let S be an MR-scheduler for MEC (M) with S(sE)(τ) ∈ {0, 1} for each MEC E of
M. We consider the following extension M′ of M: The state space of M is extended by a
new terminal state ⊥ and a fresh action τ is enabled in each state s that belongs to a MEC
of M. Action τ leads to ⊥ with probability 1. All remaining transition probabilities are as
in M. So, M′ is obtained from M by allowing a transition to a new terminal state ⊥ from
each state that belongs to a MEC.

Now, we first provide a finite-memory scheduler T for M′ that leaves each MEC E for
which S(sE)(τ) = 0 via the state action pair (s,α) with probability S(sE)(α). Recall that
we assume that each action is enabled in at most one state and that the actions enabled in
the state sE in MEC (M) are precisely the actions that are enabled in some state of E and
that do not belong to E (Section 2.3).

Let us define the scheduler T: In all states that do not belong to a MEC E of M with
S(sE)(τ) = 0, the behavior of T is memoryless: For each state s of M (and hence of M′)
that does not belong to a MEC, T(s) = S(s). For each state s in an end component E of M
with S(sE)(τ) = 1, we define T(s)(τ) = 1. If a MEC E of M with S(sE)(τ) = 0 is entered,
T makes use of finitely many memory modes as follows: Enumerate the state action pairs
(s,α) where s belongs to E, but α does not belong to E, and for which S(sE)(α) > 0 by

(s1,α1), . . . , (sk,αk). Further, let pi
def
= S(sE)(αi) > 0 for all 1 ⩽ i ⩽ k. By assumption∑

1⩽i⩽k pi = 1. When entering E, the scheduler works in k memory modes 1, . . . , k until
an action α that does not belong to E is scheduled starting in memory mode 1. In each
memory mode i, T follows an MD-scheduler for E that reaches si with probability 1 from all
states of E. Once, si is reached, T chooses action αi with probability

qi
def
=

pi
1−

∑
j<i pj

.

Now T leaves E via (sk,αk) with probability 1 if it reaches the last memory mode k. As
T behaves MD in each mode, it leaves the end component E after finitely many steps
in expectation. Furthermore, for each i ⩽ k, it leaves E via (si,αi) with probability
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(1 −
∑

j<i pj) · qi = pi. Since the behavior of S in MEC (M) is mimicked by T in M′,
we conclude that the expected frequency of actions in M which do not belong to an end
component is the same in M′ under T and in MEC (M) under S.

The expected frequency of each state-action pair of M′ under T is finite, since each
MEC of M′ is left after finitely many steps in expectation. In the terminology of [Kal20], the
scheduler T is transient. By [Kal20, Theorem 9.16], this implies that there is a MR-scheduler
U for M′ under which the expected frequency of state-action pairs is the same as under
T and thus the expected frequency in M′ of actions α of M that do not belong to an end
component is the same as under S in MEC (M).

Finally, we modify U such that it becomes a scheduler for M: For each end component
E of M with S(sE)(τ) = 1, we fix a memoryless scheduler UE that does not leave the end
component. Now, whenever a state s in such an end component is visited, the modified
scheduler switches to the behavior of UE instead of choosing action τ with probability 1.
Clearly, this does not affect the expected frequency of actions of M that do not belong to an
end component and hence the modified scheduler is as claimed in the theorem.

Remark 4.20. The proof of Theorem 4.19 above provides an algorithm how to obtain
the scheduler T from S. The number of memory modes of the intermediately constructed
finite-memory scheduler is bounded by the number of state-action pairs of M. Further, in
each memory mode during the traversal of a MEC, the scheduler behaves in a memoryless
deterministic way. Hence, the induced Markov chain is of size polynomial in the size of the
MDP M and the representation of the scheduler S. Therefore, also the expected frequencies
of all state-action pairs under the intermediate finite-memory scheduler and hence under T
can be computed in time polynomial in the size of the MDP M and the representation of
the scheduler S. So, also the scheduler T itself which can be derived from these expected
frequencies can be computed in polynomial time from S.

Together with Lemma 4.18, this means that T and hence the scheduler with two memory
modes whose existence is stated in Theorem 4.12 can be computed from a solution to the
constraint system (S1)-(S5) from Section 4.2 in time polynomial in the size of the original
MDP and the size of the representation of the solution to (S1)-(S5). ◁

With these results we can now prove the second main result of this section, Theorem
4.12, stating that if (GPR) does not hold there is a finite-memory scheduler with two memory
cells refuting the GPR condition.

Proof of Theorem 4.12. The model transformation establishing assumptions (A1)-(A3) re-
sults in the MEC-quotient of M[Cause] up to the renaming and collapsing of terminal states.
By Corollary 4.17 and Theorem 4.19, we conclude that Cause is not a GPR cause for Eff
in M if and only if there is a MR-scheduler S for M[Cause] with PrSM[Cause]

(♢Cause) > 0 that

violates (GPR). As in Remark 4.9, S can be extended to a finite-memory randomized
scheduler T for M with two memory cells.

Remark 4.21 (On lower bounds on GPR checking). Solving systems of quadratic inequalities
with linear side constraints is NP-hard in general (see, e.g., [GJ79]). For convex problems,
in which the associated symmetric matrix occurring in the quadratic inequality has only
non-negative eigenvalues, the problem is, however, solvable in polynomial time [KTK80].
Unfortunately, the quadratic constraint system describing a scheduler refuting (GPR) given
by (S1)-(S5) is not of this form. We observe that even if Cause is a singleton {c} and the
variable xeffunc is forced to take a constant value y by (S1)-(S3), i.e., by the structure of the
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MDP, the inequality (S4) takes the form:

xc ·wc − x
2
c · (wc + y) ⩽ 0 (4.6)

Here, the 1× 1-matrix (−wc−y) has a negative eigenvalue. Although it is not ruled out that
(S1)-(S5) belongs to another class of efficiently solvable constraint systems, the NP-hardness
result in [PV91] for the solvability of quadratic inequalities of the form (4.6) with linear side
constraints might be an indication for the computational difficulty. ◁

5. Quality and optimality of causes

The goal of this section is to identify notions that measure how “good” causes are and to
present algorithms to determine good causes according to the proposed quality measures.
We have seen so far that small (singleton) causes are easy to determine (see Section 4.1).
Moreover, it is easy to see that the proposed existence-checking algorithm can be formulated
in such a way that the algorithm returns a singleton (strict or global) probability-raising
cause {c0} with maximal precision, i.e., a state c0 where infS PrSM(♢Eff |♢c0) = Prmin

M,c0
(♢Eff)

is maximal. On the other hand, singleton or small cause sets might have poor coverage
in the sense that the probability for paths that reach an effect state without visiting a
cause state before (“uncovered effects”) can be large. This motivates the consideration of
quality notions for causes that incorporate how well effect scenarios are covered. We take
inspiration of quality measures that are considered in statistical analysis (see e.g. [Pow11]).
This includes the recall as a measure for the relative coverage (proportion of covered effects
among all effect scenarios), the coverage ratio (quotient of covered and uncovered effects) as
well as the f-score. The f-score is a standard measure for classifiers defined by the harmonic
mean of precision and recall. It can be seen as a compromise to achieve both good precision
and good recall.

In this section, we assume as before an MDP M = (S,Act ,P, init) and Eff ⊆ S are given
where all effect states are terminal. Furthermore, we suppose all states s ∈ S are reachable
from init.

5.1. Quality measures for causes. In statistical analysis, the precision of a classifier with
binary outcomes (“positive” or “negative”) is defined as the ratio of all true positives among
all positively classified elements, while its recall is defined as the ratio of all true positives
among all actual positive elements. Translated to our setting, we consider classifiers induced
by a given cause set Cause that return “positive” for sample paths in case that a cause state
is visited and “negative” otherwise. The intuitive meaning of true positives, false positives,
true negatives and false negatives is as described in the confusion matrix in Figure 13. The
formal definition is

tpS = PrSM(♢Cause∧ ♢Eff), tnS = PrSM(¬♢Cause∧ ¬♢Eff),

fpS = PrSM(♢Cause∧ ¬♢Eff), fnS = PrSM(¬♢Cause∧ ♢Eff).
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Path hits Eff ¬Eff
Cause True positive (tp) False positive (fp)

Cause correctly predicted Eff Cause falsely predicted Eff
¬Cause False negative (fn) True negative (tn)

Cause falsely not predicted Eff Cause correctly not predicted Eff

Figure 13: Confusion matrix for Cause as a binary classifier for Eff

With this interpretation of causes as binary classifiers in mind, the recall and precision
and coverage ratio of a cause set Cause under a scheduler S are defined as follows:

precisionS(Cause) = PrSM( ♢Eff | ♢Cause ) =
tpS

tpS + fpS

recallS(Cause) = PrSM( ♢Cause | ♢Eff ) =
tpS

tpS + fnS

covratS(Cause) =
PrSM

(
♢(Cause∧ ♢Eff)

)
PrSM

(
(¬♢Cause)∧ ♢Eff

) =
tpS

fnS
.

Note that for these quality measures we make some respective assumptions on the
scheduler as we assume

• PrSM(♢Cause) > 0 for precisionS(Cause),

• PrSM(♢Eff) > 0 for recallS(Cause) and

• PrSM
(
(¬♢Cause)∧ ♢Eff

)
> 0) for covratS(Cause).

If we have PrSM
(
(¬♢Cause)∧♢Eff

)
= 0 and PrSM(♢Cause) > 0 for some schedulerS, we define

covratS(Cause) = +∞. This makes sense since we can converge to such a scheduler S with a

sequence of schedulers S0 . . . for which PrSi

M

(
(¬♢Cause)∧ ♢Eff

)
> 0 and PrSi

M (♢Cause) > 0
for i ∈ N. The coverage ratio of such a sequence converges to +∞.

Finally, the f-score of Cause under a scheduler S is defined as the harmonic mean of
the precision and recall. Here we assume PrSM(♢Cause) > 0, which implies PrSM(♢Eff) > 0:

fscoreS(Cause)
def
= 2 · precisionS(Cause) · recallS(Cause)

precisionS(Cause) + recallS(Cause)
=

2 · tpS

2 · tpS + fpS + fnS

If, however, PrSM(♢Eff) > 0 and PrSM(♢Cause) = 0 for some S, define fscoreS(Cause) = 0.
This again makes sense as for a sequence of schedulers converging to S the f-score also
converges to 0 (also see Lemma 5.6).

To lift the definitions of the quality measures under a scheduler to the quality measure
of a cause, we consider the worst-case scheduler:

Definition 5.1 (Quality measures for causes). Let Cause be a PR cause. We define

recall(Cause) = inf
S

recallS(Cause) = Prmin
M ( ♢Cause | ♢Eff )

when ranging over all schedulers S with PrSM(♢Eff) > 0. Likewise, the coverage ratio and
f-score of Cause are defined by the worst-case coverage ratio resp. f-score – ranging over
schedulers for which covratS(Cause) resp. fscoreS(Cause) is defined:

covrat(Cause) = inf
S

covratS(Cause), fscore(Cause) = inf
S

fscoreS(Cause).
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Besides the quality measures defined so far, which we will address in detail, there is
a vast landscape of further quality measures for binary classifiers in the literature (for an
overview, see, e.g., [Pow11]). One prominent example which has been claimed to be superior
to the f-score recently [CJ20] is Matthews correlation coefficient (MCC). In terms of the
entries of a confusion matrix (as in Figure 13), it is defined as

MCC =
tp · tn− fp · fn√

(tp+ fp) · (tp+ fn) · (tn+ fp) · (tn+ fn)

In contrast to the f-score (as well as recall and coverage ratio), it makes use of all four entries
of the confusion matrix. In our setting, we could assign the MCC to a Cause by again taking
the infimum of the value over all sensible schedulers.

Like the MCC, almost all (cf. [Pow11]) of the quality measures studied in the literature
are algebraic functions (intuitively speaking, built from polynomials, fractions and root
functions) in the entries of the confusion matrix. At the end of this section, we will comment
on the computational properties of finding good causes when quality is measured by the
infimum over all sensible schedulers of an algebraic function in the entries of the confusion
matrix.

5.2. Computation schemes for the quality measures for fixed cause set. For this
section, we assume a fixed PR cause Cause is given and address the problem to compute
its quality values. The first observation is, that all quality measures are preserved by the
switch from M to M[Cause] as well as the transformations of M[Cause] to an MDP that satisfies
conditions (A1)-(A3) of Section 4.2. In the following Lemmata 5.2 and 5.3 we show that the
quality measures recall , covrat and fscore of a fixed Cause are compatible with the model
transformations from Section 4. These are, on one hand a transformation to M[Cause], which
only considers the minimal probability to reach Eff starting from Cause, and on the other
hand a transformation to an MDP N satisfying (A1)-(A3), which has no end components
and has exactly four terminal states effcov, effunc, noefffp, noefftn. These four terminal states
exactly correspond to the four entries of the confusion matrix (Figure 13).

Lemma 5.2. If Cause is an SPR or a GPR cause then:

recallM(Cause) = recallM[Cause]
(Cause)

covratM(Cause) = covratM[Cause]
(Cause)

fscoreM(Cause) = fscoreM[Cause]
(Cause)

Proof. “⩽”: A scheduler for M[Cause] can be seen as a scheduler S for M behaving as an
MD-scheduler minimizing the reachability probability of Eff from every state in Cause and
we have:

recallSM(Cause) = recallSM[Cause]
(Cause)

covratSM(Cause) = covratSM[Cause]
(Cause)

precisionS
M(Cause) = precisionS

M[Cause]
(Cause)

and therefore:

fscoreSM(Cause) = fscoreSM[Cause]
(Cause)
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We obtain the claimed inequalities, e.g. recallM(Cause) ⩽ recallM[Cause]
(Cause).

“⩾”: Let S be a scheduler of M. Let T be the scheduler of M that behaves as S
until the first visit to a state in Cause. As soon as T has reached Cause, it behaves as an
MD-scheduler minimizing the probability to reach Eff. Recall and coverage under T and S
have the form:

recallSM(Cause) = x
x+q covratSM(Cause) = x

q

recallTM(Cause) = y
y+q covratTM(Cause) = y

q

where x ⩾ y (and q = fnS). Considering T as a scheduler of M and of M[Cause], we get:

recallSM(Cause) ⩾ recallTM(Cause) = recallTM[Cause]
(Cause)

covratSM(Cause) ⩾ covratTM(Cause) = covratTM[Cause]
(Cause)

This implies:

recallSM(Cause) ⩾ recallM[Cause]
(Cause), and covratM(Cause) ⩾ covratM[Cause]

(Cause)

With similar arguments we get:

precisionS
M(Cause) ⩾ precisionT

M(Cause) = precisionT
M[Cause]

(Cause)

As the harmonic mean viewed as a function f : R2
>0 → R, f(x,y) = 2 xy

x+y is monotonically

increasing in both arguments (note that df
dx = y2

(x+y)2
> 0 and df

dy = x2

(x+y)2
> 0), we obtain:

fscoreSM(Cause) ⩾ fscoreTM(Cause) = fscoreTM[Cause]
(Cause)

This yields fscoreM(Cause) ⩾ fscoreM[Cause]
(Cause).

Lemma 5.3. Let N be the MEC-quotient of M[Cause] for some MDP M with a set of terminal
states Eff and an SPR or a GPR cause Cause. Then:

recallM[Cause]
(Cause) = recallN(Cause)

covratM[Cause]
(Cause) = covratN(Cause)

fscoreM[Cause]
(Cause) = fscoreN(Cause)

Proof. Analogously to the proof of Lemma 4.13.

This now allows us to work under assumptions (A1)-(A3) when addressing problems
concerning the quality measures for a fixed cause set.

As efficient computation methods for recall(Cause) are known from literature (see
[BKKM14, Mär20] for poly-time algorithms to compute conditional reachability probabili-
ties), we can use the same methods to compute the coverage ratio.

Corollary 5.4. The value covrat(Cause) and corresponding worst-case schedulers are com-
putable in polynomial time.

Proof. For a given scheduler S we have

covratS(Cause) =
tpS

fnS
and recallS(Cause) =

tpS

tpS + fnS

We thus get the following

1
tpS

tpS+fnS

=
tpS + fnS

tpS
=

tpS

tpS
+

fnS

tpS
= 1+

fnS

tpS
= 1+

1
tpS

fnS

.
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This implies

1

recallS(Cause)
= 1+

1

covratS(Cause)
thus covratS(Cause) = 1/

(
1

recallS(Cause)
− 1

)
.

Computing covrat(Cause) now implores us to take the infimum of all sensible schedulers

over 1/
(

1
recallS(Cause)

− 1
)
which is the same as taking the infimum of all sensible schedulers

over recallS(Cause). This amounts to computing

inf
S

recallS(Cause) = Prmin
M ( ♢Cause | ♢Eff ),

which can be computed in polynomial time by [BKKM14, Mär20].

In contrast to these results, we are not aware of known concepts that are applicable for
computing the f-score. Indeed, this quality measure is efficiently computable:

Theorem 5.5. The value fscore(Cause) and corresponding worst-case schedulers are com-
putable in polynomial time.

The remainder of this subsection is devoted to the proof of Theorem 5.5. We can
express fscore(Cause) in terms of the supremum of a quotient of reachability probabilities for
disjoint sets of terminal states. More precisely, under assumptions (A1)-(A3) and assuming
fscore(Cause) > 0, we have:

fscore(Cause) = 2
X+2 where X = supS

PrSM(♢noeff fp)+PrSM(♢effunc)

PrSM(♢effcov)

where S ranges over all schedulers with PrSM(♢effcov) > 0. Moreover, we can show that we
can handle the corner case of fscore(Cause) = 0.

Lemma 5.6. Let Cause be an SPR or a GPR cause. Then, the following three statements
are equivalent:

(a) recall(Cause) = 0
(b) fscore(Cause) = 0
(c) There is a scheduler S such that PrSM(♢Eff) > 0 and PrSM(♢Cause) = 0.

Proof. Let C = Cause. Using results of [BKKM14, Mär20], there exist schedulers T and U
with

• PrTM(♢Eff) > 0 and PrTM( ♢C |♢Eff ) = infS PrSM( ♢C |♢Eff ) where S ranges over all
schedulers with positive effect probability,

• PrUM(♢C) > 0 and PrUM( ♢Eff |♢C ) = infS PrSM( ♢Eff |♢C ) where S ranges over all

schedulers with PrSM(♢C) > 0.

In particular, recall(C) = PrTM( ♢C |♢Eff ) and precision(C) = PrUM( ♢Eff |♢C ). By (GPR)
applied to U and T (recall that each SPR cause is a GPR cause too, see Lemma 3.3), we
obtain the following statements (i) and (ii):

(i) : p
def
= precision(C) > 0

(ii) : If PrTM(♢C) > 0 then PrTM(♢C∧ ♢Eff) > 0 and therefore recall(C) > 0.

Obviously, if there is no scheduler S as in statement (c) then PrTM(♢C) > 0. Thus, from (ii)
we get:

(iii) : If there is no scheduler S as in statement (c) then recall(C) > 0.
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“(a) =⇒ (b)”: We prove fscore(C) > 0 implies recall(C) > 0. If fscore(C) > 0 then, by
definition of the f-score, there is no scheduler S as in statement (c). But then recall(C) > 0
by statement (iii).

“(b) =⇒ (c)”: Let fscore(C) = 0. Suppose by contradiction that there is no scheduler
as in (c). Again by (iii) we obtain recall(C) > 0. But then, for each scheduler S with
PrSM(♢C) > 0:

precisionS(C) ⩾ p
(i)
> 0

and, with r
def
= recall(C):

recallS(C) ⩾ r > 0

The harmonic mean as a function ]0, 1]2 → R, (x,y) 7→ 2 xy
x+y is monotonically increasing in

both arguments. But then:

fscoreS(C) ⩾ 2
p · r
p+r

> 0

Hence, fscore(C) = infS fscoreS(C) ⩾ 2 p·r
p+r > 0. Contradiction.

“(c) =⇒ (a)”: Let S be a scheduler as in statement (c). Then,

PrSM( ♢C |♢Eff ) = 0.

Hence: recall(C) = Prmin
M ( ♢C |♢Eff ) = 0.

The remaining task to prove Theorem 5.5 is a generally applicable technique for com-
puting extremal ratios of reachability probabilities in MDPs without ECs.

Max/min ratios of reachability probabilities for disjoint sets of terminal states.
Suppose we are given an MDP M = (S,Act ,P, init) without ECs and disjoint subsets
U,V ⊆ S of terminal states. Given a scheduler S with PrSM(♢V) > 0 we define:

ratioSM(U,V) =
PrSM(♢U)

PrSM(♢V)

The goal is an algorithm for computing the extremal values:

ratiomin
M (U,V) = inf

S
ratioSM(U,V) and ratiomax

M (U,V) = sup
S

ratioSM(U,V)

where S ranges over all schedulers with PrSM(♢V) > 0.
To compute these, we rely on a polynomial reduction to the classical stochastic shortest

path problem [BT91]. For this, consider the MDP N arising from M by adding reset
transitions from all terminal states t ∈ S\V to init. Thus, exactly the V-states are terminal
in N. N might contain ECs, which, however, do not intersect with V . We equip N with the
weight function that assigns 1 to all states in U and 0 to all other states. For a scheduler
T with PrTN(♢V) = 1, let ET

N(⊞V) be the expected accumulated weight until reaching V

under T. Let Emin
N (⊞V) = infT ET

N(⊞V) and Emax
N (⊞V) = supT ET

N(⊞V), where T ranges

over all schedulers with PrTN(♢V) = 1. We can rely on known results [BT91, dA99, BBD+18]
to obtain that both Emin

N (⊞V) and Emax
N (⊞V) are computable in polynomial time. As N

has only non-negative weights, Emin
N (⊞V) is finite and a corresponding MD-scheduler with

minimal expectation exists. If N has an EC containing at least one U-state, which is the
case iff M has a scheduler S with PrSM(♢U) > 0 and PrSM(♢V) = 0, then Emax

N (⊞V) = +∞.
Otherwise, Emax

N (⊞V) is finite and the maximum is achieved by an MD-scheduler as well.
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init

effunc

c

noeff effcov

1/2

1/2 1/21/2

1/2

α

β
1/2

Figure 14: MDP M from Example 5.8
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effunc

c

noeff effcov

1/2

1/2 1/21/2

1/2

α

β
1/2

Figure 15: MDP N with re-
set transitions for
ratiomin

M (effcov, effunc)

Theorem 5.7. Let M be an MDP without ECs and U,V disjoint sets of terminal states in M,
and let N be as before. Then, ratiomin

M (U,V) = Emin
N (⊞V) and ratiomax

M (U,V) = Emax
N (⊞V).

Thus, both values are computable in polynomial time, and there is an MD-scheduler mini-
mizing ratioSM(U,V), and an MD-scheduler maximizing ratioSM(U,V) if ratiomax

M (U,V) is
finite.

Example 5.8. Consider the MDP M from Figure 14 with Eff = {effunc, effcov} and suppose
the task is to compute covrat(c) = ratiomin

M (effcov, effunc). The construction for the algorithm
is depicted in Figure 15 resulting in N, where reset transitions for noeff and effcov have been
added (red edges) and effunc is the only terminal state. The weight function now assigns 1 to
effcov and 0 to all others. By Theorem 5.7 we have ratiomin

M (effcov, effunc) = Emin
N (⊞effunc). ◁

Proof of Theorem 5.7. M has a scheduler S with PrSM(♢U) > 0 and PrSM(♢V) = 0 if and
only if the transformed MDP N in Section 5.2 (Max/min ratios of reachability probabilities
for disjoint sets of terminal states) has an EC containing at least one U-state. Therefore, we
then have Emax

N (⊞V) = +∞. Otherwise, Emax
N (⊞V) is finite.

For the following we only consider ratiomin
M (U,V) = Emin

N (⊞V) since the arguments for

the maximum are similar. First, we show ratiomin
M (U,V) ⩾ Emin

N (⊞V). For this, we consider
an arbitrary scheduler S for M. Let

x = PrSM(♢U) p = PrSM(♢V) q = 1− x− p

For p > 0 we have
PrSM(♢U)

PrSM(♢V)
=

x

p

Let T be the scheduler that behaves as S in the first round and after each reset. Then:

ET
N(⊞V) =

∞∑
n=0

∞∑
k=0

n · xn ·
(
n+k
k

)
qk · p (5.2)

=
x

p
(5.1)

where (5.2) relies on some basic calculations (see Lemma 5.9). This yields:

ratioSM(U,V) =
x

p
= ET

N(⊞V) ⩾ Emin
N (⊞V)

Hence, ratiomin
M (U,V) ⩾ Emin

N (⊞V).
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For the other direction Emin
N (⊞V) ⩾ ratiomin

M (U,V), we use the fact that there is an

MD-scheduler T for N such that ET
N(⊞V) = Emin

N (⊞V). T can be viewed as an MD-scheduler
for the original MDP M. Again we can rely on (5.1) to obtain that:

ET
N(⊞V) =

PrTM
(
♢U

)
PrTM

(
♢V

) = ratioTM(U,V) ⩾ ratiomin
M (U,V)

But this yields Emin
N (⊞V) ⩾ ratiomin

M (U,V). For Emax
N (⊞V) = ratiomax

M (U,V) we use
similar arguments. We can now rely on known results [BT91, dA99, BBD+18] to compute
Emin
N (⊞V) and Emax

N (⊞V) in polynomial time.

Lemma 5.9. Let x,p,q ∈ [0, 1] such that x+q+p = 1. Then:∞∑
n=0

∞∑
k=0

n · xn ·
(
n+k
k

)
qk · p =

x

p
(5.2)

Proof. We first show for 0 < q < 1, n ∈ N and

an
def
=

∞∑
k=0

(
n+k
k

)
qk,

we have

an =
1

(1−q)n+1

This is done by induction on n. The claim is clear for n=0. For the step of induction we use:(
n+1+k
k

)
=

(
n+k
k

)
+

(
n+k
k−1

)
=

(
n+k
k

)
+

(
(n+1) + (k−1)

k−1

)
But this yields an+1 = an + q · an+1. Hence:

an+1 =
an

1−q

The claim then follows directly from the induction hypothesis.
The statement of Lemma 5.9 now follows by some calculations and the preliminary

induction. ∞∑
n=0

∞∑
k=0

n · xn ·
(
n+k
k

)
qk · p =

∞∑
n=0

n · xn · 1

(1−q)n+1
· p

=
p

1−q
·

∞∑
n=0

n ·
(

x

1−q

)n

=
p

1−q
·

x

1−q(
1−

x

1−q

)2

=
px

(1−q−x)2
=

px

p2
=

x

p

where we use p = 1−q−x.

Applying this framework for ratiomax
M (U,V) to the f-score we now prove Theorem 5.5.
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Proof of Theorem 5.5. We use the simplifying assumptions (A1)-(A3) that can be made due
to Lemmas 5.2 and 5.3. For fscore(Cause) we have after some straight-forward transforma-
tions

fscoreS(Cause) =
2tpS

2tpS + fnS + fpS
.

Using this we get

2

fscoreS(Cause)
− 2 =

fpS + fnS

tpS
=

PrSM(♢noefffp) + PrSM(♢effunc)

PrSM(♢effcov)

Thus, the task is to compute

X = sup
S

2

fscoreS(Cause)
− 2 = sup

S

PrSM(♢noefffp) + PrSM(♢effunc)

PrSM(♢effcov)
,

where S ranges over all schedulers with PrSM(♢effcov) > 0. We have

fscore(Cause) =
2

X+ 2
.

But X can be expressed as a supremum in the form of Theorem 5.7. This yields the claim
that the optimal value is computable in polynomial time.

In case fscore(Cause) = 0, we do not obtain an optimal scheduler via Theorem
5.7. Lemma 5.6, however, shows that there is a scheduler S with PrSM(♢Eff) > 0 and

PrSM(♢Cause) = 0. Such a scheduler can be computed in polynomial time as any (memory-
less) scheduler in the largest sub-MDP of M that does not contain states in Cause. (This
sub-MDP can be constructed by successively removing states and state-action pairs.)

5.3. Quality-optimal probability-raising causes. For the computation there is no
difference between GPR and SPR causes as only the quality properties of the set are in
question. However, when finding optimal causes the distinction makes a difference. Here, we
say an SPR cause Cause is recall-optimal if recall(Cause) = maxC recall(C) where C ranges
over all SPR causes. Likewise, ratio-optimality resp. f-score-optimality of Cause means
maximality of covrat(Cause) resp. fscore(Cause) among all SPR causes. Recall-, ratio- and
f-score-optimality for GPR causes are defined accordingly.

Lemma 5.10. Let Cause be an SPR or a GPR cause. Then, Cause is recall-optimal if and
only if Cause is ratio-optimal.

Proof. Essentially the proof uses the same connection between recall and covrat as Corollary
5.4. Here we do not assume (A1)-(A3). However, for each scheduler S and each set C of
states we have:

PrSM(♢Eff) = fnSC + tpSC

where fnSC = PrSM
(
(¬♢C)∧ ♢Eff

)
and tpSC = PrSM

(
♢(C∧ ♢Eff)

)
. If C is a cause where fnSC

is positive then covratS(C) =
tpSC
fnSC

and recallS(C) =
tpSC

fnSC+tpSC
.

For all non-negative reals p,q,p ′,q ′ where q,q ′ > 0 we have:

p

q
<
p ′

q ′ iff
p

p+ q
<

p ′

p ′ + q ′ .
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init

effnoeff s1 s2

1/41/4
1/2

1/4 3/4 1

Figure 16: Markov chain from Remark 5.12

Hence, if C is fixed and S ranges over all schedulers with tpSC > 0:

tpSC
fnSC

is minimal iff
tpSC

fnSC + tpSC
is minimal

Thus, if C is fixed and S = SC is a scheduler achieving the worst-case (i.e., minimal)
coverage ratio for C then S achieves the minimal recall for C, and vice versa.

Let now fnC = fnSC

C , tpC = tpSC

C where SC is a scheduler that minimizes the coverage
ratio and minimizes the recall for cause set C. Then:

covrat(C) = tpC
fnC

is maximal iff tpC
fnC+tpC

is maximal iff recall(C) is maximal

where the extrema range over all SPR resp. GPR causes C. This yields the claim.

Recall- and ratio-optimal SPR causes. The techniques of Section 4.1 yield an algorithm
for generating a canonical SPR cause with optimal recall and coverage ratio. To see this,
let C denote the set of all states which constitute a singleton SPR cause. The canonical
cause CanCause is defined as the set of states c ∈ C such that there is a scheduler S with
PrSM((¬C)U c) > 0. So to speak CanCause is the “front” of C. Obviously, C and CanCause
are computable in polynomial time.

Theorem 5.11. If C ̸= ∅ then CanCause is a ratio- and recall-optimal SPR cause.

Proof. By definition of SPR causes any subset C ⊆ C satisfying Prmax(¬CU c) for each
c ∈ C constitutes an SPR cause and thus CanCause is also an SPR cause. Optimality is a
consequence as CanCause even yields path-wise optimal coverage in the following sense. If C
is any SPR cause then C ⊆ C by definition and for each path π in M:

π |= (¬♢CanCause)∧ ♢Eff =⇒ π |= (¬♢C)∧ ♢Eff and

π |= ♢(C∧ ♢Eff) =⇒ π |= ♢(CanCause∧ ♢Eff).

But then

PrSM(♢(C∧ ♢Eff)) ⩽ PrSM(♢(CanCause∧ ♢Eff)),

PrSM((¬♢C)∧ ♢Eff)) ⩾ PrSM((¬♢CanCause)∧ Eff)

for every scheduler S,which yields the claim.

Remark 5.12. It is not true that the canonical SPR cause CanCause is f-score-optimal. To
see this, Consider the Markov chain from Figure 16. There we have CanCause = {s1}, which
has precision(CanCause) = 3

4 and recall(CanCause) = 3
8/(

1
4 + 3

8) =
3
5 . But the SPR cause

{s2} has better f-score as its precision is 1 and it has the same recall as CanCause. ◁
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F-score-optimal SPR cause. From Section 5.2, we see that f-score-optimal SPR causes in
MDPs can be computed in polynomial space by computing the f-score for all potential SPR
causes one by one in polynomial time (Theorem 5.5). As the space can be reused after each
computation, this results in polynomial space. For Markov chains, we can do better and
compute an f-score-optimal SPR cause in polynomial time via a polynomial reduction to the
stochastic shortest path problem:

Theorem 5.13. In Markov chains that have SPR causes, an f-score-optimal SPR cause can
be computed in polynomial time.

Proof. We regard the given Markov chain M as an MDP with a singleton action set Act = {α}.
As M has SPR causes, the set C of states that constitute a singleton SPR cause is nonempty.
We may assume thatM has no non-trivial (i.e., cyclic) bottom strongly connected components
as we may collapse them. Let wc = PrM,c(♢Eff).

We switch from M to a new MDP K with state space SK = S ∪ {effcov, noefffp} with
fresh states noefffp and effcov and the action set ActK = {α,γ}. The MDP K arises from M

by adding

(i) : for each SPR state c ∈ C a fresh state-action pair (c,γ) such that PK(c,γ, effcov) = wc

and PK(c,γ, noefffp) = 1−wc and
(ii) : reset transitions to init with action label α from the new state noefffp and all terminal

states of M, i.e., PK(noefffp,α, init) = 1 and PK(s,α, init) = 1 for s ∈ Eff or if s is a
terminal non-effect state of M.

So, exactly effcov is terminal in K, and ActK(c) = {α,γ} for c ∈ C, while ActK(s) = {α} for
all other states s. Intuitively, taking action γ in state c ∈ C selects c to be a cause state.
The states in Eff represent uncovered effects in K, while effcov stands for covered effects.

We assign weight 1 to all states in U = Eff ∪ {noefffp} and weight 0 to all other states
of K. Let V = {effcov}. Then, f = Emin

K (⊞V) and an MD-scheduler S for K such that

ES
K(⊞V) = f are computable in polynomial time. Let Cγ denote the set of states c ∈ C

where S(c) = γ and let Cause be the set of states c ∈ Cγ where M has a path satisfying
(¬Cγ)U c. Then, Cause is an SPR cause of M. With arguments as in Section 5.2 we obtain
fscore(Cause) = 2/(f+2).

It remains to show that Cause is f-score-optimal. Let C be an arbitrary SPR cause.
Then, C ⊆ C. Let T be the MD-scheduler for K that schedules γ in C and α for all other
states of K. Then, fscore(C) = 2/(fT+2) where fT = ET

K(⊞V). Hence, f ⩽ fT, which yields
fscore(Cause) ⩾ fscore(C).

The näıve adaption of the construction presented in the proof of Theorem 5.13 for MDPs
would yield a stochastic game structure where the objective of one player is to minimize
the expected accumulated weight until reaching a target state. Although algorithms for
stochastic shortest path (SSP) games are known [PB99], they rely on assumptions on the
game structure which would not be satisfied here. However, for the threshold problem
SPR-f-score where inputs are an MDP M, Eff and ϑ ∈ Q⩾0 and the task is to decide the
existence of an SPR cause whose f-score exceeds ϑ, we can establish a polynomial reduction
to SSP games, which yields an NP ∩ coNP upper bound:

Theorem 5.14. The decision problem SPR-f-score is in NP ∩ coNP.

Recall that for a given SPR cause C and scheduler S we have

fscoreS(C) > ϑ iff
2tpS

2tpS + fpS + fnS
> ϑ.



Vol. 20:1 PROBABILITY-RAISING CAUSALITY IN MDPS 4:41

In order to proof the upper bound of SPR-f-score we reformulate the condition of SPR-f-score.

Lemma 5.15. Let M = (S,Act ,P, init) be an MDP with a set of terminal states Eff, let C
be an SPR cause for Eff in M, and let ϑ be a rational. Then, fscore(C) > ϑ iff

2(1−ϑ)tpS − ϑfpS − ϑfnS > 0 (5.3)

for all schedulers S for M with PrSM(♢Eff) > 0.

Proof. Assume that fscore(C) > ϑ and let S be a scheduler with PrSM(♢Eff) > 0. If

PrSM(♢C) = 0, then fscore(C) would be 0. So, PrSM(♢C) > 0. Then,

fscoreS(C) =
2tpS

2tpS + fpS + fnS
> ϑ, which implies 2(1−ϑ)tpS − ϑfpS − ϑfnS > 0

Now, suppose that (5.3) holds for a scheduler S with PrSM(♢Eff) > 0. Let S be a

scheduler that minimizes fscoreS(C). Such a scheduler exists by Theorem 5.5. From (5.3),
we conclude

2(1−ϑ)tpS − ϑfpS − ϑfnS > 0

and hence that fscoreS(C) > ϑ as above.

Proof of Theorem 5.14. Let M = (S,Act ,P, init) be an MDP, Eff ⊆ S a set of terminal states,
and ϑ a rational. Consider C, the set of states c ∈ S \ Eff where {c} is an SPR cause. If C
is empty then the threshold problem is trivial as there is no SPR cause at all. Thus, we
suppose that C is nonempty.

Note that Prmin
M,c(♢Eff) > 0 for all c ∈ C. As the states in Eff are not part of any

end component of M, no state c ∈ C is contained in an end component of M either. Let
N = (SN,ActN,PN, initN) be the MEC-quotient of M with the new additional terminal state
⊥. The MEC-quotient N contains the states from Eff and C.

Claim 1: There is an SPR cause C for Eff in M with fscore(C) > ϑ if and only if there is
an SPR cause C′ for Eff in N with fscore(C′) > ϑ.
Proof of Claim 1. We first observe that all reachability probabilities involved in the claim
do not depend on the behavior during the traversal of MECs. Furthermore, staying inside a
MEC in M can be mimicked in N by moving to ⊥, and vice versa. More precisely, let C ⊆ C.
Then, analogously to Lemma 4.13, for each scheduler S for M, there is a scheduler T for N,
and vice versa, such that

• PrSM(♢Eff | (¬C)U c) = PrTN(♢Eff | (¬C)U c) for all c ∈ C where the values are defined,

• PrSM(♢Eff) = PrTN(♢Eff),
• PrSM(♢Eff | ♢C) = PrTN(♢Eff | ♢C) if the values are defined, and

• PrSM(♢C | ♢Eff) = PrTN(♢C | ♢Eff) if the values are defined.

Hence, C is an SPR cause for Eff in M if and only if it is in N and furthermore, if it is an
SPR cause, the f-score of C in M and in N agree. This finishes the proof of Claim 1.
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Model transformation for ensuring positive effect probabilities. Recall that the f-score is only
defined for schedulers reaching Eff with positive probability. Now, we will provide a further
model transformation that will ensure that Eff is reached with positive probability under
all schedulers. If this is already the case, there is nothing to do. So, we assume now that
Prmin

N,initN
(♢Eff) = 0.

We define the subset of states from which Eff can be avoided as D ⊆ SN by

D
def
= {s ∈ SN | Prmin

N,s(♢Eff) = 0}.

Note that initN ∈ D. For each s ∈ D, we further define the set of actions minimizing the
reachability probability of Eff from s by

Actmin(s) = {α ∈ ActN(s) | PN(s,α,D) = 1}.

Finally, let E ⊆ D be the set of states that are reachable from initN when only choosing
actions from Actmin(·). Note that E does not contain any states from C, meaning no state
in E constitutes a singleton SPR cause.

All schedulers that reach Eff with positive probability in N have to leave the sub-MDP
consisting of E and the actions in Actmin(·) at some point. Let us call this sub-MDP Nmin

E .
We define the set of state-action pairs Π that leave the sub-MDP Nmin

E :

Π
def
= {(s,α) | s ∈ E and α ∈ ActN(s) \Actmin(s)}.

We now construct a further MDP K. The idea is that K behaves like the end-component
free MDP N after initially a scheduler is forced to choose a probability distribution over
state-action pairs from Π. In this way, Eff is reached with positive probability under all
schedulers. Given an SPR cause, we will observe that for the f-score of this cause under a
scheduler, it is only important how large the probabilities with which state action pairs from
Π are chosen are relative to each other while the absolute values are not important. Due to
this observation, for each SPR cause C and for each scheduler S for N that reaches Eff with
positive probability, we can then construct a scheduler for K that leads to the same recall
and precision of C.

Formally, K is defined as follows: The state space is SN ∪ {initK} where initK is a fresh
initial state. For all states in SN, the same actions as in N are available with the same
transition probabilities. I.e., for all s, t ∈ SN,

ActK(s)
def
= ActN(s) and PK(s,α, t)

def
= PN(s,α, t) for all α ∈ ActK(s).

For each state-action pair (s,α) from Π, we now add a new action β(s,α) that is enabled
only in initK. These are all actions enabled in initK, i.e.,

ActK(initK)
def
= {β(s,α) | (s,α) ∈ Π}.

For each state t ∈ SN, we define the transition probabilities under β(s,α) by

PK(initK,β(s,α), t)
def
= PN(s,α, t).
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Claim 2: A subset C ⊆ C such that for all c ∈ C : Prmax
N (¬CU c) > 0 is an SPR cause for

Eff in N with fscore(C) > ϑ if and only if for all schedulers T for K, we have

2(1−ϑ)tpTK − ϑfpTK − ϑfnTK > 0. (5.4)

Proof of Claim 2. We first prove the direction “⇒”. So, let C be an SPR cause for Eff in
end-component free MDP N with fscore(C) > ϑ. As first observation we have that in order
to prove (5.4) for all schedulers T for K, it suffices to consider schedulers T that start with
a deterministic choice for state initK and then behave in an arbitrary way.

To see this, we consider the MDP KC which consists of two copies of K: “before C” and
“after C”. When KC enters a C-state in the first copy (“before C”), it switches to the
second copy (“after C”) and stays there forever. Let us write (s, 1) for state s in the first
copy and (s, 2) for the copy of state s in the second copy. Thus, in KC the event ♢C∧♢Eff
is equivalent to reaching a state (eff, 2) where eff ∈ Eff, while ♢C∧¬♢Eff is equivalent to
reaching a non-terminal state in the second copy, while ¬♢C∧ ♢Eff corresponds to the
event reaching an effect state in the first copy.

Obviously, there is a one-to-one-correspondence of the schedulers of K and KC. As K
has no end components so does KC. Therefore, a terminal state will be reached almost
surely under every scheduler. Furthermore, we equip KC with a weight function on states
which assigns
– weight 2(1−ϑ) to the states (eff, 2) where eff ∈ Eff,
– weight −ϑ to the states (eff, 1) where eff ∈ Eff and to the states (s, 2) where s is a

terminal non-effect state in K (and KC), and
– weight 0 to all other states.
Let V denote the set of all terminal states in KC. Then, the expression on the left
hand side of (5.4) equals ET

KC
(⊞V), the expected accumulated weight until reaching a

terminal state under scheduler T. Hence, (5.4) holds for all schedulers T in K if and only
if Emin

KC
(⊞V) > 0.

It is well-known that the minimal expected accumulated weight in EC-free MDPs
is achieved by an MD-scheduler [BK08]. Thus, there is an MD-scheduler T of KC

with Emin
KC

(⊞V) = ET
KC

(⊞V). When viewed as a scheduler of K, T behaves memoryless
deterministic before reaching C. In particular, T’s initial choice in initK is deterministic.

Recall the set Actmin(s) of actions minimizing the reachability probability of Eff from
s. Consider a scheduler T for K with a deterministic choice T(initK)(β(s,α)) = 1 where
(s,α) ∈ Π. To construct an analogous scheduler S of N, we pick an MD-scheduler U of the
sub-MDP Nmin

E of N induced by the state-action pairs (u,β) where u ∈ E and β ∈ Actmin(u)
such that there is a U-path from initN to state s.

Scheduler S of N operates with the mode m1 and the modes m2,t for t ∈ SN. In its
initial mode m1, scheduler S behaves as U as long as state s has not been visited. When
having reached state s in mode m1, then S schedules the action α with probability 1. Let
t ∈ SN be the state that S reaches via the α-transition from s. Then, S switches to mode
m2,t and behaves from then on as the residual scheduler res(T,ϖ) of T for the T-path
ϖ = initK β(s,α) t in K. That is, after having scheduled the action β(s,α), scheduler S
behaves exactly as T.

Let λ denote S’s probability to leave mode m1, which equals U’s probability to reach s
from initN. Thus, λ = PrUN(♢s) when U is viewed as a scheduler of N. As E is disjoint from
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C and Eff, scheduler S stays forever in mode m1 and never reaches a state in C ∪ Eff with
probability 1−λ.

S and T behave identically after choosing the state-action pair (s,α) ∈ Π or the
corresponding action β(s,α), respectively, which implies that

• PrSN(♢C∧ ♢Eff) = λ · PrTK(♢C∧ ♢Eff),
• PrSN(♢Eff) = λ · PrTK(♢Eff) and
• PrSN(♢C∧ ¬♢Eff) = λ · PrTK(♢C∧ ¬♢Eff).

Recall the sub-MDP Nmin
E consisting of E and the actions in Actmin(·). As S leaves the

sub-MDP Nmin
E with probability λ > 0, we have PrSN(♢Eff) > 0. By Lemma 5.15, we can

conclude that

2(1−ϑ)tpSN − ϑfpSN − ϑfnSN > 0.

By the equations above, this in turn implies that

2(1−ϑ)tpTK − ϑfpTK − ϑfnTK > 0.

For the direction “⇐”, first recall that any subset of C satisfying (M) is an SPR cause
for Eff in N by definition of C. Now, let S be a scheduler for N with PrSN(♢Eff) > 0. Let
Γ be the set of finite S-paths γ in the sub-MDP Nmin

E such that S chooses an action in

A = ActN(last(γ)) \Actmin(last(γ)) with positive probability after γ where last(γ) denotes
the last state of γ. Let

q
def
=

∑
γ∈Γ

∑
α∈A

PN(γ) ·S(γ)(α).

So, q is the overall probability that a state-action pair from Π is chosen under S. We
now define a scheduler T for K: For each action γ ∈ Γ ending in a state s and each action
α ∈ ActN(s) \ Actmin(s), the scheduler T chooses action β(s,α) in initK with probability
PN(γ) · S(γ)(α)/q. When reaching a state t afterwards, T behaves like res(S,γα t)
afterwards. Note that by definition this indeed defines a probability distribution over the
actions in the initial state initK.

By assumption, we know that now

2(1−ϑ)tpTK − ϑfpTK − ϑfnTK > 0.

As the probability with which an action β(s,α) is chosen by T for a (s,α) ∈ Π is 1/q times

the probability that α is chosen in s to leave the sub-MDP Nmin
E under S in N and as the

residual behavior is identical, we conclude that

2(1−ϑ)tpSN − ϑfpSN − ϑfnSN = q · (2(1−ϑ)tpTK − ϑfpTK − ϑfnTK) > 0.

By Lemma 5.15, this shows that fscore(C) > ϑ in N and finishes the proof of Claim 2.

Construction of a game structure. Recall the set of singleton SPR causes C. We now construct
a stochastic shortest path game (see [PB99]) to check whether there is a subset C ⊆ C such
that (5.4) holds in the EC-free MDP K in which visiting effect states always has a non-zero
probability. Such a game is played on an MDP-like structure with the only difference that
the set of states is partitioned into two sets indicating which player controls which states.

The game G has states (SK × {yes,no}) ∪ C × {choice}. On the subset SK × {yes},
all actions and transition probabilities are just as in K and this copy of K cannot be
left. Formally, for all s, t ∈ SK and α ∈ ActK(s), we have ActG((s, yes)) = ActK(s) and
PG((s, yes),α, (t, yes)) = PK(s,α, t).
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In the “no”-copy, the game also behaves like K but when a state in C would be entered,
the game moves to a state in C× {choice} instead. In a state of the form (c, choice) with
c ∈ C, two actions α and β are available. Choosing α leads to the state (c, yes) while
choosing β leads to (c,no) with probability 1.

Formally, this means that for all state s ∈ SK, we define ActG((s,no)) = ActK(s) and
for all actions α ∈ ActK(s):

• PG((s,no),α, (t,no)) = PK(s,α, t) for all states t ∈ SK \ C

• PG((s,no),α, (c, choice)) = PK(s,α, c) for all states c ∈ C

For states s ∈ SK, c ∈ C, and α ∈ ActK(s), we furthermore define:

PG((c, choice),α, (c, yes)) = PG((c, choice),β, (c,no)) = 1.

Intuitively speaking, whether a state c ∈ C should belong to the cause set can be decided in
the state (c, choice). The “yes”-copy encodes that an effect state has been selected. More
concretely, the “yes-copy” is entered as soon as α has been chosen in some state (c, choice)
and will never be left from then on. The “no”-copy of K then encodes that no state c ∈ C

which has been selected to become a cause state has been visited so far. That is, if the
current state of a play in G belongs to the no-copy then in all previous decisions in the states
(c, choice), action β has been chosen.

Finally, we equip the game with a weight structure. All states in Eff × {yes} get weight
2(1− ϑ). All remaining terminal states in SK × {yes} get weight −ϑ. All states in Eff × {no}
get weight −ϑ. All remaining states have weight 0.

The game is played between two players 0 and 1. Player 0 controls all states in C×{choice}
while player 1 controls the remaining states. The goal of player 0 is to ensure that the
expected accumulated weight is > 0.

Claim 3: Player 0 has a winning strategy ensuring that the expected accumulated weight
is > 0 in the game G if and only if there is a subset C ⊆ C in K which satisfies for all
c ∈ C : Prmax

K (¬CU c) > 0 and for all schedulers T for K we have

2(1−ϑ)tpTK − ϑfpTK − ϑfnTK > 0. (5.5)

Proof of Claim 3. As K has no end components, also in the game G a terminal state is
reached almost surely under any pair of strategies. Hence, we can rely on the results of
[PB99] that state that both players have an optimal memoryless deterministic strategy.

We start by proving direction “⇒” of Claim 3. Let ζ be a memoryless deterministic
winning strategy for player 0. I.e., ζ assigns to each state in C × {choice} an action from
{α,β}. We define

Cα
def
= {c ∈ C | ζ((c, choice)) = α}.

Note that Cα is not empty as otherwise a positive expected accumulated weight in the
game is not possible. (Here we use the fact that only the effect states in the yes-copy have
positive weight and that the yes-copy can only be entered by taking α in one of the states
(c, choice).) To ensure for all c ∈ C : Prmax

K (¬CU c) > 0, we remove states that cannot be
visited as the first state of this set:

C
def
= {c ∈ Cα | K, c |= ∃(¬Cα)U c}.

Note that the strategies for player 0 in G which correspond to the sets Cα and C lead to
exactly the same plays.
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Let T be a scheduler for K. This scheduler can be used as a strategy for player 1 in
G. Let us denote the expected accumulated weight when player 0 plays according to ζ and
player 1 plays according to T by w(ζ,T). As ζ is winning for player 0 we have w(ζ,T) > 0.
By the construction of the game, it follows directly that

w(ζ,T) = 2(1−ϑ)tpTK − ϑfpTK − ϑfnTK.

Putting things together yields:

2(1−ϑ)tpTK − ϑfpTK − ϑfnTK > 0 (5.6)

For the other direction, suppose there is a set C ⊆ C that satisfies Prmax
K (¬CU c) > 0

for all c ∈ C and (5.5) for all schedulers T for K. We define the MD-strategy ζ from C by
letting ζ((c, choice)) = α if and only if c ∈ C. For any strategy T for player 1, we can again
view T also as a scheduler for K. Equation (5.6) holds again and shows that the expected
accumulated weight in G is positive if player 0 plays according to ζ against any strategy for
player 1. This finishes the proof of Claim 3.

Putting together Claims 1-3. We conclude that there is an SPR cause C in the original
MDP M with fscore(C) > ϑ if and only if player 1 has a winning strategy in the constructed
game G. As both players have optimal MD-strategies in G [PB99], the decision problem is in
NP ∩ coNP: We can guess the MD-strategy for player 0 and solve the resulting stochastic
shortest path problem in polynomial time [BT91] to obtain an NP-upper bound. Likewise,
we can guess the MD-strategy for player 1 and solve the resulting stochastic shortest path
problem to obtain the coNP-upper bound.

Optimality and threshold constraints for GPR causes. Computing optimal GPR
causes for either quality measure can be done in polynomial space by considering all cause
candidates, checking (G) in coNP and computing the corresponding quality measure in
polynomial time (Section 5.2). As the space can be reused after each computation, this
results in polynomial space. However, we show that no polynomial-time algorithms can be
expected as the corresponding threshold problems are NP-hard. Let GPR-covratio (resp.
GPR-recall, GPR-f-score) denote the decision problems: Given M,Eff and ϑ ∈ Q, decide
whether there exists a GPR cause with coverage ratio (resp. recall, f-score) at least ϑ.

Theorem 5.16. The problems GPR-covratio, GPR-recall and GPR-f-score are NP-hard
and belong to ΣP

2 . For Markov chains, all three problems are NP-complete. NP-hardness
even holds for tree-like Markov chains.

Proof. ΣP
2 -membership. The algorithms for GPR-covratio, GPR-recall and GPR-f-score

rely on the guess-and-check principle: they start by non-deterministically guessing a set
Cause ⊆ S, then check in coNP whether Cause constitutes a GPR cause (see Section 4)
and finally check recall(Cause) ⩽ ϑ (with standard techniques), resp. covrat(Cause) ⩽ ϑ,
resp. fscore(Cause) ⩽ ϑ (Theorem 5.5) in polynomial time. The alternation between the
existential quantification for guessing Cause and the universal quantification for the coNP
check of the GPR condition results in the complexity ΣP

2 of the polynomial-time hierarchy.
NP-membership for Markov chains. NP-membership for all three problems within

Markov chains is straightforward as we may non-deterministically guess a cause and check
in polynomial time whether it constitutes a GPR cause and satisfies the threshold condition
for the recall, coverage ratio or f-score.
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NP-hardness of GPR-recall and GPR-covratio. With arguments as in the proof of
Lemma 5.10, the problems GPR-recall and GPR-covratio are polynomially interreducible
for Markov chains. Thus, it suffices to prove NP-hardness of GPR-recall. For this, we
provide a polynomial reduction from the knapsack problem. The input of the latter are
sequences A1, . . . ,An,A and B1, . . . ,Bn,B of positive natural numbers and the task is to
decide whether there exists a subset I of {1, . . . ,n} such that∑

i∈I

Ai < A and
∑
i∈I

Bi ⩾ B (5.7)

Let K be the maximum of A,A1, . . . ,An,B,B1, . . . ,Bn and N = 8(n+1) · (K+1). We then
define

ai =
Ai

N
, a =

A

N
, bi =

Bi

N
, b =

B

N
.

Then, a,a1, . . . ,an,b,b1, . . . ,bn are positive rational numbers strictly smaller than 1
8(n+1) ,

and (5.7) can be rewritten as:∑
i∈I

ai < a and
∑
i∈I

bi ⩾ b (5.8)

For i ∈ {1, . . . ,n}, let pi = 2(ai + bi) and wi =
bi

pi
= 1

2 · bi

ai+bi
. Then, 0 < pi <

1
2(n+1) and

0 < wi <
1
2 . Moreover,pi

(
1
2 −wi

)
= ai and pi ·wi = bi. Hence, (5.8) can be rewritten as:∑

i∈I

pi
(1
2
−wi

)
< a and

∑
i∈I

piwi ⩾ b

which again is equivalent to:∑
i∈I0

piwi∑
i∈I0

pi
>

1

2
and

∑
i∈I0

piwi ⩾ p0 + b (5.9)

where p0 = 2a, w0 = 1 and I0 = I ∪ {0}. Note that a < 1
8(n+1) and hence p0 <

1
4(n+1) .

Define a tree-shape Markov chain M with non-terminal states init, s0, s1, . . . , sn, and
terminal states eff0, . . . , effn, effunc and noeff, noeff1, . . . , noeffn. Transition probabilities are
as follows:

• P(init, si) = pi for i = 0, . . . ,n

• P(init, effunc) = 1
2 −

n∑
i=0

piwi

• P(init, noeff) = 1−
n∑

i=0

pi − P(init, effunc),

• P(si, effi) = wi, P(si, noeffi) = 1−wi for i = 1, . . . ,n
• P(s0, eff0) = 1 = w0.

Note that p0 + p1 + . . . + pn <
1
2 as all pi’s are strictly smaller than 1

2(n+1) . As the

wi’s are bounded by 1, this yields 0 < P(init, effunc) <
1
2 and 0 < P(init, noeff) < 1.

The graph structure of M is indeed a tree and M can be constructed from the values
A,A1, . . . ,An and B,B1, . . . ,Bn in polynomial time. For Eff = {effunc}∪{effi : i = 0, 1, . . . ,n}



4:48 C. Baier, J. Piribauer, and R. Ziemek Vol. 20:1

we have:

PrM(♢Eff) =

n∑
i=0

piwi + P(init, effunc) =
1

2
.

As the values w1, . . . ,wn are strictly smaller than 1
2 , we have PrM( ♢Eff | ♢C ) < 1

2 for each
nonempty subset C of {s1, . . . , sn}. Thus, the only candidates for GPR causes are the sets
CI = {si : i ∈ I0} where I ⊆ {1, . . . ,n} where as before I0 = I ∪ {0}. Note that for all states
s ∈ CI there is a path satisfying (¬CI)U s. Thus, CI is a GPR cause iff CI satisfies (G). We
have:

PrM( ♢Eff | ♢CI ) =

∑
i∈I0

piwi∑
i∈I0

pi

and

recall(CI) = PrM( ♢(CI ∧ ♢Eff) | ♢Eff ) = 2 ·
∑
i∈I0

piwi.

Thus, CI is a GPR cause with recall at least 2(p0 + b) if and only if the two conditions in
(5.9) hold, which again is equivalent to the satisfaction of the conditions in (5.7). But this
yields that M has a GPR cause with recall at least 2(p0 + b) if and only if the knapsack
problem is solvable for the input A,A1, . . . ,An,B,B1, . . . ,Bn.

NP-hardness of GPR-f-score. Using similar ideas, we also provide a polynomial reduction
from the knapsack problem. Let A,A1, . . . ,An,B,B1, . . . ,Bn be an input for the knapsack
problem. We replace the A-sequence with a,a1, . . . ,an where a = A

N and ai =
Ai

N where N
is as before. The topological structure of the Markov chain that we are going to construct is
the same as in the NP-hardness proof for GPR-recall.

Next, we will consider the polynomial-time computable values p0,p1, . . . ,pn ∈ ]0, 1[
(where pi = P(init, si)), w1, . . . ,wn ∈ ]0, 1[ (where wi = P(si, effi)) and auxiliary variables
δ ∈ ]0, 1[ and λ > 1 such that:

(1) p0 + p1 + . . .+ pn <
1
2

(2) λ =
p0+

1
2−δ

p0

(3) for all i ∈ {1, . . . ,n}:
(3.1) ai = pi

(
1
2 −wi) (in particular wi <

1
2)

(3.2) Bi = 1
δBpi

(
λwi − 1) (in particular wi >

1
λ)

Assuming such values have been defined, we obtain:∑
i∈I

Bi ⩾ B iff
1

δ
B
∑
i∈I

pi(λwi − 1) ⩾ B

iff
∑
i∈I

pi(λwi − 1) ⩾ δ

iff λ
∑
i∈I

piwi ⩾ δ+
∑
i∈I

pi
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Hence:

∑
i∈I

Bi ⩾ B iff

∑
i∈I

piwi

δ+
∑
i∈I

pi
⩾

1

λ

For all positive real numbers x,y,u, v with x
y = 1

λ we have:

x+ u

y+ v
⩾

1

λ
iff

u

v
⩾

1

λ

By the constraints for λ (see (2)), we have p0

p0+
1
2−δ

= 1
λ . Therefore:∑

i∈I

piwi

δ+
∑
i∈I

pi
⩾

1

λ
iff

p0 +
∑
i∈I

piwi

(p0 +
1

2
− δ) + δ+

∑
i∈I

pi

=

p0 +
∑
i∈I

piwi

p0 +
1

2
+
∑
i∈I

pi

⩾
1

λ

As before let w0 = 1 and I0 = I ∪ {0}. Then, the above yields:

∑
i∈I

Bi ⩾ B iff

∑
i∈I0

piwi

1

2
+

∑
i∈I0

pi

⩾
1

λ

As in the NP-hardness proof for GPR-recall and using (3.1):

PrM(♢Eff) =
1

2
> wi for i = 1, . . . ,n

Thus, each GPR cause must have the form CI = {si : i ∈ I0} for some subset I of {1, . . . ,n}.
Moreover:

PrM(♢CI) =
∑
i∈I0

pi and PrM(♢(CI ∧ ♢Eff)) =
∑
i∈I0

piwi

So, the f-score of CI is:

fscore(CI) = 2 · PrM(♢(CI ∧ ♢Eff))
PrM(♢Eff) + PrM(♢CI)

= 2 ·

∑
i∈I0

piwi

1
2 +

∑
i∈I0

pi

This implies: ∑
i∈I

Bi ⩾ B iff fscore(CI) ⩾
2

λ

With p0 = 2a and using (3.1) and arguments as in the NP-hardness proof for GPR-recall,
we obtain: ∑

i∈I

Ai < A iff CI is a GPR cause

Thus, the constructed Markov chain has a GPR cause with f-score at least 2
λ if and only if

the knapsack problem is solvable for the input A,A1, . . . ,An,B,B1, . . . ,Bn.
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It remains to define the values p1, . . . ,pn,w1, . . . ,wn and δ. (The value of λ is then
obtained by (2).) (3.1) and (3.2) can be rephrased as equations for wi:

(3.1’): wi =
1
2 − ai

pi

(3.2’): wi =
1
λ

(
δ Bi

Bpi
+ 1

)
This yields an equation for pi:

1

2
−
ai
pi

=
1

λ

(
δ
Bi

Bpi
+ 1

)
and leads to:

pi =
2λ

λ− 2
ai +

2δ

λ− 2
· Bi

B
(5.10)

We now substitute λ by (2) and arrive at

pi =
p0

1
2 − δ

ai + ai +
δp0
1
2 − δ

Bi

B
.

By choice of N, all ai’s and a are smaller than 1
8(n+1) . Using this together with p0 = 2a,

we get:

pi <
1

4(n+1)(12 − δ)

1

8(n+1)
+

1

8(n+1)
+

δ

4(n+1)(12 − δ)

Bi

B
(5.11)

Let now δ = 1
8K (where K is as above, i.e., the maximum of the values A,A1, . . . ,An, B,

B1, . . . ,Bn). Then, p1, . . . ,pn are computable in polynomial time, and so are the values
w1, . . . ,wn (by (3.1’)). As 2λ

λ−2 > 2 and using (5.10), we obtain pi > 2ai. So, by (3.1’) we

get 0 < wi <
1
2 .

It remains to prove (1). Using δ = 1
8K , we obtain from (5.11):

pi <
1

4(n+1)(12 − 1
8K)

1

8(n+1)
+

1

8(n+1)
+

1

32(n+1)(12 − 1
8K)K

Bi

B

def
= x

As 1
2 − 1

8K ⩾ 1
4 and Bi

B < K, this yields:

pi < x <
1

8(n+1)2
+

1

8(n+1)
+

1

8(n+1)
<

1

2(n+1)
.

But then condition (1) holds.

Arbitrary quality measures. Consider any algebraic function f(tp, tn, fp, fn). That is f
satisfies some polynomial equation where the coefficients are polynomials in tp, tn, fp and fn.
Almost every quality measure for binary classifiers (see [Pow11]) is such a function. Taking
the worst case scheduler for such a function we define

f(Cause) = inf
S
fS(tpSCause, tn

S
Cause, fp

S
Cause, fn

S
Cause),

where S ranges over all schedulers such that fS is well defined. Given a PR cause Cause and
a rational ϑ ∈ Q, deciding whether f(Cause) ⩽ ϑ can be done in PSPACE as a satisfiability
problem in the existential theory of the reals [Can88].

As we can decide for a given cause candidate Cause whether it is a SPR cause in P or a
GPR cause in coNP, this also yields an algorithm for finding optimal causes for f. Given
an MDP M with terminal effect set Eff and quality measure f as an algebraic function we
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consider each cause candidate Cause, check whether it is a PR cause (SPR or GPR) and
consider the decision problem f(Cause) ⩽ ϑ. As all of these steps have a complexity upper
bound of PSPACE and we only need to save the best cause candidate so far with its value
f(Cause), this results in polynomial space as well.

6. ω-regular effect scenarios

In this section, we turn to an extension of the previous definition of PR causes. So far, we
considered both the cause and the effect as sets of states in an MDP M with state space
S. We will refer to this setting as the state-based setting from now on. In a more general
approach, we now consider the effect to be an ω-regular language rEff ⊆ Sω over the state
space S. Note that we denote regular events as effects mainly by rEff to avoid confusion
with effects as sets of states.

In a first step, we still consider sets of states Cause ⊆ S as causes, which we call
reachability causes (Section 6.1). For reachability GPR causes, the techniques from the
previous section are mostly still applicable. For reachability SPR causes, on the other hand,
we observe that they take on the flavor of state-based GPR causes as well. Afterwards, we
generalize the definition further to allow ω-regular co-safety properties over the state space
S as causes, which we call co-safety causes (Section 6.2). While this allows us to express
much more involved cause-effect relationships, we will see that attempts of checking co-safety
SPR causality or of finding good causes for a given effect encounter major new difficulties.

6.1. Sets of states as causes. Throughout this section, let M = (S,Act ,P, init) be an
MDP. As long as we use sets of states as causes, the definition of GPR and SPR causes can
easily be adapted to ω-regular effects:

Definition 6.1 (Reachability GPR/SPR causes). Let M be as above. Let rEff ⊆ Sω be an
ω-regular language over S and Cause a nonempty subset of S such that for each c ∈ Cause,
there is a scheduler S with PrSM((¬Cause)U c) > 0. Then, Cause is said to be a reachability
GPR cause for rEff iff the following condition (rG) holds:

(rG): For each scheduler S where PrSM(♢Cause) > 0:

PrSM(rEff | ♢Cause) > PrSM(rEff). (rGPR)

Cause is called a reachability SPR cause for rEff iff the following condition (rS) holds:

(rS): For each state c ∈ Cause and each scheduler S where PrSM((¬Cause)U c) > 0:

PrSM(rEff | (¬Cause)U c) > PrSM(rEff). (rSPR)

There is one small caveat that we want to mention here: If the effect rEff is a reachability
property ♢Eff for a set of states Eff ⊆ S, then this new definition allows for GPR/SPR causes
Cause not disjoint from the set of states Eff. If two sets Cause,Eff ⊆ S are disjoint, however,
then Cause is a GPR/SPR cause for Eff according to Definition 3.1 iff Cause is a reachability
GPR/SPR cause for the ω-regular event ♢Eff according to the new definition. As we now
view the effect as the ω-regular property on infinite executions, one can, nevertheless, argue
that the temporal priority (C2) is captured by the new definition since the cause will
be reached after finitely many steps if it is reached. We will address problems with this
interpretation and a stronger notion of temporal priority in Section 6.1.3.
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A first simple observation that follows as in the state-based setting is that a reachability
SPR cause for rEff is also a reachability GPR cause for rEff

6.1.1. Checking causality and existence of reachability PR causes. To explore how this change
of definition influences the previously established results for GPR and SPR causes, we have
to clarify how effects will be represented. We use deterministic Rabin automata (DRAs) as
they are expressive enough to capture all ω-regular languages and they are deterministic,
which will allow us to form well-behaved products of the automata with MDPs. Let M

be an MDP, rEff an effect given by the DRA ArEff and Cause ⊆ S a cause candidate. As
a special case we again have Markov chains with no non-deterministic choices. Then, the
conditions (rG) and (rS) can easily be checked by computing the corresponding probabilities
in polynomial time (see [BKKM14] for algorithms to compute conditional probabilities in
MCs for path properties). We now consider the case where non-deterministic choices exist.
We will provide a model transformation of M using the DRA such that the resulting MDP
has no end components and the effect is a reachability property again.

Notation 6.2 (Removing end components). Let M and ArEff be as above. Consider the

product MDP N
def
= M⊗ArEff . This product is an MDP equipped with a Rabin acceptance

condition found in the second component of each state in the product.
We now take two copies of N representing a mode before Cause has been reached and

one mode after Cause has been reached. So, each state s is equipped with one extra bit 0 or
1. Initially, the MDP starts in the copy labeled with 0 and behaves like N until a state with
its first component in Cause is reached. From there, the process moves to the corresponding
successor states in the second copy labeled with 1. We call the resulting MDP N′ and denote
the set of states with their first component in Cause in the first copy that are reachable in
N′ by CauseArEff

, in particular, to express that these states are enriched with states of the
automaton ArEff .

Next, we consider the MECs E1, . . . ,Ek of N′. Note that the states in CauseArEff
are not

contained in any MEC. Furthermore, all MECs consist either only of states from the first
copy labeled 0, or only of states from the second copy labeled with 1. For each MEC Ei,
we determine whether there is a scheduler for Ei that ensures the event Acc(ArEff) that the
acceptance condition of ArEff is met with probability 1 and whether there is a scheduler that
ensures this event with probability 0. With the techniques of [dA97] and [BGC09] this can
be done in polynomial time. We then add four new terminal states effcov, noefffp, effunc, and
noefftn and construct the MEC-quotient of N′ while, for each i ⩽ k, enabling a new action
in the state sEi

obtained from Ei leading to

• effunc if Acc(ArEff) can be ensured with probability 1 in Ei and Ei is contained in copy 0,
and

• another new action leading to noefftn if Acc(ArEff) can be ensured with probability 0 in
Ei and Ei is contained in copy 0;

• effcov if Acc(ArEff) can be ensured with probability 1 in Ei and Ei is contained in copy 1,
and

• another new action leading to noefffp if Acc(ArEff) can be ensured with probability 0 in
Ei and Ei is contained in copy 1.

Finally, we remove all states which are not reachable (from the initial state). We call the
resulting MDP M[rEff,Cause] and emphasize that this MDP contains all states in CauseArEff

,
has no end components, and has the four terminal states effcov, noefffp, effunc, and noefftn.
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Furthermore, for each c ∈ Cause, we denote the subset of states in CauseArEff
with c in their

first component by cArEff
. ◁

Lemma 6.3. Let M, Cause, and ArEff be as above and let M[rEff,Cause] be the constructed
MDP in Notation 6.2 which contains the set CauseArEff

. Then, Cause is a reachability GPR
cause for rEff in M if and only if CauseArEff

is a GPR cause for {effcov, effunc} in M[rEff,Cause].
Furthermore, Cause is a reachability SPR cause for rEff in M if and only if, for each
c ∈ Cause, the set cArEff

of states in CauseArEff
with c in their first component is a GPR

cause for {effcov, effunc} in M[rEff,Cause].

Proof. The set CauseArEff
in M[rEff,rCause] satisfies Pr

max
M[rEff,rCause]

(¬CauseArEff
Ud) > 0 for each

state d ∈ CauseArEff
by construction, since all states in CauseArEff

are reachable and a run
cannot reach two different states in CauseArEff

. So, this minimality condition is satisfied in
any case and, of course, {effcov, effunc} and CauseArEff

are disjoint.
Now, let T be a scheduler for M[rEff,Cause]. The scheduler T can be mimicked by a

scheduler S for M: As long as T moves through the MEC-quotient of N′, the scheduler S
follows this behavior by leaving MECs through the corresponding actions in M. Whenever T
moves to one of the states effcov and effunc, the last step begins in a state sE obtained from
a MEC E of M. In this case, S will stay in E while ensuring with probability 1 that the
resulting run is accepted by ArEff . Similarly, if T moves to noefftn or noefffp, the scheduler
S for M stays in the corresponding MEC and realizes the acceptance condition of ArEff

with probability 0. Vice versa, a scheduler S for M can be mimicked by a scheduler T
for M[rEff,Cause] analogously. So in an end component E, if S stays in E and ensures that
the resulting run is accepted by ArEff with probability p1, stays in E and ensures that the
resulting run is not accepted by ArEff with probability p2, and leaves E with probability
p3, T will move to the corresponding state effcov or effunc with probability p1, to noefftn

or noefffp with probability p2, and take actions leaving sE to other states with the same
probability distribution with which S takes the leaving actions of E.

For such a pair of schedulers S and T, we observe that

PrSM(♢Cause) = PrTM[rEff,Cause]
(♢CauseArEff

), (6.1)

PrSM(rEff) = PrTM[rEff,Cause]
(♢E), and (6.2)

PrSM(♢Cause∧ rEff) = PrTM[rEff,Cause]
(♢effcov) = PrTM[rEff,Cause]

(♢CauseArEff
∧ ♢E), (6.3)

where E = {effcov, effunc}. Hence, CauseArEff
is a GPR cause for {effcov, effunc} in M[rEff,Cause]

if and only if Cause is a reachability GPR cause for rEff in M.
Now consider each element c ∈ Cause individually. We can use the same argumentation

to see that a scheduler T in M[rEff,Cause] can be mimicked by a scheduler S for M, and vice
versa, such that

PrSM(¬CauseU c) = PrTM[rEff,Cause]
(♢cArEff

), and

PrSM(rEff | ¬CauseU c) = PrTM[rEff,Cause]
(♢effcov | ♢cArEff

).

Thus, Cause is a reachability SPR cause for rEff in M if and only if cArEff
is a GPR cause for

{effcov, effunc} in M[rEff,Cause] for all c ∈ Cause.

This Lemma 6.3 shows that reachability SPR causality shares similarities with GPR
causality. Our algorithmic results for reachability PR causes stem from the reduction
provided by Notation 6.2 and Lemma 6.3. As an immediate consequence we can check
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conditions (rG) and (rS) in M[rEff,Cause] by using the already established algorithms for GPR
causes. This results in the following complexity upper bounds.

Corollary 6.4. Let M be an MDP and rEff ⊆ Sω an ω-regular language given as DRA
ArEff . Given a set Cause ⊆ S we can decide whether Cause is a reachability SPR/GPR cause
for rEff in coNP.

Proof. By Lemma 6.3, we can use the construction of M[rEff,Cause], which takes polynomial
time. Then, Theorem 4.11 allows us to check whether Cause is a reachability GPR cause in
coNP directly, while we can apply the GPR check to each set cArEff

and the effect {effcov, effunc}

in M[rEff,Cause] for c ∈ Cause in order to determine whether Cause is a reachability SPR
Cause for rEff.

As in the state-based setting, we can argue that there is a reachability GPR cause iff
there is a reachability SPR cause iff there is a singleton reachability SPR cause. Consequently,
the existence of a reachability GPR/SPR cause can be checked by checking for each state c
of the MDP whether {c} constitutes a reachability SPR cause. We conclude:

Corollary 6.5. The existence of a reachability GPR/SPR cause can be decided in coNP.

6.1.2. Computing quality measures of reachability PR causes. As in Section 5.1, we can view
reachability PR causes as binary classifiers. This leads to the confusion matrix as before
(Figure 13) with the difference that this time the path does not “hit” the effect set, but
rather rEff holds on the path. Hence, we define the following entries of the confusion matrix:
Given rEff, Cause and a scheduler S, we let

tpS
def
= PrSM(♢Cause∧ rEff), tnS

def
= PrSM(¬♢Cause∧ ¬rEff),

fpS
def
= PrSM(♢Cause∧ ¬rEff), fnS

def
= PrSM(¬♢Cause∧ rEff).

Lemma 6.6. Let M be as above, rEff an ω-regular effect given by the DRA ArEff and let
Cause ⊆ S be a reachability GPR/SPR cause. Further, let M[rEff,Cause] be as constructed
above with the set of cause states CauseArEff

and the set of effect states {effcov, effunc}. Then,
for each scheduler S for M, there is a scheduler T for M[rEff,Cause], and vice versa, such that

tpS = tpT, tnS = tnT, fpS = fpT, fnS = fnT,

where the values for T are defined in M[rEff,Cause] as for the state-based setting (cf. Sec-
tion 5.1).

Proof. In the proof of Lemma 6.3, we have seen that for each scheduler S for M, we can
find a scheduler T for M[rEff,Cause] and vice versa such that Equations (6.1) - (6.3) hold. This
implies the equalities claimed here.

Analogously to Section 5.1, we can now define recall , covrat , and fscore of a reachability
PR cause as the infimum of these values in terms of tpS, fpS, tnS, and fnS over all schedulers
S for which the respective quality measures are defined. The computation of these values
can then be done with the methods from the state-based setting:

Corollary 6.7. Let M be an MDP and rEff ⊆ Sω an ω-regular language given as DRA ArEff .
Given a reachability SPR/GPR cause Cause ⊆ S we can compute recall(Cause), covrat(Cause)
and fscore(Cause) in polynomial time.
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Proof. Use Lemma 6.6, Corollary 5.4 and Theorem 5.5.

6.1.3. Finding quality optimal reachability PR causes. When trying to find good causes for
an ω-regular effect rEff, we cannot say that effects and causes should be disjoint as in the
setting where effects and causes were sets of states. This leads to the possibility that causes
might exist that do not capture the intuition behind temporal priority: E.g., if the effect
rEff is a reachability property ♢E for a set of states E, the set of states E itself will be a
reachability PR cause if for each state c ∈ E, Prmax

M (¬EU c) > 0 holds. Furthermore, there
might be causes C that can only be reached after E has already been reached.

In order to account for the temporal priority of causes, we will include the following
condition when trying to find good causes: We require for a cause Cause ⊆ S that

Prmin
M (rEff | ¬CauseU c) < 1 for all c ∈ Cause. (TempPrio)

Intuitively, this states that it is never already certain that the execution will belong to rEff
when the cause is reached. A variation of this criterium has been proposed also in [BDF+21].

Remark 6.8. The condition (TempPrio) could be added to the definition of reachability PR
causes. After the product construction in Notation 6.2, the condition can easily be checked
for a given cause candidate Cause ⊆ S: For each c ∈ Cause, there must be at least one state
with c in the first component in M[rEff,Cause] such that noefffp is reachable from this state.

Furthermore, this condition is stronger than the requirement that causes and effects
are disjoint in the state-based setting. In the state-based setting, however, the analogue of
condition (TempPrio) could also be included easily. Instead of having to be disjoint from a
set of effect states Eff, a cause Cause would then simply not be allowed to contain any state
s with Prmin

M,s(♢Eff) = 1. ◁

Now, we want to find recall- and coverage ratio-optimal reachability SPR causes. As in
the state-based setting, we define the set C of all possible singleton reachability SPR causes
for rEff that in addition satisfy (TempPrio) as explained in Remark 6.8. By Corollary 6.4,
we can check whether a state c ∈ S is a singleton reachability SPR cause in coNP; whether
there is at least one state with c in the first component in M[rEff,Cause] such that noefffp is
reachable from this state is checkable in polynomial time. Thus, we can again define the set
of singleton reachability SPR causes

C = {s ∈ S | s is reachability SPR cause satisfying Prmin
M (rEff | ¬CauseU c) < 1}.

As before, the canonical cause CanCause is now the set of states c ∈ C for which there is a
scheduler S with PrS(¬CU c).

For the complexity of the computation of the recall- and coverage ratio-optimal canonical
cause and its values, the observations above lead us to the complexity class PFNP as defined
in [Sel94]. It consists of all functions that can be computed in polynomial time with access
to an NP-oracle, or equivalently a coNP-oracle.

Proposition 6.9. If C ̸= ∅ then CanCause is a ratio- and recall optimal reachability SPR
cause for rEff. The threshold problem for the coverage ratio and the recall can be decided
in coNP. The optimal values recall(CanCause) and covrat(CanCause) can be computed in
PFNP.
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Proof. The optimality of CanCause follows by the arguments used for Theorem 5.11. In
order to compute CanCause we check for each state s whether (rS) does not hold in NP
and then take the remaining states c ∈ S to define C by checking (TempPrio) for each c. If
(TempPrio) holds then c ∈ C and CanCause = {c ∈ C | Prmax

M (¬CU c) > 0}. This allows to

compute the recall- and coverage ratio-optimal cause CanCause in PFNP.
For the threshold problem whether there is a reachability SPR cause with recall at least

a given ϑ ∈ Q, the coNP upper bound can be shown as follows: For each state c that does
not belong to C, i.e., that is not a singleton reachability SPR cause, there is a polynomial
size certificate for this, as it can be checked in coNP. The collection of all states that do not
belong to C together with these certificates (they do not belong to C) can now serve as a
certificate that the optimal recall is less than ϑ in this the case. Given such a collection of
certificates, we can check in polynomial time that indeed all provided states do not belong
to C. The complement of the provided states forms a super set D of CanCause. Computing
the recall of the set D can then be done in polynomial time as in Corollary 6.7. This value
is an upper bound for the recall of CanCause. Note that if all states that do not belong to C

are given in the certificate, the value even equals the recall of CanCause.
So, if the optimal value is less than ϑ, this is witnessed by the described certificate

containing all states not in C. Vice versa, if a certificate is given resulting in a super set D
of CanCause such that the recall of D is less than ϑ, then there is no reachability SPR cause
with a recall of at least ϑ. So, the threshold problem lies in coNP. For the coverage ratio,
the analogous argument works.

For the threshold problems for f-score-optimal reachability SPR causes and reachability
GPR causes optimal with respect to recall, coverage ration or f-score that satisfy (TempPrio),
we rely on the guess-and-check approach used for optimal GPR causes in the state-based
setting. We guess a subset Cause of states of the MDP, check whether we found a reacha-
bility SPR/GPR cause in coNP, and compute the quality measure under consideration in
polynomial time as explained in the previous section. For the computation of an optimal
cause, we obtain a polynomial-space algorithm.

Corollary 6.10. Let M be an MDP and rEff be an ω-regular language given by ArEff . Given
ϑ ∈ Q, deciding whether there exists a reachability GPR cause Cause with recall(Cause) ⩾ ϑ
(resp. covrat(Cause) ⩾ ϑ, fscore(Cause) ⩾ ϑ) can be done in ΣP

2 and is NP-hard. NP-hardness
even holds for Markov chains.

Deciding whether there is a reachability SPR cause Cause with fscore(Cause) ⩾ ϑ can be
done in ΣP

2 . A recall-, covratio-, or f-score-optimal reachability GPR cause as well as an
f-score-optimal reachability SPR cause can be computed in polynomial space.

Proof. Obviously the lower bounds extend to this setting as we can interpret GPR causes
for Eff as reachability GPR causes for ♢Eff. The upper bounds extend to this setting by
using the construction from Notation 6.2. Since for Theorem 5.16 we relied on guess-and-
check algorithms to establish the upper bounds for the threshold problems, we can use
analogous algorithms in setting of ω-regular effects. We guess a set Cause ⊆ S, check the
reachability GPR causality in coNP (Corollary 6.4) and compute the value of the quality
measure in polynomial time (Corollary 6.7). Again, the alternation between the existential
quantification for guessing Cause and the universal quantification for the coNP check results
in the complexity ΣP

2 of the polynomial-time hierarchy.
In order to show that the decision problem for fscore(Cause) ⩾ ϑ for SPR causes Cause

is in ΣP
2 we resort to the constructed MDP M[rEff,Cause]. By Lemma 6.3 a reachability SPR
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cause Cause in M corresponds to a set of GPR causes {cArEff
| c ∈ Cause} in M[rEff,Cause],

which can be interpreted as GPR cause C =
⋃

c∈Cause cArEff
. This way we can encode the

property fscore(Cause) ⩾ ϑ in M by fscore(C) ⩾ ϑ in M[rEff,Cause]. This results in a decision

problem GPR-f-score for GPR causes which is in ΣP
2 by Theorem 5.16.

For computing optimal GPR causes as well as f-score-optimal SPR causes we can try all
cause candidates by computing the related value (recall , covrat or fscore) and always store
the best one so far. As the space for the cause can be reused, this results in a polynomial
space algorithm.

6.2. ω-regular co-safety properties as causes. We now want to discuss an extension
of the previous framework when we also consider causes to be regular sets of executions.
However, in order to account for the temporal priority of causes, i.e., the fact that causes
should occur before their effects, it makes sense to restrict causes to ω-regular co-safety
properties. The reason is that an ω-regular co-safety property L is uniquely determined
by the regular set of minimal good prefixes of words in L. Recall that a good prefix π for
L is a finite word such that all infinite extensions of π belong to L and that all infinite
words in the co-safety language L have a good prefix. Hence, we can say that a cause rCause
occurred as soon as a good prefix for rCause has been produced. For this subsection we will
denote regular effects and causes mainly by rEff and rCause to avoid confusion with effects
and causes as sets of states. In the following formal definition, we use finite words σ ∈ S∗ to
denote the event σSω.

Definition 6.11 (co-safety GPR/SPR causes). Let M be an MDP with state space S and
let rEff ⊆ Sω be an ω-regular language. An ω-regular co-safety language rCause ⊆ Sω is a
co-safety GPR cause for rEff if the following condition (coG) holds:

(coG): For each scheduler S where PrSM(rCause) > 0:

PrSM(rEff | rCause) > PrSM(rEff). (cosafeGPR)

The event rCause is called a co-safety SPR cause for rEff if the following condition (coS)
hold:

(coS): For each minimal good prefix σ for rCause and each scheduler S where PrSM(σ) > 0:

PrSM(rEff | σ) > PrSM(rEff). (cosafeSPR)

As in the state-based setting it follows that co-safety SPR cause are also co-safety GPR
causes.

6.2.1. Checking co-safety causality. We will represent co-safety PR causes as DFAs which
accept good prefixes of the represented ω-regular event. Note that, for any ω-regular
co-safety property, there is a DFA accepting exactly the minimal good prefixes. So, we
will restrict to such DFAs that accept the minimal good prefixes of an ω-regular co-safety
property. Such a DFA can never accept a word w as well as a proper prefix v of w.

Let now M be an MDP, rEff an effect given by the DRA ArEff and rCause a cause
candidate given by a DFA ArCause as above. So, in particular, ArCause accepts exactly the
minimal good prefixes for rCause. We now want to check, whether rCause is a co-safety
SPR cause (resp. co-safety GPR cause). For the special case of Markov chains the check
can be done in polynomial time analogously to reachability PR causes by computing the
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corresponding conditional probabilities. We can provide a model transformation of M using
both automata such that the resulting MDP has no end components and the effect is a
reachability property again similar to Notation 6.2.

For this consider the product N
def
= M ⊗ ArEff ⊗ ArCause. This product is an MDP

equipped with two kinds of acceptance conditions. The Rabin acceptance of ArEff in
the second component of each state and the acceptance condition of ArCause in the third
component. Now let rCauseArEff

be the set of all states of N whose third component is
accepting in ArCause and which are reachable from the initial state.

As in Notation 6.2, we construct an MDP N′ by introducing a mode before rCauseArEff

and a mode after rCauseArEff
. We then take the MEC-quotient with the four terminal

states effcov, noefffp, effunc, and noefftn, which are reachable from states sE that result from
collapsing the MEC E depending on whether E is contained in the before- or after-rCauseArEff

mode and whether the acceptance condition of ArEff can be realized with probability 0 and
1, respectively in E, analogously to Notation 6.2. We call the resulting MDP M[rEff,rCause]

and emphasize that this MDP still contains all states in rCauseArEff
as they are not contained

in any end component.
We start with the observation, that for co-safety GPR causes this reduction characterizes

the condition (coG) completely.

Lemma 6.12. Let M be and MDP, ArEff an DRA, and ArCause a DFA be as above and let
M[rEff,rCause] be the constructed MDP that contains the set rCauseArEff

of reachable states that
have an accepting ArCause-component. Then, rCause is a co-safety GPR cause for rEff in M

if and only if the set of states rCauseArEff
is a GPR cause for {effcov, effunc} in M[rEff,rCause].

Proof. The set rCauseArEff
in M[rEff,rCause] satisfies Pr

max
M[rEff,rCause]

(¬rCauseArEff
U c) > 0 for each

c ∈ rCauseArEff
by construction, since all states in rCauseArEff

are reachable and a run cannot
reach two different states in rCauseArEff

. Thus, the minimality condition is satisfied in any
case.

Now, let S be a scheduler for M[rEff,rCause]. The scheduler S can be mimicked by a
scheduler T for M: As long as S moves through the MEC-quotient of N′, the scheduler T
follows this behavior by leaving MECs through the corresponding actions in M. Whenever
S moves to one of the states effcov and effunc, the last step begins in a state sE obtained
from a MEC E of M. In this case, T will stay in E while ensuring with probability 1 that the
resulting run is accepted by ArEff . Similarly, if S moves to noefftn or noefffp, the scheduler
T for M stays in the corresponding MEC and realizes the acceptance condition of ArEff with
probability 0. Vice versa, a scheduler T for M[rEff,rCause] can be mimicked by a scheduler S
for M analogously (see also the proof of Lemma 6.3).

For such a pair of schedulers S and T, we observe that

PrSM(rCause) = PrTM[rEff,rCause]
(♢rCauseArEff

), (6.4)

PrSM(rEff) = PrTM[rEff,rCause]
(♢E), and (6.5)

PrSM(rCause∧ rEff) = PrTM[rEff,rCause]
(♢effcov) = PrTM[rEff,rCause]

(♢rCauseArEff
∧ ♢E), (6.6)

where E = {effcov, effunc}. Hence, rCauseArEff
is a GPR cause for E in M[rEff,rCause] if and only

if rCause is a regular GPR cause for rEff in M.

For co-safety SPR causes this is not a full characterization but only holds in one direction:
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Figure 17: An MDP M for which the reduction from co-safety to state-based PR causes fails

Lemma 6.13. Let M, ArEff , and ArCause be as above and let M[rEff,rCause] be the constructed
MDP that contains the set rCauseArEff

of reachable states that have an accepting ArCause-
component. If rCause is a co-safety SPR cause for rEff in M, then the set of states rCauseArEff

is an SPR cause for {effcov, effunc} in M[rEff,rCause].

Proof. Suppose rCause is a regular SPR cause for rEff in M. Let c ∈ rCauseArEff
and let T

be a scheduler for M[rEff,rCause] such that PrTM[rEff,rCause]
(¬rCauseArEff

U c) > 0. Let

Π = {π a path in M[rEff,rCause] | π ⊨ ¬rCauseArEff
U c and PrTM[rEff,rCause]

(π) > 0}.

Let S be a scheduler for M mimicking T as described in the proof of Lemma 6.12. Let Σπ

be the set of T-paths in M that correspond to the path π in Π. I.e., a path σ belongs to
Σπ if it moves through the MECs of M in the same way as the path π moves through the
MEC-quotient until σ and π reach the state c and if furthermore, σ has positive probability
under S. Now,

PrTM[rEff,rCause]
(♢E | ¬rCauseArEff

U c) =

∑
π∈Π

∑
σ∈Σπ

PrSM(rEff | σ) · PrSM(σ)∑
π∈Π

∑
σ∈Σπ

PrSM(σ)
,

where E = {effcov, effunc}. All the terms PrSM(rEff | σ) are greater than the value of the term

PrSM(rEff) = PrTM[rEff,rCause]
(♢E). Hence, we conclude that

PrTM[rEff,rCause]
(♢E | ¬rCauseArEff

U c) > PrTM[rEff,rCause]
(♢E).

For checking co-safety SPR causality this is not sufficient. The underlying problem, in
which co-safety SPR causes and SPR causes differ, can be seen in the following example:

Example 6.14. Consider the MDP M from Figure 17 with rEff = ♢eff. For every scheduler
S with PrSM(♢c) > 0 we have

PrSM(♢eff | ♢c) > PrSM(♢eff)

and thus c is a state-based SPR cause for eff. On the other hand for the scheduler τ, which
chooses α after the path π = init b c and β otherwise ,we have

PrτM(♢eff | π) =
1

2
= PrτM(♢eff).
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Therefore, the desired reduction as in Lemma 6.12 does not work for M. Note that the
violation of the condition (coS) is only possible in this example if the scheduler behaves
differently depending on how state c is reached. This different behavior, however, does not
have anything to do with the effect, and potentially different residual properties that have
to be satisfied to achieve the effect; in the example, the effect is just a reachability property.
Furthermore, we want to emphasize that the concrete probabilities of the individual paths
leading to c are important for the violation. In general, this imposes a major challenge for
checking the condition (coS), for which we do not know a solution. Similar problems arise
when trying to check the existence of a co-safety SPR cause. A witness might be just one
individual path, potentially only together with a scheduler that realizes this path with very
low probability. ◁

6.2.2. Computation of quality measures of co-safety causes. Analogously to Section 6.1.2, we
can define recall, coverage ratio, and f-score of co-safety PR causes. With the construction
of M[rEff,rCause] and the correspondence between schedulers S for M and T for M[rEff,rCause]

satisfying Equations (6.4)-(6.6) established in the proof of Lemma 6.12, we obtain analogously
to the setting of reachability PR causes:

Corollary 6.15. Let M be an MDP and rEff ⊆ Sω an ω-regular language given as DRA
ArEff . Given a co-safety SPR/GPR cause rCause ⊆ Sω by a DFA ArCause, we can compute
recall(Cause), covrat(Cause) and fscore(Cause) in polynomial time.

6.2.3. Finding optimal co-safety PR causes. Already for reachability PR causes, we have
seen that without further restrictions on the causes we allow, causes might be trivial and
intuitively violate the idea of temporal priority (cf. Section 6.1.3). Hence, also here, we
impose an additional condition, a variation of the condition (TempPrio) used above: In
line with the difference between the definitions of reachability PR causes and co-safety PR
causes, we require that after any good prefix σ of a co-safety cause rCause, the probability
that effect rEff will occur is not guaranteed to be 1, i.e., we require that

Prmin
M (rEff | σ) < 1 for all good prefixes σ of rCause. (TempPrio2)

Unfortunately, we will observe that there are some obstacles in the way when trying to find
optimal co-safety PR causes.

Following the observations from Theorem 5.11 we can define a canonical co-safety PR
cause which is an optimal co-safety SPR cause for both recall and coverage ratio. In this
fully path-based setting this canonical cause consists of all minimal paths which are singleton
co-safety SPR causes. However, as we are not aware of a feasible way to check (coS), the
computation of this cause is unclear.

For co-safety GPR causes, the following example illustrates that there might be no
recall-optimal causes that respect (TempPrio2). Intuitively, the reason is that causes can
be pushed arbitrarily close towards a violation of the probability raising condition while
increasing the recall:

Example 6.16. This example will show that there is a Markov chain M with a state e such
that the effect rEff = ♢e has regular GPR causes that respect the condition (TempPrio2),
but no recall-optimal co-safety GPR cause that respects (TempPrio2).
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Figure 18: Markov chain M where the regular effect ♢e has no recall-optimal regular PR-
cause.

Consider the Markov chain M depicted in Figure 18 with states S and the effect
rEff = ♢e. First of all, we have that PrM(rEff) = 2/3. Furthermore, clearly the cause
initbSω with the unique minimal good prefix initb is a regular GPR cause for example as
PrM(rEff | initb) = 3/4.

Next, note that there cannot be a regular GPR cause rCause′ that does not have initb
as a minimal good prefix. By (TempPrio2) the minimal good prefixes are not allowed to end
in e. Furthermore init is clearly also no candidate for a minimal good prefix of rCause′ as
that would imply that rCause consists of all paths of M and cannot satisfy the condition
(rGPR). If initb is not a minimal good prefix, hence all minimal good prefixes have to
end in a, c, or f. Afterwards, the probability to reach e is at most 1/4 and hence also the
probability PrM(rEff | rCause′) ⩽ 1/4 because it is a weighted average of the probabilities
PrM(rEff | σ) ⩽ 1/4 of the minimal good prefixes σ of rCause′.

So, all regular GPR causes have the minimal good prefix initb together with potentially
further minimal good prefixes. Let now

rCausep
def
= initbSω ∪Ap

where Ap is a regular subset of the paths {initak c | k ⩾ 1} such that all the paths in Ap

together have probability mass 1
3p. Note that we can find such a set Ap for a dense set of

values p ∈ [0, 1]. We compute

PrM(rCausep) =
1

3
(1+ p)

and

PrM(rCausep ∧ rEff) =
1

4
+

1

12
p.

So, we obtain that rCausep is a regular GPR cause if

PrM(rEff | rCausep) =
1
4 + 1

12p
1
3(1+ p)

>
2

3
= PrM(rEff).

After multiplying the inequality with 12(1+ p), we see that this holds iff 9+ 3p > 8+ 8p iff
p < 1

5 . The recall of rCausep is now

PrM(rCausep | rEff) =
1
4 + 1

12p

2/3
=

3

8
+

1

8
p.
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So, among the co-safety GPR causes of the form rCausep, there is no recall-optimal one. For
p tending to 1/5 from below, the recall always increases. Note also that an ε-recall-optimal
co-safety GPR cause for ε > 0 must take a very complicated form. It has to select paths of
the form initak c that have probability 1

3·2k such that there probability adds up to a value

less than, but close to 1
15 . ◁

We have seen that for recall-optimal (and hence coverage ratio-optimal) SPR causes for
an effect given by ArEff , we can provide a characterization of the canonical cause. How to
compute this cause, however, is unclear as we do not know how to check the co-safety SPR
condition and as there might be some paths ending in a given state in the product of M
and ArEff that belong to the canonical cause while other paths ending in that state do not.
For co-safety GPR causes, we have even seen that there might be no (non-trivial) optimal
causes and that causes close to the optimum can be required to take a very complicated
shape. As the f-score is a more involved quality measure than the recall, we cannot expect
that the search for f-score optimal causes is simpler. It seems to be likely that the situation
is at least as bad as for recall-optimal causes if not worse.

7. Conclusion

In this work we formalized the probability-raising principle in MDPs and studied several
quality notions for probability-raising causes. We covered fundamental algorithmic problems
for both the strict (local) and global view, where we considered a basic state-based setting
in which cause and effect are given as sets of states. We extended this setting to ω-regular
path properties as effects in two ways. In a more simple setting we kept causes as sets of
states and in a more general approach considered co-safety path properties as causes.

Strict vs. Global probability raising. In our basic setting of state-based cause-effect
relations, our results indicate that GPR causes are more general overall by leaving more
flexibility to achieve better quality measures, while algorithmic reasoning on SPR causes is
simpler. This changed when extending the framework by considering ω-regular effects given
by a deterministic Rabin automaton. Our results mainly stem from a polynomial reduction
from ω-regular effects to reachability effects (Lemma 6.3). The caveat here is that the strict
PR condition translates to a global PR condition after this transformation, which increases
the algorithmic complexity of reachability SPR causes to the level of reachability GPR
causes. Thus, the strict probability-raising loses its advantage over the global perspective.
Furthermore, when considering causes as co-safety path properties we observe increasing
difficulties to handle strict probability-raising. This stems from an underlying problem in the
approach of strict probability-raising applied to path properties. As we consider cause-effect
relations between these properties, it is somewhat unnatural to require each individual path
to raise the probability of the effect property. Rather, it is more natural to say a path
property as a whole causes another one, instead of saying all possible realizations of a path
property cause another one. This means that co-safety GPR causes also seem more natural
than co-safety SPR causes from a philosophical standpoint.
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Non-strict inequality in the PR conditions. The approach of probability-raising within
this work is in line with the classical notion in literature that uses a strict inequality in the
PR condition. As a consequence causes might not exist (see Example 3.5). However, relaxing
the PR condition by only requiring a non-strict inequality would apparently be a minor
change that broadens the choice of causes. Indeed, the proposed algorithms for checking
the SPR and GPR condition for reachability effects (Section 4) can easily be modified for
the relaxed definition. As the algorithms of both extended settings discussed in Section 6
stem mainly from a reduction to reachability effects this also holds for reachability and
co-safety causes of regular effects. However, a non-strict inequality in the PR condition
would lead to a questionable notion of causality, as e.g. {init} would always be a recall- and
ratio-optimal cause. Thus, other side constraints are needed in order to make use of the
relaxed PR condition. E.g., requiring the non-strict inequality for all schedulers that reach a
cause with positive probability and also requiring the existence of a witnessing scheduler for
the PR condition with strict inequality might be a useful alternative definition which agrees
with Def. 3.1 for Markov chains.

Relaxing the minimality condition. As many causality notions in the literature include
some minimality constraint, we included the condition Prmax

M (¬CauseU c) > 0 for all states
of Cause in the state-based setting and for reachability PR causes of regular effects. However,
this requirement could be dropped without affecting the algorithmic results presented here.
This can be useful when the task is to identify components or agents which are responsible
for the occurrences of undesired effects. In these cases the cause candidates are fixed (e.g.,
for each agent i, the set of states controlled by agent i), but some of them might violate the
minimality condition.

Future directions. In this work we considered type-like causality where cause-effect rela-
tions are defined within the model without needing an actual execution that shows the effect.
Hence, causes are considered in a forward-looking manner. Notions of probabilistic backward
causality that take a concrete execution of the system into account and considerations on
PR causality with external interventions as in Pearl’s do-calculus [Pea09] are left for future
work.
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