
Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 7:1–7:32
https://lmcs.episciences.org/

Submitted Jan. 05, 2023
Published Jan. 26, 2024

PROOFS AS STATEFUL PROGRAMS:

A FIRST-ORDER LOGIC WITH ABSTRACT HOARE TRIPLES, AND

AN INTERPRETATION INTO AN IMPERATIVE LANGUAGE

THOMAS POWELL

Department of Computer Science, University of Bath
e-mail address: trjp20@bath.ac.uk

Abstract. We introduce an extension of first-order logic that comes equipped with
additional predicates for reasoning about an abstract state. Sequents in the logic comprise
a main formula together with pre- and postconditions in the style of Hoare logic, and the
axioms and rules of the logic ensure that the assertions about the state compose in the
correct way. The main result of the paper is a realizability interpretation of our logic that
extracts programs into a mixed functional/imperative language. All programs expressible
in this language act on the state in a sequential manner, and we make this intuition precise
by interpreting them in a semantic metatheory using the state monad. Our basic framework
is very general, and our intention is that it can be instantiated and extended in a variety
of different ways. We outline in detail one such extension: A monadic version of Heyting
arithmetic with a wellfounded while rule, and conclude by outlining several other directions
for future work.

1. Introduction

The Curry-Howard correspondence lies at the heart of theoretical computer science. Over
the years, a multitude of different techniques for extracting programs from proofs have been
developed, the majority of which translate formal proof systems into lambda calculi. As
such, programs extracted from proofs are typically conceived as pure functional programs.

Everyday programmers, on the other hand, often think and write in an imperative
paradigm, in terms of instructions that change some underlying global state. This is
reinforced by the fact that many of the most popular programming languages, including C
and Python, lean towards this style. Imperative programs are nevertheless highly complex
from a mathematical perspective, and while systems such as Hoare logic [Hoa69] or separation
logic [Rey02] have been designed to reason about them, the formal extraction of imperative
programs from proofs has received comparatively little attention.

In this paper, we propose a new idea in this direction, developing a formal system SL
that enriches ordinary first-order logic with Hoare triples for reasoning about an abstract
global state. Sequents will have the form Γ ⊢ {α · A · β}, where A is a formula and α, β
assertions about the state, and proofs in the logic will include both ordinary introduction
and elimination rules for predicate logic, together with special rules for reasoning about the

Key words and phrases: Program extraction, modified realizability, imperative programs, state monad.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:7)2024
© T. Powell
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-2541-4678
http://creativecommons.org/about/licenses

7:2 T. Powell Vol. 20:1

state. We then construct a stateful realizability interpretation (based on Kreisel’s modified
realizability [Kre59]) that relates formulas in SL to terms in a mixed functional/imperative
language ST. Our main result is a soundness theorem, which confirms that whenever a
formula is provable in SL, we can extract a corresponding stateful realizing term in ST.
While our initial soundness theorem focuses on pure predicate logic, we subsequently show
that it can be extended to arithmetic, where in particular we are then able to extract
programs that contain both recursion and controlled while loops.

We are not the first to adapt traditional methods to extract imperative programs:
A major achievement in this direction, for example, is the monograph [PCW05], which
sets up a variant of intuitionistic Hoare logic alongside a realizability translation into a
standard imperative language. Other relevant examples include [Atk09, CMM+09, DF89,
Fil03, NAMB07, YHB07]. However, these and almost all other prior work in this direction
tend to focus on formal verification, with an eye towards using proof interpretations as a
method for the synthesis of correct-by-construction software. In concrete terms, this means
that the formal systems tend to be quite detailed and oriented towards program analysis,
while the starting point is typically a program for which we want to construct a verification
proof, rather than a proof from which we hope to extract a potentially unfamiliar program.

Our approach, on the other hand, is much more abstract, with an emphasis on potential
applications in logic and proof theory. Our basic system SL makes almost no assumptions
about the structure of the state and what we are allowed to do with it. Rather, we focus
on producing a general framework for reasoning about ‘stateful formulas’, which can then
be instantiated with additional axioms to model concrete scenarios. The simplicity and
generality of our framework is its most important feature, and we consider this work to
be a first step towards a number of potentially interesting applications. For this reason,
we include not only an extension of our system to a monadic theory of arithmetic, but
conclude by sketching out some additional ways in which we conjecture that our logic and
interpretation could be used and expanded, including the computational semantics of proofs
and probabilistic logic.

We take ideas from three main sources. The first is a case study of Berger et al. [BSW14],
in which a realizability interpretation is used to extract a version of in-place quicksort, and
where the imperative nature of the extracted program is presented in a semantic way using
the state monad. While their program behaves imperatively “by-chance”, terms extracted
from our logic are forced to be imperative, and thus our framework offers one potential
solution to their open problem of designing a proof calculus which only yields imperative
programs. Indeed, an implementation of the insert sort algorithm is formally extracted in
Section 6 below. Our second source of inspiration is the thesis of Birolo [Bir12], where a
general monadic realizability interpretation is defined and then used to give an alternative,
semantic presentation of learning-based interactive realizability [Asc11, Bd09]. However,
our work goes beyond this in that it also involves a monadic extension of the target logic,
whereas Birolo’s applies to standard first-order logic. Finally, a number of ideas are taken
from the author’s previous work [Pow18] on extracting stateful programs using the Dialectica
interpretation. While there the state is used in a very specific and restricted way, here we
use an analogous call-by-value monadic translation on terms.

It is important to stress that we do not claim that our work represents an optimal or
complete method for extracting imperative programs from proofs, nor do we claim that it
is superior to alternative methods, including the aforementioned works in the direction of
verification, or, for instance, techniques based on Krivine’s classical realizability [Kri09],

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:3

which could be viewed as imperative in nature. We simply offer what we consider to be a
new and interesting perspective that emphasises abstraction and simplicity, and propose
that our framework could prove valuable in a number of different contexts.

Overview of the paper. The main technical work that follows involves the design of three
different systems, a realizability interpretation that connects them, and an instantiation of
this framework in the setting of first-order arithmetic, namely:

• A novel extension SL of predicate logic with abstract Hoare triples, which can be extended
with additional axioms for characterising the state (Section 2).

• A standard calculus ST for lambda terms with imperative commands, which can again be
extended with additional constants for interacting with the state (Section 3).

• A metalanguage Sω into which both SL and ST can be embedded (Section 4), which is
used to formulate the realizability relation and prove its soundness (Section 5).

• An instantiation of SL as a theory of arithmetic, with programs extracted into an extension
of ST with recursion and while loops (Section 6).

Concrete examples are given, and potential applications surveyed in Section 7.

2. The system SL: First-order logic with state

We begin by introducing our target theory SL from which stateful programs will be extracted.
This is an extension of ordinary first-order logic in the sense that the latter can always be
embedded into SL (we will make this precise in Proposition 2.1 below). Ultimately, we are
interested not so much in SL on its own, but in theories of the form SL +∆H +∆S , where
∆H and ∆S are collections of (respectively non-computational and computational) axioms
that together characterise the state. Several concrete examples will be given to illustrate this,
and in Section 6 we present a variant of SL that represents a theory of first-order arithmetic
with state.

Before defining SL, we give a standard presentation of first-order intuitionistic predicate
logic PL, which serves as an opportunity to fix our basic style of formal reasoning. The
language of PL consists of the logical constants ∧,∨,⇒,∀,∃,⊤,⊥, variables x, y, z, . . ., along
with function symbols f, g, h, . . . and predicate symbols P,Q,R, . . ., each with a fixed arity.
We assume the existence of at least one constant c. Terms are built from variables and
function symbols as usual, and formulas are built from prime formulas P (t1, . . . , tn), ⊤ and
⊥ using the logical constants. We use the usual abbreviation ¬A :≡ A ⇒ ⊥. We work
in a sequent style natural deduction calculus, where sequents have the form Γ ⊢I A for
some context Γ and formula A, and a context is a set of labelled assumptions of the form
Au1

1 , . . . , Aun
n for pairwise distinct labels ui. The axioms and rules of PL are as in Figure 1.

2.1. Stateful first-order logic. We now define our new logical system SL, which is an
extension of ordinary first-order logic with new state propositions. To be more precise, we
extend the language of PL with a ternary operation {− · − · −}, together with special state
predicate symbols p, q, r, . . ., which also have a fixed arity. Terms of SL are the same as
those of PL. On the other hand, there are two kinds of formulas in SL: state formulas and
main formulas. A state formula is defined using state predicate symbols and propositional
connectives as follows:

7:4 T. Powell Vol. 20:1

Figure 1: Axioms and rules of PL

Propositional logic

Γ ⊢I A if Au ∈ Γ for some u Γ ⊢I ⊤

Γ ⊢I A Γ ⊢I B
∧I

Γ ⊢I A ∧B

Γ ⊢I A ∧B
∧EL

Γ ⊢I A

Γ ⊢I A ∧B
∧ER

Γ ⊢I B

Γ ⊢I A
∨IL

Γ ⊢I A ∨B

Γ ⊢I B
∨IR

Γ ⊢I A ∨B

Γ ⊢I A ∨B Γ, Au ⊢I C Γ, Bv ⊢I C
∨E

Γ ⊢I C

Γ, Au ⊢I B
⇒I

Γ ⊢I A ⇒ B

Γ ⊢I A ⇒ B Γ ⊢I A
⇒E

Γ ⊢I B

Γ ⊢I ⊥
⊥E

Γ ⊢I A

Quantifier rules

Γ ⊢I A[y/x]
∀I

Γ ⊢I ∀xA
Γ ⊢I ∀xA

∀E
Γ ⊢I A[t/x]

Γ ⊢I A[t/x]
∃I

Γ ⊢I ∃xA
Γ ⊢I ∃xA Γ, A[y/x]u ⊢I C

∃E
Γ ⊢I C

for ∀I, y ≡ x or y not free in A, and y not free in Γ

for ∃E, y ≡ x or y not free in A, and y not free in C or Γ.

• ⊤ and ⊥ are state formulas,

• if p a state predicate symbol of arity n and t1, . . . , tn are terms, then p(t1, . . . , tn) is a
state formula,

• if α, β are state formulas, so are α ∧ β, α ∨ β, α ⇒ β.

A main formula (or just formula) of SL is now defined as:

• ⊤ and ⊥ are formulas,

• if P is an ordinary predicate symbol of arity n and t1, . . . , tn are terms, then P (t1, . . . , tn)
is a formula,

• if A,B are formulas, so are A ∧B, A ∨B and ∃xA,

• if A,B are formulas and α, β state formulas, then A ⇒ {α ·B · β} and ∀x {α ·A · β} are
formulas.

The notions of free and bound variables, along with substitution α[t/x] and A[t/x] can be
easily defined for both state and main formulas.

Analogous to the construction of formulas, our basic proof system uses the auxiliary
notion of a state proof in order to define a main proof. A state sequent has the form Γ ⊢H α
where α is a state formula and Γ a set of labelled state formulas. A proof of Γ ⊢H α in SL is
built from the axioms and rules of classical propositional logic i.e. the propositional axioms

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:5

and rules as set out in Figure 1 plus the law of excluded middle Γ ⊢H α ∨ ¬α, together with
a set ∆H of as yet unspecified state axioms of the form Γ ⊢H α.

A main sequent of SL has the form Γ ⊢S {α ·A · β}, where A is a formula and α, β state
formulas, and Γ is a set of labelled main formulas. A proof of Γ ⊢S {α ·A · β} in SL uses the
axioms and rules given in Figure 2, together with a set ∆S of additional axioms.

We now make precise what we mean when we characterise SL as an extension of standard
first-order logic. The following is provable with an easy induction over derivations in PL:

Proposition 2.1. For any formula A of PL and state formula α, define the main formula
Aα of SL by

• Qα := Q for Q atomic,
• (A ∧B)α := Aα ∧Bα, (A ∨B)α := Aα ∨Bα and (∃xA)α := ∃xAα,
• (A ⇒ B)α := Aα ⇒ {α ·Bα · α} and (∀xA)α := ∀x {α ·Aα · α}.
Then whenever Γ ⊢I A is provable in PL, we have that Γα,∆ ⊢S {α ·Aα · α} is provable in
SL, where ∆ is arbitrary and Γα := (A1)

u1
α , . . . , (An)

un
α for Γ := Au1

1 , . . . , Aun
n .

2.2. The intuition behind SL. The intended semantic meaning of Γ ⊢H α is that α can
be inferred from the assumptions Γ for any fixed state. More specifically, if we imagine a
semantic variant [α](π) of each state formula where now the dependency on an underlying
state π is made explicit, the semantics of Γ ⊢H α is just

[Γ](π) ⇒ [α](π)

On the other hand, the intended meaning of Γ ⊢S {α ·A · β} is that from assumptions Γ, if
α holds with respect to some initial state, then we can infer that A is true and β holds with
respect to some modified state, or more precisely:

[Γ] ⇒ (∃π [α](π) ⇒ ([A] ∧ ∃π′ [β](π′))) (2.1)

In particular, the computational interpretation of (2.1) above will be a program that takes
some input state π satisfying [α](π) and returns a realizer-state pair ⟨x, π′⟩ such that x
realizes A and [β](π′) holds.

Our semantic interpretation [·] will be properly defined in Section 4. Crucially, in SL
the state is implicit, and so there are no variables or terms of state type. The state will
rather be made explicit in our metatheory Sω. The main axioms and rules of SL simply
describe how this semantic interpretation propagates in a call-by-value manner through the
usual axioms and rules of first-order logic. The state itself is brought into play through the
Hoare rules along with the additional axioms ∆H and ∆S .

To give a more detailed explanation, consider the introduction rule ∧SI. Semantically,
the idea is that if

∃π [α](π) ⇒ ([A] ∧ ∃π1 [β](π1)) and ∃π1 [β](π1) ⇒ ([B] ∧ ∃π2 [γ](π2))
both hold, then we can infer

∃π [α](π) ⇒ ([A] ∧ [B] ∧ ∃π2 [γ](π2))
and this can be regarded as a ‘stateful’ version of the usual conjunction introduction rule.
In particular, we note that this is no longer symmetric: Informally speaking, [A] is ‘proven
first’, followed by [B]. Under our realizability interpretation, this rule will correspond to
realizer for {α ·A · β} being sequentially composed with a realizer for {β ·B · γ}.

7:6 T. Powell Vol. 20:1

Figure 2: Axioms and rules of SL

Propositional axioms and rules

Γ ⊢S {α ·A · α} if Au ∈ Γ for some u Γ ⊢S {α · ⊤ · α}

Γ ⊢S {α ·A · β} Γ ⊢S {β ·B · γ}
∧SI

Γ ⊢S {α ·A ∧B · γ}

Γ ⊢S {α ·A ∧B · β}
∧SEL

Γ ⊢S {α ·A · β}
Γ ⊢S {α ·A ∧B · β}

∧SER
Γ ⊢S {α ·B · β}

Γ ⊢S {α ·A · β}
∨SIL

Γ ⊢S {α ·A ∨B · β}
Γ ⊢S {α ·B · β}

∨SIR
Γ ⊢S {α ·A ∨B · β}

Γ ⊢S {α ·A ∨B · β} Γ, Au ⊢S {β · C · γ} Γ, Bv ⊢S {β · C · γ}
∨SE

Γ ⊢S {α · C · γ}

Γ, Au ⊢S {α ·B · β}
⇒SI

Γ ⊢S {γ ·A ⇒ {α ·B · β} · γ}
Γ ⊢S {α ·A ⇒ {γ ·B · δ} · β} Γ ⊢S {β ·A · γ}

⇒SE
Γ ⊢S {α ·B · δ}

Γ ⊢S {α · ⊥ · β}
⊥SE

Γ ⊢S {α ·A · γ}
for γ arbitrary

Quantifier rules

Γ ⊢S {α[y/x] ·A[y/x] · β[y/x]}
∀SI

Γ ⊢S {γ · ∀x {α ·A · β} · γ}
Γ ⊢S {α · ∀x {β ·A · γ} · β[t/x]}

∀SE
Γ ⊢S {α ·A[t/x] · γ[t/x]}

Γ ⊢S {α ·A[t/x] · β}
∃SI

Γ ⊢S {α · ∃xA · β}
Γ ⊢S {α · ∃xA · β} Γ, A[y/x]u ⊢S {β · C · γ}

∃SE
Γ ⊢S {α · C · γ}

for ∀SI, y ≡ x or y not free in A, α, β, and y not free in Γ

for ∃SE, y ≡ x or y not free in A, and y not free in C, α, β, γ or Γ.

Basic Hoare rules

α ⊢H β Γ ⊢S {β ·A · γ} γ ⊢H δ
cons

Γ ⊢S {α ·A · δ}

⊢H α ∨ β Γ ⊢S {α ∧ γ ·A · δ} Γ ⊢S {β ∧ γ ·A · δ}
cond

Γ ⊢S {γ ·A · δ}

Additional axioms

state axioms ∆H of the form Γ ⊢H α

main axioms ∆S of the form Γ ⊢S {α ·A · β}

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:7

Similarly, for the stateful quantifier rule ∀SI, the premise {α[y/x] · A[y/x] · β[y/x]}
corresponds semantically to

∃π [α[y/x]](π) ⇒ [A[y/x]] ∧ ∃π′ [β[y/x]](π′)

and so by the standard quantifier rule of ordinary predicate logic we would have

∀x(∃π [α](π) ⇒ [A] ∧ ∃π′ [β](π′))

From this we can directly infer

∃π [γ](π) ⇒ ∀x(∃π [α](π) ⇒ [A] ∧ ∃π′ [β](π′)) ∧ ∃π [γ](π)

for arbitrary γ, and the above now this has the right form, namely the semantic interpretation
of {γ · ∀x {α ·A · β} · γ}.

We note that the traditional rules of Hoare logic correspond to certain simple cases of
our rules. For example, the composition rule could be viewed as special case of ∧SI for
A = B = ⊤, more specifically the derivation:

Γ ⊢S {α · ⊤ · β} Γ ⊢S {β · ⊤ · γ}
∧SI

Γ ⊢S {α · ⊤ ∧ ⊤ · γ}
∧SEL

Γ ⊢S {α · ⊤ · γ}
In a similar spirit, the two Hoare rules of SL correspond to the consequence and

conditional rules of ordinary Hoare logic, with the traditional conditional rule falling out as
a special case of ours since we assume Γ ⊢H α ∨ ¬α. In Section 6 we extend this further by
adding a controlled while loop to our logic. But for now, we illustrate our logic with some
very straightforward scenarios.

Example 2.2 (Simple query and return). Consider a very simple state, on which we can
perform the following actions:

(1) Store any value from our domain of discourse in some query location.

(2) For the current value x in the query location, return a suitable answer y such that
P (x, y) holds for some fixed binary predicate system of the logic, and store this value.

(3) Retrieve the computed value y from the state.

We formalise those three actions by including two unary state predicates query and returnP ,
where query(x) denotes that x is currently stored in the query location, and returnP (x)
denotes that some y satisfying P (x, y) has been returned. We would then add the following
axioms to ∆S , which intuitively represent each of the above actions:

(1) Γ ⊢S {α · ⊤ · query(x)} where α ranges over all state formulas,

(2) Γ ⊢S {query(x) · ⊤ · returnP (x)}
(3) Γ ⊢S {returnP (x) · ∃y P (x, y) · ⊤}

The second rule should be regarded as representing an abstract updating of the state
where the return value is stored somewhere, and the third the act of retrieval, where following
the update we can now formally prove ∃y P (x, y). Note that the computational aspects of
this interpretation will only become apparent under the realizability interpretation, where a
realizer for {returnP (x) · ∃y P (x, y) · ⊤} will be a function that accesses any state satisfying
returnP (x) and produces as output the y satisfying P (x, y) (See Example 5.6).

7:8 T. Powell Vol. 20:1

We can now, for example, derive the following theorem in SL +∆H +∆S (for ∆H = ∅),
where α, β are any state formulas:

⊢S {β · ∀x {α · ∃y P (x, y) · ⊤} · β}
The derivation below is essentially a proof of ∀x∃y P (x, y) that, necessarily, utilising proper-
ties of the state:

⊢S {α · ⊤ · query(x)} ⊢S {query(x) · ⊤ · returnP (x)}
∧SI⊢S {α · ⊤ ∧ ⊤ · returnP (x)}

∧SEL⊢S {α · ⊤ · returnP (x)} ⊢S {returnP (x) · ∃y P (x, y) · ⊤}
∧SI⊢S {α · ⊤ ∧ ∃y P (x, y) · ⊤}

∧SEL⊢S {α · ∃y P (x, y) · ⊤}
∀SI⊢S {β · ∀x {α · ∃y P (x, y) · ⊤} · β}

We note that while state formulas and actions are used in the proof, if we set α = β = ⊤
then the components of the theorem itself are just formulas in ordinary first-order logic. A
program corresponding to this derivation will be formally extracted in Example 5.6, but
referring to the semantic explanations above, we can view each instance of ∧SI in the proof
as a sequential composition of state actions (with ∧SE just cleaning up the central logical
formula), and finally ∀SI is just the stateful version of the usual ∀-introduction rule.

Example 2.3 (Fixed-length array sorting). Let us now consider our state as an array of
length three, and elements in that array as having some order structure. We formalise this
in SL by introducing 1, 2, 3 as constants representing our three locations, along with two
state predicates: a binary predicate ≤ for comparing elements at locations l and l′, and a
nullary predicate sorted that declares that the state is sorted. These can be characterised by
adding the following axiom schemes, but to ∆H rather than ∆S as they do not represent
state actions:

Γ ⊢H 1 ≤ 2 ∧ 2 ≤ 3 ⇒ sorted

Γ ⊢H l ≤ l′ ∨ l′ ≤ l where l, l′ range over {1, 2, 3}
We then allow a single action on our array, namely the swapping of a pair of elements in the
list. Suppose that α is a state formula of the form

α :≡ l1 ≤ l′1 ∧ . . . ∧ ln ≤ l′n (2.2)

where li, li range over locations {1, 2, 3}. Now for l, l′ ∈ {1, 2, 3} let α[l ↔ l′] denote α where
all instances of l and l′ are swapped, so that if e.g. α = 3 ≤ 2 ∧ 1 ≤ 2 ∧ 1 ≤ 3 then

α[2 ↔ 3] = 2 ≤ 3 ∧ 1 ≤ 3 ∧ 1 ≤ 2

We axiomatise the swapping of the values in locations of some arbitrary pair l, l′ ∈ {1, 2, 3}
by adding to ∆S all instances of

Γ ⊢S {α · ⊤ · α[l ↔ l′]}
where α ranges over state formulas of the form (2.2). The statement that all arrays of length
three can be sorted is then formulated as

⊢S {⊤ · ⊤ · sorted}
Let us now give a proof of this statement in SL +∆H +∆S . As with the previous example,
we emphasise that the underlying computation represented by this proof will only become
visible through the realizability interpretation.

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:9

First, let α := 1 ≤ 2 ∧ 1 ≤ 3, and define D1 as

⊢S {2 ≤ 3 ∧ α · ⊤ · 2 ≤ 3 ∧ α}
cons

⊢S {2 ≤ 3 ∧ α · ⊤ · sorted}

2↔3
⊢S {3 ≤ 2 ∧ α · ⊤ · 2 ≤ 3 ∧ 1 ≤ 3 ∧ 1 ≤ 2}

cons
⊢S {3 ≤ 2 ∧ α · ⊤ · sorted}

cond[2≤3∨3≤2]
⊢S {α · ⊤ · sorted}

where for the left instance of cons we use 2 ≤ 3 ∧ α ⊢H sorted, in the right that 2 ≤ 3 ∧ 1 ≤
3 ∧ 1 ≤ 2 ⊢H sorted, and for the final instance of cond we use ⊢H 2 ≤ 3 ∨ 3 ≤ 2. Now let D2

be defined by

1↔2
⊢S {2 ≤ 1 ∧ 2 ≤ 3 · ⊤ · 1 ≤ 2 ∧ 1 ≤ 3}

D1

⊢S {1 ≤ 2 ∧ 1 ≤ 3 · ⊤ · sorted}
∧SI⊢S {2 ≤ 1 ∧ 2 ≤ 3 · ⊤ ∧ ⊤ · sorted}

∧SEL⊢S {2 ≤ 1 ∧ 2 ≤ 3 · ⊤ · sorted}
Then we have D3:

D2

⊢S {2 ≤ 1 ∧ 2 ≤ 3 · ⊤ · sorted}
{1 ≤ 2 ∧ 2 ≤ 3 · ⊤ · 1 ≤ 2 ∧ 2 ≤ 3}

cons
⊢S {1 ≤ 2 ∧ 2 ≤ 3 · ⊤ · sorted}

cond[2≤1∨1≤2]
⊢S {2 ≤ 3 · ⊤ · sorted}

where here cond uses ⊢H 2 ≤ 1 ∨ 1 ≤ 2, and finally

⊢S {2 ≤ 3 · ⊤ · 2 ≤ 3}
2↔3

⊢S {3 ≤ 2 · ⊤ · 2 ≤ 3}
cond[2≤3∨3≤2]

⊢S {⊤ · ⊤ · 2 ≤ 3}
D3

⊢S {2 ≤ 3 · ⊤ · sorted}
∧SI⊢S {⊤ · ⊤ ∧ ⊤ · sorted}

∧SEL⊢S {⊤ · ⊤ · sorted}
In contrast to Example 2.2 above, this is an example of a purely imperative proof that
involves no propositional formulas other than ⊤. As we will see in Example 5.6, the proof
corresponds to a purely imperative program.

3. The system ST: A simple functional/imperative term calculus

We now define our calculus ST + ΛS whose terms will represent realizers for proofs in
SL+∆H+∆S . This is a standard typed lambda calculus for mixed functional and imperative
programs, and is defined to include basic terms together with additional constants in some
set ΛS , where the latter are intuitively there to realize the axioms in ∆S . Semantics for the
terms will be given via a monadic translation into the metalanguage defined in the next
section. Types are defined by the grammar

X ::= D |C |X ×X |X +X |X → X

while basic terms are defined as

e ::=skip | defaultX | c | f |x | p0(e) | p1(e) | e ◦ e | ι0(e) | ι1(e) |
elim e e e |λx.e | e e | if α then e else e

where f ranges over all function symbols of SL, c are constants in ΛS , and α ranges over
state formulas of SL. Typing derivations of the form Γ ⊢ t : X are given in Figure 3, where Γ

7:10 T. Powell Vol. 20:1

Figure 3: Typing derivations for ST + ΛS

Γ ⊢ f : Dn → D where f has arity n Γ ⊢ c : X

Γ ⊢ x : X if x : X in Γ Γ ⊢ skip : C

Γ ⊢ s : X Γ ⊢ t : Y

Γ ⊢ s ◦ t : X × Y

Γ ⊢ t : X × Y

Γ ⊢ p0(t) : X

Γ ⊢ t : X × Y

Γ ⊢ p1(t) : Y

Γ ⊢ t : X

Γ ⊢ ι0(t) : X + Y

Γ ⊢ t : Y

Γ ⊢ ι1(t) : X + Y

Γ ⊢ r : X + Y Γ ⊢ s : X → ZΓ ⊢ t : Y → Z

Γ ⊢ elim r s t ⊢ Z

Γ, x : X ⊢ t : Y

Γ ⊢ λx.t : X → Y

Γ ⊢ t : X → Y Γ ⊢ s : X

Γ ⊢ ts : Y
Γ ⊢ defaultX : X

Γ ⊢ s : X Γ ⊢ t : X x : D ∈ Γ for all free variables of α

Γ ⊢ if α then s else t : X

is a set of typed variables. Note that the types of constants c ∈ ΛS are also left unspecified.
The type C should be interpreted as a type of commands that act on the state but don’t
return any values.

A denotational semantics of ST + ΛS , which is what we require for our realizability
interpretation, will be specified in detail in Section 4 below. Operationally, the idea is that
terms t : X of ST + ΛS take some input state π and evaluates to some value v and final
state π1 in a call-by-value way. We choose our notation to reflect the underlying stateful
computations: For example, s ◦ t is used instead of what would normally be a pairing
operation, because this plays the role of simulating composition in the stateful setting.
Indeed, it will be helpful to consider a derived operator for sequential composition that also
incorporates the ‘cleanup’ seen in the examples above, and corresponds to an instance of
∧SI followed by an instance of ∧SEL:

Definition 3.1. If Γ ⊢ s : C and Γ ⊢ t : X then Γ ⊢ s ∗ t := p1(s ◦ t) : X. In particular, if
Γ ⊢ t : C then Γ ⊢ s ∗ t : C.

A full exploration of the operational semantics of ST + ΛS along with correctness with
respect to the denotational semantics defined in Section 4.3 is left to future work, but we
provide some further insight in Remark 4.8 below, including a more detailed discussion of
the relationship between ◦ and pairing.

4. A monadic embedding of SL and ST into a metatheory Sω

We now give a semantic interpretation of both state formulas of SL +∆H +∆S and terms
in ST + ΛS into a standard higher-order, many sorted logic Sω + ΛSω .

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:11

4.1. The system Sω. This logic contains typed lambda terms along with equational axioms
for reasoning about them, together with the usual axioms and rules of many-sorted predicate
logic. Because most aspects of the logic are completely standard, and in any case it is purely
a verifying system, we are less detailed in specifying it. Types are defined as follows:

X ::= D | 1 |Bool |S |X ×X |X → X

where D represents objects in the domain of SL (just as in ST), Bool a type of booleans, and
states are now explicitly represented as objects of type S. Our metatheory is an equational
calculus, with an equality symbol =X for all types. Typed terms include:

• variables x, y, z, . . . for each type, where we denote state variables by π, π1, π2, . . .

• a constant f : Dn → D for each n-ary function symbol of SL,

• additional, as yet unspecified constant symbols c : X for interpreting objects in ΛS , along
with axioms that characterise them,

• a unit element () : 1 along with the axiom x = (),

• boolean constants t and f, with the axiom x =Bool t ∨ x =Bool f,

• pairing ⟨s, t⟩ and projection proj0(t), proj1(t) operators, with the usual axioms,

• terms formed by lambda abstraction and application, with the rule (λx.t)s = t[s/x],

• for each type X a case operator case (b) (s) (t) for b : Bool and s, t : X, with axioms
case f x y = x and case tx y = y.

We sometimes write xX instead of x : X, and we use abbreviations such as ⟨x, y, z⟩ for
⟨x, ⟨y, z⟩⟩. Atomic formulas of Sω include all ordinary predicate symbols P,Q,R, . . . of SL
as atomic formulas, where an n-ary predicate P in SL takes arguments of type Dn in Sω,
along with predicates p, q, r, . . . for each state predicate symbol of SL, but now, if p is an
n-ary state predicate in SL, p takes arguments of type Dn × S in Sω. General formulas are
built using the usual logical connectives, including quantifiers for all types. The axioms and
rules of Sω include the axioms of rules of predicate logic (now in all finite types), axioms
for the terms, along with the usual equality axioms (including full extensionality). Because
Sω acts as a verifying theory, we freely use strong axioms (such as extensionality), without
concerning ourselves with the minimal such system that works.

4.2. The embedding [·] on state formulas of SL. The main purpose of our metalanguage
is to allow us to reason semantically about SL and ST. To do this, we introduce an embedding
of state formulas of SL and terms of ST into Sω. We use the same notation [·] for both, as
there is no danger of ambiguity. An informal explanation of the meaning of [·] on formulas
is given in Section 2.2.

An important point to highlight here is that under the semantics, the arity of state
formulas change: For any state formula α, the interpreted formula [α] now contains a single
additional free variable π : S representing the underlying state. As mentioned earlier, state is
implicit in our logic and term languages, but needs to be made explicit under the semantics.

Definition 4.1. For each term t of SL, there is a natural interpretation of t as a term of
type D in ST, namely x 7→ x : D and f(t1, . . . , tn) 7→ f(t1 ◦ · · · ◦ tn) : D. Similarly, there is
a natural interpretation of t into Sω, this time with f(t1, . . . , tn) 7→ f(⟨t1, . . . , tn⟩). We use
the same notation for t in each of the three systems, as there is no risk of ambiguity.

7:12 T. Powell Vol. 20:1

Definition 4.2. For each state formula α of SL, we define a formula [α](π) of Sω, whose
free variables are the same as those of α (but now typed with type D) with the potential
addition of a single state variable π, as follows:

• [⊤](π) := ⊤ and [⊥](π) := ⊥,

• [p(t1, . . . , tn)](π) := p(t1, . . . , tn, π),

• [α ∧ β](π) := [α](π) ∧ [β](π), and similarly for α ∨ β and α ⇒ β.

The following Lemma is easily proven using induction over propositional derivations.

Lemma 4.3. If Γ ⊢H α in SL then [α](π) is provable in Sω from the assumptions [Γ](π),
where [Γ](π) := [α1](π), . . . , [αn](π) for Γ := α1, . . . , αn. This extends to proofs in SL +∆H

provided that the embedding of any axiom in ∆H is provable in Sω + ΛSω .

We are now in a position to make the semantic meaning of main formulas of SL precise.
Note that, technically speaking, this is not necessary in what follows, neither to formulate
our realizability interpretation nor to prove our soundness theorem. This is because our
main realizability relation (Definition 5.2) is of the form (x sr A) for main formulas A of SL:
This relation is basically equivalent to (xmr [A]) for [A] as defined below and a standard
modified realizability relation mr, but our realizability interpretation essentially acts as a
simultaneous inductive definition of both standard realizability and the embedding [·], and
so neither of the latter need to be separately defined.

Definition 4.4. main formula A of , we define a formula [A] of Sω, whose free variables
are the same as those of A (but now typed with type D), as follows:

• [⊤] := ⊤ and [⊥] := ⊥,

• [P (t1, . . . , tn)] := P (t1, . . . , tn),

• [A ∧B] := [A] ∧ [B], [A ∨B] := [A] ∨ [B] and [∃xA] := ∃xD [A],

• [A ⇒ {α ·B · β}] := [A] ⇒ [{α ·B · β}] and [∀x {α ·A · β}] := ∀xD [{α ·A · β}]

where [{α ·A · β}] := ∃πS [α](π) ⇒ [A] ∧ ∃π′ [β](π′).

Similarly to Lemma 4.3, we can now prove the following by induction over derivations
in SL. We omit the proof, because it is straightforward and in any case not necessary in
what follows.

Proposition 4.5. If Γ ⊢S {α · A · β} in SL then [{α · A · β}] is provable in Sω from the
assumptions [Γ], where [Γ] := [A1], . . . , [An] for Γ := A1, . . . , An. This extends to proofs in
SL + ∆H + ∆S provided that the embedding of any axiom in ∆H and ∆S is provable in
Sω + ΛSω .

4.3. The embedding [·] on terms of ST. Our translation on terms is a call-by-value
monadic translation using the state monad S → X × S, which, intuitively speaking, gives a
denotational interpretation of a standard call-by-value operational semantics of terms of
ST. A full treatment of the corresponding operational semantics and its adequacy with
respect to the and denotational semantics will be left to future work, as we only require the
latter for the realizability interpretation. However, to help motivate the definitions that
follow, and also justify our claim that [t] can be viewed as an imperative program, we give
an informal intuition in Remark 4.8 below.

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:13

We first define a translation on types of ST as follows:

• [D] := D, [C] := 1 and [X × Y] := [X]× [Y],

• [X + Y] := Bool× [X]× [Y]

• [X → Y] := [X] → S → [Y]× S

Lemma 4.6. For any type X of SL, the type [X] is inhabited, in the sense that we can
define a canonical closed term 0X : [X].

Proof. Induction on types, letting 0D := c for a constant symbol which is assumed to exist in
SL. The only other nonstandard case is 0X→Y , which can be defined as λx, π . ⟨0Y , π⟩.

Finally, before introducing our translation on terms, we need to add characteristic
functions to Sω for all state formulas (analogous to the characteristic functions for quantifier-
free formulas in [GK05]). For any state formula α[x1, . . . , xn] of SL, where x1, . . . , xn are
the free variables of α, we introduce constants χα :Dn → S → X → X → X satisfying the
axioms

[α][x1, . . . , xn](π) ⇒ χα ⟨x1, . . . , xn⟩π y z = y

[¬α][x1, . . . , xn](π) ⇒ χα ⟨x1, . . . , xn⟩π y z = z

Definition 4.7. For each term Γ ⊢ t : X of ST we define a term [Γ] ⊢ [t] : S → [X]×S of Sω

as follows, where [·] is defined on contexts as [x1 : X1, . . . , xn : Xn] := x1 : [X1], . . . , xn : [Xn]:

• [x]π := ⟨x, π⟩,
• [skip]π := ⟨(), π⟩,
• [f]π := ⟨λxDn

, π . ⟨fx, π⟩, π⟩,
• [c]π is appropriately defined for each additional constant in ΛS ,

• [s ◦ t]π := ⟨a, b, π2⟩ where ⟨a, π1⟩ := [s]π and ⟨b, π2⟩ := [t]π1,

• [p0t]π := ⟨a, π1⟩ and [p1t]π := ⟨b, π1⟩ where ⟨a, b, π1⟩ := [t]π,

• [ι0t]π := ⟨f, a, 0Y , π1⟩ and [ι1t] := ⟨t, 0X , b, π1⟩ for ⟨a, π1⟩ := [t]π,

• [elim r s t]π := case e (faπ2) (gbπ3) for ⟨e, a, b, π1⟩ := [r]π, ⟨f, π2⟩ := [s]π1, ⟨g, π3⟩ := [t]π1,

• [λx.t]π := ⟨λx[X].[t], π⟩,
• [ts]π := faπ2 for ⟨f, π1⟩ := [t]π and ⟨a, π2⟩ := [s]π1,

• [defaultX]π := ⟨0X , π⟩,
• [if α[x1, . . . , xn] then s else t]π := χα ⟨x1, . . . , xn⟩π ([s]π) ([t]π) where {x1, . . . , xn} are the
free variables of α.

Remark 4.8. The intuition behind the embedding [t] is to give a denotational semantics
for t as a stateful program. Informally, a term t : X of ST would have operational behaviour
⟨t, π⟩ ⇓ ⟨v, π1⟩, where we imagine that t in state π evaluates to a value v and returns a
state π1. We view [X] as the set of denotations of values of type X, and [t] : S → [X]× S
accordingly as a function with [t]π = ⟨[v], π1⟩. The interpretation of fully typed terms
[Γ ⊢ t : X] correspond to mappings [Γ] → S → [X] × S where free variables of t can be
instantiated by values of the corresponding type.

7:14 T. Powell Vol. 20:1

With this intuition in mind, each component of Definition 4.7 corresponds to a natural
operational interpretation of the corresponding term forming rule. For example, the intended
operational semantics of s ◦ t would be

⟨s, π⟩ ⇓ ⟨u, π1⟩ ⟨t, π1⟩ ⇓ ⟨v, π2⟩
⟨s ◦ t, π⟩ ⇓ ⟨⟨u, v⟩, π2⟩

and this behaviour is embodied by the denotation [s ◦ t], which maps π to ⟨a, b, π2⟩ where a
can be interpreted as the denotation of the value u, and b as the denotation of v. Similarly,
the call-by-value operational semantics of function application would be expressed by the
rule

⟨t, π⟩ ⇓ ⟨u, π1⟩ ⟨s, π1⟩ ⇓ ⟨v, π2⟩ ⟨uv, π2⟩ ⇓ ⟨w, π3⟩
⟨ts, π⟩ ⇓ ⟨w, π3⟩

i.e. we evaluate first the function t, then the argument s, then the function application itself.
This order of evaluation along with the behaviour of the state is represented semantically by
[ts]. Finally, we note that the main interactions with the state for terms of ST + ΛS are
driven by the constants c ∈ ΛS , whose semantic interpretation as stateful programs will
need to be specified in each case.

Our monadic semantics and its relationship with the intended call-by-value operational
semantics is very similar in spirit to the monadic denotational semantics used in [DLR15]
and related papers (but with the state monad instead of the complexity monad). We
leave a formal definition and detailed exploration of the operational semantics of extracted
imperative programs to future work, where it is anticipated that existing work on the
operational semantics of imperative languages could be useful and revealing (e.g. [CLM13,
McC10, Red96]), particularly in extending our realizability interpretation to incorporate
richer imperative languages.

The following lemmas will be useful when verifying our realizability interpretation in
the next section. The first is by a simple induction on terms.

Lemma 4.9. For any term t of SL, we have [t]π = ⟨t, π⟩ (cf. Definitions 4.1 and 4.7).

Lemma 4.10 (Currying in ST). Suppose that Γ, x : X, y : Y ⊢ t : Z is a term in ST, and
define Γ ⊢ λ∗v.t : X × Y → Z by λ∗v.t := λv.(λx, y.t)(p0v)(p1v) where v is not free in t.
Then for any s : X × Y we have

[(λ∗v.t)s]π = [t][a/x, b/y]π1

where ⟨a, b, π1⟩ := [s]π.

Proof. By unwinding the definition of [·]. For any variable v : X × Y we have [p0v]π =
⟨proj0v, π⟩ and [p1v]π = ⟨proj1v, π⟩, and we also have [λx, y . t]π = ⟨λx, π.⟨λy.[t], π⟩, π⟩. We
therefore calculate

[(λx, y.t)(p0v)]π = (λx, π.⟨λy.[t], π⟩)(proj0v)π = ⟨λy.[t][proj0v/x], π⟩

and thus

[(λx, y.t)(p0v)(p1v)]π = (λy.[t][proj0v/x])(proj1v)π = [t][proj0v/x, proj1v/y]π

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:15

Finally, we can see that if ⟨a, b, π1⟩ := [s]π then

[(λ∗v.t)(s)]π = (λv.[(λx, y.t)(p0v)(p1v)])(⟨a, b⟩)π1
= (λv.[t][proj0v/x, proj1v/y])(⟨a, b⟩)π1
= [t][proj0v/x, proj1v/y][⟨a, b⟩/v]π1
= [t][a/x, b/y]π1

which completes the proof.

5. A realizability interpretation of SL into ST

We now come to the main contribution of the paper, which is the definition of a realizability
relation between terms of ST and formulas of SL, along with a soundness theorem that
shows us how to extract realizers from proofs. Our metatheory Sω is used to define the
realizability relation and prove the soundness theorem.

Definition 5.1 (Types of realizers). To each main formula A of SL we assign a type τS(A)
of ST as follows:

• τS(⊤) = τS(⊥) = τS(P (t1, . . . , tn)) := C,

• τS(A ∧B) := τS(A)× τS(B),

• τS(A ∨B) := τS(A) + τS(B),

• τS(∃xA) := D × τS(A),

• τS(A ⇒ {α ·B · β}) := τS(A) → τS(B),

• τS(∀x {α ·A · β}) := D → τS(A).

Definition 5.2 (Realizability relation). For each main formula A of SL we define a formula
x sr A of Sω, whose free variables are contained in those of A (now typed with type D)
together with a fresh variable x : [τS(A)], by induction on the structure of A as follows:

• x sr Q := Q for Q = ⊤,⊥ or P (t1, . . . , tn),

• x sr A ∧B := (proj0x sr A) ∧ (proj1x sr B),

• x sr A ∨B := (proj0x = f ⇒ proj0(proj1x) sr A) ∧ (proj0x = t ⇒ proj1(proj1x) sr B),

• x sr ∃y A(y) := (proj1x sr A)[proj0x/y],

• f sr (A ⇒ {α ·B · β}) := ∀x[τS(A)] (x sr A ⇒ fx sr {α ·B · β}),
• f sr (∀x {α(x) ·A(x) · β(x)}) := ∀xD (fx sr {α(x) ·A(x) · β(x)}),

where for x : S → [τS(A)]× S we define

• x sr {α ·A · β} := ∀πS ([α](π) ⇒ proj0(xπ) sr A ∧ [β](proj1(xπ))).

The following substitution lemma is easily proven by induction on formulas of SL.

Lemma 5.3. For any term t of SL and s : [τS(A)] we have s sr A[t/x] = (s sr A)[t/x], where
x is not free in s and on the right hand side we implicitly mean the natural interpretation of
t in Sω (cf. Definition 4.1).

7:16 T. Powell Vol. 20:1

Theorem 5.4 (Soundness). Suppose that

Γ := Au1
1 , . . . , Aun

n ⊢S {α ·A · β}

is provable in SL. Then we can extract from the proof a term ∆, τS(Γ) ⊢ t : τS(A) of
ST, where ∆ contains the free variables of Γ and {α · A · β} (typed with type D) and
τS(Γ) := x1 : τS(A1), . . . , xn : τS(An) for fresh variables x1, . . . , xn, such that the formula

[t] sr {α ·A · β}

is provable in Sω from the assumptions (x1 sr A1)
u1 , . . . , (xn sr An)

un for xi : [τS(Ai)]. The
theorem holds more generally for proofs in SL +∆H +∆S, now provably in Sω + ΛSω , if:

• for any axiom Γ ⊢H α in ∆H , the corresponding axiom [Γ](π) ⇒ [α](π) is added to ΛSω ,

• for any axiom in ∆S there is a term t of ST+ΛS such that [t] realizes that axiom provably
in Sω + ΛSω .

Proof. Induction on the structure of derivations in SL. In all cases, we assume as global
assumptions (x1 sr A1)

u1 , . . . , (xn sr An)
un , and our aim is then to produce a term t such

that if [α](π) holds for some state variable π, then a sr A and [β](π1) hold for ⟨a, π1⟩ := [t]π.

• For the axiom Γ ⊢S {α ·A · α}, if Au ∈ Γ we define t := x for the corresponding variable
x : τS(A). Then [x]π := ⟨x, π⟩ for x sr A and [α](π). For Γ ⊢S {α · ⊤ · α} we define
t := skip and the verification is even simpler.

• (∧SI) Given terms s, t with [s] sr {α ·A · β} and [t] sr {β ·B · γ}, from [α](π) we can infer
a sr A and [β](π1) for ⟨a, π1⟩ := [s]π, and from [β](π1) it follows that b sr B and [γ](π2)
for ⟨b, π2⟩ := [t]π1, therefore we have shown that [s ◦ t] sr {α ·A ∧B · γ}.

• (∧SEi) If [t] sr {α ·A ∧B · β} then ⟨a, b⟩ sr A ∧B and [β](π1) follow from [α](π), where
⟨a, b, π1⟩ := [t]π. But then [p0t] sr {α ·A · β} and [p1t] sr {α ·B · β}.

• (∨SIi) If [t] sr {α ·A · β} and [α](π) holds, then a sr A and [β](π1) for ⟨a, π1⟩ := [t]π, and
therefore

(b = f ⇒ a sr A) ∧ (b = t ⇒ 0τS(B) sr B)

for b := f. Thus [ι0t] sr A ∨B. By an entirely analogous argument we can show that
[ι1t] sr A ∨B whenever [t] sr B.

• (∨SE) Suppose that r, s(x) and t(y) are such that [r] sr {α ·A ∨B · β}, [s](x) sr {β · C · γ}
assuming x sr A, and [t](y) sr {β · C · γ} assuming y sr B. We claim that

[elim r (λx.s) (λy.t)] sr {α · C · γ}

To prove this, first note that if [α](π), we have ⟨e, a, b⟩ sr A ∨B and [β](π1) for ⟨e, a, b, π1⟩ :=
[r]π. There are now two possibilities. If e = f then

[elim r (λx.s) (λy.t)]π = faπ2 for ⟨f, π2⟩ := [λx.s]π1 = ⟨λx.[s](x), π1⟩
= (λx.[s](x))aπ1

= [s](a)π1

But since [β](π1) holds and e = f also implies that a sr A, we have c sr C and [γ](π2) for
⟨c, π2⟩ := [s](a)π1, which proves the main claim in the case e = f. An analogous argument
works for the case e = t.

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:17

• (⇒S I) If t(x) is such that [t](x) sr {α ·B · β} whenever x sr A, then by definition we have

λx.[t] sr A ⇒ {α ·B · β}
and therefore [λx.t] sr {γ ·A ⇒ {α ·B · β} · γ} for any γ.

• (⇒S E) Assume that [s] sr {β ·A · γ} and [t] sr {α ·A ⇒ {γ ·B · δ} · β}. If [α](π) holds
then defining ⟨f, π1⟩ := [t]π we have [β]π1 and

x sr A ⇒ fx sr {γ ·B · δ}
Similarly, defining ⟨a, π2⟩ := [s]π1, it follows that [γ](π2) and a sr A. Finally, setting
⟨b, π3⟩ := faπ2 it follows that b sr B and [δ](π3), and we have therefore proven that
[ts] sr {α ·B · δ}.

• (⊥SE) If [t] sr {α · ⊥ · β} then from [α](π) we can infer a sr ⊥ and [β](π2) for ⟨a, π1⟩ := [t]π.
But a sr ⊥ = ⊥, and from ⊥ we can deduce anything, and in particular 0τS(A) sr A and
[γ](π), from which it follows that [defaultτS(A)] sr {α ·A · γ}.

• (∀SI) Suppose that t(x) is such that [t](y) sr {α[y/x] ·A[y/x] · β[y/x]}, where y ≡ x or y
is not free in {α · A · β}, and y is not free in Γ. Then since y is not free in any of the
assumptions xi sr Ai, we can deduce in Sω that

∀xD [t](x) sr {α ·A · β}
and therefore λx.[t] sr ∀x {α ·A · β}, and thus (just as for ⇒S I) we have

[λx.t] sr {γ · ∀x {α ·A · β} · γ}
for any γ.

• (∀SE) Suppose that [s] sr {α · ∀x {β ·A · γ} · β[t/x]} and that [α](π) holds. Then we have
f sr ∀x {β ·A · γ} and [β][t/x](π1) for ⟨f, π⟩ := [s]π. Now, using Lemma 4.9 we have
[st]π = ftπ1 for the natural interpretation of t in Sω, since we can prove in Sω that

ft sr {β[t/x] ·A[t/x] · γ[t/x]}
it follows that a sr A[t/x] and [γ][t/x](π2) for ⟨a, π2⟩ := ftπ1, and therefore we have shown
that [st] sr {α ·A[t/x] · γ[t/x]}.

• (∃SI) If [s] sr {α ·A[t/x] · β} and [α](π) then a sr A[t/x] and [β](π1) for ⟨a, π1⟩ := [s]π.
By Lemma 5.3 we therefore have (a sr A)[t/x], and therefore ⟨t, a⟩ sr ∃xA. Observing
(using Lemma 4.9) that [t ◦ s]π = ⟨t, a, π1⟩, we have shown that [t ◦ s] sr {α · ∃xA · β}.

• (∃SE) Suppose that s and t(x, z) are such that [s] sr {α · ∃xA · β} and

z sr A[y/x] ⇒ [t](y, z) sr {β · C · γ}
where y ≡ x or y is not free in A, and y is also not free in C, α, β, γ or Γ. By Lemma 5.3
that z sr A[y/x] = (z sr A)[y/x] = ⟨y, z⟩ sr ∃xA we therefore have

⟨y, z⟩ sr ∃xA ⇒ [t](y, z) sr {β · C · γ}
Now, applying Lemma 4.10 to ∆,Γ, y : D, z : τS(A) ⊢ t : τS(C), we have

[(λ∗v.t)s]π = [t](e, a)π1

for ⟨e, a, π1⟩ := [s]π. Now, if [α](π) holds, then we have ⟨e, a⟩ sr ∃xA and [β](π1), and
therefore since [t](e, a) sr {β · C · γ}, we have c sr C and [γ](π2) for ⟨c, π2⟩ = [t](e, a)π1 =
[(λ∗v.t)s]π, and thus we have shown that [(λ∗v.t)s] sr {α · C · γ}.

7:18 T. Powell Vol. 20:1

• (cons) If α ⊢H β and γ ⊢H δ then by Lemma 4.3 both [α](π) ⇒ [β](π) and [γ](π) ⇒ [δ](π)
are provable in Sω (respectively Sω + ΛSω for the general version of the theorem) for any
π : S. It is then easy to show that if [t] sr {β ·A · γ} then we also have [t] sr {α ·A · δ}.

• (cond) Suppose that [s] sr {α ∧ γ ·A · δ} and [t] sr {β ∧ γ ·A · δ}. We claim that

[if α then s else t] sr {γ ·A · δ}
To prove this, suppose that [γ](π) holds. Since ⊢H α ∨ β then [α](π) ∨ [β](π) is provable
in Sω, and so we consider two cases. Let {x1, . . . , xn} be the free variables of α. If [α](π)
holds, then

[if α then s else t]π = χα ⟨x1, . . . , xn⟩π ([s]π) ([t]π) = [s]π

and since then [α](π) ∧ [γ](π) we have a sr A and [δ](π1) for ⟨a, π1⟩ := [s]π. On the other
hand, if [β](π) holds, then by an analogous argument we can show that a sr A and [δ](π1)
for ⟨a, π1⟩ := [t]π = [if α then s else t]π, and we are done.

The extension of the soundness theorem to SL+∆H+∆S is straightforward, as the soundness
proof is modular and so any axioms along with their realizers can be added. The first
condition is needed so that Lemma 4.3 (needed for the cons rule) continues to apply.

For the free variable condition that the free variables of t are contained in those of Γ,
{α ·A ·β} and τS(Γ), if this were not the case, we could simply ground those variables with a
canonical constant c : D and we would still have t̃ sr {α ·A · β} for the resulting term t̃.

Corollary 5.5 (Program extraction). Suppose that the sentence

⊢S {α · ∀x {β · ∃y P (x, y) · γ(x)} · β}
is provable in SL + ∆S. Then we can extract a closed realizing term t : D → D × C in
ST + ΛS such that defining g : D → S → D × S by gxπ := ⟨a, π2⟩ for ⟨f, π1⟩ := [t]π and
⟨a, (), π2⟩ := fxπ1, we have

∀πS([α](π) ⇒ ∀xD (P (x, proj0(gxπ)) ∧ [γ](x)(proj1(gxπ))))

provably in Sω + ΛSω .

5.1. Simplification and removal of unit types. In presentations of modified realizability
that use product types instead of type sequences, it is common to introduce the notion of a
Harrop formula (a formula that does not contain disjunction or existential quantification
in a positive position) and define realizability in a way that all Harrop formulas have unit
realizability type, so that e.g. τS(∀x (P ∧Q)) = 1 for atomic predicates P and Q, rather
than τS(∀x (P ∧Q)) = D → 1 × 1 as for us. We have avoided this simplification earlier
on, as it would have added additional cases and bureaucracy to our soundness theorem.
However, we can compensate retroactively for this choice by introducing equivalences on
types that eliminate unit types, namely the closure under contexts of

1×X ≃ X ≃ X × 1 (1 → X) ≃ X (X → 1) ≃ 1

along with corresponding equivalences on terms, also closed under contexts:

t1×X ≃ proj1(t)
X tX×1 ≃ proj0(t)

X t1→X ≃ t() tX ≃ λx1.t tX→1 ≃ ()

For example, in Corollary 5.5 we would then have

[t]π : (D → S → D × 1× S)× S ≃ (D → S → D × S)× S and gxπ ≃ fxπ1.

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:19

For us, the equivalence relation ≃ will not play a formal role in the paper, but will be used to
provide simplified descriptions of extracted programs. In particular, we do not rely on it in
any way for the main results. To incorporate the simplifications formally into our framework,
the most obvious route would involve defining a more elaborate realizability relation as
indicated above, with the interpretation of Harrop formulas treated separately (as in the
recent and related paper [BT21]), which would then also generate many new (but routine)
cases in the soundness proof. Given that we are already introducing a new and nonstandard
realizability relation, in this article we prefer to work with a simple interpretation and
use the equivalences above in an informal way to more concisely describe the meaning of
extracted programs.

5.2. Examples of program extraction. We now continue the short illustrative examples
we outlined in Section 2.2.

Example 5.6 (Simple read-write). In Example 2.2 we considered a state where three actions
were possible (writing to the state, performing a calculation, and reading the output from
the state). We can formalise these three actions semantically in the metatheory Sω by
including three constants in ΛSω , namely c1 : D → S → S, c2 : S → S and c3 : S → D,
along with the characterising axioms:

(1) query(x, c1xπ),

(2) query(x, π) ⇒ returnP (x, c2π),

(3) returnP (x, π) ⇒ P (x, c3π).

While we are able to use these constants to form terms in Sω such as λπ, π1, x . ⟨c1xπ, c2π1⟩,
which could be viewed as non-sequential in the sense that we take two input states as
arguments, we can force them to be applied in a sequential, call-by-value manner by adding
three corresponding constants to our term calculus ST, namely including write : D → C,
calc : C and read : D × C in ΛS , along with the embedding rules

• [write]π := ⟨λx, π′ . ⟨(), c1xπ′⟩, π⟩ ≃ ⟨c1, π⟩,
• [calc]π := ⟨(), c2π⟩ so that [calc] ≃ c2,

• [read]π := ⟨c3π, (), π⟩ ≃ ⟨c3π, π⟩.

and then restricting out attention to terms of the form [t] for t ∈ ST + {write, calc, read}.
We can then prove the following in Sω i.e. that all axioms in ∆S can be realised:

• [write(x)] sr {α · ⊤ · query(x)},
• [calc] sr {query(x) · ⊤ · returnP (x)},
• [read] sr {returnP (x) · ∃y P (x, y) · ⊤}.

and thus Theorem 5.4 applies to SL +∆H +∆S for ∆H = ∅. In particular, we have

[t] sr {β · ∀x {α · ∃y P (x, y) · ⊤} · β}

for t := λx . ((write(x) ∗ calc) ∗ read) where ∗ is sequential composition operator from
Definition 3.1. A formal derivation of this term from the corresponding proof given in

7:20 T. Powell Vol. 20:1

Example 2.2 is as follows:

x : D ⊢ write(x) : C x : D ⊢ calc : C
∧SI

x : D ⊢ write(x) ◦ calc : C × C
∧SEL

x : D ⊢ write(x) ∗ calc : C x : D ⊢ read : D × C
∧SI

x : D ⊢ (write(x) ∗ calc) ◦ read : C ×D × C
∧SEL

x : D ⊢ (write(x) ∗ calc) ∗ read : D × C
∀SI⊢ λx . ((write(x) ∗ calc) ∗ read) : D → D × C

Example 5.7 (Fixed-length array sorting). In Example 2.3 we considered a situation where
we are allowed a single action on our state, namely to swap elements. Analogously to the
previous example, we can formalise this in our semantic environment Sω by adding to ΛSω

constants cl,l′ : S → S for each pair l, l′ ∈ {1, 2, 3} along with the axiom

[α](π) ⇒ [α[l ↔ l′]](cl,l′π)

ranging over state formulas α of the form (2.2) and locations l, l′ ∈ {1, 2, 3} of SL, together
with axioms corresponding to those of ∆H i.e.

[1 ≤ 2 ∧ 2 ≤ 3](π) ⇒ sorted(π) and [l ≤ l′ ∨ l′ ≤ l](π)

Similarly, for each l, l′ ∈ {1, 2, 3} we add a term swapl,l′ : C to ΛS and define [swapl,l′]π :=
⟨(), cl,l′π⟩ so that

swapl,l′ sr {α · ⊤ · α[l ↔ l′]}

A derivation of a closed term t : C of ST + {swapl,l′} such that [t] sr {⊤ · ⊤ · sorted} is

given below. In particular, we can prove in Sω that ∀πS sorted(proj1([t]π)), and so the term
λπ . proj1([t]π) : S → S acts as a sorting program for arrays of length three. For an extracted
term t corresponding to the proof given in Example 2.3, first we interpret D1 as

⊢ skip : C
cons

⊢ skip : C

2↔3
⊢ swap2,3 : C

cons
⊢ swap2,3 : C

cond[2≤3∨3≤2]
⊢ t1 := if (2 ≤ 3) then (skip) else (swap2,3) : C

and define t1 := if (2 ≤ 3) then (skip) else (swap2,3). Now D2 is interpreted as

1↔2
⊢ swap1,2 : C

D1

⊢ t1 : C
∧SI⊢ swap1,2 ◦ t1 : C × C

∧SEL⊢ t2 := swap1,2 ∗ t1 : C

where we define t2 := swap1,2 ∗ t1 : C. Continuing, D3 is interpreted as:

D2

⊢ t2 : C

⊢ skip : C
cons

⊢ skip : C
cond[2≤1∨1≤2]

t3 := if (2 ≤ 1) then t2 else (skip) : C

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:21

where t3 := if (2 ≤ 1) then t2 else (skip), and finally

⊢ skip : C
2↔3

⊢ swap2,3 : C
cond[2≤3∨3≤2]

⊢ if (2 ≤ 3) then (skip) else (swap2,3) : C

D3

⊢ t3 : C
∧SI⊢ (if (2 ≤ 3) then (skip) else (swap2,3)) ◦ t3 : C × C

∧SEL⊢ t := (if (2 ≤ 3) then (skip) else (swap2,3)) ∗ t3 : C

6. An extension to arithmetic

We now present an extension of our framework to a stateful version of first-order intuitionistic
arithmetic. On the logic side, we will add not only a stateful induction rule, but also a
Hoare-style while rule for iteration over the natural numbers. On the computational side,
these will be interpreted by stateful recursion in all finite types, along with a controlled
while loop. The addition of these constants will allow us to extract programs that are more
interesting than those obtainable from proofs in pure predicate logic, and which can be
clearly compared to well-known stateful algorithms. To exemplify this, we will present a
formally synthesised version of insertion sort, and we stress that by further extending our
framework with additional rules and terms, we would be able to extract an even richer
variety of combined functional/stateful programs.

6.1. The system SA: First-order arithmetic with state. Our system of stateful
intuitionistic arithmetic SA builds on SL just as ordinary first-order Heyting arithmetic
builds on first-order predicate logic. In both cases, we introduce a constant 0, a unary
successor symbol succ, symbols for all primitive recursive functions, and our predicate
symbols now include an equality relation =. In what follows we write x + 1 instead of
succ(x). The axioms and rules of SA are, in turn, analogous to the additional axioms and
rules we would require in ordinary first-order arithmetic: They include all axioms and rules
of SL (based now on the language of SA), along with a collection of additional axioms and
rules. These comprise not only basic axioms and rules for equality and the successor, and
an induction rule (all now adapted to incorporate the state), but also a new while rule for
stateful iteration, which now exploits our state and, as we will see, allows us to extract
programs that contain while loops. These additional axioms and rules are given in Figure 4.

Our formulation of stateful arithmetic follows the same basic idea as the construction
of stateful predicate logic, incorporating standard rules but keeping track of an ambient
state in a call-by-value manner, and adding new rules that explicitly correspond to stateful
constructions. In particular, Proposition 2.1 clearly extends to SA, as the usual axioms and
rules of arithmetic can be embedded into those of SA:

Proposition 6.1. For any formula A of HA and state formula α, define the main formula
Aα of SA as in Proposition 2.1. Then whenever Γ ⊢I A is provable in HA, we have that
Γα,∆ ⊢S {α ·Aα · α} is provable in SA, where ∆ is arbitrary and Γα := (A1)

u1
α , . . . , (An)

un
α

for Γ := Au1
1 , . . . , Aun

n .

We can also derive a natural extensionality rule from our stateful equality rules, which
assures us that whenever s = t in ordinary Heyting arithmetic, then we can replace s by t
for stateful formulas:

7:22 T. Powell Vol. 20:1

Figure 4: Additional axioms and rules of SA

Axioms and rules for equality

Γ ⊢S {α · t = t · α}
Γ ⊢S {α · s = t · β}
Γ ⊢S {α · t = s · β}

Γ ⊢S {α · r = s · β} Γ ⊢S {β · s = t · γ}
Γ ⊢S {α · r = t · γ}

Γ ⊢S {α · s = t · β} Γ ⊢S {β ·A(s) · γ(s)}
ext

Γ ⊢S {α ·A(t) · γ(t)}

Axioms and rules for arithmetical function symbols

Γ ⊢S {α · succ(t) ̸= 0 · α}
{α · succ(s) = succ(t) · β}

{α · s = t · β}

Γ ⊢S {α · l = r · α} where l = r ranges across defining equations for prim. rec. functions

Induction rule

Γ ⊢S {α ·A(0) · β(0)} Γ, A(x) ⊢S {β(x) ·A(x+ 1) · β(x+ 1)}
ind

Γ ⊢S {γ · ∀x {α ·A(x) · β(x)} · γ}

While rule (over natural numbers)

A1 A2 A3
while

Γ, A(x) ⊢S {α(x) ·B · β}

A1 := Γ, A(x+ 1) ⊢S {γ(x+ 1) ∧ α(x+ 1) ·A(x) · α(x)}
A2 := Γ, A(x+ 1) ⊢S {¬γ(x+ 1) ∧ α(x+ 1) ·B · β}

A3 := Γ, A(0) ⊢S {α(0) ·B · β}

for ind and while, x is not free in Γ, and for while it is not free in B or β

Proposition 6.2. Suppose that ⊢I s = t is provable in HA. Then from Γ ⊢S {α(s) ·A(s) ·
β(s)} we can derive Γ ⊢S {α(t) ·A(t) · β(t)} in SA.

Proof. By Proposition 6.1 for α := α(s) we have Γ ⊢S {α(s) · s = t · α(s)} and thus using
the extensionality rule in SA we can derive

Γ ⊢S {α(s) · s = t · α(s)} Γ ⊢S {α(s) ·A(s) · β(s)}
ext

Γ ⊢S {α(s) ·A(t) · β(t)}

Since ⊢I t = s must also be provable in HA, another instance of Proposition 6.1 for α := α(t)
along with the true axiom in SA gives us

Γ ⊢S {α(t) · t = s · α(t)} Γ ⊢S {α(t) · ⊤ · α(t)}
ext

Γ ⊢S {α(t) · ⊤ · α(s)}

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:23

Putting these together we obtain

Γ ⊢S {α(t) · ⊤ · α(s)} Γ ⊢S {α(s) ·A(t) · β(t)}
∧SI

Γ ⊢S {α(t) · ⊤ ∧A(t) · β(t)}
∧SEL

Γ ⊢S {α(t) ·A(t) · β(t)}

which completes the derivation.

6.2. An extended term calculus STN . In order to give derivations in SA a computation
interpretation, we need to extend our term calculus ST to include a recursor (for induction)
and a controlled while loop (for the while rule). The remaining new axioms and rules of SA
are dealt with in a straightforward manner.

To be precise: the theory STN is defined to be the instance of ST for the case of
arithmetic, with function symbols for zero, successor and all primitive recursive functions.
Accordingly, we rename the base type D to Nat. In addition to the terms of ST, we add
terms rec e e and whilee γ[z] e e e to our grammar, where γ[z] ranges over state formulas of
SL with a specified free variable z. The typing rules for these new terms are

Γ ⊢ s : X Γ ⊢ t : Nat → X → X

Γ ⊢ rec s t : Nat → X

for the recursor, while for the while loop we have

Γ ⊢ r : Nat → X → X Γ ⊢ s : Nat → X → Y Γ ⊢ t : X → Y Γ ⊢ u : Nat

Γ ⊢ whileu γ[z] r s t : X → Y

under the additional variable condition that z /∈ Γ, but x : Nat ∈ Γ for all free variables
of γ[z] outside of z. Note that we do not consider z a free variable of whilea γ[z] r s t, but
rather a placeholder for the loop condition. In order to give the appropriate semantics to our
terms, we must add to our metatheory Sω axioms and rules for arithmetic in all finite types,
including the ability to define functions of arbitrary type via recursion over the natural
numbers, along the lines of E-HAω [Tro73] (though as before the precise details are not
important). We then define:

• [rec s t]π := ⟨Rf , π1⟩ for ⟨f, π1⟩ := [t]π, where

Rf0π := [s]π

Rf (n+ 1)π := gaπ′
2 for ⟨a, π′

1⟩ := Rfnπ
′ and ⟨g, π′

2⟩ := fnπ′
1

(6.1)

• [whileu γ[z] r s t]π := ⟨Lf,g,hm,π4⟩ where ⟨f, π1⟩ := [r]π, ⟨g, π2⟩ := [s]π1, ⟨h, π3⟩ := [t]π2
and ⟨m,π4⟩ := [u]π3, where

Lf,g,h0yπ
′ := hyπ′

Lf,g,h(n+ 1)yπ′

:=

{
Lf,g,hny

′π2 for ⟨a, π′
1⟩ := fnπ′ and ⟨y′, π′

2⟩ := ayπ′
1 if [γ][n+ 1](π′)

byπ′
1 for ⟨b, π′

1⟩ := gnπ′ if ¬[γ][n+ 1](π′)

(6.2)

where in the case distinctions, we would technically speaking need to use the characteristic
function χγ⟨x1, . . . , n, . . . , xk⟩ for γ, with n substituted for the special free variable z.

7:24 T. Powell Vol. 20:1

6.3. The soundness theorem for arithmetic. We now need to show that the soundness
proof for stateful predicate logic also holds in the extension to arithmetic.

Theorem 6.3. The statement of Theorem 5.4 remains valid if we replace SL by SA and ST
by STN .

Proof. We need to extend the proof of Theorem 6.3 to show that the additional axioms and
rules as in Figure 6.1 can be realized by a term of the form [t] for t in STN .

• For the non-extensionality equality and arithmetic axioms this is straightforward due to
the fact that these are also true in Sω: For instance, given a realizer [s] sr {α · u = v · β}
and [t] sr {β · v = w · γ}, we have that [s ◦ t] sr {α · u = v ∧ v = w · γ}, and since from
u = v ∧ v = w we can infer u = w in Sω, it follows that [p1(s ◦ t)] sr {α · u = w · γ}. The
other axioms and rules are even simpler.

• (ext) Extensionality is similarly simple: If [s] sr {α · u = v · β} and [t] sr {β ·A(u) · γ(u)},
then [α](π) implies that u = v and [β](π1) for ⟨. . . , π1⟩ := [s]π, and therefore a sr A(u)
and [γ](u)(π2) for ⟨a, π2⟩ := [t]π1. Now applying extensionality in Sω to the formula
T (x) := a sr A(x) ∧ [γ](x)(π2), from u = v we have a sr A(v) and [γ](v)(π2), and thus
[s ◦ t] sr {α · u = v ∧A(v) · γ(v)} and therefore [p2(s ◦ t)] sr {α ·A(v) · γ(v)}.

• (rec) Suppose that s and t(x, y) are such that [s] sr {α ·A(0) · β(0)} and

[t](x, y) sr {β(x) ·A(x+ 1) · β(x+ 1)}

assuming y sr A(x). We show that [rec s λx, y.t(x, y)] sr {γ · ∀x {α ·A(x) · β(x)} · γ} for
any γ. Since [rec s λx, y.t(x, y)]π = ⟨Rf , π⟩ for f := λx.[λy.t(x, y)] and Rf as in (6.1), it
suffices to show that for any n : Nat we have

Rfn sr {α ·A(n) · β(n)}

We prove this by induction: For the base case, we have Rf0 = [s] and the claim holds
by assumption. For the induction step, let us assume that [α](π′) holds, and so by
the induction hypothesis we have a sr A(n) and [β(n)](π′

1) for ⟨a, π′
1⟩ := Rfn. Since

fnπ′
1 = ⟨g, π′

1⟩ for g := λy.[t](n, y), we have that Rf (n+ 1)π′ = [t](n, a)π′
1, and since by

the property of [t] we then have b sr A(n+ 1) and [β(n+ 1)](π′
2) for ⟨b, π′

2⟩ := [t](n, a)π′
1,

we have shown that Rf (n+ 1) sr {α ·A(n+ 1) · β(n+ 1)}, which completes the induction.

• (while) We suppose that

(1) [r](x, y) sr {γ(x+ 1) ∧ α(x+ 1) ·A(x) · α(x)} assuming that y sr A(x+ 1),

(2) [s](x, y) sr {¬γ(x+ 1) ∧ α(x+ 1) ·B · β} assuming that y sr A(x+ 1),

(3) [t](y) sr {α(0) ·B · β} assuming that y sr A(0).

Our aim is to show that

[(whilex γ (λx
′, y′.r) (λx′, y′.s) (λy′.t))y] sr {α(x) ·B · β}

for any x, y ∈ Nat with y sr A(x). We observe, unwinding the definition, that

[(whilex γ (λx
′, y′.r) (λx′, y′.s) (λy′.t))y]π = Lf,g,hxyπ

for f := λx′.[λy′.r(x′, y′)], g := λx′.[λy′.s(x′, y′)], h := λy′.[t](y′) and Lf,g,h as defined in
(6.2). We now show by induction on n that if y sr A(n) then

Lf,g,hny sr {α(n) ·B · β}

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:25

and then the result follows by setting n := x. The base case is straightforward since

Lf,g,y0y = [t](y)

and the claim follows by definition of [t]. For the induction step, suppose that y sr A(n+ 1)
and [α(n+ 1)](π). There are two cases. If ¬[γ](n+ 1)(π) we have

Lf,g,h(n+ 1)yπ = [s](n, y)π

and the result holds by the property of [s]. On the other hand, if [γ](n+ 1)(π) then

Lf,g,h(n+ 1)yπ = Lf,g,hny
′π′

for ⟨y′, π′⟩ := [r](n, y)π. But by the property of [r] we have y′ sr A(n) and [α(n)](π′),
and therefore by the induction hypothesis we have b sr B and [β](π′′) for ⟨b, π′′⟩ :=
Lf,g,hny

′π′ = Lf,g,h(n+ 1)yπ, and so the result is proven for n+ 1.

This covers all the additional axioms and rules of SA.

6.4. Worked example: Insertion sort. We now illustrate our extended system by
synthesising a list sorting program that, intuitively, forms an implementation of the insertion
sort algorithm. Here our state will represent the structure that is to be sorted, and continuing
the spirit of generality that we have adhered to throughout, we characterise this structure
through a number of abstract axioms. Instantiating the state as, say, an array of natural
numbers, would provide a model for our theory, but our sorting algorithm can be extracted
on the more abstract level. Crucially, the proof involves both loop iteration and induction,
and the corresponding program combines an imperative while loop with a functional recursor.

We begin by axiomatising our state, just as in previous examples. An intuition here
is that states represent an infinite array of elements a0, a1, . . . possessing some total order
structure ≤, and we seek to extract a program that, for any input n, sorts the first n elements.
We use this informal semantics throughout to indicate the intended meaning of our axioms,
but stress that none of this plays a formal role in the proof or resulting computational
interpretation.

We introduce three state predicates to SA, with the intuition indicated in each case:

• sort(N) – Sorted: The first N + 1 elements of the array i.e. [a0, . . . , aN] are sorted

• psort(n,N) – Partially sorted with respect to an: if n < N then the list

[a0, . . . , an−1, an+1, . . . , aN]

is sorted and an ≤ an+1. For the base cases, if n = N then the list [a0, . . . , aN−1] is sorted,
and if n > N then the list [a0, . . . , aN] is sorted.

• comp(n) – Comparison: true if an ≤ an−1, and always true if n = 0

We formalise this intuition by adding the following state independent axioms to ∆H :

(1) Γ, sort(N) ⊢H psort(N + 1, N + 1) – If the first N + 1 elements are sorted, then they are
also partially sorted with respect to the next element aN+1.

(2) Γ,¬comp(n), psort(n,N) ⊢H sort(N) – If [a0, . . . , an−1, an+1, . . . , aN] is sorted, an ≤
an+1, but also an−1 ≤ an, then the entire segment [a0, . . . , aN] must be sorted.

(3) Γ, psort(0, N) ⊢H sort(N) – If [a1, . . . , aN] is sorted and a0 ≤ a1, then [a0, . . . , aN] is
sorted.

7:26 T. Powell Vol. 20:1

(4) Γ ⊢H sort(0) – The singleton array [a0] is defined to be sorted.

We complete the axiomatisation by adding a single state-sensitive axiom to ∆S :

(5) Γ ⊢S {comp(n+ 1) ∧ psort(n+ 1, N) · ⊤ · psort(n,N)} – If [a0, . . . , an, an+2, . . . , aN] is
sorted and an+1 ≤ an+2, but an+1 ≤ an, then we can modify the state (i.e. swapping an
and an+1 by setting ãn := an+1 and ãn+1 := an) so that [a0, . . . , an−1, ãn+1, . . . , aN] is
sorted and ãn ≤ ãn+1. The edge cases for n ≥ N are interpreted in a more straightforward
way.

In order to give a realizing term to this axiom, we representing element swapping semantically
by adding a constant c : Nat → S → S to our metatheory Sω, which satisfies

comp(n+ 1, π) ∧ psort(n+ 1, N, π) ⇒ psort(n,N, cnπ)

and a corresponding term swap : Nat → C to our term calculus, along with the embedding

[swap]π := ⟨λn, π.⟨(), cnπ⟩, π⟩ ≃ ⟨c, π⟩

so that we can prove

[swapn] sr {comp(n+ 1) ∧ psort(n+ 1, N) · ⊤ · psort(n,N)}

With this in place, we can now prove in SA that the first N elements of the state can be
sorted, and extract a corresponding realizing term in STN .

6.4.1. Proof of ⊢S {γ · ∀N {α · ⊤ · sort(N)} · γ} in SA. The core of our proof begins with an
instance of the while rule parametrised byN , with Γ := ∅, A(n) := ⊤, α(n) := psort(n,N+1),
β := sort(N + 1) and γ(n) := comp(n):

D1 D2 D3
while

⊤ ⊢S {psort(n,N + 1) · ⊤ · sort(N + 1)}
∀SI⊤ ⊢S {psort(N + 1, N + 1) · ∀n {psort(n,N + 1) ·⊤· sort(N + 1)} · psort(N + 1, N + 1)}
∀SE⊤ ⊢S {psort(N + 1, N + 1) · ⊤ · sort(N + 1)}

cons
⊤ ⊢S {sort(N) · ⊤ · sort(N + 1)}

where the final composition inference makes use of the first state independent axiom. Here
D1 represents an instance of the state sensitive axiom

⊤ ⊢S {comp(n+ 1) ∧ psort(n+ 1, N + 1) · ⊤ · psort(n,N + 1)}

and D2 represents the derivation

⊤ ⊢S {sort(N + 1) · ⊤ · sort(N + 1)}
cons

⊤ ⊢S {¬comp(n+ 1) ∧ psort(n+ 1, N + 1) · ⊤ · sort(N + 1)}

where composition makes use of the second state independent axiom. Finally D3 is

⊤ ⊢S {sort(N + 1) · ⊤ · sort(N + 1)}
cons

⊤ ⊢S {psort(0, N + 1) · ⊤ · sort(N + 1)}

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:27

this time making use of the third state independent axiom. Finally we can prove that all
lists can be sorted with an outer induction as follows:

⊢S {α · ⊤ · α}
cons

⊢S {α · ⊤ · sort(0)}
D

⊤ ⊢S {sort(N) · ⊤ · sort(N + 1)}
ind

⊢S {γ · ∀N {α · ⊤ · sort(N)} · γ}
where α is an arbitrary state predicate, the instance of cons uses the fourth state independent
axiom, and D represents the derivation above.

6.4.2. Program extraction. We now extract a program that corresponds to the above proof.
First of all, we note that the three premises of our while rule are realised by swapn, skip
and skip respectively, and so our derivation D corresponds to the following program:

y : C ⊢ swapn : C y : C ⊢ skip : C y : C ⊢ skip : C
while

y : C ⊢ t(n)y : C
∀SI

y : C ⊢ λn.t(n)y : Nat → C
∀SE

y : C ⊢ (λn.t(n)y)(N + 1) : C
cons

y : C ⊢ (λn.t(n)y)(N + 1) : C

where
t(n) := whilen comp[z] (λx, y.(swapx)) (λx, y.skip) (λy.skip)

≃ whilen comp[z] (λx.(swapx)) (skip) (skip)

Then our final induction generates the following program:

⊢ skip : C y : C ⊢ (λn.t(n)y)(N + 1) : C
ind

⊢ rec (skip) (λx, y.((λn.t(n)y)(x+ 1))) : Nat → C

Thus our list sorting program is

rec (skip) (λx, y.((λn.t(n)y)(x+ 1)))

≃ rec (skip) (λx.((λn.(whilen comp[z] (λx.(swapx)) (skip) (skip)()))(x+ 1)))

which is essentially an implementation of the insertion sort algorithm, with an outer recursion
that sorts initial segments of the list in turn, and an inner loop that inserts new elements
into the appropriate place in the current sorted list.

7. Directions for future work

In this paper we have presented the central ideas behind a new method for extracting stateful
programs from proofs, which include an extension of ordinary first-order logic with Hoare
triples, a corresponding realizability interpretation, and a soundness theorem. We emphasise
once again that our intention has been to offer an alternative approach to connecting proofs
with stateful programs, one that seeks to complement rather than improve existing work
by embracing simplicity and abstraction, and which might be well suited to a range of
applications in proof theory or computability theory. In this spirit, we conclude with a very
informal outline of a series interesting directions in which we anticipate that our framework
could be applied.

7:28 T. Powell Vol. 20:1

7.1. Further extensions and program synthesis. While our main results have been
presented in the neutral setting of first-order predicate logic, it would be straightforward to
extend SL to richer logics with more complex data structures and imperative commands.
Already, the addition of recursion and loops over natural numbers in Section 6 has allowed
us to synthesise a standard in-place sorting algorithm using our abstract axiomatisation of
an ordered state, in a similar spirit to [BSW14]. However, further extensions are naturally
possible, including the addition of general fixpoint operators and non-controlled while loops,
which would then require a Sω to be replaced by a domain theoretic semantics that allows
for partiality.

Looking a step further ahead, by implementing all of this in a proof assistant, we would
have at our disposal a new technique for synthesising correct-by-construction imperative
programs. While we do not suggest that this pipeline would directly compete with existing
techniques for verifying imperative programs, it could be well suited to synthesising and
reasoning about programs in very specific domains, where we are interested in algorithms for
which interactions with the state have a restricted form that could be suitably axiomatised
within our logic. For example, a more detailed axiomatisation our state as an ordered array
along the lines of Section 6.4, with a “swap” operation and a few other ways of interacting
with the state, might give rise to an interesting theory of in-place sort algorithms. Stateful
algorithms on other data structures, such as graphs, could presumably also be formalised
within our framework.

7.2. Bar recursion and the semantics of extracted programs. Two of the main
starting points for this paper, the monadic realizability of Birolo [Bir12] and the author’s
own Dialectica interpretation with state [Pow18], address the broader problem of trying
to understand the operational semantics of programs extracted from proofs as stateful
procedures (the origins and development of this general idea, from Hilbert’s epsilon calculus
onwards, is brilliantly elucidated in Chapter 1 of Aschieri’s thesis [Asc11], who then sets
out his own realizability interpretation based on learning). A number of case studies by the
author and others [OP15a, OP15b, Pow20, PSW22] have demonstrated that while terms
extracted from nontrivial proofs can be extremely complex, they are often much easier to
understand if one focuses on the way they interact with the mathematical environment. For
example, in understanding a program extracted from a proof using Ramsey’s theorem for
pairs [OP15a], it could be illuminating to study the trace of the program as it queries a
colouring at particular pairs, as this can lead to a simpler characterisation of the algorithm
ultimately being implemented by the term.

While the aforementioned analysis of programs has always been done in an informal
way, our stateful realizability interpretation would in theory allow us to extract programs
which store this trace formally in the state, where our abstract characterisation of state
would allow us to implement it in whichever way is helpful in a given setting. For example,
in the case of the Bolzano-Weierstrass theorem [OP15b], our state might record information
of the form xn ∈ I, collecting information about the location of sequence elements. For
applications in algebra [PSW22], one might instead store information about a particular
maximal ideal.

The aforementioned theorems are typically proven using some form of choice or com-
prehension, and that in itself leads to the interesting prospect of introducing both stateful
recursors and while-loops that are computationally equivalent to variants of bar recursion
[Spe62]. In [Pow16], several bar recursive programs that arise from giving a computational

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:29

interpretation to arithmetical comprehension principles are formulated as simple while loops,
and these could in principle be incorporated into our system with new controlled Hoare rules
in the style of update recursion [Ber04], that replace the conditions n < N and n ≥ N in
the Ai above with e.g. n ∈ dom(f) and n /∈ dom(f), where f is some partial approximation
to a comprehension function. An exploration of such while-loops from the perspective of
higher-order computability theory might well be of interest in its own right.

7.3. A logic for probabilistic lambda calculi. Probabilistic functional languages are a
major topic of research at present. While work in this direction dates back to the late 1970s
[JP89, SD78] where it typically had a semantic flavour, a more recent theme [DLZ12, DP95,
DPHW05] has been to study simple extensions of the lambda calculus with nondeterministic
choice operators ⊕, where s⊕ t evaluates nondeterministically (or probabilistically) to either
s or t. While such calculi have been extensively studied, corresponding logics that map
under some proof interpretation to probabilistic programs are far more rare (although there
is some recent work in this direction e.g. [ADLP22]).

We conjecture that our framework offers a bridge between logic and probabilistic
computation through incorporating probabilistic disjunctions into our logic SL and taking
states to be streams of outcomes of probabilistic events together with a current ‘counter’
that increases each time an event occurs. In a simple setting where only two outcomes
are possible with equal probability, we can axiomatise this within SL by adding zero and
successor functions (allowing us to create numerals n), along with a unary state predicate
count(n). We can then model probabilistic events by adding the appropriate axioms to ∆S .
Suppose, for example, we add two predicate constants H(x) and T (x) (for heads and tails),
along with constants c1, c2, . . . representing coins. Then flipping a coin would be represented
by the axiom schema

Γ ⊢S {count(n) ·H(ci) ∨ T (ci) · count(n+ 1)}

where n ranges over numerals and ci over coin constants, the counter indicating that a
probabilistic event has occurred. The act of reading a probability from the state could be
interpreted semantically by introducing a constant ω : S → Bool× S to Sω, with the axiom

count(n, π) ⇒ (e = f ⇒ H(ci)) ∧ (e = t ⇒ T (ci)) ∧ count(n+ 1, π1) for ⟨e, π1⟩ := ωπ

(alternatively, we could simply define S := Nat× (Nat → Bool) for a type of Nat natural
numbers, and define ω⟨n, a⟩ := ⟨a(n), ⟨n+ 1, a⟩⟩ and count(n, ⟨m, a⟩) := m =Nat n).

A probabilistic choice operator ⊕ can then be added to the language of ST, along with
the typing rule Γ ⊢ s⊕ t : X + Y for Γ ⊢ s : X and Γ ⊢ t : Y , and the interpretation

[s⊕ t]π := case e ([ι0s]π1) ([ι1t]π1) where ⟨e, π1⟩ := ωπ

In particular, defining flip := skip⊕ skip : C + C we would have

[flip] sr {count(n) ·H(ci) ∨ T (ci) · count(n+ 1)}

although we stress that the operator ⊕ and would allow for much more complex probabilistic
disjunctions, potentially involving additional computational content.

Our soundness theorem, extended to these new probabilistic axioms and terms, would
then facilitate the extraction of probabilistic programs from proofs. For instance, including

7:30 T. Powell Vol. 20:1

a winner predicate W (x), two player constant symbols p1, p2, and adding axioms

H(c1), H(c2) ⊢S {α ·W (p1) · α}
T (c1), T (c2) ⊢S {α ·W (p1) · α}
H(c1), T (c2) ⊢S {α ·W (p2) · α}
T (c1), H(c2) ⊢S {α ·W (p2) · α}

for any α, we could prove

⊢S {count(n) · ∃xW (x) · count(n+ 2)}

expressing the fact that a winner can be determined after two flips. We can then extract a
corresponding probabilistic term for realizing this statement, which would be isomorphic
to the expected program that queries the state twice in order to determine the outcome of
those flips, and returns either p1 or p2 as a realizer for ∃xW (x) depending on the content of
the state.

Of course, the details here need to be worked through carefully in order to properly
substantiate the claim that our framework could be used to extract probabilistic programs in
a natural and meaningful way. At the very least, it is likely that further additions to SL along
with a more intricate state would be needed to incorporate more interesting probabilistic
events, such as annotated disjunctions along the lines of [VVB04]. We leave such matters to
future work.

Acknowledgments

The author thanks the anonymous referees who provided comments on earlier versions of
this paper, which resulted in a much improved final version. This research was supported by
the Engineering and Physical Sciences Research Council grant number EP/W035847/1.

References

[ADLP22] Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone. Curry and Howard meet Borel. In Proceedings
of Logic in Computer Science (LICS ’22), page 13 pages. ACM, 2022. doi:10.1145/3531130.
3533361.

[Asc11] Federico Aschieri. Learning, Realizability and Games in Classical Arithmetic. PhD thesis, Univer-
sità degli Studi di Torino and Queen Mary, University of London, 2011. doi:10.48550/arXiv.
1012.4992.

[Atk09] Robert Atkey. Parameterised notions of computation. Journal of Functional Programming,
19(3&4):335–376, 2009. doi:10.1017/S095679680900728X.

[Bd09] Stefano Berardi and Ugo de’Liguoro. Toward the interpretation of non-constructive reasoning as
non-monotonic learning. Information and Computation, 207(1):63–81, 2009. doi:10.1016/j.ic.
2008.10.003.

[Ber04] Ulrich Berger. A computational interpretation of open induction. In Proceedings of Logic in
Computer Science (LICS ’04), pages 326–334. IEEE, 2004.

[Bir12] Giovanni Birolo. Interactive Realizability, Monads and Witness Extraction. PhD thesis, Università
degli Studi di Torino, 2012. doi:10.48550/arXiv.1304.4091.

[BSW14] Ulrich Berger, Monika Seisenberger, and Gregory J. M. Woods. Extracting imperative programs
from proofs: In-place quicksort. In Proceedings of Types for Proofs and Programs (TYPES’13),
volume 26 of LIPIcs, pages 84–106, 2014. doi:10.4230/LIPIcs.TYPES.2013.84.

[BT21] Ulrich Berger and Hideki Tsuiki. Intuitionistic fixed point logic. Annals of Pure and Applied
Logic, 172:102903, 2021. doi:0.1016/j.apal.2020.102903.

https://doi.org/10.1145/3531130.3533361
https://doi.org/10.1145/3531130.3533361
https://doi.org/10.48550/arXiv.1012.4992
https://doi.org/10.48550/arXiv.1012.4992
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1016/j.ic.2008.10.003
https://doi.org/10.1016/j.ic.2008.10.003
https://doi.org/10.48550/arXiv.1304.4091
https://doi.org/10.4230/LIPIcs.TYPES.2013.84
https://doi.org/0.1016/j.apal.2020.102903

Vol. 20:1 PROOFS AS STATEFUL PROGRAMS 7:31

[CLM13] Martin Churchill, James Laird, and Guy McCusker. Imperative programs as proofs via game
semantics. Annals of Pure and Applied Logic, 164(11):1038–1078, 2013. doi:10.1016/j.apal.
2013.05.005.

[CMM+09] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky.
Effective interactive proofs for higher-order imperative programs. In Proceedings of International
Conference on Functional Programming (ICFP’09), pages 79–90. ACM, 2009. doi:10.1145/
1596550.1596565.

[DF89] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical Report
89/12, BRICS, 1989.

[DLR15] Norman Danner, Dan Licata, and Ramyaa Ramyaa. Denotational cost semantics for functional lan-
guages with inductive types. In Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2015), pages 140–151, 2015. doi:10.1145/2784731.2784749.

[DLZ12] Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda calcu-
lus. RAIRO–Theoretical Informatics and Applications, 46(3):413–450, 2012. doi:10.1051/ita/
2012012.

[DP95] Ugo Deliguoro and Adolfo Piperno. Nondeterministic extensions of untyped λ-calculus. Informa-
tion and Computation, 122(2):149–177, 1995. doi:10.1006/inco.1995.1145.

[DPHW05] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic lambda-calculus and
quantitative program analysis. Journal of Logic and Computation, 15(2):159–179, 2005. doi:
10.1093/logcom/exi008.

[Fil03] Jean-Christoph Filliâtre. Verification of non-functional programs using interpretations in type the-
ory. Journal of Functional Programming, 13(4):709–745, 2003. doi:10.1017/S095679680200446X.

[GK05] Philipp Gerhardy and Ulrich Kohlenbach. Extracting Herbrand disjunctions by functional inter-
pretation. Archive for Mathematical Logic, 44:633–644, 2005. doi:10.1007/s00153-005-0275-1.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969. doi:10.1145/363235.363259.

[JP89] Claire Jones and Gordon Plotkin. A probabilistic powerdomain of evaluations. In Proceedings of
Logic in Computer Science (LICS’89), pages 186–195. IEEE Press, 1989.

[Kre59] Georg Kreisel. Interpretation of analysis by means of functionals of finite type. In A. Heyting,
editor, Constructivity in Mathematics, pages 101–128. North-Holland, Amsterdam, 1959.

[Kri09] Jean-Louis Krivine. Realizability in classical logic in interactive models of computation and
program behaviour. Panoramas et synthéses, 27, 2009.

[McC10] Guy McCusker. A graph model for imperative computation. Logical Methods in Computer Science,
6(1:2), 2010. doi:10.2168/LMCS-6(1:2)2010.

[NAMB07] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract predicates and
mutable ADTs in Hoare type theory. In Proceedings of the European Symposium on Programming
(ESOP’07), volume 4421 of LNCS, pages 189–204, 2007. doi:10.1007/978-3-540-71316-6_14.

[OP15a] Paulo Oliva and Thomas Powell. A constructive interpretation of Ramsey’s theorem via the
product of selection functions. Mathematical Structure in Computer Science, 25(8):1755–1778,
2015. doi:10.1017/S0960129513000340.

[OP15b] Paulo Oliva and Thomas Powell. A game-theoretic computational interpretation of proofs in
classical analysis. In Reinhard Kahle and Michael Rathjen, editors, Gentzen’s Centenary: The
Quest for Consistency, pages 501–531. Springer, 2015. doi:10.1007/978-3-319-10103-3_18.

[PCW05] Iman Poernomo, John N. Crossley, and Martin Wirsing. Adapting Proofs-as-Programs. Mono-
graphs in Computer Science. Springer, 2005. doi:10.1007/0-387-28183-5.

[Pow16] Thomas Powell. Gödel’s functional interpretation and the concept of learning. In Proceedings
of Logic in Computer Science (LICS ’16), pages 136–145. ACM, 2016. doi:10.1145/2933575.
2933605.

[Pow18] Thomas Powell. A functional interpretation with state. In Proceedings of Logic in Computer
Science (LICS ’18), pages 839–848. ACM, 2018. doi:10.1145/3209108.3209134.

[Pow20] Thomas Powell. Well quasi-orders and the functional interpretation. In Peter Schuster, Monika
Seisenberger, and Andreas Weiermann, editors, Well Quasi-Orders in Computation, Logic,
Language and Reasoning, volume 53 of Trends in Logic, pages 221–269. Springer, 2020. doi:
10.1007/978-3-030-30229-0_9.

https://doi.org/10.1016/j.apal.2013.05.005
https://doi.org/10.1016/j.apal.2013.05.005
https://doi.org/10.1145/1596550.1596565
https://doi.org/10.1145/1596550.1596565
https://doi.org/10.1145/2784731.2784749
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1093/logcom/exi008
https://doi.org/10.1093/logcom/exi008
https://doi.org/10.1017/S095679680200446X
https://doi.org/10.1007/s00153-005-0275-1
https://doi.org/10.1145/363235.363259
https://doi.org/10.2168/LMCS-6(1:2)2010
https://doi.org/10.1007/978-3-540-71316-6_14
https://doi.org/10.1017/S0960129513000340
https://doi.org/10.1007/978-3-319-10103-3_18
https://doi.org/10.1007/0-387-28183-5
https://doi.org/10.1145/2933575.2933605
https://doi.org/10.1145/2933575.2933605
https://doi.org/10.1145/3209108.3209134
https://doi.org/10.1007/978-3-030-30229-0_9
https://doi.org/10.1007/978-3-030-30229-0_9

7:32 T. Powell Vol. 20:1

[PSW22] Thomas Powell, Peter Schuster, and Franziskus Wiesnet. A universal algorithm for krull’s theorem.
Information and Computation, 287:104761, 2022. doi:10.1016/j.ic.2021.104761.

[Red96] Uday Reddy. Global state considered unnecessary. Lisp and Symbolic Computation, 9:7–76, 1996.
[Rey02] John C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceedings

of Logic in Computer Science (LICS’02), pages 55–74. IEEE, 2002. doi:10.1109/LICS.2002.
1029817.

[SD78] Nasser Saheb-Djaromi. Probabilistic LCF. In Proceedings of International Symposium on Math-
ematical Foundations of Computer Science (MFCS’78), volume 64 of LNCS, pages 442–451,
1978.

[Spe62] Clifford Spector. Provably recursive functionals of analysis: a consistency proof of analysis
by an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor,
Recursive Function Theory: Proc. Symposia in Pure Mathematics, volume 5, pages 1–27. American
Mathematical Society, 1962.

[Tro73] Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
volume 344 of Lecture Notes in Mathematics. Springer-Verlag, 1973. doi:10.1007/BFb0066739.

[VVB04] Joost Vennekens, Sofie Verbaeten, and Maurice Brunooghe. Logic programs with annotated
disjunctions. In ICLP 2004: Logic Programming, volume 3132 of Lecture Notes in Computer
Science, pages 431–445, 2004. doi:10.1007/978-3-540-27775-0_30.

[YHB07] Nobuko Yoshida, Kohei Honda, and Martin Berger. Logical reasoning for higher-order functions
with local state. In Proceedings of Foundations of Software Science and Computation Structures
(FOSSACS’07), volume 44213 of LNCS, pages 361–377, 2007. doi:10.1007/978-3-540-71389-0_
26.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1016/j.ic.2021.104761
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/BFb0066739
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1007/978-3-540-71389-0_26
https://doi.org/10.1007/978-3-540-71389-0_26

	1. Introduction
	2. The system SL: First-order logic with state
	2.1. Stateful first-order logic
	2.2. The intuition behind SL

	3. The system ST: A simple functional/imperative term calculus
	4. A monadic embedding of SL and ST into a metatheory Sω
	4.1. The system Sω
	4.2. The embedding [⋅] on state formulas of SL
	4.3. The embedding [⋅] on terms of ST

	5. A realizability interpretation of SL into ST
	5.1. Simplification and removal of unit types
	5.2. Examples of program extraction

	6. An extension to arithmetic
	6.1. The system SA: First-order arithmetic with state
	6.2. An extended term calculus STN
	6.3. The soundness theorem for arithmetic
	6.4. Worked example: Insertion sort

	7. Directions for future work
	7.1. Further extensions and program synthesis
	7.2. Bar recursion and the semantics of extracted programs
	7.3. A logic for probabilistic lambda calculi

	Acknowledgments
	References

