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Abstract. We pioneer a new technique that allows us to prove a multitude of previously
open simulations in QBF proof complexity. In particular, we show that extended QBF
Frege p-simulates clausal proof systems such as IR-Calculus, IRM-Calculus, Long-Distance
Q-Resolution, and Merge Resolution. These results are obtained by taking a technique
of Beyersdorff et al. (JACM 2020) that turns strategy extraction into simulation and
combining it with new local strategy extraction arguments.

This approach leads to simulations that are carried out mainly in propositional logic, with
minimal use of the QBF rules. Our proofs therefore provide a new, largely propositional
interpretation of the simulated systems. We argue that these results strengthen the case
for uniform certification in QBF solving, since many QBF proof systems now fall into place
underneath extended QBF Frege.

1. Introduction

The problem of evaluating Quantified Boolean Formulas (QBF), an extension of propositional
satisfiability (SAT), is a canonical PSPACE-complete problem [SM73, AB09]. Many tasks
in verification, synthesis and reasoning have succinct QBF encodings [SBPS19], making
QBF a natural target logic for automated reasoning. As such, QBF has seen considerable
interest from the SAT community, leading to the development of a variety of QBF solvers
(e.g., [LB10, JKMC16, RT15, JM15b, PSS19a]). The underlying algorithms are often
highly nontrivial, and their implementation can lead to subtle bugs [BLB10]. While formal
verification of solvers is typically impractical, trust in a solver’s output can be established by
having it generate a proof trace that can be externally validated. This is already standard in
SAT solving with the DRAT proof system [WHJ14], for which even formally verified checkers
are available [CHJ+17]. A key requirement for standard proof formats like DRAT is that
they simulate all current and emerging proof techniques.

Currently, there is no decided-upon checking format for QBF proofs (although there
have been some suggestions [JBS+07, HSB17]). The main challenge of finding such an
universal format, is that QBF solvers are so radically different in their proof techniques,
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that each solver basically works in its own proof system. For instance, solvers based
on CDCL and (some) clausal abstraction solvers can generate proofs in Q-resolution (Q-
Res) [KKF95] or long-distance Q-resolution (LD-Q-Res) [BJ12], while the proof system
underlying expansion based solvers combines instantiation of universally quantified variables
with resolution (∀Exp+Res) [JM15a]. Variants of the latter system have been considered:
IR-calc (Instantiation Resolution) admits instantiation with partial assignments, and IRM-
calc (Instantiation Resolution Merge) additionally incorporates elements of long-distance
Q-resolution [BCJ19].

A universal checking format for QBF ought to simulate all of these systems. A good
candidate for such a proof system has been identified in extended QBF Frege (eFrege+∀red):
Beyersdorff et al. showed [BBCP20] that a lower bound for eFrege +∀red would not be
possible without a major breakthrough.

In this work, we show that eFrege +∀red does indeed p-simulate IRM-calc, Merge
Resolution (M-Res) and LQU+-Res (a generalisation of LD-Q-Res), thereby establishing eFrege
+∀red and any stronger system (e.g., QRAT [HSB17] or G [KP90]) as potential universal
checking formats in QBF. As corollaries, we obtain (known) simulations of ∀Exp+Res [KHS17]
and LD-Q-Res [KS19] by QRAT, as well as a (new) simulation of IR-calc by QRAT, answering
a question recently posed by Chede and Shukla [CS21]. A simulation structure with many
of the known QBF proof systems and our new results is given in Figure 1.

IRM-calc

IR-calc

∀Exp+Res

M-Res

LD-Q-Res

Q-Res

Ext. Q-Res

eFrege + ∀red

QRAT

𝖦

QU-Res

LQU-Res

LQU+-Res

Frege + ∀red

known lower bound

known strategy extraction

new simulation
known simulation

Figure 1: Hasse diagram for polynomial simulation order of QBF calculi [BCJ19, BWJ14,
BBCP20, HSB17, Che21, BJ12, VG12, CH22, BBM18]. In this diagram all proof
systems below the first line are known to have strategy extraction, and all below
the second line have an exponential lower bound. G and QRAT have strategy
extraction if and only if P = PSPACE.

Our proofs crucially rely on a property of QBF proof systems known as strategy
extraction. Here, “strategy” refers to winning strategies of a set of PSPACE two-player
games (see Section 2 for more details) each of which corresponds exactly to some QBF.
A proof system is said to have strategy extraction if a strategy for the two-player game
associated with a QBF can be computed from a proof of the formula in polynomial time.
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Balabanov and Jiang discovered [BJ12] that Q-Resolution admitted a form of strategy
extraction where a circuit computing a winning strategy could be extracted in linear time
from the proofs. Strategy extraction was subsequently proven for many QBF proof systems
(cf. Figure 1): the expansion based systems ∀Exp+Res [BCJ19], IR-calc [BCJ19] and IRM-calc
[BCJ19], Long-Distance Q-Resolution [ELW13], including with dependency schemes [ELW13],
Merge Resolution [BBM18], Relaxing Stratex [Che16] and C-Frege+∀red systems including
eFrege +∀red [BBCP20]. Strategy extraction also gained notoriety because it became a
method to show Q-resolution lower bounds [BCJ19]. Beyersdorff et al. [BBCP20, BCMS18]
generalised this approach to more powerful proof systems, allowing them to establish a
tight correspondence between lower bounds for eFrege+∀red and two major open problems
in circuit complexity and propositional proof complexity: they showed that proving a
lower bound for eFrege +∀red is equivalent to either proving a lower bound for P/poly or
a lower bound for propositional eFrege. It was conjectured by Chew [Che21] that all the
aforementioned proof systems that had strategy extraction were very likely to be simulated
by eFrege+∀red. An outline of how to use strategy extraction to obtain the corresponding
simulations was also provided.

We follow this outline in proving simulations for multiple systems by eFrege +∀red.
While the strategy extraction for expansion based systems [BCJ19] has been known for a
while using the technique from Goultiaeva et. al [GVB11], there currently is no intuitive way
to formalise this strategy extraction into a simulation proof. Here we specifically studied a
new strategy extraction technique given by Schlaipfer et al. [SSWZ20], that creates local
strategies for each ∀Exp+Res line. Inductively, we can affirm each of these local strategies
and prove the full strategy extraction this way. This local strategy extraction technique
is based on arguments of Suda and Gleiss [SG18], which allow it to be generalised to the
expansion based system IRM-calc. We thus manage to prove a simulation for ∀Exp+Res and
generalise it to IR-calc and then to IRM-calc. We also show a much more straight-forward
simulation of M-Res and an adaptation of the IRM-calc argument to LQU+-Res.

The remainder of the paper is structured as follows. In Section 2 we go over general
preliminaries and the definition of eFrege+∀red. The remaining sections are each dedicated
to simulations of different calculi by eFrege+∀red. In Section 3 we begin with a simulation
of M-Res as a relatively easy example.

In Section 4 we find show how eFrege +∀red simulates expansion based systems. We
find a propositional interpretation and a local strategy for IR-calc. This leads to a full
simulation of IR-calc by eFrege+∀red. In Section 5 we extend this simulation to IRM-calc
which involves dealing with merged literals. In Section 6 we study the strongest CDCL proof
system LQU+-Res and explain why it is also simulated by eFrege +∀red, using a similar
argument to IRM-calc. We leave some of the finer details of the simulation of IRM-calc and
LQU+-Res in the Appendix.

2. Preliminaries

2.1. Quantified Boolean Formulas. A Quantified Boolean Formula (QBF) is a proposi-
tional formula augmented with Boolean quantifiers ∀, ∃ that range over the Boolean values
⊥,⊤ (the same as 0, 1). Every propositional formula is already a QBF. Let ϕ be a QBF. The
semantics of the quantifiers are that: ∀xϕ(x) ≡ ϕ(⊥) ∧ ϕ(⊤) and ∃xϕ(x) ≡ ϕ(⊥) ∨ ϕ(⊤).
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When investigating QBF in computer science we want to standardise the input formula.
In a prenex QBF, all quantifiers appear outermost in a (quantifier) prefix, and are followed
by a propositional formula, called the matrix. If every propositional variable of the matrix is
bound by some quantifier in the prefix we say the QBF is a closed prenex QBF. We often
want to standardise the propositional matrix, and so we can take the same approach as seen
often in propositional logic. We denote the set of universal variables as U , and the set of
existential variables as E. A literal is a propositional variable (x) or its negation (¬x or
x̄). A clause is a disjunction of literals. Since disjunction is idempotent, associative and
commutative we can think of a clause simultaneously as a set of literals. The empty clause
is just false. A conjunctive normal form (CNF) is a conjunction of clauses. Again, since
conjunction is idempotent, associative and commutative a CNF can be seen as set of clauses.
The empty CNF is true, and a CNF containing an empty clause is false. Every propositional
formula has an equivalent formula in CNF, we therefore restrict our focus to closed PCNF
QBFs, that is closed prenex QBFs with CNF matrices.

2.2. QBF Proof Systems.

2.2.1. Proof Complexity. A proof system [CR79] is a polynomial-time checking function
that checks that every proof maps to a valid theorem. Different proof systems have varying
strengths, in one system a theorem may require very long proofs, in another the proofs
could be considerably shorter. We use proof complexity to analyse the strength of proof
systems [Kra19]. A proof system is said to have an Ω(f(n))-lower bound, if there is a family
of theorems such that shortest proof (in number of symbols) of the family are bounded
below by Ω(f(n)) where n is the size (in number of symbols) of the theorem. Proof system
p is said to simulate proof system q if there is a fixed polynomial P (x) such that for every
q-proof π of every theorem y there is a p-proof of y no bigger than P (|π|) where |π| denotes
the size of π. A stricter condition, proof system p is said to p-simulate proof system q if
there is a polynomial-time algorithm that takes q-proofs to p-proofs preserving the theorem.

2.2.2. Extended Frege+∀-Red. Frege systems are “text-book” style proof systems for propo-
sitional logic. They consist of a finite set of axioms and rules where any variable can be
replaced by any formula (so each rule and axiom is actually a schema). A Frege system
needs also to be sound and complete. Frege systems are incredibly powerful and can handle
simple tautologies with ease. No lower bounds are known for Frege systems and all Frege
systems are p-equivalent [CR79, Rec76]. For these reasons we can assume all Frege-systems
can handle simple tautologies and syllogisms without going into details.

Extended Frege (eFrege) takes a Frege system and allows the introduction of new variables
that do not appear in any previous line of the proof. These variables abbreviate formulas,
but since new variables can be consecutively nested, they can be understood to represent
circuits. The rule works by introducing the axiom of v ↔ f for new variable v (not appearing
in the formula f). Alternatively one can consider eFrege as the system where lines are
circuits instead of formulas.

Extended Frege is a very powerful system, it was shown [Kra95, Bey09] that any
propositional proof system f can be simulated by eFrege+ ||ϕ|| where ϕ is a polynomially
recognisable axiom scheme. The QBF analogue is eFrege+∀red, which adds the reduction
rule to all existing eFrege rules [BBCP20]. eFrege+∀red is refutationally sound and complete
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for closed prenex QBFs. The reduction rules allows one to substitute a universal variable in
a formula with ⊥ or with ⊤ as long as no other variable appearing in that formula is right of
it in the prefix. Extension variables now must appear in the prefix and must be quantified
right of the variables used to define it, we can consider them to be defined immediately right
of these variables as there is no disadvantage to this.

2.3. QBF Strategies. With a closed prenex QBF Πϕ, the semantics of a QBF has an
alternative definition in games. The two-player QBF game has an ∃-player and a ∀-player.
The game is played in order of the prefix Π left-to-right, whoever’s quantifier appears must
assign the quantified variable to ⊥ or ⊤. The existential player is trying to make the matrix
ϕ become true. The universal player is trying to make the matrix become false. Πϕ is true
if and only if there winning strategy for the ∃ player. Πϕ is false if and only if there winning
strategy for the ∀ player.

A strategy for a false QBF is a set of functions fu for each universal variable u on
variables left of u in the prefix. In a winning strategy the propositional matrix must evaluate
to false when every u is replaced by fu. A QBF proof system has strategy extraction if there
is a polynomial time program that takes in a refutation π of some QBF Ψ and outputs
circuits that represent the functions of a winning strategy.

A policy is similarly defined as a strategy but with partial functions for each universal
variables instead of a fully defined function.

3. Extended Frege+∀-Red p-simulates M-Res

In this section we show a first example of how the eFrege +∀red simulation argument
works in practice for systems that have strategy extraction. Merge resolution provides a
straightforward example because the strategies themselves are very suitable to be managed
in propositional logic. In later theorems where we simulate calculi like IR-calc and IRM-calc,
representing strategies is much more of a challenge.

3.1. Merge Resolution. Merge resolution (M-Res) was first defined by Beyersdorff, Blink-
horn and Mahajan [BBM18]. Its lines combine clausal information with a merge map, for
each universal variable. Merge maps give a “local” strategy which when followed forces the
clause to be true or the original CNF to be false.

3.1.1. Definition of Merge Resolution. Each line of an M-Res proof consists of a clause on
existential variables and partial universal strategy functions for universal variables. These
functions are represented by merge maps, which are defined as follows. For universal variable
u, let Eu be the set of existential variables left of u in the prefix. For line number i, A
non-trivial merge map Mu

i is a collection of nodes in [i] along with the construction function
Mu

i , which details the structure. For j ∈ [i], the construction function Mu
i (j) is either in

{⊥,⊤} for leaf nodes or Eu × [j] × [j] for internal nodes. The root r(u, i) is the highest
value of all the nodes Mu

i . The strategy function hui,j : {0, 1}Eu → {0, 1} maps assignments
of existential variables Eu in the dependency set of u to a value for u. The function hui,t for

leaf nodes t is simply the truth value Mu
i (t). For internal nodes a with Mu

i (a) = (x, b, c), we
should interpret hui,a as “If x then hui,b, else h

u
i,c” or hui,a = (x∧hui,b)∨ (¬x∧hui,c). In summary

the merge map Mu
i (j) is a representation of the strategy given by function hui,r(u,i).
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The merge resolution proof system inevitably has merge maps for the same universal
variable interact, and we have two kinds of relations on pairs of merge maps.

Definition 3.1. Merge maps Mu
j and Mu

k are said to be consistent if Mu
j (i) = Mu

k (i) for
each node i appearing in both Mu

j and Mu
k .

Definition 3.2. Merge maps Mu
j and Mu

k are said to be isomorphic if there exists a

bijection f from the nodes of Mu
j to the nodes of Mu

k such that if Mu
j (a) = (x, b, c) then

Mu
k (f(a)) = (x, f(b), f(c)) and if Mu

j (t) = p ∈ {⊥,⊤} then Mu
k (f(t)) = p.

With two merge maps Mu
j and Mu

k , we define two operations as follows:

• Select(Mu
j ,M

u
k ) returns M

u
j if Mu

k is trivial (representing a “don’t care”), or Mu
j and

Mu
k are isomorphic and returns Mu

k if Mu
j is trivial and not isomorphic to Mu

k . If neither
Mu

j or Mu
k is trivial and the two are not isomorphic then the operation fails.

• Merge(x,Mu
j ,M

u
k ) returns the map Mu

i with i > j, i > k when Mu
j ,M

u
k are consis-

tent where if a is a node in Mu
j then Mu

i (a) = Mu
j (a) and if a is a node in Mu

k

then Mu
i (a) = Mu

k (a). Merge map Mu
i has a new node r(u, i) as a root node (which

is greater than the maximum node in each of Mu
i (a) or Mu

j (a)), and is defined as

Mu
i (r(u, i)) = (x, r(u, j), r(u, k)).

Proofs in M-Res consist of lines, where every line is a pair (Ci, {Mu
i | u ∈ U}). Here, Ci

is a purely existential clause (it contains only literals that are from existentially quantified
variables). The other part is a set containing merge maps for each universal variable (some
of the merge maps can be trivial, meaning they do not represent any function). Each line is
derived by one of two rules:

Axiom: Ci = {l | l ∈ C, var(l) ∈ E} is the existential subset of some clause C where
C is a clause in the matrix. If universal literals u, ū do not appear in C, let Mu

i be trivial.
If universal variable u appears in C then let i be the sole node of Mu

i with Mu
i (i) = ⊥.

Likewise if ¬u appears in C then let i be the sole node of Mu
i with Mu

i (i) = ⊤.
Resolution: Two lines (Cj , {Mu

j | u ∈ U}) and (Ck, {Mu
k | u ∈ U}) can be resolved

to obtain a line (Ci, | {Mu
i | u ∈ U}) if there is literal ¬x ∈ Cj and x ∈ Ck such that

Ci = Cj ∪Ck \ {x,¬x}, and every Mu
i can either be defined as Select(Mu

j ,M
u
k ), when Mu

j

and Mu
k are isomorphic or one is trivial, or as Merge(x,Mu

j ,M
u
k ) when x < u and Mu

j and
Mu

k are consistent.

3.2. Simulation of Merge Resolution. We now state the main result of this section.

Theorem 3.3. eFrege +∀red simulates M-Res.

For a false QBF Πϕ refuted by M-Res, the final set of merge maps represent a falsifying
strategy for the universal player, the strategy can be asserted by a proposition S that states
that all universal variables are equivalent to their strategy circuits. It then should be the
case that if ϕ is true, S must be false, a fact that can be proved propositionally, formally
ϕ ⊢ ¬S.

To build up to this proof we can inductively find a local strategy Si for each clause Ci

that appears in an M-Res line (Ci, {Mu
i }) such that ϕ ⊢ Si → Ci. Elegantly, Si is really

just a circuit expressing that each u ∈ U takes its value in Mu
i (if non-trivial). Extension

variables are used to represent these local strategy circuits and so the proof ends up as a
propositional extended Frege proof.
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The final part of the proof is the technique suggested by Chew [Che21] which was
originally used by Beyersdorff et al. [BBCP20]. That is, to use universal reduction starting
from the negation of a universal strategy and arrive at the empty clause.

Proof of Theorem 3.3. Definition of extension variables. We create new extension
variables for each node in every non-trivial merge map appearing in a proof. sui is created
for the node i in merge map Mu

i . sui is defined as a constant when i is leaf node in Mu
i .

If i is an internal node sui is defined as sui := (x ∧ sub ) ∨ (¬x ∧ suc ), when Mu
i (i) = (x, b, c).

Because x has to be before u in the prefix, sui is always defined before universal variable u.
Induction Hypothesis: It is easy for eFrege to prove

∧
u∈Ui

(u ↔ sur(u,i)) → Ci from the

axioms of ϕ, where r(u, i) is the index of the root node of Merge map Mu
i . Ui is the subset

of U for which Mu
i is non-trivial.

Base Case: Axiom: Suppose Ci is derived by axiom download of clause C. If u has a
strategy, it is because it appears in a clause and so u ↔ sui , where sui ↔ cu for cu ∈ ⊤,⊥, cu
is correctly chosen to oppose the literal in C so that Ci is just the simplified clause of C
replacing all universal u with their cu. This is easy for eFrege to prove.
Inductive Step: Resolution: If Cj is resolved with Ck to get Ci with pivots ¬x ∈ Cj and
x ∈ Ck, we first show

∧
u∈Ui

(u ↔ sur(u,i)) → Cj and
∧

u∈Ui
(u ↔ sur(u,i)) → Ck, where r(u, i)

is the root index of the Merge map for u on line i. We resolve these together.
To argue that

∧
u∈Ui

(u ↔ sur(u,i)) → Cj we prove by induction that we can replace

u ↔ sur(u,j) with u ↔ sur(u,i) one by one.

Induction Hypothesis: Ui is partitioned into W the set of adjusted variables and V
the set of variables yet to be adjusted.

(
∧

v∈V ∩Uj
(v ↔ svr(v,j))) ∧ (

∧
v∈W (v ↔ svr(v,i))) → Cj

Base Case: (
∧

v∈Ui∩Uj
(v ↔ svj,r(v,j)) → Cj is the premise of the (outer) induction

hypothesis, since Uj ⊆ Ui.
Inductive Step: Starting with (

∧
v∈V ∩Uj

(v ↔ svr(v,j))) ∧ (
∧

w∈W (w ↔ swr(w,i))) → Cj .

We pick a u ∈ V to show (u ↔ sur(u,i))∧(
∧v ̸=u

v∈V ∩Uj
(v ↔ svr(v,j)))∧(

∧
w∈W (w ↔ swr(w,i))) → Cj .

We have four cases:

(1) Select chooses Mu
i = Mu

j .

(2) Select chooses Mu
i = Mu

k because Mu
j is trivial.

(3) Select chooses Mu
i = Mu

k because there is an isomorphism f that maps Mu
j to Mu

k .

(4) Merge so that Mu
i is the merge of Mu

j and Mu
k over pivot x.

In (1) (u ↔ sur(u,j)) is already (u ↔ sur(u,i)) as r(u, j) = r(u, i).

In (2) we are simply weakening the implication.
In (3) we prove inductively from the leaves to the root that suf(t) = suj,t. Eventually,

we end up with suf(r(u,k)) = sur(u,i). Then (u ↔ sur(u,j)) can be replaced by (u ↔ suf(r(u,j))).

As f is an isomorphism f(r(u, j)) = r(u, k) and because Select is used r(u, k) = r(u, i).
Therefore we have (u ↔ sur(u,i)).

In (4) We need to replace sur(u,j) with sur(u,i). For this we use the definition of merging

that x → (sur(u,i) ↔ sur(u,j)) and so we have (sur(u,i) ↔ sur(u,j))∨¬x but the ¬x is absorbed by

the Cj in right hand side of the implication.
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Finalise Inner Induction: At the end of this inner induction, we have
∧

u∈Ui
(u ↔

sur(u,i)) → Cj and symmetrically
∧

u∈Ui
(u ↔ sur(u,i)) → Ck. We can then prove

∧
u∈Ui

(u ↔
sur(u,i)) → Ci.

Finalise Outer Induction: Note that we have done three nested inductions on the nodes
in a merge maps, on the universal variables, and then on the lines of an M-Res proof.
Nonetheless, this gives a quadratic size eFrege proof in the number of nodes appearing in the
proof. In M-Res the final line will be the empty clause and its merge maps. The induction
gives us

∧
u∈Ul

(u ↔ sur(u,l)) → ⊥. In other words, if Ul = {u1, . . . un}, where ui appears

before ui+1 in the prefix,
∨n

i=1(ui ⊕ sui

r(ui,l)
).

By reduction of
∨n−k+1

i=1 (ui ⊕ sui

r(ui,l)
), we derive (0 ⊕ s

un−k+1

r(un−k+1,l)
) ∨

∨n−k
i=1 (ui ⊕ sui

r(ui,l)
)

and (1⊕ s
un−k+1

r(un−k+1,l)
)∨

∨n−k
i=1 (ui ⊕ sui

r(ui,l)
), which we can resolve to obtain

∨n−k
i=1 (ui ⊕ sui

r(ui,l)
).

We continue this until we reach the empty disjunction.

4. Extended Frege+∀-Red p-simulates IR-calc

4.1. Expansion-Based Resolution Systems. The idea of an expansion based QBF
proof system is to utilise the semantic identity: ∀uϕ(u) = ϕ(0) ∧ ϕ(1), to replace universal
quantifiers and their variables with propositional formulas. With ∀u∃xϕ(u) = ∃xϕ(0)∧∃xϕ(1)
the x from ∃xϕ(0) and from ∃xϕ(1) are actually different variables. The way to deal with
this while maintaining prenex normal form is to introduce annotations that distinguish one
x from another. We will also introduce a third annotation ∗ which will be used only for the
purpose of short proofs.

Definition 4.1 [BCJ19].

(1) An extended assignment is a partial mapping from the universal variables to {0, 1, ∗}. We
denote an extended assignment by a set or list of individual replacements i.e. 0/u, ∗/v
is an extended assignment. We often use set notation where appropriate.

(2) An annotated clause is a clause where each literal is annotated by an extended assignment
to universal variables.

(3) For an extended assignment σ to universal variables we write lrestrictl(σ) to denote an
annotated literal where restrictl(σ) = {c/u ∈ σ | lv(u) < lv(l)}.

(4) Two (extended) assignments τ and µ are called contradictory if there exists a variable
x ∈ dom(τ) ∩ dom(µ) with τ(x) ̸= µ(x).

4.1.1. Definitions. The most simple way to use expansion would be to expand all universal
quantifiers and list every annotated clause. The first expansion based system we consider,
∀Exp+Res (Figure 2), has a mechanism to avoid this potential exponential explosion in some
(but not all) cases. An annotated clause is created and then checked to see if it could be
obtained from expansion. This way a refutation can just use an unsatisfiable core rather
than all clauses from a fully expanded matrix.

The drawback of ∀Exp+Res is that one might end up repeating almost the same
derivations over and over again if they vary only in changes in the annotation which make
little difference in that part of the proof. This was used to find a lower bound to ∀Exp+Res
for a family of formulas easy in system Q-Res [JM15a]. To rectify this, IR-calc improved on
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(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
∪ {τ(l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is a {0, 1} assignment to all universal variables.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(Res)

C1 ∪ C2

Figure 2: The rules of ∀Exp+Res (adapted from [JM15a]).

∀Exp+Res to allow a delay to the annotations in certain circumstances. Annotated clauses
now have annotations with “gaps” where the value of the universal variable is yet to be set.
When they are set there is the possibility of choosing both assignments without the need to
rederive the annotated clauses with different annotations.

Definition 4.2 [BCJ19]. Given two partial assignments (or partial annotations) α and β.
The completion α ◦ β, is a new partial assignment, where

α ◦ β(u) =


α(u) if u ∈ dom(α)

β(u) if u ∈ dom(β) \ dom(α)

unassigned otherwise

For α an assignment of the universal variables and C an annotated clause we define
inst(α,C) :=

∨
lτ∈C lrestrictl(τ ◦ α). Annotation α here gives values to unset annotations where

one is not already defined. Because the same α is used throughout the clause, the previously
unset values gain consistent annotations, but mixed annotations can occur due to already
existing annotations.

(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where the

notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.
xτ ∨ C1 ¬xτ ∨ C2 (Resolution)

C1 ∪ C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Figure 3: The rules of IR-calc [BCJ19].

The definition of IR-calc is given in Figure 3. Resolved variables have to match exactly,
including that missing values are missing in both pivots. However, non-contradictory but
different annotations may still be used for a later resolution step after the instantiation rule
is used to make the annotations match the annotations of the pivot.

4.1.2. Local Strategies for ∀Exp+Res. The work from Schlaipfer et al. [SSWZ20] creates a
conversion of each annotated clause C appearing in some ∀Exp+Res proof into a propositional
formula con(C) defined in the original variables of ϕ (so without creating new annotated
variables). C appearing in a proof asserts that there is some (not necessarily winning)
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strategy for the universal player to force con(C) to be true under ϕ. The idea is that
for each line C in an ∀Exp+Res refutation of Πϕ there is some local strategy S such that
S ∧ ϕ → con(C). If C is empty, then S is a winning strategy for the universal player.
Otherwise, S only wins if the existential player cooperates by playing according to one of
the annotated literals lτ ∈ C, that is, if the existential player promises to falsify the literal l
whenever the assignment chosen by the universal player is consistent with the annotation τ .
Suda and Gleiss showed that the resolution rule can then be understood as combining
strategies so that the “promises” of the existential player corresponding to the pivot literals
xτ and ¬xτ cancel out [SG18].

The extra work by Schlaipfer et al. is that the strategy circuits (for each u) can be
constructed in polynomial time, and can be defined in variables left of ui in the prefix.
Let u1 . . . un be all universal variables in order. For each line in an ∀Exp+Res proof we
have a strategy which we will here call S. For each ui there is an extension variable ValiS ,
before ui, that represents the value assigned to ui by S (under an assignment of existential
variables). Using these variables, we obtain a propositional formula representing the strategy
as S =

∧n
i=1 ui ↔ ValiS . Additionally, we define a conversion of annotated logic in ∀Exp+Res

to propositional logic as follows. For annotations τ let anno(τ) =
∧

1/ui∈τ ui ∧
∧

0/ui∈τ ūi.

We convert annotated literals as con(lτ ) = l ∧ anno(τ) and clauses as con(C) =
∨

l∈C con(l).

4.2. Policies and Simulating IR-calc. The conversion needs to be revised for IR-calc. In
particular the variables not set in the annotations need to be understood. The solution
is to basically treat unset as a third value, and work with local strategies that do not set
all universal variables. Following Suda and Gleiss, we refer to such (partial) strategies as
policies [SG18].

In practice, this requires new SetiS variables (left of ui) which state that the ith universal
variable is set by policy S. We include these variables in our encoding of policy S and let
S =

∧n
i=1 Set

i
S → (ui ↔ ValiS). The conversion of annotations, literals and clauses also has

to be changed. For annotations τ of some quantified variable x let

annox,S(τ) =
∧

1/ui∈τ (Set
i
S ∧ui) ∧

∧
0/ui∈τ (Set

i
S ∧ūi) ∧

∧ui /∈dom(τ)
ui<Πx ¬SetiS .

Let conS(l
τ ) = l ∧ annox,S(τ) and conS(C) =

∨
l∈C conS(l) similarly to before, we just

reference a particular policy S. This means that we again want S ∧ ϕ → conS(C) for each
line, note that SetiS variables are defined in their own way.

The most crucial part of simulating IR-calc is that after each application of the resolution
rule we can obtain a working policy.

Lemma 4.3. Suppose, there are policies L and R such that L → conL(C1 ∨ ¬xτ ) and
R → conR(C2 ∨ xτ ) then there is a policy B such that B → conB(C1 ∨ C2) can be obtained
in a short eFrege proof.

The proof of the simulation of IR-calc relies on Lemma 4.3. To prove this we have to
first give the precise definitions of the policy B based on policies L and R. Schlaipfer et al.’s
work [SSWZ20] is used to crucially make sure the strategy B, respects the prefix ordering.
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4.2.1. Building the Strategy. We start to define ValiB and SetiB on lower i values first. In
particular we will always start with 1 ≤ i ≤ m where um is the rightmost universal variable
still before the pivot variable x in the prefix. Starting from i = 0, the initial segments of
annox,L(τ) and annox,R(τ) may eventually reach such a point j where one is contradicted.

Before this point L and R are detailing the same strategy (they may differ on Vali but only
when Seti is false) so this part of B can be effectively played as both L and R simultaneously.
Without loss of generality, as soon as L contradicts annox,L(τ), we know that conL(x

τ ) is
not satisfied by L and thus it makes sense for B to copy L, at this point and the rest of
the strategy as it will satisfy conB(C1). It is entirely possible that we reach i = m and not
contradict either annox,L(τ) or annox,R(τ). Fortunately after this point in the game we now
know the value the existential player has chosen for x. We can use the x value to decide
whether to play B as L (if x is true) or R (if x is false).

To build the circuitry for ValiB and SetiB we will introduce other circuits that will act as
intermediate. First we will use constants Setiτ and Valiτ that make annox,S(τ) equivalent

to
∧

ui<Πx(Set
i
S ↔ Setiτ ) ∧ Setiτ → (ui ↔ Valiτ ). This mainly makes our notation easier.

Next we will define circuits that represent two strategies being equivalent up to the ith
universal variable. This is a generalisation of what was seen in the local strategy extraction
for ∀Exp+Res [SSWZ20].

Eq0f=g := 1,Eqif=g := Eqi−1
f=g ∧(Set

i
f ↔ Setig) ∧ (Setif → (Valif ↔ Valig)).

We specifically use this for a trigger variable that tells you which one of L and R differed
from τ first.

Dif0L := 0 and DifiL := Difi−1
L ∨(Eqi−1

R=τ ∧((Set
i
L⊕Setiτ ) ∨ (Setiτ ∧(ValiL⊕Valiτ ))))

Dif0R := 0 and DifiR := Difi−1
R ∨(Eqi−1

L=τ ∧((Set
i
R ⊕Setiτ ) ∨ (Setiτ ∧(ValiR ⊕Valiτ ))))

Note that DifiL and DifiR can both be true but only if the strategies start to differ from
τ at the same point.

Using these auxiliary variables, we can define a bottom policy B that chooses between
the left policy L and the right policy R as indicated above, following Suda and Gleiss’s
Combine operation [SG18]. If one of the policies is inconsistent with the annotation τ
(this includes setting a variable that is not set by τ), policy B follows whichever policy is
inconsistent first, picking L if both policies start deviating at the same time. If both policies
are consistent with τ , policy B follows R if the pivot x is false, otherwise it follows L.

Definition 4.4 (Definition of resolvent policy for IR-calc). For 0 ≤ i ≤ m, define ValiB and
SetiB such ValiB = ValiR and SetiB = SetiR if

¬Difi−1
L ∧(Difi−1

R ∨(¬Setiτ ∧¬SetiL ∧SetiR) ∨ (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)))

and ValiB = ValiL and SetiB = SetiL, otherwise.
For i > m, define ValiB and SetiB such ValiB = ValiR and SetiB = SetiR if

¬DifmL ∧(DifmR ∨x̄)
and ValiB = ValiL and SetiB = SetiL, otherwise.

We will now define variables BL and BR. These say that B is choosing L or R,
respectively. These variables can appear rightmost in the prefix, as they will be removed
before reduction takes place. The purpose of BL (resp. BR) is that conB becomes the same
as conL (resp. conR).

• BL :=
∧n

i=1(Set
i
B ↔ SetiL) ∧ (SetiB → (ValiB ↔ ValiL))
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• BR :=
∧n

i=1(Set
i
B ↔ SetiR) ∧ (SetiB → (ValiB ↔ ValiR))

The important points are that B is set up so that it either takes values in L or R, i.e.
B → BL ∨ BR, specifically we need that whenever the propositional formula annox,B(τ)

is satisfied, B = BL when x, and B = BR when ¬x. The variables SetiB and ValiB that
comprise the policy are carefully constructed to come before ui. A number of technical
lemmas involving all these definitions is necessary for the simulation.

Lemma 4.5. For 0 < j ≤ m the following propositions have short derivations in Extended
Frege:

• DifjL →
∨j

i=1DifiL ∧¬Difi−1
L

• DifjR →
∨j

i=1DifiR ∧¬Difi−1
R

• ¬Eqjf=g →
∨j

i=1 ¬Eqif=g ∧Eqi−1
f=g. For f, g ∈ {L,R, τ}.

Proof. Induction Hypothesis on j: DifjL →
∨j

i=1DifiL ∧¬Difi−1
L has an O(j)-size proof

Base Case j = 1: Dif1L → Dif1L is a basic tautology with a constant-size Frege proof, Dif0L
is false by definition so Frege can assemble Dif1L → Dif1L ∧¬Dif0L.

Inductive Step j + 1: ¬DifjL ∨DifjL and Difj+1
L → Difj+1

L are tautologies with a constant-

size Frege proof. Putting them together we get Difj+1
L → Difj+1

L ∧(¬DifjL ∨DifjL) and

weaken to Difj+1
L → (Difj+1

L ∧¬DifjL) ∨ DifjL. Using the induction hypothesis, DifjL →∨j
i=1DifiL ∧¬Difi−1

L , we can change this tautology to

Difj+1
L → (Difj+1

L ∧¬DifjL) ∨
∨j

i=1DifiL ∧¬Difi−1
L

Note that since ¬Dif0R,Eq
0
L=τ ,Eq

0
R=τ are all true. The proofs for DifjR, ¬EqjL=τ and

¬EqjR=τ are identical modulo the variable names.

Lemma 4.6. For 0 ≤ i ≤ j ≤ m the following propositions that describe the monotonicity
of Dif have short derivations in Extended Frege:

• DifiL → DifjL
• DifiR → DifjR
• ¬Eqif=g → ¬Eqjf=g

Proof. For DifL and DifR,

Induction Hypothesis on j: DifiL → DifjL has an O(j) proof.

Base Case j = i: DifiL → DifiL is a tautology with a constant-size Frege proof.

Inductive Step j + 1: Difj+1
L := DifjL ∨A where A is an expression. Therefore in all cases

DifjL → Difj+1
L is a straightforward corollary with a constant-size number of additional Frege

steps. Using the induction hypothesis DifiL → DifjL we can get DifiL → Difj+1
L . The proof is

symmetric for R.
For ¬Eqf=g,

Induction Hypothesis on j: ¬Eqif=g → ¬Eqjf=g has an O(j) proof.

Base Case j = i: ¬Eqif=g → ¬Eqif=g is a tautology that Frege can handle.

Inductive Step j + 1: Eqj+1
f=g := Eqjf=g ∧A where A is an expression. Therefore in all

cases ¬Eqjf=g → ¬Eqj+1
f=g is a straightforward corollary with a constant-size number of

additional Frege steps. Using the induction hypothesis ¬Eqif=g → ¬Eqjf=g we can get

¬Eqif=g → ¬Eqj+1
f=g.
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Lemma 4.7. For 0 ≤ i ≤ j ≤ m the following propositions describe the relationships between
the different extension variables and have short derivations in Extended Frege:

• EqiL=τ → ¬DifiL
• DifiL ∧¬Difi−1

L → Eqi−1
R=τ

• DifiL ∧¬Difi−1
L → ¬Difi−1

R

• EqiR=τ → ¬DifiR
• DifiR ∧¬Difi−1

R → Eqi−1
L=τ

• DifiR ∧¬Difi−1
R → ¬Difi−1

L

Proof. Induction Hypothesis on i: EqiL=τ → ¬DifiL in an O(i)-size Frege proof.
Base Case i = 0: DifiL is defined as 0 so ¬DifiL is true and trivially implied by EqiL=τ .
This can be shown in a constant-size Frege proof.
Inductive Step i + 1: If Seti+1

τ is false then Eqi+1
L=τ is equivalent to EqiL=τ ∧¬Seti+1

L

and ¬Difi+1
L is equivalent to ¬DifiL ∧¬Seti+1

L ∨¬EqiL=τ . Induction hypothesis is EqiL=τ →
¬DifiL, now Eqi+1

L=τ implies ¬DifiL and ¬Seti+1 which is enough for ¬Difi+1
L . If Seti+1

τ is true

then Eqi+1
L=τ is equivalent to EqiL=τ ∧Seti+1

L ∧(Vali+1
L ↔ Vali+1

τ ) and ¬Difi+1
L is equivalent

to ¬DifiL ∧Seti+1
L ∧(Vali+1

L ↔ Vali+1
τ ) ∨ ¬EqiL=τ . Again, using the induction hypothesis,

Eqi+1
L=τ now implies ,DifiL Seti+1

L and (Vali+1
L ↔ Vali+1

τ ) which is enough for Difi+1
L .

Therefore using the induction hypothesis Eqi+1
L=τ → ¬Difi+1

L . This can be shown in a
constant number of Frege steps. Similarly for R.

The formulas DifiL ∧¬Difi−1
L → Eqi−1

R=τ are simple corollaries of the inductive definition

of DifiL, and combined with Eqi−1
R=τ → ¬Difi−1

R we get DifiL ∧¬Difi−1
L → ¬Difi−1

R . Similarly
if we swap L and R.

Lemma 4.8. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

• L ∧DifiL → ¬ annox,L(τ)

• R ∧DifiR → ¬ annox,R(τ)

Proof. We primarily use the disjunction in Lemma 4.5 DifjL →
∨j

i=1DifiL ∧¬Difi−1
L .

Each individual disjunct DifiL ∧¬Difi−1
L is saying the difference triggers at that point. We

can represent that in a proposition that can be proven in Extended Frege: DifiL ∧¬Difi−1
L →

((SetiL⊕Setiτ )∨ (Setiτ ∧(ValiL⊕Valiτ ))). We want to show that this also triggers the negation
of annox,L(τ). If L differs from τ on a SetiL value we contradict annox,L(τ) in one of two

ways: L ∧ (SetiL⊕Setiτ ) ∧ SetiL → ¬Setiτ or L ∧ (SetiL⊕Setiτ ) ∧ ¬ SetiL → Setiτ .
If L differs from τ on a ValiL value when SetiL = Setiτ = 1 we contradict annox,L(τ) in

one of two ways:

• L ∧ SetiL ∧Setiτ ∧(Setiτ → (ValiL⊕Valiτ )) ∧ValiL → ¬Valiτ ∧ui
• L ∧ SetiL ∧Setiτ ∧(Setiτ → (ValiL⊕Valiτ )) ∧ ¬ValiL → Valiτ ∧¬ui.
Each disjunct is a constant size Frege derivation When put together with the big disjunction
this lends itself to a linear-size (in m) Frege derivation which is also symmetric for R.

Lemma 4.9. For any 1 ≤ j ≤ m the following propositions are true and have a short
Extended Frege proof.

• ¬DifjL ∧¬DifjR → EqjL=τ

• ¬DifjL ∧¬DifjR → EqjR=τ
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• ¬DifjL ∧¬DifjR → (SetjB ↔ SetjL)

• ¬DifjL ∧¬DifjR → SetjB → (ValjB ↔ ValjL)

• ¬DifjL ∧¬DifjR → (SetjB ↔ SetjR)

• ¬DifjL ∧¬DifjR → SetjB → (ValjB ↔ ValjR)

Proof. We first show ¬EqjL=τ → ¬Eqj−1
R=τ ∨DifjL ∨DifjR and ¬EqjR=τ →

¬Eqj−1
L=τ ∨DifjL ∨DifjR. ¬Eqj−1

R=τ and ¬Eqj−1
L=τ are the problems here respectively,

but they can be removed via induction to eventually get ¬DifjL ∧¬DifjR → EqjL=τ and

¬DifjL ∧¬DifjR → EqjR=τ . The remaining implications are corollaries of these and rely on
the definition of Eq, SetB and ValB.

Induction Hypothesis on j: ¬DifjL ∧¬DifjR → EqjL=τ and ¬DifjL ∧¬DifjR → EqjR=τ .

Base Case j = 0: EqjL=τ and EqjR=τ are both true by definition so the implications
automatically hold.

Inductive Step j: ¬EqjL=τ → ¬Eqj−1
L=τ ∨(Set

j
L⊕Setjτ ) ∨ (SetjL ∧(ValjL⊕Valjτ ))

and (SetjL⊕Setjτ ) ∨ (SetjL ∧(ValjL⊕Valjτ )) → DifjL ∨¬Eqj−1
R=τ so we get ¬EqjL=τ →

¬Eqj−1
L=τ ∨DifjL ∨¬Eqj−1

R=τ , which using the induction hypothesis to remove ¬Eqj−1
L=τ and

¬Eqj−1
R=τ gives us ¬EqjL=τ → Difj−1

R ∨Difj−1
L which can be weakened to ¬EqjL=τ →

DifjR ∨DifjL which is equivalent to ¬DifjL ∧¬DifjR → EqjL=τ . This is done similarly when
swapping L and R.

We can obtain the remaining propositions as corollaries by using the definition of Eq.

Lemma 4.10. For any 0 ≤ i ≤ m the following propositions are true and have short
Extended Frege proofs.

• DifiL → (ValiB ↔ ValiL) ∧ (SetiB ↔ SetiL)
• ¬DifiL ∧DifiR → (ValiB ↔ ValiR) ∧ (SetiB ↔ SetiR)

Proof. Suppose we want to prove DifiL → (ValiB ↔ ValiL) ∧ (SetiB ↔ SetiL). We will assume
the definition

DifiL := Difi−1
L ∨(Eqi−1

R=τ ∧((Set
i
L⊕Setiτ ) ∨ (Setiτ ∧(ValiL⊕Valiτ ))))

and show that following proposition (that determines B) is falsified

¬Difi−1
L ∧(Difi−1

R ∨(¬Setiτ ∧¬SetiL ∧SetiR) ∨ (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)))

The first thing is that we only need to consider DifiL ∧¬Difi−1
L as Difi−1

L already falsifies

our proposition. Next we show ¬Difi−1
R is forced to be true in this situation. To do this we

need Lemma 4.7 for DifiL ∧¬Difi−1
L → ¬Difi−1

R .

Now we use DifiL ∧¬Difi−1
L → ((SetiL⊕Setiτ ) ∨ (Setiτ ∧(ValiL⊕Valiτ ))), we break this

down into three cases

(1) DifiL ∧¬Difi−1
L ∧¬SetiL ∧Setiτ

(2) DifiL ∧¬Difi−1
L ∧SetiL ∧¬Setiτ

(3) DifiL ∧¬Difi−1
L ∧(Setiτ ∧(ValiL⊕Valiτ ))

(1) DifiL ∧¬Difi−1
L contradicts Difi−1

R , Setiτ contradicts (¬Setiτ ∧¬SetiL ∧SetiR), and ¬SetiL
contradicts (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)).

(2) DifiL ∧¬Difi−1
L contradicts Difi−1

R , SetiL contradicts (¬Setiτ ∧¬SetiL ∧SetiR), and ¬Setiτ
contradicts (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)).
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(3) DifiL ∧¬Difi−1
L contradicts Difi−1

R , Setiτ contradicts (¬Setiτ ∧¬SetiL ∧SetiR) and

(ValiL⊕Valiτ ) contradicts (Set
i
τ ∧SetiL ∧(Valiτ ↔ ValiL)).

Since in all cases we contradict ¬Difi−1
L ∧(Difi−1

R ∨(¬Setiτ ∧¬SetiL ∧SetiR) ∨
(Setiτ ∧SetiL ∧(Valiτ ↔ ValiL))) then as per definition (ValB, SetB)=(ValL, SetL). Using

DifiL → (DifiL ∧¬Difi−1
L ) ∨ Difi−1

L we get DifiL → (ValiB ↔ ValiL) ∧ (SetiB ↔ SetiL), in a
polynomial number of Frege lines.

Now we suppose we want to prove the second proposition ¬DifiL ∧DifiR →
(ValiB ↔ ValiR) ∧ (SetiB ↔ SetiR). We need ¬DifiL ∧DifiR to satisfy

¬Difi−1
L ∧(Difi−1

R ∨(¬Setiτ ∧¬SetiL ∧SetiR) ∨ (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL))) instead.

Lemma 4.6 gives us that ¬DifiL → ¬Difi−1
L . Difi−1

R is enough to satisfy the formula, so

the case we need to explore is when Difi−1
R is false. We can show that ¬Difi−1

L ∧¬Difi−1
R →

Eqi−1
L=τ using Lemma 4.9. This allows us to examine just the part where DifR is being triggered

to be true by definition: ¬DifiL ∧¬Difi−1
R → (Setiτ ↔ SetiL) ∧ (Setiτ → (Valiτ ↔ ValiL)).

Suppose the term (¬Setiτ ∧¬SetiL ∧SetiR) is false, assuming Difi−1
R is also false, we have

to show that (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL) will be satisfied. We look at the three ways the
term (¬Setiτ ∧¬SetiL ∧SetiR) can be falsified and show that all the parts of the remaining

term must be satisfied when assuming ¬DifiL ∧DifiR ∧¬Difi−1
R .

(1) Setiτ , in this case (Valiτ ↔ ValiL) is active and SetiL is implied by (Setiτ ↔ SetiL).
(2) SetiL, Set

i
τ is implied by (Setiτ ↔ SetiL), then (Valiτ ↔ ValiL) is active.

(3) ¬SetiR, then using DifiR and ¬Difi−1
R we must have Setiτ (as this is the only allowed

way Dif can trigger). Once again, (Valiτ ↔ ValiL) is active and SetiL is implied by
(Setiτ ↔ SetiL).

Since our trigger formula is always satisfied when ¬DifiL ∧DifiR ∧¬Difi−1
R , it means

that (ValiB, Set
i
B) = (ValiR,Set

i
R). Using DifiR → (DifiR ∧¬Difi−1

R ) ∨ Difi−1
R we get

¬DifiL ∧DifiR → (ValiB ↔ ValiR) ∧ (SetiB ↔ SetiR), in a polynomial number of Frege lines.

Lemma 4.11. The following propositions are true and have short Extended Frege proofs.

• B ∧DifmL → BL

• B ∧ ¬DifmL ∧DifmR → BR

Proof. We use the disjunction DifmL →
∨m

j=1DifjL ∨¬Difj−1
L from Lemma 4.5. So there is

some j where this is the case. i can be looked at in cases, where (ValiB, Set
i
B) is determined

by Definition 4.4.

• For 1 ≤ i < j observe that DifjL ∨¬Difj−1
L → ¬Difj−1

R . Now these negative literals propa-

gate downwards. ¬Difj−1
L ∧¬Difj−1

R → ¬DifiL ∧¬DifiR for 0 ≤ i < j and ¬DifiL ∧¬DifiR
means that B and L are consistent for those i as proven in Lemma 4.9.

• For j ≤ i ≤ m, DifjL → DifiL and DifiL means B and L are consistent on those i as proven
in Lemma 4.10.

• For indices greater than m, B∧DifmL falsifies ¬DifmL ∧(DifmR ∨x̄), so B and L are consistent
on those indices.

With the second proposition DifmR →
∨m

j=1DifjR ∨¬Difj−1
R once again. So there is some j

where this is the case. Note that ¬DifmL → ¬DifiL for i ≤ m.

• For 1 ≤ i < j, both ¬DifiL and ¬DifiR occur so then B and R are consistent for these
values.
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• For j ≤ i ≤ m, DifjR → DifiR and DifiR ∧¬DifiL means B and R are consistent on those i
as proven in Lemma 4.10.

• For indices greater than m, B ∧ DifmR ∧¬DifmL satisfies ¬DifmL ∧(DifmR ∨x̄), so B and R
are consistent on those indices.

Each of these use a polynomial number of Frege steps and uses of previous lemmas (each
of which consist of a polynomial number of Frege steps).

Lemma 4.12. The following propositions are true and have short Extended Frege proofs.

• B ∧ ¬DifmL ∧¬DifmR → BL ∨ ¬x
• B ∧ ¬DifmL ∧¬DifmR → BR ∨ x

Proof. For indices 1 ≤ i ≤ m, since ¬DifmL → ¬DifiL and ¬DifmR → ¬DifiR, Lemma 4.9 can
be used to show that B ∧ ¬DifmL ∧¬DifmR leads to SetiB = SetiL = SetiR and ValiB = ValiL =
ValiR whenever SetiB is also true. Extended Frege can prove the O(m) propositions that
show these equalities for 1 ≤ i ≤ m.

For i > m, by definition B ∧ ¬DifmL ∧¬DifmR ∧x gives SetiB = SetiL and ValiB = ValiL.
And B ∧ ¬DifmL ∧¬DifmR ∧¬x gives SetiB = SetiR and ValiB = ValiR. The sum of this is that
B ∧DifmL ∧DifmR ∧x → BL and B ∧DifmL ∧DifmR ∧¬x → BR.

Lemma 4.13. The following proposition is true and has a short Extended Frege proof.
B → BL ∨BR

Proof. This roughly says that B either is played entirely as L or is played as R. We can
prove this by combining Lemmas 4.11 and 4.12, it essentially is a case analysis in formal
form.

Lemma 4.14. The following propositions are true and have short Extended Frege proofs.

• B ∧ annox,B(τ) ∧ x → BL,
• B ∧ annox,B(τ) ∧ ¬x → BR

Proof. We start with B∧¬DifmL ∧¬DifmR → BL∨¬x and B∧¬DifmL ∧¬DifmR → BR∨x. It
remains to remove ¬DifmL ∧¬DifmR from the left hand side. This is where we use L∧DifiL →
¬ annox,L(τ) and R ∧ DifiR → ¬ annox,R(τ) from Lemma 4.8. These can be simplified to
B ∧BL ∧DifmL → ¬ annox,B(τ) and B ∧BR ∧DifmR → ¬ annox,B(τ). The BL and BR can
be removed by using B ∧DifmL → BL and B ∧¬DifmL ∧DifmR → BR and we can end up with
B → ¬ annox,B(τ)∨ (¬DifmR ∧¬DifmL ). We can use this to resolve out (¬DifmR ∧¬DifmL ) and
get B ∧ annox,B(τ) ∧ x → BL and B ∧ annox,B(τ) ∧ ¬x → BR.

Proof of Lemma 4.3. Since B ∧ BL → L and B ∧ BR → R, L → conL(C1 ∨ ¬xτ ) and
R → conR(C2 ∨ xτ ) imply B ∧ BL → conB(C1 ∨ C2) ∨ annox,B(τ), B ∧ BR → conB(C1 ∨
C2) ∨ annox,B(τ), B ∧BL → conB(C1 ∨ C2) ∨ ¬x and B ∧BR → conB(C1 ∨ C2) ∨ x.

We combine B → BL ∨BR with B ∧BL → conB(C1 ∨ C2) ∨ annox,B(τ) (removing BL)
and B ∧ BR → conB(C1 ∨ C2) ∨ annox,B(τ) (removing BR) to gain B → conB(C1 ∨ C2) ∨
annox,B(τ). Next, we aim to derive B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ). Policy B is set
up so that B ∧ annox,B(τ) ∧ x → BL and B ∧ annox,B(τ) ∧ ¬x → BR have short proofs
(Lemma 4.14). We resolve these, respectively, with B ∧BR → conB(C1 ∨ C2) ∨ x (on x) to
obtain B∧annox,B(τ)∧BR → BL∨ conB(C1∨C2), and with B∧BL → conB(C1∨C2)∨¬x
(on ¬x) to obtain B ∧ annox,B(τ) ∧ BL → BR ∨ conB(C1 ∨ C2). Putting these together
allows us to remove BL and BR, deriving B ∧ annox,B(τ) → conB(C1 ∨ C2), which can be
rewritten as B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ).
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We now have two formulas B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ) and B → conB(C1 ∨
C2) ∨ annox,B(τ), which resolve to get B → conB(C1 ∨ C2).

Theorem 4.15. eFrege +∀red p-simulates IR-calc.

Proof. We prove by induction that every annotated clause C appearing in an IR-calc proof has
a local policy S such that ϕ ⊢eFrege S → conS(C) and this can be done in a polynomial-size
proof.

Axiom: Suppose C ∈ ϕ and D = inst(C, τ) for partial annotation τ . We construct
policy B such that B → conB(D) can be derived from C.

SetjB =

{
1 if uj ∈ dom(τ)

0 uj /∈ dom(τ)
, ValjB =

{
1 if 1/uj ∈ τ

0 if 0/uj ∈ τ

Instantiation: Suppose we have an instantiation step for C on a single universal
variable ui using instantiation 0/ui, so the new annotated clause is D = inst(C, 0/ui). From
the induction hypothesis T → conT (C) we will develop B such that B → conB(D).

SetjB =

{
1 if j = i

SetjT if j ̸= i
, ValjB =

{
ValjT ∧SetjT if j = i

ValjT if j ̸= i

ValjT ∧SetjT becomes ValjT ∨¬SetjT for instantiation by 1/uj . Either case means B
satisfies the matching annotations anno as T appearing in our converted clauses conB(C)
and conB(D), proving the rule as an inductive step.

Resolution: See Lemma 4.3.
Contradiction: At the end of the proof we have T → conT (⊥). T is a policy, so we

turn it into a full strategy B by having for each i: ValiB ↔ (ValiT ∧SetiT ) and SetiB = 1.
Effectively this instantiates ⊥ by the assignment that sets everything to 0 and we can argue
that B → conB(⊥) although conB(⊥) is just the empty clause. So we have ¬B. But ¬B is
just

∨n
i=1(ui ⊕ ValiB). Furthermore, just as in Schlaipfer et al.’s work [SSWZ20], we have

been careful with the definitions of the extension variables ValiB so that they are left of ui
in the prefix. In eFrege+∀red we can use the reduction rule (this is the first time we use the

reduction rule). We show an inductive proof of
∨n−k

i=1 (ui ⊕ValiB) for increasing k eventually
leaving us with the empty clause. This essentially is where we use the ∀-Red rule. Since we
already have

∨n
i=1(ui ⊕ValiB) we have the base case and we only need to show the inductive

step.

We derive from
∨n+1−k

i=1 (ui ⊕ ValiB) both (0 ⊕ Valn−k+1
B ) ∨

∨n−k
i=1 (ui ⊕ ValiB) and (1 ⊕

Valn−k+1
B )∨

∨n−k
i=1 (ui⊕ValiB) from reduction. We can resolve both to derive

∨n−k
i=1 (ui⊕ValiB).

We continue this until we reach the empty disjunction.

Corollary 4.16. eFrege +∀red p-simulates ∀Exp+Res.

While this can be proven as a corollary of the simulation of IR-calc, a more direct
simulation can be achieved by defining the resolvent strategy by removing the Seti variables
(i.e. by considering them as always true).
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5. Extended Frege+∀-Red p-simulates IRM-calc

5.1. IRM-calc. IRM-calc was designed to compress annotated literals in clauses in order
to simulate LD-Q-Res [BCJ14]. Like that system it uses the ∗ symbol, but since universal
literals do not appear in an annotated clause, the ∗ value is added to the annotations,
0/u, 1/u, ∗/u being the first three possibilities in an extended annotation (we can consider
the fourth to be when u does not appear in the annotation).

Axiom and instantiation rules as in IR-calc in Figure 3.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1) ∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint.
τ is a partial assignment to the universal variables with codomain(τ) = {0, 1}.

σ and ξ are extended partial assignments with codomain(σ) = codomain(ξ) = {0, 1, ∗}.
C ∨ bµ ∨ bσ (Merging)

C ∨ bξ

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ} ∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c ̸= d} .

Figure 4: The rules of IRM-calc [BCJ19].

The rules of IRM-calc as given in Figure 4, become more complicated as a result of the
∗/u annotations. In particular resolution is no longer done between matching pivots but
matching is done internally in the resolution steps. ∗/u annotations are meant to represent
ambiguous annotations so it could mean a pair of pivots literals that each have a ∗/u
annotation do not actually match on u. The solution to this is to allow compatibility where
one pivot has a ∗/u annotation where the other has no annotation in u. The idea is that
the blank annotation is instantiated on-the-fly with the correct function for ∗/u so that the
annotations truly match. The resolvent takes this into account by joining the instantiated
clauses minus the pivot.

Additionally in order to introduce ∗ annotations a merge rule is used.
It is in IRM-calc where the positive Set literals introduced in the simulation of IR-calc

become useful. In most ways SetiS asserts the same things as ∗/ui, that ui is given a value,
but this value does not have to be specified.

5.2. Policies and Simulating IRM-calc.

5.2.1. Conversion. The first major change from IR-calc is that while annoS worked on three
values in IR-calc, in IRM-calc we effectively run in four values SetiS ,¬SetiS , Set

i
S ∧ui and

SetiS ∧¬ui. SetiS is the new addition deliberately ambiguous as to whether ui is true or false.
Readers familiar with the ∗ used in IRM-calc may notice why SetiS works as a conversion of
∗/ui, as SetiS is just saying our policy has given a value but it may be different values in
different circumstances.
annox,S(τ) =

∧
1/ui∈τ (Set

i
S ∧ui) ∧

∧
0/ui∈τ (Set

i
S ∧ūi) ∧

∧
∗/ui∈τ (Set

i
S) ∧

∧
ui /∈dom(τ)(¬SetiS).

conS(x
τ ) = x ∧ annox,S(τ), conS(C1) =

∨
xτ∈C1

con(xτ )
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5.2.2. Policies. Like in the case of IR-calc, most work needs to be done in the IRM-calc
resolution steps, although here it is even more complicated. A resolution step in IRM-calc is
in two parts. Firstly C1 ∨ ¬xτ⊔σ, C2 ∨ xτ⊔ξ are both instantiated (but by ∗ in some cases),
secondly they are resolved on a matching pivot. We simplify the resolution steps so that σ
and ξ only contain ∗ annotations, for the other constant annotations that would normally
be found in these steps suppose we have already instantiated them in the other side so that
they now appear in τ (this does not affect the resolvent).

Again we assume that there are policies L and R such that L → conL(C1 ∨ ¬xτ⊔σ)
and R → conR(C2 ∨ xτ⊔ξ). We know that if L falsifies annox,L(τ ⊔ σ) then conL(C1) and
likewise if R falsifies annox,R(τ ⊔ ξ) then conR(C2) is satisfied. These are the safest options,
however this leaves cases when L satisfies annox,L(τ ⊔ σ) and R satisfies annox,R(τ ⊔ ξ) but

L and R are not equal. This happens either when SetiL and ¬SetiR both occur for ∗/ui ∈ σ
or when ¬SetiL and SetiR both occur for ∗/ui ∈ ξ.

This would cause an issue if B had to choose between L and R to satisfy conB(C1 ∨C2),
as previously in IR-calc we would be able to be agreeable to both L and R and defer our
choice later down the prefix (which could be necessary). Fortunately, we are not trying
to satisfy conB(C1 ∨ C2) but conB(inst(ξ, C1) ∨ inst(σ,C2)), so we have to choose between
a policy that will satisfy conB(inst(ξ, C1)) and a policy that will satisfy conB(inst(σ,C2)).
This is similar to doing the internal instantiation steps separately from the resolution steps,
but the instantiation step need a slight bit more care as they instantiate by functions rather
than constants. What this looks like is that in addition to L we will occasionally borrow
values from R and vice versa. By borrowing values from the opposite policy we obtain a
working new policy that does not have to choose between left and right any earlier than we
would have for IR-calc.

5.2.3. Difference and Equivalence Variables. We update our functions to take into account
the 4 values. Note here again we assume σ and ξ only contain ∗ annotations.
Eq0f=g := 1

Eqif=g := Eqi−1
f=g ∧(Set

i
f ↔ Setig) ∧ (Setif → (Valif ↔ Valig)) when ∗/ui /∈ g

Eqif=g := Eqi−1
f=g ∧Setif when ∗/ui ∈ g

Dif0L := 0 and Dif0R := 0
For ui /∈ dom(τ ⊔ σ ⊔ ξ), DifiL := Difi−1

L ∨(Eqi−1
R=τ⊔ξ ∧SetiL),

For ui ∈ dom(τ), DifiL := Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ ))))

For ui ∈ dom(σ), DifiL := Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧¬SetiL)

For ui ∈ dom(ξ), DifiL := Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧SetiL)

5.2.4. Policy Variables. We define the policy variables ValiB and SetiB based on a number of
cases, in all cases ValiB and SetiB are defined on variables left of ui.

For ui /∈ dom(τ ⊔ σ ⊔ ξ), ui < x,

(ValiB,Set
i
B) =

{
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For ui ∈ dom(τ),

(ValiB,Set
i
B) =

{
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨(SetiL ∧(ValiL ↔ Valiτ )))

(ValiL, Set
i
L) otherwise.
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For ∗/ui ∈ σ,

(ValiB,Set
i
B) =


(0, 1) if ¬Difi−1

L ∧Difi−1
R ∧¬SetiR

(ValiR,Set
i
R) if ¬Difi−1

L ∧SetiR ∧(Difi−1
R ∨SetiL)

(ValiL, Set
i
L) otherwise.

For ∗/ui ∈ ξ,

(ValiB, Set
i
B) =


(0, 1) if Difi−1

L ∧¬SetiL
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For ui > x,

(ValiB, Set
i
B) =

{
(ValiR,Set

i
R) if ¬DifmL ∧(DifmR ∨¬x)

(ValiL, Set
i
L) otherwise.

The idea for the policy B is to stick to τ ⊔ σ ⊔ ξ until either L or R differ, then commit
to whichever strategy that is differing (and default to L when both start to differ at the
same time). However there are cases where a SetL or SetR value may differ from τ ⊔ σ ⊔ ξ
but it should not be counted as a true difference for L or R. An example is when ∗/ui ∈ σ
and SetR is false, we should not commit to R here, but instead borrow the set and value
pair from L for this case. Once we commit to L or R we may still have make sure B satisfies
the instantiated resolvent so a few cases where we have force SetB to be true and we set
ValB to be false. Finally if no difference is found along τ ⊔ σ ⊔ ξ we surely have to commit
to either L or R depending on the value of the existential literal x.

5.3. Proof in eFrege+∀red.

Lemma 5.1. For 0 < j ≤ m the following propositions have short derivations in Extended
Frege:

• DifjL →
∨j

i=1DifiL ∧¬Difi−1
L

• DifjR →
∨j

i=1DifiR ∧¬Difi−1
R

• ¬EqjL=τ⊔σ →
∨j

i=1 ¬EqiL=τ⊔σ ∧Eqi−1
L=τ⊔σ

• ¬EqjR=τ⊔ξ →
∨j

i=1 ¬EqiR=τ⊔ξ ∧Eqi−1
R=τ⊔ξ

Proof. The proof of Lemma 4.5 still works despite the modifications to definition.

Lemma 5.2. For 0 ≤ i ≤ j ≤ m the following propositions that describe the monotonicity
of Dif and Eq have short derivations in Extended Frege:

• DifiL → DifjL
• DifiR → DifjR
• ¬Eqif=g → ¬Eqjf=g

Proof. The proofs of Lemma 4.6 still work despite the modifications to definition.

Lemma 5.3. For 0 ≤ i ≤ j ≤ m the following propositions describe the relationships between
the different extension variables

• EqiL=τ⊔σ → ¬DifiL
• DifiL ∧¬Difi−1

L → Eqi−1
R=τ⊔ξ

• DifiL ∧¬Difi−1
L → ¬Difi−1

R

• EqiR=τ⊔ξ → ¬DifiR
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• DifiR ∧¬Difi−1
R → Eqi−1

L=τ⊔ξ
• DifiR ∧¬Difi−1

R → ¬Difi−1
L

Proof. Induction Hypothesis on i: EqiL=τ⊔σ → ¬DifiL in an O(i)-size eFrege proof.
Base Case i = 0: DifiL is defined as 0 so ¬DifiL is true and trivially implied by EqiL=τ⊔σ.
Frege can manage this.
Inductive Step i + 1: This breaks into cases depending on the domains of ui+1. If
ui+1 /∈ dom(σ), Eqi+1

L=τ⊔σ := EqiL=τ⊔σ ∧(Set
i+1
L ↔ Seti+1

τ⊔σ) ∧ (Seti+1
L → (Vali+1

L ↔ Vali+1
τ⊔σ))

further if ui+1 /∈ dom(τ ⊔ σ) then Difi+1
L := DifiL ∨(EqiR=τ⊔ξ ∧Seti+1

L ). Note that here

Seti+1
τ⊔σ is defined as 0 so Eqi+1

L=τ⊔σ → (EqiL=τ⊔σ ∧¬Seti+1
L ). Adding the induction hypothesis

gives Eqi+1
L=τ⊔σ → ¬DifiL ∧¬Seti+1

L . Note that because ¬DifiL ∧¬Seti+1
L directly refutes

DifiL ∨(EqiR=τ⊔ξ ∧Seti+1
L ) we get Eqi+1

L=τ⊔σ → ¬Difi+1
L . Now if ui+1 ∈ dom(τ) then

DifiL := Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ ))))

Now Seti+1
τ⊔σ is defined as 1. If 1/ui+1 ∈ τ , Vali+1

τ⊔σ := 1 so Difi+1
L :=

DifiL ∨(Eqi−1
R=τ⊔ξ ∧(¬Seti+1

L ∨Vali+1
L )) and Eqi+1

L=τ⊔σ → EqiL=τ⊔σ ∧Seti+1
L ∧Vali+1

L .

Adding the induction hypothesis gives Eqi+1
L=τ⊔σ → ¬DifiL ∧Seti+1

L ∧Vali+1
L . But

¬DifiL ∧Seti+1
L ∧Vali+1

L falsifies DifiL ∨(EqiR=τ⊔ξ ∧(¬Seti+1
L ∨(Seti+1

L ∧(Vali+1
L )))). So

Eqi+1
L=τ⊔σ → ¬Difi+1

L . This works similarly if 0/ui+1 ∈ τ . If ui+1 ∈ dom(σ),

Eqi+1
L=τ⊔σ := EqiL=τ⊔σ ∧Seti+1

L and Difi+1
L := DifiL ∨(EqiR=τ⊔ξ ∧¬Seti+1

L ). But adding from

the induction hypothesis we can have Eqi+1
L=τ⊔σ → ¬DifiL ∧Seti+1

L and ¬DifiL ∧SetiL directly

contradicts DifiL ∨(EqiR=τ⊔ξ ∧¬Seti+1
L ) so then Eqi+1

L=τ⊔σ → ¬DifiL. Each case require a
constant number of Frege steps.

In every case DifiL = Difi−1
L ∨(EqiR=τ⊔ξ ∧A) where A is a formula dependent on the

domain of ui ¬Difi−1
L ∧DifiL means that EqiR=τ⊔ξ must be true. So we have DifiL ∧¬Difi−1

L →
Eqi−1

R=τ⊔ξ in a constant size eFrege proof.

If we combine the above we have a linear size proof of DifiL ∧¬Difi−1
L → Difi−1

R . The
same proofs symmetrically work for R.

Lemma 5.4. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

• L ∧DifiL → ¬ annox,L(τ ⊔ σ)

• R ∧DifiR → ¬ annox,R(τ ⊔ ξ)

Proof. If ui /∈ dom(τ ⊔ σ), then DifiL ∧¬Difi−1
L → SetiL is a simple corollary of the definition

line DifiL ↔ Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧SetiL). But as annox,L(τ ⊔ σ) insists on ¬SetiL, we can get

DifiL ∧¬Difi−1
L → ¬ annox,L(τ ⊔ σ).

If 1/ui ∈ τ , then DifiL ∧¬Difi−1
L → ¬SetiL ∨¬ValiL is a simple corollary of the definition

lines DifiL ↔ Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ )))), Setiτ and Valiτ But as

annox,L(τ ⊔ σ) insists on SetiL ∧ui, and L insists on ValiL ↔ ui we get L∧DifiL ∧¬Difi−1
L →

¬ annox,L(τ ⊔ σ).

Similarly, if 0/ui ∈ τ , then DifiL ∧¬Difi−1
L → ¬SetiL ∨ValiL is a simple corollary of

the definition lines DifiL ↔ Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ )))), Set
i
τ and
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¬Valiτ But as annox,L(τ ⊔ σ) insists on SetiL ∧¬ui, and L insists on ValiL ↔ ui we get

DifiL ∧¬Difi−1
L → ¬ annox,L(τ ⊔ σ).

Finally if ∗/ui ∈ σ, then DifiL ∧¬Difi−1
L → ¬SetiL is a corollary of the definition

line DifiL ↔ Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧¬SetiL). But as annox,L(τ ⊔ σ) insists on SetiL. we get

DifiL ∧¬Difi−1
L → ¬ annox,L(τ ⊔ σ).

L∧DifiL ∧¬Difi−1
L → ¬ annox,L(τ⊔σ) is not quite as strong as L∧DifiL ∧ → ¬ annox,L(τ⊔

σ). However here we can use DifjL →
∨j

i=1DifiL ∧¬Difi−1
L which will give us L ∧ DifjL →

¬ annox,L(τ ⊔ σ) in a linear size proof which is also symmetric for R.

Lemma 5.5. For any 0 ≤ j ≤ m the following propositions are true and have a short
Extended Frege proof.

• ¬DifjL ∧¬DifjR → EqjL=τ⊔σ
• ¬DifjL ∧¬DifjR → EqjR=τ⊔ξ
• ¬DifjL ∧¬DifjR → (¬SetjB ∧¬SetjL ∧¬SetjR) when uj /∈ dom(τ ⊔ σ ⊔ ξ).

• ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧SetjR ∧(ValjB ↔ ValjL) ∧ (ValjB ↔ ValjR)) when uj ∈
dom(τ).

• ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧¬SetjR ∧(ValjB ↔ ValjL)) when ∗/uj ∈ σ.

• ¬DifjL ∧¬DifjR → (SetjB ∧¬SetjL ∧SetjR ∧(ValjB ↔ ValjR)) when ∗/uj ∈ ξ.

Lemma 5.6. Suppose L → conL(C1 ∨ ¬xτ∪σ) and R → conR(C1 ∨ xτ∪ξ) The following
propositions are true and have short Extended Frege proofs.

• B ∧DifmL → L
• B ∧ ¬DifmL ∧DifmR → R
• B ∧DifmL → conB(inst(ξ, C1))
• B ∧ ¬DifmL ∧DifmR → conB(inst(σ,C2))

Sketch Proof. We break each of these statements up into constituent parts that we will prove
individually and piece together through conjunction.

Take B∧DifmL → L, we can prove this by showing for each index i that (DifmL ∧(SetiB →
(ui ↔ ValiB))) → (SetiL → (ui ↔ ValiL)). We can split up B ∧ ¬DifmL ∧DifmR → R similarly.

For B ∧DifmL → conB(inst(ξ, C1)), we first have to derive (L → conL(C1)) → (B ∧ L ∧
DifmL → conB(inst(ξ, C1)). We can cut out the L with B ∧DifmL → L. We will also remove
(L → conL(C1)). By using the premise (L → conL(C1 ∨ ¬xτ⊔σ)) and crucially Lemma 5.4.
L∧DifmL → ¬ annox,L(τ⊔σ), so L∧DifmL → ¬ conL(¬xτ⊔σ), and thus (L∧DifmL → conL(C1)).

We want to again split this up to the component parts. We first split by individual
literals of C1 as a proof of (L → conL(l

α)) → (B ∧ L ∧ DifmL → conB(inst(ξ, l
α)) for each

literal lα ∈ C1. We then split this between existential literal (L → l) → (B ∧ L ∧DifmL → l)
(which is a basic tautology) and universal annotation (L → annol,B(α)) → (B ∧L∧DifmL →
annol,B(α ◦ restrictl(ξ))).

The latter part splits further. A maximum of one of ¬SetiB, SetiB, SetiB ∧ui and
SetiB ∧¬ui appears in annol,B(α ◦ restrictl(ξ)), we treat annol,B(α ◦ restrictl(ξ)) as a set
containing these subformulas. We show that if formula ci ∈ annol,B(α ◦ restrictl(ξ)), when ci
is equal to ¬SetiB, Set

i
B, Set

i
B ∧ui or SetiB ∧¬ui then (L → annol,B(α)) → (B ∧L∧DifmL →

ci). A similar breakdown happens for B ∧ ¬DifmL ∧DifmR → conB(inst(σ,C2)).
Each of these individual cases is a constant size proof. You need to multiply for the length

of each annotation (including missing values) and then do this again for each annotated
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literal in the clause. The proof size will be O(wm) where w is the width or number of literals
in inst(ξ, C1) ⊔ inst(σ,C2) and m is the number of universal variables in the prefix.

We detail all cases for L and R in the Appendix.

Lemma 5.7. Suppose L → conL(C1 ∨ ¬xτ⊔σ) and R → conR(C2 ∨ xτ⊔ξ). The following
propositions are true and have short Extended Frege proofs.

• B ∧ ¬DifmL ∧¬DifmR → conB(inst(ξ, C1)) ∨ ¬x
• B ∧ ¬DifmL ∧¬DifmR → conB(inst(σ,C2)) ∨ x

Proof. Suppose that L → conL(l
α), we will show that B ∧ ¬DifmL ∧¬DifmR →

conR(inst(ξ, l
α)).

We observe first that SetiL ∧¬DifiL ∧¬DifiR → SetiB ∧(ValiB ↔ ValiL) this is true in each
i : 1 ≤ i ≤ m by observing each case in Lemma 5.5. For i > m, ¬DifmL ∧¬DifmR ∧x →
((SetiL ↔ SetiB) ∧ (ValiB ↔ ValiL)). So for all i, either ¬SetiL or SetiB ∧(ValiB ↔ ValiL) when
¬DifiL ∧¬DifiR.

This we can use to show B ∧ ¬DifiL ∧¬DifiR ∧x → L by taking a conjunction of all
these. We then can derive (L → l) → (B ∧ ¬DifmL ∧¬DifmR ∧x → l) for existential literal l.

We still have to show that (L → annol,L(α)) → (B ∧¬DifmL ∧¬DifmR ∧x → annol,B(α ◦
ξ)) for l’s annotation α. We can do this via cases, but we have already done all cases when
SetiL is true. We next show that ¬SetiL ∧¬DifiL ∧¬DifiR → ¬SetiB when ui /∈ dom(ξ). We
can do this by simply observing the lines in Lemma 5.5 when ¬SetiL is permitted. And in
the final case we show ¬SetiL ∧¬DifiL ∧¬DifiR → SetiB when ui ∈ dom(ξ).

Remembering that ¬DifmS → ¬DifiS for S ∈ {L,R} and 1 ≤ i ≤ m. We can now know
that if L satisfies annol,L(α) then ¬DifmL ∧¬DifmR ∧x will force B to satisfy annol,L(α ◦ ξ)
and we can prove this in eFrege as

(L → annol,L(α)) → (B ∧ ¬DifmL ∧¬DifmR ∧x → annol,B(α ◦ ξ))

Adding (L → l) → (B ∧ ¬DifmL ∧¬DifmR ∧x → l) and for every literal lα ∈ C1 and
annotation in C1 we can assemble

(L → conL(l
α)) → (B ∧ ¬DifmL ∧¬DifmR ∧x → conB(inst(ξ, l

α)))

Using conB(¬xτ⊔σ⊔ξ) → ¬x we can get

(L → conL(C1 ∨ ¬xτ⊔σ) → (B ∧ ¬DifmL ∧¬DifmR ∧x → conB(inst(ξ, C1)))

And symmetrically we can make a derivation of

(R → conR(C2 ∨ xτ⊔ξ) → (B ∧ ¬DifmL ∧¬DifmR ∧¬x → conB(inst(σ,C2)))

The proofs here are polynomial, in this proof section we argue for each literal in the
clause, and for each universal variable, but also refer to Lemmas 5.5 and 5.2 which have
linear proofs. So we have cubic size proofs in the worst case or more specifically O(wn2),
where w is the number of literals in the derived clause inst(σ,C2) ∪ inst(ξ, C2).

Lemma 5.8. Suppose L → conL(C1 ∨ ¬xτ⊔σ) and R → conR(C1 ∨ xτ⊔ξ) then B →
conB(inst(ξ, C1) ∨ inst(σ,C2)) has a short eFrege proof.

Proof. B ∧ DifmL → conB(inst(ξ, C1)), B ∧ ¬DifmL ∧DifR → conB(inst(σ,C2)), and B ∧
¬DifmL ∧¬DifR → conB(inst(ξ, C1)∨ inst(σ,C2)) and we can resolve on DifmL and DifmR .

Theorem 5.9. eFrege +∀red simulates IRM-calc.
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Proof. For each line C we create a policy S such that S → conS(C).
Axiom Suppose C ∈ ϕ and it is downloaded as D = inst(C, τ) for partial annotation τ . We
construct strategy B so that B → conB(D).

• SetjB = 1 if uj ∈ dom(τ)

• SetjB = 0 if uj /∈ dom(τ)

• ValjB = 1 if 1/uj ∈ τ

• ValjB = 0 if 0/uj ∈ τ

Instantiation Suppose we have instantiation step on C on a single universal variable ui
using instantiation 0/ui. So the new annotated clause is D = inst(C, 0/u).

From the induction hypothesis T → conT (C) we will develop B such that B → conB(D).

• ValiB ↔ ValiT ∧SetiT (for instantiation by 1 we use a disjunction instead)
• SetiB = 1

• ValjB ↔ ValjT , for j ̸= i

• SetjB ↔ SetjT , for j ̸= i

Merge When merging the local strategy need not change. When literals lα and lβ are
merged the strategy only has to occasionally satisfy a SetiB variable instead of a SetiB ∧ui or
SetiB ∧¬ui, so the condition that needs to be satisfied is weaker.
Resolution See the definition of B and Lemma 5.8.
Contradiction At the end of the proof we have T → conT (⊥). T is a policy, so we turn it
into a strategy B by having for each i

• ValiB ↔ (ValiT ∧SetiT )
• SetiB = 1.

Effectively this instantiates ⊥ by the assignment that sets everything to 0 and we can argue
that B → conB(⊥) although conB(⊥) is just the empty clause. so we have ¬B. But ¬B
is just

∨n
i=1(ui ⊕ ValiB). In eFrege +∀red we can use the reduction rule (this is the first

time we use the reduction rule). The proof follows from [Che21]. We show an inductive

proof of
∨n−k

i=1 (ui ⊕ValiB) for increasing k eventually leaving us with the empty clause. This

essentially is where we use the ∀-Red rule. Since we already have
∨n

i=1(ui ⊕ValiB) we have
the base case and we only need to show the inductive step.

We derive from
∨n+1−k

i=1 (ui ⊕ ValiB) both (0 ⊕ Valn−k+1
B ) ∨

∨n−k
i=1 (ui ⊕ ValiB) and (1 ⊕

Valn−k+1
B ) ∨

∨n−k
i=1 (ui ⊕ValiB) from reduction. We can resolve both with the easily proved

tautology (0 ↔ Valn−k+1
B ) ∨ (1 ↔ Valn−k+1

B ) which allows us to derive
∨n−k

i=1 (ui ⊕ValiB).
We continue this until we reach the empty disjunction.

Corollary 5.10. eFrege +∀red simulates LD-Q-Res.

6. Extended Frege+∀-Red p-simulates LQU+-Res

6.1. QCDCL Resolution Systems. The most basic and important CDCL system is
Q-resolution (Q-Res) by Kleine Büning et al. [KKF95]. Long-distance resolution (LD-Q-
Res) appears originally in the work of Zhang and Malik [ZM02] and was formalised into a
calculus by Balabanov and Jiang [BJ12]. It merges complementary literals of a universal
variable u into the special literal u∗. These special literals prohibit certain resolution
steps. QU-resolution (QU-Res) [VG12] removes the restriction from Q-Res that the resolved



Vol. 20:1 TOWARDS UNIFORM CERTIFICATION IN QBF 14:25

variable must be an existential variable and allows resolution of universal variables. LQU+-
Res [BWJ14] extends LD-Q-Res by allowing short and long distance resolution pivots to be
universal, however, the pivot is never a merged literal z∗. LQU+-Res encapsulates Q-Res,
LD-Q-Res and QU-Res.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D
C is a clause in the original matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {¬x} C2 ∪ U2 ∪ {x}
(Res)

C1 ∪ C2 ∪ U∗

We consider two settings of the Res-rule:
SR: If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U∗ = ∅.
LR: If l1 ∈ C1, l2 ∈ C2, and var(l1) = var(l2) = z then l1 = l2 ≠ z∗. U1, U2 contain only
universal literals with var(U1) = var(U2). ind(x) < ind(u) for each u ∈ var(U1).
If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2 or w1 = u∗ or w2 = u∗.
U∗ = {u∗ | u ∈ var(U1)}.

For b = {1, 2}, define Vb = {u∗ | u∗ ∈ Cb}. In other words Vb is the subclause of Cb ∨ Ub of
starred literals left of x.

Figure 5: The rules of LQU+-Res [BWJ14].

6.2. Conversion to Propositional Logic and Simulation. LQU+-Res and IRM-calc are
mutually incomparable in terms of proof strength, however both share enough similarities to
get the simulation working. Once again we can use SetiS variables to represent an u∗i , and a
¬SetiS to represent that policy S chooses not to issue a value to ui.

For any set of universal variables Y , let annox,S(Y ) =
∧uj /∈Y

uj<x ¬SetjS ∧
∧uj∈Y

uj<x SetjS . Note
that we do not really need to add polarities to the annotations, these are taken into account
by the clause literals. Literals u and ū do not need to be assigned by the policy, they
are now treated as a consequence of the CNF. Because they can be resolved we treat
them like existential variables in the conversion. For universal variable ui, conS,C(ui) =

ui∧¬ SetiS ∧ annox,S({u | u∗ ∈ C}) and conS,C(¬ui) = ¬ui∧¬ SetiS ∧ annox,S({u | u∗ ∈ C}).
We reserve SetjS for starred literals as they cannot be removed. For existential literal x,
conS,C(x) = x∧ annox,S({u | u∗ ∈ C}). Finally, conS,C(u∗) = ⊥, because we do not treat u∗

as a literal but part of the “annotation” to literals right of it. Also, u∗ cannot be resolved
but it is automatically reduced when no more literals are to the right of it. For clauses
in LQU+-Res, we let conS(C) =

∨
l∈C conS,C(l). In summary, in comparison to IRM-calc

the conversion now includes universal variables and gives them annotations, but removes
polarities from the annotations. Policies still remain structured as they were for IR-calc,
with extension variables ValiS and SetiS , where S =

∧n
i=1 Set

i
S → (ui ↔ ValiS).

We will once again focus on the resolution case, using the notation as given in Figure 5.

Observation 6.1. V1 ∩ V2 = ∅ by definition of resolution in LQU+-Res (see Figure 5).

We use L to denote the local policy of C1 ∪ U1 ∪ {¬x}, R to denote the local policy of
C2 ∪ U2 ∪ {x}, and B is intended to be the local policy for the resolvent C1 ∪ C2 ∪ U . Once
again we use SetiL,Set

i
R, Set

i
B,Val

i
L,Val

i
R,Val

i
B to describe the constituent parts of it.
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6.2.1. Equivalence. The notation for equivalence slightly changes due to the fact we are no
longer working with annotations, but present starred literals. These work in much the same
way. Let b be in {1, 2}
Eq0f,Vb

:= 1

Eqif,Vb
:= Eqi−1

f=g ∧Setif when u∗i ∈ Vb

Eqif=g := Eqi−1
f=g ∧(¬Setif ) when u∗i /∈ Vb

6.2.2. Difference. Dif0L := 0 and Dif0R := 0
For u∗i /∈ C1 ∪ C2,

DifiL := Difi−1
L ∨(Eqi−1

R,V2
∧SetiL)

DifiR := Difi−1
R ∨(Eqi−1

L,V2
∧SetiR)

For u∗i ∈ C1,

DifiL := Difi−1
L ∨(Eqi−1

R,V2
∧¬SetiL)

DifiR := Difi−1
R ∨(Eqi−1

L,V1
∧SetiR)

For u∗i ∈ C2,

DifiL := Difi−1
L ∨(Eqi−1

R,V2
∧SetiL)

DifiR := Difi−1
R ∨(Eqi−1

L,V1
∧¬SetiR)

6.2.3. Policy Variables. For u∗i /∈ C1 ∪ C2, i ≤ m

(ValiB,Set
i
B) =

{
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For u∗i ∈ C1, i ≤ m

(ValiB,Set
i
B) =


(0, 1) if ¬Difi−1

L ∧Difi−1
R ∧¬SetiR

(ValiR,Set
i
R) if ¬Difi−1

L ∧SetiR ∧(Difi−1
R ∨SetiL)

(ValiL, Set
i
L) otherwise.

For u∗i ∈ C2, i ≤ m

(ValiB, Set
i
B) =


(0, 1) if Difi−1

L ∧¬SetiL
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For ui ∈ dom(U), i > m

(ValiB, Set
i
B) =



(ValiR,Set
i
R) if SetiR ∧¬DifmL ∧(DifmR ∨¬x)

(0, 1) if ui ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)
(1, 1) if ¬ui ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)
(0, 1) if u∗i ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)
(ValiL, Set

i
L) SetiL ∧DifmL ∨(¬DifmR ∧x)

(0, 1) if ui ∈ U1 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))
(1, 1) if ¬ui ∈ U1 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))
(0, 1) if u∗i ∈ U1 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))

For ui /∈ dom(U), i > m



Vol. 20:1 TOWARDS UNIFORM CERTIFICATION IN QBF 14:27

(ValiB,Set
i
B) =



(0, 1) if u∗ ∈ V2 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))
(ValiL, Set

i
L) if u∗ ∈ V2 and SetiL ∧(DifmL ∨(¬DifmR ∧x))

(ValiR,Set
i
R) if u∗ ∈ V2 and ¬DifmL ∧(DifmR ∨¬x)

(0, 1) if u∗ ∈ V1 and ¬SetiR ∧(¬DifmL ∧(DifmR ∨¬x))
(ValiR,Set

i
R) if u∗ ∈ V1 and SetiR ∧(¬DifmL ∧(DifmR ∨¬x))

(ValiL, Set
i
L) if u∗ ∈ V1 and DifmL ∨(¬DifmR ∧x)

(ValiR, Set
i
R) if u∗ /∈ V1 ∪ V2 and ¬DifmL ∧(DifmR ∨¬x)

(ValiL, Set
i
L) if u∗ /∈ V1 ∪ V2 and DifmL ∨(¬DifmR ∧x)

One may notice there are a larger number of cases for i > m than in previous sections,
this is because u and ¬u become u∗ and end up joining the annotation and policies. It
should also be pointed out that there are cases resulting (0, 1) than to (1, 1) this a is simply
matter of using 0 as the default value when some set has to be made.

Lemma 6.2. For 0 < j ≤ m the following propositions have short derivations in Extended
Frege:

• DifjL →
∨j

i=1DifiL ∧¬Difi−1
L

• DifjR →
∨j

i=1DifiR ∧¬Difi−1
R

• ¬EqjL,V1
→

∨j
i=1 ¬EqiL,V1

∧Eqi−1
L,V1

• ¬EqjR,V2
→

∨j
i=1 ¬EqiR,V2

∧Eqi−1
R,V2

Proof. The proof of Lemma 4.5 still works despite the modifications to definition.

Lemma 6.3. For 0 ≤ i ≤ j ≤ m the following propositions that describe the monotonicity
of Dif and Eq have short derivations in Extended Frege:

• DifiL → DifjL
• DifiR → DifjR
• ¬EqiL,V1

→ ¬EqjL,V1

• ¬EqiR,V2
→ ¬EqjR,V2

Proof. The proofs of Lemma 4.6 still work despite the modifications to definition.

Lemma 6.4. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

• DifiL → ¬ annox,L(V1)

• DifiR → ¬ annox,R(V2)

Proof. If ui /∈ V1 then DifiL ∧¬Difi−1
L → SetiL but annox,L(V1) insists on ¬SetiL.

If ui ∈ V1 then DifiL ∧¬Difi−1
L → ¬SetiL but annox,L(V1) insists on SetiL. This is done

similarly for R.

Lemma 6.5. For any 0 ≤ j ≤ m the following propositions are true and have a short
Extended Frege proof.

• ¬DifjL ∧¬DifjR → EqjL,V1

• ¬DifjL ∧¬DifjR → EqjR,V2

• ¬DifjL ∧¬DifjR → (¬SetjB ∧¬SetjL ∧¬SetjR) when u∗j /∈ C1 ∨ C2.

• ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧¬SetjR ∧(ValjB ↔ ValjL)) when u∗j ∈ C1.
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• ¬DifjL ∧¬DifjR → (SetjB ∧¬SetjL ∧SetjR ∧(ValjB ↔ ValjR)) when u∗j ∈ C2.

Proof. We show that ¬Eqj+1
L,V1

→ ¬EqjL,V1
∨¬EqjR,V2

∨Difj+1
L and ¬Eqj+1

R,V2
→

¬EqjR,V2
∨¬EqjL,V2

∨Difj+1
R . Suppose u∗j+1 ∈ V1 then ¬Eqj+1

L,V1
∧EqjL,V1

→ Setj+1
L and

Setj+1
L → ¬EqjR,V2

∨Difj+1
L , so we have ¬Eqj+1

L,V1
∧ → ¬EqjR,V2

∨¬EqjL,V1
∨Difj+1

R . This is

symmetric for R and for u∗j+1 /∈ V1.

Induction Hypothesis (on j): (¬EqjL,V1
∨¬EqjR,V2

) → (DifjL ∨DifjR).

Base Case (j = 1): ¬Eq1L,V1
∧Eq0L,V1

→ Dif1L ∨¬Eq0R,V2
, and ¬Eq1R,V2

∧Eq0R,V2
→

Dif1R ∨¬Eq0L,V1
.

However since Eq0L,V1
and Eq0R,V2

are both true it simplifies to ¬Eq1L,V1
→ Dif1L and

¬Eq1R,V2
→ Dif1R which can be combined to get (¬Eq1L,V1

∨¬Eq1R,V2
) → (Dif1L ∨Dif1R).

Inductive Step (j + 1):

The Induction Hypothesis (¬EqjL,V1
∨¬EqjR,V2

) → (DifjL ∨DifjR) can be weakened to

(¬EqjL,V1
∨¬EqjR,V2

) → (Difj+1
L ∨Difj+1

R ), using DifjL → Difj+1
L and DifjR → Difj+1

R .

We now need to replace (¬EqjL,V1
∨¬EqjR,V2

) with (¬Eqj+1
L,V1

∨¬Eqj+1
R,V2

). Suppose uj+1 ∈
V1, note that ¬Eqj+1

L,V1
→ ¬EqjL,V1

∨¬Setj+1
L . ¬Setj+1

L ∧EqjR,V2
→ Difj+1

R . We show that

¬Eqj+1
L,V1

→ ¬EqjL,V1
∨¬EqjR,V2

∨Difj+1
L and ¬Eqj+1

R,V2
→ ¬EqjR,V2

∨¬EqjL,V2
∨Difj+1

R .

Suppose u∗j+1 ∈ V1 then ¬Eqj+1
L,V1

∧EqjL,V1
→ Setj+1

L and Setj+1
L → ¬EqjR,V2

∨Difj+1
L ,

so we have ¬Eqj+1
L,V1

∧ → ¬EqjR,V2
∨¬EqjL,V1

∨Difj+1
R . This is symmetric for R and for

u∗j+1 /∈ V1.

We can use these formulas to show ¬Eqj+1
L,V1

∧¬Eqj+1
R,V2

→
¬EqjL,V1

∨¬EqjR,V2
∨Difj+1

L ∨Difj+1
R and we can simplify this to ¬Eqj+1

L,V1
∧¬Eqj+1

R,V2
→

Difj+1
L ∨Difj+1

R .

¬DifjL ∧¬DifjR → EqjL,V1
, ¬DifjL ∧¬DifjR → EqjR,V2

are corollaries of this.

¬DifjL ∧¬DifjR means ¬Difj−1
L ∧¬Difj−1

R . u∗j ∈ C1 implies u∗j /∈ C2, so SetjL and ¬SetjR,

and that makes (ValjB,Set
j
B)=(ValjL,Set

j
L).

u∗j ∈ C2 implies u∗j /∈ C1 so ¬SetjL and SetjR, and that makes (ValjB,Set
j
B)=(ValjR,Set

j
R).

u∗j /∈ C1 ∪ C2 implies ¬SetjL and ¬SetjL, therefore (ValjB, Set
j
B)=(ValjL,Set

j
L).

Lemma 6.6. The following propositions are true and have short Extended Frege proofs,
given (L → conL(C1 ∪ U1 ∨ ¬x)) and (R → conR(C2 ∪ U2 ∨ x))

• B ∧DifmL → L
• B ∧ ¬DifmL ∧DifmR → R
• B ∧DifmL → conB(C1 ∨ V2 ∨ U∗)
• B ∧ ¬DifmL ∧DifmR → conB(C2 ∨ V1 ∨ U∗)

Sketch Proof. We break B ∧ DifmL → L into individual parts SetiB → (ui ↔ ValiB) ∧
DifmL → (SetiL → (ui ↔ ValiL)) which we join by conjunction. We can do similarly for
B ∧ ¬DifmL ∧DifmR → R.

For B ∧ DifmL → conB(C1 ∨ V2 ∨ U∗) we first derive (L → conL(C1 ∪ U1 ∨ ¬x)) →
(B ∧ L ∧DifmL → conB(C1 ∨ V2 ∨ U∗)), you can cut out L using B ∧DifmL → L. Removing
(L → conL(C1 ∪ U1 ∨ ¬x)), uses the premise (L → conL(C1 ∪ U1 ∨ ¬x)).
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To derive (L → conL(C1 ∪U1 ∨¬x)) → (B ∧L∧DifmL → conB(C1 ∨ V2 ∨U∗)) we break
this by non-starred literals l ∈ C1 ∪ U1 so we will show that (L → conL,C1∪U1∨¬x(l)) →
(B ∧DifmL → conB,V2∪C1∪U (l)). DifmL → ¬ annox,L(V1) is used to remove the x literal.

For p ∈ {1, 2} let Wp = {u∗ | u∗ ∈ Up}. For each i, either SetiB or ¬SetiB appears
in annol,B(V1 ∪ V2 ∪ U∗), so we treat annol,B(V1 ∪ V2 ∪ U∗) as a set containing these

subformulas. We show that if ci ∈ annol,B(V1 ∪ V2 ∪ U∗) when ci = SetiB or ci = ¬SetiB
then L → annol,L(V1 ∪W1) → B ∧DifmL → ci and we also have (L → l) → (B ∧DifmL → l).

For existential l, we can put these all together to get (L → conL,C1∪U1(l)) → (B ∧ L ∧
DifmL → conB,V2∪C1∪U (l)). For universal literals uk we also need to show ¬SetkB is preserved
when uk is not merged. For universal literals uk that are merged conB,V2∪C1∪U∗(uk∗) = ⊥
so we show that the strategy for B causes a contradiction between B and L → uk. We do
similarly for B ∧ ¬DifmL ∧DifmR → conB(C2 ∨ V1 ∨ U∗).

We detail all cases for L and R in the Appendix.

Lemma 6.7. The following propositions are true and have short Extended Frege proofs,
given (L → conL(C1 ∪ U1 ∨ ¬x)) and (R → conR(C2 ∪ U2 ∨ x)).

• B ∧ ¬DifmL ∧¬DifmR → conB(C1 ∨ V2 ∨ U∗) ∨ ¬x
• B ∧ ¬DifmL ∧¬DifmR → conB(C2 ∨ V1 ∨ U∗) ∨ x

Proof. For indices 1 ≤ i ≤ m, but since ¬DifmL → ¬DifiL and ¬DifmR → ¬DifiR, Lemma 4.9
can be used to show that B ∧DifmL ∧DifmR leads to SetiB taking the a value consistent with
both V1 ∪ V2, if L was consistent with V1 and R was consistent with V2.

For i > m, ¬DifmR ∧¬DifmL will make the policy B pick between the left and right
policy based on x. However in either case SetiB will be forced to update based on the new
annotations.

Lemma 6.8. Suppose, there are policies L and R such that L → conL(C1 ∨ ¬x ∨ U1) and
R → conR(C2 ∨ x ∨ U2) then there is a policy B such that B → conB(C1 ∨ C2 ∨ U∗) can be
obtained in a short eFrege proof, where C1, C2, U1, U2 and U∗ follow the same definitions
as in Figure 5.

Proof. From Lemmas 6.7 and 6.6, conB(C1 ∨ V2 ∨ U∗) and conB(C2 ∨ V1 ∨ U∗) can be
weakened to conB(C1 ∨ C2 ∨ U∗). These can all be combined over the different possibilities
to give B → conB(C1 ∨ C2 ∨ U∗).

Theorem 6.9. eFrege +∀red simulates LQU+-Res.

Proof. We inductively build a policy S such that S → conS(C) can be proved from ϕ using
eFrege, for every clause C in an LQU+-Res proof. At the end we have the empty clause and
a strategy and we can use reduction to remove the strategy and obtain the empty clause as
in Theorems 3.3 and 4.15.
Axiom Each Axiom is treated with the empty policy.
Reduction (ui or ¬ui) If the clause contains literal ui, we know that T → conT (C ∨ ui).
We define S so that

(ValjS , Set
j
S) =

{
(ValjT , Set

j
T ) j ̸= i

(ValiS , Set
i
S) =

{
(ValiT , Set

i
T ) if SetiT ∨ conT (C) is satisfied,

(0, 1) otherwise.

We need to show that S → conS(C). Note that conT (C ∨ ui) = conT (C) ∨ conT,C(ui).

Therefore T → conT (C) or T → ¬SetiT ∧ui. If SetiT is true or conT (C) then T → conT (C)
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is true and as S will match T , S → conS(C). Suppose SetiT and conT (C) are both false. If S
is true, then ui is false by construction. Moreover, since S agrees with T on every variable
except ui, and T does not set ui, T must be true as well. But since conT (C) is false, we
must have T → ¬SetiT ∧ui. In particular, ui must be true, a contradiction. We conclude
that the implication S → conS(C) holds in this case.
Reduction (u∗i ) If T → conT (C ∨ u∗i ) and we reduce u∗i we need to define the strategy S so
that S → conS(C). Since u∗i is the rightmost literal in the clause conT (C ∨ u∗i ) = conT (C)
so we define S the same way as T .
Resolution See Lemma 6.8.
Contradiction Just as in IR-calc we have to give a complete assignment to the missing
values in the policy. We then have simply the negation of the strategy for which we can
apply our same technique to reduce to the empty clause.

7. Conclusion

Our work reconciles many different QBF proof techniques under the single system eFrege
+∀red. Although eFrege+∀red itself is likely not a good system for efficient proof checking,
our results have implications for other systems that are more promising in this regard, such
as QRAT, which inherits these simulations. In particular, QRAT’s simulation of ∀Exp+Res is
upgraded to a simulation of IRM-calc, and we do not even require the extended universal
reduction rule. Existing QRAT checkers can be used to verify converted eFrege+∀red proofs.
Further, extended QU-resolution is polynomially equivalent to eFrege+∀red [Che21], and
has previously been proposed as a system for unified QBF proof checking [JBS+07]. Since
our simulations split off propositional inference from a standardised reduction part at the
end, another option is to use (highly efficient) propositional proof checkers instead. Our
simulations use many extension variables that are known to negatively impact the checking
time of existing tools such as DRAT-trim, but one may hope that they can be refined to
become more efficient in this regard.

There are other proof systems, particularly ones using dependency schemes, such as
Q(Drrs)-Res and LD-Q(Drrs)-Res that have strategy extraction [PSS19b]. Local strategy
extraction and ultimately a simulation by eFrege+∀red seem likely for these systems, whether
it can be proved directly or by generalising the simulation results from this paper.
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formulas. Inf. Comput., 117(1):12–18, 1995. doi:10.1006/inco.1995.1025.
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Appendix A.

A.1. Local Strategy Extraction for Simulation of IRM-calc.

A.1.1. Policy Variables. For ui /∈ dom(τ ⊔ σ ⊔ ξ), ui < x,

(ValiB,Set
i
B) =

{
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For ui ∈ dom(τ),

(ValiB,Set
i
B) =

{
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨(SetiL ∧(ValiL ↔ Valiτ )))

(ValiL, Set
i
L) otherwise.

For ∗/ui ∈ σ,

(ValiB, Set
i
B) =


(0, 1) if ¬Difi−1

L ∧Difi−1
R ∧¬SetiR

(ValiR,Set
i
R) if ¬Difi−1

L ∧SetiR ∧(Difi−1
R ∨SetiL)

(ValiL, Set
i
L) otherwise.

For ∗/ui ∈ ξ,

(ValiB, Set
i
B) =


(0, 1) if Difi−1

L ∧¬SetiL
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For ui > x,

(ValiB, Set
i
B) =

{
(ValiR,Set

i
R) if ¬DifmL ∧(DifmR ∨¬x)

(ValiL, Set
i
L) otherwise.

Lemma 5.6. Suppose L → conL(C1 ∨ ¬xτ∪σ) and R → conL(C1 ∨ xτ∪ξ). The following
propositions are true and have short Extended Frege proofs.

• B ∧DifmL → L
• B ∧ ¬DifmL ∧DifmR → R
• B ∧DifmL → conB(inst(ξ, C1))
• B ∧ ¬DifmL ∧DifmR → conB(inst(σ,C2))

Proof. We break each of these statements up into constituent parts that we will prove
individually and piece together through conjunction.

Take B∧DifmL → L, we can prove this by showing for each index i that (DifmL ∧(SetiB →
(ui ↔ ValiB))) → (SetiL → (ui ↔ ValiL)). We can split up B ∧ ¬DifmL ∧DifmR → R similarly.

For B ∧DifmL → conB(inst(ξ, C1)), we first have to derive (L → conL(C1)) → (B ∧ L ∧
DifmL → conB(inst(ξ, C1)). We can cut out the L with B ∧DifmL → L. We will also remove
(L → conL(C1)). By using the premise (L → conL(C1 ∨ ¬xτ⊔σ)) and crucially Lemma 5.4.
L∧DifmL → ¬ annox,L(τ⊔σ), so L∧DifmL → ¬ conL(¬xτ⊔σ), and thus (L∧DifmL → conL(C1)).

We want to again split this up to the component parts. We first split by individual
literals of C1 as a proof of (L → conL(l

α)) → (B ∧ L ∧ DifmL → conB(inst(ξ, l
α)) for each

literal lα ∈ C1. We then split this between existential literal (L → l) → (B ∧ L ∧DifmL → l)
(which is a basic tautology) and universal annotation (L → annol,B(α)) → (B ∧L∧DifmL →
annol,B(α ◦ restrictl(ξ))).

The latter part splits further. A maximum of one of ¬SetiB, SetiB, SetiB ∧ui and
SetiB ∧¬ui appears in annol,B(α ◦ restrictl(ξ)), we treat annol,B(α ◦ restrictl(ξ)) as a set
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containing these subformulas. We show that if formula ci ∈ annol,B(α ◦ restrictl(ξ)), when ci
is equal to ¬SetiB, Set

i
B, Set

i
B ∧ui or SetiB ∧¬ui then (L → annol,B(α)) → (B ∧L∧DifmL →

ci). A similar breakdown happens for B ∧ ¬DifmL ∧DifmR → conB(inst(σ,C2)).
Each of these individual cases is a constant size proof. You need to multiply for the length

of each annotation (including missing values) and then do this again for each annotated
literal in the clause. The proof size will be O(wm) where w is the width or number of literals
in inst(ξ, C1) ⊔ inst(σ,C2) and m is the number of universal variables in the prefix.

Each (L → annol,B(α)) → (B ∧ L ∧DifmL → ci) fall into one of many cases. There are
multiple “axes” of cases, the first being by index i, in the cases i > m, j < i ≤ m, i = j,

i < j. j here refers to the index such that DifjL ∧¬Difj−1
L ∧¬Difj−1

R which we know exists
via Lemmas 5.1 and 5.3. Lemma 5.1 is crucial to stringing these together. The next axis of
cases then by choice of annotation in α ◦ restrictl(ξ). Further we have to consider sub-cases
of these that affect the policy variables, as detailed in Section 6.2.3.

We detail the cases below:
Suppose i > m.

DifiL refutes ¬DifmL ∧(DifmR ∨¬xiL) so whenever DifmL is true, (ValiB,Set
i
B) = (ValiL,Set

i
L),

therefore (SetiB → (ui ↔ ValiB)) → (SetiL → (ui ↔ ValiL)).
If ¬SetiB ∈ annol,B(α ◦ restrictl(ξ)), then ui /∈ dom(α ◦ restrictl(ξ)). We know

ui /∈ dom(α) otherwise it would be in dom(α ◦ restrictl(ξ)). Therefore ¬SetiL is in
annol,L(α). And so if L → annol,L(α) then L → ¬SetiL, therefore B ∧ L ∧DifmL → ¬SetiB.
We now look at all the cases of ci ∈ annol,B(α ◦ restrictl(ξ)) and show they can be satisfied
with our strategy in B:

If SetiB ∈ annol,B(α ◦ restrictl(ξ)), then ui ∈ dom(α ◦ restrictl(ξ)) ui /∈ dom(ξ)

because dom(ξ) only extends up to m hence ui ∈ dom(α) and SetiL ∈ annol,L(α). And so if

L → annol,L(α) then L → SetiL, therefore B ∧ L ∧DifmL → SetiB.

If SetiB ∧ui ∈ annol,B(α ◦ restrictl(ξ)) then ui ∈ α ◦ restrictl(ξ). We know ui /∈ dom(ξ)

because dom(ξ) only extends up to m. Hence ui ∈ α and SetiL ∧ui ∈ annol,L(α). And so if

L → annol,L(α) then L → SetiL ∧ui, therefore B ∧ L ∧DifmL → SetiB ∧ui.
If SetiB ∧¬ui ∈ annol,B(α ◦ restrictl(ξ)) then ¬ui ∈ α ◦ restrictl(ξ), ui /∈ dom(ξ)

because dom(ξ) only extends up to m. Hence ¬ui ∈ α and SetiL ∧¬ui ∈ annol,L(α) And so

if L → annol,L(α) then L → SetiL ∧¬ValiL, therefore B ∧ L ∧DifmL → SetiB ∧¬ui.
Suppose j < i ≤ m.

We know DifjL → Difi−1
L from Lemma 5.2, we will use that to get that

when DifjL ∧SetiL then (ValiB,Set
i
B) = (ValiL, Set

i
L) which allows us to then show

(SetiB → (ui ↔ ValiB)) → (SetiL → (ui ↔ ValiL)). When Difi−1
L for ui /∈

dom(ξ) we refute ¬Difi−1
L ∧(Difi−1

R ∨¬SetiL), ¬Difi−1
L ∧(Difi−1

R ∨(SetiL ∧(ValiL ↔ Valiτ )))

, ¬Difi−1
L ∧Difi−1

R ∧¬SetiR and ¬Difi−1
L ∧SetiR ∧(Difi−1

R ∨SetiL). When Difi−1
L for ui ∈

dom(ξ) when SetiL is true we refute Difi−1
L ∧¬SetiL and ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL).

if ¬SetiB ∈ annol,B(α ◦ restrictl(ξ)) then ui /∈ dom(α ◦ restrictl(ξ)), also ui /∈ dom(α)

and ui /∈ dom(ξ) so ¬SetiL ∈ annol,L(α) And so if L → annol,L(α) then L → ¬SetiL when

Difi−1
L and ui /∈ dom(ξ), (ValiB,Set

i
B) = (ValiL,Set

i
L) and so B ∧ L ∧Difi−1

L ∧SetiB.

If SetiB ∈ annol,B(α ◦ restrictl(ξ)) then ∗/ui ∈ dom(α ◦ restrictl(ξ)) so either ∗/ui ∈ α

or ui /∈ dom(α) and ∗/ui ∈ ξ. If ∗/ui ∈ α then SetiL ∈ annol,L(α) and L → SetiL so

when Difi−1
L ∧SetiL no matter which domain ui is in (ValiB,Set

i
B) = (ValiL, Set

i
L) B ∧ L ∧
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Difi−1
L ∧SetiB. If ui /∈ dom(α) and ∗/ui ∈ ξ. ¬SetiL ∈ annol,L(α) so L → ¬SetiL. ui ∈ dom(ξ)

means that when Difi−1
L and ¬SetiL (ValiB, Set

i
B) = (0, 1) so B ∧ L ∧Difi−1

L ∧SetiB
If SetiB ∧ui ∈ annol,B(α ◦ restrictl(ξ)) then 1/ui ∈ (α ◦ restrictl(ξ)) and it can

only be that 1/ui ∈ α as ξ can only add ∗/ui. So SetiL ∧ui ∈ annol,L(α) and L →
SetiL. so when Difi−1

L ∧SetiL no matter which domain ui is in (ValiB,Set
i
B) = (ValiL,Set

i
L).

B ∧ L ∧Difi−1
L ∧SetiB ∧ui.

Likewise, if SetiB ∧¬ui ∈ conl,B(α ◦ restrictl(ξ)) then 0/ui ∈ (α ◦ restrictl(ξ)) and

it can only be that 0/ui ∈ α as ξ can only add ∗/ui. So SetiL ∧ui ∈ annol,L(α) and L →
SetiL. So when Difi−1

L ∧SetiL no matter which domain ui is in (ValiB,Set
i
B) = (ValiL,Set

i
L).

B ∧ L ∧Difi−1
L ∧SetiB ∧¬ui.

Suppose i = j.

¬Difj−1
L by definition of j. ¬Difj−1

R is also true as Difj−1
R contradicts Eqj−1

R=τ∨ξ which

is necessary for DifjL. With ¬Difj−1
R , (ValjB, Set

j
B) can only be defined as (ValjR, Set

j
R) in a

small selection of circumstances. That is when: ¬SetjL and ui /∈ dom(τ ⊔ σ ⊔ ξ), SetjL ∧ValjL
and 1/uj ∈ τ , SetjL ∧¬ValjL and 0/uj ∈ τ , SetjL ∧SetjR and ∗/uj ∈ σ, ¬SetjL and ∗/uj ∈ ξ.

All but the latter contradict DifjL ∧Difj−1
L , but we can ignore whenever SetjL is false. So

DifjL ∧¬Difj−1
L ∧SetjL → SetjB this means that (SetjB → (ui ↔ ValjB)) → (SetjL → (ui ↔

ValjL)).

If ¬SetjB ∈ annol,B(α ◦ restrictl(ξ)) then uj /∈ dom(α ◦ restrictl(ξ)) and so uj /∈ dom(α)

uj /∈ dom(ξ). So ¬SetjL ∈ annol,L(α) and L → ¬SetjL. Since DifjL is true then it can only be

that uj ∈ dom(τ) or uj ∈ dom(σ). If uj ∈ dom(τ) then ¬Difj−1
L ∧(Difj−1

R ∨(SetjL ∧(ValjL ↔
Valjτ ))) is contradicted so (ValjB, Set

j
B) = (ValjL, Set

j
L) and B ∧L∧DifjL ∧¬Difj−1

L → ¬SetiB .

If uj ∈ dom(σ) then ¬Difj−1
L ∧Difj−1

R ∧¬SetjR and ¬Difj−1
L ∧SetjR ∧(Difj−1

R ∨SetjL) are

contradicted so (ValjB, Set
j
B) = (ValjL, Set

j
L) and B ∧ L ∧ DifjL ∧¬Difj−1

L → ¬ SetiB. If

uj /∈ dom(τ ⊔σ⊔ ξ) DifjL is false in this case so we can ignore it. (ValjB,Set
j
B) = (ValjL,Set

j
L)

means that B ∧ L ∧DifjL ∧¬Difj−1
L ∧¬SetjB.

If SetjB ∈ annol,B(α ◦ restrictl(ξ)), uj ∈ dom(α ◦ restrictl(ξ)). Either ∗/uj ∈ α or uj ̸∈
dom(α) and ∗/uj ∈ ξ. If ∗/uj ∈ α, then SetjL ∈ annol,L(α) and L → SetjL. If uj /∈ dom(τ ⊔
σ ⊔ ξ), ¬Difj−1

L ∧(Difj−1
R ∨¬SetjL) is falsified so (ValjB, Set

j
B) = (ValjL, Set

j
L) and B ∧ L ∧

DifjL ∧¬Difj−1
L → SetiB. If uj ∈ dom(τ), DifjL ∧¬Difj−1

L ∧SetjL means that ValjL⊕Valjτ . As

a result ¬Difj−1
L ∧(Difj−1

R ∨(SetjL ∧(ValjL ↔ Valjτ ))) is falsified so (ValjB,Set
j
B) = (ValjL,Set

j
L)

and B ∧ L ∧ DifjL ∧¬Difj−1
L → SetiB. If uj ∈ dom(σ), SetjL contradicts DifjL ∧¬Difj−1

L ,

so this scenario does not occur. If uj ∈ dom(ξ) Difj−1
L ∧¬SetjL is falsified by ¬Difj−1

L .

¬Difj−1
L ∧(Difj−1

R ∨¬SetjL) is falsified by SetjL so (ValjB,Set
j
B) = (ValjL, Set

j
L) and B ∧ L ∧

DifjL ∧¬Difj−1
L → SetiB. If uj ̸∈ dom(α) and ∗/uj ∈ ξ then ¬SetjL ∈ annol,L(α) and

L → ¬SetjL. However this cannot happen when DifjL ∧¬Difj−1
L .

If SetjB ∧ValjB ∈ annol,B(α ◦ restrictl(ξ)), 1/uj ∈ (α ◦ restrictl(ξ)). As instantiate is

only done by ∗ then 1/uj ∈ α. So it follows SetjL ∧ValjL ∈ annol,L(α). If uj /∈ dom(τ ⊔
σ ⊔ ξ), ¬Difj−1

L ∧(Difj−1
R ∨¬SetjL) is falsified so (ValjB, Set

j
B) = (ValjL, Set

j
L) and B ∧ L ∧

DifjL ∧¬Difj−1
L → SetiB ∧ValiB . If uj ∈ dom(τ), DifjL ∧¬Difj−1

L ∧SetjL ∧ValjL means that

¬Valjτ and so. ¬Difj−1
L ∧(Difj−1

R ∨(SetjL ∧(ValjL ↔ Valjτ ))) is falsified so (ValjB, Set
j
B) =
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(ValjL,Set
j
L) and B ∧ L ∧ DifjL ∧¬Difj−1

L → SetiB ∧ValiB. If uj ∈ dom(σ), SetjL contradicts

DifjL ∧¬Difj−1
L , so this scenario does not occur. If uj ∈ dom(ξ), Difj−1

L ∧¬SetjL is falsified

by ¬Difj−1
L . ¬Difj−1

L ∧(Difj−1
R ∨¬SetjL) is falsified by SetjL so (ValjB,Set

j
B) = (ValjL,Set

j
L)

and B ∧ L ∧DifjL ∧¬Difj−1
L → SetiB ∧ui.

If SetjB ∧¬ValjB ∈ annol,B(α ◦ restrictl(ξ)), 0/uj ∈ (α ◦ restrictl(ξ)). As instantiate

is only done by ∗ then 0/uj ∈ α. So it follows SetjL ∧¬ValjL ∈ annol,L(α). If uj /∈
dom(τ ⊔σ⊔ξ), ¬Difj−1

L ∧(Difj−1
R ∨¬SetjL) is falsified so (ValjB,Set

j
B) = (ValjL, Set

j
L) and B∧

L∧DifjL ∧¬Difj−1
L → SetiB ∧¬ValiB . If uj ∈ dom(τ), DifjL ∧¬Difj−1

L ∧SetjL ∧¬ValjL means

that Valjτ and so ¬Difj−1
L ∧(Difj−1

R ∨(SetjL ∧(ValjL ↔ Valjτ ))) is falsified so (ValjB, Set
j
B) =

(ValjL,Set
j
L) and B ∧ L ∧DifjL ∧¬Difj−1

L → SetiB ∧¬ValiB. If uj ∈ dom(σ), SetjL contradicts

DifjL ∧¬Difj−1
L , so this scenario does not occur. If uj ∈ dom(ξ) Difj−1

L ∧¬SetjL is falsified

by ¬Difj−1
L . ¬Difj−1

L ∧(Difj−1
R ∨¬SetjL) is falsified by SetjL so (ValjB,Set

j
B) = (ValjL,Set

j
L)

and B ∧ L ∧DifjL ∧¬Difj−1
L → SetiB ∧¬ui.

Suppose i < j.
In this case ¬DifiL,¬Difi−1

L ,¬DifiR,¬Difi−1
R are all true. We can see from Lemma 5.5

that SetiL → SetiB in all cases. We observe all the cases when SetiL is true and ValiB is not de-
fined as ValiL. For ui ∈ dom(τ), this happens if (ValiL ↔ Valiτ ), but then also (ValiR ↔ Valiτ )
if ¬DifiR so ValiB = ValiR = ValiL. For ui ∈ dom(σ), if ¬Difi−1

L ∧SetiR ∧(Difi−1
R ∨SetiL)

then ValiB = ValiR, but this cannot happen if ¬DifiR ∧¬Difi−1
R . So in all cases of

¬DifiL,¬Difi−1
L ,¬DifiR,¬Difi−1

R , SetiL we have ValiB = ValiL. This means that SetiB →
(ui ↔ ValiB) → SetiL → (ui ↔ ValiL).

If ¬SetiB ∈ annol,B(α ◦ restrictl(ξ)) then uj /∈ dom(α ◦ restrictl(ξ)) and so uj /∈ dom(α)

uj /∈ dom(ξ). So ¬SetiL ∈ annol,L(α) and L → ¬ SetiL. ¬DifiL,¬Difi−1
L means that

ui /∈ dom(τ ⊔ σ ⊔ ξ) From Lemma 5.5 we know ¬DifiL ∧¬DifiR → ¬ SetiB. So B ∧ L ∧
DifjL ∧¬DifiL → ¬SetiB.

If SetiB ∈ annol,B(α ◦ restrictl(ξ)). Either ∗/ui ∈ α or ui ̸∈ dom(α) and ∗/ui ∈ ξ If

∗/ui ∈ α, then SetiL ∈ annol,L(α) and L → SetiL. By Lemma 5.5, ui must be in dom(τ)

or dom(σ). In either case SetiB is true. So B ∧ L ∧ DifjL ∧¬DifiL → SetiB. If ui ̸∈ dom(α)

and ∗/ui ∈ ξ, then ¬SetiL ∈ annol,L(α) and L → ¬ SetiL. By Lemma 5.5, SetiB is true. So

B ∧ L ∧DifjL ∧¬DifiL → SetiB.

If SetiB ∧ValiB ∈ annol,B(α ◦ restrictl(ξ)) then 1/ui ∈ α ◦ restrictl(ξ), so it must be

that 1/ui ∈ α. And so SetiL ∧ValiL ∈ annoy,L(α) By Lemma 5.5, ui must be in dom(τ) or

dom(σ). In either case (ValiB,Set
i
B)=(ValiL, Set

i
L). So B ∧ L ∧DifjL ∧¬DifiL → SetiB ∧ValiL,

because L → SetiL ∧ValiL.
Likewise, if SetiB ∧¬ValiB ∈ annol,B(α ◦ restrictl(ξ)) then 0/ui ∈ α ◦ restrictl(ξ), so it

must be that 0/ui ∈ α. And so SetiL ∧¬ValiL ∈ annol,L(α). By Lemma 5.5, ui must be in

dom(τ) or dom(σ). In either case (ValiB, Set
i
B)=(ValiL,Set

i
L). So B ∧ L ∧ DifjL ∧¬DifiL →

SetiB ∧¬ValiL, because L → SetiL ∧¬ValiL.
In all DifmL cases (SetiB → (ui ↔ ValiB)) → (SetiL → (ui ↔ ValiL)) so then B ∧DifmL → L.
We also have B ∧DifmL ∧L → annol,B(α ◦ restrictl(ξ)). We also get B ∧DifmL ∧L → conB(l),
from L → l so we can get B∧DifmL ∧L → annoB(inst(ξ, l

α)), this can be put in a disjunction
B ∧ DifmL ∧L → conB(inst(ξ, C1)), when L → conL(C1) instead of L → conL(l

α). This is
simplified to B ∧DifmL → conB(inst(ξ, C1)) as B ∧DifmL → L.
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Now we argue that (R → conR(l
α)) implies (B ∧ ¬DifL ∧DifmR ) → conR(l

α ◦
restrictl(σ)).
Suppose i > m.

DifL ∧DifmR satisfies ¬DifmL ∧(DifmR ∨¬x) so (ValiB,SetiB)=(ValiR,Set
i
R) in all cases. This

means that (SetiB → (ValiB ↔ ui)) → (SetiR → (ValiR ↔ ui)).
If ¬SetiB ∈ conl,B(α ◦ restrictl(σ)) then ui /∈ dom(α) and ui /∈ dom(σ) then ¬SetiR ∈

conl,R(α) so R → ¬SetiR. and so B ∧R ∧ ¬ SetiR ∧¬DifmL ∧DifmR → ¬SetiB.

If SetiB ∈ conl,B(α ◦ restrictl(σ)) then ui ∈ dom(α ◦ restrictl(σ)). Which means either
ui ∈ dom(α) or ui /∈ dom(α) and ui ∈ σ. But ui /∈ σ because i > m. Since ui ∈ dom(α),
SetiR ∈ conl,R(α) and so B ∧R ∧ SetiR ∧¬DifmL ∧DifmR → SetiB.

If SetiB ∧ValiB ∈ conl,B(α ◦ restrictl(σ)) then 1/ui ∈ α ◦ σ. Which means

1/ui ∈ α, SetiR ∧ui ∈ conl,R(α) and so B ∧ R ∧ SetiR ∧ValiR ∧¬DifmL ∧DifmR → SetiB ∧ui.
If SetiB ∧ValiB ∈ conl,B(α ◦ restrictl(σ)) then 0/ui ∈ α ◦ σ. Which means 0/ui ∈ α

SetiR ∧¬ui ∈ conl,R(α) and so B ∧R ∧ SetiR ∧¬ValiR ∧¬DifmL ∧DifmR → SetiB ∧¬ui.
Suppose j < i ≤ m.

In this case ¬Difi−1
L , ¬DifiL, Difi−1

R and DifiR are all true. If SetiR is true then

¬Difi−1
L ∧(Difi−1

R ∨¬SetiL), ¬Difi−1
L ∧(Difi−1

R ∨(SetiL ∧(ValiL ↔ Valiτ ))),

¬Difi−1
L ∧SetiR ∧(Difi−1

R ∨SetiL) and ¬Difi−1
L ∧(Difi−1

R ∨¬SetiL) are all satis-

fied. So (ValiB, Set
i
B)=(ValiR,Set

i
R) whenever SetiR is true. This means that

(SetiB → (ValiB ↔ ui)) → (SetiR → (ValiR ↔ ui)).
If ¬SetiB ∈ conl,B(α ◦ restrictl(σ)) then ui /∈ dom(α) and ui /∈ dom(σ) then

¬SetiR ∈ conl,R(α) so R → ¬ SetiR. When ¬Difi−1
L and Difi−1

R and ui /∈ dom(σ) then

(ValiB,Set
i
B)=(ValiR, Set

i
R), so B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R → ¬SetiB.

If SetiB ∈ conl,B(α ◦ restrictl(σ)) then ∗/ui ∈ α ◦ σ. So either ∗/ui ∈ α or ∗/ui ∈
σ and ui /∈ dom(α). If ∗/ui ∈ α then SetiR ∈ conl,R(α) and when SetiR is true then

(ValiB,Set
i
B)=(ValiR, Set

i
R) so R → SetiR implies B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R →

SetiB. If ∗/ui ∈ σ and ui /∈ dom(α), ¬SetiR ∈ conl,R(α) and ¬Difi−1
L ∧Difi−1

R ∧¬SetiR is

satisfied so (ValiB,Set
i
B)=(0, 1) therefore B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R → SetiB.

If SetiB ∧ValiB ∈ conl,B(α ◦ restrictl(σ)) then 1/ui ∈ α ◦ σ. and it must be that 1/ui ∈ α

and so SetiR ∧ValiR ∈ conl,R(α) and when SetiR is true then (ValiB, Set
i
B)=(ValiR,Set

i
R) so

R → SetiR ∧ui implies B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R → SetiB ∧ui
If SetiB ∧¬ValiB ∈ conl,B(α ◦ restrictl(σ)) then 0/ui ∈ α ◦ σ. and it must be that 0/ui ∈

α and so SetiR ∧ValiR ∈ conl,R(α) and when SetiR is true then (ValiB, Set
i
B)=(ValiR,Set

i
R) so

R → SetiR ∧¬ui implies B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R → SetiB ∧¬ui.
Suppose i = j.

In this case ¬Difj−1
L , ¬DifjL, ¬Difj−1

R and DifjR. If SetjR then ei-

ther (ValiB,Set
i
B)=(ValiR, Set

i
R) or (ValiB, Set

i
B)=(ValiL, Set

i
L). We will ar-

gue that (ValiB, Set
i
B)=(ValiL, Set

i
L) is not chosen because of ¬DifjL and EqR

¬Difi−1
L ∧(Difi−1

R ∨¬SetiL) cannot be falsified because SetiL being true would contra-

dict ¬DifjL. Likewise ¬Difi−1
L ∧(Difi−1

R ∨(SetiL ∧(ValiL ↔ Valiτ ))) cannot be falsified

as (SetiL ∧(ValiL ↔ Valiτ )) being false would contradict ¬DifjL. If ui ∈ dom(σ) then

¬Difi−1
L ∧Difi−1

R ∧¬SetiR is false and ¬Difi−1
L ∧SetiR ∧(Difi−1

R ∨SetiL) is true. Likewise if
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ui ∈ dom(ξ) then Difi−1
L ∧¬SetiL is false and ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL) is true. The result

is that (SetiB → (ValiB ↔ ui)) → (SetiR → (ValiR ↔ ui)).

If ¬SetjB ∈ conl,B(α ◦ restrictl(σ)) then ui /∈ dom(α ◦ σ), which means ui /∈ dom(α)

and ui /∈ dom(σ). So ¬SetjR ∈ conl,R(α) and thus R → ¬SetjR. If uj ∈ dom(τ) we

argue that ¬Difj−1
L ∧(Difj−1

R ∨(SetjL ∧(ValjL ↔ Valijτ ))) is satisfied because of ¬DifiL. Hence

(ValiB,Set
i
B)=(ValiR, Set

i
R) and so B ∧ ¬Difj−1

L ∧¬DifjL ∧¬Difj−1
R ∧DifjR ∧L → ¬SetjB.

If uj ∈ dom(ξ), we argue that ¬Difi−1
L ∧(Difi−1

R ∨¬SetiL) is satisfied because

of ¬DifiL which insists on ¬SetiL. Hence (ValiB,Set
i
B)=(ValiR, Set

i
R) and so B ∧

¬Difj−1
L ∧¬DifjL ∧¬Difj−1

R ∧DifjR ∧L → ¬SetjB.

If uj /∈ dom(τ ⊔ σ ⊔ ξ) We argue that ¬Difi−1
L ∧(Difi−1

R ∨¬SetiL) is

satisfied because of ¬DifiL. Hence (ValiB, Set
i
B)=(ValiR,Set

i
R) and so B ∧

¬Difj−1
L ∧¬DifjL ∧¬Difj−1

R ∧DifjR ∧L → ¬SetjB.

If SetjB ∈ conl,B(α ◦ restrictl(σ)), then ∗/uj ∈ (α ◦ σ). So either ∗/uj ∈ α or ∗/uj /∈ α

and ∗/uj ∈ σ. If ∗/uj ∈ α then SetjR ∈ conl,R(α) and R → SetjR. When SetjR is true

we know (ValjB, Set
j
B)=(ValjR,Set

j
R) and so B ∧ ¬Difj−1

L ∧¬DifjL ∧¬Difj−1
R ∧DifjR ∧L →

SetjB. If ∗/uj /∈ α and ∗/uj ∈ σ then ¬SetjR ∈ conl,R(α) and thus R → ¬ SetjR
¬Difi−1

L ∧SetjR ∧(Difj−1
R ∨SetjL) is falsified. So (ValjB, Set

j
B)=(ValjL, Set

i
L). But because

¬DifjL we know that SetiL is true therefore B∧¬Difj−1
L ∧¬DifjL ∧¬Difj−1

R ∧DifjR ∧L → SetjB
If SetjB ∧ValjB ∈ conl,B(α ◦ restrictl(σ)), so 1/uj ∈ (α ◦ σ). So it must be that 1/uj ∈ α.

And so SetjR ∧ValjR ∈ conl,R(α) and thus R → ¬ SetjR since SetjR is true we know that

(ValjB, Set
j
B)=(ValjR,Set

j
R) and so B ∧¬Difj−1

L ∧¬DifjL ∧¬Difj−1
R ∧DifjR ∧L → SetjB ∧ValjB

If SetjB ∧¬ValjB ∈ conl,B(α ◦ restrictl(σ)), so 0/uj ∈ (α ◦ σ). So it must be that 0/uj ∈ α

And so SetjR ∧¬ValjR ∈ conl,R(α) and thus R → ¬SetjR since SetjR is true we know that

(ValjB, Set
j
B)=(ValjR,Set

j
R) and so B ∧¬Difj−1

L ∧¬DifjL ∧¬Difj−1
R ∧DifjR ∧L → SetjB ∧ValjB

Suppose i < j.
In this case ¬DifiL,¬Difi−1

L ,¬DifiR,¬Difi−1
R are all true. We can see from Lemma 5.5

that SetiR → SetiB in all cases. We observe all the cases when SetiR is true and ValiB is not
defined as ValiR and show they cannot happen.

For ui /∈ dom(τ ⊔σ⊔ξ), if ¬Difi−1
L ∧(Difi−1

R ∨¬SetiL) is false then SetiL must be true, but

this conflicts with ¬DifiL,¬Difi−1
L . For ui ∈ dom(τ) if ¬Difi−1

L ∧(Difi−1
R ∨(SetiL ∧(ValiL ↔

Valiτ ))) is false then SetiL → (ValiL⊕Valiτ ) is contradicting ¬DifiL,¬Difi−1
L . For ui ∈ dom(σ)

if ¬Difi−1
L ∧SetiR ∧(Difi−1

R ∨SetiL) is false the then SetiL is false contradicting ¬DifiL,¬Difi−1
L .

For ui ∈ dom(ξ) if ¬Difi−1
L ∧(Difi−1

R ∨¬SetiL) is false then SetiL is true but in dom(ξ) this

contradicts ¬DifiL,¬Difi−1
L . Therefore (SetiB → (ValiB ↔ ui)) → (SetiR → (ValiR ↔ ui)).

If ¬SetiB ∈ conl,B(α ◦ restrictl(σ)) then uj /∈ dom(α ◦ σ) and so uj /∈ dom(α)

and uj /∈ dom(σ). So ¬SetiR ∈ conl,R(α) and R → ¬ SetiR. ¬DifiR,¬Difi−1
R means that

ui /∈ dom(τ ⊔ σ ⊔ ξ). From Lemma 5.5 we know ¬DifiL ∧¬DifiR → ¬SetiB. So B ∧ R ∧
¬DifjR ∧¬DifiL → ¬SetiB . If Set

i
B ∈ conl,B(α ◦ restrictl(σ)). Either ∗/ui ∈ α or ui ̸∈ dom(α)

and ∗/ui ∈ σ. If ∗/ui ∈ α, then SetiR ∈ conl,R(α) and R → SetiR. By Lemma 5.5, ui must

be in dom(τ) or dom(ξ). In either case SetiB is true. So B ∧ R ∧ DifjR ∧¬DifiL → SetiB If

ui ̸∈ dom(α) and ∗/ui ∈ σ, then ¬SetiR ∈ conl,R(α) and R → ¬SetiR By Lemma 5.5, SetiR
is true. So B ∧R ∧DifjR ∧¬DifiL → SetiB.
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If SetiB ∧ValiB ∈ conl,B(α ◦ restrictl(σ)) then 1/ui ∈ α ◦ σ, so it must be that 1/ui ∈ α.

And so SetiR ∧ValiR ∈ conl,R(α). By Lemma 5.5, ui must be in dom(τ) or dom(ξ). In

either case (ValiB,Set
i
B)=(ValiR, Set

i
R). So B ∧ R ∧ DifjR ∧¬DifiR → SetiB ∧ValiB, because

R → SetiR ∧ValiR.
Likewise, if SetiB ∧¬ui ∈ conl,B(α ◦ restrictl(σ)) then 0/ui ∈ α ◦ σ, so it must be that

0/ui ∈ α. And so SetiR ∧ValiR ∈ conl,R(α). By Lemma 5.5, ui must be in dom(τ) or dom(ξ).

In either case (ValiB,Set
i
B)=(ValiR, Set

i
R). So B ∧R ∧DifjR ∧¬DifiR → SetiB ∧¬ui, because

R → SetiR ∧¬ui. With that we conclude all cases in R and argue similarly to L.

A.2. Local Strategy Extraction for Simulation of LQU+-Res.

A.2.1. Policy Variables. For u∗i /∈ C1 ∪ C2, i ≤ m

(ValiB,Set
i
B) =

{
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For u∗i ∈ C1, i ≤ m

(ValiB,Set
i
B) =


(0, 1) if ¬Difi−1

L ∧Difi−1
R ∧¬SetiR

(ValiR,Set
i
R) if ¬Difi−1

L ∧SetiR ∧(Difi−1
R ∨SetiL)

(ValiL, Set
i
L) otherwise.

For u∗i ∈ C2, i ≤ m

(ValiB, Set
i
B) =


(0, 1) if Difi−1

L ∧¬SetiL
(ValiR,Set

i
R) if ¬Difi−1

L ∧(Difi−1
R ∨¬SetiL)

(ValiL, Set
i
L) otherwise.

For ui ∈ dom(U∗), i > m

(ValiB, Set
i
B) =



(ValiR,Set
i
R) if SetiR ∧¬DifmL ∧(DifmR ∨¬x)

(0, 1) if ui ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)
(1, 1) if ¬ui ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)
(0, 1) if u∗i ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)
(ValiL, Set

i
L) if SetiL ∧DifmL ∨(¬DifmR ∧x)

(0, 1) if ui ∈ U1 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))
(1, 1) if ¬ui ∈ U1 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))
(0, 1) if u∗i ∈ U1 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))

For ui /∈ dom(U), i > m

(ValiB, Set
i
B) =



(0, 1) if u∗ ∈ V2 and ¬SetiL ∧(DifmL ∨(¬DifmR ∧x))
(ValiL,Set

i
L) if u∗ ∈ V2 and SetiL ∧(DifmL ∨(¬DifmR ∧x))

(ValiR, Set
i
R) if u∗ ∈ V2 and ¬DifmL ∧(DifmR ∨¬x)

(0, 1) if u∗ ∈ V1 and ¬SetiR ∧(¬DifmL ∧(DifmR ∨¬x))
(ValiR, Set

i
R) if u∗ ∈ V1 and SetiR ∧(¬DifmL ∧(DifmR ∨¬x))

(ValiL,Set
i
L) if u∗ ∈ V1 and DifmL ∨(¬DifmR ∧x)

(ValiR, Set
i
R) if u∗ /∈ V1 ∪ V2 and ¬DifmL ∧(DifmR ∨¬x)

(ValiL,Set
i
L) if u∗ /∈ V1 ∪ V2 and DifmL ∨(¬DifmR ∧x)
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Lemma 6.6. The following propositions are true and have short Extended Frege proofs,
given (L → conL(C1 ∪ U1 ∨ ¬x)) and (R → conR(C2 ∪ U2 ∨ x))

• B ∧DifmL → L
• B ∧ ¬DifmL ∧DifmR → R
• B ∧DifmL → conB(C1 ∨ V2 ∨ U)
• B ∧ ¬DifmL ∧DifmR → conB(C2 ∨ V1 ∨ U)

Proof. We break B∧DifmL → L into individual parts SetiB → (ui ↔ ValiB)∧DifmL → (SetiL →
(ui ↔ ValiL)) which we join by conjunction. We can do similarly for B ∧¬DifmL ∧DifmR → R.

For B ∧ DifmL → conB(C1 ∨ V2 ∨ U∗) we first derive (L → conL(C1 ∪ U1 ∨ ¬x)) →
(B ∧ L ∧DifmL → conB(C1 ∨ V2 ∨ U∗)), you can cut out L using B ∧DifmL → L. Removing
(L → conL(C1 ∪ U1 ∨ ¬x)), uses the premise (L → conL(C1 ∪ U1 ∨ ¬x)).

To derive (L → conL(C1 ∪U1 ∨¬x)) → (B ∧L∧DifmL → conB(C1 ∨ V2 ∨U∗)) we break
this by non-starred literals l ∈ C1 ∪ U1 so we will show that (L → conL,C1∪U1∨¬x(l)) →
(B ∧DifmL → conB,V2∪C1∪U∗(l)). DifmL → ¬ annox,L(V1) is used to remove the x literal.

For p ∈ {1, 2} let Wp = {u∗ | u∗ ∈ Up}. For each i, either SetiB or ¬SetiB appears
in annol,B(V1 ∪ V2 ∪ U∗), so we treat annol,B(V1 ∪ V2 ∪ U∗) as a set containing these

subformulas. We show that if ci ∈ annol,B(V1 ∪ V2 ∪ U∗) when ci = SetiB or ci = ¬SetiB
then L → annol,L(V1 ∪W1) → B ∧DifmL → ci and we also have (L → l) → (B ∧DifmL → l).

For existential l, we can put these all together to get (L → conL,C1∪U1(l)) → (B ∧ L ∧
DifmL → conB,V2∪C1∪U∗(l)).

For universal literals uk we also need to show ¬SetkB is preserved when uk is not
merged. For universal literals uk that are merged conB,V2∪C1∪U∗(u∗k)) = ⊥ so we show that
the strategy for B causes a contradiction between B and L → uk. We do similarly for
B ∧ ¬DifmL ∧DifmR → conB(C2 ∨ V1 ∨ U∗).

The DifmL cases. If DifmL is true then there is some j such that DifjL ∧¬DifjL ∧¬DifjR via

Lemmas 6.2 and 6.3. We use the disjunction DifmL →
∨m

j=1DifjL ∧¬Difj−1
L to join all the

cases of j together.
Suppose i > m.

DifiL satisfies DifmL ∨(¬DifmR ∧x) so whenever DifmL is true and SetiL is true,
(ValiB,Set

i
B) = (ValiL, Set

i
L), therefore (SetiB → (ui ↔ ValiB)) → (SetiL → (ui ↔ ValiL)).

If SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗), either u∗i ∈ V1, u
∗
i ∈ V2 or u∗i ∈ U∗. If u∗i ∈ V2 then

every possibility we have SetiB be true. If u∗i ∈ V1 we know SetiL will be true since it is
assumed to be implied by L, hence SetiB = SetiL suffices. If u∗i ∈ U∗ every case SetiB is true
when annox,L(V1 ∪W1) is affirmed by L.

If ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗) then u∗i /∈ V1 ∪ V2 ∪ U∗, this means that u∗i /∈ W1, so

whenever annox,L(V1 ∪W1) is true, ¬SetiL. But then ¬SetiB must be true because of DifmL .
Suppose j < i ≤ m.

We know DifjL → Difi−1
L from Lemma 6.3, we will use that to get that when DifjL ∧SetiL

then (ValiB, Set
i
B) = (ValiL, Set

i
L) which allows us to then show (SetiB → (ui ↔ ValiB)) →

(SetiL → (ui ↔ ValiL)).
Suppose ¬SetiB ∈ annox,B(V1∪V2∪U∗), then u∗i /∈ C1∪C2 so (Val

i
B,Set

i
B) = (ValiL,Set

i
L).

But since SetiL will be false because u∗i /∈ C1, Set
i
B will be false.

Now suppose SetiB ∈ annox,B(V1∪V2∪U∗), either u∗i ∈ C1, in which case (ValiB,Set
i
B) =

(ValiL,Set
i
L), or u

∗
i ∈ C2, in which case (ValiB, Set

i
B) = (ValiL, Set

i
L) or ¬SetiL, but here we

know SetiB will be forced to be true, regardless.
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Suppose i = j.
DifiL, ¬Difi−1

L and ¬Difi−1
R are all true. If SetiL ∈ annox,L(V1 ∪W1) then ¬SetiL, and if

¬SetiL ∈ annox,L(V1 ∪W1) then SetiL.

If SetiL ∈ annox,L(V1∪W1) and ¬SetiL then u∗i ∈ C1 and so (ValiB,Set
i
B) = (ValiL,Set

i
L).

So if annox,L(V1∪W1) is satisfied by L the term SetiB ∈ annox,L(V1∪V2∪U∗) is satisfied by B.

If ¬SetiL ∈ annox,L(V1∪W1) and SetiL then if u∗i ∈ C2, we know SetiB ∈ annox,L(V1∪V2∪U∗),

since SetiL is true then SetiB is true.
If u∗i /∈ C1∪C2 then ¬SetiB ∈ annox,B(V1∪V2∪U∗), but then (ValiB,Set

i
B) = (ValiL,Set

i
L).

So if annox,L(V1 ∪W1) is satisfied by L the term SetiB ∈ annox,L(V1 ∪ V2 ∪ U∗) is satisfied
by B.
Suppose i < j.

If ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗) then u∗ /∈ C1 ∪ C2 and so by Lemma 6.5 ¬SetiB is

true. If SetiB ∈ annox,B(V1 ∪ V2 ∪U∗) then u∗ ∈ C1 ∪C2 and so by Lemma 6.5, SetiB is true.
We can put this all together to show in eFrege that B ∧ DifmL → L, L →

conL,C1∨U1∨¬x(l) → B ∧ L ∧ DifmL → conB,C2∨V2∨U∗(l), for existential literal l. Note that
DifL means that conR,C2∪U2∨x,R(¬x) is not satisfied by L to begin with.
Additional universal consideration.

If l = uk, then when l does not become merged we also have to show that ¬SetkB
is preserved when conL,C1∪U1∨x(l) and DifmL . Note that if DifkL then the annotation is

contradicted. If uk ∈ C1 ∨ C2 or ¬uk ∈ C1 ∨ C2, for i ≤ m then ¬SetiB is desired, but

SetiB will only happen when forced by SetiR being true, but this would mean DifkR and

¬DifkL, which would contradict DifmL . If uk ∈ C1 ∨ C2 or ¬uk ∈ C1 ∨ C2 for i > m then
DifmL will contradict an annotation. uk ∈ U1 then the literal will not appear as such in
conB(C1 ∪ C2 ∪ U∗) because it will now only count as a starred literal.

We have to show any universal literal l = uk or l = ¬uk that does become merged,
can be removed from the disjunction. In essence we need to prove (L → conL,C1∪U1(l)) →
(B ∧ L ∧DifmL → (⊥)). The essential part is that conL,C1∪U1(l) contains l but also contains

SetkL which in turn guarantees SetkB and forces ValkB to be the opposite value of l.
The DifmR ∧¬DifmL cases.

If DifmR is true then there is some j such that DifjR ∧¬DifjR ∧¬DifjL via Lem-

mas 6.2 and 6.3. We use the disjunction DifmR →
∨m

j=1DifjR ∧¬Difj−1
R to join all the

cases of j together.
Suppose i > m.

DifmR ∧¬DifmL satisfies ¬DifmL ∧(DifmR ∨¬x) so whenever DifmR ∧¬DifmL is true and SetiR
is true (ValiB, Set

i
B) = (ValiR,Set

i
R), therefore (SetiB → (ui ↔ ValiB)) → (SetiR → (ui ↔

ValiR)).
If SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗), then u∗i ∈ V1, u

∗
i ∈ V2 or u∗i ∈ U∗. In every case SetiB

is true when annox,R(V2 ∪W2) is affirmed by R and DifmR ∧¬DifmL is true.

If ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗) then u∗i /∈ U , this means that u∗i /∈ W2, so whenever

annox,R(V2 ∪W2) is true, ¬SetiR. But then ¬SetiB must be true because of DifmR ∧¬DifmL .
Suppose j < i ≤ m.

We know DifjR → Difi−1
R and ¬DifmR → ¬Difi−1

R from Lemma 6.3, we will use that to

get that when DifjR ∧¬DifmL ∧SetiR then (ValiB,Set
i
B) = (ValiR,Set

i
R) which allows us to

then show (SetiB → (ui ↔ ValiB)) → (SetiR → (ui ↔ ValiR)).
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Suppose ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗), then u∗i /∈ C1 ∪ C2 so (ValiB, Set
i
B) =

(ValiR, Set
i
R). But since SetiR will be false because u∗i /∈ C2, Set

i
B will be false.

Now suppose SetiB ∈ annox,B(V1∪V2∪U∗), either ui ∈ C2 in which case (ValiB,Set
i
B) =

(ValiR, Set
i
R), but since ui ∈ C2 ValiR must be true, or ui ∈ C1 in which case (ValiB,Set

i
B) =

(ValiR, Set
i
R) or ¬SetiR, but here we know SetiB will be forced to be true.

Suppose i = j.
DifiR ¬Difi−1

R , ¬DifiL and ¬Difi−1
L are all true. If SetiR ∈ annox,R(V2∪W2) then ¬SetiR,

and if ¬SetiR ∈ annox,R(V2 ∪W2) then SetiR. If Set
i
R ∈ annox,R(V2 ∪W2) and ¬SetiR then

u∗i ∈ C2 and ui /∈ C1. ¬DifiL and ¬Difi−1
L means that ¬SetiL, so then (ValiB, Set

i
B) =

(ValiR, Set
i
R). So if annox,L(V1 ∪W1) is satisfied by R the term SetiB ∈ annox,L(V1 ∪V2 ∪U∗)

is satisfied by B.
If ¬SetiR ∈ annox,R(VR ∪WR) and SetiR then if u∗i ∈ C1, we know SetiB ∈ annox,L(V1 ∪

V2 ∪ U∗), ¬DifiL and ¬Difi−1
L means that SetiL is true, since SetiR is also true then SetiB is

true. If u∗i /∈ C1 ∪C2 then ¬SetiB ∈ annox,B(V1 ∪ V2 ∪U∗), ¬DifiL and ¬Difi−1
L means that

SetiL is true, so then (ValiB,Set
i
B) = (ValiR,Set

i
R). So if annox,R(V2 ∪W2) is satisfied by R

the term SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗) is satisfied by B.
Suppose i < j.

If ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U∗) then u∗ /∈ C1 ∪ C2 and so by Lemma 6.5 ¬SetiB is

true. If SetiB ∈ annox,B(V1 ∪ V2 ∪U∗) then u∗ ∈ C1 ∪C2 and so by Lemma 6.5, SetiB is true.
We can put this all together to show in eFrege that B ∧ DifmR ∧¬DifmL → R, R →

conR,C2∨U2∨x(l) → B ∧R ∧DifmR ∧¬DifmL → conB,C2∨V2∨U∗(l), for existential literal l. Note
that DifR means that conR,C2∪U2∨x,R(x) is not satisfied by R to begin with.
Additional universal consideration.

If l = uk then we also have to show that ¬SetkB is preserved when conR,C2∪U2∨x,L(y)

and DifmR ∧¬DifmL . Note that if DifkR then the annotation is contradicted. If uk ∈ C1 ∨ C2

or ¬uk ∈ C1 ∨ C2, for i ≤ m then ¬SetiB is desired, but SetiB will only happen when forced

by SetiL being true, but this would mean DifkL contradicting ¬DifmL If uk ∈ C1 ∨ C2 or
¬uk ∈ C1 ∨ C2 for i > m then DifmL will contradict an annotation. uk ∈ U1 then the literal
will not appear as such in conB(C2 ∨ V2 ∨ U∗) because it will now only count as a starred
literal.

We have to show any universal literal l = uk or l = ¬uk that does become merged,
can be removed from the disjunction. In essence we need to prove (R → conR,C2∪U2(l)) →
(B ∧R ∧ ¬DifmL ∧DifmR → (⊥)). The essential part is that conL,C1∪U1(l) contains l but also

contains SetkL which in turn guarantees SetkB and forces ValkB to be the opposite value of
l.
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