
Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 16:1–16:34
https://lmcs.episciences.org/

Submitted Dec. 08, 2022
Published Feb. 21, 2024

EXPRESSIVENESS OF SHACL FEATURES AND EXTENSIONS FOR

FULL EQUALITY AND DISJOINTNESS TESTS

BART BOGAERTS a, MAXIME JAKUBOWSKI a,b, AND JAN VAN DEN BUSSCHE b

aVrije Universiteit Brussel, Belgium
e-mail address: bart.bogaerts@vub.be

bUniversiteit Hasselt, Belgium
e-mail address: maxime.jakubowski@uhasselt.be
e-mail address: jan.vandenbussche@uhasselt.be

Abstract. SHACL is a W3C-proposed schema language for expressing structural con-
straints on RDF graphs. Recent work on formalizing this language has revealed a striking
relationship to description logics. SHACL expressions can use three fundamental features
that are not so common in description logics. These features are equality tests; disjointness
tests; and closure constraints. Moreover, SHACL is peculiar in allowing only a restricted
form of expressions (so-called targets) on the left-hand side of inclusion constraints.

The goal of this paper is to obtain a clear picture of the impact and expressiveness
of these features and restrictions. We show that each of the three features is primitive:
using the feature, one can express boolean queries that are not expressible without using
the feature. We also show that the restriction that SHACL imposes on allowed targets is
inessential, as long as closure constraints are not used.

In addition, we show that enriching SHACL with “full” versions of equality tests, or
disjointness tests, results in a strictly more powerful language.

1. Introduction

On the Web, the Resource Description Framework (RDF [RDF14]) is a standard format
for representing knowledge and publishing data. RDF represents information in the form
of directed graphs, where labeled edges indicate properties of nodes. To facilitate more
effective access and exchange, it is important for a consumer of an RDF graph to know what
properties to expect, or, more generally, to be able to rely on certain structural constraints
that the graph is guaranteed to satisfy. We therefore need a declarative language in which
such constraints can be expressed formally. In database terms, we need a schema language.

Two prominent proposals in this vein have been ShEx [BGP17] and SHACL [SHA17].
Both approaches use formulas that express the presence or absence of certain properties of a
node or its neighbors in the graph. Such formulas are called “shapes.” When we evaluate a

Key words and phrases: Expressive power, schema languages.
This paper is an extended version of our work presented at ICDT 2022 [BJVdB22].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:16)2024
© B. Bogaerts, M. Jakubowski, and J. Van den Bussche
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-3460-4251
https://orcid.org/0000-0002-7420-1337
https://orcid.org/0000-0003-0072-3252
http://creativecommons.org/about/licenses

16:2 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

shape on a node, that node is called the “focus node.” Some examples of shapes, expressed
for now in English, could be the following:1

(1) “The focus node has a phone property, but no email.”
(2) “The focus node has at least five incoming managed-by edges.”
(3) “Through a path of friend edges, the focus node can reach a node with a CEO-of edge to

the node Apple.”
(4) “The focus node has at least one colleague who is also a friend.”
(5) “The focus node has no other properties than name, address, or birthdate.”

In this paper, we look deeper into SHACL, the language recommended by the World
Wide Web Consortium. We do not use the actual SHACL syntax, but work with the elegant
formalization proposed by Corman, Reutter and Savkovic [CRS18], and used in subsequent
works by several authors [ACO+20, LS+20, PK+20]. That formalization reveals a striking
similarity between shapes on the one hand, and concepts, familiar from description logics
[BHLS17], on the other hand. The similarity between SHACL and description logics runs
even deeper when we account for targeting, which is the actual mechanism to express
constraints on an RDF graph using shapes.

Specifically, a non-recursive shape schema2 is essentially a finite list of shapes, where
each shape ϕ is additionally associated with a target query q. An RDF graph G is said to
conform to such a schema if for every target–shape combination (q, ϕ), and every node v
returned by q on G, we have that v satisfies ϕ in G. Let us see some examples of target–shape
pairs, still expressed in English:

(6) “Every node of type Person has an email or phone property.” Here, the target query
returns all nodes with an edge labeled type to node Person; the shape checks that the
focus node has an email or phone property.

(7) “Different nodes never have the same email.” Here the target query returns all nodes
with an incoming email edge, and the shape checks that the focus node does not have
two or more incoming email edges.

(8) “Every mathematician has a finite Erdős number.” Here the target query returns all
nodes of type Mathematician, and the shape checks that the focus node can reach the
node Erdős by a path that matches the regular expression (author−/author)∗. Here, the
minus superscript denotes an inverse edge.

Interestingly, and apparent in the examples 6–8, the target queries considered for this
purpose in SHACL, as well as in ShEx, actually correspond to simple cases of shapes. It
is then only a small step to consider generalized shape schemas as finite sets of inclusion
statements of the form ϕ1 ⊆ ϕ2, where ϕ1 and ϕ2 are shapes. Since, as noted above, shapes
correspond to concepts, we thus see that shape schemas correspond to TBoxes in description
logics.

We stress that the task we are focusing on in this paper is checking conformance of RDF
graphs against shape schemas. Every shape schema S defines a decision problem: given
an RDF graph G, check whether G conforms to S. In database terms, we are processing
a boolean query on a graph database. In description logic terms, this amounts to model
checking of a TBox: given an interpretation, check whether it satisfies the TBox. Thus our
focus is a bit different from that of typical applications of description logics. There, facts

1In real RDF, names of properties and nodes must conform to IRI syntax, but in this paper, to avoid
clutter, we take the liberty to use simple names.

2Real SHACL uses the term shapes graph instead of shape schema.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:3

are declared in ABoxes, which should not be confused with interpretations. The focus is
then on higher reasoning tasks, such as checking satisfiability of an ABox and a TBox, or
deciding logical entailment.

Given the above context, let us now look in more detail at the logical constructs that
can be used to build shapes. Some of these constructs are well known concept constructors
from expressive description logics [CDGNL03]: the boolean connectives; constants; qualified
number restriction (a combination of existential quantification and counting); and regular
path expressions with inverse. To illustrate, example shapes 1–3 are expressible as follows:

(1) ≥1 phone.⊤ ∧ ¬≥1 email.⊤. This uses qualified number restriction with count 1 (so
essentially existential quantification), conjunction, and negation; ⊤ stands for true.

(2) ≥5managed-by−.⊤. This uses counting to 5, and inverse.
(3) ≥1 friend

∗/CEO-of.{Apple}. This uses a regular path expression and the constant Apple.

However, SHACL also has three specific logical features that are less common:

Equality: The shape eq(E, r), for a path expression E and a property r, tests equality of
the sets of nodes reachable from the focus node by an r-edge on the one hand, and by
an E-path on the other hand.

Disjointness: A similar shape disj (E, r) tests disjointness of the two sets of reachable
nodes. To illustrate, example shape 4 is expressed as ¬disj (colleague, friend).

Closure constraints: RDF graphs to be checked for conformance against some shape
schema need not obey some fixed vocabulary. Thus SHACL provides shapes of the
form closed(R), with R a finite set of properties, expressing that the focus node has
no properties other than those in R. This was already illustrated as example shape 5,
with R = {name, address, birthdate}.

Our goal in this paper is to clarify the impact of the above three features on the
expressiveness of SHACL as a language for boolean queries on graph databases. Thereto,
we offer the following contributions.

• We show that each of the three features is primitive in a strong sense. Specifically, for each
feature, we exhibit a boolean query Q such that Q is expressible by a single target–shape
pair, using only the feature and the basic constructs; however, Q is not expressible by any
generalized shape schema when the feature is disallowed.
• We also clarify the significance of the restriction that SHACL puts on allowed targets.
We observe that as long as closure constraints are not used, the restriction is actually
insignificant. Any generalized shape schema, allowing arbitrary but closure-free shapes
on the left-hand sides of the inclusion statements, can be equivalently written as a shape
schema with only targets on the left-hand sides. However, allowing closure constraints on
the left-hand side strictly adds expressive power.
• We additionally show that “full” variants of equality tests or disjointness tests result in
strictly more expressive languages. This result anticipates planned extensions of SHACL
[Knu21, Jak22].
• Our results continue to hold when the definition of recursive shapes is allowed, provided
that recursion through negation is stratified.

This paper is organized as follows. Section 2 presents clean formal definitions of non-
recursive shape schemas, building on and inspired by the work of Andreşel, Corman, et al.
cited above. Section 3 and Section 4 present our results, and Section 5 extends our result for
“full” equality and disjointness tests. Section 6 presents the extension to stratified recursion.
Section 7 offers concluding remarks.

16:4 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

2. Shape schemas

In this section we define shapes, RDF graphs, shape schemas, and the conformance of RDF
graphs to shape schemas. Perhaps curiously to those familiar with SHACL, our treatment for
now omits shape names. Shape names are redundant as far as expressive power is concerned,
as long as we are in a non-recursive setting, because shape name definitions can then always
be unfolded. Indeed, for clarity of exposition, we have chosen to work first with non-recursive
shape schemas. Section 6 then presents the extension to recursion (and introduces shape
names in the process). We point out that the W3C SHACL recommendation only considers
non-recursive shape schemas.

Node and property names. From the outset we assume two disjoint, infinite universes N
and P of node names and property names, respectively.3

2.1. Shapes. We define path expressions E and shapes ϕ by the following grammar:

E ::= id | p | p− | E ∪ E | E/E | E∗

ϕ ::= ⊤ | {c} | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ≥nE.ϕ | eq(E, p) | disj (E, p) | closed(R)
Here, p and c stand for property names and node names, respectively; n stands for nonzero
natural numbers; and R stands for finite sets of property names. A node name c is also
referred to as a constant. In p−, − stands for inverse.

Abbreviation: We will use ∃E.ϕ as an abbreviation for ≥1E.ϕ.

Remark 2.1. Real SHACL supports some further shapes which have to do with tests on
IRI constants and literals, as well as comparisons on numerical values and language tags.
Like other work on the formal aspects of SHACL, we abstract these away, as many questions
are already interesting without these features.

Remark 2.2. Universal quantification ∀E.ϕ could be introduced as an abbreviation for
¬∃E.¬ϕ. Likewise, ≤n E.ϕ may be used as an abbreviation for ¬≥n+1E.ϕ.

Remark 2.3. In our formalization, a path expression can be ‘id ’. We show in Lemma 3.3
that every path expression is equivalent to id , E′ ∪ id or E′, where E′ does not use id . In
real SHACL, it is possible to write E′ ∪ id using “zero-or-one” path expressions. Explicitly
writing id is not possible, but this poses no problem. Path expressions can only appear in
counting quantifiers, equality and disjointness shapes. The shape ≥n id .ϕ is clearly equivalent
to ϕ if n = 1, otherwise, it is equivalent to ¬⊤. The shapes eq(E, p) or disj (E, p) where E
is id are implicitly expressible in SHACL by writing the equality or disjointness constraint
in node shapes, rather than property shapes.

A vocabulary Σ is a subset of N ∪ P . A path expression is said to be over Σ if it only
uses property names from Σ. Likewise, a shape is over Σ if it only uses constants from Σ
and path expressions over Σ.

Following common practice in logic, shapes are evaluated in interpretations. We recall
the familiar definition of an interpretation. Let Σ be a vocabulary. An interpretation I over
Σ consists of

3In practice, node names and property names are IRIs [RDF14], so the disjointness assumption would not
hold. However, this assumption is only made for simplicity of notation; it can be avoided if we make our
notation for vocabularies and interpretations (see below) more complicated.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:5

E JEKI

id {(x, x) | x ∈ ∆I}
p− {(a, b) | (b, a) ∈ JpKI}
E1 ∪ E2 JE1KI ∪ JE2KI

E1/E2 {(a, b) | ∃x : (a, x) ∈ JE1KI ∧ (x, b) ∈ JE2KI}
E∗ the reflexive-transitive closure of JEKI

Table 1: Semantics of path expressions.

ϕ I, a ⊨ ϕ if:

{c} a = JcKI

≥nE.ψ ♯{b ∈ JEKI(a) | I, b ⊨ ψ} ≥ n
eq(E, p) the sets JEKI(a) and JpKI(a) are equal
disj (E, p) the sets JEKI(a) and JpKI(a) are disjoint
closed(R) JpKI(a) is empty for each p ∈ Σ−R

Table 2: Conditions for conformance of a node to a shape.

• a set ∆I , called the domain of I;
• for each constant c ∈ Σ, an element JcKI ∈ ∆I ; and
• for each property name p ∈ Σ, a binary relation JpKI on ∆I .

The semantics of shapes is now defined as follows.

• On any interpretation I as above, every path expression E over Σ evaluates to a binary
relation JEKI on ∆I , defined in Table 1.
• Now for any shape ϕ over Σ and any element a ∈ ∆I , we define when a conforms to ϕ in I,
denoted by I, a ⊨ ϕ. For the boolean operators ⊤ (true), ∧ (conjunction), ∨ (disjunction),
¬ (negation), the definition is obvious. For the other constructs, the definition is given in
Table 2, taking note of the following:
– We use the notation R(x), for a binary relation R, to denote the set {y | (x, y) ∈ R}.
We apply this notation to the case where R is of the form JEKI .

– We also use the notation ♯X for the cardinality of a set X.
• For a shape ϕ and interpretation I, the notation

JϕKI := {a ∈ ∆I | I, a ⊨ ϕ}
will be convenient.

Example 2.4. In the Introduction we already gave three examples (1), (2), and (3) of
shapes expressed in English and the formal syntax. The target query of example (7) from
the Introduction can be expressed as the shape ∃email−.⊤. The shape of example (7) can
be written as ≤1 email−.⊤.

2.2. Graphs and their interpretation. Remember from Table 2 that a shape closed(R)
states that the focus node may only have outgoing properties that are mentioned in R. It
may appear that such a shape is simply expressible as the conjunction of ¬∃p.⊤ for p ∈ Σ−R.
However, since shapes must be finite formulas, this only works if Σ is finite. In practice,

16:6 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

a m1 b m2

email emailemail

Figure 1: An example graph Gex

shapes can be evaluated over arbitrary RDF graphs, which can involve arbitrary property
names (and node names), not limited to a finite vocabulary that is fixed in advance.

Formally, we define a graph as a finite set of triples of the form (a, p, b), where p is a
property name and a and b are (not necessarily distinct) node names. We refer to the node
names appearing in a graph G simply as the nodes of G; the set of nodes of G is denoted by
NG. A pair (a, b) with (a, p, b) ∈ G is referred to as an edge, or a p-edge, in G.

We now canonically view any graph G as an interpretation over the full vocabulary
N ∪ P as follows:

• ∆G equals N (the universe of all node names).
• JcKG equals c itself, for every node name c.
• JpKG equals the set of p-edges in G, for every property name p.

Note that since graphs are finite, JpKG will be empty for all but a finite number of p’s.
Given this canonical interpretation, path expressions and shapes obtain a semantics on

all graphs G. Thus for any path expression E, the binary relation JEKG on N is well-defined;
for any shape ϕ and a ∈ N , it is well-defined whether or not G, a ⊨ ϕ; and we can also use
the notation JϕKG.

Remark 2.5. Since a graph is considered to be an interpretation with the infinite domain
N , it may not be immediately clear that shapes can be effectively evaluated over graphs.
Adapting well-known methods, however, we can reduce to a finite domain over a finite
vocabulary [AHV95, Theorem 5.6.1], [AGSS86, HS94]. Formally, let ϕ be a shape and let G
be a graph. Recall that NG denotes the set of nodes of G; similarly, let PG be the set of
property names appearing in G. Let C be the set of constants mentioned in ϕ. We can then
form the finite vocabulary Σ = NG ∪ C ∪ PG. Now define the interpretation I over Σ as
follows:

• ∆I = NG ∪ C ∪ {⋆}, where ⋆ is an element not in N ;
• JcKI = c for each node name c ∈ Σ;
• JpKI = JpKG for each property name p ∈ Σ.

Note that no constant symbol names ⋆ in I. Then for every x ∈ NG ∪ C, one can show that
x ∈ JϕKG if and only if x ∈ JϕKI . For all other node names x, one can show that x ∈ JϕKG if
and only if ⋆ ∈ JϕKI .

Example 2.6 (Example 2.4 continued). Consider the graph Gex depicted in Figure 1. This
graph can be seen as the interpretation Iex with an infinite domain containing the elements
a, b, m1, and m2. It interprets the predicate name email as {(a,m1), (b,m1), (b,m2)} and
all other predicate names as the empty set. If we look at the interpretation of exam-
ple (7) from the Introduction in Iex , we have J≤1 email−.⊤KIex = {m1} for the shape, and
J∃email−.⊤KIex = {m1,m2} for the target.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:7

2.3. Targets and shape schemas. SHACL identifies four special forms of shapes and calls
them targets:

Node targets: {c} for any constant c.
Class-based targets: ∃type/subclass∗.{c} for any constant c. Here, type and subclass

represent distinguished IRIs from the RDF Schema vocabulary [RDF14].
Subjects-of targets: ∃p.⊤ for any property name p.
Objects-of targets: ∃p−.⊤ for any property name p.

We now define a generalized shape schema (or shape schema for short) as a finite set of
inclusion statements, where an inclusion statement is of the form ϕ1 ⊆ ϕ2, with ϕ1 and ϕ2
shapes. A target-based shape schema is a shape schema that only uses targets, as defined
above, on the left-hand sides of its inclusion statements. This restriction corresponds to the
shape schemas considered in real SHACL.

As already explained in the Introduction, a graph G conforms to a shape schema S,
denoted by G ⊨ S, if Jϕ1KG is a subset of Jϕ2KG, for every statement ϕ1 ⊆ ϕ2 in S.

Thus, any shape schema S defines the class of graphs that conform to it. We denote
this class of graphs by

JSK := {graph G | G ⊨ S}.
Accordingly, two shape schemas S1 and S2 are said to be equivalent if JS1K = JS2K.

Example 2.7 (Example 2.6 continued). Constraint (7) from the Introduction can be written
as:

∃email−.⊤ ⊆ ≤1 email.⊤
We can see that Gex does not satisfy the constraint, because {m1,m2} ̸⊆ {m2}. How-
ever, if we remove the triple (b, email,m1) from Gex, then the shape is interpreted as
J≤1 email.⊤KIex = {m1,m2} and the constraint does hold, as {m1,m2} ⊆ {m1,m2}.

3. Expressiveness of SHACL features

When a complicated but influential new tool is proposed in the community, in our case
SHACL, we feel it is important to have a solid understanding of its design. Concretely,
as motivated in the Introduction, our goal is to obtain a clear picture of the relative
expressiveness of the features eq , disj , and closed . Our methodology is as follows.

A feature set F is a subset of {eq , disj , closed}. The set of all shape schemas using only
features from F , besides the standard constructs, is denoted by L(F). In particular, shape
schemas in L(∅) use only the standard constructs and none of the three features. Specifically,
they only involve shapes built from boolean connectives, constants, and qualified number
restrictions, with path expressions built from property names, id and the standard operators
union, composition, and Kleene star.

We say that feature set F1 is subsumed by feature set F2, denoted by F1 ⪯ F2, if every
shape schema in L(F1) is equivalent to some shape schema in L(F2). As it will turn out,

F1 ⪯ F2 ⇔ F1 ⊆ F2, (∗)
or intuitively, “every feature counts.” Note that the implication from right to left is trivial,
but the other direction is by no means clear from the outset.

More specifically, for every feature, we introduce a class of graphs, as follows. In what
follows we fix some property name r.

16:8 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Equality: Qeq is the class of graphs where all r-edges are symmetric. Note that Qeq is
definable in L(eq) by the single, target-based, inclusion statement ∃r.⊤ ⊆ eq(r−, r).

Disjointness: Qdisj is the class of graphs where all nodes with an outgoing r-edge have
at least one symmetric r-edge. This time, Qdisj is definable in L(disj), by the single,
target-based, inclusion statement ∃r.⊤ ⊆ ¬disj (r−, r).

Closure: Qclosed is the class of graphs where for all nodes with an outgoing r-edge, all
outgoing edges have label r. Again Qclosed is definable in L(closed) by the single,
target-based, inclusion statement ∃r.⊤ ⊆ closed(r).

We establish the following theorem, from which the above equivalence (∗) immediately
follows:

Theorem 3.1. Let X ∈ {eq , disj , closed} and let F be a feature set with X /∈ F . Then QX

is not definable in L(F).

For X = closed , Theorem 3.1 is proven differently than for the other two features. First,
we deal with the remaining features through the following concrete result, illustrated in
Figure 2. The formal definition of the graphs illustrated in Figure 2 for X = disj will be
provided in Definition 3.8.

Proposition 3.2. Let X = disj or eq. Let Σ be a finite vocabulary including r, and let m
be a nonzero natural number. There exist two graphs G and G′ with the following properties:

(1) G′ belongs to QX , but G does not.
(2) For every shape ϕ over Σ such that ϕ does not use X, and ϕ counts to at most m, we

have

JϕKG = JϕKG
′
.

Here, “counting to at most m” means that all quantifiers ≥n used in ϕ satisfy n ≤ m.
For X = eq , this proposition is reformulated as Proposition 3.12, and for X = disj , this
proposition is reformulated as Proposition 3.15.

To see that Proposition 3.2 indeed establishes Theorem 3.1 for the three features under
consideration, we use the notion of validation shape of a shape schema. This shape evaluates
to the set of all nodes that violate the schema. Thus, the validation shape is an abstraction
of the “validation report” in SHACL [SHA17]: a graph conforms to a schema if and only
if the validation shape evaluates to the empty set. The validation shape can be formally
constructed as the disjunction of ϕ1 ∧ ¬ϕ2 for all statements ϕ1 ⊆ ϕ2 in the schema.

Now consider a shape schema S not using feature X. Let m be the maximum count
used in shapes in S, and let Σ′ be the set of constants and property names mentioned in S.
Now given Σ = Σ′∪{r} and m, let G and G′ be the two graphs exhibited by the Proposition,
and let ϕ be the validation shape for S. Then ϕ will evaluate to the same result on G and
G′. However, for S to define QX , validation would have to return the empty set on G′ but a
nonempty set on G. We conclude that S does not define QX .

We will prove Proposition 3.2 for X = disj in Section 3.2, and X = eq in Section 3.3.
We will show Theorem 3.1 for X = closed in Section 3.4. However, we first need to establish
some preliminaries on path expressions.

3.1. Preliminaries on path expressions. We call a path expression E equivalent to a
path expression E′ when for every graph G, JEKG = JE′KG. We call a path expression E
id-free whenever id is not present in the expression.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:9

X G G′

eq ✖	

disj

Figure 2: Graphs used to prove Proposition 3.2. The nodes are taken outside Σ. For X = eq ,
the cloud shown for G′ represents a complete directed graph on m+1 nodes, with
self-loops, and G is the same graph with one directed edge removed. For X = disj ,
in the picture for G, each cloud again stands for a complete graph, but this time
on M = max(m, 3) nodes, and without the self-loops. Each oval stands for a set
of M separate nodes. An arrow from one blob to the next means that every node
of the first blob has a directed edge to every node of the next blob. So, G is a
directed 4-cycle of alternating clouds and ovals, and G′ is a directed 4-cycle of
clouds.

Lemma 3.3. Every path expression E is equivalent to: id, or E′ ∪ id, or E′ where E′ is an
id-free path expression.

Proof. The proof is by induction on the structure of E. When E is id-free or id , the claim
directly follows. We consider the following inductive cases:

• E is E1/E2. By induction, we consider nine cases. When both E1 and E2 are id -free, E
is id -free. Whenever E1 is id , clearly E is equivalent to E2. Analogously, whenever E2 is
id , E is equivalent to E1.

Consider the two cases where E1 is E
′
1∪id with E′

1 an id -free path expression. First, when
E2 is E

′
2∪id with E′

2 an id -free path expression, then E is equivalent to E′
1/E

′
2∪E′

1∪E′
2∪id

which is of the form E′ ∪ id with E′ the id -free path expression E′
1/E

′
2 ∪E′

1 ∪E′
2. Second,

when E2 is id -free, E is equivalent to E′
1/E2 ∪ E2 which is id -free.

Finally, consider the two case where E1 is id -free and E2 is E′
2 ∪ id with E′

2 an id -free
path expression, then E is equivalent to E1/E

′
2 ∪ E1 which is id -free.

• E is E1 ∪ E2. This case follows immediately by induction.
• E is E∗

1 . There are three cases. When E1 is id , E is equivalent to id . When E1 is E′
1 ∪ id

with E′
1 an id -free path expression, then E is equivalent to E′∗

1 and clearly E′∗
1 is id -free.

Lastly, when E1 is id-free, clearly E is as well.

We also need the notion of “safe” path expressions together with the following Lemma,
detailing how path expressions can behave on the nodes outside a graph. One can divide all
path expressions into the “safe” and the “unsafe” ones.

Definition 3.4 (Safety). A path expression is safe if one of the following conditions holds:

16:10 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

• E is p or p− with p a property name
• E is E1 ∪ E2 and both E1 and E2 are safe
• E is E1/E2 and at least one of E1 or E2 is safe

Otherwise, E is unsafe.

Lemma 3.5. Let E be an id-free path expression and let G be a graph.

• If E is safe, then JEKG ⊆ NG ×NG.
• If E is unsafe, then JEKG = (JEKG ∩NG ×NG) ∪ {(a, a) | a ∈ N −NG}.

Proof. By induction. If E is a property name or its inverse, then the claim clearly holds.
Now assume E is of the form E1 ∪ E2. The cases where both E1 and E2 are safe, or both
are unsafe, are clear by induction. If E1 is safe but E2 is not, then JEKG = JE1KG ∪ JE2KG =
(JE1KG∩NG×NG)∪(JE2KG∩NG×NG)∪{(a, a) | a ∈ N−NG} = JEKG∩(NG×NG)∪{(a, a) |
a ∈ N −NG}. The same reasoning can be used when E2 is safe but E1 is not.

Next, assume E is of the form E1/E2. Furthermore assume E1 is safe, so that E is safe.
Let (x, y) ∈ JEKG. Then there exists z such that (x, z) ∈ JE1KG and (z, y) ∈ JE2KG. Since E1

is safe, x and z are in NG. Now regardless of whether E2 is safe or not, since (z, y) ∈ JE2KG
and z ∈ NG, we get y ∈ NG as desired. The same reasoning can be used when E2 is safe.

If E is not safe, we verify that JEKG = (JEKG ∩ NG × NG) ∪ {(a, a) | a ∈ N − NG}.
For the inclusion from left to right, take (x, y) ∈ JEKG. Then there exists z such that
(x, z) ∈ JE1KG and (z, y) ∈ JE2KG. By induction, there are four cases. If both (x, z) and
(z, y) are in NG × NG, then clearly (x, y) ∈ JEKG ∩ NG × NG. If both (x, z), (z, y) are in
{(a, a) | a ∈ N −NG} clearly (x, y) ∈ {(a, a) | a ∈ N −NG}. Lastly, the two cases where one
of (x, z) and (z, y) is in NG ×NG and the other in {(a, a) | a ∈ N −NG}, are not possible.

For the inclusion from right to left, take (x, y) ∈ JEKG∩(NG×NG)∪{(a, a) | a ∈ N−NG}.
If (x, y) ∈ JEKG ∩ NG × NG then (x, y) ∈ JEKG. Otherwise, (x, y) = (a, a) for some
a ∈ N − NG. Then (a, a) ∈ JE1KG and (a, a) ∈ JE2KG since E1 and E2 are not safe. We
conclude (a, a) ∈ JE1/E2KG as desired.

Next, assume E is of the form E∗
1 . Note that E is unsafe. By definition of Kleene

star, we only need to verify that JEKG ⊆ (JEKG ∩NG ×NG) ∪ {(a, a) | a ∈ N −NG}. Let
(x, y) ∈ JEKG. If x = y, the claim clearly holds. Otherwise, we consider two cases:

• If E1 is safe, we know JE1KG ⊆ NG × NG. Clearly the reflexive-transitive closure of a
subset of NG ×NG is also a subset of NG ×NG. Therefore, (x, y) ∈ NG ×NG as desired.
• If E1 is unsafe, then by induction JE1KG = (JE1KG ∩NG ×NG) ∪ {(a, a) | a ∈ N −NG}.
As x ̸= y we know (x, y) is in the reflexive-transitive closure of JE1KG ∩NG ×NG which is
a subset of NG ×NG.

Lastly, we define the notion of a string, together with the following Lemma, detailing a
convenient property of path expressions.

Definition 3.6. A string s is a path expression of the form: id , or s′/p or s′/p− where s′ is
a string and p is a property name.

Lemma 3.7. For every path expression E and every natural number n, there exists a
finite non-empty set of strings U s.t. for every graph G with at most n nodes we have
JEKG =

⋃
s∈U JsKG.

The proof of Lemma 3.7 can be found in the appendix.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:11

3.2. Disjointness. We present here the proof for X = disj . The general strategy is to first
characterize the behavior of path expressions on G and G′. Then the Proposition is proven
with a stronger induction hypothesis, to allow the induction to carry through. A similar
strategy is followed in the proof for X = eq .

We begin by defining the graphs G and G′ more formally.

Definition 3.8 (Gdisj (Σ,m)). Let Σ be a finite vocabulary including r, and let m be a
natural number. We define the graph Gdisj (Σ,m) over the set of property names in Σ
as follows. Let M = max(m, 3). There are 4M nodes in the graph, which are chosen

outside of Σ. We denote these nodes by xji for i = 1, 2, 3, 4 and j = 1, . . . ,M . (In
the description that follows, subscripts range from 1 to 4 and superscripts range from
1 to M .) For each property name p in Σ, the graph has the same set of p-edges. We

describe these edges next. There is an edge from xji to xj
′

i mod 4+1 for every i, j and j′.

Moreover, if i is 2 or 4, there is an edge from xji to xj
′

i for all j ̸= j′. So, formally, we

have: Gdisj (Σ,m) := {(xji , p, x
j′

i mod 4+1) | i ∈ {1, . . . , 4} and j, j′ ∈ {1, . . . ,M} and p ∈
Σ ∩ P} ∪ {(xji , p, x

j′

i) | i ∈ {1, . . . , 4} and j, j′ ∈ {1, . . . ,M} and j ̸= j′ and p ∈ Σ ∩ P}.

Thus, in Figure 2, bottom left, one can think of the left oval as the set of nodes xj1; the

top cloud as the set of nodes xj2; and so on. We call the nodes xji with i = 2, 4 the even

nodes, and the nodes xji with i = 1, 3 the odd nodes.

Definition 3.9 (G′
disj (Σ,m)). We define the graphG′

disj (Σ,m) in the same way asGdisj (Σ,m)

except that there is an edge from xji to xj
′

i for all i and j ̸= j′ (not only for even i values).

We characterize the behavior of path expressions on the graph Gdisj (Σ,m) as follows.

Lemma 3.10. Let G be Gdisj (Σ,m). Call a path expression simple if it is a union of
expressions of the form s1/ . . . /sn, where n ≥ 1 and one of the si is a property name while
the other si are “id”. Let E be a non-simple, id-free path expression over Σ. The following
three statements hold:

(1) (A) for all even nodes v of G, we have JEKG(v) ⊇ JrKG(v); or
(B) for all even nodes v of G, we have JEKG(v) ⊇ Jr−KG(v).

(2) (C) for all odd nodes v of G, we have JEKG(v) ⊇ JrKG(v); or
(D) for all odd nodes v of G, we have JEKG(v) ⊇ Jr−KG(v).

(3) For all nodes v of G, we have JEKG(v)− JrKG(v) ̸= ∅.
Proof. For i = 1, 2, 3, 4, define the i-th blob of nodes to be the set Xi = {x1i , . . . , xMi } (see
Figure 2). We also use the notations next(1) = 2; next(2) = 3; next(3) = 4; next(4) = 1;
prev(4) = 3; prev(3) = 2; prev(2) = 1; prev(1) = 4. Thus next(i) indicates the next blob in
the cycle, and prev(i) the previous.

The proof is by induction on the structure of E. If E is a property name, E is simple so
the claim is trivial. If E is of the form p−, cases B and D are clear and we only need to
verify the third statement. That holds because for any i, if v ∈ Xi, then Jp−KG(v) ⊇ Xprev(i)

and clearly Xprev(i) − JrKG(v) ̸= ∅. We next consider the inductive cases.
First, assume E is of the form E1∪E2. When at least one of E1 and E2 is not simple, the

three statements immediately follow by induction, since JEKG ⊇ JE1KG and JEKG ⊇ JE2KG.
If E1 and E2 are simple, then E is simple and the claim is trivial.

Next, assume E is of the form E∗
1 . If E1 is not simple, the three statements follow

immediately by induction, since JEKG ⊇ JE1KG. If E1 is simple, cases A and C clearly hold

16:12 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

for E, so we only need to verify the third statement. That holds because, by the form of E,
every node v is in JEKG(v), but not in JrKG(v), as G does not have any self-loops.

Finally, assume E is of the form E1/E2. Note that if E1 or E2 is simple, clearly cases A
and C apply to them. The argument that follows will therefore also apply when E1 or E2 is
simple. We will be careful not to apply the induction hypothesis for the third statement to
E1 and E2.

We first focus on the even nodes, and show the first and the third statement. We
distinguish two cases.

• If case A applies to E2, then we show that case A also applies to E. Let v ∈ Xi be an
even node. We verify the following two inclusions:
– JEKG(v) ⊇ Xi. Let u ∈ Xi. If u ̸= v, choose a third node w ∈ Xi. Since Xi is a clique,
(v, w) ∈ JE1KG regardless of whether case A or B applies to E1. By case A for E2, we
also have (w, u) ∈ JE2KG, whence u ∈ JEKG(v) as desired. If u = v, we similarly have
(v, w) ∈ JE1KG and (w, u) ∈ JE2KG as desired.

– JEKG(v) ⊇ Xnext(i). Let u ∈ Xnext(i) and choose w ̸= v ∈ Xi. Regardless of whether

case A or B applies to E1, we have (v, w) ∈ JE1KG. By case A for E2, we also have
(w, u) ∈ JE2KG, whence u ∈ JEKG(v) as desired.

We conclude that JEKG(v) ⊇ Xi ∪Xnext(i) ⊇ JrKG as desired.
• If case B applies to E2, then we show that case B also applies to E. This is analogous to
the previous case, now verifying that JEKG(v) ⊇ Xi ∪Xprev(i).

In both cases, the third statement now follows for even nodes v. Indeed, v ∈ Xi ⊆
JEKG(v) but v /∈ JrKG(v).

We next focus on the odd nodes, and show the second and the third statement. We
again consider two cases.

• If case C applies to E1, then we show that case C also applies to E. Let v ∈ Xi be
an odd node. Note that JrKG(v) = Xnext(i). To verify that JEKG(v) ⊇ Xnext(i), let
u ∈ Xnext(i). Then u is even. Choose w ̸= u ∈ Xnext(i). Since case C applies to E1, we

have (v, w) ∈ JE1KG. Moreover, since Xnext(i) is a clique, (w, u) ∈ JE2KG regardless of

whether case A or B applies to E2. We obtain (v, u) ∈ JEKG as desired.

We also verify the third statement for odd nodes in this case. We distinguish two further
cases.
– If case A applies to E2, any node u ∈ Xnext(next(i)) belongs to JEKG(v), and clearly these

u are not in Xnext(i) = JrKG(v).
– If case B applies to E2, then, since Xi is a clique, any node u ∈ Xi belongs to JEKG(v),

and again these u are not in Xnext(i).
• If case D applies to E1, then we show that case D also applies to E. This is analogous to
the previous case, now verifying that JEKG(v) ⊇ Xprev(i). In this case the third statement
for odd nodes is clear, as clearly Xprev(i) −Xnext(i) ̸= ∅.

We similarly characterize the behavior of path expressions on the other graph.

Lemma 3.11. Let G′ be G′
disj (Σ,m) and let E be a non-simple, id-free path expression over

Σ. The following statements hold:

(1) JEKG′ ⊇ JrKG′
or JEKG′ ⊇ Jr−KG′

.

(2) For all nodes v of G′, we have JEKG′
(v)− JrKG′

(v) ̸= ∅.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:13

Proof. The proof is similar to the proof of Lemma 3.10, but simpler due to the homogeneous
nature of the graph G′. We omit the proof.

We are now ready to prove the non-obvious part of Proposition 3.2 where X = disj . We
use the following version of the proposition.

Proposition 3.12. Let V be the common set of nodes of the graphs G = Gdisj (Σ,m) and
G′ = G′

disj (Σ,m). Let ϕ be a shape over Σ that does not use disj , and that counts to at most

m. Then either JϕKG ∩ V = ∅ or JϕKG ⊇ V . Moreover, JϕKG = JϕKG′
.

Proof. This is proven by induction on the structure of ϕ. Let H be G or G′. If ϕ is ⊤, then
J⊤KH = N ⊇ V . If ϕ is {c}, then J{c}KH = {c} ⊆ Σ and we know that Σ ∩ V = ∅. Next
assume ϕ is of the form eq(E, p). Using Lemma 3.3, we distinguish four different cases for E.

• E is id . According to Lemma 3.10 and Lemma 3.11 JEKH will always contain either
JpKH or Jp−KH . In both cases, JEKH(v) clearly never equals JidKH(v) = {v}. Therefore,
JϕKH ∩ V = ∅.
• E is E′ ∪ id where E′ is id -free or E itself is id -free and non-simple. Lemmas 3.10 and
3.11 tell us that JEKH(v)− JrKH(v) ̸= ∅ for every v ∈ V . Since JrKH = JpKH , this means

H, v ⊭ ϕ for v ∈ V , or, equivalently, JϕKG ∩ V = ∅. To see that, moreover, JϕKG = JϕKG′
,

it remains to show that G, v ⊨ ϕ iff G′, v ⊨ ϕ for all node names v /∈ V .
• E is id -free and simple. Then JEKH = JpKH , so clearly JϕKH = N ⊇ V .

We still need to show JϕKG = JϕKG′
. Clearly, JpKG(v) = JpKG′

(v) = ∅. Now by Lemma 3.5, if

E is safe, then also JEKG(v) = JEKG′
(v) = ∅, so G, v ⊨ ϕ and G′, v ⊨ ϕ. On the other hand,

if E is unsafe, then by the same Lemma JEKG(v) = JEKG′
(v) = {v} ≠ ∅, so G, v ⊭ ϕ and

G′, v ⊭ ϕ, as desired.
As the final base case, assume ϕ is of the form closed(R). If Σ contains a property name

p not in R, then JϕKH ∩ V = ∅, since every node in H has an outgoing p-edge. Otherwise,
i.e., if Σ ⊆ R, we have JϕKH ⊇ V , since every node in H has only outgoing edges labeled

by property names in Σ. To see that, moreover, JϕKG = JϕKG′
, it suffices to observe that

trivially H, v ⊨ ϕ for all node names v /∈ V .
We next consider the inductive cases. The cases for the boolean connectives follow

readily by induction. Finally, assume ϕ is of the form ≥nE.ϕ1. By induction, there are two
possibilities for ϕ1:

• If Jϕ1KH ∩ V = ∅, then also JϕKH ∩ V = ∅ since path expressions can only reach nodes in
some graph from nodes in that graph.
• If Jϕ1KH ⊇ V , we distinguish three cases using Lemma 3.3. First, when E is id , then if
n = 1, JϕKH ⊇ V . Otherwise, if n ̸= 1, then JϕKH = ∅. Next, when E is id -free or E′ ∪ id
with E′ an id -free path expression, it suffices to show that ♯JE′KH(v) ≥ n for all v ∈ V . By
Lemmas 3.10 and 3.11 we know that JE1KH(v) contains JrKH(v) or Jr−KH(v). Inspecting
H, we see that each of these sets has at least max(3,m) ≥ n elements, as desired. Finally,
when E is equivalent to an id -free path expression or whenever E simply does not use id ,
the argument is analogous to the previous case.

In both cases we still need to show that JϕKG = JϕKG′
. We already showed that JϕKG ⊇ V

and JϕKG′ ⊇ V , or JϕKG ∩ V = ∅ and JϕKG′ ∩ V = ∅. Therefore, towards a proof of the
equality, we only need to consider the node names not in V .

For the inclusion from left to right, take x ∈ JϕKG − V . Since G, x ⊨ ϕ, there exist y1,
. . . , yn such that (x, yi) ∈ JEKG and G, yi ⊨ ϕ1 for i = 1, . . . , n. However, since x /∈ V , by

16:14 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Lemma 3.5, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x ⊨ ϕ1. Then

again by the same Lemma, (x, x) ∈ JEKG′
, since G and G′ have the same set of nodes V .

Moreover, by induction, G′, x ⊨ ϕ1. We conclude that G′, x ⊨ ϕ as desired. The inclusion
from right to left is argued symmetrically.

3.3. Equality. Next, we turn our attention to Proposition 3.2 for X = eq . We define the
graphs from Figure 2 formally.

Definition 3.13. Let Σ be a finite vocabulary including r, and let m be a natural number.
Choose a set V of node names outside Σ, of cardinality M := max(3,m + 1). Fix two
arbitrary nodes a and b from V . We define the graph Geq(Σ) over the set of property names
from Σ as follows. For each property name p in Σ, the set of p-edges in Geq(Σ) equals
V × V − (b, a). We define the graph G′

eq(Σ) similarly, but with V × V as the set of p-edges.

So, G′
eq(Σ,m) is a complete graph, and Geq(Σ,m) is a complete graph with one edge

(b, a) removed.

Lemma 3.14. Let E be an id-free path expression over Σ and let H = Geq(Σ,m) or
G′

eq(Σ,m). Then

A. JEKH ⊇ JrKH , or
B. JEKH ⊇ Jr−KH .

Proof. The claim is obvious for G′
eq(Σ,m), being a complete graph. So we focus on the

graph Geq(Σ,m). The proof is by induction. If E is a property name or its inverse, the
claim is clear. If E is of the form E1 ∪ E2, the claim is immediate by induction.

Assume E is of the form E1/E2. We show that A applies.4 If A applies to E1, this is
clear, since we can follow any edge by E1 and then stay at the head of the edge by E2 using
the self-loop. If B applies to E1, the same can still be done for all edges except for (a, b),
which is the only nonsymmetrical edge. To go from a to b by E, we go by E1 from a to a
node c distinct from a and b, then go by E2 from c to b.

If E is of the form E∗
1 , again A applies, since E∗

1 contains E1/E1.

We are now ready to prove the non-obvious part of Proposition 3.2 where X = eq . We
use the following version of the proposition.

Proposition 3.15. Let G be Geq(Σ,m) and let G′ be G′
eq(Σ,m). Let ϕ be a shape over Σ

that does not use eq and that counts to at most m. Then either JϕKG ∩ V = ∅ or JϕKG ⊇ V .

Moreover, JϕKG = JϕKG′
.

Proof. This is proven by induction on the structure of ϕ. Let H be G or G′. We focus
directly on the relevant cases. Assume ϕ is of the form disj (E1, E2). Lemma 3.14 clearly
yields that JϕKH ∩ V = ∅. It again remains to verify that G, v ⊨ ϕ iff G′, v ⊨ ϕ for all node
names v /∈ V . By Lemma 3.5, for such v and H = G or G′, we indeed have H, v ⊨ ϕ if
exactly one of E1 and E2 is safe. If both are safe or both are unsafe, we have H, v ⊭ ϕ.

The last base case of interest is the case where ϕ is of the form closed(R). This goes
again exactly as in the proof for X = disj .

We next consider the inductive cases. The cases for the boolean connectives follow
readily by induction. Finally, assume ϕ is of the form ≥nE.ϕ1. By induction, there are two
possibilities for ϕ1:

4Actually, JEKG always contains V × V in this case, but we do not need this.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:15

• If Jϕ1KG ∩ V = ∅ then JϕKG ∩ V = ∅ since path expressions can only reach nodes in some
graph from nodes in that graph.
• If Jϕ1KH ⊇ V , we distinguish three cases using Lemma 3.3. First, when E is id , then if
n = 1, JϕKH ⊇ V . Otherwise, if n ̸= 1, then JϕKH = ∅. Next, when E is id -free or E′ ∪ id
with E′ an id -free path expression, it suffices to show that ♯JE′KH(v) ≥ n for all v ∈ V .
By Lemma 3.14, we know that JEKH(v) contains JrKH(v) or Jr−KH(v). These sets contain
at least M − 1 ≥ m ≥ n elements as desired. (The number M − 1 is reached only when H
is G and v = b or v = a; otherwise the sets contain M elements.)

The equality JϕKG = JϕKG′
is shown in the same way as in the proof for X = disj

(Section 3.2).

3.4. Closure. Without using closed , shapes cannot say anything about properties that they
do not explicitly mention. We formalize this intuitive observation as follows. The proof is
straightforward.

Lemma 3.16. Let Σ be a vocabulary, let E be a path expression over Σ, and let ϕ be a
shape over Σ that does not use closed. Let G1 and G2 be graphs such that JpKG1 = JpKG2 for
every property name p in Σ. Then JEKG1 = JEKG2 and JϕKG1 = JϕKG2.

Theorem 3.1 now follows readily for X = closed . Let F be a feature set without closed ,
let S be a shape schema in L(F), and let ϕ be the validation shape of S. Let p be a property
name not mentioned in S, and different from r. Consider the graphs G = {(a, r, a), (a, p, a)}
and G′ = {(a, r, a)}, so that G′ belongs to Qclosed but G does not. By Lemma 3.16 we have

JϕKG = JϕKG′
, showing that S does not define Qclosed .

Remark 3.17. Lemma 3.16 fails completely in the presence of closure constraints. The
simplest counterexample is to consider Σ = ∅ and the shape closed(∅). Trivially, any two
graphs agree on the property names from Σ. However, Jclosed(∅)KG, which equals the set of
node names that do not have an outgoing edge in G (they may still have an incoming edge),
obviously depends on the graph G.

The reader may wonder if this statement still holds under active domain semantics. In
such semantics, which we denote by JϕKGadom , we would view G as an interpretation with
domain not the whole of N ; rather we would take as domain the set NG ∪C, with C the set
of constants mentioned in ϕ. When assuming active domain semantics, a modified lemma is
required. To see this, consider the graph G = {(a, p, b)} and G′ = {(a, p, b), (a, q, c)}. Let ϕ
simply be ⊤. We have JϕKGadom = {a, b} and JϕKG′

adom = {a, b, c}, so Lemma 3.16 no longer
holds. We can, however, give the following more refined variant of Lemma 3.16:

Lemma 3.18. Let Σ be a vocabulary, let E be a path expression over Σ, and let ϕ be a shape
over Σ that does not use closed. Let I1 and I2 be interpretations such that JpKI1 = JpKI2
for every property name p in Σ. Then JEKI1 ∩ ∆I2 × ∆I2 = JEKI2 ∩ ∆I1 × ∆I1 and
JϕKI1 ∩∆I2 = JϕKI2 ∩∆I1.

The same reasoning as given after Lemma 3.16, now using the new Lemma, then shows
that closed is still primitive under active domain semantics.

16:16 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

4. Are target-based shape schemas enough?

Lemma 3.16 also allows us to clarify that, as far as expressive power is concerned, and
in the absence of closure constraints, the restriction to target-based shape schemas is
inconsequential.

Theorem 4.1. Every generalized shape schema that does not use closure constraints is
equivalent to a target-based shape schema (that still does not use closure constraints).

In order to prove this theorem, we first establish the following lemma.

Lemma 4.2. Let ϕ be a shape and let C be the set of constants mentioned in ϕ. Assume
there exists a graph G and a node name x /∈ NG ∪C such that G, x ⊨ ϕ. Then for any graph
H and any node name y /∈ NH ∪ C, also H, y ⊨ ϕ.

Proof. By induction on ϕ. The case where ϕ is of the form {c} cannot occur, and the case
where ϕ is ⊤ is trivial.

If ϕ is ϕ1 ∨ ϕ2 or ¬ϕ1, the claim follows readily by induction.
Now assume ϕ is of the form ≥nE.ϕ1. Then there exists x1, . . . , xn such that (x, xi) ∈

JEKG and G, xi ⊨ ϕ1 for i = 1, . . . , n. However, since x /∈ NG, by Lemma 3.5, all xi must
equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x ⊨ ϕ1. By the same Lemma, (y, y) ∈ JEKH ,
since y /∈ NH . Furthermore, by induction, H, y ⊨ ϕ1. We conclude that H, y ⊨ ϕ as desired.

Next, assume ϕ is eq(E, p). Since G, x ⊨ ϕ, but JpKG = ∅ since x /∈ NG, also JEKG(x) = ∅.
Then by Lemma 3.5, also JEKH(y) = ∅, since y /∈ NH . Furthermore, also JpKH(y) = ∅. We
conclude that H, y ⊨ ϕ as desired.

Next assume ϕ is disj (E, p). Then H, y ⊨ ϕ is clear. Indeed, since y /∈ NH , we have
JpKH(y) = ∅.

Finally, assume ϕ is closed(R). Then again H, y ⊨ ϕ is clear because y /∈ NH .

We can now show the theorem.

Proof of Theorem 4.1. Let ϕ be the validation shape for shape schema S, so that G ⊨ S if
and only if JϕKG is empty. Let C be the set of constants mentioned in ϕ.

Let us say that ϕ is internal if for every graph G and every node name v such that
G, v ⊨ ϕ, we have v ∈ NG ∪ C. If ϕ is not internal, then, using Lemma 4.2, for every graph
G and every node v /∈ NG ∪C, we have G, v ⊨ ϕ. Thus, if ϕ is not internal, S is unsatisfiable
and is equivalent to the single target-based inclusion {c} ⊆ ¬⊤, for an arbitrary constant c.

So now assume ϕ is internal. Define the target-based shape schema T consisting of the
following inclusions:

• For each constant c ∈ C, the inclusion {c} ⊆ ¬ϕ.
• For each property name mentioned in ϕ, the two inclusions ∃p.⊤ ⊆ ¬ϕ and ∃p−.⊤ ⊆ ¬ϕ.

We will show that S and T are equivalent. Let ψ be the validation shape for T .

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:17

Let G be any graph, and let G′ be the graph obtained from G by removing all triples
involving property names not mentioned in ϕ. We reason as follows:

G ⊨ S ⇔ JϕKG = ∅

⇔ JϕKG
′
= ∅ by Lemma 3.16

⇔ G′ ⊨ T since ϕ is internal

⇔ JψKG
′
= ∅

⇔ JψKG = ∅ by Lemma 3.16

⇔ G ⊨ T

Remark 4.3. Note that we do not need class-based targets in the proof, so such targets are
redundant on the left-hand sides of inclusions. This can also be seen directly: any inclusion

∃type/subclass∗.{c} ⊆ ϕ

with a class-based target is equivalent to the following inclusion with a subjects-of target:

∃type.⊤ ⊆ ¬∃type/subclass∗.{c} ∨ ϕ

Remark 4.4. Theorem 4.1 fails in the presence of closure constraints. For example, the
inclusion ¬closed(∅) ⊆ ∃r.⊤ defines the class of graphs where every node with an outgoing
edge has an outgoing r-edge. Suppose this inclusion would be equivalent to a target-based
shape schema S, and let R be the set of all property names mentioned in the targets of S.
Let p be a property name not in R and distinct from r; let a be a node name not used as a
constant in S; and consider the graph G = {(a, p, a)}. This graph trivially satisfies S, but
violates the inclusion.

5. Extensions for full equality and disjointness tests

A quirk in the design of SHACL is that it only allows equality and disjointness tests eq(E1, E2)
and disj (E1, E2) where E1 can be a general path expression, but E2 needs to be a property
name. The next question we can ask is whether allowing “full” equality or disjointness tests,
i.e., allowing a general path expression for E2, strictly increases the expressive power. Within
the community there are indeed plans to extend SHACL in this direction [Knu21, Jak22].

When we allow for such “full” equality and disjointness tests, it gives rise to two new
features: full -eq and full -disj . Formally, we extend the grammar of shapes with two new
constructs: eq(E1, E2) and disj (E1, E2).

Remark 5.1. We extend Remark 2.3 by noting that in real SHACL, we cannot explicitly
write the shapes eq(id , id) and disj (id , id). However, these shapes are equivalent to ⊤ and
¬⊤ respectively.

We are going to show that each of these new features strictly adds expressive power.
Concretely, we introduce the following classes of graphs.

Full equality: Qfull-eq is the class of graphs where all objects of a property name p do not
have the same subjects for p and q. Note that Qfull-eq is definable in L(full -eq) by the
single, target-based, inclusion statement ∃p−.⊤ ⊆ ¬eq(p−, q−).

16:18 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Full disjointness: Qfull-disj is the class of graphs where all objects of a property name p
do not have disjoint sets of subjects for p and q. Note that Qfull-disj is definable in
L(full -disj) by the single, target-based, inclusion statement ∃p−.⊤ ⊆ ¬disj (p−, q−).

In the spirit of Theorem 3.1, we are now going to show the following:

Theorem 5.2. Qfull-eq is not definable in L(eq , full -disj , closed) and Qfull-disj is not definable
in L(disj , full -eq , closed).

These two non-definability results are proven in the following Sections 5.1 and 5.2.
Then in Section 5.3 we will reconsider the non-definability results for non-full equality and
disjointness from Theorem 3.1 in the new light of their full versions.

5.1. Full equality. We present here the proof for the primitivity of full equality tests. The
general strategy is the same as in Section 3, where again we will prove appropriate versions
of Proposition 3.2.

We begin by defining the graphs G and G′ formally. Note that, as desired, G′ belongs
to Qfull-eq but G does not.

Definition 5.3. Gfull-eq(Σ,m) Let Σ be a finite vocabulary and let m ≥ 3 be a natural
number. Let A = {a1, . . . , am}, B = {b1, . . . , bm} and C = {c1, . . . , cm} be three disjoint
sets of nodes, disjoint from Σ. We define the graph Gfull-eq(Σ,m) to be JpKG = C × (A ∪B)

and JqKG = C ×A ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}.

Definition 5.4. G′
full-eq(Σ,m) We define the graph G′

full-eq(Σ,m) like Gfull-eq(Σ,m) but

JqKG = {(ci, aj) | i ̸= j ∈ {1, . . . ,m}} ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}.

We identify the possible types of strings on the graphs Gfull-eq(Σ,m) and G′
full-eq(Σ,m)

as follows.

Lemma 5.5. Let Σ be a vocabulary. Let m ≥ 3 be a natural number. Let G be Gfull-eq(Σ,m)
and let G′ be G′

full-eq(Σ,m). The only possibilities for a string s evaluated on G and G′ are
the following:

(1) JsKG = JpKG = JsKG′
= C × (A ∪B).

(2) JsKG = JqKG = (C ×A) ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m})} and
JsKG′

= JqKG′
= {(ci, aj) | i ̸= j ∈ {1, . . . ,m}} ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}.

(3) JsKG = Jp−KG = JsKG′
= (A ∪B)× C.

(4) JsKG = Jq−KG = (A× C) ∪ {(bi, cj) | i ̸= j ∈ {1, . . . ,m})} and
JsKG′

= Jq−KG′
= {(ai, cj) | i ̸= j ∈ {1, . . . ,m})} ∪ {(bi, cj) | i ̸= j ∈ {1, . . . ,m})}.

(5) JsKG = JsKG′
= C × C.

(6) JsKG = JsKG′
= (A ∪B)× (A ∪B).

(7) JsKG = JsKG′
= id.

(8) JsKG = JsKG′
= ∅.

Proof. We show this by systematically enumerating all strings until no new binary relations
can be found. Note that we only enumerate over strings that alternate between property
names and reversed property names. Indeed, all other strings evaluate to the empty relation
on both G and G′. Every time we encounter new binary relations, we put the string in
boldface.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:19

s JsKG JsKG′

id id id
p C × (A ∪B) C × (A ∪B)
q (C ×A) ∪ {(ci, aj) | i ̸= j ∈ {1, . . . ,m}} ∪

{(ci, bj) | i ̸= j ∈ {1, . . . ,m})} {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}
p− (A ∪B)× C (A ∪B)× C
q− (A× C) ∪ {(ai, cj) | i ̸= j ∈ {1, . . . ,m})} ∪

{(bi, cj) | i ̸= j ∈ {1, . . . ,m})} {(bi, cj) | i ̸= j ∈ {1, . . . ,m})}
p/p− C × C C × C
p/q− C × C C × C
q/p− C × C C × C
q/q− C × C C × C
p−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p/p−/p C × (A ∪B) C × (A ∪B)
p/p−/q C × (A ∪B) C × (A ∪B)
p−/p/p− (A ∪B)× C (A ∪B)× C
p−/p/q− (A ∪B)× C (A ∪B)× C

We are now ready to prove the key proposition.

Proposition 5.6. Let Σ be a vocabulary. Let m ≥ 3 be a natural number. Let V = A∪B∪C
be the common set of nodes of the graphs G = Gfull-eq(Σ,m) and G′ = G′

full-eq(Σ,m). For

all shapes ϕ over Σ counting to at most m− 1, we have JϕKG = JϕKG′
. Moreover,

• JϕKG ∩ V = A ∪B, or
• JϕKG ∩ V = C, or
• JϕKG ∩ V = V , or
• JϕKG ∩ V = ∅.

Proof. By induction on the structure of ϕ. For the base cases, if ϕ is ⊤ then J⊤KG = J⊤KG′
=

N and N ∩ V = V . If ϕ is {c}, then J{c}KG = J{c}KG′
= {c} and {c} ∩ V = ∅ since c ∈ Σ

and V ∩ Σ = ∅.
If ϕ is closed(Q), we consider the possibilities for Q. If Q does not contain both p and

q, then clearly JϕKG ∩ V = JϕKG′ ∩ V = A ∪B. Otherwise, JϕKG = JϕKG′
= N .

Before considering the remaining cases, we observe the following symmetries:

• All elements of A are symmetrical in G. This is obvious from the definition of G.
• Also in G′, all elements of A are symmetrical. Indeed, for any ai ̸= aj in A, the function
that swaps ai and aj , as well as ci and cj , is an automorphism of G′.
• Similarly, all elements of B are symmetrical in G, and also in G′.
• Moreover, we see that all elements of C are symmetrical in G, and in G′.
• Finally, in G′, any ai and bj are symmetrical. Indeed, the function that swaps ai and bi is
clearly an automorphism of G′. In turn, bi and bj are symmetrical by the above.

Therefore, we are only left to show:

(i) For any a ∈ A and b ∈ B, we have G, a ⊨ ϕ ⇐⇒ G, b ⊨ ϕ,

16:20 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

(ii) For any a ∈ A, we have G, a ⊨ ϕ ⇐⇒ G′, a ⊨ ϕ, and
(iii) For any c ∈ C, we have G, c ⊨ ϕ ⇐⇒ G′, c ⊨ ϕ.
(iv) For any x ̸∈ V , we have G, x ⊨ ϕ ⇐⇒ G′, x ⊨ ϕ.

Note that then also for any b ∈ B, we have G, b ⊨ ϕ ⇐⇒ G′, b ⊨ ϕ because for any a ∈ A
and b ∈ B, we have G, b ⊨ ϕ

(i)⇐⇒ G, a ⊨ ϕ
(ii)⇐⇒ G′, a ⊨ ϕ

symmetry⇐⇒ G′, b ⊨ ϕ.
Consider the case where ϕ is eq(E, r). We verify (i), (ii), (iii), and (iv).

(i) By definition of G, JrKG(a) = JrKG(b) = ∅ for any property name r. Therefore we need
to show JEKG(a) = ∅ ⇐⇒ JEKG(b) = ∅. By Lemma 3.7 we know there is a set of strings
U equivalent to E in both G and G′. By Lemma 5.5 there are only 8 types of strings.
We observe from Lemma 5.5 that for every U ,

⋃
s∈U JsKG(a) is empty whenever U only

contains strings of type 1, 2, 5, or 8. These are also exactly the U s.t.
⋃

s∈U JsKG(b) is
empty.

(ii) Furthermore, these are also exactly the sets of strings U s.t.
⋃

s∈U JsKG′
(a) is empty.

Therefore, as JrKG′
(a) = ∅, we have G′, a ⊨ ϕ.

(iii) Assume G, c ⊨ ϕ. We consider the possibilities for r. First, suppose r = p. The sets of
strings U s.t.

⋃
s∈U JsKG(c) = JpKG(c) contain strings of type 1 but not strings of type 5

or 7. These are also exactly the U s.t.
⋃

s∈U JsKG′
(c) = JpKG′

(c).

Next, suppose r = q. The sets of strings U s.t.
⋃

s∈U JsKG(c) = JpKG(c) contain strings
of type 2 but not strings of type 1, 5 or 7. These are also exactly the types of strings s.t.⋃

s∈U JsKG′
(c) = JqKG′

(c).

Finally, if r is any other property name, then JrKG(c) = JrKG′
(c) = ∅. This is the case

when U does not contain any strings of type 1, 2, 3, or 7. These are also exactly the
types of strings U s.t.

⋃
s∈U JsKG′

(c) = ∅.
(iv) Let x ∈ N − V . Clearly JrKG(x) = JrKG′

(x) = ∅. By Lemma 3.5, if E is safe, then

JEKG(x) = JEKG′
(x) = ∅. Therefore G, x ⊨ ϕ and G′, x ⊨ ϕ. On the other hand,

whenever E is unsafe, JEKG(x) = JEKG′
(x) = {x} ≠ ∅. Therefore, G, x ̸⊨ ϕ and

G′, x ̸⊨ ϕ.

Next, consider the case where ϕ is disj(E1, E2). We again verify (i), (ii), (iii), and (iv).

(i) Assume G, a ⊨ disj (E1, E2). This can only be the case when the corresponding sets of
strings U1 and U2 are of the following form. U1 can consist only of strings of type 3, 4,
1, 2, 5, and 8 (Here, types 1, 2, 5 and 8 evaluate to empty from a as already seen above).
U2 can then only consist of strings of type 6, 7, 1, 2, 5, and 8 (or vice versa). These are
also the only cases where G, b ⊨ disj (E1, E2).

(ii) Exactly the same situation occurs in G′ and these are then also the only cases where
G′, a ⊨ disj (E1, E2).

(iii) Assume G, c ⊨ disj (E1, E2). This can only be the case when the corresponding sets of
strings U1 and U2 are of the following form. U1 can consist only of strings of type 1,
2, 3, 4, 6, and 8 (Here, types 3, 4, 6, and 8 evaluate to empty from c as already seen
above). U2 can then only consist of strings of type 5, 7, 3, 4, 6, and 8. We observe that
this is also the case in G′.

(iv) Let x ∈ N − V . Whenever E1 is safe, by Lemma 3.5 JE1KG(x) = JE1KG
′
(x) = ∅.

Therefore, G, x ⊨ ϕ and G′, x ⊨ ϕ. Clearly, the same holds whenever E2 is safe. When
both E1 and E2 are unsafe, JE1KG(x) = JE1KG

′
(x) = {x} ≠ ∅. Therefore, G, x ̸⊨ ϕ and

G′, x ̸⊨ ϕ.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:21

The cases where ϕ is ϕ1∧ϕ2, ϕ1∨ϕ2 or ¬ϕ1 are handled by induction in a straightforward
manner.

Lastly, we consider the case where ϕ is ≥nE.ϕ1.

(i) Assume G, a ⊨ ϕ. Then, there exist distinct x1, . . . , xn s.t. (a, xi) ∈ JEKG and G, xi ⊨ ϕ1
for 1 ≤ i ≤ n. Again, by Lemma 3.7 we know there is a set of strings U equivalent to E
in both G and G′. By Lemma 5.5 there are only 8 types of strings. By induction, we
consider three cases.

First, if Jϕ1KG ∩ V = A ∪ B, then xi, . . . , xn ∈ A ∪ B. Therefore, we know U must
at least contain strings of type 6 or 7. Suppose U contains strings of type 6. Then, we
verify that ♯(

⋃
s∈U JsKG(b)∩ (A∪B)) ≥ m− 1 ≥ n. Whenever U contains strings of type

7, and not of type 6, we know n = 1 and clearly ♯(
⋃

s∈U JsKG(b) ∩ (A ∪B)) = 1.

Next, if Jϕ1KG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at
least contain strings of type 3 or 4. Whenever U contains 3 or 4, we verify that
♯(
⋃

s∈U JsKG(b) ∩ C) ≥ m− 1 ≥ n.
Next, if Jϕ1KG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least

contain strings of type 3, 4, 6 or 7. All these types have already been handled in the
previous two cases.

Finally, the case where Jϕ1KG ∩ V = ∅ cannot occur as n > 0.
The sets of strings U above are also exactly the sets used to argue the implication

from right to left.
(ii) For every case of U above, for every inductive case of ϕ1, we can also verify that

♯(
⋃

s∈U JsKG′
(a) ∩ (A ∪ B)) ≥ m − 1 ≥ n, ♯(

⋃
s∈U JsKG′

(a) ∩ C) ≥ m − 1 ≥ n, and

♯(
⋃

s∈U JsKG′
(a) ∩ V) ≥ m− 1 ≥ n.

(iii) Assume G, c ⊨ ϕ. Then, there exist distinct x1, . . . , xn s.t. (c, xi) ∈ JEKG and G, xi ⊨ ϕ1
for 1 ≤ i ≤ n. By induction, we consider three cases.

First, if Jϕ1KG ∩ V = A ∪ B, then xi, . . . , xn ∈ A ∪ B. Therefore, we know U must
at least contain strings of type 1 or 2. Whenever U contains 1 or 2, we verify that
♯(
⋃

s∈U JsKG′
(c) ∩ (A ∪B)) ≥ m ≥ n.

Next, if Jϕ1KG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at least

contain strings of type 5 or 7. Whenever U contains 5, we verify that ♯(
⋃

s∈U JsKG′
(c) ∩

C) ≥ m ≥ n. Otherwise, whenever U contains strings of type 7, and not of type 5, we

know n = 1 and clearly ♯(
⋃

s∈U JsKG′
(c) ∩ C) = 1.

Next, if Jϕ1KG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 1, 2, 5 or 7. All these types have already been handled in the
previous two cases.

Finally, the case where Jϕ1KG ∩ V = ∅ cannot occur as n > 0.
The sets of strings U above are also exactly the sets used to argue the implication

from right to left.
(iv) For the direction from left to right, take x ∈ JϕKG \ V . Since G, x ⊨ ϕ, there exists

y1, . . . , yn s.t. (x, yi) ∈ JEKG and G, yi ⊨ ϕ1 for i = 1, . . . , n. However, since x ̸∈ V , by
Lemma 3.5, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x ⊨ ϕ1. Then
again, by the same Lemma, (x, x) ∈ JEKG′

, since G and G′ have the same set of nodes
V . Moreover, by induction, G′, x ⊨ ϕ1. We conclude G′, x ⊨ ϕ as desired. The direction
from right to left is argued symmetrically.

16:22 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

5.2. Full disjointness. We present here the proof for the primitivity of full disjointness
tests. The general strategy is the same as in Section 5.1.

We begin by defining the graphs G and G′ formally.

Definition 5.7. Gfull-disj (Σ,m) Let m be a natural number that is a multiple of 8. Let
A = {a1, . . . , am}, B = {b1, . . . , bm} and C = {c1, . . . , cm} be three disjoint sets of nodes,
disjoint from Σ. For any i ≤ j, we write ai→j to denote the set

{a1+(i−1+l mod m) | 0 ≤ l ≤ j − i}
We define bi→j and ci→j analogously.

We define the graph Gfull-disj (Σ,m) by:

JpKG(ci) = ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1 and

JqKG(ci) = ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1 for 1 ≤ i ≤ m

The p and q relations are visualized in Figure 3.

To give an example for our notation, suppose m = 8. Then,

a2→5 = {a1+(1+l mod 8) | 0 ≤ l ≤ 3} = {a2, a3, a4, a5}
a7→10 = {a1+(6+l mod 8) | 0 ≤ l ≤ 3} = {a7, a8, a1, a2}, and

a−4→−1 = {a1+(−5+l mod 8) | 0 ≤ l ≤ 3} = {a4, a5, a6, a7}

Definition 5.8. G′
full-disj (Σ,m) We define the graph G′

full-disj (Σ,m) on the same nodes as

Gfull-disj (Σ,m), with the only difference being the relationship of the p- and q-edges from C
to A:

JpKG(ci) = ai−m
8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 and

JqKG(ci) = ai−m
2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1 for 1 ≤ i ≤ m

The p and q relations are visualized in Figure 3.

Important to the intuition behind these graphs is the overlap generated by the inverse
p- and q-edges. As demonstrated in Figure 4, in graph G = Gfull-disj (Σ,m), the set of c
nodes reached from a nodes with inverse p edges is disjoint from the set of c nodes reached
with inverse q edges. This is not the case for b nodes: there, these sets overlap by precisely
one fourth of the c nodes. For graph G′ = G′

full-disj (Σ,m), the sets of c nodes reachable by
inverse p and q edges overlap for both a and b nodes.

We precisely characterize the behavior of strings on the graphs G and G′ as follows.

Lemma 5.9. Let Σ be a vocabulary. Let m be a natural number that is a multiple of 8.
Let G be Gfull-disj (Σ,m) and let G′ be G′

full-disj (Σ,m). The only possibilities for a string s

evaluated on G and G′ are the following:

(1) JsKG = JpKG =
⋃

i∈{1,...,m}{ci} × (ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1) and

JsKG′
= JpKG′

=
⋃

i∈{1,...,m}{ci} × (ai−m
8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1);

(2) JsKG = JqKG =
⋃

i∈{1,...,m}{ci} × (ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1) and

JsKG′
= JqKG =

⋃
i∈{1,...,m}{ci} × (ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1);

(3) JsKG = Jp−KG =
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i) ∪ ({bi} × ci−m

2
+1→i+m

8
) and

JsKG′
= Jp−KG′

=
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i+m

8
) ∪ ({bi} × ci−m

2
+1→i+m

8
) ;

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:23

(4) JsKG = Jq−KG =
⋃

i∈{1,...,m}({ai} × ci+1→i+m
2
) ∪ ({bi} × ci−m

8
+1→i+m

2
) and

JsKG′
= Jq−KG′

=
⋃

i∈{1,...,m}({ai} × ci−m
8
+1→i+m

2
) ∪ ({bi} × ci−m

8
+1→i+m

2
);

(5) JsKG = JsKG′
= C × C;

(6) JsKG = JsKG′
= (A ∪B)× (A ∪B);

(7) JsKG = JsKG′
= C × (A ∪B);

(8) JsKG = JsKG′
= (A ∪B)× C;

(9) JsKG = JsKG′
= id; or

(10) JsKG = JsKG′
= ∅

The first four types of strings are visualized in Figure 3 and Figure 4.

Proof. The proof is performed as in the proof of Lemma 5.5. We now have the following
table:

s JsKG JsKG′

id id id
p type 1 type 1
q type 2 type 2
p− type 3 type 3
q− type 4 type 4
p/p− C × C C × C
p/q− C × C C × C
q/p− C × C C × C
q/q− C × C C × C
p−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p/p−/p C × (A ∪B) C × (A ∪B)
p/p−/q C × (A ∪B) C × (A ∪B)
p−/p/p− (A ∪B)× C (A ∪B)× C
p−/p/q− (A ∪B)× C (A ∪B)× C
p/p−/p/p− C × C C × C
p/p−/p/q− C × C C × C
p−/p/p−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p−/p/p−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)

We are ready to present our key Proposition.

Proposition 5.10. Let Σ be a vocabulary. Let m be a natural number and a multiple of
8. Let V = A ∪ B ∪ C be the common set of nodes of the graphs G = Gfull-disj (Σ,m) and

G′ = G′
full-disj (Σ,m). For all shapes ϕ over Σ counting to at most m

2 , we have JϕKG = JϕKG′
.

Moreover,

• JϕKG ∩ V = A ∪B, or
• JϕKG ∩ V = C, or
• JϕKG ∩ V = V , or
• JϕKG ∩ V = ∅.

16:24 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

JpKG =
⋃

i∈{1,...,m}{ci} × (ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1)

ci ai bi

JqKG =
⋃

i∈{1,...,m}{ci} × (ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1)

ci ai bi

JpKG′
=

⋃
i∈{1,...,m}{ci} × (ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1)

ci ai bi

JqKG′
=

⋃
i∈{1,...,m}{ci} × (ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1)

ci ai bi

Figure 3: Illustration of the p and q relations in graphs G = Gfull-disj (Σ,m) and G′ =
G′

full-disj (Σ,m)

Proof. By induction on the structure of ϕ. For the base cases, if ϕ is ⊤ then J⊤KG = J⊤KG′
=

N and N ∩ V = V . If ϕ is {c}, then J{c}KG = J{c}KG′
= {c} and {c} ∩ V = ∅ since c ∈ Σ

and V ∩ Σ = ∅.
If ϕ is closed(Q), we consider the possibilities for Q. If Q does not contain both p and

q, then clearly JϕKG ∩ V = JϕKG′ ∩ V = A ∪B. Otherwise, JϕKG = JϕKG′
= N .

Before considering the remaining cases, we observe the following symmetries:

• In both G and G′, all elements of A are symmetrical, as are all elements of B, and all
elements of C. Indeed, for any i ∈ {1, . . . ,m}, the function that maps xi to x1+i mod m

where xi is ai, bi or ci, is clearly an automorphism of G and also of G′.
• Furthermore, in G′, any ai and bj are symmetrical. Indeed, the function that swaps every
ai with bi is an automorphism of G′. (We already know that bi and bj are symmetrical by
the above.)

Therefore, we are only left to show:

(i) For any a ∈ A and b ∈ B, we have G, a ⊨ ϕ ⇐⇒ G, b ⊨ ϕ,

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:25

Jp−KG =
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i) ∪ ({bi} × ci−m

2
+1→i+m

8
)

ai ci bi ci

Jq−KG =
⋃

i∈{1,...,m}({ai} × ci+1→i+m
2
) ∪ ({bi} × ci−m

8
+1→i+m

2
)

ai ci bi ci

Jp−KG′
=

⋃
i∈{1,...,m}({ai} × ci−m

2
+1→i+m

8
) ∪ ({bi} × ci−m

2
+1→i+m

8
)

ai ci bi ci

Jq−KG′
=

⋃
i∈{1,...,m}({ai} × ci−m

8
+1→i+m

2
) ∪ ({bi} × ci−m

8
+1→i+m

2
)

ai ci bi ci

Figure 4: Illustration of the p− and q− relations in graphs G = Gfull-disj (Σ,m) and G′ =
G′

full-disj (Σ,m)

(ii) For any a ∈ A, we have G, a ⊨ ϕ ⇐⇒ G′, a ⊨ ϕ, and
(iii) For any c ∈ C, we have G, c ⊨ ϕ ⇐⇒ G′, c ⊨ ϕ.
(iv) For any x ̸∈ V , we have G, x ⊨ ϕ ⇐⇒ G′, x ⊨ ϕ.

Note that then also for any b ∈ B, we have G, b ⊨ ϕ ⇐⇒ G′, b ⊨ ϕ because for any a ∈ A
and b ∈ B, we have G, b ⊨ ϕ

(i)⇐⇒ G, a ⊨ ϕ
(ii)⇐⇒ G′, a ⊨ ϕ

symmetry⇐⇒ G′, b ⊨ ϕ.
Consider the case where ϕ is disj (E, r). We verify (i), (ii), (iii), and (iv). First, to

see that (i) and (ii) hold, we observe that JrKG(a) = JrKG(b) = JrKG′
(a) = JrKG′

(b) = ∅.
Therefore, G, a ⊨ ϕ, G, b ⊨ ϕ, G′, a ⊨ ϕ, and G′, b ⊨ ϕ always hold, showing (i) and (ii).

Next, to show (iii) where r = p, assume G, c ⊨ disj (E, p). By Lemma 3.7 we know there
is a set of strings U equivalent to E in both G and G′. By Lemma 5.9 there are only 10
types of strings. We observe from Lemma 5.9 that for every U ,

⋃
s∈U JsKG(c) is disjoint from

JpKG(c) whenever U does not contain strings of type 1, 2, or 7. These are also exactly the U

s.t.
⋃

s∈U JsKG′
(c) is disjoint from JpKG′

(c).

16:26 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Next, to show (iii) where r = q, assume G, c ⊨ disj (E, q). We observe from Lemma 5.9
that for every U ,

⋃
s∈U JsKG(c) is disjoint from JqKG(c) whenever U does not contain strings

of type 1, 2, or 7. These are also exactly the U s.t.
⋃

s∈U JsKG′
(c) is disjoint from JqKG′

(c).

For every other property name r, JrKG(a) = JrKG(b) = ∅. Therefore, G, c ⊨ ϕ and
G′, c ⊨ ϕ always hold.

Finally, we show (iv) by observing that for any x ∈ N \ V , JrKG(x) = JrKG′
(x) = ∅.

Therefore, G, x ⊨ ϕ and G′, x ⊨ ϕ always hold.
Next, consider the case where ϕ is eq(E1, E2). We again verify (i), (ii), (iii), and (iv).
We show (i) by using a canonical labeling argument. For any two sets U1 and U2 of

types, we call U1 and U2 equivalent in a ∈ A if
⋃

s∈U1
JsKG(a) =

⋃
s∈U2

JsKG(a). Similarly, we
define when U1 and U2 are equivalent in b or c.

We can canonically label the equivalence classes in a as follows. Let U = {u1, . . . , ul}
and u1 < · · · < ul with each ui ∈ {1, . . . , 10} a type.

There are only six unique singleton sets namely {1}, {3}, {4}, {6}, {8}, and {9}. Replace
each ui by their singleton representative ui. In {u1, . . . , ul}, reorder and remove duplicates
to obtain an equivalent set {u′1, . . . , u′l′}.

If l′ = 1, we are done. Otherwise, we enumerate all nonequivalent 2-element sets that
are not equivalent to a singleton: there are again six of those, namely {3, 6}, {3, 9}, {4, 6},
{4, 9}, {6, 8}, and {8, 9}.

Replace u′1 and u′2 by either {u′′} in case {u′1, u′2} is equivalent to a singleton; otherwise
replace u′1 and u′2 by their equivalent 2-element set {u′′1, u′′2}. If l′ = 2, we are again done.

We can repeat this process. However, it turns out that there are no 3-element sets that
are not equivalent to a singleton or a 2-element set. Hence, there are only 12 representatives.
The enumeration process is shown in Table 3, giving the representative for equivalence in a
as well as for equivalence in b. Crucially, in filling the table, we observe every set U has the
same representative for equivalence in a as for equivalence in b.

Next, (ii) is shown in an analogous manner, where the enumeration process is again
shown in Table 3.

Next, (iii) is again shown with an analogous manner, where the enumeration process is
shown in Table 4.

To show (iv), assume x ̸∈ V . If both E1 and E2 are safe, then by Lemma 3.5 JE1KG(x) =
JE2KG

′
(x) = ∅. Thus, G, x ⊨ ϕ and G′, x ⊨ ϕ. If both E1 and E2 are unsafe, then by Lemma

3.5 JE1KG(x) = JE2KG
′
(x) = {x}. Thus, G, x ⊨ ϕ and G′, x ⊨ ϕ. However, whenever only

one of E1 and E2 is safe, clearly G, x ̸⊨ ϕ and G′, x ̸⊨ ϕ.
The cases where ϕ is ϕ1∧ϕ2, ϕ1∨ϕ2 or ¬ϕ1 are handled by induction in a straightforward

manner.
Lastly, we consider the case where ϕ is ≥nE.ψ.

(i) Assume G, a ⊨ ϕ. Then, there exist distinct x1, . . . , xn s.t. (a, xi) ∈ JEKG and G, xi ⊨ ψ
for 1 ≤ i ≤ n. Again, by Lemma 3.7 we know there is a set of strings U equivalent to E
in both G and G′. By Lemma 5.9 there are only 10 types of strings. By induction, we
consider three cases.

First, if JψKG ∩ V = A ∪B, then xi, . . . , xn ∈ A ∪B. Therefore, we know U must at
least contain strings of type 6 or 9. Suppose U contains strings of type 6. Then, we
verify that ♯(

⋃
s∈U JsKG(b) ∩ (A ∪B)) ≥ m ≥ n. Otherwise, whenever U contains strings

of type 9, and not of type 6, we know n = 1 and clearly ♯(
⋃

s∈U JsKG(b) ∩ (A ∪B)) = 1.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:27

Next, if JψKG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at least
contain strings of type 3, 4 or 8. Whenever U contains 3, 4 or 8, we verify that
♯(
⋃

s∈U JsKG(b) ∩ C) ≥ m
2 ≥ n.

Next, if JψKG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 3, 4, 6, 8 or 9. All these types have already been handled in the
previous two cases.

Finally, the case where JψKG ∩ V = ∅ cannot occur as n > 0.
The sets of strings U above are also exactly the sets used to argue the implication

from right to left.
(ii) For every case of U above, for every inductive case of ψ, we can also verify that

♯(
⋃

s∈U JsKG′
(a)∩(A∪B)) ≥ m ≥ n, ♯(

⋃
s∈U JsKG′

(a)∩C) ≥ m
2 ≥ n, and ♯(

⋃
s∈U JsKG′

(a)∩
V) ≥ m

2 ≥ n.
(iii) Assume G, c ⊨ ϕ. Then, there exist distinct x1, . . . , xn s.t. (c, xi) ∈ JEKG and G, xi ⊨ ψ

for 1 ≤ i ≤ n. By induction, we consider three cases.
First, if JψKG ∩ V = A ∪B, then xi, . . . , xn ∈ A ∪B. Therefore, we know U must at

least contain strings of type 1, 2 or 7. Whenever U contains 1, 2 or 7, we verify that
♯(
⋃

s∈U JsKG′
(c) ∩ (A ∪B)) ≥ m

2 ≥ n.
Next, if JψKG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at least

contain strings of type 5 or 9. Whenever U contains 5, we verify that ♯(
⋃

s∈U JsKG′
(c) ∩

C) ≥ m ≥ n. Otherwise, whenever U contains strings of type 9, and not of type 5, we

know n = 1 and clearly ♯(
⋃

s∈U JsKG′
(c) ∩ C) = 1.

Next, if JψKG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 1, 2, 5, 7 or 9. All these types have already been handled in the
previous two cases.

Finally, the case where JψKG ∩ V = ∅ cannot occur as n > 0.
The sets of strings U above are also exactly the sets used to argue the implication

from right to left.
(iv) For the direction from left to right, take x ∈ JϕKG \ V . Since G, x ⊨ ϕ, there exists

y1, . . . , yn s.t. (x, yi) ∈ JEKG and G, yi ⊨ ψ for i = 1, . . . , n. However, since x ̸∈ V , by
Lemma 3.5, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x ⊨ ψ. Then
again, by the same Lemma, (x, x) ∈ JEKG′

, since G and G′ have the same set of nodes
V / Moreover, by induction, G′, x ⊨ ψ. We conclude G′, x ⊨ ϕ as desired. The direction
from right to left is argued symmetrically.

Remark 5.11. In our construction of the graphs G and G′, we work with segments that
overlap for 1/8th of the number of nodes. The critical reader will remark that an overlap of
a single node would already be sufficient. Our choice for working with a larger overlap is
indeed largely aesthetic. Moreover, our proof still works for an extension of SHACL where
shapes of the form |r ∩ E| ≥ n would be allowed. This extension allows us to write shapes
like |colleague ∩ friend| ≥ 5, stating that the node has at least five colleagues that are also
friends. Such an extension then would still not be able to express full disjointness.

5.3. Further non-definability results. In Theorem 3.1, we showed that equality is
primitive in L(disj , closed), and similarly, that disjointness is primitive in L(eq , closed). Can
we strengthen these results to L(full -disj , closed) and L(full -eq , closed), respectively? This
turns out to be indeed possible.

16:28 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Table 3: Sets of types starting from ai, bi in G and ai in G
′.

U JEKG(ai) JEKG(bi) JEKG′
(ai)

{1} ∅ ∅ ∅
{2} ∅ ∅ ∅
{3} ci− k

2
+1→i ci− k

2
+1→i+ k

8
ci− k

2
+1→i+ k

8

{4} ci+1→i+ k
2

ci− k
8
+1→i+ k

2
ci− k

8
+1→i+ k

2

{5} ∅ ∅ ∅
{6} A ∪B A ∪B A ∪B
{7} ∅ ∅ ∅
{8} C C C
{9} {ai} {bi} {ai}
{10} ∅ ∅ ∅
{3, 4} C C C
{3,6} A ∪B ∪ ci− k

2
+1→i A ∪B ∪ ci− k

2
+1→i+ k

8
A ∪B ∪ ci− k

2
+1→i+ k

8

{3, 8} C C
{3,9} ci+1→i+ k

2
∪ {ai} ci− k

8
+1→i+ k

2
∪ {bi} ci− k

8
+1→i+ k

2
∪ {ai}

{4,6} A ∪B ∪ ci+1→i+ k
2

A ∪B ∪ ci− k
8
+1→i+ k

2
A ∪B ∪ ci− k

8
+1→i+ k

2

{4, 8} C C
{4,9} ci+1→i+ k

2
∪ {ai} ci− k

8
+1→i+ k

2
∪ {bi} ci− k

8
+1→i+ k

2
∪ {ai}

{6,8} V V V
{6, 9} A ∪B A ∪B A ∪B
{8,9} C ∪ {ai} C ∪ {bi} C ∪ {ai}
{3, 6, 4} V V V
{3, 6, 8} V V V
{3, 6, 9} A ∪B ∪ ci− k

2
+1→i A ∪B ∪ ci− k

2
+1→i+ k

8
A ∪B ∪ ci− k

2
+1→i+ k

8

{3, 9, 4} C ∪ {ai} C ∪ {bi} C ∪ {ai}
{4, 9, 6} A ∪B ∪ ci+1→i+ k

2
A ∪B ∪ ci− k

8
+1→i+ k

2
A ∪B ∪ ci− k

8
+1→i+ k

2

{4, 9, 8} C C C
{8, 9, 3} C ∪ {ai} C ∪ {bi} C ∪ {ai}
{4, 6, 3} V V V

That equality remains primitive in L(full -disj , closed) already follows from our given
proof in Section 3.3. In effect, the attentive reader may have noticed that we already
cover full disjointness in that proof. In contrast, our proof of primitivity of disjointness
in L(eq , closed) does not extend to full equality. Nevertheless, we can reuse our proof of
primitivity of full disjointness as follows. The graphs G and G′ from Proposition 5.10 are
indistinguishable in L(full -eq , disj , closed). Let H and H ′ be the same graphs but with
all directed edges reversed (i.e., the graphs illustrated in Figure 4). Then the same proof
shows that H and H ′ are indistinguishable in L(full -eq , closed). However, since G and G′

are distinguishable by the inclusion statement ∃p−.⊤ ⊆ ¬disj (p−, q−), also H and H ′ are
distinguishable by the inclusion statement ∃p.⊤ ⊆ ¬disj (p, q). Thus, the primitivity of
disjointness in L(full -eq , closed) is established.

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:29

Table 4: Sets of types starting from ci in G and in G′.

U JEKG(ci) JEKG′
(ci)

{1} ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1 ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{2} ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1 ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{3} ∅ ∅
{4} ∅ ∅
{5} C C
{6} ∅ ∅
{7} A ∪B A ∪B
{8} ∅ ∅
{9} {ci} {ci}
{10} ∅ ∅
{1, 2} A ∪B A ∪B
{1,5} C ∪ ai→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 C ∪ ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{1, 7} A ∪B A ∪B
{1,9} {ci} ∪ ai→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 {ci} ∪ ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{2,5} C ∪ ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1 C ∪ ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{2, 7} A ∪B A ∪B
{2,9} {ci} ∪ ai−m

2
→i−1 ∪ bi−m

2
→i+m

8
−1 {ci} ∪ ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{5,7} V V
{5, 9} C C
{7,9} {ci} ∪A ∪B {ci} ∪A ∪B
{1, 5, 2} V V
{1, 5, 7} V V
{1, 5, 9} C ∪ ai→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 C ∪ ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{1, 9, 2} {ci} ∪A ∪B {ci} ∪A ∪B
{1, 9, 7} {ci} ∪A ∪B {ci} ∪A ∪B
{2, 5, 7} V V
{2, 5, 9} C ∪ ai−m

2
→i−1 ∪ bi−m

2
→i+m

8
−1 C ∪ ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{2, 9, 7} {ci} ∪A ∪B {ci} ∪A ∪B
{5, 7, 9} V V

6. Extension to stratified recursion

Until now, we could do without shape names. We do need them, however, for recursive
shape schemas. Such schemas allow shapes to be defined using recursive rules, much as in
Datalog and logic programming. The rules have a shape name in the head; in the body they
have a shape that can refer to the same or other shape names.

Example 6.1. The following rule defines a shape, named s, recursively:

s← {c} ∨ (eq(p, q) ∧ ∃r.s).
A node x will satisfy s if there is a (possibly empty) path of r-edges from x to the constant
c, so that all nodes along the path satisfy eq(p, q) (for two property names p and q).

16:30 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Rules and programs. We need to make a few extensions to our formalism and the
semantics.

• We assume an infinite supply S of shape names. Again for simplicity of notation only, we
assume that S is disjoint from N and P .
• The syntax of shapes is extended so that every shape name is a shape.
• A vocabulary Σ is now a subset of N ∪P ∪S; an interpretation I now additionally assigns
a subset JsKI of ∆I to every shape name s in Σ.

Noting the obvious parallels with the field of logic programming, we propose to use the
following terminology from that field. A rule is of the form s← ϕ, where s is a shape name
and ϕ is a shape. A program is a finite set of rules. The shape names appearing as heads of
rules in a program are called the intensional shape names of that program.

The following definitions of the semantics of programs are similar to definitions well-
known for Datalog. A program is semipositive if for every intensional shape name s, and
every shape ϕ in the body of some rule, s occurs only positively in ϕ. Let P be a semipositive
program over vocabulary Σ, with set of intensional shape names D. An interpretation J
over Σ ∪D is called a model of P if for every rule s← ϕ of P, the set JϕKJ is a subset of
JsKJ . Given any interpretation I over Σ−D, there exists a unique minimal interpretation
J that expands I to Σ ∪D such that J is a model of P (Indeed, J is the least fixpoint of
the well-known immediate consequence operator, which is a monotone operator since P is
semipositive [AHV95]). We call J the result of applying P to I, and denote J by P(I).

Stratified programs are essentially sequences of semipositive programs. Formally, a
program P is called stratified if it can be partitioned into parts P1, . . . , Pn called strata, such
that (i) the strata have pairwise disjoint sets of intensional shape names; (ii) each stratum
is semipositive; and (iii) the strata are ordered in such a way that when a shape name s
occurs in the body of a rule in some stratum, s is not intensional in any later stratum.

Let P be a stratified program with n strata P1, . . . , Pn and let again I be an interpre-
tation over a vocabulary without the intensional shape names. We define P(I), the result
of applying P to I, to be the interpretation Jn, where J0 := I and Jk+1 := Pk+1(Jk) for
0 ≤ k < n.

Stratified shape schemas. We are now ready to define a stratified shape schema again as
a set of inclusions, but now paired with a stratified program. Formally, it is a pair (P, T),
where:

• P is a program that is stratified, and where every shape name mentioned in the body of
some rule is an intensional shape name in P.
• T is a finite set of inclusion statements ϕ1 ⊆ ϕ2, where ϕ1 and ϕ2 mention only shape
names that are intensional in P.
Now we define a graph G to conform to (P, T) if Jϕ1KP(G) is a subset of Jϕ2KP(G), for

every inclusion ϕ1 ⊆ ϕ2 in T .

Remark 6.2. The nonrecursive notion of shape schema, defined in Section 2, corresponds
to the special case where P is the empty program.

Extending Theorem 3.1. Theorem 3.1 extends to stratified shape schemas. Indeed,
consider a stratified shape schema (P, T). Shapes not mentioning any shape names are
referred to as elementary shapes. We observe that for every intensional shape name s and
every graph H, there exists an elementary shape ϕ such that JsKP(H) = JϕKH . Furthermore,

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:31

ϕ uses the same constants, quantifiers, and path expressions as P . For semipositive programs,
this is shown using a fixpoint characterization of the minimal model; for stratified programs,
this argument can then be applied repeatedly. The crux, however, is that graphs G and G′

of Proposition 3.2 will have the same ϕ. Indeed, by that Proposition, the fixpoints of the
different strata will be reached on G and on G′ in the same stage. We effectively obtain an
extension of Proposition 3.2, which establishes the theorem for features X other than closed .

Also for X = closed , the reasoning, given after Lemma 3.16, extends in the same way
to stratified shape schemas, since the graphs G and G′ used there again yield exactly the
same evaluation for all shapes that do not use closed .

Extending Theorem 4.1. Also Theorem 4.1 extends to stratified shape schemas. Thereto,
Lemma 3.16 needs to be reproven in the presence of a stratified program P defining the
intensional shape names. The extended Lemma 3.16 then states that JϕKP(G) = JϕKP(G′).
The proof of Theorem 4.1 then goes through unchanged.

Extending Theorem 5.2. Also Theorem 5.2 extends to stratified shape schemas for the
same reasons given above for Theorem 3.1.

7. Concluding remarks

An obvious open question is whether our results extend further to nonstratified programs,
depending on various semantics that have been proposed for Datalog with negation, notably
well-founded or stable models [AHV95, Tru18]. One must then deal with 3-valued models
and, for stable models, choose whether the TBox should hold in every stable model (skeptical),
or in at least one (credulous). For example, Andreşel et al. [ACO+20] adopt a credulous
approach. In the same vein, even for stratified programs, one may consider maximal models
instead of minimal ones, as suggested for ShEx [BGP17]. Unified approaches developed for
logic programming semantics can be naturally applied to SHACL [BJ21].

Notably, Corman et al. [CRS18] have already suggested that disjointness is redundant
in a setting of recursive shape schemas with nonstratified negation. Their expression is not
correct, however [Reu21].5

A general question surrounding SHACL, even standard nonrecursive SHACL, is to
understand better in which sense (if at all) this language is actually better suited for expressing
constraints on RDF graphs than, say, SPARQL ASK queries [CFRS19, T+10, DMH+21].
Certainly, the affinity with description logics makes it easy to carve out cases where
higher reasoning tasks become decidable [LS+20, PK+20]. It is also possible to show
that nonrecursive SHACL is strictly weaker in expressive power than SPARQL. But does
SHACL conformance checking really have a lower computational complexity? Can we think
of novel query processing strategies that apply to SHACL but not easily to SPARQL? Are
SHACL expressions typically shorter, or perhaps longer, than the equivalent SPARQL ASK
expression? How do the expression complexities [Var82] compare?

5Their approach is to postulate two shape names s1 and s2 that can be assigned arbitrary sets of nodes,
as long as the two sets form a partition of the domain. Then for one node x to satisfy the shape disj (E, p), it
is sufficient that E(x) is a subset of s1 and p(x) of s2. This condition is not necessary, however, as other
nodes may require different partitions.

16:32 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

Acknowledgement

We thank the anonymous referees for helpful comments that improved the presentation of
this paper. This research was supported by the Flanders AI Research programme.

References

[ACO+20] M. Andreşel, J. Corman, M. Ortiz, J.L. Reutter, O. Savkovic, and M. Simkus. Stable model
semantics for recursive SHACL. In Y. Huang, I. King, T.-Y. Liu, and M. van Steen, editors,
Proceedings WWW’20, pages 1570–1580. ACM, 2020. doi:10.1145/3366423.3380229.

[AGSS86] A.K. Aylamazyan, M.M. Gilula, A.P. Stolboushkin, and G.F. Schwartz. Reduction of the
relational model with infinite domains to the case of finite domains. Doklady Akademii Nauk
SSSR, 286(2):308–311, 1986. In Russian.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[BGP17] I. Boneva, J.E.L. Gayo, and E.G. Prud’hommeaux. Semantics and validation of shape schemas

for RDF. In C. d’Amato, M. Fernandez, V. Tamma, et al., editors, Proceedings 16th International
Semantic Web Conference, volume 10587 of Lecture Notes in Computer Science, pages 104–120.
Springer, 2017. doi:10.1007/978-3-319-68288-4_7.

[BHLS17] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description Logic. Cambridge
University Press, 2017.

[BJ21] B. Bogaerts and M. Jakubowski. Fixpoint semantics for recursive SHACL. In Proceedings 37th
International Conference on Logic Programming (Technical Communications), ICLP Technical
Communications 2021, Porto (virtual event), 20-27th September 2021, volume 345, pages 41–47,
2021. doi:10.4204/EPTCS.345.14.

[BJVdB22] B. Bogaerts, M. Jakubowski, and J. Van den Bussche. Expressiveness of SHACL features. In
Dan Olteanu and Nils Vortmeier, editors, Proceedings of ICDT, volume 220, pages 15:1–15:16.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICDT.2022.15.

[CDGNL03] D. Calvanese, G. De Giacomo, D. Nardi, and M. Lenzerini. Reasoning in expressive description
logics. In F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider, editors,
The Description Logic Handbook, chapter 23. Cambridge University Press, 2003.

[CFRS19] J. Corman, F. Florenzano, J.L. Reutter, and O. Savkovic. Validating SHACL constraints over
a SPARQL endpoint. In C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, et al., editors,
Proceedings 18th International Semantic Web Conference, volume 11778 of Lecture Notes in
Computer Science, pages 145–163. Springer, 2019. doi:10.1007/978-3-030-30793-6_9.

[CRS18] J. Corman, J.L. Reutter, and O. Savkovic. Semantics and validation of recursive SHACL. In
D. Vrandecic et al., editors, Proceedings 17th International Semantic Web Conference, volume
11136 of Lecture Notes in Computer Science, pages 318–336. Springer, 2018. Extended version,
technical report KRDB18-01, https://www.inf.unibz.it/krdb/tech-reports/.

[DMH+21] B. De Meester, P. Heyvaert, et al. RDF graph validation using rule-based reasoning. Semantic
Web, 12(1):117–142, 2021.

[HS94] R. Hull and J. Su. Domain independence and the relational calculus. Acta Informatica, 31:513–
524, 1994. doi:10.1007/BF01213204.

[Jak22] M. Jakubowski. Extending SHACL, 2022. URL: https://www.mjakubowski.info/posts/

datashapes.html.
[Knu21] H. Knublauch. Dash constraint components. https://datashapes.org/constraints.html,

2021.
[LS+20] M. Leinberger, P. Seifer, et al. Deciding SHACL shape containment through description logics

reasoning. In Pan et al. [P+20], pages 366–383. doi:10.1007/978-3-030-62419-4_21.
[P+20] J.Z. Pan et al., editors. Proceedings 19th International Semantic Web Conference, volume 12506

of Lecture Notes in Computer Science. Springer, 2020.
[PK+20] P. Pareti, G. Konstantinidis, et al. SHACL satisfiability and containment. In Pan et al. [P+20],

pages 474–493. doi:10.1007/978-3-030-62419-4_27.
[RDF14] RDF 1.1 primer. W3C Working Group Note, June 2014.
[Reu21] J. Reutter. Personal communication, 15 January 2021.
[SHA17] Shapes constraint language (SHACL). W3C Recommendation, July 2017.

https://doi.org/10.1145/3366423.3380229
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.4204/EPTCS.345.14
https://doi.org/10.4230/LIPIcs.ICDT.2022.15
https://doi.org/10.1007/978-3-030-30793-6_9
https://www.inf.unibz.it/krdb/tech-reports/
https://doi.org/10.1007/BF01213204
https://www.mjakubowski.info/posts/datashapes.html
https://www.mjakubowski.info/posts/datashapes.html
https://datashapes.org/constraints.html
https://doi.org/10.1007/978-3-030-62419-4_21
https://doi.org/10.1007/978-3-030-62419-4_27

Vol. 20:1 EXPRESSIVENESS OF SHACL FEATURES 16:33

[T+10] J. Tao et al. Integrity constraints in OWL. In Proceedings 24th AAAI Conference on Artificial
Intelligence, pages 1443–1448, 2010. doi:10.5555/2898607.2898837.

[Tru18] M. Truszczynski. An introduction to the stable and well-founded semantics of logic programs.
In M. Kifer and Y.A. Liu, editors, Declarative Logic Programming: Theory, Systems, and
Applications, pages 121–177. ACM and Morgan & Claypool, 2018.

[Var82] M. Vardi. The complexity of relational query languages. In Proceedings 14th ACM Symposium
on the Theory of Computing, pages 137–146, 1982.

Appendix A. Supplementary Proofs

Proof of Lemma 3.7. We first state an auxiliary lemma:

Lemma A.1. Let V be a finite set of n elements, and let R ⊆ V × V be a binary relation
over V . We have R∗ = R0 ∪R1 ∪ · · · ∪Rn−1.

Proof. R∗ is defined as R0 ∪R1 ∪ . . . however, we will show that if (a, b) ∈ Rm, with m ≥ n,
then there exists a k < m such that (a, b) ∈ Rk.

We call a sequence of elements x1, . . . , xh an R-path if (xl, xl+1) ∈ R for 1 ≤ l ≤ h.
If (a, b) ∈ Rm, then there exists an R-path x1, . . . , xm+1 with x1 = a and xm+1 = b. As

there are only n total elements, there exists i, j with 1 ≤ i < j ≤ m+ 1 such that xi = xj .

Therefore, x1, . . . , xi−1, xj , . . . , xm+1 is also an R-path. We conclude that (a, b) ∈ Rm−(j−i),
as desired.

Proof of Lemma 3.7. The proof is by induction on the structure of E. Clearly for the base
case E = p, we have the set U = {p} and similarly for E = p− we have U = {p−}. When
E = id , clearly U = {id}. Next, we consider the inductive cases. When E = E1 ∪ E2, we
know by induction there exists a set of strings U1 for E1, and U2 for E2. We then have
U = U1 ∪ U2. When E = E1/E2, we again know by induction there exists a set of strings
U1 for E1, and U2 for E2. We have U = {s1/s2 | s1 ∈ U1 and s2 ∈ U2}. Finally, when
E = E′∗, we know by induction there exists a set of strings U ′ for E′. Let W be a set
of strings, we define W 1 := W , and for a natural number m > 1, Wm := {s1/s2 | s1 ∈
W, s2 ∈Wm−1}. We also use the shorthand notation Em, with m > 0 a natural number, to
denote m compositions of the path expression E. For example, E3 is E/E/E. By definition,
JE′∗KG = JidKG ∪ JE′KG ∪ JE′2KG ∪ By Lemma A.1 we know that this is the same as
JE′∗KG = JidKG ∪ JE′KG ∪ JE′2KG ∪ · · · ∪ JE′n−1KG for graphs with at most n nodes. It then
follows that U = {id} ∪ U ′ ∪ U ′2 ∪ · · · ∪ U ′n−1.

Proof of Lemma 3.11.

Proof. For i = 1, 2, 3, 4, define the i-th blob of nodes to be the set Xi = {x1i , . . . , xMi } (see
Figure 2). We also use the notations next(1) = 2; next(2) = 3; next(3) = 4; next(4) = 1;
prev(4) = 3; prev(3) = 2; prev(2) = 1; prev(1) = 4. Thus next(i) indicates the next blob in
the cycle, and prev(i) the previous.

The proof is by induction on the structure of E. If E is a property name, E is simple so
the claim is trivial. If E is of the form p−, the first claim is clear because Jr−KG′ ⊆ JEKG′

,
and we only need to verify the second one. That holds because for any i, if v ∈ Xi, then
Jp−KG′

(v) ⊇ Xprev(i) and clearly Xprev(i) − JrKG′
(v) ̸= ∅. We next consider the inductive

cases.

https://doi.org/10.5555/2898607.2898837

16:34 B. Bogaerts, M. Jakubowski, and J. Van den Bussche Vol. 20:1

First, assume E is of the form E1 ∪ E2. When at least one of E1 and E2 is not simple,
the two claims immediately follow by induction, since JEKG′ ⊇ JE1KG

′
and JEKG′ ⊇ JE2KG

′
.

If E1 and E2 are simple, then E is simple and the claim is trivial.
Next, assume E is of the form E∗

1 . If E1 is not simple, the two claims follow immediately

by induction, since JEKG′ ⊇ JE1KG
′
. If E1 is simple, the first claim clearly hold for E, so we

only need to verify the second claim. That holds because, by the form of E, every node v is
in JEKG′

(v), but not in JrKG′
(v), as G does not have any self-loops.

Finally, assume E is of the form E1/E2. Note that if E1 or E2 is simple, clearly claim

one holds because JrKG′ ⊆ JEKG′
. The argument that follows will therefore also apply when

E1 or E2 is simple. We will be careful not to apply the induction hypothesis for the second
statement to E1 and E2.

We distinguish two cases.

• If JrKG′ ⊆ JE2KG
′
, then we show that JrKG′ ⊆ JEKG′

. Let v ∈ Xi. We verify the following
two inclusions:
– JEKG(v) ⊇ Xi. Let u ∈ Xi. If u ̸= v, choose a third node w ∈ Xi. Since Xi is a

clique, (v, w) ∈ JE1KG because the first claim holds for E1. By JrKG′ ⊆ JE2KG
′
, we also

have (w, u) ∈ JE2KG
′
, whence u ∈ JEKG′

(v) as desired. If u = v, we similarly have

(v, w) ∈ JE1KG
′
and (w, u) ∈ JE2KG

′
as desired.

– JEKG(v) ⊇ Xnext(i). Let u ∈ Xnext(i) and choose w ̸= v ∈ Xi. Because the first claim

holds for E1, we have (v, w) ∈ JE1KG. By JrKG′ ⊆ JE2KG
′
, we also have (w, u) ∈ JE2KG

′
,

whence u ∈ JEKG′
(v) as desired.

We conclude that JEKG′
(v) ⊇ Xi ∪Xnext(i) ⊇ JrKG′

as desired.

• If Jr−KG′ ⊆ JE2KG
′
, then we show that Jr−KG′ ⊆ JEKG′

. This is analogous to the previous
case, now verifying that JEKG(v) ⊇ Xi ∪Xprev(i).

In both cases, the second statement now follows for every node v. Indeed, v ∈ Xi ⊆
JEKG′

(v) but v /∈ JrKG′
(v).

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Shape schemas
	2.1. Shapes
	2.2. Graphs and their interpretation
	2.3. Targets and shape schemas

	3. Expressiveness of SHACL features
	3.1. Preliminaries on path expressions
	3.2. Disjointness
	3.3. Equality
	3.4. Closure

	4. Are target-based shape schemas enough?
	5. Extensions for full equality and disjointness tests
	5.1. Full equality
	5.2. Full disjointness
	5.3. Further non-definability results

	6. Extension to stratified recursion
	7. Concluding remarks
	Acknowledgement
	References
	Appendix A. Supplementary Proofs
	Proof of Lemma 3.7
	Proof of Lemma 3.11

