
Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 18:1–18:49
https://lmcs.episciences.org/

Submitted Sep. 07, 2022
Published Mar. 01, 2024

VARIABLE BINDING AND SUBSTITUTION

FOR (NAMELESS) DUMMIES

ANDRÉ HIRSCHOWITZ 𝑎, TOM HIRSCHOWITZ 𝑏, AMBROISE LAFONT 𝑐,
AND MARCO MAGGESI 𝑑

𝑎Univ. Côte d’Azur, CNRS, LJAD, 06103, Nice, France

𝑏Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France

𝑐 LIX, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France

𝑑Università degli Studi di Firenze, Italy

Abstract. By abstracting over well-known properties of De Bruijn’s representation with
nameless dummies, we design a new theory of syntax with variable binding and capture-
avoiding substitution. We propose it as a simpler alternative to Fiore, Plotkin, and Turi’s
approach, with which we establish a strong formal link. We also show that our theory
easily incorporates simple types and equations between terms.

1. Introduction

In this paper we propose a new initial-algebra semantics [GT74] for syntax and substitution
in the presence of variable binding, which gives a new perspective on the status of the
well-known De Bruijn encoding [DB72].

Given a so-called binding signature [Plo90] (which we suppose untyped in this introduc-
tion), De Bruijn’s encoding provides an explicit definition of the desired syntax; it consists
of a (single) set of terms, equipped with a suitable operation of “substitution”. The salient
feature of De Bruijn’s encoding is that variables are represented by natural numbers, which
he termed “nameless dummies”, hence the title of the present paper. The idea is that
any occurrence of 0 refers to the binder just above it (in the abstract syntax tree), if any,
while 1 refers to the next one up, and so on. E.g., 𝜆𝑥.𝜆𝑦.(𝑥 𝑦) is represented by 𝜆.𝜆.(1 0).
See [FPT99, Shu21] for more recent analyses. This encoding is generally considered “good
for machine implementations, but not [...] for machine-assisted human reasoning” [GP99]
(see also [ABF+05, BU07]).

Our initial-algebra semantics provides an alternative to the above explicit definition, by
offering an implicit one:

• We design a category of “models” of the considered signature.

Key words and phrases: syntax and variable binding and substitution and category theory.
∗Extended abstract (FoSSaCS 2022).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:18)2024
© A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-2523-1481
https://orcid.org/0000-0002-7220-4067
https://orcid.org/0000-0002-9299-641X
https://orcid.org/0000-0003-4380-7691
http://creativecommons.org/about/licenses

18:2 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

• We define the desired syntax (up to unique isomorphism) as the initial object in this
category.

One may then reason about syntax independently of any chosen initial object, since initiality
provides a convenient induction principle.

Of course, we have to prove that such an initial object exists, and the natural witness
in this proof is precisely De Bruijn’s encoding. It thus acquires the new status of initiality
witness, and hence may be forgotten, to some extent.

We know of two initial-algebra semantics for syntax with substitution in the presence
of variable binding. A mainstream one is by Fiore et al. [FPT99, Fio08], while the second
one, which also handles linear syntax, is due to Power [Pow07]. Both approaches consider
terms indexed by the number of (potential) free variables. By contrast, ours involves a
single (infinite and implicit) context. It is thus simpler, at least in the sense that it can
naturally be implemented in a proof assistant without dependent types. We demonstrate
this by implementing our framework in HOL Light. We also provide a Coq implementation
for comparison.

Let us emphasise that our initial-algebra semantics optimises the usual layering into
(1) syntax, (2) variable renaming, and (3) substitution. Indeed, we show that the second
layer is unnecessary, and directly give the implicit definition of syntax with substitution in
(unindexed) sets.

A consequence is that our mechanisations offer a very different trusted computing
base1 from what one usually gets with an explicit definition.

• With an explicit definition, the trusted computing base typically consists of
– the inductive type defining the syntax,
– the recursive definition of renaming, and
– the recursive definition of substitution.

• By contrast, in our mechanisations, the trusted computing base consists of
– the definition of the category of models, and
– the initiality statement.

As the authors have experienced, the pros and cons can be discussed ad libitum. We refrain
from doing so in this paper.

1.1. Overview. Let us now present our contribution in a bit more detail, for which we
should start by recalling binding signatures.

Definition 1.1. A binding arity is a sequence of natural numbers. A binding signature
is a set 𝑂 (of ”operations”), together with a map 𝑂 → N∗, which associates a binding arity
to each operation.

The idea is that an operation of binding arity 𝑏 = (𝑛1, . . . , 𝑛𝑝) has 𝑝 arguments, with
the 𝑖th argument binding 𝑛𝑖 variables, for all 𝑖 ∈ {1, . . . , 𝑝}.

Example 1.2. In pure 𝜆-calculus, the binding arity for application is (0, 0): it has two
arguments, binding no variables. Abstraction, on the other hand, has one argument which
binds one variable. Its binding arity thus is the singleton sequence (1).

1I.e., the part of the development that needs to be read in order to check that the definitions and statements
are correct.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:3

We should now answer the question: where do operations of a given binding arity live,
and what are they? To the first question, we answer that they live in a De Bruijn monad,
whose definition we now sketch.

Definition 1.3. A De Bruijn monad is a set 𝑋, equipped with

• a variables map 𝑣 : N → 𝑋, and
• a substitution map 𝑠 : 𝑋 × 𝑋N → 𝑋, which takes an element 𝑥 ∈ 𝑋 and an assignment
𝜎 : N → 𝑋, and returns an element 𝑠(𝑥, 𝜎), which we denote by 𝑥 [𝜎] when 𝑠 is clear from
context,

satisfying three simple axioms (see Definition 2.3 below).

Remark 1.4. The use of the word “monad” is justified by the fact that De Bruijn monads
are in fact relative monads [ACU15], see Corollary 3.12 below.

To the second question, what is an operation of a given binding arity in a De Bruijn
monad (𝑋, 𝑣, 𝑠), we answer as follows.

Definition 1.5. An operation of binding arity 𝑏 = (𝑛1, . . . , 𝑛𝑝) is a map 𝑜 : 𝑋 𝑝 → 𝑋

satisfying the following binding condition: for all 𝑒1, . . . , 𝑒𝑝 ∈ 𝑋, and 𝜎 : N → 𝑋,

𝑜(𝑒1, . . . , 𝑒𝑝) [𝜎] = 𝑜(𝑒1 [⇑𝑛1𝜎], . . . , 𝑒𝑝 [⇑𝑛𝑝𝜎]), (1.1)

where ⇑ is a unary operation defined on 𝑋N by

(⇑𝜎) (0) = 𝑣(0) (1.2)

(⇑𝜎) (𝑛 + 1) = 𝜎(𝑛) [𝑝 ↦→ 𝑣(𝑝 + 1)]. (1.3)

To explain the idea behind this definition, let us consider the simplest non-trivial binding
operation, abstraction in the pure 𝜆-calculus, which has arity (1). The main idea of De
Bruijn indices is that, under an abstraction:

(a) the bound variable is 0, and
(b) any outer variable 𝑘 should be referred to as 1 + 𝑘.
By the binding condition, for any operation 𝜆 : 𝑋 → 𝑋 of binding arity (1), we have
𝜆(𝑒) [𝜎] = 𝜆(𝑒[⇑𝜎]). By definition, ⇑𝜎 leaves the variable 0 unchanged, which complies
with (a) above. Furthermore, by definition, any reference 1 + 𝑘 to some outer variable is
mapped by ⇑𝜎 to 𝜎(𝑘) [𝑝 ↦→ 𝑣(𝑝 + 1)]. That is, the intended element 𝜎(𝑘), whose free
variables are shifted by one to comply with (b).

From here, we straightforwardly define models of a given binding signature 𝑆 to be
De Bruijn monads equipped with operations of the specified binding arities. We call such
models De Bruijn 𝑆-algebras, and organise them into a category 𝑆 -DBAlg.

Finally, we prove that 𝑆 -DBAlg admits an initial object (Theorem 3.16). For this, we
follow (the standard modern variant of) De Bruijn’s construction:

• We extract from 𝑆 a first-order signature |𝑆 |, by mapping binding arities (𝑛1, . . . , 𝑛𝑝) to
their lengths 𝑝, and construct the free |𝑆 |-algebra DB𝑆 over the set N of variables in the
usual, first-order way.

• We prove that DB𝑆 admits a unique substitution map satisfying both the binding conditions
and the De Bruijn monad axioms. This is not entirely trivial, because we cannot directly
take (1.1)–(1.3) as a recursive definition. Indeed, the recursive call in (1.3) would not be
decreasing, at least in any standard proof assistant’s sense! We thus resort to the usual,
two-phase construction:

18:4 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

– We first define a renaming map DB𝑆 × NN → DB𝑆, by adapting (1.1)–(1.3) to the
renaming case.

– We then define the substitution map by (1.1)–(1.3), except that we replace the prob-
lematic recursive call in (1.3) by 𝜎(𝑛) [𝑝 ↦→ 𝑝 + 1], which is a renaming, hence non
recursive.

We finally prove that this uniquely equips DB𝑆 with De Bruijn 𝑆-algebra structure, and
that the obtaind De Bruijn 𝑆-algebra is initial.

Once this initial-algebra semantics is in place, we investigate the link with the above-
mentioned mainstream framework of Fiore, Plotkin, and Turi. We find that both categories
of models may include pathological objects, in the sense that we do not see any loss in ruling
them out. When we do so, we obtain equivalent categories (Theorem 4.25).

Next, we devote two sections to investigating the status of binding signatures and the
binding conditions. Indeed, binding signatures are combinatorial objects, and the binding
conditions may seem somewhat arbitrary. We provide two categorical interpretations of
binding signatures and binding conditions.

• We first recast binding signatures within Borthelle et al.’s framework [BHL20], which is
a generalisation of Fiore’s [Fio08]. After recalling the notion of structurally strong
endofunctor (on Set), and the category Σ -Mon of models of such an endofunctor Σ, we
show that any binding signature 𝑆 gives rise to such an endofunctor Σ𝑆, and exhibit an
isomorphism 𝑆 -DBAlg � Σ𝑆 -Mon of categories over DBMnd.

• We then recast our initial-algebra semantics within the module-based approach to syntax
with variable binding and substitution [HM07, HM10]. For this, we need to adapt
the notion of parametric module over monads to De Bruijn monads, thus introducing
parametric De Bruijn modules. We further define the category 𝑀 -MAlg (for “modular
algebras”) of models of any such parametric De Bruijn module 𝑀. Finally, we show that
any binding signature 𝑆 gives rise to a parametric De Bruijn module 𝑀𝑆, and exhibit an
isomorphism 𝑆 -DBAlg � 𝑀𝑆 -MAlg of categories over DBMnd.

Our next two contributions extend the initial-algebra semantics in two different directions.

• We first propose a simply-typed generalisation, which is parameterised over a given set of
types. We adopt a standard simply-typed variant of binding signatures [FH10], and prove
a corresponding initiality result (Theorem 7.27). The strength-based and module-based
recastings that we just mentioned could be extended to this setting, but we refrain from
doing so for simplicity.

• Then, we consider equations. We introduce a notion of De Bruijn equational theory,
and prove a corresponding initiality result (Theorem 8.7), whose witness is a straightforward
quotient of De Bruijn’s encoding.

Finally, in §9, we provide two mechanised versions of our framework: the first one is in Coq,
while the second one is in HOL Light, a proof assistant which does not support dependent
types, thus illustrating the simplicity of our theory.

1.2. Plan of the paper. In §2, we introduce De Bruijn monads, De Bruijn 𝑆-algebras, and
the De Bruijn 𝑆-algebra DB𝑆. We furthermore prove (Theorem 2.21) that DB𝑆 admits a
unique substitution map satisfying the binding conditions with the desired behaviour on
variables. In §3, we organise De Bruijn monads as a category, which we prove equivalent to
categories of relative monads and of monoids. For any binding signature 𝑆, we then organise
De Bruijn 𝑆-algebras into a category 𝑆 -DBAlg, wherein we prove that DB𝑆 is an initial

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:5

object. In §4, we establish the announced link with the presheaf-based approach. In §5 and 6,
we introduce our interpretations of binding signatures and binding conditions in terms of
structurally strong endofunctors and modules, respectively. We enrich the framework with
simple types in §7, and with equations in §8. In §9, we briefly describe our mechanisations
in HOL Light and Coq. Finally, we conclude in §10.

1.3. Related work.
Abstract frameworks for variable binding. We have already mentioned the tight link
with the presheaf-based approach [FPT99]. This link could probably be extended to variants
such as [HM07, HM10, AM21, FS22].

In recent work, Allais et al. [AAC+18] introduce a universe of syntaxes, which essentially
corresponds to a simply-typed version of binding signatures. Their framework is designed
to facilitate the definition of so-called traversals, i.e., functions defined by structural
induction, “traversing” their argument. In a similar spirit, let us mention the recent work of
Gheri and Popescu [GP20], which presents a theory of syntax with binding, mechanised in
Isabelle/HOL. Potential links between these frameworks and our approach remain unclear
to us at the time of writing.

The categories of ”intersectional” objects obtained in §4 are technically very close to
nominal sets [GP99]: finite supports appear in the “action-based” presentation of nominal
sets (and in our §4.2), while pullback preservation appears in their sheaf-based presentation
(and in our §4.1). And indeed, any intersectional presheaf yields a nominal set, and so does
any finitary De Bruijn monad. However, these links are not entirely satisfactory, because
they do not account for substitution. The reason is that the only categorical theory of
substitution that we know of for nominal sets, by Power [Pow07], is operadic rather than
monadic, so we do not immediately see how to state a correspondence.

Finally, Pitts [Pit23] recently introduced semantics for the locally nameless approach to
syntax, where bound variables are De Bruijn indices and free variables are chosen in a fixed
infinite set of atoms. In some sense, his locally nameless sets are the counterpart of our
finitary De Bruijn monads, in the untyped case. Beyond the difference between the locally
nameless approach and the crude De Bruijn encoding we focus on, while only single-variable
renamings are available in locally nameless sets, simultaneous substitution is built-in in De
Bruijn monads. This enables us to define a notion of model (for a binding signature) with
explicit compatibility conditions about substitution, resulting in a recursion principle which
is compatible with substitution.

Proof assistant libraries. Allais et al. [AAC+18] and Gheri and Popescu [GP20] mechanise
their approach in Agda and Isabelle/HOL, respectively. In the same spirit, the presheaf-based
approach was recently formalised [FS22].

De Bruijn representation benefits from well-developed proof assistant libraries, in
particular Autosubst [STS15, SSK19]. Such libraries are somewhat complementary to our
work. Their main goal is to automate part of the reasoning about substitution in the proof
assistant, while we provide an initial-algebra semantics. In particular, it could be useful to
adapt the decision procedure of Autosubst to our Coq library.

18:6 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

1.4. General notation. We denote by 𝐴∗ =
∑
𝑛∈N 𝐴

𝑛 the set of finite sequences of elements
of 𝐴, for any set 𝐴. In any category C, we tend to write [𝐶, 𝐷] for the hom-set C(𝐶, 𝐷)
between any two objects 𝐶 and 𝐷. Finally, for any endofunctor 𝐹, 𝐹 - alg denotes the usual
category of 𝐹-algebras and morphisms between them, and 𝜇𝐹 = 𝜇𝑋.𝐹 (𝑋) will be its least
fixed point. Finally, CAT denotes the large category of locally small categories.

2. De Bruijn monads

In this section, we start by introducing De Bruijn monads in an untyped setting. Then,
we define assignment lifting, the binding conditions, and the models of a binding signature
𝑆 in De Bruijn monads, De Bruijn 𝑆-algebras. Finally, we construct the term De Bruijn
𝑆-algebra DB𝑆.

2.1. Definition of De Bruijn monads. We start by fixing some terminology and notation,
and then give the definition.

Definition 2.1. Given a set 𝑋, an 𝑋-assignment is a map N → 𝑋. We sometimes merely
use “assignment” when 𝑋 is clear from context.

Notation 2.2. Consider any map 𝑠 : 𝑋 × 𝑌N → 𝑍.

• For all 𝑥 ∈ 𝑋 and 𝑔 : N → 𝑌 , we write 𝑥 [𝑔]𝑠 for 𝑠(𝑥, 𝑔), or 𝑥 [𝑔]𝑋 when 𝑠 is clear from
context, or even 𝑥 [𝑔] when 𝑠 and 𝑋 are clear from context.

• Furthermore, 𝑠 gives rise to the map

𝑋N × 𝑌N → 𝑍N

(𝑓 , 𝑔) ↦→ 𝑛 ↦→ 𝑠(𝑓 (𝑛), 𝑔).

We use similar notation for this map, i.e., 𝑓 [𝑔] (𝑛) := 𝑓 (𝑛) [𝑔]𝑠.

Definition 2.3. A De Bruijn monad is a set 𝑋, equipped with

• a substitution map 𝑠 : 𝑋 × 𝑋N → 𝑋, which takes an element 𝑥 ∈ 𝑋 and an assignment
𝑓 : N → 𝑋, and returns an element 𝑥 [𝑓], and

• a variables map 𝑣 : N → 𝑋,

satisfying, for all 𝑥 ∈ 𝑋, and 𝑓 , 𝑔 : N → 𝑋:

• associativity: 𝑥 [𝑓] [𝑔] = 𝑥 [𝑓 [𝑔]],
• left unitality: 𝑣(𝑛) [𝑓] = 𝑓 (𝑛), and
• right unitality: 𝑥 [𝑣] = 𝑥.

Example 2.4. The set N itself is clearly a De Bruijn monad, with variables given by the
identity and substitution N × NN → N given by evaluation. This is in fact the initial De
Bruijn monad, as should be clear from the development below.

Example 2.5. The set Λ := 𝜇𝑋.N + 𝑋 + 𝑋2 of 𝜆-terms forms a De Bruijn monad with
well-known structure, which we now recall for completeness. Elements of Λ are generated by
the following grammar, where 𝑛 ranges over N.

𝑒 F 𝑛 | 𝜆(𝑒) | 𝑒 𝑒

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:7

The variables map N → Λ sends any 𝑛 to itself, i.e., the leaf labelled 𝑛. For substitution, we
want it to satisfy the following mutually recursive equations:

𝑣(𝑛) [𝜎] = 𝜎(𝑛)
(𝑒1 𝑒2) [𝜎] = 𝑒1 [𝜎] 𝑒2 [𝜎]
𝜆(𝑒) [𝜎] = 𝜆(𝑒[⇑𝜎])

(⇑𝜎) (0) = 𝑣(0)
(⇑𝜎) (𝑛 + 1) = 𝜎(𝑛) [𝑣 ◦ succ],

where succ : N → N denotes the successor map. However, the very last recursive call to
substitution is not clearly decreasing in any way, so we cannot take this as a definition.
Instead, we take it as a specification, and prove that there exist unique substitution and
lifting maps satisfying the above equations.

For this, we use a standard technique, based on the observation that the problematic
recursive call (𝜎(𝑛) [𝑣 ◦ succ]) does not involve a general assignment but the mere renaming
𝑣 ◦ succ. We replace this recursive call with 𝜎(𝑛){succ}, where −{−} : Λ × NN → Λ denotes
a renaming map, easily defined by recursion as follows:

𝑣(𝑛){ 𝑓 } = 𝑣(𝑓 (𝑛))
(𝑒1 𝑒2){ 𝑓 } = 𝑒1{ 𝑓 } 𝑒2{ 𝑓 }
𝜆(𝑒){ 𝑓 } = 𝜆(𝑒{↑ 𝑓 }),

where (↑ 𝑓) (0) = 0

(↑ 𝑓) (𝑛 + 1) = 𝑓 (𝑛) + 1.

(Because 𝑓 is a mere renaming, the definition of ↑ is not recursive.)
It is then straightforward to prove that the original equations are (uniquely) satisfied.
In Example 3.17, as an application of Theorem 3.16, we will characterise the obtained

De Bruijn monad by a universal property. In fact, the set Λ := 𝜇𝑋.N + 𝑋 + 𝑋2 has infinitely
many De Bruijn monad structures, as many as there are binding arities with underlying
endofunctors 𝑋 ↦→ 𝑋 and 𝑋 ↦→ 𝑋2, in the sense defined below. But only one of these
structures models 𝜆-calculus substitution.

2.2. Lifting assignments. In preparation for introducing the binding conditions, given a
De Bruijn monad 𝑀, we now define an operation called lifting on its set of assignments
N → 𝑀. It is convenient to stress that only part of the structure of a De Bruijn monad is
needed for this definition.

Definition 2.6. Consider any set 𝑀, equipped with maps 𝑠 : 𝑀 × 𝑀N → 𝑀 and 𝑣 : N → 𝑀.
For any assignment 𝜎 : N → 𝑀, we define the assignment ⇑𝜎 : N → 𝑀 by

(⇑𝜎) (0) = 𝑣(0)
(⇑𝜎) (𝑛 + 1) = 𝜎(𝑛) [↑],

where ↑ : N → 𝑋 maps any 𝑛 to 𝑣(𝑛 + 1).

Remark 2.7. Both ⇑ and ↑ depend on 𝑀 and (part of) (𝑠, 𝑣). Here, and in other similar
situations below, we abuse notation and omit such dependencies for readability.

Of course we may iterate lifting:

18:8 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Definition 2.8. Let ⇑0𝐴 = 𝐴, and ⇑𝑛+1𝐴 = ⇑(⇑𝑛𝐴).

2.3. Binding arities and binding conditions. Our treatment of binding arities reflects
the separation between the first-order part of the arity, namely its length, which concerns
the syntax, and the binding information, namely the binding numbers, which concerns the
compatibility with substitution.

Definition 2.9.

• A first-order arity is a natural number.
• A binding arity is a sequence (𝑛1, . . . , 𝑛𝑝) of natural numbers, i.e., an element of N∗.
• The first-order arity |𝑎 | associated with a binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝) is its length 𝑝.

Let us now axiomatise what we call an operation of a given binding arity.

Definition 2.10. Let 𝑎 = (𝑛1, . . . , 𝑛𝑝) be any binding arity, 𝑀 be any set, 𝑠 : 𝑀 ×𝑀N → 𝑀,
and 𝑣 : N → 𝑀 be any maps. An operation of binding arity 𝑎 is a map 𝑜 : 𝑀 𝑝 → 𝑀

satisfying the following 𝑎-binding condition w.r.t. (𝑠, 𝑣):
∀𝜎 : N → 𝑀, 𝑥1, . . . , 𝑥𝑝 ∈ 𝑀, 𝑜(𝑥1, . . . , 𝑥𝑝) [𝜎] = 𝑜(𝑥1 [⇑𝑛1𝜎], . . . , 𝑥𝑝 [⇑𝑛𝑝𝜎]). (2.1)

Remark 2.11. Let us emphasise the dependency of this definition on 𝑣 and 𝑠 – which is
hidden in the notation for substitution and lifting.

2.4. Binding signatures and algebras. In this section, we recall the standard notions of
first-order (resp. binding) signatures, and adapt the definition of algebras to our De Bruijn
context. Let us first briefly recall the former.

Definition 2.12. A first-order signature consists of a set 𝑂 of operations, equipped
with an arity map ar : 𝑂 → N.

Definition 2.13. For any first-order signature 𝑆 := (𝑂, ar), an 𝑆-algebra is a set 𝑋, together
with, for each operation 𝑜 ∈ 𝑂, a map 𝑜𝑋 : 𝑋

ar (𝑜) → 𝑋.

Let us now generalise this to binding signatures.

Definition 2.14.

• A binding signature [Plo90] consists of a set 𝑂 of operations, equipped with an arity
map ar : 𝑂 → N∗. Intuitively, the arity of an operation specifies the number of bound
variables in each argument.

• The first-order signature |𝑆 | associated with a binding signature 𝑆 := (𝑂, ar) is |𝑆 | :=
(𝑂, |ar |), where |ar | : 𝑂 → N maps any 𝑜 ∈ 𝑂 to the length |ar (𝑜) | of ar (𝑜).

Example 2.15. As we saw in Example 1.2, the binding signature for 𝜆-calculus has two
operations, abstraction and application, of respective arities (1) and (0, 0). The associated
first-order signature has two operations of respective arities 1 and 2.

Let us now present the notion of De Bruijn 𝑆-algebra:

Definition 2.16. For any binding signature 𝑆 := (𝑂, ar), a De Bruijn 𝑆-algebra is a De
Bruijn monad (𝑋, 𝑠, 𝑣) equipped with an operation of binding arity ar (𝑜), for all 𝑜 ∈ 𝑂.

In order to state our characterisation of the term model, we associate to any binding
signature an endofunctor on sets, as follows.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:9

Definition 2.17. The endofunctor Σ𝑆 associated to a binding signature 𝑆 = (𝑂, ar) is
defined by Σ𝑆 (𝑋) =

∑
𝑜∈𝑂 𝑋

|ar (𝑜) | .

Remark 2.18. The induced endofunctor merely depends on the underlying first-order
signature.

Definition 2.19. For any binding signature 𝑆 = (𝑂, ar) and Σ𝑆-algebra 𝑎 : Σ𝑆 (𝑋) → 𝑋, we

call the composite 𝑋 |ar (𝑜) | 𝑖𝑛𝑜−−→ Σ𝑆 (𝑋)
𝑎−→ 𝑋 the interpretation of 𝑜 in 𝑋.

Remark 2.20. As is well known, for any binding signature, the initial (N + Σ𝑆)-algebra is
the desired syntax; it has as carrier the least fixed point 𝜇𝐴.N + Σ𝑆 (𝐴).

The following theorem defines the term model of a binding signature.

Theorem 2.21. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote the initial
(N + Σ𝑆)-algebra, with structure maps 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) → DB𝑆. Then,

(i) There exists a unique map 𝑠 : DB𝑆 ×DB𝑆
N → DB𝑆 such that

• for all 𝑛 ∈ N and 𝑓 : N → DB𝑆, 𝑠(𝑣(𝑛), 𝑓) = 𝑓 (𝑛), and
• the interpretation of each 𝑜 ∈ 𝑂 in DB𝑆 satisfies the ar (𝑜)-binding condition w.r.t.

(𝑠, 𝑣).
(ii) This map turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into a De Bruijn 𝑆-algebra.

Proof. We have proved the result in both HOL Light [Mag22] and Coq [Laf22a], see §9.

Remark 2.22. Point (i) may be viewed as an abstract form of recursive definition for
substitution in the term model. The theorem thus allows us to construct the term model
of a signature in two steps: first the underlying set, constructed as the inductive datatype
𝜇𝑍.N + Σ𝑆 (𝑍), and then substitution, defined by the binding conditions viewed as recursive
equations.

3. Initial-algebra semantics of binding signatures in De Bruijn monads

In this section, for any binding signature 𝑆, we organise De Bruijn 𝑆-algebras into a category,
𝑆 -DBAlg, and prove that the term De Bruijn 𝑆-algebra DB𝑆 is initial therein.

3.1. A category of De Bruijn monads. Let us start by organising general De Bruijn
monads into a category:

Definition 3.1. A morphism (𝑋, 𝑠, 𝑣) → (𝑌, 𝑡, 𝑤) between De Bruijn monads is a set-map
𝑓 : 𝑋 → 𝑌 commuting with substitution and variables, in the sense that for all 𝑥 ∈ 𝑋 and
𝜎 : N → 𝑋 we have 𝑓 (𝑥 [𝜎]) = 𝑓 (𝑥) [𝑓 ◦ 𝜎] and 𝑓 ◦ 𝑣 = 𝑤.

Remark 3.2. More explicitly, the first axiom says: 𝑓 (𝑠(𝑥, 𝜎)) = 𝑡 (𝑓 (𝑥), 𝑓 ◦ 𝜎).

Notation 3.3. De Bruijn monads and morphisms between them form a category, which we
denote by DBMnd.

18:10 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

3.2. De Bruijn monads as relative monads and as monoids. In this subsection, we
briefly mention an alternative presentation of De Bruijn monads for the categorically-minded
reader, in terms of relative monads. Namely, we show that they are monads relative to
the functor 1 → Set picking N. Then, following Altenkirch et al. [ACU15], we explain
a companion presentation in terms of monoids in Set, for a suitable skew monoidal
structure [ACU15, Szl12].

Remark 3.4. Altenkirch et al. have similarly shown that Fiore, Plotkin, and Turi’s approach
may be understood in terms of monads relative to the canonical embedding from finite sets
into sets (and hence also in terms of monoids in a corresponding monoidal category).

Let us first briefly recall relative monads, which were introduced by Altenkirch et
al. [ACU15].

Definition 3.5. For any set E, category C, and map 𝐽 : E → ob(C), a 𝐽-relative monad,
or monad relative to 𝐽, consists of

• an object mapping 𝑇 : E → ob(C), together with
• unit morphisms 𝜂𝑋 : 𝐽 (𝑋) → 𝑇 (𝑋), for all 𝑋 ∈ E, and
• for each morphism 𝑓 : 𝐽 (𝑋) → 𝑇 (𝑌), an extension 𝑓 † : 𝑇 (𝑋) → 𝑇 (𝑌),
such that the following diagrams commute for all 𝑋,𝑌, 𝑍 ∈ E, 𝑓 : 𝐽 (𝑋) → 𝑇 (𝑌), and
𝑔 : 𝐽 (𝑌) → 𝑇 (𝑍).

𝐽 (𝑋) 𝑇 (𝑋)

𝑇 (𝑌)

𝜂𝑋

𝑓 †𝑓
𝑇 (𝑋) 𝑇 (𝑋)

𝜂
†
𝑋

𝑇 (𝑋) 𝑇 (𝑌)

𝑇 (𝑍)

𝑓 †

𝑔†(𝑔†◦ 𝑓)†

A morphism (𝑇, 𝜂, (−)†) → (𝑇 ′, 𝜂′, (−)†′) of 𝐽-relative monads consists of morphisms
𝛼𝑋 : 𝑇 (𝑋) → 𝑇 ′(𝑋), for all 𝑋 ∈ E, making the following diagrams commute

𝐽 (𝑋)

𝑇 (𝑋) 𝑇 ′(𝑋)

𝜂𝑋

𝛼𝑋

𝜂′
𝑋

𝑇 (𝑋) 𝑇 (𝑌)

𝑇 ′(𝑌)𝑇 ′(𝑋)

𝑓 †

𝛼𝑌𝛼𝑋

(𝛼𝑌◦ 𝑓)†
′

for all 𝑋,𝑌 ∈ E, and 𝑓 : 𝐽 (𝑋) → 𝑇 (𝑋). Monads relative to 𝐽 and morphisms between them
form a category.

Remark 3.6. This definition is slightly different from, but equivalent to the original.

Proposition 3.7. The category DBMnd is canonically isomorphic to the category of monads
relative to the map 1 → Set picking N.

Remark 3.8. Canonicity here means that the isomorphism lies over the canonical isomor-
phism [1, Set] � Set.

Proof. By mere definition unfolding:

• An object mapping 𝑇 : 1 → Set amounts to a choice of object 𝑋 in Set.
• A unit 𝜂 : N → 𝑋 amounts to a choice of variables map.
• The assignment of an extension 𝑓 † : 𝑋 → 𝑋 to each 𝑓 : N → 𝑋 amounts to a map
𝑋N → 𝑋𝑋, which is equivalent by uncurrying to a choice of substitution map 𝑋 × 𝑋N → 𝑋.
Notationally, 𝑓 †(𝑥) thus corresponds to 𝑥 [𝑓].

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:11

We then check that the axioms match:

• Right unitality 𝑥 [𝜂] = 𝑥 corresponds to 𝜂†(𝑥) = 𝑥, i.e., 𝜂† = id𝑋.
• Left unitality 𝜂(𝑛) [𝑓] = 𝑓 (𝑛) corresponds to 𝑓 †(𝜂(𝑛)) = 𝑓 (𝑛), i.e., 𝑓 † ◦ 𝜂 = 𝑓 .
• For associativity 𝑥 [𝑓] [𝑔] = 𝑥 [𝑓 [𝑔]], by definition 𝑓 [𝑔] (𝑛) = 𝑓 (𝑛) [𝑔], so 𝑓 [𝑔] corresponds
to 𝑛 ↦→ 𝑔†(𝑓 (𝑛)), i.e., 𝑔† ◦ 𝑓 , and the axiom becomes 𝑔† ◦ 𝑓 † = (𝑔† ◦ 𝑓)†, as desired.
Following Altenkirch et al., let us now give a further alternative characterisation of the

category DBMnd of De Bruijn monads in terms of skew monoidal categories, which we now
recall.

Definition 3.9 (Szlachányi [Szl12]). A skew monoidal category is a category C equipped
with a tensor product functor ⊗ : C2 → C, written in infix notation, and a unit object
𝐼 ∈ C, together with

• an associator natural transformation 𝛼𝑋,𝑌 ,𝑍 : (𝑋 ⊗ 𝑌) ⊗ 𝑍 → 𝑋 ⊗ (𝑌 ⊗ 𝑍),
• a right unitor natural transformation 𝜌𝑋 : 𝑋 → 𝑋 ⊗ 𝐼, and
• a left unitor natural transformation 𝜆𝑋 : 𝐼 ⊗ 𝑋 → 𝑋,

satisfying the following coherence conditions.

𝐼

𝐼 ⊗ 𝐼

𝐼

𝜌𝐼 𝜆𝐼

𝑋 ⊗ 𝑌

(𝑋 ⊗ 𝐼) ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌)

𝑋 ⊗ 𝑌

𝜌𝑋⊗𝑌

𝛼𝑋,𝐼,𝑌

𝑋⊗𝜆𝑌

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷)

𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

(𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷

𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)
𝛼𝐴⊗𝐵,𝐶,𝐷

𝛼𝐴,𝐵,𝐶⊗𝐷

𝛼𝐴,𝐵,𝐶⊗𝐷

𝛼𝐴,𝐵⊗𝐶,𝐷

𝐴⊗𝛼𝐵,𝐶,𝐷

(𝐼 ⊗ 𝑋) ⊗ 𝑌 𝐼 ⊗ (𝑋 ⊗ 𝑌)

𝑋 ⊗ 𝑌

𝛼𝐼,𝑋,𝑌

𝜆𝑋⊗𝑌𝜆𝑋⊗𝑌

𝑋 ⊗ 𝑌

(𝑋 ⊗ 𝑌) ⊗ 𝐼 𝑋 ⊗ (𝑌 ⊗ 𝐼)

𝜌𝑋⊗𝑌

𝛼𝑋,𝑌,𝐼

𝑋⊗𝜌𝑌

We will now show that De Bruijn monads are equivalently monoids for some suitable
skew monoidal category structure on Set. For this, we introduce the following terminology.

Notation 3.10. For a functor 𝐽 : E → C, “𝐽-relative monad” means monad relative to the
object mapping ob(E) → ob(C) of 𝐽.
Proposition 3.11. For any small category E, cocomplete category C, and functor 𝐽 : E → C,
the functor category [E,C] is skew monoidal, with tensor 𝐺 ⊗ 𝐹 =

∑
𝐽 (𝐺) ◦ 𝐹 and unit

𝐼 = 𝐽, where
∑
𝐽 denotes left Kan extension along 𝐽. Furthermore, monoids in [E,C] are in

one-to-one correspondence with monads relative to 𝐽.

Proof. By [ACU15, Theorems 4 and 5].

Applying this to the functor 𝐽 : 1 → Set picking N and transferring across the isomor-
phism [1, Set] � Set, we obtain a skew monoidal structure on sets, and Proposition 3.11
gives:

18:12 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Corollary 3.12. The tensor product 𝑋 ⊗ 𝑌 := 𝑋 × 𝑌N extends to a skew monoidal structure
on Set, with:

• unit N,
• right unitor 𝜌𝑋 : 𝑋 → 𝑋 ⊗ N given by 𝜌𝑋 (𝑥) = (𝑥, idN),
• left unitor 𝜆𝑋 : N ⊗ 𝑋 → 𝑋 given by evaluation 𝜆𝑋 (𝑛, 𝜎) = 𝜎(𝑛), and
• associator 𝛼𝑋,𝑌 ,𝑍 : (𝑋⊗𝑌)⊗𝑍 → 𝑋⊗(𝑌⊗𝑍) given by 𝛼𝑋,𝑌 ,𝑍 ((𝑥, 𝜐), 𝜁) = (𝑥, (𝑛 ↦→ (𝜐(𝑛), 𝜁))).

Furthermore, DBMnd is precisely the category of monoids therein.

Proof. By the standard formula for left Kan extension, we have∑︁
𝐽

(𝑋) (𝑈) �
∫ ★∈1

Set(𝐽 (★),𝑈) × 𝑋 (★)

� Set(N,𝑈) × 𝑋 (★)
� 𝑈N × 𝑋 (★).

Remark 3.13. By Notation 3.10, if two functors 𝐽 : E → C and 𝐽′ : E′ → C have the same
object mapping up to isomorphism (hence in particular ob(E) � ob(E′)), then 𝐽-relative
monads are isomorphic to 𝐽′-relative monads, and both are isomorphic to monoids in [E,C],
resp. in [E′,C] (under the assumptions of Proposition 3.11).

In particular, the functor 1 → Set picking N factors as

1
𝐼−→ B[N,N] 𝐾−→ Set,

where B[N,N] denotes the full subcategory spanned by N. Since the object mapping of 𝐾 is
the same as that of 1 → Set, De Bruijn monads are equivalently monoids in the category
[B[N,N], Set]. Remarkably, unlike Set with the skew monoidal structure of Corollary 3.12,
[B[N,N], Set] is in fact monoidal.

3.3. Categories of De Bruijn algebras. In this section, for any binding signature 𝑆, we
organise De Bruijn 𝑆-algebras into a category 𝑆 -DBAlg.

Let us start by recalling the category of 𝑆-algebras for a first-order 𝑆:

Definition 3.14. For any first-order signature 𝑆, a morphism 𝑋 → 𝑌 of 𝑆-algebras is a
map between underlying sets commuting with operations, in the sense that for each 𝑜 ∈ 𝑂,
letting 𝑝 := ar (𝑜), we have 𝑓 (𝑜𝑋 (𝑥1, . . . , 𝑥𝑝)) = 𝑜𝑌 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑝)).

We denote by 𝑆 - alg the category of 𝑆-algebras and morphisms between them.

We now exploit this to define morphisms between De Bruijn 𝑆-algebras:

Definition 3.15. For any binding signature 𝑆, a morphism of De Bruijn 𝑆-algebras is a map
𝑓 : 𝑋 → 𝑌 between underlying sets, which is a morphism both of De Bruijn monads and of
|𝑆 |-algebras. We denote by 𝑆 -DBAlg the category of De Bruijn 𝑆-algebras and morphisms
between them.

Theorem 3.16. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote the initial
(N + Σ𝑆)-algebra. Then, the De Bruijn 𝑆-algebra structure of Theorem 2.21 on DB𝑆 makes
it initial in 𝑆 -DBAlg.

Proof. We have proved the result in both HOL Light [Mag22] and Coq [Laf22a], see §9.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:13

Example 3.17. For the binding signature of 𝜆-calculus (Example 2.15), the carrier of the
initial model is 𝜇𝑍.N + 𝑍 + 𝑍2.

4. Relation to presheaf-based models

The classical initial-algebra semantics introduced in [FPT99, Fio08] associates in particular
to each binding signature 𝑆 a category, say Φ𝑆 -Mon of models, while we have proposed in §3
an alternative category of models 𝑆 -DBAlg. In this section, we are interested in comparing
both categories of models.

In fact, we find that both may include pathological models, in the sense that we do not
see any loss in ruling them out. And when we do so, we obtain equivalent categories.

4.1. Trimming down presheaf-based models. First of all, in this subsection, let us
recall the mainstream approach we want to relate to, and exclude some pathological objects
from it.

4.1.1. Presheaf-based models. We start by recalling the presheaf-based approach. The
ambient category is the category of functors [F, Set], where F denotes the category of finite
ordinals, and all maps between them.

Definition 4.1. Let [Set, Set] 𝑓 denote the full subcategory of [Set, Set] 𝑓 spanning finitary
functors, i.e., those preserving directed colimits (= colimits of directed posets).

Proposition 4.2. The restriction functor [Set, Set] 𝑓 → [F, Set] is an equivalence.

Proof. The category of sets is 𝜔-accessible, so by [AR94, Theorem 2.26, (i) ⇔ (ii)] and [AR94,
Remark 2.26(1)], it is a free cocompletion of its full subcategory of finitely presentable objects
under directed colimits. Equivalently, it is a free cocompletion of F under directed colimits.
Thus, by taking B to be Set in [AR94, Definition 2.25], we obtain that the restriction functor
[Set, Set] 𝑓 → [F, Set] is an equivalence.

Definition 4.3. Let (⊗, 𝐼) denote the monoidal structure on [F, Set] inherited from the
composition monoidal structure on [Set, Set] 𝑓 through the equivalence of Proposition 4.2.

By construction, monoids in [F, Set] are thus equivalent to finitary monads on sets.
The idea is then to interpret binding signatures 𝑆 as endofunctors Φ𝑆 on [F, Set], and

to define models as monoids equipped with Φ𝑆-algebra structure, satisfying a suitable
compatibility condition.

The definition of Φ𝑆 relies on an operation called derivation:

Definition 4.4 (Endofunctor associated to a binding signature).

• Let the derivative 𝑋 ′ of any functor 𝑋 : F → Set be defined by 𝑋 ′(𝑛) = 𝑋 (𝑛 + 1).
• Furthermore, let 𝑋 (0) = 𝑋, and 𝑋 (𝑛+1) = (𝑋 (𝑛))′.
• For any binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝), let Φ𝑎 (𝑋) = 𝑋 (𝑛1) × . . . × 𝑋 (𝑛𝑝) .
• For any binding signature 𝑆 = (𝑂, ar), let Φ𝑆 =

∑
𝑜∈𝑂 Φar (𝑜) .

Proposition 4.5. Through the equivalence with finitary functors, derivation becomes 𝐹′(𝐴) =
𝐹 (𝐴 + 1), for any finitary 𝐹 : Set → Set and 𝐴 ∈ Set.

18:14 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Example 4.6. On the binding signature for 𝜆-calculus, say 𝑆𝜆, which we saw in Example 2.15,
we get

Φ𝑆𝜆 (𝑋) (𝑛) = 𝑋 (𝑛)2 + 𝑋 (𝑛 + 1).

Next, we want to express the relevant compatibility condition between algebra and
monoid structure. For this, let us briefly recall the notion of pointed strength, see [FPT99,
Fio08] for details.

Definition 4.7. A pointed strength on an endofunctor 𝐹 : C → C on a monoidal category
(C, ⊗, 𝐼, 𝛼, 𝜆, 𝜌) is a family of morphisms 𝑠𝑡𝐶, (𝐷,𝑣) : 𝐹 (𝐶) ⊗ 𝐷 → 𝐹 (𝐶 ⊗ 𝐷), natural in 𝐶 ∈ C
and (𝐷, 𝑣 : 𝐼 → 𝐷) ∈ 𝐼/C, the coslice category under the tensor unit 𝐼, making the following
diagrams commute,

𝐹 (𝐴)

𝐹 (𝐴) ⊗ 𝐼 𝐹 (𝐴 ⊗ 𝐼)

𝜌𝐹 (𝐴) 𝐹 (𝜌𝐴)

𝑠𝑡𝐴, (𝐼,id)

(𝐹 (𝐴) ⊗ 𝑋) ⊗ 𝑌 𝐹 (𝐴 ⊗ 𝑋) ⊗ 𝑌 𝐹 ((𝐴 ⊗ 𝑋) ⊗ 𝑌)

𝐹 (𝐴) ⊗ (𝑋 ⊗ 𝑌) 𝐹 (𝐴 ⊗ (𝑋 ⊗ 𝑌))

𝑠𝑡𝐴, (𝑋,𝑣𝑋) ⊗ 𝑌

𝛼𝐹 (𝐴) ,𝑋,𝑌

𝑠𝑡𝐴⊗𝑋, (𝑌,𝑣𝑌)

𝐹 (𝛼𝐴,𝑋,𝑌)

𝑠𝑡𝐴, (𝑋⊗𝑌,𝑣𝑋⊗𝑌)

for all objects 𝐴, 𝑋, 𝑌 , and morphisms 𝑣𝑋 : 𝐼 → 𝑋 and 𝑣𝑌 : 𝐼 → 𝑌 , where 𝑣𝑋⊗𝑌 denotes the
composite

𝐼
𝜌𝐼−−→ 𝐼 ⊗ 𝐼 𝑣𝑋⊗𝑣𝑌−−−−−→ 𝑋 ⊗ 𝑌 .

The next step is to observe that binding signatures generate pointed strong endofunctors.

Definition 4.8. The derivation endofunctor 𝑋 ↦→ 𝑋 ′ on [F, Set] has a pointed strength,
defined through the equivalence with finitary functors by

𝐺 (𝐹 (𝑋) + 1)
𝐺 (𝐹 (𝑋)+𝑣1)−−−−−−−−−−→ 𝐺 (𝐹 (𝑋) + 𝐹 (1))

𝐺 [𝐹 (𝑖𝑛1) ,𝐹 (𝑖𝑛2)]−−−−−−−−−−−−−−−→ 𝐺 (𝐹 (𝑋 + 1)).

Product, coproduct, and composition of endofunctors lift to pointed strong endofunctors,
which yields:

Corollary 4.9 [FPT99, Fio08]. For all binding signatures 𝑆, Φ𝑆 is canonically pointed
strong.

At last, we arrive at the definition of models.

Definition 4.10. For any pointed strong endofunctor 𝐹 on a monoidal category
(C, ⊗, 𝐼, 𝛼, 𝜆, 𝜌), an 𝐹-monoid is an object 𝑋 equipped with 𝐹-algebra and monoid structure,
say 𝑎 : 𝐹 (𝑋) → 𝑋, 𝑠 : 𝑋 ⊗ 𝑋 → 𝑋, and 𝑣 : 𝐼 → 𝑋, such that the following pentagon commutes.

𝐹 (𝑋) ⊗ 𝑋 𝐹 (𝑋 ⊗ 𝑋) 𝐹 (𝑋)

𝑋 ⊗ 𝑋 𝑋

𝑠𝑡𝑋, (𝑋,𝑣)

𝑎⊗𝑋

𝐹 (𝑠)

𝑠

𝑎

A morphism of 𝐹-monoids is a morphism in C which is a morphism both of 𝐹-algebras and
of monoids. We let 𝐹 -Mon denote the category of 𝐹-monoids and morphisms between them.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:15

Example 4.11. For the binding signature 𝑆𝜆 of Example 2.15, a Φ𝑆𝜆-monoid is an object
𝑋, equipped with maps 𝑋 ′ → 𝑋 and 𝑋2 → 𝑋, and with compatible monoid structure.
Compatibility describes how substitution should be pushed down through abstractions and
applications.

4.1.2. Intersectional presheaves. The pathology we want to rule out only concerns the
underlying functor of a model, so we just have to define well-behaved functors in [F, Set].

Well-behavedness for a functor 𝑇 : F → Set is about getting closed terms right. More
precisely, for some finite sets 𝑚 and 𝑛, an element of 𝑇 (𝑚 + 𝑛) which both exists in 𝑇 (𝑚) and
𝑇 (𝑛) should also exist in 𝑇 (∅), and uniquely so. This says exactly that 𝑇 should preserve
the pullback

∅ 𝑛

𝑚 𝑚 + 𝑛.
(4.1)

Taking intersection to mean pullback of two monomorphisms, the following known result
shows that all non-empty intersections are automatically preserved.

Proposition 4.12 [AGT10, Proposition 2.2]. All endofunctors of sets preserve non-empty
intersections.

Thus, by Proposition 4.2, all functors F → Set preserve non-empty intersections, and
we have:

Corollary 4.13. A functor F → Set preserves (binary) intersections iff it preserves empty
(binary) intersections.

Lemma 4.14. A functor 𝑇 from Set (or F) to Set preserves empty binary intersections if
and only if it preserves the following pullback.

0 1

1 2
0

1

Proof. By Proposition 4.2, it is enough to reason on an endofunctor 𝑇 on Set. If 𝑇 preserves
empty binary intersections, then it preserves the above pullback as a particular case.
Conversely, assume that it preserves the above pullback. Then, the following diagram is an
equaliser.

𝑇 (0) 𝑇 (1) 𝑇 (2).
𝑇 (0)

𝑇 (1)

Therefore, 𝑇 coincides with its so-called Trnková closure and thus by [AMBL12, Corol-
lary VII.2], it preserves finite intersections.

Definition 4.15.

• A functor F → Set is intersectional iff it preserves binary intersections, or equiva-
lently empty binary intersections. Let [F, Set]int denote the full subcategory spanned by
intersectional functors.

18:16 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

• A monoid in [F, Set], (resp., for any binding signature 𝑆, an object of Φ𝑆 -Mon) is
intersectional iff the underlying functor is. Let Φ𝑆 -Monint denote the full subcategory
spanned by intersectional objects.

Example 4.16. As an example of a non intersectional finitary monad, first consider the
monad 𝐿 of 𝜆-calculus, so that 𝐿 (𝑋) is set of 𝜆-terms taking free variables in 𝑋. This monad
is intersectional, but now consider the monad 𝐿′ agreeing with 𝐿 on any non-empty set, and
such that 𝐿′(∅) = ∅. Then, 𝐿′ is not intersectional.

The important result for comparing the presheaf-based approach with ours is the
following.

Proposition 4.17. The subcategory Φ𝑆 -Monint includes the initial object.

Proof. Roughly, closed terms are isomorphic to terms in two free variables that use neither
the first, nor the second.

Let us conclude this subsection with the following observation, that for a wide class of
signatures all models are in fact well behaved.

Proposition 4.18. If the initial object DB′
𝑆 of Φ𝑆 -Mon has at least one closed term (i.e.,

DB′
𝑆 (∅) ≠ ∅), then Φ𝑆 -Monint = Φ𝑆 -Mon.

Proof. If 𝑇 is a Φ𝑆-monoid, then by initiality there is a morphism DB′
𝑆 → 𝑇 , and in particular

a map DB′
𝑆 (∅) → 𝑇 (∅). Since DB′

𝑆 (∅) is non-empty by assumption, 𝑇 (∅) cannot be empty.
The result then follows from [AMBL12, Proposition VII.7]: a monad 𝑇 on Set either preserves
the initial object, or is intersectional.

Remark 4.19. The binding signatures for which the initial model has at least one closed
term are those specifying at least a constant or an operation binding (at least) one variable
in each argument.

4.2. Trimming down De Bruijn monads. Let us now turn to well-behaved De Bruijn
algebras. Here well-behavedness is about finitariness. However, it may not be immediately
clear how to define finitariness of a De Bruijn monad.

Definition 4.20. A De Bruijn monad (𝑋, 𝑠, 𝑣) is finitary iff each of its elements 𝑥 ∈ 𝑋 has a
(finite) support 𝑁𝑥 ∈ N, in the sense that for all 𝑓 : N → N fixing the first 𝑁𝑥 numbers, the
corresponding renaming 𝑣 ◦ 𝑓 fixes 𝑥, i.e., 𝑥 [𝑣 ◦ 𝑓] = 𝑥.

Example 4.21. By Proposition 4.24 below, the initial 𝑆-algebra is finitary, for any binding
signature 𝑆. For an example of infinitary De Bruijn monad, consider the greatest fixed point
𝜈𝐴.N + Σ𝑆 (𝐴), for any 𝑆 with at least one operation with more than one argument. E.g.,
if 𝑆 has an operation of binding arity (0, 0), like application in 𝜆-calculus, then the term
𝑣(0) (𝑣(1) (𝑣(2) . . .)) does not have finite support.

Proposition 4.22. Let 𝑥 ∈ 𝑋 be an element of a De Bruijn monad (𝑋, 𝑠, 𝑣). The following
are equivalent:

(1) 𝑥 has support 𝑁;
(2) given any pair of assignments 𝑓1, 𝑓2 : N → 𝑋 which coincide on the first 𝑁 numbers,

𝑥 [𝑓1] = 𝑥 [𝑓2].

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:17

(3) for any assignment 𝑓 : N → 𝑋 fixing the first 𝑁 variables (in the sense that 𝑓 (𝑛) = 𝑣(𝑛)
for any 𝑛 < 𝑁), 𝑥 [𝑓] = 𝑥;

Proof. (1) ⇒ (2) Suppose given two assignments 𝑓1, 𝑓2 : N → 𝑋 such that 𝑓1(𝑛) = 𝑓2(𝑛) for
any 𝑛 < 𝑁. Let us fix some bijection 𝑠 : N → N + N such that𝑠(𝑛) = 𝑖𝑛1(𝑛) for all 𝑛 < 𝑁.
For 𝑖 ∈ {1, 2}, let ℎ𝑖 : N → N fix the first 𝑁 numbers and map any 𝑛 ≥ 𝑁 to 𝑠−1(𝑖𝑛𝑖 (𝑛)),
where 𝑖𝑛1, 𝑖𝑛2 : N → N+N are the coproduct injections. Furthermore, let 𝑢 : N → 𝑋 map any
𝑛 < 𝑁 to 𝑓1(𝑛) = 𝑓2(𝑛) and any 𝑛 ≥ 𝑁 to [𝑓1, 𝑓2] (𝑠(𝑛)), where [𝑓1, 𝑓2] : N + N → 𝑋 denotes
the copairing of 𝑓1 and 𝑓2. We then have 𝑓𝑖 = 𝑢 ◦ ℎ𝑖, for 𝑖 ∈ {1, 2}. Indeed, for each 𝑖:
• For any 𝑛 < 𝑁, we have 𝑢(ℎ𝑖 (𝑛)) = 𝑢(𝑛) = 𝑓𝑖 (𝑛) by definition.
• For any 𝑛 ≥ 𝑁, we have ℎ𝑖 (𝑛) = 𝑠−1(𝑖𝑛𝑖 (𝑛)), hence 𝑠(ℎ𝑖 (𝑛)) = 𝑖𝑛𝑖 (𝑛). But we know that
ℎ𝑖 (𝑛) ≥ 𝑁, because otherwise we would have 𝑠(ℎ𝑖 (𝑛)) = 𝑖𝑛1(𝑘) for some 𝑘 < 𝑁, which does
not hold. We thus obtain 𝑢(ℎ𝑖 (𝑛)) = [𝑓1, 𝑓2] (𝑠(ℎ𝑖 (𝑛)) = [𝑓1, 𝑓2] (𝑖𝑛𝑖 (𝑛)) = 𝑓𝑖 (𝑛).

Thus, 𝑥 [𝑓𝑖] = 𝑥 [𝑢 ◦ ℎ𝑖] = 𝑥 [𝑣 ◦ ℎ𝑖] [𝑢]. Since 𝑥 has support 𝑁, 𝑥 [𝑣 ◦ ℎ𝑖] = 𝑥. Hence,
𝑥 [𝑓1] = 𝑥 [𝑢] = 𝑥 [𝑓2].

(2) ⇒ (3) Suppose given an assignment 𝑓 : N → 𝑋 fixing the first 𝑁 variables. Then, 𝑓
coincides with 𝑣 on the first 𝑁 variables. Thus, 𝑥 [𝑓] = 𝑥 [𝑣] = 𝑥.

(3) ⇒ (1) Let 𝑓 : N → N fixing the first 𝑁 numbers. Then, 𝑣 ◦ 𝑓 , as an assignment, also
does. Thus, 𝑥 [𝑣 ◦ 𝑓] = 𝑥.

Definition 4.23. For any binding signature 𝑆, let 𝑆 -DBAlgfin denote the full subcategory
spanning De Bruijn 𝑆-algebras whose underlying De Bruijn monad is finitary.

Proposition 4.24. The subcategory 𝑆 -DBAlgfin includes the initial object.

Proof. One can define by induction the greatest free variable 𝑁 of a term 𝑥 (or 0 if 𝑥 is
closed). Then, 𝑥 has support 𝑁 + 1.

4.3. Bridging the gap. We may at last state the relationship between initial-algebra
semantics of binding signatures in presheaves and in De Bruijn monads:

Theorem 4.25. Consider any binding signature 𝑆. The subcategories Φ𝑆 -Monint and
𝑆 -DBAlgfin are equivalent.

Remark 4.26. The moral of this is that, if one removes pathological objects from both
Φ𝑆 -Mon and 𝑆 -DBAlg, then one obtains equivalent categories, which both retain the initial
object. Thus, up to equivalence, the two approaches to initial-algebra semantics of binding
signatures differ only marginally.

Restricting attention to well-behaved objects, we may thus benefit from the strengths
of both approaches. Typically, in De Bruijn monads, free variables need to be computed
explicitly, while presheaves come with intrinsic scoping, as terms are indexed by sets of
potential free variables. Conversely, in some settings, observational equivalence may relate
programs with different sets of free variables [SW01]. In such cases, it is useful to have
all terms collected in one single set. This needs to be computed (and involves non-trivial
quotienting) in presheaves, while it is direct in De Bruijn monads.

The remainder of this section is devoted to sketching the proof of Theorem 4.25, and
may be skipped on a first reading as it relies on the module-based interpretation of the
binding conditions described later in §6.

18:18 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

We start by proving that both De Bruijn monads and finitary monads are monoids in
monoidal, full subcategories of [Set, Set]. Let us first treat the easy case of finitary monads:

Lemma 4.27. The category Mon[F, Set] of monoids in [F, Set] for the monoidal structure
of Definition 4.3, is equivalent to the category Mon[Set, Set] 𝑓 of monoids in [Set, Set] 𝑓 .

Proof. By definition of the monoidal structure on [F, Set].

Now for De Bruijn monads:

Definition 4.28. Let [Set, Set]ℵ1,int0 denote the full subcategory spanned by ℵ1-accessible
endofunctors which preserve empty intersections.

Lemma 4.29. Evaluation at N induces an equivalence between the category
Mon[Set, Set]ℵ1,int0 of monoids in [Set, Set]ℵ1,int0 and the category DBMnd of De Bruijn
monads.

Note that any monad 𝑇 on Set induces a De Bruijn monad 𝑇 (N) by restricting the
monadic bind and unit. This induces a functor whose restriction to Mon[Set, Set]ℵ1,int0

underlies the above claimed equivalence.

Proof sketch. De Bruijn monads are equivalently monads relative to the embedding
B[N,N] → Set of the full subcategory on N ∈ Set. Now, presheaves on a category are
equivalent to presheaves on its Cauchy completion, and we prove that the Cauchy completion
of B[N,N], i.e., the category of idempotent maps N → N, is equivalent to the full subcategory
F̄+ of Set spanned by non-empty, finite ordinals and N. De Bruijn monads are thus equivalent
to monads relative to the embedding 𝐽+ : F̄+ ↩→ Set. Now, because the embedding is full,
functors F̄+ ↩→ Set are equivalent to functors Set → Set which preserve the initial object
and are ℵ1-accessible. Letting [Set, Set]ℵ1,0 denote the category of such functors, we thus
obtain an equivalence

[B[N,N], Set] ≃ [Set, Set]ℵ1,0,

which is monoidal. We thus obtain an equivalence

DBMnd ≃ Mon[Set, Set]ℵ1,0.

It remains to make the link with Mon[Set, Set]ℵ1,int0 . At this point, there is a difficulty.
Indeed, the functor pin : [Set, Set]ℵ1,int0 → [Set, Set]ℵ1,0 defined by

pin(𝐹) (𝑋) =
{

∅ if 𝑋 = ∅
𝐹 (𝑋) otherwise

is an equivalence preserving the identity endofunctor, but it is however not monoidal: e.g.,
letting 𝐹 = ∅ and 𝐺 = 1, we have

pin(𝐺 ◦ 𝐹) (1) = 𝐺 (𝐹 (1)) = 𝐺 (∅) = 1

while
(pin(𝐺) ◦ pin(𝐹)) (1) = pin(𝐺) (𝐹 (1)) = pin(𝐺) (∅) = ∅.

Still, we have:

Lemma 4.30. For any monoid 𝐹 ∈ [Set, Set]ℵ1,int0 and any 𝐺 ∈ [Set, Set]ℵ1,int0, we have
pin(𝐺 ◦ 𝐹) = pin(𝐺) ◦ pin(𝐹).

Proof. We prove the more general fact that, if 𝐹 (𝑋) ≠ ∅ at any 𝑋 ≠ ∅, then pin(𝐺) ◦pin(𝐹) =
pin(𝐺 ◦ 𝐹):

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:19

• at 𝑋 = ∅, we have

(pin(𝐺) ◦ pin(𝐹)) (∅) = ∅ = pin(𝐺 ◦ 𝐹) (∅),
• at any 𝑋 ≠ ∅, we have

(pin(𝐺) ◦ pin(𝐹)) (𝑋) = pin(𝐺) (𝐹 (𝑋)) = 𝐺 (𝐹 (𝑋)) = pin(𝐺 ◦ 𝐹) (𝑋).
But at any 𝑋 ≠ ∅, any monoid 𝐹 is equipped with a unit component 𝑋 → 𝐹 (𝑋), so 𝐹 (𝑋) ≠ ∅,
hence the result.

We thus obtain an equivalence

Mon[Set, Set]ℵ1,int0 ≃ Mon[Set, Set]ℵ1,0

over pin, hence the result.

We then characterise well-behavedness in both contexts, as follows.

Definition 4.31. Let [Set, Set] 𝑓 ,int0 denote the full subcategory of [Set, Set] spanned by
finitary endofunctors preserving empty intersections.

Lemma 4.32. The following squares commute,

Mon[Set, Set] 𝑓 ,int0 Mon[Set, Set]ℵ1,int0

DBMndfin DBMnd

≃ ≃
Mon[Set, Set] 𝑓 ,int0 Mon[Set, Set] 𝑓

Mon[F, Set]int Mon[F, Set]
≃ ≃

and all vertical functors are equivalences.

Proof. For De Bruijn monads, well-behavedness is finitarity. For presheaves, well-behavedness
is preservation of empty intersections.

Corollary 4.33. We obtain a chain of equivalences

DBMndfin ≃ Mon[Set, Set] 𝑓 ,int0 ≃ Mon[F, Set]int . (4.2)

The point is now to prove that this chain of equivalences lifts to one between 𝑆 -DBAlgfin
and Φ𝑆 -Monint , for any binding signature 𝑆.

For this, we adopt the viewpoint of modules over monads [HM10] (see §6 below for the
module-based interpretation of the binding conditions). Let 𝑆 = (𝑂, ar) denote any binding
signature. We first introduce the analogue of the endofunctor Φ𝑆 induced by a binding
signature (Definition 4.4) in the context of [Set, Set]:

Definition 4.34. We define F𝑆 : [Set, Set] → [Set, Set] by

F𝑆 (𝐹) (𝑋) =
∑︁
𝑜∈𝑂

∏
𝑖∈ |ar (𝑜) |

𝐹 (𝑋 + ar (𝑜)𝑖).

We then show that this functor restricts to the relevant subcategories.

Proposition 4.35. For any C ∈ {[Set, Set]ℵ1,int0 , [Set, Set] 𝑓 , [Set, Set] 𝑓 ,int0}, the functor

F𝑆 restricts to a functor F C
𝑆
: C → C making the following square commute.

C C

[Set, Set] [Set, Set]

FC
𝑆

F𝑆

18:20 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Furthermore, for any monoid 𝑇 ∈ C, F C
𝑆
(𝑇) forms a 𝑇-module, with action given at each

𝑜 ∈ 𝑂 with ar (𝑜) = (𝑛1, . . . , 𝑛𝑝) by∏
𝑖∈𝑝

𝑇 (𝑇 (𝑋) + 𝑛𝑖) →
∏
𝑖∈𝑝

𝑇 (𝑇 (𝑋 + 𝑛𝑖))
∏

𝑖 𝜇−−−−→
∏
𝑖∈𝑝

𝑇 (𝑋 + 𝑛𝑖).

Proof. For the various restrictions of F𝑆, one checks that each of the conditions (finitarity, ℵ1-
accessibility, preservation of empty intesections) is closed under coproducts, finite products,
and shift, i.e., any 𝑇 ↦→ 𝑇 (− + 𝑛). For the second statement, it holds in [Set, Set], and all
considered subcategories are full.

Definition 4.36. For any C ∈ {[Set, Set]ℵ1,int0 , [Set, Set] 𝑓 , [Set, Set] 𝑓 ,int0}, an 𝑆C-algebra
is a monoid 𝑇 in C equipped with a module morphism F C

𝑆
(𝑇) → 𝑇 . A morphism of 𝑆C-

algebras is a monoid morphism commuting with action. We denote by 𝑆C - alg the category
of 𝑆C-algebras.

We next prove that in the case of [Set, Set] 𝑓 and [Set, Set]ℵ1,int0 this interpretation
of 𝑆 corresponds to its interpretations in presheaves and De Bruijn monads through the
equivalences of Lemmas 4.27 and 4.29.

Lemma 4.37. We have commuting squares

𝑆 [Set,Set] 𝑓 - alg Φ𝑆 -Mon

Mon[Set, Set] 𝑓 Mon[F, Set]

≃

≃

𝑆 [Set,Set]ℵ1 ,int0 - alg 𝑆 -DBAlg

Mon[Set, Set]ℵ1,int0 DBMnd

≃

≃

(4.3)

Proof. The first square is easy. The second is a tedious verification that the binding conditions

correspond to the definition of module morphisms F [Set,Set]ℵ1 ,int0
𝑆

(𝑇) → 𝑇 .

Finally, we show that the restrictions of Φ𝑆 -Mon and 𝑆 -DBAlg to well-behaved objects
are equivalent to 𝑆 [Set,Set] 𝑓 ,int0 - alg.

Indeed, by definition, we have pullback squares

Φ𝑆 -Monint Φ𝑆 -Mon

Mon[F, Set]int Mon[F, Set]

𝑆 -DBAlgfin 𝑆 -DBAlg

DBMndfin DBMnd

(4.4)

so by the equivalences (4.3) and (4.2) the theorem follows from the next result.

Proposition 4.38. We have the following pullback squares.

𝑆 [Set,Set] 𝑓 - alg 𝑆 [Set,Set] 𝑓 ,int0 - alg 𝑆 [Set,Set]ℵ1 ,int0 - alg

Mon[Set, Set] 𝑓 Mon[Set, Set] 𝑓 ,int0 Mon[Set, Set]ℵ1,int0

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:21

5. Strength-based interpretation of the binding conditions

In the previous section, we have compared the category 𝑆 -DBAlg of models of a binding
signature 𝑆 in De Bruijn monads with the usual category of Φ𝑆-monoids [FPT99]. In fact,
the latter approach is much more general, in the sense that it does not only work for binding
signatures but for so-called pointed strong endofunctors [FPT99], and in fact also for the
more general structurally strong endofunctors introduced by Borthelle et al. [BHL20].

In this section, we show that De Bruijn algebras also generalise from binding signatures
to structurally strong endofunctors, in the following sense. To any binding signature 𝑆, we
associate such an endofunctor, say Σ𝑆, such that Σ𝑆 -Mon � 𝑆 -DBAlg, where Σ𝑆 -Mon is
as defined for any structurally strong endofunctor by Borthelle et al.

This way we give a categorical status to binding signatures, as particular structurally
strong endofunctors on Set.

Remark 5.1. We do not (yet) prove existence of an initial Σ-De Bruijn algebras for any
larger class of endofunctors than those of the form Σ𝑆.

Remark 5.2. We resort to structurally strong endofunctors because pointed strong endo-
functors live on monoidal categories [FPT99, Fio08], while we have seen in Corollary 3.12
that our tensor product merely equips Set with skew monoidal structure. (The very purpose
of structurally strong endofunctors is to generalise pointed strong endofunctors to the skew
monoidal case.) Following up on Remark 3.13, we could equivalently work with the monoidal
category [B[N,N], Set], in which the machinery of pointed strong endofunctors applies.

Remark 5.3. In fact, the isomorphism Σ𝑆 -Mon � 𝑆 -DBAlg is almost an equality, since
the only difference lies in the difference between a family (𝑀 |ar (𝑜) | → 𝑀)𝑜∈𝑂 of operations
and its cotupling

∑
𝑜∈𝑂 𝑀

|ar (𝑜) | → 𝑀: one could easily adjust the presentation to get an
exact match.

The starting point is that the endofunctor Σ𝑆 associated to any given binding signature
𝑆 may be equipped with a family of maps

dbs𝑆 : Σ𝑆 (𝑋) ⊗ 𝑌 → Σ𝑆 (𝑋 ⊗ 𝑌)

that will be used to specify how substitution commutes with the operations of 𝑆. However,
in order for such a map to be well-defined for binding operations, we need to assume that 𝑌
features variables and renaming, i.e., that it is a pointed N-module. Moreover, this map
should satisfy some compatibility laws. These definitions and conditions are detailed in §5.1,
where we furthermore recall structurally strong endofunctors. In §5.2, we interpret binding
signatures as such endofunctors, we recall the category of Σ-monoids, for any structurally
strong endofunctor Σ, and establish the announced isomorphism of categories.

5.1. Structural strengths. We start by introducing a notion of set equipped with variables
and renamings, in Definition 5.7 below. Recalling from Example 2.4 that N forms a De
Bruijn monad, we have:

Definition 5.4. An N-module is a set 𝑋 equipped with an action of the monoid NN,
namely a map 𝑟 : 𝑋 × NN = 𝑋 ⊗ N → 𝑋, making the following diagrams commute.

18:22 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

(𝑋 ⊗ N) ⊗ N 𝑋 ⊗ (N ⊗ N)

𝑋 ⊗ N 𝑋 ⊗ N

𝑋

𝛼𝑋,N,N

𝑋⊗𝜆N

𝑟

𝑟⊗N

𝑟

𝑋 𝑋 ⊗ N

𝑋

𝑟

𝜌𝑋

A morphism of N-modules (𝑋, 𝑟) → (𝑌, 𝑠) is a map 𝑓 : 𝑋 → 𝑌 between underlying sets
commuting with action, i.e., making the following square commute.

𝑋 ⊗ N 𝑌 ⊗ N

𝑋 𝑌

𝑓 ⊗N

𝑟

𝑓

𝑠

Finally, N-modules and morphisms between them form a category, which we denote by
N -Mod.

Notation 5.5. We generally denote 𝑟 (𝑥, 𝑓) by 𝑥 [𝑓]𝑟 , or merely 𝑥 [𝑓] when 𝑟 is clear from
context.

Example 5.6. Any De Bruijn monad (𝑋, 𝑠, 𝑣) (in particular (N, 𝜆, id) itself) has a canonical
structure of N-module given by 𝑟 (𝑥, 𝑓) = 𝑥 [𝑣 ◦ 𝑓]𝑠.

Definition 5.7.

• A pointed N-module is an N-module (𝑋, 𝑟), equipped with a map 𝑣 : N → 𝑋 which is a
morphism of N-modules, i.e., such that the following square commutes.

N ⊗ N 𝑋 ⊗ N

N 𝑋

𝑣⊗N

𝜆N

𝑣

𝑟

• A morphism of pointed N-modules (𝑋, 𝑟, 𝑣) → (𝑌, 𝑠, 𝑤) is a morphism of N-modules
𝑓 : (𝑋, 𝑟) → (𝑌, 𝑠) commuting with point, i.e., such that the following triangle commutes.

N

𝑋 𝑌

𝑣 𝑤

𝑓

• Let N -ModN denote the category of pointed N-modules.

Remark 5.8. Equivalently, N -ModN is the coslice category N/(N -Mod).

Example 5.9. The canonical N-module structure of any De Bruijn monad (𝑋, 𝑠, 𝑣) (in
particular (N, 𝜆, id) itself), described in Example 5.6, is in fact pointed, by the map 𝑣 : N → 𝑋.

We now define a tensor product on (pointed) N-modules, following [LS14, (8.1)].

Definition 5.10. Given an N-module (𝑋, 𝑟) and a set 𝑌 , let 𝑋 ⊠ 𝑌 denote the following
coequaliser in Set.

𝑋 ⊗ (N ⊗ 𝑌)
(𝑋 ⊗ N) ⊗ 𝑌 𝑋 ⊗ 𝑌 𝑋 ⊠ 𝑌

𝛼𝑋,N,𝑌

𝑟⊗𝑌

𝑋⊗𝜆𝑌
𝜅𝑋,𝑌 (5.1)

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:23

Notation 5.11. Concretely, 𝑋 ⊠ 𝑌 is the set of equivalence classes of pairs (𝑥, 𝜐) ∈ 𝑋 × 𝑌N,
modulo the equation (𝑥 [𝜌], 𝜐) = (𝑥, 𝜐 ◦ 𝜌), for any 𝜌 : N → N. We denote such an equivalence
class by 𝑥(𝜐), and extend the notation to 𝜎(𝜐), for any assignment 𝜎 : N → 𝑋, i.e., 𝜎(𝜐)(𝑛) =
𝜎(𝑛)(𝜐) for all 𝑛.

Proposition 5.12 [LS14, Theorem 8.1]. When 𝑌 is equipped with N-module structure,
𝑋 ⊠ 𝑌 admits a canonical N-module structure, such that 𝑥(𝜐)[𝑓] = 𝑥(𝜐[𝑓]). This makes the
category N -Mod of N-modules into a skew monoidal category (with unit N, and invertible
right unitor). Furthermore, the forgetful functor is monoidal, and creates monoids in the
sense that monoids are the same in N -Mod and in Set.

Proof. To apply [LS14, Theorem 8.1], we need to prove that tensoring on the right in Set
preserves reflexive coequalisers, which holds by interchange of colimits since 𝑋 ⊗ 𝑌 = 𝑋 × 𝑌N

is the 𝑌N-fold coproduct of 𝑋 with itself.

In fact, this extends to N -ModN:

Proposition 5.13. Given pointed N-modules (𝑋, 𝑟, 𝑣) and (𝑌, 𝑠, 𝑤), the N-module 𝑋 ⊠ 𝑌 is
canonically pointed by the map

N
𝜌N−−→ N ⊗ N

𝑣⊗𝑤−−−→ 𝑋 ⊗ 𝑌 𝜅𝑋,𝑌
𝑋 ⊠ 𝑌 .

Proof. This result was proved and formalised in a general skew monoidal setting in [BHL20],
see [Laf22b, IModules.PtIModule tensor].

Now that we have defined the tensor product of pointed N-modules, we may introduce
structural strengths.

Definition 5.14 [BHL20, Definition 2.11]. A structural strength on an endofunctor
Σ : Set → Set is a natural transformation 𝑠𝑡𝑋,𝑌 : Σ(𝑋) ⊗ 𝑌 → Σ(𝑋 ⊗ 𝑌), where 𝑋 is any set
and 𝑌 is a pointed N-module, making the following diagrams commute,

Σ(𝐴)

Σ(𝐴) ⊗ N Σ(𝐴 ⊗ N)

𝜌Σ (𝐴) Σ (𝜌𝐴)

𝑠𝑡𝐴,N

(Σ(𝐴) ⊗ 𝑋) ⊗ 𝑌 Σ(𝐴 ⊗ 𝑋) ⊗ 𝑌 Σ((𝐴 ⊗ 𝑋) ⊗ 𝑌)

Σ(𝐴) ⊗ (𝑋 ⊠ 𝑌) Σ(𝐴 ⊗ (𝑋 ⊠ 𝑌))

𝑠𝑡𝐴,𝑋 ⊗ 𝑌

𝛼′
Σ (𝐴) ,𝑋,𝑌

𝑠𝑡𝐴⊗𝑋,𝑌

Σ(𝛼′
𝐴,𝑋,𝑌

)

𝑠𝑡𝐴,𝑋⊠𝑌

where 𝛼′
𝐴,𝑋,𝑌

is (𝐴 ⊗ 𝜅𝑋,𝑌) ◦ 𝛼𝐴,𝑋,𝑌 , for any 𝐴.

Remark 5.15. In examples, the first axiom will entail that the “identity” assignment
should cross operations unchanged. In terms of De Bruijn monads, the “identity” assignment
is merely the variables map 𝑣, so, e.g., in the setting of Example 2.5, the axiom boils
down to the fact that lifting 𝑣 yields 𝑣 again: ⇑𝑣 = 𝑣. The second axiom will entail the
substitution lemma 𝑥 [𝜎] [𝜙] = 𝑥 [𝜎[𝜙]], where we recall that by definition 𝜎[𝜙] (𝑛) = 𝜎(𝑛) [𝜙].
E.g., if crossing a given unary operation 𝑜 maps assignments 𝜎 to 𝜎′, the axiom says that

18:24 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

(𝜎[𝜙])′ = 𝜎′ [𝜙′]. This is just what is needed for a proof by induction to go through, as in

𝑜(𝑥) [𝜎] [𝜙] = 𝑜(𝑥 [𝜎′] [𝜙′]) by the assumed binding condition
= 𝑜(𝑥 [𝜎′ [𝜙′]]) by induction hypothesis
= 𝑜(𝑥 [(𝜎[𝜙])′]) by the second axiom
= 𝑜(𝑥) [𝜎[𝜙]] by the binding condition again.

The technique extends to operations with more complex arities.

5.2. De Bruijn algebras as Σ-monoids. Let us now interpret binding signatures as
structurally strong endofunctors, and show that the corresponding category of models
coincides with De Bruijn algebras.

We can readily equip the endofunctor Σ𝑆 associated to any binding signature 𝑆 (Defini-
tion 2.17) with a structural strength dbs𝑆, which we call the De Bruijn strength prescribed
by 𝑆 on Σ𝑆.

Remark 5.16. Let us recall that by definition, Σ𝑆 ignores the binding information in 𝑆: we
have

Σ𝑆 (𝑋) =
∑︁
𝑜∈𝑂

𝑋 𝑝𝑜 ,

where ar (𝑜) = (𝑛𝑜1 , . . . , 𝑛𝑜𝑝𝑜) for all 𝑜 ∈ 𝑂.

In order to define dbs𝑆, we start by adapting the definition of assignment lifting
(Definition 2.6) to pointed N-modules.

Definition 5.17. Let (𝑌, 𝑟, 𝑣) be a pointed N-module. For any assignment 𝜎 : N → 𝑌 , we
define the assignment ⇑𝜎 : N → 𝑌 by

(⇑𝜎) (0) = 𝑣(0)
(⇑𝜎) (𝑛 + 1) = 𝜎(𝑛) [↑],

where ↑ : N → N denotes the successor map. Let ⇑0𝐴 = 𝐴, and ⇑𝑛+1𝐴 = ⇑(⇑𝑛𝐴).

Using this, let us now define the De Bruijn strength of the identity functor. We will
then iterate the process to show that each iterated lifting also equips the identity functor
with a structural strength. Finally, we will use this as a basis for equipping the endofunctor
Σ𝑆 associated with any binding signature 𝑆, with a structural strength.

Definition 5.18. The first De Bruijn strength of the identity functor is the map

dbsid,𝑋,𝑌 : 𝑋 ⊗ 𝑌 → 𝑋 ⊗ 𝑌
(𝑥, 𝜎) ↦→ (𝑥, ⇑𝜎),

defined for all 𝑋 ∈ Set and 𝑌 ∈ N -ModN.

Proposition 5.19. The first De Bruijn strength is a structural strength on the identity
functor.

Proof. We first check commutation with the right unitor, in this case

𝐴

𝐴 ⊗ N 𝐴 ⊗ N.

𝜌𝐴

dbsid,𝐴,N

𝜌𝐴

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:25

This triangle commutes because any 𝑎 ∈ 𝐴 is mapped by 𝜌𝐴 to (𝑎, id), and then by dbsid,𝐴,N
to (𝑎, ⇑ id). But ⇑ id = id, hence the result.

For commutation with the associator,

(𝐴 ⊗ 𝑋) ⊗ 𝑌 (𝐴 ⊗ 𝑋) ⊗ 𝑌 (𝐴 ⊗ 𝑋) ⊗ 𝑌

𝐴 ⊗ (𝑋 ⊗ 𝑌) 𝐴 ⊗ (𝑋 ⊗ 𝑌)

𝐴 ⊗ (𝑋 ⊠ 𝑌) 𝐴 ⊗ (𝑋 ⊠ 𝑌)

𝛼𝐴,𝑋,𝑌

𝐴⊗𝜅𝑋,𝑌

dbsid,𝐴,𝑋⊗𝑌 dbsid,𝐴⊗𝑋,𝑌

𝛼𝐴,𝑋,𝑌

𝐴⊗𝜅𝑋,𝑌

dbsid,𝐴,𝑋⊠𝑌

we observe that any triple (𝑎, 𝜎, 𝜐) ∈ (𝐴 ⊗ 𝑋) ⊗𝑌 is mapped by the bottom left composite to

(𝑎, ⇑(𝜎(𝜐))),
where we define 𝜎(𝜐)(𝑛) := 𝜎(𝑛)(𝜐). Furthermore, (𝑎, 𝜎, 𝜐) is mapped by the top right
composite to

(𝑎, (⇑𝜎)(⇑𝜐)),
so we are left with the task of proving

⇑(𝜎(𝜐)) = (⇑𝜎)(⇑𝜐).

Let 𝑢 : N → 𝑋 and 𝑣 : N → 𝑌 denote the points of 𝑋 and 𝑌 . We proceed by case analysis:

• At 0, we have:
⇑(𝜎(𝜐)) (0) = 𝑣(0)

= (⇑𝜐) (0)
= 𝑢(0)(⇑𝜐)
= (⇑𝜎) (0)(⇑𝜐)
= (⇑𝜎)(⇑𝜐)(0).

• At any 𝑛 + 1, we have
⇑(𝜎(𝜐)) (𝑛 + 1) = 𝜎(𝜐)(𝑛) [↑]

= 𝜎(𝑛)(𝜐)[↑]
= 𝜎(𝑛)(𝜐[↑]),

where by definition 𝜐[↑] (𝑛) = 𝜐(𝑛) [↑].
(⇑𝜎)(⇑𝜐)(𝑛 + 1) = (⇑𝜎) (𝑛 + 1)(⇑𝜐)

= 𝜎(𝑛) [↑](⇑𝜐)
= 𝜎(𝑛)((⇑𝜐)◦ ↑).

But we have (⇑𝜐)◦ ↑ = 𝜐[↑] since, for all 𝑝 ∈ N, we have
((⇑𝜐)◦ ↑)(𝑝) = (⇑𝜐) (𝑝 + 1) = 𝜐(𝑝) [↑] = 𝜐[↑] (𝑝).

Furthermore, we have:

Proposition 5.20. Structurally strong endofunctors compose, in the sense that if 𝐹 and 𝐺
are structurally strong endofunctors, then so is 𝐺 ◦ 𝐹, with structural strength given by the
composite

𝐺 (𝐹 (𝑋)) ⊗ 𝑌 −→ 𝐺 (𝐹 (𝑋) ⊗ 𝑌) −→ 𝐺 (𝐹 (𝑋 ⊗ 𝑌)). (5.2)

Proof. For the first axiom, we have

18:26 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

𝐺 (𝐹 (𝐴))

𝐺 (𝐹 (𝐴)) ⊗ N 𝐺 (𝐹 (𝐴) ⊗ N) 𝐺 (𝐹 (𝐴 ⊗ N)).

𝜌𝐺 (𝐹 (𝐴)) 𝐺 (𝐹 (𝜌𝐴))

𝑠𝑡𝐺
𝐹 (𝐴) ,N 𝐺 (𝑠𝑡𝐹

𝐴,N)

𝐺 (𝜌𝐹 (𝐴))

The second axiom holds by chasing the following diagram.

𝐺 (𝐹 (𝐴)) ⊗ 𝑋 ⊗ 𝑌 𝐺 (𝐹 (𝐴) ⊗ 𝑋) ⊗ 𝑌 𝐺 (𝐹 (𝐴 ⊗ 𝑋)) ⊗ 𝑌

𝐺 (𝐹 (𝐴) ⊗ 𝑋 ⊗ 𝑌) 𝐺 (𝐹 (𝐴 ⊗ 𝑋) ⊗ 𝑌)

𝐺 (𝐹 (𝐴)) ⊗ (𝑋 ⊗ 𝑌) 𝐺 (𝐹 (𝐴) ⊗ (𝑋 ⊗ 𝑌)) 𝐺 (𝐹 (𝐴 ⊗ 𝑋 ⊗ 𝑌))

𝐺 (𝐹 (𝐴 ⊗ (𝑋 ⊗ 𝑌)))

𝐺 (𝐹 (𝐴)) ⊗ (𝑋 ⊠ 𝑌) 𝐺 (𝐹 (𝐴) ⊗ (𝑋 ⊠ 𝑌)) 𝐺 (𝐹 (𝐴 ⊗ (𝑋 ⊠ 𝑌)))

𝑠𝑡𝐺
𝐹 (𝐴) ,𝑋⊗𝑌 𝐺 (𝑠𝑡𝐹

𝐴,𝑋
)⊗𝑌

𝑠𝑡𝐺
𝐹 (𝐴⊗𝑋) ,𝑌

𝐺 (𝑠𝑡𝐹
𝐴⊗𝑋,𝑌

)

𝐺 (𝐹 (𝛼))

𝐺 (𝐹 (𝐴⊗𝜅𝑋,𝑌))

𝛼

𝐺 (𝐹 (𝐴))⊗𝜅𝑋,𝑌

𝑠𝑡𝐺
𝐹 (𝐴) ,𝑋⊠𝑌 𝐺 (𝑠𝑡𝐹

𝐴,𝑋⊠𝑌)

𝑠𝑡𝐺
𝐹 (𝐴)⊗𝑋,𝑌

𝐺 (𝑠𝑡𝐹
𝐴,𝑋

⊗𝑌)
𝐺 (𝛼)

𝐺 (𝐹 (𝐴)⊗𝜅𝑋,𝑌)

Combining the last two results, any id𝑛 = id is structurally strong, with the following
strength, obtained by inductively unfolding (5.2):

Definition 5.21. Let the 𝑛th De Bruijn strength of the identity functor, dbs𝑛, be defined
by dbs𝑛

id,𝑋,𝑌
(𝑥, 𝜎) = (𝑥, ⇑𝑛𝜎).

In summary:

Proposition 5.22. Each dbs𝑛 is a structural strength on the identity functor.

Let us now extend this to general binding arities:

Proposition 5.23. Given structurally strong endofunctors (𝐹, 𝑠𝑡𝐹) and (𝐺, 𝑠𝑡𝐺), the point-
wise product 𝐹 ×𝐺 admits the structural strength defined at any 𝑋 ∈ C and 𝑌 ∈ N -ModN by
the composite

(𝐹 (𝑋)×𝐺 (𝑋))⊗𝑌
⟨𝜋1⊗𝑌,𝜋2⊗𝑌 ⟩−−−−−−−−−−−→ (𝐹 (𝑋)⊗𝑌)×(𝐺 (𝑋)⊗𝑌)

𝑠𝑡𝐹
𝑋,𝑌

×𝑠𝑡𝐺
𝑋,𝑌−−−−−−−−−→ 𝐹 (𝑋⊗𝑌)×𝐺 (𝑋⊗𝑌). (5.3)

Proof. The first axiom holds by chasing the following diagram.

𝐹 (𝑋) × 𝐺 (𝑋)

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ N (𝐹 (𝑋) ⊗ N) × (𝐺 (𝑋) ⊗ N) 𝐹 (𝑋 ⊗ N) × 𝐺 (𝑋 ⊗ N)⟨𝜋1⊗N, 𝜋2⊗N⟩ 𝑠𝑡𝐹
𝑋,N×𝑠𝑡𝐺

𝑋,N

𝜌𝐹 (𝑋)×𝐺 (𝑋) 𝐹 (𝜌𝑋)×𝐺 (𝜌𝑋)
𝜌𝐹 (𝑋)×𝜌𝐺 (𝑋)

For the second axiom, we need to prove that the following diagram commutes.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:27

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ 𝑌 ⊗ 𝑍 ((𝐹 (𝑋) ⊗ 𝑌) × (𝐺 (𝑋) ⊗ 𝑌)) ⊗ 𝑍

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ (𝑌 ⊗ 𝑍) (𝐹 (𝑋 ⊗ 𝑌) × 𝐺 (𝑋 ⊗ 𝑌)) ⊗ 𝑍

(𝐹 (𝑋 ⊗ 𝑌) ⊗ 𝑍) × (𝐺 (𝑋 ⊗ 𝑌) ⊗ 𝑍)

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ (𝑌 ⊠ 𝑍) 𝐹 (𝑋 ⊗ 𝑌 ⊗ 𝑍) × 𝐺 (𝑋 ⊗ 𝑌 ⊗ 𝑍)

𝐹 (𝑋 ⊗ (𝑌 ⊗ 𝑍)) × 𝐺 (𝑋 ⊗ (𝑌 ⊗ 𝑍))

(𝐹 (𝑋) ⊗ (𝑌 ⊠ 𝑍)) × (𝐺 (𝑋) ⊗ (𝑌 ⊠ 𝑍)) 𝐹 (𝑋 ⊗ (𝑌 ⊠ 𝑍)) × 𝐺 (𝑋 ⊗ (𝑌 ⊠ 𝑍))

⟨𝜋1⊗𝑌,𝜋2⊗𝑌 ⟩⊗𝑍

(𝑠𝑡𝐹
𝑋,𝑌

×𝑠𝑡𝐺
𝑋,𝑌

)⊗𝑍

⟨𝜋1⊗𝑍,𝜋2⊗𝑍 ⟩

𝑠𝑡𝐹
𝑋⊗𝑌,𝑍

×𝑠𝑡𝐺
𝑋⊗𝑌,𝑍

𝐹 (𝛼𝑋,𝑌,𝑍)×𝐺 (𝛼𝑋,𝑌,𝑍)

𝐹 (𝑋⊗𝜅𝑌,𝑍)×𝐺 (𝑋⊗𝜅𝑌,𝑍)

𝛼

(𝐹 (𝑋)×𝐺 (𝑋))⊗𝜅𝑌,𝑍

⟨𝜋1⊗(𝑌⊠𝑍) , 𝜋2⊗(𝑌⊠𝑍) ⟩

𝑠𝑡𝐹
𝑋,𝑌⊠𝑍×𝑠𝑡

𝐺
𝑋,𝑌⊠𝑍

For this, since the target is a product, we proceed componentwise, and by symmetry it
suffices to check the first:

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ 𝑌 ⊗ 𝑍 𝐹 (𝑋) ⊗ 𝑌 ⊗ 𝑍 𝐹 (𝑋 ⊗ 𝑌) ⊗ 𝑍

𝐹 (𝑋 ⊗ 𝑌 ⊗ 𝑍)

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ (𝑌 ⊗ 𝑍) 𝐹 (𝑋) ⊗ (𝑌 ⊗ 𝑍) 𝐹 (𝑋 ⊗ (𝑌 ⊗ 𝑍))

(𝐹 (𝑋) × 𝐺 (𝑋)) ⊗ (𝑌 ⊠ 𝑍) 𝐹 (𝑋) ⊗ (𝑌 ⊠ 𝑍) 𝐹 (𝑋 ⊗ (𝑌 ⊠ 𝑍)).

𝜋1⊗𝑌⊗𝑍 𝑠𝑡𝐹
𝑋,𝑌

⊗𝑍

𝑠𝑡𝐹
𝑋⊗𝑌,𝑍

𝐹 (𝛼𝑋,𝑌,𝑍)

𝐹 (𝑋⊗𝜅𝑌,𝑍)

𝛼

(𝐹 (𝑋)×𝐺 (𝑋))⊗𝜅𝑌,𝑍

𝜋1⊗(𝑌⊠𝑍) 𝑠𝑡𝐹
𝑋,𝑌⊠𝑍

𝛼

𝜋1⊗(𝑌⊗𝑍)

𝐹 (𝑋)⊗𝜅𝑌,𝑍

Corollary 5.24. For any binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝), the family

dbs𝑎,𝑋,𝑌 : 𝑋
𝑝 ⊗ 𝑌 → (𝑋 ⊗ 𝑌) 𝑝

((𝑥1, . . . , 𝑥𝑝), 𝜎) ↦→ ((𝑥1, ⇑𝑛1𝜎), . . . , (𝑥𝑝, ⇑𝑛𝑝𝜎)),
for all sets 𝑋 and pointed N-modules 𝑌 , defines a structural strength on the endofunctor
𝑋 ↦→ 𝑋 𝑝, which we call the De Bruijn strength dbs𝑎 of 𝑎.

Proof. By inductively unfolding (5.3) using Proposition 5.22.

As promised, let us now express the binding condition in terms of strengths:

Proposition 5.25. For any binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝) and De Bruijn monad (𝑀, 𝑠, 𝑣),
a map 𝑜 : 𝑀 𝑝 → 𝑀 satisfies the 𝑎-binding condition w.r.t. (𝑠, 𝑣) iff the following pentagon
commutes.

𝑋 𝑝 ⊗ 𝑋 (𝑋 ⊗ 𝑋) 𝑝 𝑋 𝑝

𝑋 ⊗ 𝑋 𝑋

dbs𝑎,𝑋,𝑋

𝑜⊗𝑋

𝑠𝑝

𝑠

𝑜 (5.4)

18:28 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Proof. The bottom left composite maps any tuple ((𝑥1, . . . , 𝑥𝑝), 𝜎) to 𝑜(𝑥1, . . . , 𝑥𝑝) [𝜎], while
the top right one maps it first to

((𝑥1, ⇑𝑛1𝜎), . . . , (𝑥𝑝, ⇑𝑛𝑝𝜎)),
then to

(𝑥1 [⇑𝑛1𝜎], . . . , 𝑥𝑝 [⇑𝑛𝑝𝜎]),
and finally to

𝑜(𝑥1 [⇑𝑛1𝜎], . . . , 𝑥𝑝 [⇑𝑛𝑝𝜎]),
as desired.

At last, let us now define the De Bruijn strength of the endofunctor Σ𝑆 induced by
an arbitrary binding signature 𝑆. For this, just as we have shown that structurally strong
endofunctors are closed under products (Proposition 5.23), we start by showing that they
are closed under coproducts.

Proposition 5.26. Given structurally strong endofunctors (𝐹𝑖 , 𝑠𝑡𝑖)𝑖∈𝐼 , the pointwise co-
product

∑
𝑖 𝐹𝑖 admits the structural strength defined at any 𝑋 ∈ C and 𝑌 ∈ 𝐼 -Mod𝐼 by the

composite (∑︁
𝑖

𝐹𝑖 (𝑋)
)
⊗ 𝑌 �

∑︁
𝑖

(𝐹𝑖 (𝑋) ⊗ 𝑌)
∑

𝑖 𝑠𝑡
𝑖
𝑋,𝑌−−−−−−→

∑︁
𝑖

𝐹𝑖 (𝑋 ⊗ 𝑌).

Proof. The first axiom holds by chasing the following diagram.∑
𝑖 𝐹𝑖 (𝑋)

(∑𝑖 𝐹𝑖 (𝑋)) ⊗ N
∑
𝑖 (𝐹𝑖 (𝑋) ⊗ N) ∑

𝑖 𝐹𝑖 (𝑋 ⊗ N)
� ∑

𝑖 𝑠𝑡
𝑖
𝑋,N

𝜌∑
𝑖 𝐹𝑖 (𝑋)

∑
𝑖 𝐹𝑖 (𝜌𝑋)∑

𝑖 𝜌𝐹𝑖 (𝑋)

The second axiom holds by chasing the diagram in Figure 1.

Let us finally put things together:

Corollary 5.27. For any binding signature 𝑆 = (𝑂, ar), the endofunctor Σ𝑆 induced by 𝑆
admits as structural strength the composite

(
∑︁
𝑜

𝑋 |ar (𝑜) |) ⊗ 𝑌 �
∑︁
𝑜

(𝑋 |ar (𝑜) | ⊗ 𝑌)
∑

𝑜 dbsar (𝑜) ,𝑋,𝑌−−−−−−−−−−−−→
∑︁
𝑜

(𝑋 ⊗ 𝑌) |ar (𝑜) | ,

or more concretely

Σ𝑆 (𝑋) ⊗ 𝑌 → Σ𝑆 (𝑋 ⊗ 𝑌)
((𝑜, (𝑥1, . . . , 𝑥𝑝𝑜)), 𝜎) ↦→ (𝑜, ((𝑥1, ⇑𝑛1𝜎), . . . , (𝑥𝑝𝑜 , ⇑𝑛𝑝𝑜𝜎))),

for all sets 𝑋 and pointed N-modules 𝑌 , where ar (𝑜) = (𝑛1, . . . , 𝑛𝑝𝑜).
We call this the De Bruijn strength dbs𝑆 of Σ𝑆.

Proof. Recalling that, by Definition 2.17, we have Σ𝑆 (𝑋) =
∑
𝑜∈𝑂 𝑋

|ar (𝑜) | , Σ𝑆 is a coproduct
of functors 𝑋 ↦→ 𝑋 |ar (𝑜) | with structural strengths dbsar (𝑜) by Corollary 5.24, hence admits
the given structural strength by Proposition 5.26.

In order to relate the initial-algebra semantics of §3 to the strength-based approach
of [FPT99, Fio08], let us recall the definition of models, following the generalisation to the
skew monoidal setting [BHL20].

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:29

(∑𝑖 𝐹𝑖 (𝑋)) ⊗ 𝑌 ⊗ 𝑍 ∑
𝑖 (𝐹𝑖 (𝑋) ⊗ 𝑌) ⊗ 𝑍

(∑𝑖 𝐹𝑖 (𝑋)) ⊗ (𝑌 ⊗ 𝑍)

∑
𝑖 (𝐹𝑖 (𝑋) ⊗ 𝑌 ⊗ 𝑍) ∑

𝑖 𝐹𝑖 (𝑋 ⊗ 𝑌) ⊗ 𝑍

∑
𝑖 (𝐹𝑖 (𝑋) ⊗ (𝑌 ⊗ 𝑍)) ∑

𝑖 (𝐹𝑖 (𝑋 ⊗ 𝑌) ⊗ 𝑍)

(∑𝑖 𝐹𝑖 (𝑋)) ⊗ (𝑌 ⊠ 𝑍) ∑
𝑖 𝐹𝑖 (𝑋 ⊗ 𝑌 ⊗ 𝑍)

∑
𝑖 𝐹𝑖 (𝑋 ⊗ (𝑌 ⊗ 𝑍))

∑
𝑖 (𝐹𝑖 (𝑋) ⊗ (𝑌 ⊠ 𝑍)) ∑

𝑖 𝐹𝑖 (𝑋 ⊗ (𝑌 ⊠ 𝑍))

[𝑖𝑛𝑖⊗𝑌]−1𝑖 ⊗𝑍

∑
𝑖 𝑠𝑡

𝑖
𝑋,𝑌

⊗𝑍

[𝑖𝑛𝑖⊗𝑍]−1𝑖

∑
𝑖 𝑠𝑡

𝑖
𝑋⊗𝑌,𝑍

∑
𝑖 𝐹𝑖 (𝛼𝑋,𝑌,𝑍)

∑
𝑖 𝐹𝑖 (𝑋⊗𝜅𝑌,𝑍)

𝛼

(∑𝑖 𝐹𝑖 (𝑋))⊗𝜅𝑌,𝑍

[𝑖𝑛𝑖⊗(𝑌⊠𝑍)]−1
𝑖

∑
𝑖 𝑠𝑡

𝑖
𝑋,𝑌⊠𝑍

[𝑖𝑛𝑖⊗𝑍]−1𝑖

∑
𝑖 (𝑠𝑡𝑖𝑋,𝑌

⊗𝑍)∑
𝑖 𝛼𝐹𝑖 (𝑋) ,𝑌,𝑍

∑
𝑖 (𝐹𝑖 (𝑋)⊗𝜅𝑌,𝑍)

[𝑖𝑛𝑖⊗(𝑌⊗𝑍)]−1
𝑖

Figure 1: Diagram chasing for the proof of Proposition 5.26.

Definition 5.28. Given an endofunctor Σ with structural strength 𝑠𝑡, a Σ-monoid is an
object 𝑋, equipped with monoid and Σ-algebra structures, say 𝑠 : 𝑋 ⊗ 𝑋 → 𝑋, 𝑣 : N → 𝑋,
and 𝑎 : Σ(𝑋) → 𝑋, making the following pentagon commute.

Σ(𝑋) ⊗ 𝑋 Σ(𝑋 ⊗ 𝑋) Σ(𝑋)

𝑋 ⊗ 𝑋 𝑋

𝑠𝑡𝑋,𝑋

𝑎⊗𝑋

Σ (𝑠)

𝑠

𝑎 (5.5)

A morphism of Σ-monoids is a map which is both a monoid and a Σ-algebra morphism.
Let Σ -Mon denote the category of Σ-monoids and morphisms between them.

We may at last relate the initial-algebra semantics of §3 with the strength-based approach:

Proposition 5.29. For any binding signature 𝑆 = (𝑂, ar) and De Bruijn monad (𝑀, 𝑠, 𝑣)
equipped with a map 𝑜𝑀 : 𝑀 𝑝 → 𝑀 for all 𝑜 ∈ 𝑂 with ar (𝑜) = (𝑛1, . . . , 𝑛𝑝), the following are
equivalent:

(i) each map 𝑜𝑀 : 𝑀 𝑝 → 𝑀 satisfies the 𝑎-binding condition w.r.t. (𝑠, 𝑣);
(ii) the corresponding map Σ𝑆𝑀 → 𝑀 renders the pentagon (5.5) (with Σ := Σ𝑆 and

𝑠𝑡 := dbs𝑆) commutative.

Proof. By universal property of coproduct and distributivity, the pentagon (5.5) commutes
iff each corresponding pentagon (5.4) does, which holds iff each 𝑜 satisfies the ar (𝑜)-binding
condition w.r.t. (𝑠, 𝑣) by Proposition 5.25.

Corollary 5.30. For any binding signature 𝑆, we have an isomorphism Σ𝑆 -Mon � 𝑆 -DBAlg
of categories over DBMnd.

18:30 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

This readily entails the following (bundled) reformulation of Theorems 2.21 and 3.16.

Corollary 5.31. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote the initial
(N + Σ𝑆)-algebra, with structure maps 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) → DB𝑆. Then:

(i) There exists a unique substitution map 𝑠 : DB𝑆 ⊗ DB𝑆 → DB𝑆 such that

• the map N⊗DB𝑆
𝑣⊗DB𝑆−−−−−−→ DB𝑆 ⊗DB𝑆

𝑠−→ DB𝑆 coincides with the left unit of the skew
monoidal structure (𝑛, 𝑓) ↦→ 𝑓 (𝑛), and

• the pentagon (5.5) (with Σ := Σ𝑆) commutes.
(ii) This substitution map turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into a Σ𝑆-monoid.
(iii) This Σ𝑆-monoid is initial in Σ𝑆 -Mon.

Proof. Let Mon(Set) denote the category of monoids in Set for the skew monoidal structure.
We have an equality Mon(Set) = DBMnd of categories, and the algebra structure Σ𝑆 (DB𝑆) →
DB𝑆 is merely the cotupling of the maps 𝑜DB𝑆

of Theorem 2.21. This correspondence
translates one statement into the other.

Remark 5.32. This result hints at a potential push-button proof of Theorems 2.21 and 3.16
(and Corollary 5.31). Indeed, it is almost an instance of [BHL20, Theorem 2.15]: the latter
is stated for general skew monoidal categories instead of merely Set, but does not directly
apply in the present setting, because it assumes that the tensor product is finitary in the
second argument. However, we expect the generalisation consisting in replacing this finitarity
condition with 𝛼-accessibility to be straightforward.

6. Module-based interpretation of the binding conditions

In the previous section, we have shown that the construction of De Bruijn algebras generalises
from binding signatures to structurally strong endofunctors, thus yielding a categorical
status for binding signatures and a categorical interpretation of the binding conditions.

In this section, we give binding signatures an alternative categorical status, as paramet-
ric modules over De Bruijn monads, together with a corresponding categorical interpretation
of the binding conditions. For this, we merely adapt to De Bruijn monads the treatment
proposed for mere monads by Hirschowitz and Maggesi [HM07, HM10].

Compared to the original setting [HM07], a peculiarity is that derivation of modules,
the module-theoretic incarnation of variable binding, preserves the underlying object. In
other words, it only affects substitution.

In §6.1, we introduce modules over a De Bruijn monad. In §6.2, we define module
derivation. We then introduce parametric De Bruijn modules in §6.3, and show how any
binding signature 𝑆 yields such a module 𝑀𝑆. Finally, in §6.4, we define the category
𝑀 -MAlg of modular algebras of a parametric De Bruijn module 𝑀, and show that they
provide an alternative categorical interpretation of the binding conditions by exhibiting an
isomorphism 𝑆 -DBAlg � 𝑀𝑆 -MAlg of categories over DBMnd.

6.1. Modules over De Bruijn monads and first-order signatures. There is a general
notion of module over a monoid in a monoidal (or skew monoidal) category; we just give the
instance we are concerned with. Intuitively, if 𝑋 is a De Bruijn monad, an 𝑋-module is a set
that admits substitution of variables by elements of 𝑋:

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:31

Definition 6.1. For any De Bruijn monad (𝑋, 𝑠, 𝑣), an 𝑋-module is a set 𝐴 equipped with
a substitution map, or action,

𝑟 : 𝐴 × 𝑋N → 𝐴

subject to the following condition, where we we use Notation 2.2:

for all 𝑎 ∈ 𝐴 and 𝑓 , 𝑔 ∈ 𝑋N, we have 𝑎[𝑓] [𝑔] = 𝑎[𝑓 [𝑔]] and 𝑎[𝑣] = 𝑎.

Remark 6.2. Please note that the first equation involves both substitution maps:
𝑎[𝑓]𝐴[𝑔]𝐴 = 𝑎[𝑓 [𝑔]𝑋]𝐴.

Remark 6.3. The definition is consistent with the definition of N-modules (Definition 5.4),
viewing N as a De Bruijn monad as in Example 2.4.

Remark 6.4. Equivalently, an 𝑋-module is an algebra for the monad − ⊗ 𝑋, using the skew
monoidal structure of Corollary 3.12. Indeed, the equations amount to commutation of the
following diagrams,

(𝐴 ⊗ 𝑋) ⊗ 𝑋 𝐴 ⊗ (𝑋 ⊗ 𝑋)

𝐴 ⊗ 𝑋 𝐴 ⊗ 𝑋

𝐴

𝛼𝐴,𝑋,𝑋

𝑟⊗𝑋 𝐴⊗𝑠

𝑟 𝑟

𝐴 𝐴 ⊗ N 𝐴 ⊗ 𝑋

𝐴.

𝜌𝐴 𝐴⊗𝑣

𝑟

which are exactly the equations for (− ⊗ 𝑋)-algebras.

Let us now introduce a few basic constructions of modules:

Definition 6.5. Consider any De Bruijn monad 𝑋.

• The tautological 𝑋-module is 𝑋 itself, with action 𝑋 × 𝑋N → 𝑋 given by substitution.
• Given 𝑋-modules 𝑈 and 𝑉 , their binary product is 𝑈 ×𝑉 , with action given by

𝑈 ×𝑉 × 𝑋N → 𝑈 ×𝑉
(𝑢, 𝑣, 𝜎) ↦→ (𝑢[𝜎]𝑈 , 𝑣 [𝜎]𝑉).

This extends straightforwardly to small products.
• Given 𝑋-modules 𝑈 and 𝑉 , their coproduct is 𝑈 +𝑉 , with action defined by case analysis:

(𝑈 +𝑉) × 𝑋N → 𝑈 +𝑉
(𝑖𝑛1(𝑢), 𝜎) ↦→ 𝑖𝑛1(𝑢[𝜎]𝑈)
(𝑖𝑛2(𝑣), 𝜎) ↦→ 𝑖𝑛2(𝑣 [𝜎]𝑉).

This extends straightforwardly to small coproducts.

6.2. Derivation of substitution for modules. In this subsection, we explain module
derivation. This operation does not change the carrier of the module, hence it acts on the
substitution map only. In fact, it acts via the second argument of substitution, namely the
assignment, as in §3 and §5.

Definition 6.6. Given a De Bruijn monad 𝑋, the derivative 𝐴(1) of an 𝑋-module 𝐴 has
the same carrier as 𝐴, with action given by

𝐴 × 𝑋N → 𝐴

(𝑎, 𝜎) ↦→ 𝑎[⇑𝜎],

18:32 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

where ⇑𝜎 is as in Definition 2.6:

(⇑𝜎) (0) = 𝑣(0)
(⇑𝜎) (𝑛 + 1) = 𝜎(𝑛) [↑],

Of course we may iterate this operation:

Definition 6.7. Let 𝐴(0) = 𝐴, and 𝐴(𝑛+1) = (𝐴(𝑛)) (1) .

6.3. Binding signatures as parametric modules. In order to interpret binding signa-
tures, we now introduce a parametric version of modules. For this, we construct a category
DBMod whose objects are pairs of a De Bruijn monad and a module over it, and then define
parametric modules as sections of the forgetful functor DBMod → DBMnd.

Definition 6.8. Let DBMod denote the category with

• as objects all pairs (𝑋, (𝑈, 𝑎)) of a De Bruijn monad 𝑋 and an 𝑋-module (𝑈, 𝑎), with
𝑎 : 𝑈 × 𝑋N → 𝑈, and

• as morphisms (𝑋, (𝑈, 𝑎)) → (𝑌, (𝑉, 𝑏)) all pairs (𝑓 , 𝑔), where 𝑓 : 𝑋 → 𝑌 is a De Bruijn
monad morphism, and 𝑔 : 𝑈 → 𝑉 is a map making the following diagram commute,

𝑈 × 𝑋N 𝑉 × 𝑌N

𝑈 𝑉

𝑔× 𝑓N

𝑎

𝑔

𝑏

or equivalently, 𝑔(𝑢[𝜎]𝑈) = 𝑔(𝑢) [𝑓 ◦ 𝜎]𝑉 , for all 𝑢 ∈ 𝑈 and 𝜎 : N → 𝑋.

The forgetful functor U : DBMod → DBMnd maps any (𝑋, (𝑈, 𝑎)) to 𝑋, and any (𝑓 , 𝑔)
to 𝑓 .

We now introduce parametric modules:

Definition 6.9. A parametric De Bruijn module is a section of the forgetful functor
U : DBMod → DBMnd, i.e., a functor 𝑀 : DBMnd → DBMod such that U ◦ 𝑀 = idDBMnd.

Binding signatures naturally induce parametric De Bruijn modules:

Definition 6.10.

• The tautological parametric De Bruijn module, denoted by 𝜃, maps any De Bruijn
monad 𝑋 to itself, with action 𝑋 × 𝑋N → 𝑋 given by substitution.

• The derivative 𝑈 (1) of a parametric De Bruijn module 𝑈 is defined to map any De Bruijn
monad 𝑋 to 𝑈 (𝑋) (1) , and any morphism 𝑓 : 𝑋 → 𝑌 to (𝑓 ,𝑈 (𝑓)). This works because the
following square commutes.

𝑋N 𝑌N

𝑋N 𝑌N

𝑓N

⇑

𝑓N

⇑

Indeed, letting 𝑣𝑋 and 𝑣𝑌 denote the respective variables maps of 𝑋 and 𝑌 , we show by
case analysis on 𝑛 ∈ N that for all 𝜎 : N → 𝑋, we have 𝑓 N(⇑𝜎) (𝑛) = ⇑(𝑓 N(𝜎)) (𝑛):

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:33

– at 0, we have

𝑓 N(⇑𝜎) (0) = 𝑓 (⇑𝜎(0))
= 𝑓 (𝑣𝑋 (0))
= 𝑣𝑌 (0)
= ⇑(𝑓 N(𝜎)) (0),

– and at any 𝑛 + 1, we have

𝑓 N(⇑𝜎) (𝑛 + 1) = 𝑓 (⇑𝜎(𝑛 + 1))
= 𝑓 (𝜎(𝑛) [↑𝑋])
= 𝑓 (𝜎(𝑛)) [𝑓 ◦ ↑𝑋]
= 𝑓 (𝜎(𝑛)) [↑𝑌]
= ⇑(𝑓 N(𝜎)) (𝑛 + 1).

• The 𝑛th derivative 𝑈 (𝑛) of a parametric De Bruijn module 𝑈 is defined by induction:
𝑈 (0) = 𝑈 and 𝑈 (𝑛+1) = (𝑈 (𝑛)) (1) .

• Given parametric De Bruijn modules 𝑈 and 𝑉 , their binary product maps any 𝑋 to the
𝑋-module product 𝑈 (𝑋) ×𝑉 (𝑋). This extends straightforwardly to small products.

• The parametric De Bruijn module 𝑀𝑎 induced by a binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝) is the
product

∏
𝑖∈𝑝 𝜃

(𝑛𝑖) of derivatives of the tautological parametric De Bruijn module.
• Given parametric De Bruijn modules 𝑈 and 𝑉 , their coproduct maps any 𝑋 to the
𝑋-module coproduct 𝑈 (𝑋) +𝑉 (𝑋). This extends straightforwardly to small coproducts.

• The parametric De Bruijn module 𝑀𝑆 induced by a binding signature 𝑆 = (𝑂, ar) is the
coproduct

∑
𝑜∈𝑂 𝑀ar (𝑜) of the parametric De Bruijn modules induced by the arities of all

operations.

6.4. Interpreting the binding conditions. In the previous subsection, we have interpreted
binding signatures as parametric modules, but we have not yet defined the models of a
parametric module. Let us do this now, and prove that, for any binding signature 𝑆, the
category of De Bruijn 𝑆-algebras is isomorphic to the category of models of the induced
parametric De Bruijn module 𝑀𝑆.

Definition 6.11.

• Given a parametric De Bruijn module 𝑈, a 𝑈-algebra is a De Bruijn monad 𝑋, equipped
with an 𝑋-module morphism 𝛼 : 𝑈 (𝑋) → 𝑋.

• For any 𝑈, given 𝑈-algebras (𝑋, 𝛼) and (𝑌, 𝛽), a 𝑈-algebra morphism is a De Bruijn
monad morphism 𝑓 : 𝑋 → 𝑌 making the following diagram commute,

𝑈 (𝑋) 𝑈 (𝑌)

𝑋 𝑌

𝑈 (𝑓)

𝛼

𝑓

𝛽

or equivalently 𝑓 (𝛼(𝑢)) = 𝛽(𝑈 (𝑓) (𝑢)), for all 𝑢 ∈ 𝑈 (𝑋).
• For any 𝑈, 𝑈-algebras and morphisms between them form a category, which we denote by
𝑈 -MAlg.

• The forgetful functor U𝑀 : 𝑈 -MAlg → DBMnd maps any (𝑋, 𝛼) to 𝑋.

18:34 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

As announced, let us prove

Proposition 6.12. For any binding signature 𝑆, the categories 𝑆 -DBAlg and 𝑀𝑆 -MAlg
are isomorphic over DBMnd.

Proof. The key point is that for any binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝), a map 𝑜 : 𝑋 𝑝 → 𝑋 is

an operation of binding arity 𝑎 iff it is an 𝑋-module morphism
∏𝑝

𝑖=1 𝑋
(𝑛𝑖) → 𝑋. Indeed,

the latter condition unfolds to the fact that, for any assignment 𝜎 : N → 𝑋 and tuple
(𝑒1, . . . , 𝑒𝑝) ∈ 𝑋 𝑝, we have

𝑜(𝑒1, . . . , 𝑒𝑝) [𝜎] = 𝑜(𝑒1 [⇑𝑛1𝜎], . . . , 𝑒𝑝 [⇑𝑛𝑝𝜎]),

which is exactly the 𝑎-binding condition (2.1).

We readily obtain the following (bundled) reformulation of Theorems 2.21 and 3.16.

Corollary 6.13. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote the initial
(N + Σ𝑆)-algebra, with structure maps 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) → DB𝑆. Then:

(i) There exists a unique substitution map 𝑠 : DB𝑆 ⊗ DB𝑆 → DB𝑆 such that

• the map N⊗DB𝑆
𝑣⊗DB𝑆−−−−−−→ DB𝑆 ⊗DB𝑆

𝑠−→ DB𝑆 coincides with the left unit of the skew
monoidal structure (𝑛, 𝑓) ↦→ 𝑓 (𝑛), and

• 𝑎 is an 𝑋-module morphism.
(ii) This substitution map turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into an 𝑀𝑆-algebra.
(iii) This 𝑀𝑆-algebra is initial in 𝑀𝑆 -MAlg.

7. Simply-typed extension

In this section, we extend the framework of §2–3, which is untyped, to the simply-typed
case. The development essentially follows the same pattern, replacing sets with families.

We fix in the whole section a set T of types, and call T-sets the objects of SetT. A
morphism 𝑋 → 𝑌 is a family (𝑋 (𝜏) → 𝑌 (𝜏))𝜏∈T of maps.

7.1. De Bruijn T-monads. In this subsection, we define the typed analogue of De Bruijn
monads.

The role of N will be played in the typed context by the following T-set.

Definition 7.1. Let N ∈ SetT be defined by N(𝜏) = N.

Definition 7.2. Given a T-set 𝑋, an 𝑋-assignment is a morphism of indexed sets N → 𝑋.
We sometimes merely use “assignment” when 𝑋 is clear from context.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:35

Notation 7.3.

• We observe that T-sets form a cartesian closed category, where the exponential object 𝑋𝑌

is given by (𝑋𝑌) (𝜏) = 𝑋 (𝜏)𝑌 (𝜏) .
• We distinguish it from the hom-set by writing the latter [𝑌, 𝑋].
• For any set 𝐴 and T-set 𝑋, let 𝐴 · 𝑋 =

∑
𝑎∈𝐴 𝑋 denote the 𝐴-fold coproduct of 𝑋.

The analogue of the tensor product 𝑋 ⊗ 𝑌 = 𝑋 ×𝑌N will be played by [N, 𝑌] · 𝑋, i.e., the
iterated self-coproduct of 𝑋, with one copy per 𝑌 -assignment (see Definition 7.14 below).

Example 7.4. Consider arbitrary T-sets 𝑋, 𝑌 , and 𝑍.

• The T-set [𝑋,𝑌] · 𝑍 is such that for all types 𝜏, we have

([𝑋,𝑌] · 𝑍) (𝜏) = [𝑋,𝑌] · 𝑍 (𝜏) = [𝑋,𝑌] × 𝑍 (𝜏).

• The T-set 𝑌𝑋 × 𝑍 is such that for all types 𝜏, we have

(𝑌𝑋 × 𝑍) (𝜏) = 𝑌 (𝜏)𝑋 (𝜏) × 𝑍 (𝜏).

We will use the former for generalising substitution to the typed case.

Notation 7.5. For coherence with the untyped case, we tend to write an element of
([N, 𝑌] · 𝑋) (𝜏) as (𝑥, 𝑓), with 𝑥 ∈ 𝑋 (𝜏) and 𝑓 : N → 𝑌 .

Furthermore, Notation 2.2 straightforwardly adapts to the typed case as follows.

Notation 7.6. Consider any map 𝑠 : [N, 𝑌] · 𝑋 → 𝑍.

• For all 𝜏 ∈ T, 𝑥 ∈ 𝑋 (𝜏), and 𝑔 : N → 𝑌 , we write 𝑥 [𝑔]𝑠,𝜏 for 𝑠𝜏 (𝑥, 𝑔), or even 𝑥 [𝑔] when 𝑠
and 𝜏 are clear from context.

• Furthermore, 𝑠 gives rise to the map

[N, 𝑌] · 𝑋N → 𝑍N

𝜏 ↦→ (𝑔, 𝑓 : N → 𝑋 (𝜏)) ↦→ 𝑛 ↦→ 𝑓 (𝑛) [𝑔]𝑠,𝜏 .

We use notation similar to Notation 2.2 for this map, i.e., 𝑓 [𝑔]𝑠,𝜏 (𝑛) := 𝑓 (𝑛) [𝑔]𝑠,𝜏 , or
𝑓 [𝑔] (𝑛) = 𝑓 (𝑛) [𝑔] when 𝑠 and 𝜏 are clear from context.

• We use the same notation for the map

[N, 𝑌] × [N, 𝑋] → [N, 𝑍]
(𝑔, 𝑓) ↦→ 𝜏, 𝑛 ↦→ 𝑓 (𝑛) [𝑔]𝑠,𝜏 .

The definition of De Bruijn monads generalises almost mutatis mutandis:

Definition 7.7. A De Bruijn T-monad is a T-set 𝑋, equipped with

• a substitution morphism 𝑠 : [N, 𝑋] · 𝑋 → 𝑋, which takes an element 𝑥 ∈ 𝑋 and an
assignment 𝑓 : N → 𝑋, and returns an element 𝑥 [𝑓], and

• a variables morphism 𝑣 : N → 𝑋,

such that for all 𝑥 ∈ 𝑋, and 𝑓 , 𝑔 : N → 𝑋, we have

𝑥 [𝑓] [𝑔] = 𝑥 [𝑓 [𝑔]] 𝑣(𝑛) [𝑓] = 𝑓 (𝑛) 𝑥 [𝑣] = 𝑥.

Example 7.8. The T-set N itself is clearly a De Bruijn T-monad, with variables given by
the identity and substitution [N,N] · N → N given by evaluation. It is in fact initial in
DBMnd(T).

18:36 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Example 7.9. The set ΛST of simply-typed 𝜆-terms with free variables of type 𝜏 in
N × {𝜏}, considered equivalent modulo 𝛼-renaming, forms a De Bruijn monad. Variables
N → ΛST are given by mapping, at any 𝜏, any 𝑛 ∈ N to the variable (𝑛, 𝜏). Substitution
[N,ΛST] · ΛST → ΛST is standard, capture-avoiding substitution. One main purpose of this
section is to characterise ΛST by a universal property, and reconstruct it categorically.

Remark 7.10. Untyped languages with multiple syntactic categories form De Bruijn monads.
Indeed, it suffices to take T to be the set of syntactic categories, and, for each 𝑐 ∈ T, let 𝑋 (𝑐)
be the set of terms of syntactic category 𝑐. This should be taken with a grain of salt, though,
as this assumes that each syntactic category has its kind of variables. E.g., let us consider a
𝜆-calculus in which we wish to distinguish values from terms. Syntax then goes as follows:

𝑒 F 𝑣 | 𝑒 𝑒 (terms)

𝑣 F 𝑥 | 𝜆𝑥.𝑒 (values).

Attempting to organise this as a (simply-typed) De Bruijn monad 𝑋, we take T = 2 = {t, v},
and let 𝑋 (t) be the set of terms, while 𝑋 (v) is the set of values. However, 𝑋 fails to be a De
Bruijn monad because there are no term variables. One way of understanding this is that
values form an untyped De Bruijn monad, and terms form a module over it [HHL20, HHL22].
We present a simply-typed version of this approach in detail below in §7.5. Another way out
consists in adding term variables 𝛼 to the syntax, which thus becomes:

𝑒 F 𝛼 | 𝑣 | 𝑒 𝑒 (terms)

𝑣 F 𝑥 | 𝜆𝑥.𝑒 (values).

7.2. Morphisms of De Bruijn T-monads.

Definition 7.11. A morphism (𝑋, 𝑠, 𝑣) → (𝑌, 𝑡, 𝑤) between De Bruijn T-monads is a
morphism 𝑓 : 𝑋 → 𝑌 of T-sets commuting with substitution and variables, in the sense that
for all 𝜏 ∈ T, 𝑥 ∈ 𝑋 (𝜏), and 𝑔 : N → 𝑋 we have 𝑓𝜏 (𝑥 [𝑔]) = 𝑓𝜏 (𝑥) [𝑓 ◦ 𝑔] and 𝑓 ◦ 𝑣 = 𝑤.
Remark 7.12. More explicitly, the first axiom says: 𝑓𝜏 (𝑠𝜏 (𝑥, 𝑔)) = 𝑡𝜏 (𝑓𝜏 (𝑥), 𝑓 ◦ 𝑔).
Proposition 7.13. De Bruijn T-monads and morphisms between them form a category
DBMnd(T).

7.3. De Bruijn T-monads as relative monads. The presentation based on relative
monads extends to the typed setting, by replacing the functor N : 1 → Set with N : 1 → SetT,
so that LanN(𝑋) (𝑌) � [N, 𝑌] · 𝑋. Thus, DBMnd(T) is equivalently the category of monads
relative to the functor 1 → SetT picking N. For the record, let us explicitly introduce the
corresponding tensor product.

Definition 7.14. For any T-sets 𝑋 and 𝑌 , let 𝑋 ⊗ 𝑌 = [N, 𝑌] · 𝑋.
Notation 7.15. For coherence with the untyped case, we tend to write an element of
(𝑋 ⊗ 𝑌) (𝜏) as (𝑥, 𝑓), with 𝑥 ∈ 𝑋 (𝜏) and 𝑓 : N → 𝑌 .

7.4. Initial-algebra semantics. We now adapt the initial-algebra semantics of §3 to the
typed case.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:37

7.4.1. Assignment lifting. Let us start by generalising lifting to the typed case. This relies
on a typed form of lifting, which acts on all variables of a given type, leaving all other
variables untouched.

Definition 7.16. Let (𝑋, 𝑠, 𝑣) denote any De Bruijn T-monad. We first define a typed
analogue ↑𝜏 of the ↑ of Definition 2.6, as below left, and then the lifting of any assignment
𝜎 : N → 𝑋 as below right.

(↑𝜏)𝜏 (𝑛) = 𝑣𝜏 (𝑛 + 1)
(↑𝜏)𝜏′ (𝑛) = 𝑣𝜏′ (𝑛) (if 𝜏 ≠ 𝜏′)

(⇑𝜏𝜎)𝜏 (0) = 𝑣𝜏 (0)
(⇑𝜏𝜎)𝜏 (𝑛 + 1) = 𝜎𝜏 (𝑛) [↑𝜏]

(⇑𝜏𝜎)𝜏′ (𝑛) = 𝜎𝜏′ (𝑛) [↑𝜏] (if 𝜏 ≠ 𝜏′).

Finally, for any sequence 𝛾 = (𝜏1, . . . , 𝜏𝑛) of types, we define ⇑𝛾𝜎 inductively, by ⇑𝜀𝜎 = 𝜎

and ⇑𝛾,𝜏𝜎 = ⇑𝜏 (⇑𝛾𝜎), where 𝜀 denotes the empty sequence.

7.4.2. Binding arities and binding conditions. We may now generalise binding arities and
the binding conditions to the typed setting.

Definition 7.17 [FH10].

• A first-order arity is a pair ((𝜏1, . . . , 𝜏𝑝), 𝜏) ∈ T∗ × T of a list of types and a type.
• A binding arity is a tuple 𝑎 = (((𝛾1, 𝜏1), . . . , (𝛾𝑝, 𝜏𝑝)), 𝜏), where each 𝛾𝑖 ∈ T∗ is a list of
types, and each 𝜏𝑖, as well as 𝜏, are types. In other words, 𝑎 ∈ (T∗ × T)∗ × T.

• The first-order arity |𝑎 | associated to 𝑎 is ((𝜏1, . . . , 𝜏𝑝), 𝜏) ∈ T∗ × T.

Remark 7.18. An arity (((𝛾1, 𝜏1), . . . , (𝛾𝑝, 𝜏𝑝)), 𝜏) may be understood as follows:

• 𝜏 is the return type;
• (𝜏1, . . . , 𝜏𝑝) are the argument types;
• each list 𝛾𝑖 = (𝜏𝑖1, . . . , 𝜏𝑖𝑞𝑖) specifies that the 𝑖th argument should be considered as binding

𝑞𝑖 variables, of respective types 𝜏𝑖1,...,𝜏
𝑖
𝑞𝑖
.

Notation 7.19. We write any arity (((𝛾1, 𝜏1), . . . , (𝛾𝑝, 𝜏𝑝)), 𝜏) as an inference rule

𝛾1 ⊢ 𝜏1 . . . 𝛾𝑝 ⊢ 𝜏𝑝
⊢ 𝜏

·

Example 7.20. The binding signature for simply-typed 𝜆-calculus has two operations
lam𝜏,𝜏′ and app𝜏,𝜏′ for each pair (𝜏, 𝜏′) of types, of respective arities

𝜏 ⊢ 𝜏′

⊢ 𝜏 → 𝜏′
and

⊢ 𝜏 → 𝜏′ ⊢ 𝜏
⊢ 𝜏′

·

This allows us to generalise the binding conditions, as follows.

Definition 7.21. Let 𝑎 = (((𝛾1, 𝜏1), . . . , (𝛾𝑝, 𝜏𝑝)), 𝜏) be any binding arity, and 𝑀 be any
T-set equipped with morphisms 𝑠 : [N, 𝑀] · 𝑀 → 𝑀 and 𝑣 : N → 𝑀. An operation of
binding arity 𝑎 is a map 𝑜 : 𝑀 (𝜏1) × . . .×𝑀 (𝜏𝑝) → 𝑀 (𝜏) satisfying the following 𝑎-binding
condition w.r.t. (𝑠, 𝑣):

∀𝜎 : N → 𝑀, 𝑥1, . . . , 𝑥𝑝 ∈ 𝑀 (𝜏1) × . . . × 𝑀 (𝜏𝑝),
𝑜(𝑥1, . . . , 𝑥𝑝) [𝜎] = 𝑜(𝑥1 [⇑𝛾1𝜎], . . . , 𝑥𝑝 [⇑𝛾𝑝𝜎]).

(7.1)

18:38 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

7.4.3. Binding signatures and algebras. Finally, we generalise signatures and their models to
the typed setting, and state a typed initiality theorem.

Definition 7.22. A first-order typed signature consists of a set 𝑂 of operations,
equipped with an arity map ar : 𝑂 → T∗ × T.

Definition 7.23. Consider a first-order signature 𝑆 := (𝑂, ar).
• An 𝑆-algebra is a set 𝑋, together with, for each operation 𝑜 ∈ 𝑂 with arity ((𝜏1, . . . , 𝜏𝑝), 𝜏),
a map 𝑜𝑋 (𝜏1) × . . . × 𝑋 (𝜏𝑝) → 𝑋 (𝜏).

• A morphism 𝑋 → 𝑌 of 𝑆-algebras is a map between underlying sets commuting with
operations, in the sense that for each 𝑜 ∈ 𝑂, letting ((𝜏1, . . . , 𝜏𝑝), 𝜏) := ar (𝑜), we have for
all 𝑥1, . . . , 𝑥𝑝 ∈ 𝑋 (𝜏1) × . . . × 𝑋 (𝜏𝑝), 𝑓𝜏 (𝑜𝑋 (𝑥1, . . . , 𝑥𝑝)) = 𝑜𝑌 (𝑓𝜏1 (𝑥1), . . . , 𝑓𝜏𝑝 (𝑥𝑝)).

We denote by 𝑆 - alg the category of 𝑆-algebras and morphisms between them.

Definition 7.24.

• A T-binding signature consists of a set 𝑂 of operations, equipped with an arity map
𝑂 → (T∗ × T)∗ × T.

• The first-order signature |𝑆 | associated with a binding signature 𝑆 := (𝑂, ar) is |𝑆 | :=
(𝑂, |ar |), where |ar | : 𝑂 → T∗ × T maps any 𝑜 ∈ 𝑂 to |ar (𝑜) |.

Let us now present the notion of De Bruijn 𝑆-algebra:

Definition 7.25. Consider any T-binding signature 𝑆 := (𝑂, ar).
• A De Bruijn 𝑆-algebra consists of a De Bruijn T-monad (𝑋, 𝑠, 𝑣), together with, for all
𝑜 ∈ 𝑂, an operation of binding arity ar (𝑜).

• A morphism of De Bruijn 𝑆-algebras is a map 𝑓 : 𝑋 → 𝑌 between underlying sets, which
is a morphism both of De Bruijn monads and of |𝑆 |-algebras.

We denote by 𝑆 -DBAlg the category of De Bruijn 𝑆-algebras and morphisms between them.

In order to extend the initiality theorem to the typed case, we need to define the
endofunctor induced by a T-binding signature 𝑆, which only depends on |𝑆 |, as in the
untyped case.

Definition 7.26 (Induced endofunctor).

• For any 𝜏 ∈ T, let y𝜏 denote the T-set defined by

y𝜏 (𝜏) = 1
y𝜏 (𝜏′) = ∅ (if 𝜏′ ≠ 𝜏).

• The endofunctor Σ𝑎 induced by any arity

𝑎 =
𝜏11 , . . . , 𝜏

1
𝑞1

⊢ 𝜏1 . . . 𝜏
𝑝

1 , . . . , 𝜏
𝑝
𝑞𝑝 ⊢ 𝜏𝑝

⊢ 𝜏
is defined by Σ𝑎 (𝑋) = (𝑋 (𝜏1)×. . .×𝑋 (𝜏𝑝))·y𝜏 . Thus, a Σ𝑎-algebra is a T-set 𝑋 equipped with
a morphism (𝑋 (𝜏1)×. . .×𝑋 (𝜏𝑝)) ·y𝜏 → 𝑋, or equivalently a map 𝑋 (𝜏1)×. . .×𝑋 (𝜏𝑝) → 𝑋 (𝜏).

• The endofunctor Σ𝑆 induced by any T-binding signature 𝑆 = (𝑂, ar) is defined by

Σ𝑆 (𝑋) =
∑︁
𝑜∈𝑂

Σar (𝑜) (𝑋).

We have the following typed extension of the initiality theorem.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:39

Theorem 7.27. For any T-binding signature 𝑆, let DB𝑆 denote the initial (N + Σ𝑆)-algebra,
with structure morphisms 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) → DB𝑆, inducing maps

𝑜DB𝑆
: DB𝑆 (𝜏1) × . . . ×DB𝑆 (𝜏𝑝) → DB𝑆 (𝜏)

for all 𝑜 ∈ 𝑂 with ar (𝑜) = (((𝛾1, 𝜏1), . . . , (𝛾𝑝, 𝜏𝑝)), 𝜏). Then:

(i) There exists a unique morphism 𝑠 : [N,DB𝑆] · DB𝑆 → DB𝑆 such that
• for all 𝜏 ∈ T, 𝑛 ∈ N, and 𝑓 : N → DB𝑆, 𝑠𝜏 (𝑣𝜏 (𝑛), 𝑓) = 𝑓𝜏 (𝑛), and
• for all 𝑜 ∈ 𝑂, the map 𝑜DB𝑆

satisfies the ar (𝑜)-binding condition w.r.t. (𝑠, 𝑣).
(ii) This morphism 𝑠 turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into a De Bruijn 𝑆-algebra.
(iii) This De Bruijn 𝑆-algebra is initial in 𝑆 -DBAlg.

7.5. Application: values in simply-typed 𝝀-calculus. We saw in Example 7.20 that
the De Bruijn monad of simply-typed 𝜆-calculus terms admits a simple signature. But we
also mentioned in Remark 7.10 that (untyped) values may be organised as a monad, with
terms forming a module over it. In this subsection, as announced, we present a signature for
a simply-typed version of this.

We want elements of our De Bruijn monad at any type to be values of that type.
(Indeed, values are closed under value substitution.)

However, in order to define a signature for this De Bruijn monad, we cannot use
application. Indeed, application returns terms which are not values.

In order to solve this problem, we need to introduce the following auxiliary construction.
The idea is to pack up all occurrences of application between layers of value operations
(abstraction and variable), into a single operation.

We do this by introducing application binary trees, which are proof derivations
generated by the following rules,

𝜎 ⊢𝐵𝑇 𝜎
Γ ⊢𝐵𝑇 𝜎 → 𝜏 Δ ⊢𝐵𝑇 𝜎

Γ,Δ ⊢𝐵𝑇 𝜏
where Γ,Δ denotes concatenation of lists of simple types. Thus a proof of Γ ⊢𝐵𝑇 𝜏 is
essentially a simply-typed term involving only application, with one, linearly used free
variable for each type in Γ, in the same order. Linearity is here used to keep track of all
leaves in the typing context, which we will now use to define the desired binding signature.

Definition 7.28. Let 𝐵𝑇Γ
𝜎 denote the set of such application binary trees with conclusion

Γ ⊢𝐵𝑇 𝜎.

We then take as binding signature 𝑆𝜆𝑣 for simply-typed values the one with one operation
𝐿 𝜋,𝜎 of arity

𝜎 ⊢ 𝜏1 . . . 𝜎 ⊢ 𝜏𝑛
⊢ 𝜎 → 𝜏

for each simple type 𝜎 and application binary tree 𝜋 ∈ 𝐵𝑇 𝜏1,...,𝜏𝑛𝜏 .

Example 7.29. For a simple example, if 𝜋 is merely the axiom 𝜏 ↦→ 𝜏, then 𝐿 𝜋,𝜎 has the

arity
𝜎 ⊢ 𝜏

⊢ 𝜎 → 𝜏
of 𝜆-abstraction. In this case, 𝐿 𝜋,𝜎 is thought of as forming 𝜆𝑥 : 𝜎.𝑣𝜏 from

any value 𝑣 of type 𝜏 with an additional variable of type 𝜎.

18:40 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

Example 7.30. For a less trivial, yet basic example, if 𝜋 is

𝜏1 → 𝜏2 ⊢𝐵𝑇 𝜏1 → 𝜏2 𝜏1 ⊢𝐵𝑇 𝜏1
𝜏1 → 𝜏2, 𝜏1 ⊢𝐵𝑇 𝜏2

,

then 𝐿 𝜋,𝜎 has arity

𝜎 ⊢ 𝜏1 → 𝜏2 𝜎 ⊢ 𝜏1
⊢ 𝜎 → 𝜏2

·

This operation is thought of as forming 𝜆𝑥 : 𝜎.(𝑓 𝜏1→𝜏2 𝑎𝜏1) from values 𝑓 and 𝑎.

By Theorem 7.27, the initial De Bruijn 𝑆𝜆𝑣 -algebra has as carrier the initial algebra for
the induced endofunctor, which is by construction the subset of values.

8. Equations

In this section, we introduce a notion of equational theory for specifying (typed) De Bruijn
monads, following ideas from [FH09].

Definition 8.1. A De Bruijn equational theory consists of

• two binding signatures 𝑆 and 𝑇 , and
• two functors 𝐿, 𝑅 : 𝑆 -DBAlg → 𝑇 -DBAlg over DBMnd(T), i.e., making the following
diagram commute serially, where 𝑈𝑆 and 𝑈𝑇 denote the forgetful functors.

𝑆 -DBAlg 𝑇 -DBAlg

DBMnd(T)

𝐿

𝑅

𝑈𝑆 𝑈𝑇

Example 8.2. Recalling the binding signature 𝑆Λ for 𝜆-calculus from Example 2.15, let us
define a De Bruijn equational theory for 𝛽-equivalence. We take 𝑇𝛽 = (1, 0), and for any De
Bruijn 𝑆Λ-algebra 𝑋,

• 𝐿 (𝑋) has as structure map

𝑋2 → 𝑋

(𝑒1, 𝑒2) ↦→ app(lam(𝑒1), 𝑒2)
while

• 𝑅(𝑋) has as structure map

𝑋2 → 𝑋

(𝑒1, 𝑒2) ↦→ 𝑒1 [𝑒2 · id] .
(Here 𝑒2 · id denotes the assignment 0 ↦→ 𝑒2, 𝑛 + 1 ↦→ 𝑣(𝑛).)

Definition 8.3. Given an equational theory 𝐸 = (𝑆, 𝑇, 𝐿, 𝑅), a De Bruijn 𝐸-algebra is a
De Bruijn 𝑆-algebra 𝑋 such that 𝐿 (𝑋) = 𝑅(𝑋).

Let 𝐸 -DBAlg denote the category of 𝐸-algebras, with morphisms of De Bruijn 𝑆-algebras
between them.

Remark 8.4. The category 𝐸 -DBAlg is an equaliser of 𝐿 and 𝑅 in CAT.

Let us now turn to characterising the initial De Bruijn 𝐸-algebra, for any De Bruijn
equational theory 𝐸 . For this, we introduce the following relation.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:41

Definition 8.5. For any De Bruijn equational theory 𝐸 = (𝑆, 𝑇, 𝐿, 𝑅), with 𝑆 = (𝑂, ar) and
𝑇 = (𝑂′, ar ′), let DB𝑆 denote the initial (N + Σ𝑆)-algebra. We define ∼𝐸 to be the smallest
equivalence relation on DB𝑆 satisfying the following rules,

𝑜′
𝐿 (DB𝑆) (𝑒1, . . . , 𝑒𝑝) ∼𝐸 𝑜

′
𝑅 (DB𝑆) (𝑒1, . . . , 𝑒𝑝)

𝑒1 ∼𝐸 𝑒′1 . . . 𝑒𝑞 ∼𝐸 𝑒′𝑞
𝑜DB𝑆

(𝑒1, . . . , 𝑒𝑞) ∼𝐸 𝑜DB𝑆
(𝑒′1, . . . , 𝑒′𝑞)

for all 𝑒, 𝑒1, . . . in DB𝑆, 𝑜
′ ∈ 𝑂′ with |ar ′(𝑜′) | = 𝑝, and 𝑜 ∈ 𝑂 with |ar (𝑜) | = 𝑞.

Example 8.6. For the equational theory of Example 8.2, the first rule instantiates precisely
to the 𝛽-rule, while the second enforces congruence.

Theorem 8.7. For any equational theory 𝐸 = (𝑆, 𝑇, 𝐿, 𝑅), 𝐸 -DBAlg admits an initial
object, whose carrier set is the quotient DB𝑆/∼𝐸 .
Proof. We formalised the proof in Coq [Laf22a], where

• existence is called quotsyntax.ini_morE_model_mor,
• uniqueness is called quotsyntax.ini_morE_unique.

The specific case of 𝜆-calculus modulo 𝛽𝜂-equation has also been mechanised in HOL [Mag22].

Example 8.8. The initial model for the equational theory of Example 8.2 is the quotient of
𝜆-terms in De Bruijn representation by 𝛽-equivalence.

9. Mechanised proofs

Our theoretical framework is in particular meant to help specifying and reasoning mechani-
cally about binding syntax using De Bruijn representation. To give practical examples, we
describe in this section two implementations, in HOL Light and Coq, that cover several
crucial parts of the theory of this paper, and, in particular Theorems 2.21 and 3.16. The
full source code is available on github [Laf22a, Mag22].

9.1. HOL Light proof. Let us start by discussing the HOL Light formalisation. One key
fact is that, despite being much weaker than ZFC set theory or the Calculus of Inductive
Constructions, HOL is expressive enough to program the De Bruijn encoding and to reason
about it. For instance, other representations, such as those based on monads over sets [HM10]
(possibly via the nested datatype technique [BP99, HM12]) are not directly implementable
in HOL.

The reader does not need to be familiar with higher-order logic (HOL) to follow the
essential ideas of this section. HOL is based on simply-typed 𝜆-calculus. Following a standard
denotational semantics in Zermelo-Fraenkel set theory, types in HOL can be thought of as
non-empty sets.

Our HOL Light implementation is divided into two main parts. The first part treats
the specific case of 𝜆-calculus and can be useful to illustrate the essential ideas of this paper
in a simple—yet paradigmatic—setting.

Notation 9.1. In the following, we refer to the theorems and definitions in the HOL code by
indicating their name in parentheses in teletype font, e.g., (INITIAL_MORPHISM_UNIQUE).
HOL terms and formulas are enclosed in backquotes as in ‘2 + 2‘, types are prefixed by a
colon as in ‘:bool‘.

18:42 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

The type :dblambda of 𝜆-calculus is simply defined as the following inductive type

let dblambda_INDUCT, dblambda_RECURSION = define_type

"dblambda = REF num | APP dblambda dblambda | ABS dblambda";;

The lifting function (‘DERIV‘) and substitution function ‘SUBST‘ are defined in the obvious
way. The equations that characterise them are summarised in the following theorem
(SUBST_CLAUSES).

|- (!f i. SUBST f (REF i) = f i) /\

(!f x y. SUBST f (APP x y) = APP (SUBST f x) (SUBST f y)) /\

(!f x. SUBST f (ABS x) = ABS (SUBST (DERIV f) x)) /\

(!f. DERIV f 0 = REF 0) /\

(!f i. DERIV f (SUC i) = SUBST (REF o SUC) (f i))

The names ‘SUC‘ and ‘o‘ respectively denote successor and function composition. The
symbols ‘/\‘ and ‘!‘ are HOL notation for conjunction and universal quantification. We
recognise:

• in the first line, the variables map,
• in the next two lines, the binding conditions for application and abstraction, and
• in the final two lines, the equations defining the lifting of an assignment.

We show that the functions ‘SUBST‘ and ‘DERIV‘ satisfying the above identities are
unique (SUBST_DERIV_UNIQUE); thus, we have formalised the first point of Theorem 2.21 for
the case of 𝜆-calculus.

The second point of the Theorem translates in a law for associativity (SUBST_SUBST) and
a second law for unitality (SUBST_REF) complementing the first equation of (SUBST_CLAUSES)
above.

We also provide the classical definition of unary substitution (SUBST1, as found e.g.,
in [Hue94]) and then show how the latter is an instance of the former (SUBST1_EQ_SUBST).
As shown by other authors [ACCL90, SST15], reasoning on parallel substitution can be
significantly easier. Here for instance, we prove the associativity of unary substitution
in a few lines (SUBST1_SUBST1) by reducing to parallel substitution. In contrast, proving
the same result directly for unary substitution is less intuitive: the mere statement of the
property to be proved by induction is tricky to devise.

Next, we introduce the category of De Bruijn monads (MONAD, MONAD_MOR) and their
associated modules (MODULE, MODULE_MOR). Our Definition 2.3 presents De Bruijn mon-
ads as triples consisting of a set, an associative substitution operator and a two-sided
unit. In HOL, this is implemented as a type ‘:A‘ together with a substitution operation
‘op:(num->A)->A->A‘ and a unit ‘e:num->A‘.2 However, the unit is uniquely determined
by the substitution operator and it is denoted ‘UNIT op‘ in our implementation. Moreover,
the type ‘:A‘ is automatically inferred. Thus, we simply identify a De Bruijn monad by
its substitution operator, that is, we write ‘op IN MONAD‘ to indicate that ‘op‘ is (the
substitution operator of) a monad.

|- !op. op IN MONAD <=>

(!f g x:A. op g (op f x) = op (op g o f) x) /\

(!f n. op f (UNIT op n) = f n) /\

(!x. op (UNIT op) x = x)

2We warn the reader that in this code op is used for substitution operation and should not be confused
with the operations of the syntax 𝑜 ∈ 𝑂 of the previous sections.

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:43

The set of morphisms between two De Bruijn monads ‘op1‘ and ‘op2‘ is then defined as
follows.

|- MONAD_MOR (op1,op2) =

{h:A->B | op1 IN MONAD /\ op2 IN MONAD /\

(!n. h (UNIT op1 n) = UNIT op2 n) /\

(!f x. h (op1 f x) = op2 (h o f) (h x))}

Modules are implemented using a similar style. We implemented the constructions on
modules needed for interpreting binding signatures: product (MPROD) and derivation (DMOP).

In this setup, we can state and prove Theorem 3.16 for the 𝜆-calculus. The models of
our syntax are De Bruijn monads endowed with functions ‘app‘ and ‘abs‘ that are module
morphisms (DBLAMBDA_MODEL).

app IN MODULE_MOR op (MPROD op op, op)

lam IN MODULE_MOR op (DMOP op op, op)

Remark 9.2. Both product MPROD and derivation DMOP expect two arguments, for different
reasons. Product expects the two modules it takes the product of. Derivation takes a monad
and a module over it, and it derives the latter. The monad is needed because derivation
relies on monadic substitution (in the definition of ⇑).

Model morphisms (DBLAMBDA_MODEL_MOR) are De Bruijn monad morphisms that commute
with ‘app‘ and ‘abs‘. We then obtain the universal property of 𝜆-calculus by giving an
initial model morphism (DBLAMBDAINIT, DBLAMBDAINIT_IN_DBLAMBDA_MODEL_MOR),

|- !op app lam.

(op,app,lam) IN DBLAMBDA_MODEL

==> DBLAMBDAINIT (op,app,lam) IN

DBLAMBDA_MODEL_MOR ((SUBST,UNCURRY APP,ABS),(op,app,lam))

and by proving its uniqueness (DBLAMBDAINIT_UNIQUE).
This part closes with the analogous theorem for the initial-algebra semantics of 𝜆-calculus

modulo 𝛽𝜂-equivalence (EXP_MONAD_MOR_LC_EXPMAP, LC_EXPMAP_UNIQUE). The style is the
one proposed in [HM10] which uses exponential monads, that is, a monads 𝑀 endowed with

a module isomorphism abs : 𝑀 ′ ≃−→ 𝑀.
The second part of the HOL Light code implements Theorems 2.21 and 3.16 for arbitrary

signatures.
The increased generality comes at a cost in this implementation: since HOL does not

feature dependent types, it is impossible to implement the term algebra of a given binding
signature as a mere type: one has to resort to a “well-formedness” predicate. From this
perspective, it may be instructive to compare with our Coq implementation, which takes
advantage of dependent types.

The above difficulty is solved in the standard way in HOL Light. First, we build a type
rterm for raw terms over a “full” signature, i.e., one with countably many operations of
each arity. We then introduce an inductive set (i.e., an inductive predicate) of well-formed
terms (WELLFORMED_RULES) that selects the terms respecting a given signature. Besides this
technical difficulty, the formal development follows the same pattern as for 𝜆-calculus.

The substitution operator is specified by two equations (TMSUBST_CALUSES).

|- (!f i. TMSUBST f (TMREF i) = f i) /\

(!f c args. TMSUBST f (FN c args) =

FN c (MAP (\(k,x). k,TMSUBST (TMDERIV k f) x) args))

18:44 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

where ‘TMREF‘ denotes variables and ‘FN‘ denotes operations from the signature. The latter
takes two arguments, the name of the construction ‘c‘ (a natural number) and a list of
pairs ‘(k,x)’ where ‘k‘ is a natural number denoting the number of bound variables and
‘x‘ is a term.

We formulate the appropriate notion of category of models in this setting (MODEL,
MODEL_MOR) of which the above data constitutes an object (RTERM_IN_MODEL). Then we prove
the universal property by giving the initial morphism (INITIAL_MORPHISM_IN_MODEL_MOR)
and show its uniqueness (INITIAL_MORPHISM_UNIQUE).

Finally, to tie the knot, we derive again the universal property for 𝜆-calculus as an
instance of this new, more general, framework (DBLAMBDA_UNIVERSAL).

9.2. Coq proof. We now discuss the Coq formalisation [Laf22a]. Our implementation
addresses only the general case of arbitrary signatures since, as mentioned before, we do not
gain anything by treating a particular case separately, thanks to dependent types. As also
mentioned above, the formalisation covers signatures with equations, in the untyped case.

The reader who wants to skim through the main definitions and constructions of this
implementation can look at the file Summary.v, which reviews the main constructions and
results. The formalisation has an idiomatic style: the minute details of implementation pose
no significant problem. Therefore, we just point the reader to the most relevant definitions.

We start with the file syntaxdb.v. The syntax is defined as an inductive type parame-
terised by a signature.

Record signature :=
{ O : Type;
ar : O → list N}.

Inductive Z (S : signature) : Type :=
Var : N → Z S

| Op : ∀ (o : O S), vec (Z S) (ar o) → Z S .

Here, vec 𝐴 ℓ is defined as the inductive type of vectors of elements 𝐴, whose length is
that of the list ℓ. Assuming a type 𝑋 equipped with a substitution map −[−] and variable
embedding, the binding condition is defined as

Definition binding condition (a : list N) (op : vec X a → X) :=
∀ (f : N → X)(v : vec X a),

op v [f] = op (vec map (fun n x ⇒ x [f ^ (n)]) v).

where

• −[−] denotes substitution,
• f ˆ (n) denotes ⇑𝑛 𝑓 , and
• vec map 𝑓 maps a vector 𝑣 = (𝑥1, . . . , 𝑥𝑛) of type vec 𝐴 (𝑎1, . . . , 𝑎𝑛) to (𝑓 𝑎1 𝑥1, . . . , 𝑓 𝑎𝑛 𝑥𝑛).
The definition of models is split into two parts: the data, and the properties.
Record model data (S : signature) :=

{ carrier :> Type;
variables : N → carrier;
ops : ∀ (o : O S), vec carrier (ar o) → carrier;
substitution : (N → carrier) → (carrier → carrier)

}.
Record is model {S : signature}(m : model data S) := {

::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:45

substitution ext : ∀ (f g : N → m), (∀ n, f n = g n) → ∀ x , x [f] = x [g];
variables subst : ∀ x f , (variables m x) [f] = f x ;
ops subst : ∀ (o : O S), binding condition (variables m) (substitution (m := m)) (ops o);
assoc : ∀ (f g : N → m) (x : m), x [g] [f] = x [(fun n ⇒ (g n) [f])] ;
id neutral : ∀ (x : m), x [variables m] = x
}.
Record model (S : signature) := {
mod carrier :> model data S ;
mod laws : is model mod carrier

}.
The symbol :> declares an implicit coercion. For example, given a term 𝑚 of type

model data, we can then just write 𝑚 when we actually mean carrier 𝑚. Coq implicitly
inserts the field getter carrier whenever it is necessary, based on the typing constraints.

The first property substitution ext looks superfluous: it intuitively follows from the fact
that pointwise equal functions are equal. We however explicitly require this property because
the latter general fact, called function extensionality, is not built-in in Coq.3

The remaining of the file syntaxdb.v consists of the definition of model morphisms and
the proofs of Theorems 2.21 and 3.16. The rest of the formalisation focuses on initiality for
signatures with equations (Theorem 8.7), in the untyped setting. Since quotients are not
built-in in Coq, we axiomatise a quotient type 𝑋//𝑅 in the file Quot.v for each equivalence
relation 𝑅 on a type 𝑋, that is, for each 𝑅 of type Eqv 𝑋. The canonical projection is then
denoted by −/𝑅 : 𝑋 → 𝑋//𝑅.

A De Bruijn equational theory (Definition 8.1) is defined as a record with four fields.

Record equational theory :=
{ metavariables : signature ;

main signature : signature ;
left handside : half equation main signature metavariables ;
right handside : half equation main signature metavariables

}.
A half-equation is a functor between two categories of models preserving the underlying De
Bruijn monad. In other words, it provides any model of the first signature with an algebra
structure for the second signature, and this assignment is compatible with model morphisms.

Record half equation (S1 : signature)(S2 : signature) :=
{
lift ops :> ∀ (m : model S1), ∀ (o : O S2), vec m (ar o) → m;
lift ops subst :
∀ (m : model S1) (o : O S2),

binding condition (variables m) (substitution (m := m))
(@lift ops m o) ;

lift ops natural : ∀ (m1 m2 : model S1) (f : model mor m1 m2)
(o : O S2)(v : vec m1 (ar o)),

lift ops (vec map (fun ⇒ f) v) = f (lift ops v)
}.

3Alternatively, we could have explicitly assumed function extensionality as an (unrestricted) axiom, as we
do anyway when axiomatising quotient types.

nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic

18:46 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

A model of an equational theory is a model of the main signature equalising both half-
equations, in the sense that they yield equal algebra structures.

Record model equational (E : equational theory) :=
{ main model :> model (main signature E) ;

model eq : ∀ o (v : vec main model (ar o)),
left handside E main model o v = right handside E main model o v

}.
Following Definition 8.5, the initial algebra of an equational theory is obtained by quotienting
the initial algebra of the main signature by the smallest congruent equivalence relation
relating the images by the algebra structures induced by the two half-equations.

Inductive rel Z (E : equational theory) : Z (main signature E) → Z (main signature E)
→ Prop :=
| eqE : ∀ o v , rel Z (left handside E (ZModel) o v) (right handside E (ZModel) o v)
| reflE : ∀ z , rel Z z z
| symE : ∀ a b, rel Z b a → rel Z a b
| transE : ∀ a b c, rel Z a b → rel Z b c → rel Z a c
| congrE : ∀ (o : O (main signature E)) (v v’ : vec (ar o)),

rel vec (@rel Z E) v v’ → rel Z (Op o v) (Op o v’).

Definition ZEr (E : equational theory) : Eqv (Z (main signature E)) :=
Build Eqv (@rel Z E) (@reflE E) (@symE E)(@transE E) .

Definition ZE (E : equational theory) := Z (main signature E) // (ZEr E).

The congruence case congrE involves the pointwise relation rel vec 𝑅 induced on vectors by
a relation 𝑅.

The rest of the file consists in showing that this definition indeed induces an initial
model of the given equational theory. We also provide the instantiation on the equational
signature LC𝛽𝜂_sig of 𝜆-calculus modulo 𝛽𝜂-equivalence.

10. Conclusion

We have proposed a simple, set-based theory of syntax with variable binding, which associates
a notion of model (or algebra) to each binding signature, and constructs a term model
following De Bruijn representation. The notion of model features a substitution operation.
We have experienced the simplicity of this theory by implementing it in both Coq and HOL
Light.

We have furthermore equipped the construction with an initial-algebra semantics,
organising the models of any binding signature into a category, and proving that the term
model is initial therein.

We have then studied this initial-algebra semantics in a bit more depth, in two directions.

• We have first established a formal link with the presheaf-based approach [FPT99], proving
that well-behaved models (in a suitable sense on each side of the correspondence) agree
up to an equivalence of categories.

• We have then recast the whole initial-algebra semantics into two established, abstract
frameworks for syntax with variable binding, one based on strengths [FPT99, Fio08], the
other on modules [HM07, HM10].

::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.12.0/stdlib//Coq.Init.Logic

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:47

Finally, we have shown that our theory extends easily to a simply-typed setting, and
smoothly incorporates equations and transitions.

Funding acknowledgement. This work was supported in part by a European Research
Council (ERC) Consolidator Grant for the project “TypeFoundry”, funded under the
European Union’s Horizon 2020 Framework Programme (grant agreement no. 101002277).

References

[AAC+18] Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A type
and scope safe universe of syntaxes with binding: their semantics and proofs. Proceedings of the
ACM on Programming Languages, 2(ICFP):90:1–90:30, 2018. doi:10.1145/3236785.

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce,
Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The PoplMark challenge. In TPHOLs, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer, 2005. doi:10.1007/11541868_4.

[ACCL90] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
In Frances E. Allen, editor, Proc. 17th International Symposium on Principles of Programming
Languages, pages 31–46. ACM, 1990. URL: http://dl.acm.org/citation.cfm?id=96709, doi:
10.1145/96709.96712.

[ACU15] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.
Logical Methods in Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:3)2015.

[AGT10] J. Adámek, H. P. Gumm, and V. Trnková. Presentation of set functors: A coalgebraic perspective.
Journal of Logic and Computation, 20(5):991–1015, 2010. doi:10.1093/logcom/exn090.

[AM21] Nathanael Arkor and Dylan McDermott. Abstract clones for abstract syntax. In Naoki Kobayashi,
editor, Proc. 6th International Conference on Formal Structures for Computation and Deduction,
volume 195 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1–30:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.30.

[AMBL12] Jiŕı Adámek, Stefan Milius, Nathan J. Bowler, and Paul Blain Levy. Coproducts of monads
on Set. In Proc. 27th Symposium on Logic in Computer Science, pages 45–54. IEEE Computer
Society, 2012. doi:10.1109/LICS.2012.16.

[AR94] J. Adámek and J. Rosicky. Locally Presentable and Accessible Categories. Cambridge University
Press, 1994. doi:10.1017/CBO9780511600579.

[BHL20] Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont. A cellular Howe theorem. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, Proc. 35th ACM/IEEE
Symposium on Logic in Computer Science. ACM, 2020. doi:10.1145/3373718.3394738.

[BP99] Richard S. Bird and Ross Paterson. De Bruijn notation as a nested datatype. Journal of Functional
Programming, 9(1):77–91, 1999. doi:10.1017/S0956796899003366.

[BU07] Stefan Berghofer and Christian Urban. A head-to-head comparison of De Bruijn indices and
names. Electronic Notes in Theoretical Computer Science, 174(5):53–67, 2007. doi:10.1016/j.
entcs.2007.01.018.

[DB72] N. G. De Bruijn. Lambda-calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae, 34:381–
392, 1972.

[FH09] Marcelo Fiore and Chung-Kil Hur. On the construction of free algebras for equational systems.
Theoretical Computer Science, 410:1704–1729, 2009. doi:10.1016/j.tcs.2008.12.052.

[FH10] M. P. Fiore and C.-K. Hur. Second-order equational logic. In Proceedings of the 19th EACSL
Annual Conference on Computer Science Logic (CSL 2010), 2010.

[Fio08] Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In Proc. 23rd Symposium
on Logic in Computer Science, pages 57–68. IEEE, 2008. doi:10.1109/LICS.2008.38.

[FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In Proc.
14th Symposium on Logic in Computer Science. IEEE, 1999. doi:10.1109/LICS.1999.782615.

[FS22] Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract syntax.
Proceedings of the ACM on Programming Languages, 6(POPL), 2022. doi:10.1145/3498715.

https://doi.org/10.1145/3236785
https://doi.org/10.1007/11541868_4
http://dl.acm.org/citation.cfm?id=96709
https://doi.org/10.1145/96709.96712
https://doi.org/10.1145/96709.96712
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1093/logcom/exn090
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.1109/LICS.2012.16
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1145/3498715

18:48 A. Hirschowitz, T. Hirschowitz, A. Lafont, and M. Maggesi Vol. 20:1

[GP99] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders.
In Proc. 14th Symposium on Logic in Computer Science. IEEE, 1999.

[GP20] Lorenzo Gheri and Andrei Popescu. A formalized general theory of syntax with bind-
ings: Extended version. Journal of Automated Reasoning, 64(4):641–675, 2020. doi:10.1007/
s10817-019-09522-2.

[GT74] Joseph A. Goguen and James W. Thatcher. Initial algebra semantics. In 15th Annual Symposium
on Switching and Automata Theory (SWAT), pages 63–77. IEEE, 1974.

[HHL20] André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over monads and operational
semantics. In Zena M. Ariola, editor, Proc. 5th International Conference on Formal Structures
for Computation and Deduction, volume 167 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 12:1–12:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.
4230/LIPIcs.FSCD.2020.12.

[HHL22] André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over monads and operational
semantics (expanded version). Logical Methods in Computer Science, 18, 2022. doi:10.46298/
lmcs-18(3:3)2022.

[HM07] André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In Proc. 14th
International Workshop on Logic, Language, Information and Computation, volume 4576 of Lecture
Notes in Computer Science, pages 218–237. Springer, 2007. doi:10.1007/978-3-540-73445-1_16.

[HM10] André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Information
and Computation, 208(5):545–564, 2010. doi:10.1016/j.ic.2009.07.003.

[HM12] André Hirschowitz and Marco Maggesi. Nested abstract syntax in Coq. Journal of Automated
Reasoning, 49(3):409–426, 2012. doi:10.1007/s10817-010-9207-9.

[Hue94] Gérard Huet. Residual theory in 𝜆-calculus: a formal development. Journal of Functional Pro-
gramming, 4(3):371–394, 1994. doi:10.1017/S0956796800001106.

[Laf22a] Ambroise Lafont. amblafont/binding-debruijn: Initial algebra semantics for De Bruijn monads in
Coq, August 2022. doi:10.5281/zenodo.7022679.

[Laf22b] Ambroise Lafont. Initial Sigma-monoids for skew monoidal categories in UniMath, June 2022.
doi:10.5281/zenodo.6622835.

[LS14] Stephen Lack and Ross Street. On monads and warpings. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, LV(4):244–266, 2014.

[Mag22] Marco Maggesi. Initial algebra semantics for De Bruijn monads in HOL Light, September 2022.
doi:10.5281/zenodo.7053686.

[Pit23] Andrew M. Pitts. Locally nameless sets. Proceedings of the ACM on Programming Languages,
7(POPL), 2023. doi:10.1145/3571210.

[Plo90] Gordon Plotkin. An illative theory of relations. In R. Cooper et al., editors, Situation Theory and
its Applications, number 22 in CSLI Lecture Notes, page 133–146. Stanford University, 1990.

[Pow07] John Power. Abstract syntax: Substitution and binders: Invited address. Electronic Notes in
Theoretical Computer Science, 173:3–16, 04 2007. doi:10.1016/j.entcs.2007.02.024.

[Shu21] Michael Shulman. You could have invented De Bruijn indices. Blog post at The n-
Category Café, https://golem.ph.utexas.edu/category/2021/08/you_could_have_invented_
de_bru.html, 2021.

[SSK19] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with multi-sorted
De bruijn terms and vector substitutions. In Assia Mahboubi and Magnus O. Myreen, editors,
Proc. 8th International Conference on Certified Programs and Proofs, pages 166–180. ACM, 2019.
doi:10.1145/3293880.3294101.

[SST15] Steven Schäfer, Gert Smolka, and Tobias Tebbi. Completeness and decidability of De Bruijn
substitution algebra in Coq. In Xavier Leroy and Alwen Tiu, editors, Proc. 4th International
Conference on Certified Programs and Proofs, pages 67–73. ACM, 2015. URL: http://dl.acm.
org/citation.cfm?id=2676724, doi:10.1145/2676724.2693163.

[STS15] Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with De Bruijn terms and
parallel substitutions. In Christian Urban and Xingyuan Zhang, editors, Proc. 6th International
Conference on Interactive Theorem Proving, volume 9236 of Lecture Notes in Computer Science,
pages 359–374. Springer, 2015. doi:10.1007/978-3-319-22102-1_24.

[SW01] Davide Sangiorgi and David Walker. The 𝜋-calculus – A Theory of Mobile Processes. Cambridge
University Press, 2001.

https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.46298/lmcs-18(3:3)2022
https://doi.org/10.46298/lmcs-18(3:3)2022
https://doi.org/10.1007/978-3-540-73445-1_16
https://doi.org/10.1016/j.ic.2009.07.003
https://doi.org/10.1007/s10817-010-9207-9
https://doi.org/10.1017/S0956796800001106
https://doi.org/10.5281/zenodo.7022679
https://doi.org/10.5281/zenodo.6622835
https://doi.org/10.5281/zenodo.7053686
https://doi.org/10.1145/3571210
https://doi.org/10.1016/j.entcs.2007.02.024
https://golem.ph.utexas.edu/category/2021/08/you_could_have_invented_de_bru.html
https://golem.ph.utexas.edu/category/2021/08/you_could_have_invented_de_bru.html
https://doi.org/10.1145/3293880.3294101
http://dl.acm.org/citation.cfm?id=2676724
http://dl.acm.org/citation.cfm?id=2676724
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1007/978-3-319-22102-1_24

Vol. 20:1 VARIABLE BINDING AND SUBSTITUTION FOR (NAMELESS) DUMMIES 18:49

[Szl12] Kornel Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Mathematics, 231:1694–
1730, 2012. doi:10.1016/j.aim.2012.06.027.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1016/j.aim.2012.06.027

	1. Introduction
	1.1. Overview
	1.2. Plan of the paper
	1.3. Related work
	1.4. General notation

	2. De Bruijn monads
	2.1. Definition of De Bruijn monads
	2.2. Lifting assignments
	2.3. Binding arities and binding conditions
	2.4. Binding signatures and algebras

	3. Initial-algebra semantics of binding signatures in De Bruijn monads
	3.1. A category of De Bruijn monads
	3.2. De Bruijn monads as relative monads and as monoids
	3.3. Categories of De Bruijn algebras

	4. Relation to presheaf-based models
	4.1. Trimming down presheaf-based models
	4.2. Trimming down De Bruijn monads
	4.3. Bridging the gap

	5. Strength-based interpretation of the binding conditions
	5.1. Structural strengths
	5.2. De Bruijn algebras as Sigma-monoids

	6. Module-based interpretation of the binding conditions
	6.1. Modules over De Bruijn monads and first-order signatures
	6.2. Derivation of substitution for modules
	6.3. Binding signatures as parametric modules
	6.4. Interpreting the binding conditions

	7. Simply-typed extension
	7.1. De Bruijn T-monads
	7.2. Morphisms of De Bruijn T-monads
	7.3. De Bruijn T-monads as relative monads
	7.4. Initial-algebra semantics
	7.5. Application: values in simply-typed lambda-calculus

	8. Equations
	9. Mechanised proofs
	9.1. HOL Light proof
	9.2. Coq proof

	10. Conclusion
	Funding acknowledgement

	References

