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Abstract. This paper presents a case study for the application of semiring semantics
for fixed-point formulae to the analysis of strategies in Büchi games. Semiring semantics
generalizes the classical Boolean semantics by permitting multiple truth values from certain
semirings. Evaluating the fixed-point formula that defines the winning region in a given
game in an appropriate semiring of polynomials provides not only the Boolean information
on who wins, but also tells us how they win and which strategies they might use. This is
well-understood for reachability games, where the winning region is definable as a least
fixed point. The case of Büchi games is of special interest, not only due to their practical
importance, but also because it is the simplest case where the fixed-point definition involves
a genuine alternation of a greatest and a least fixed point.

We show that, in a precise sense, semiring semantics provide information about all
absorption-dominant strategies – strategies that win with minimal effort, and we discuss
how these relate to positional and the more general persistent strategies. This information
enables applications such as game synthesis or determining minimal modifications to the
game needed to change its outcome. Lastly, we discuss limitations of our approach and
present questions that cannot be immediately answered by semiring semantics.

1. Introduction

Two-player games on finite graphs which admit infinite plays are of fundamental importance
in many areas of logic and computer science, especially in the formal analysis of reactive
systems, where they model the non-terminating interaction between a system and its
environment. In such a game, the objective or winning condition of the player who represents
the system specifies the desired set of behaviours of the system. The most basic classes of
such objectives are reachability and safety objectives defined by a set of states (positions)
that the player should reach, or avoid. We can assume, without loss of generality, that even
though infinite plays are possible in a game with reachability or safety objectives, they are
all won by the same player.

Games with genuine and non-trivial winning conditions for infinite plays are harder to
analyse; they include games with arbitrary ω-regular objectives, such as liveness, Muller,
Streett-Rabin, or parity objectives, and many others. The goal of this paper is to provide
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a case study of a recent method for strategy analysis, based on semiring semantics, and
we would like to explore its potential for providing detailed information about strategies
in genuinely infinite games. One of the simplest class of games with a non-trivial winning
condition for the infinite plays are games with Büchi objectives, which require that a specific
target set F of states is reached infinitely often during the play (see e.g. [GTW02] for
background). Büchi games, as well as some of their straightforward generalisations, have
many applications in formal methods, and efficient algorithms for solving them have been
studied thoroughly (see e.g. [CDHL16, CH14, CHP08]). They are also of interest from the
points of view of topology and logic, because they are among the simplest games where the
set of winning plays is neither open nor closed, and where logical definition of the winning
region requires a genuine alternation of a greatest and a least fixed point (see Section 5).

Strategies in infinite games can be very complicated because, in principle, they may
depend on the entire history of a play. Thus, there exist uncountably many different
strategies, even on a finite game graph. Fortunately, in many cases and in particular for
Büchi games, simple strategies are sufficient to win. A fundamental result in this context
is the positional determinacy of parity games (of which Büchi games are a special case),
saying that from each position, one of the two players has a positional winning strategy, i.e.
a winning strategy that only depends on the current position and not on the history of the
play. A positional strategy can be viewed as a subgraph of the game graph, and can therefore
be represented in a compact way. As a consequence, the algorithmic analysis of Büchi
games has concentrated almost exclusively on the positional strategies. Here we extend
this point of view somewhat and take also other kinds of simple strategies into account.
Specifically, we are interested in absorption-dominant winning strategies [GT20] which are
strategies without redundant moves; this means that taking away anything, in the sense of
demanding that some specific move is played less often, makes the strategy non-winning.
Another way to distinguish positional strategies from absorption-dominant ones concerns
their minimisation properties: while positional strategies minimize the set of moves that
they use, absorption-dominant strategies take multiplicities into account and minimize the
multiset of moves. A further interesting class are the persistent strategies [MT02], which
are positional in each individual play but not necessarily across distinct plays. We shall
study the relationship between these different classes of simple strategies, and prove that
every positional strategy is absorption-dominant and every absorption-dominant strategy is
persistent, and that these inclusions are strict.

The specific method for strategy analysis that we want to apply to Büchi games in
this paper is based on the logical definability of the winning positions by a formula in the
fixed-point logic LFP, and on the semiring semantics for LFP developed in [DGNT21]. In the
classical Boolean semantics, a model A of a formula φ assigns to each (instantiated) literal a
Boolean value. K-interpretations π, for a suitable semiring K, generalize this by assigning
to each such literal a semiring value from K. We then interpret 0 as false and all other
semiring values as nuances of true that provide additional information, depending on the
semiring: For example, the Boolean semiring B = ({0, 1},∨,∧, 0, 1) corresponds to Boolean
semantics, the Viterbi-semiring V = ([0, 1],max, ·, 0, 1) can model confidence scores, the
tropical semiring T = (R∞

+ ,min,+,∞, 0) is used for cost analysis, and min-max-semirings
(A,max,min, a, b) for a totally ordered set (A,<) can model different access levels. Most
importantly, semirings of polynomials, such as N[X], allow us to track certain literals by
mapping them to different indeterminates. The overall value of the formula is then a
polynomial that describes precisely what combinations of literals prove the truth of the
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formula. Semiring semantics has been studied for various logics [BOPP20, DG19, DG20,
DGNT21, GT17a], following the successful development of semiring provenance in database
theory and related fields (see e.g.[DMRT14, GP10, GKT07, GT17b, OP18, RMZ+20, Sen17]).
While semiring provenance analysis for database queries had largely been confined to positive
query languages such as conjunctive queries, positive relational algebra, and Datalog, the
generalisation to logics such as first-order logic FO and least fixed-point logic LFP – featuring
full negation and unrestricted interaction between least and greatest fixed points – poses
non-trivial mathematical challenges and requires new algebraic constructions. Specifically, it
has turned out that appropriate semirings for LFP should be absorptive and fully continuous
[DGNT21]. Fortunately, this is the case for most of the important application semirings
such as V,T or min-max-semirings, but not for the natural semiring N, or the general
provenance semirings of polynomials or formal power series, N[X] and N∞[[X]]. Instead, we
rely here on an absorptive version of N[X] (and N∞[[X]]), the semirings S∞[X] of generalized
absorptive polynomials, which we discuss in Section 4.1. These are the universal absorptive,
fully-continuous semirings, in the sense that every mapping h : X → K into an absorptive,
fully-continuous semiring K uniquely extends to a fully-continuous semiring homomorphism
h : S∞[X] → K that preserves LFP semantics. From valuations of fixed-point formulae in
such semirings we thus can derive detailed insights into why the formula holds – and by
applying this to the fixed-point definition of winning positions in Büchi games we obtain
compact descriptions of winning strategies, in particular of all positional strategies and all
absorption-dominant ones.

After an analysis of simple winning strategies in Büchi games, and a short introduction
to semiring semantics for fixed-point logic, we shall study the semiring valuations of the
particular LFP-formula win0(x) that defines the winning region for Player 0 in Büchi games.
Given that the objective of Player 0 is to ensure that the play hits the target set F infinitely
often, we may informally describe their winning region as the largest set Y of positions from
which they can enforce a (further) visit to Y ∩ F after k ≥ 1 moves. On the other side the
set of positions from which Player 0 can enforce a visit to a target set is the smallest set
of positions that either are already in the target set, or from which Player 0 can enforce
the play to come closer to it. Thus, the winning region of Player 0 can be described as a
greatest fixed point inside of which there is a least fixed point, and it is well-known that
this fixed-point alternation in the treatment of Büchi objectives cannot be avoided, see e.g.
[BW18].

We shall prove a Sum-of-Strategies Theorem, saying that for any position v in a Büchi
game, the valuation of the LFP-formula win0(v) in an absorptive, fully-continuous semiring
coincides with the sum of the valuations of all absorption-dominant winning strategies from
v. Besides being of theoretical interest, this result allows to study a number of interesting
questions concerning the available winning strategies in a given Büchi game:

Strategy tracking. Introducing indeterminates for all edges in a fixed Büchi game G, the
semiring value πstrat[[win0(v)]] for a position v is a polynomial whose monomials are concise
descriptions of all absorption-dominant strategies. From these monomials we can derive
whether Player 0 wins from v (if there are any monomials) and which edges are used by each
absorption-dominant strategy, and how often they appear in the strategy tree. In particular,
we can immediately identify and count positional strategies from the polynomial. Going
further, we can answer questions such as: can Player 0 still win if we remove edge e, or
several edges at once? Can they still win if edge e may only be used finitely often in each
play?
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Repairing a game. Instead of analysing strategies in a fixed game, we may also reason
about modifications or synthesis of (parts of) the game. For example, assuming Player 0
loses from v, what are minimal modifications to the game that would let Player 0 win from v?
To answer such questions we have to take into account also negative information (i.e., absent
edges in the graph), so as to find a minimal repair consisting of both moves to delete and
moves to add. Algebraically, this requires to extend our semirings by dual-indeterminates,
which leads to quotient semirings S∞[X,X] by a construction that has been used before in
[GT17a, XZAT18, DGNT21] to deal with semiring semantics for negation. We illustrate
with the example of minimal repairs that we can indeed derive the desired information from
valuations in such semirings.

Cost computation. A typical application of semiring provenance in databases is cost
analysis: assuming that atomic facts are not for free but come with a cost (a non-negative real
number), then the minimal cost of evaluating a query is described by a provenance valuation
in the tropical semiring T = (R∞

+ ,min,+,∞, 0). In a game, we may ask the analogous
question of what is the minimal cost of a winning strategy assuming that moves come with
a cost. For reachability and safety games that admit only finite plays, such an analysis
works in a reasonably straightforward way by means of an appropriate sum-of-strategies
theorem [GT20] (which is much simpler than the one for Büchi games). However, as we
shall show, this does not generalize in a nice way to Büchi games, and this seems to be a
general limitation of the method of semiring valuations.

2. Büchi Games and Strategies

A Büchi game is given by a tuple G = (V, V0, V1, E, F ) where V is a set of positions (here
assumed to be finite), with a disjoint decomposition V = V0∪̇V1 into positions of Player 0
and positions of Player 1. The relation E ⊆ V × V specifies the possible moves, and the
target set F ⊆ V describes the winning condition. We denote the set of immediate successors
of a position v by vE := {w | vw ∈ E} and require that vE ≠ ∅ for all v. A play from an
initial position v0 is an infinite path v0v1v2 . . . through G where the successor vi+1 ∈ viE is
chosen by Player 0 if vi ∈ V0 and by Player 1 if v1 ∈ V1. A play v0v1v2 . . . is won by Player 0
if vi ∈ F for infinitely many i < ω, otherwise it is won by Player 1. The winning region of
Player σ is the set of those positions v ∈ V such that Player σ has a winning strategy from
v, i.e. a strategy that guarantees them a win, no matter what the opponent does.

A strategy for Player σ in G = (V, V0, V1, E, F ) can be represented in different ways, for
instance as a function f : V ∗Vσ → V that assigns a next position to each partial play ending
in a position of Player σ, or simply f : Vσ → V if the strategy is positional. Here we follow
an alternative approach and represent strategies as trees, comprised of all plays that are
consistent with the strategy (see, e.g., [GT20]). For simplicity, we only consider strategies of
Player 0, so unless mentioned otherwise, strategy always refers to a strategy for Player 0.

Definition 2.1. Given a Büchi game G = (V, V0, V1, E, F ), the tree unraveling from v0 is
the tree T(G, v0) whose nodes are all finite paths ρ from v0 in G and whose edges are ρ→ ρv
for v ∈ V . We often denote a node of T(G, v0) as ρv to indicate a finite path ending in v ∈ V .
We write |ρ| for the length of ρ and ρ ⊑ ρ′ if ρ is a (not necessarily strict) prefix of ρ′.

Strategies can then be defined as subtrees of the tree unraveling, which allows for a more
visual way to reason about strategies. An important detail is that the strategy tree only
contains positions (and thus choices for these positions) that are reachable when following
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Figure 1. Running example of a Büchi game and a winning strategy.

the strategy. Moreover, we only consider finite Büchi games and hence the tree unraveling
and all strategies are finitely branching.

Definition 2.2. A strategy S (of Player 0) from v0 in G is a subtree of T(G, v0) induced by
a node set W satisfying the following conditions:

• if ρv ∈W , then also ρ ∈W (prefix closure);
• if ρv ∈W and v ∈ V0, then there is a unique v′ ∈ vE with ρvv′ ∈W (unique choice);
• if ρv ∈W and v ∈ V1, then ρvv

′ ∈W for all v′ ∈ vE (all moves of the opponent).

The strategy is winning if all plays contained in S are winning.
We commonly write ρ ∈ S instead of ρ ∈ W , and we often refer to paths of the form

ρv ∈ S as occurrences of v in S. When we depict strategies graphically, we represent finite
paths ρv just by their last position v to ease readability (notice that in the tree unravelling ρ
can be reconstructed from v by following the path to the root). See Fig. 1b for an example.
For v ∈ V0, we further write S(ρv) = w if ρvw is the (unique) successor of ρv in S. If S is
positional, we may also write S(v) to denote the unique successor of v chosen by S. We
write StratG(v) and WinStratG(v) to denote the set of all (winning) strategies of Player 0
from position v ∈ G, and we drop G if the game is clear from the context.

Example 2.3. An example of a Büchi game is depicted in Fig. 1. Player 0 has essentially
three different positional winning strategies from v, by either choosing edge d, or edges
e, h,m or f,m. Notice that for the first strategy, we did not specify moves for all positions in
V0 as these positions cannot be reached when edge d is played; this is the main reason why
we represent strategies as trees. Figure 1b depicts such a tree representation of a strategy.
This strategy is a typical example of a winning strategy that is not positional, but still
minimal if we take edge multiplicities (see Definition 3.1) into account. ⌟
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3. Strategies with Minimal Effort

La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter, mais
lorsqu’il n’y a plus rien à retirer.1 — Antoine de Saint-Exupéry

As a measure for the complexity or effort of a strategy, we consider the set of edges a strategy
S uses and how often each of these edges appears in the strategy tree. Under this measure,
the simplest strategies are the ones that do not play redundant edges – hence no moves are
left to take away.

Definition 3.1. Given an edge e = vw ∈ E in a Büchi game G and a strategy S in G, we
denote by #e(S) = |{ρv ∈ S | ρv → ρvw is an edge in S}| ∈ N ∪ {∞} the number of times
(possibly infinite) the edge e occurs in S. With each strategy S we associate its edge profile,
the vector #E(S) = (#e(S))e∈E .

Example 3.2. Consider the following Büchi game:

v w
a cb

Player 0 wins by first looping n times at position v (for any fixed n ∈ N) and then moving
to w, corresponding to the edge profile (n, 1,∞). Clearly, looping at v is a redundant move,
so we regard the strategy with n = 0 as the simplest one (that wins with the least effort). ⌟

To formalize the intuition of redundant moves, we define an order ⪰ on strategies called
absorption. This is defined in such a way that the ⪰-maximal strategies are the simplest
ones that avoid redundant moves whenever possible.

Definition 3.3. Let S1,S2 be two strategies in a Büchi game G = (V, V0, V1, E, F ). We say
that S1 absorbs S2, denoted S1 ⪰ S2, if #e(S1) ≤ #e(S2) for all edges e ∈ E. If additionally
#e(S1) < #e(S2) for some e ∈ E, we say that S1 strictly absorbs S2, denoted S1 ≻ S2. They
are absorption-equivalent, denoted S1 ≡ S2, if both S1 ⪰ S2 and S2 ⪰ S1.

A strategy S ∈ Strat(v) is absorption-dominant from position v, if there is no strategy
S ′ ∈ Strat(v) with S ′ ≻ S. It is further strictly absorption-dominant, if there is no other
strategy S ′ ∈ Strat(v) with S ′ ⪰ S, so no other strategy is absorption-equivalent to S.

Notice that absorption is simply the inverse pointwise order on the edge profiles. In
particular, S1 ≡ S2 if, and only if, #E(S1) = #E(S2). We next aim at understanding
the relation between (strictly) absorption-dominant strategies and the standard notion of
positional strategies. As a starter, we show that absorption-dominant strategies are not
necessarily positional (cf. [GT20] for a similar example).

Example 3.4. Consider the strategy S as depicted in Fig. 1b. It is not positional, as the
choice for position v′ is not unique (both e and f occur in S). It is, however, absorption-
dominant. As there are two paths to v′, every strategy must either use e or f twice, or use
both edges. If e (or f) is used twice, then the strategy cannot absorb S, and one can verify
that S absorbs all strategies using both e and f .

It is not strictly absorption-dominant, as we obtain an absorption-equivalent strategy by
switching the two branches in the depiction of S, so that e is used after c, and f after b. ⌟

1Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take
away.
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Figure 2. Venn diagram depicting various classes of winning strategies.

Strategies such as the one in Fig. 1b are not positional, but satisfy the weaker property
that within each play, the strategy makes a unique decision for each position v ∈ V0. This
notion of strategies has been introduced as persistent strategies in [MT02] in the context of
LTL on game graphs and has been further studied in [Dup03]. Persistent strategies have
also been called weakly positional in [GT20].

We say that a strategy plays positionally from a position v ∈ V0 if the strategy makes
a unique choice at position v (not depending on the history of the play). A strategy that
plays positionally from all positions in V0 is positional. With this notation, we now clarify
the relation between the different notions of strategies; a summary is shown in Fig. 2. We
first observe that if a strategy S does not play positionally from v, we can always obtain a
strategy S ′ with S ′ ⪰ S by swapping the choices at v, which leads to:

Proposition 3.5. Strictly absorption-dominant strategies coincide with positional strategies.

Proof. Let S ∈ StratG(v) be a strategy from v. First assume towards a contradiction that
S is positional but not strictly absorption-dominant. That is, there is a different strategy
S ′ ∈ Strat(v) with S ′ ⪰ S. Since S ′ is different from S, there is a position w and a path ρw
occurring in both strategies for which the strategies differ, i.e., we have w1 = S(ρw) and
w2 = S ′(ρw) with w1 ≠ w2. Since S is positional, the edge ww2 does not occur in S. Hence
it occurs strictly more often in S ′, contradicting the assumption S ′ ⪰ S.

We prove the other direction by contraposition. Let S be non-positional, so there is
a position w and two paths ρw and ρ′w such that S(ρw) ̸= S(ρ′w). Let Sρw and Sρ′w be
the substrategies of S from ρw and ρ′w, respectively. First assume that ρ ⊑ ρ′. We then
consider the strategy S ′ that behaves like S, but switches to Sρ′w at ρw. As every edge
occurring in S ′ also occurs in S, we have S ′ ⪰ S and S is not strictly absorption-dominant.
The case ρ′ ⊑ ρ is symmetric. If, on the other hand, ρ and ρ′ are incomparable nodes in S,
we consider the strategy S ′ that behaves like S, but plays Sρ′w from ρw and Sρw from ρ′w,
swapping the two substrategies. Then S ′ ≡ S, so S is not strictly absorption-dominant.

We next establish the relation to persistent strategies. To this end, we first show under
which circumstances absorption-dominant strategies must make unique choices. Our proof
needs the following combinatorial observation.

Lemma 3.6. Let v ∈ G be a position. There are only finitely many absorption-dominant
strategies from v up to absorption-equivalence.

Proof. Consider the pointwise order on edge profiles induced by the standard order on
N ∪ {∞}. By definition, a strategy S is absorption-dominant from v if, and only if, its edge
profile #E(S) is minimal among all strategies from v (and absorption-equivalent strategies
have the same edge profile). By a simple combinatorial fact known as Dickson’s lemma,
every set of edge profiles contains only finitely many minimal elements.
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Proposition 3.7. Let S ∈ WinStratG(v) be absorption-dominant from v, and let w ∈ V0 be
a position. If w occurs infinitely often in S, then S plays positionally from w.

Proof. Consider the infinitely many substrategies at occurrences of w in S. By Lemma 3.6,
there is one such substrategy Sw such that infinitely many of the substrategies are absorption-
equivalent to Sw. This means that every edge occurring in Sw also occurs in infinitely many
substrategies and hence infinitely often in the full strategy S. Notice that Sw is winning from
w, as it is a substrategy of the winning strategy S. Consider the subgame of G containing
only edges occurring in Sw. Clearly, Player 0 wins from w (using Sw) and by positional
determinacy, there is thus a positional winning strategy Spos from w using only edges that
occur in Sw and hence infinitely often in S.

Now consider the strategy S ′ ∈ WinStratG(v) that behaves like S, but always uses Spos

from w. Then S ′ ⪰ S by construction of Spos. Further, Spos is positional and makes a
unique choice Spos(w). If S would not play positionally from w, then there would be some
path ρw such that S(ρw) = w′ ̸= Spos(w). But then the edge ww′ never occurs in S ′, so
S ′ ≻ S and S would not be absorption-dominant.

With this important insight, we can deduce that the absorption-dominant winning
strategies (from some position v) are a (strict) subset of the persistent strategies: An
absorption-dominant strategy must play positionally from positions that occur infinitely
often; repetitions of positions that occur finitely often are always redundant.

Corollary 3.8. Every absorption-dominant winning strategy in G is persistent.

Proof. Let S ∈ WinStratG(v) be absorption-dominant from v. Assume towards a contra-
diction that S is not persistent, so there is a position w and a play of the form ρ1wρ2wρ3
such that S makes different decisions at w, say S(ρ1w) = w1 and S(ρ1wρ2w) = w2 with
w1 ̸= w2. By Proposition 3.7, w can only occur finitely often in S. Hence the edge ww1

also occurs finitely often, say n times. Let S ′
w be the substrategy of S from ρ1wρ2w. Now

consider the strategy S ′ ∈ WinStratG(v) that behaves like S, but switches to S ′
w at ρ1w. By

construction, S ′ uses each edge at most as often as S. Moreover, one occurrence of the edge
ww1 is removed, so this edge occurs at most n− 1 times in S ′. Hence S ′ ≻ S, contradicting
the absorption-dominance of S.
Example 3.9. For strictness, consider the following game (a modified part of Fig. 1a):

v
a

b

#a,b(S1) = (2, 0),
#a,b(S2) = (0,∞),
#a,b(S3) = (1,∞).

Due to the self-loop b, only the positional strategies S1 (always take a) and S2 (always take b)
are absorption-dominant from v. The strategy S3 that, depending on Player 1’s choice, either
takes edge a or loops indefinitely using edge b is persistent, but not absorption-dominant: it
is strictly absorbed by S2. ⌟

As a consequence of Corollary 3.8, all moves after the first repeated position are
determined by persistence. We can thus represent absorption-dominant strategies in a
compact way and strengthen Lemma 3.6 as follows.

Corollary 3.10. Let G be a game with n = |V | positions. Every winning strategy S ∈
WinStratG(v) that is absorption-dominant from v can be uniquely represented by a subtree
of the tree unraveling of height at most n. In particular, the number of absorption-dominant
winning strategies is finite.
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4. A Whirlwind Tour of Semiring Semantics

This section gives an overview on semiring semantics for fixed-point logics, with a focus on
the semirings relevant for the case study. For a complete account, we refer to [DGNT21].

4.1. Semirings. Semirings are algebraic structures with two binary operations, usually
denoted + and ·, which we use to interpret the logical connectives ∨ and ∧. While semirings
are very general structures, we make additional assumptions to ensure well-defined and
meaningful semiring semantics for logics with fixed-point operators.

Definition 4.1. A commutative semiring is an algebraic structure (K,+, ·, 0, 1), with
0 ̸= 1, such that (K,+, 0) and (K, ·, 1) are commutative monoids, · distributes over +, and
0 · a = a · 0 = 0. It is idempotent if a+ a = a for all a ∈ K.

All semirings we consider are commutative, so we omit commutative in the following.
Towards fixed-point logic, we compute least and greatest fixed points with respect to the
natural order ≤K (see below) and to ensure that they exist, we require ≤K to be a complete
lattice (in fact, suprema and infima of chains would suffice, but in idempotent semirings this
is equivalent). We additionally impose a natural continuity requirement which is crucial to
our proofs, but does not seem to be a strong restriction in practice (we are not aware of any
natural complete-lattice semirings that are not continuous). Regarding notation, a chain is
a totally ordered set C ⊆ K and we write a ◦ C = {a ◦ c | c ∈ C} for a ∈ K.

Definition 4.2. In an idempotent semiring (K,+, ·, 0, 1), the natural order ≤K is the partial
order defined by a ≤K b⇔ a+ b = b. We say that K is fully continuous if ≤K is a complete
lattice (with supremum

⊔
and infimum

d
) and for all non-empty chains C ⊆ K, elements

a ∈ K and ◦ ∈ {+, ·},⊔
(a ◦ C) = a ◦

⊔
C, and

l
(a ◦ C) = a ◦

l
C.

A semiring homomorphism h : K1 → K2 on fully-continuous semirings is fully continuous if
h(
⊔
C) =

⊔
h(C) and h(

d
C) =

d
h(C) for all non-empty chains C ⊆ K1.

By the Knaster-Tarski theorem, every ≤K-monotone function f : K → K on a fully-
continuous semiring has a least fixed point lfp(f) and a greatest fixed point gfp(f) in K,
and this suffices to guarantee well-defined semiring semantics of fixed-point logics. However,
from a provenance perspective we further want this semantics to be meaningful in the sense
that the value of a formula provides insights into why the formula holds. It turns out that
this is the case if we additionally require the semiring to be absorptive (see [DGNT21]).

Definition 4.3. A semiring K is absorptive if a+ ab = a for all a, b ∈ K.

We remark that absorption is equivalent to K being 0-closed or bounded [Moh02], that
is, 1+a = 1. If K is idempotent, then absorption is further equivalent to multiplication being
decreasing, that is, a · b ≤K a, b. Clearly, every absorptive semiring is idempotent and thus
partially ordered by ≤K, with 1 as top element. If we additionally assume full continuity, we
can extend any absorptive semiring by an infinitary power operation a∞ =

d
n∈N a

n with
natural properties such as a · a∞ = a∞, (ab)∞ = a∞b∞ and (a+ b)∞ = a∞ + b∞.

Example 4.4. Here is a short, non-exhaustive list of semirings used in provenance analysis
of databases and logics [GKT07, GT17b, GT20].
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• The Boolean semiring B = ({0,1},∨,∧,0,1) is the standard habitat of logical truth. It is
absorptive and (trivially) fully continuous.

• N = (N,+, ·, 0, 1) is used for counting evaluation strategies for a logical statement. It is
not absorptive and hence not well suited for fixed-point logics.

• The Viterbi semiring V = ([0, 1],max, ·, 0, 1) is used to compute confidence scores of logical
statements. It is isomorphic to the tropical semiring T = (R∞

+ ,min,+,∞, 0) used for
measuring the cost of evaluation strategies. Both are absorptive and fully continuous.

• The min-max semiring (A,max,min, a, b) on a totally ordered set (A,≤) with least and
greatest elements a and b can be used to model access privileges. It is absorptive and fully
continuous. ⌟

From now on, all semirings we consider are commutative, absorptive and fully continuous.
Besides the application semirings listed above, we are particularly interested in universal
semirings of polynomials to represent abstract information. We can then use fully-continuous
homomorphisms to specialize the computed information to application semirings as needed,
as these homomorphisms preserve fixed points. The common examples of semirings of
polynomials N[X] and formal power series N∞[[X]], as used for provenance analysis of FO
and Datalog in [GKT07, GT17a], are not absorptive and hence not well-suited for fixed-point
logic.

Instead, we rely on semirings of (generalized2) absorptive polynomials (cf. [DGNT21]).
Essentially, an absorptive polynomial such as ab3 + c∞ is a sum of monomials over a finite
set of variables X, but without coefficients and with exponents from N ∪ {∞}. Monomial
multiplication is defined as usual by adding exponents (with n+∞ = ∞). The key ingredient
is absorption among monomials: we say that a monomial m1 absorbs m2 (m1 ⪰ m2), if all
its exponents are smaller (or equal). Formally, m1 ⪰ m2 if m1(x) ≤ m2(x) for all x ∈ X,
where m1(x) denotes the exponent of x in m1. For example, ab2 ⪰ a∞b2 and a ⪰ ab, but
a2b and ab2 are incomparable. In an absorptive polynomial, we omit all monomials that
would be absorbed, so absorptive polynomials are precisely the ⪰-antichains of monomials.
Consequently, addition and multiplication are defined as usual, but afterwards we only keep
the ⪰-maximal monomials. For example, (ab2 + a2b) · a∞ = a∞b2 + a∞b = a∞b.

Definition 4.5. We write S∞[X] for the semiring of absorptive polynomials over the finite
variable set X. Its elements are the ⪰-antichains of monomials (written as sums) with the
operations described above. The neutral elements are the empty polynomial (denoted by 0)
and the single monomial 1 (with all zero exponents).

This defines an absorptive, fully-continuous semiring [DGNT21]. In fact, S∞[X] is the
most general such semiring:

Theorem 4.6 (Universal property, [DGNT21]). Every mapping h : X → K into an absorp-
tive, fully-continuous semiring K uniquely extends to a fully-continuous semiring homomor-
phism h : S∞[X] → K (by means of polynomial evaluation).

4.2. Logic. We consider here the fixed-point logic LFP that extends first-order logic FO
by least and greatest fixed-point formulae of the form ψ(y) = [lfpRx. φ(R,x)](y) and
ψ(y) = [gfpRx. φ(R,x)](y). Here, R is a relation symbol occurring only positively in φ
and x,y are variable tuples of matching arity. Given a (Boolean) model A and a tuple a of

2The definition we use here generalizes the one in [DMRT14] by allowing ∞ as exponent.
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elements of A, the formula ψ(a) holds in A, denoted A |= ψ(a), if a is contained in the least
(or greatest) fixed point of the operator Fφ : R 7→ {a | A |= φ(R, a)} that maps a relation R
to the relation consisting of those tuples for which φ holds. For more background and a
precise definition, we refer to [GKL+07].

In order to generalize Boolean semantics to semiring semantics, we first adapt the notion
of a model A. Instead of determining for each literal whether it is true or false in A, we
assign to each literal a semiring value, interpreting 0 as false and all other values as nuances
of true. Special care is required to ensure that the assignment is consistent with respect to
opposing literals (this is not always necessary, but often desirable). In the following, let K
be a semiring, A a finite universe and τ a relational signature (we drop A and τ if clear from
the context). We denote the set of (instantiated) literals as

LitA,τ = {Ra,¬Ra | R ∈ τ of arity k,a ∈ Ak} ∪ {a = b,a ̸= b | a,b ∈ Ak}.

Given a literal α, we write ¬α for the opposing literal (identifying ¬¬α and α). The role of
the Boolean model A is then replaced by a semiring interpretation π that assigns semiring
values to all literals.

Definition 4.7. Let K be a semiring. A K-interpretation (over finite A and τ) is an
assignment π : LitA,τ → K that maps true (in)equalities to 1 and false (in)equalities to 0.
We say that π is model-defining, if for each literal α, exactly one of π(α) and π(¬α) is 0.

For Büchi games, we will always use the signature τ = {E,F, V0, V1}, where E is a binary
and F, V0, V1 are unary relation symbols. We can then view a game G = (V, V0, V1, E, F ) as
a τ -structure. Notice that we do not distinguish between the edge relation E of G and the
relation symbol E; it will always be clear from the context what we refer to. The set of
instantiated literals LitV,τ then contains, e.g., Ev1v2 and ¬Fv1, where v1, v2 ∈ G.

We lift K-interpretations π from literals to LFP-formulae in negation normal form
(nnf), resulting in a semiring value π[[ψ]], by interpreting the logical connectives as semiring
operations. For fixed-point formulae, we consider the induced operator Fφ analogous to the

Boolean case, but acting on functions g : Ak → K instead of relations R ⊆ Ak (which can be
seen as functions R : Ak → B, justifying our generalisation). We extend the natural order
to such functions by pointwise comparison. More formally, given a K-interpretation π over
signature τ , we denote by π[R 7→ g] the K-interpretation over τ ∪ {R} obtained from π by
adding values g(a) for the instantiated atoms Ra. The analogue of the Boolean operator Fφ

is then the operator Fφ
π that maps a function g : Ak → K to the function

Fφ
π (g) : a 7→ π[R 7→ g][[φ(R,a)]].

With this in mind, we define the following natural generalization of Boolean semantics.

Definition 4.8. A K-interpretation π : LitA(τ) → K (for finite A and τ) in a fully-continuous
semiring K extends to a K-valuation π : LFP(τ) → K by mapping an LFP-sentence ψ(a) in
negation normal form to a value π[[ψ]] using the rules

π[[ψ ∨ φ]] := π[[ψ]] + π[[φ]], π[[∃xψ(x)]] :=
∑

a∈A π[[φ(a)]], π[[¬ψ]] := π[[nnf(¬ψ)]],
π[[ψ ∧ φ]] := π[[ψ]] · π[[φ]], π[[∀xψ(x)]] :=

∏
a∈A π[[φ(a)]],

and, for fixed-point formulae,

π[[[lfpRx.φ(R,x)](a)]] := lfp(Fφ
π )(a), π[[[gfpRx.φ(R,x)](a)]] := gfp(Fφ

π )(a).
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Interpretation πstrat πrepair πtarget
& application strategy tracking reverse analysis of moves target synthesis

Semiring S∞[X] S∞[X,X] or PosBool[X,X] PosBool[X,X]
π(Evw) Xvw/0 Xvw (or 1/0) 1/0

π(¬Evw) 1/0 Xvw (or 1/0) 1/0
π(Fv) 1/0 1/0 Xv

π(¬Fv) 1/0 1/0 Xv

other literals 1/0 1/0 1/0

Figure 3. Semiring interpretations used in this paper (the notation a/0
indicates the value a if the literal is true, and 0 if it is false in G).

An important property of the resulting semantics is that it is preserved by fully-
continuous semiring homomorphisms, in particular by polynomial evaluation in S∞[X] due
to Theorem 4.6 (but not by polynomial evaluation of N[X] or formal power series!).

Theorem 4.9 (Fundamental property, [DGNT21]). Let h : K1 → K2 be a fully-continuous
semiring homomorphism. Then for every K1-interpretation π, the mapping h ◦ π is a
K2-interpretation and h(π[[φ]]) = (h ◦ π)[[φ]], for every φ ∈ LFP.

LitA(τ)

K1 K2

LFP

K1 K2

=⇒π h ◦ π

h

π h ◦ π

h

5. Computing Strategies with Semiring Semantics

This section connects the previous sections on semiring semantics and absorption-dominant
strategies. We focus on the formula for the winning region in a Büchi game and show that
its value under semiring semantics can be understood in terms of (absorption-dominant)
winning strategies.

5.1. The Semiring Interpretation. We want to use semiring semantics to analyze moves
in winning strategies. For this reason, we label edges with indeterminates X (cf. Fig. 1a)
and use an S∞[X]-interpretation πstrat to track moves (i.e., edge literals Evw for positions
v, w) via their indeterminates. We assume the game graph to be fixed and do not wish to
track information about the target set F or the active player at a certain node, hence we
simply map all other literals over τ = {E,F, V0, V1}, such as Fv, V0v and ¬Evw, to 0 or 1,
depending on whether they are true or false in the fixed game. The resulting interpretation
is almost Boolean and hence behaves very similar to the original game, except that we
remember which edges are used in the evaluation of a formula.

Definition 5.1. Let G = (V, V0, V1, E, F ) be a Büchi game and let X = {Xvw | vw ∈ E} be
a set of indeterminates for all edges. We define the S∞[X]-interpretation πstrat : LitV,τ →
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S∞[X] as follows (depending on G):

πstrat(Evw) = Xvw for all edges vw ∈ E,

πstrat(α) =

{
1, if G |= α,

0, if G ̸|= α,
for all other literals α ∈ LitV,τ .

For the applications in Section 6, we may consider other interpretations which are defined
in a similar way, but also track negative edge literals or the target set F . An overview is
given in Fig. 3. In this section, we always work with πstrat.

5.2. The Formula. It is well known that the winning region (of Player 0) in a Büchi game
is definable in fixed-point logic. Intuitively, the winning region is the largest set Y such that
from each position in Y , Player 0 can enforce a visit to Y ∩ F (after at least one move). In
LFP, we can express the winning region as follows (see, e.g., [CGLP15, Wal02]):

win0(x) :=
[
gfpY y. [lfpZz. φ(Y, Z, z)](y)

]
(x),

where

φ(Y,Z, z) :=
(
Fz ∧ ((V0z ∧ ∃u(Ezu ∧ Y u)) ∨ (V1z ∧ ∀u(Ezu→ Y u)))

)
∨
(
¬Fz ∧ ((V0z ∧ ∃u(Ezu ∧ Zu)) ∨ (V1z ∧ ∀u(Ezu→ Zu)))

)
.

Given a K-interpretation π for a Büchi game G = (V, V0, V1, E, F ), semiring semantics
of the above formula induces3 the following fixed-point computation. To simplify the
presentation, we introduce two families of variables, Y = (Yv)v∈V and Z = (Zv)v∈V that
take values in K. We can then express the resulting semiring valuation as π[[win0(v)]] = Y ∗

v

where Y∗ = (Y ∗
v )v∈V is the greatest solution to the equation system

Y = Z∗(Y)

where, in turn, Z∗(Y) is the least solution, given values Y = (Yv)v∈V , to the equation system
consisting of the following equation for all v ∈ V :

Zv = π(Fv) ·
(
(π(V0v) ·

∑
w∈V

(π(Evw) · Yw)) + (π(V1v) ·
∏
w∈V

(π(¬Evw) + π(Evw) · Yw))
)

+ π(¬Fv) ·
(
(π(V0v) ·

∑
w∈V

(π(Evw) · Zw)) + (π(V1v) ·
∏
w∈V

(π(¬Evw) + π(Evw) · Zw))
)
.

For most of this paper, we use πstrat to track only moves of winning strategies. As πstrat
maps most of the literals to 0 or 1, we can simplify the equations depending on v:

v ∈ F v /∈ F

v ∈ V0 Zv =
∑
w∈vE

π(Evw) · Yw Zv =
∑
w∈vE

π(Evw) · Zw

v ∈ V1 Zv =
∏

w∈vE
π(Evw) · Yw Zv =

∏
w∈vE

π(Evw) · Zw

3Here we first translate Ezu → Y u to the formula ¬Ezu ∨ (Ezu ∧ Y u) in negation normal form.
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A good way to think about (and compute) the least and greatest solutions is the
fixed-point iteration. The idea is to start with each Zv set to the least element 0 of the
semiring, then apply the above equations (i.e., the induced operator Fφ

πstrat) to compute a
next, larger semiring value and repeat this process until a fixed-point is reached (notice that
the iteration can also be infinite, the fixed-point is then the supremum or infimum).

Example 5.2. Recall the simple game from Example 3.2
(

v w

a cb )
.

Using the interpretation πstrat corresponding to the edge labels, we obtain the following
fixed-point iteration. We write the tuples Y and Z as vectors (Yv Yw)

T and (Zv Zw)
T .

Y :

Z :

(
1
1

)
(
0
0

) (
0
c

) (
bc
c

)
(
bc
c

)
(
0
0

) (
0
c2

) (
bc2

c2

)
(
bc2

c2

)

. . .

(
bcn

cn

)

. . .
Fφ Fφ Fφ Fφ

We obtain the overall result πstrat[[win0(v)]] = Y ∗
v =

d
n bc

n = bc∞ corresponding to the unique
absorption-dominant strategy using edge b once and c infinitely often (cf. Example 3.2). ⌟

5.3. Connection to Strategies. By mapping edges to semiring values, we can track edges
through the fixed-point computation. In Example 5.2, the resulting semiring value revealed
how often each edge is used in the unique absorption-dominant winning strategy. We now
generalize this observation. For simplicity, we only consider K-interpretations π that are
edge tracking for a given game G. That is, they may assign arbitrary values to positive edge
literals Evw, but all other literals are mapped to 0 or 1 in accordance with G. To make the
connection to strategies explicit, we first define semiring values for strategies based on the
appearance of edges.

Definition 5.3. Let S be a strategy in a Büchi game G = (V, V0, V1, E, F ). Let K be an
absorptive, fully-continuous semiring and π an edge-tracking K-interpretation on G. The
K-value of S is the product of the values for all edges appearing in S. Formally,

π[[S]] :=
∏

vw∈E
π(Evw)#vw(S),

where infinite exponents are interpreted by the infinitary power operation of the semiring.

The semiring value of win0 can then be expressed as the sum over the values of all
winning strategies. A direct proof is not completely straightforward, as fixed-point iterations
and strategy trees can both be infinite (even if G is finite). Instead, we make use of a similar
sum-of-strategies result for model-checking games for LFP (see [DGNT21]).

Theorem 5.4 (Sum of Strategies). Let G be a Büchi game and v a position in G. Let K be
an absorptive, fully-continuous semiring and π an edge-tracking K-interpretation. Then,

π[[win0(v)]] =
∑{

π[[S]]
∣∣ S ∈ WinStratG(v) is absorption-dominant from v

}
.

It is in fact this central result that motivated the notion of absorption-dominant strategies.
However, as we have already discussed, these may also be interesting in their own right if
one is interested in minimal winning strategies.
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Example 5.5. For the edge-tracking interpretation πstrat induced by the edge labels in
Fig. 1a, we obtain

πstrat[[win0(v)]] = (abcd)∞ + abc e2h2(gkm)∞ + abc f2(gkm)∞ + abc efh(gkm)∞.

There are four monomials, corresponding to four equivalence classes of absorption-dominant
strategies. Each monomial reveals the edges that appear in the corresponding strategies,
so we see that the first three monomials belong to positional (and hence uniquely defined)
strategies. The last monomial belongs to the non-positional strategy shown in Fig. 1b (and
its switched version, see Example 3.4). The values of all other strategies are strictly absorbed
by one of these monomials. ⌟

5.4. Proof of the Sum-of-Strategies Theorem. To prove Theorem 5.4, we show that it
follows from a more general sum-of-strategies theorem [DGNT21, Thm. 23]4. The general
theorem expresses the semiring semantics of arbitrary LFP-formula by means of winning
strategies in the corresponding model-checking game; this does not immediately apply to
Büchi games, but it is not difficult to see (and we explain below) that the model-checking
game for win0(v) on a Büchi game G has the same structure as the original game graph G.

Towards the proof, we first sketch the model-checking game MC(G, v) of win0(v) on a
Büchi game G. We then briefly recapitulate how semiring values of winning strategies are
defined in [DGNT21], and we show that we can simplify MC(G, v) without changing these
values so that it becomes almost identical to G. This allows us to derive Theorem 5.4 from
the general sum-of-strategies result on MC(G, v).

Model-Checking Game. In general, the model-checking game of an LFP-formula ψ in a
structure A is a parity game whose positions are pairs of a subformula φ(x) of ψ and an
instantiation of the free variables, conveniently written as φ(a) for some tuple a ⊆ A. The
positions belong either to Verifier (who wants to prove A |= φ(a)) or to Falsifier (who wants
to prove A ̸|= φ(a)). Edges allow the current player to move from a position φ(a) to a direct
subformula of φ(a), or from fixed-point literals (such as Y u in our case) back to the entire
fixed-point formula. Terminal positions arise from literals φ(a) and are won by Verifier
precisely if A |= φ(a). The model-checking game we are interested in is shown in Fig. 4, so
we refrain from a complete definition, see e.g. [AG11, Chap. 4] for more background.

Here we are only concerned with the model-checking game of win0(v) in a Büchi game
G, and we denote this game as MC(G, v). Since win0(v) only has a single alternation of fixed-
point operators, MC(G, v) has only two priorities and can thus be equivalently represented
as a Büchi game (with Verifier as Player 0). Recall the formula from Section 5.2 (split into
subformulae to ease referencing and with implication already rewritten):

win0(x) :=
[
gfpY y. [lfpZz. φ(Y, Z, z)](y)

]
(x),

where

φ(z) := (Fz ∧ ϑ1(z)) ∨ (¬Fz ∧ ϑ2(z)),

ϑ1(z) :=
(
(V0z ∧ ∃u(Ezu ∧ Y u)) ∨ (V1z ∧ ∀u(¬Ezu ∨ (Ezu ∧ Y u)))

)
,

ϑ2(z) :=
(
(V0z ∧ ∃u(Ezu ∧ Zu)) ∨ (V1z ∧ ∀u(¬Ezu ∨ (Ezu ∧ Zu)))

)
.

4A complete proof can be found in the full version [DGNT19, Section 6].
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Y v1 Zv1

Y vn Zvn

Y vi Zvi φ(vi)

Fvi ∧ ϑ1(vi) ϑ1(vi)

V0vi ∧ . . .

V1vi ∧ . . .

∃u . . .

. . .

. . .

. . .

Eviv1

Evivi

Evivn

∀u . . .
. . .

. . .

. . .

Eviv1

Evivi

Evivn

¬Fvi ∧ ϑ1(vi) ϑ2(vi)
analogous to ϑ1(vi),

but move to Zvj afterwards

Fvi

¬Fvi

V0vi

V1vi

Figure 4. Illustration of the model-checking game MC(G, vi) for a Büchi
game with positions V = {v1, . . . , vn}. Rounded nodes belong to Verifier,
rectangular nodes to Falsifier. Nodes without border are terminal positions
representing literals, dashed nodes are target positions.
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A depiction of the complete model-checking game MC(G, v) is shown in Fig. 4 (with
some unavoidable omissions due to space reasons).

Semiring Values for the Model-Checking Game. We define strategies for MC(G, v) as
we did for Büchi games, always taking the perspective of Verifier. To avoid confusion, we
use the letter M to denote strategies in the model-checking game, and S for strategies in G.
We say that a strategy M is winning if on each infinite play, target nodes (i.e., nodes of
the form Y v) occur infinitely often; we impose no restrictions on finite plays (which end in
literals). In the following, we only consider strategies for MC(G, v) that are winning.

Now consider literals, the terminal positions of the model-checking game. As in Defini-
tion 4.7, we write Lit (omitting V and τ) for the set of instantiated literals over the signature
of win0 and the set of positions of G. Given a K-interpretation π, it assigns to each literal
α ∈ Lit the value π(α). Following [DGNT21], we define the value of a winning strategy M
by counting literals.

Definition 5.6. Let π be a K-interpretation in an absorptive, fully-continuous semiring.
Let G be a Büchi game and M a winning strategy in MC(G, v). For a literal α ∈ Lit, we
write #α(M) ∈ N∪{∞} for the number of occurrences of α in M (represented as a strategy
tree). The K-value of M is

π[[M]] :=
∏

α∈Lit
π(α)#α(M).

Notice that for the Boolean interpretation π : Lit → B that maps all literals to truth
values according to G, we have π[[M]] ̸= 0 if, and only if, M is a winning strategy (in
the classical sense) in the standard Boolean model-checking game for win0(v) and G. By
assigning non-Boolean values for the literals, in particular indeterminates in S∞[X], we
can track how the literals affect the truth of win0(v). With this terminology, applying the
sum-of-strategies theorem in [DGNT21] to win0(v) gives:

Theorem 5.7. Let π be a K-interpretation into an absorptive, fully-continuous semiring.
Then π[[win0(v)]] =

∑
{π[[M]] | M is a winning strategy in MC(G, v)}.

In order to use this result in our context, we will show that the winning strategies M in
MC(G, v) correspond to winning strategies S in G. For edge-tracking interpretations π, only
the edge literals Evw are relevant and thus the corresponding strategies M and S have the
same K-value, so Theorem 5.7 will then imply Theorem 5.4.

From the Model-Checking Game to the Büchi Game. Let π be an edge-tracking
K-interpretation for G, so most of the literals are mapped to 0 or 1. We can then remove the
corresponding terminal positions in MC(G, v) and in some cases also their predecessors. For
instance, consider a position φ(a) in MC(G, v) from which Falsifier can move to a literal α
with π(α) = 0. Then every strategy M that visits φ(a) must also visit α, thus having value
π[[M]] = 0, so we can ignore this strategy for the sum in Theorem 5.7. Hence, replacing the
position φ(a) by its successor α does not change the sum. On the other hand, if π(α) = 1,
then visiting α does not affect the K-value of M and hence we can remove α. Similar
reasoning applies to positions of Verifier. Moreover, we can always skip over non-target
positions with a unique successor, as they neither affect gameplay nor the K-values of
strategies.

With these insights, we can simplify the model-checking game in Fig. 4 quite a bit. If,
say, vi ∈ F and vi ∈ V0, then the central part of the picture simplifies to:
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Y vi Zvi

. . .

. . .

Eviw1

Eviwk

Y w1

Y wk

Here, viE = {w1, . . . , wk} are the successors of vi in G, so Verifier’s moves from Zvi are only
those corresponding to actual edges of G. The other situations are similar, here is the case
vi /∈ F , vi ∈ V1:

Y vi Zvi

. . .

. . .

Eviw1

Eviwk

Y w1

Y wk

Zw1

Zwk

where again {w1, . . . , wk} are the successors of vi in G. Notice that Zvi belongs to Falsifier
(as a result of skipping several positions). In general, Zvi belongs to Verifier precisely if vi
belongs to Player 0 in G.

We can now identify the entire subgraph from Y vi up to the edge literals Eviwj (that
is, the gray rectangle) with the position vi in G, and we call this the gadget for vi. Indeed, if
vi ∈ V0 then Verifier chooses a successor w ∈ viE and moves to the corresponding gadget, in
analogy to Player 0 choosing a successor in G. Similarly, Falsifier chooses a successor if it is
Player 1’s turn in G.

What remains to discuss are the target positions. Each gadget has two entry points Y v
and Zv, and only Y v is a target position. Notice that when we move from a gadget for v
to a gadget for w, we use the entry point Y w if, and only if, v ∈ F (where F is the target
set of the original game G). Hence any play that visits infinitely many target positions Y w
also visits infinitely many gadgets for positions v ∈ F (the predecessors of w). We can thus
change the target set without affecting the winning strategies: Instead of the positions Y w,
we set the target set to {Zv | v ∈ F}. The positions Y w are then regular positions with
unique successors and can thus be removed. As an example, say we have vi ∈ F , w1 ∈ F
and wk /∈ F . The previous picture then becomes:

Zvi

. . .

. . .

Eviw1

Eviwk

Zw1

Zwk

Proof of Theorem 5.4. Let M̃C(G, v) be the game that results from MC(G, v) by applying

all of the above-mentioned simplifications. Hence M̃C(G, v) contains for each position v
a gadget with unique entry point Zv that belongs to Verifier exactly if v ∈ V0, and Zv
is a target position exactly if v ∈ F . Moreover, the gadget for v is directly connected to
the gadget for w if, and only if, the edge vw exists in G. It is now easy to see that every
winning strategy S in the original Büchi game G induces a unique winning strategy M in

M̃C(G, v): whenever S visits a position v, then M visits the gadget for v (via the unique
entry point Zv). Conversely, every winning strategy M uniquely induces a winning strategy
S (which moves to v when M enters the gadget for v), and we thus say that M and S are
corresponding winning strategies.
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Lemma 5.8. Let M be a winning strategy in M̃C(G, v). Let S be a winning strategy in G
so that M and S are corresponding strategies. Then, π[[M]] = π[[S]].

Proof. As we removed all other literals from MC(G, v), the only literals occurring in M are

edge literals of the form Evw, so π[[M]] =
∏

vw∈E π(Evw)
#Evw(M). An edge literal Evw

occurs in M whenever M transitions from the gadget for v to the gadget for w, and this
happens whenever the edge vw occurs in S. So π[[M]] =

∏
vw∈E π(Evw)

#vw(S) = π[[S]].

This closes the proof of the Sum-of-Strategies Theorem: since our modifications did not
affect the sum over all winning strategies, Theorem 5.7 implies

π[[win0(v)]]

=
∑

{π[[M]] | M is a winning strategy in MC(G, v)}

=
∑

{π[[M]] | M is a winning strategy in M̃C(G, v)}

=
∑

{π[[S]] | S corresponds to a winning strategy in M̃C(G, v)}

=
∑

{π[[S]] | S ∈ WinStratG(v)},

and restricting the sum to winning strategies S that are absorption-dominant from v does
not change the overall value.

6. Case Study: Applications of Semiring Semantics

We now have all of the necessary groundwork to consider applications of semiring semantics
for Büchi games. This section discusses what information the Sum-of-Strategies Theorem
provides about winning strategies, how semiring semantics helps to find minimal repairs and
why it is not well suited for cost computations.

6.1. Strategy Analysis. We begin with the question what information we can derive from
the Sum-of-Strategies Theorem. To this end, we fix a Büchi game G and focus on the
S∞[X]-interpretation πstrat with X = {Xuv | u, v ∈ G}. The values πstrat[[S]] are monomials
and we can read off the number of occurrences of each edge in S from the exponents, i.e., the
monomial is a representation of the edge profile #E(S). In particular, πstrat[[S1]] ⪰ πstrat[[S2]]
if, and only if, S1 ⪰ S2. The fact that absorptive polynomials are always finite [DGNT21] is
thus another way to see that the number of absorption-dominant strategies is finite.

What can we learn from the polynomial πstrat[[win0(v)]]? First, πstrat[[win0(v)]] ̸= 0 holds
if, and only if, Player 0 has a winning strategy from v. By Theorem 5.4, we can further
derive information about all absorption-dominant strategies. More precisely, we learn which
edges each absorption-dominant strategy uses and how often they appear in the strategy
tree. Knowing the edge profile immediately reveals whether the strategy is positional and
what the positional choices are. By counting monomials, we can thus count the positional
strategies, as well as the absorption-dominant strategies up to absorption-equivalence.

We can further answer questions such as: can Player 0 still win if we remove edge e?
This is the case if, and only if, the polynomial πstrat[[win0(v)]] contains a monomial without
the variable Xe (if there is a winning strategy without e, then there is also an absorption-
dominant strategy and hence a monomial without Xe). Going further, a more interesting
question is: can Player 0 still win if edge e may only be used finitely often in each play? The
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answer is not immediately obvious. Consider for example the strategy S in Fig. 1b. The
edge k occurs infinitely often in the strategy tree and we get πstrat[[S]] = abcefhg∞k∞m∞.
However, k is clearly played only once in each play consistent with S, whereas edge m is
played infinitely often. We cannot distinguish edges k and m just from πstrat[[S]], but we can
do so if we compute πstrat[[win0(w)]] for all positions w ∈ V , by the following criterion (notice
that all of these values are computed anyway for the fixed-point iteration).

Proposition 6.1. Let S ∈ WinStratG(v) be absorption-dominant from v, and let e = uw ∈ E
be an edge with #e(S) = ∞. Then there is a unique (positional) strategy Sw ∈ WinStratG(w)
such that πstrat[[Sw]] ⪰ πstrat[[S]]. Moreover, S admits a play in which e occurs infinitely often
if, and only if, e occurs in Sw.

Proof. Consider the strategy tree S and let ρw be an occurrence of w in S. By assumption,
w occurs infinitely often in S. But then, for all successors ρww′ of ρw, also w′ occurs
infinitely often in S. Indeed, either w ∈ V1 and every occurrence of w must be followed
by an occurrence of w′; or w ∈ V0 and S plays positionally from w by Proposition 3.7, so
again every occurrence of w is followed by an occurrence of w′ in S. By induction, it follows
that S plays positionally from w and from all positions occurring below ρw. In particular,
the substrategy Sw that S plays from ρw (and any other occurrence of w) is positional. As
a substrategy, we trivially have πstrat[[Sw]] ⪰ πstrat[[S]]. To see that Sw is unique with this
property, notice that a strategy S ′ ∈ StratG(w) deviating from Sw must play an edge which
does not occur in Sw and hence also not in S, so πstrat[[S ′]] ̸⪰ πstrat[[S]].

For the second statement, first assume that S admits a play vv1v2v3 . . . in which the
edge e = uw occurs infinitely often. Let vi = w be the first occurrence of w. Then the
remaining play vivi+1vi+2 . . . is consistent with Sw and hence e occurs (infinitely often) in
Sw. Conversely, assume that e occurs in Sw, so there is some ρ ∈ V ∗ such that wρuw ∈ Sw.
As Sw is positional, we can repeat ρuw to obtain the infinite play w(ρuw)ω consistent with
Sw. And since Sw is a substrategy of S, this induces an infinite play of the form ρ′w(ρuw)ω

in S which indeed uses the edge uw infinitely often.

Example 6.2. Consider the strategy S in Fig. 1b with πstrat[[S]] = abcefhg∞k∞m∞ and
the edge k from u to w. Since edge n does not occur in πstrat[[S]], the only winning
strategy Sw from w we need to consider is the strategy that always stays at w, with
πstrat[[Sw]] = m∞ ⪰ πstrat[[S]]. As k does not occur in Sw, we conclude that it occurs only
finitely often (and hence at most once) in each play consistent with S.

If, on the other hand, we consider edge m (which also leads to position w), we see that
m occurs in Sw and we can thus infer that S contains a play visiting m infinitely often. ⌟

Summarizing the results of this section, we see that semiring semantics in S∞[X] is very
informative and allows us to derive important information about the winning strategies.

Corollary 6.3. From the polynomial πstrat[[win0(v)]], we can efficiently (in the size of the
polynomial) derive the following information:

• whether Player 0 wins from v,
• the edge profiles of all absorption-dominant winning strategies from v,
• the number and precise shape of all positional winning strategies from v,
• whether Player 0 can still win from v if only a subset of the edges is allowed.

Given the polynomials πstrat[[win0(v)]], for all positions v, we can further derive for each
(equivalence class of an) absorption-dominant strategy and each edge, how often the edge can
occur in a play consistent with the strategy.



Vol. 20:1 STRATEGY ANALYSIS IN BÜCHI GAMES BY SEMIRING VALUATIONS 21:21

6.2. Reverse Analysis. Instead of tracking strategies in a fixed game, we may also ask
questions such as: assuming Player 1 wins from v, what are minimal modification to G such
that instead Player 0 wins? The generality of semiring semantics enables us to answer such
questions by choosing appropriate semirings and interpretations.

More precisely, let G = (V, V0, V1, E, F ) be a Büchi game and v ∈ G a position from
which Player 1 wins. Let E− ⊆ E and E+ ⊆ V 2 \E be sets of edges we are allowed to delete
or add, respectively. We call a set of edges in E± := E− ∪ E+ a repair if Player 0 wins
when these edges are deleted or added. Our goal is to determine all (preferably minimal)
repairs. We achieve this by evaluating win0(v) in a modified polynomial semiring, similar
to the computation of repairs for database queries in [XZAT18], except that here we need
absorptive polynomials to deal with fixed points.

Dual-Indeterminates. To track negative information, such as the absence of an edge,
we follow the approach in [GT17a, XZAT18, DGNT21] and extend our semiring by dual-
indeterminates X = {x | x ∈ X}. The idea is to label a literal and its negation by
corresponding indeterminates x and x. We must then avoid monomials such as xx, as they
represent contradictory information. To this end, we consider the quotient of S∞[X∪X] with
respect to the congruence generated by x ·x = 0 for x ∈ X and refer to the resulting quotient
semiring as dual-indeterminate absorptive polynomials S∞[X,X]. This semiring inherits
most of the properties of S∞[X]. Most importantly, any assignment h : X ∪X → K into an
absorptive, fully-continuous semiring K that respects dual-indeterminates, i.e., h(x)·h(x) = 0,
lifts to a fully-continuous homomorphism analogous to Theorem 4.6.

We then replace πstrat by an S∞[X,X]-interpretation π±repair with X = {Xe | e ∈ E±}:
if vw ∈ E±, we set π±repair(Evw) = Xvw and π±repair(¬Evw) = Xvw, all other literals are

mapped to 0 or 1 according to G (cf. Fig. 3). Notice that π±repair is neither model-defining

nor edge-tracking, but still satisfies π±repair(α) · π
±
repair(¬α) = 0 for all literals α.

Back and Forth between Monomials and Models. Let X± = {Xe | e ∈ E+} ∪ {Xe |
e ∈ E−}. Given Y ⊆ X±, we further write E(Y ) = {e | Xe ∈ Y or Xe ∈ Y } for the set
of edges mentioned in Y . We denote the set of all (dual-)indeterminates occurring in a
monomial m by var(m) = {x ∈ X ∪ X | m(x) > 0}. By examining what combinations
of indeterminates from X± occur in the monomials of π±repair[[win0(v)]], we can read off all
minimal repairs as follows.

Proposition 6.4. In the above setting, the following holds:

(1) Let m ∈ π±repair[[win0(v)]] be a monomial. Then the set E(var(m) ∩X±) is a repair.

(2) Let R ⊆ E± be a repair. Then there is a monomial m ∈ π±repair[[win0(v)]] such that

E(var(m) ∩X±) ⊆ R. If R is minimal, then E(var(m) ∩X±) = R.

Before proving Proposition 6.4, we illustrate the computation of minimal repairs in a
small example.

Example 6.5. In the following game, Player 1 wins from v. We are interested in the
minimal repairs with E+ = {c} and E− = {a, b}.

v
b

ca

π±repair[[win0(v)]] = XaX
∞
c +Xa

∞
X∞

b
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Evaluating win0(v) in the S∞[X,X]-interpretation π±repair described above results in two

monomials. The first yields the repair {a, c}, the second yields the minimal repair {a}
(notice that Xb /∈ X±, as edge b is already present). The reason why we get two monomials
is that we track also positive usage of edge b by Xb, but are only interested in the negative
indeterminate Xb for the repairs. ⌟

Proof of Proposition 6.4. We prove both statements by considering homomorphisms into
the Boolean semiring B. For the first statement, let m ∈ π±repair[[win0(v)]] be a monomial and

let h : X ∪X → B be the unique function that respects dual-indeterminates and satisfies

• h(x) = 1, for all x ∈ var(m)
• h(Xe) = 0, if Xe, Xe /∈ var(m) and e ∈ E+ (do not add e without reason),
• h(Xe) = 1, if Xe, Xe /∈ var(m) and e ∈ E− (do not remove e without reason).

Then, h lifts to a fully-continuous semiring homomorphism h : S∞[X,X] → B with
h(m) = 1. Moreover, h ◦ π±repair is a Boolean interpretation which corresponds to a Boolean

model G′. Since semiring semantics are preserved by fully-continuous homomorphisms, we
have h ◦ π±repair[[win0(v)]] = h(π±repair[[win0(v)]]) ≥ h(m) = 1 and hence G′ |= win0(v). By the

choice of h, the model G′ is equal to G except that we add all edges e ∈ X+ with Xe ∈ var(m),
and remove all e ∈ X− with Xe ∈ var(m). Hence G′ results from G by adding or deleting
the edges E(var(m) ∩X±), and since G′ |= win0(v), this set is a repair as claimed.

For the second statement, let R ⊆ E± be a repair and consider the repaired game
G′ |= win0(v). As G′ differs from G only by edges in E±, there is a unique assignment
h : X ∪X → B such that h ◦ π±repair corresponds to G′. Again, h lifts to a fully-continuous

homomorphisms and we thus get 1 = h ◦ π±repair[[win0(v)]] = h(π±repair[[win0(v)]]). So there

must be a monomial m ∈ π±repair[[win0(v)]] with h(m) = 1. Consider the set var(m) ∩X±.

If Xe ∈ var(m) ∩ X±, then h(Xe) = 1 and hence e ∈ R by construction of h. Further,
Xe ∈ var(m) ∩ X± implies h(Xe) = 1 and thus again e ∈ R by construction of h. This
proves E(var(m) ∩X±) ⊆ R. If R is minimal, we have equality: otherwise E(var(m) ∩X±)
would be a smaller repair by the first statement, contradicting minimality.

We remark that these results ignore the exponents of the monomials, so we can drop
exponents from S∞[X,X] (in other words, we use exponents from B instead of N ∪ {∞})
and work in the resulting, simpler semiring PosBool[X,X] (the dual-indeterminate quotient
of the semiring PosBool[X], see e.g. [GT17b]).

6.3. Target synthesis. The reverse analysis approach and the proof technique based on
homomorphisms are not limited to questions about edges, but are general concepts of
semiring provenance analysis. As an example of a different application, we consider the
synthesis of the target set F . More precisely, we consider a game arena with positions
V = V0∪̇V1 and edges E and want to compute all minimal choices for the set F so that
Player 0 wins the resulting Büchi game from some fixed starting position u ∈ V .

Similar to the computation minimal repairs, we can solve this task with an interpretation
πtarget over the dual-indeterminate semiring PosBool[X,X] which interprets most literals,
including edge literals, by Boolean values, but tracks the target set F using corresponding
pairs of dual-indeterminates πtarget(Fv) = Xv and πtarget(¬Fv) = Xv for each position v ∈ V
(cf. Fig. 3). We can then derive all possible minimal choices for F from the polynomial
πtarget[[win0(u)]], as illustrated in the following example.
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Example 6.6. Consider the following game arena. What are the minimal choices of the
target set F so that Player 0 wins from position a, or b?

a b c

πtarget[[win0(a)]] = Xa +XaXbXc

πtarget[[win0(b)]] = XaXbXc +XaXbXc +XaXbXc

Using the PosBool[X,X]-interpretation πtarget, we can derive that to win from a, the target
set must contain at least {a} or {b, c}. To win from b, it must contain at least {a, b, c}, {a, c}
or {b, c} (notice that {a, b, c} is a valid choice for F , but not minimal due to the presence of
negative indeterminates). This covers all minimal possible choices of the target set. ⌟

In general, the positive indeterminates Xv in each monomial of πtarget[[win0(u)]] induce
one possible choice of the target set F , and conversely every minimal choice of F occurs as
a monomial; this follows by the same arguments as in Proposition 6.4.

We remark that we can do slightly better, as we do not need to track negative information
for the synthesis problem and hence do not need the negative indeterminates Xv. In the
above example, we would then obtain the polynomials Xa +XbXc and XaXc +XbXc for
positions a and b, respectively, which correspond exactly to the minimal choices for F .
This can be achieved by setting πtarget(¬Fv) = 1 for all v ∈ V and observing that this has
the same effect as omitting the subformula ¬Fv from win0. Since the resulting formula is
equivalent in Boolean semantics, the reasoning in the proof of Proposition 6.4 can be adapted
to this setting. However, here we presented the general dual-indeterminate approach which
does not depend on the actual formula we consider and hence also works in many other
scenarios of provenance analysis, beyond the analysis of Büchi games.

6.4. Complexity. The previous applications show that once we have computed the polyno-
mial πstrat[[win0(v)]] or π

±
repair[[win0(v)]], it is easy to derive information about strategies or

minimal repairs – but how efficient is the computation of the polynomial in the first place?
Recall that for a fixed formula, the LFP model-checking problem for a classical structure
can be solved in polynomial time in the size of the structure (here the number of positions).
The analogous problem in semiring semantics, to compute the value πstrat[[win0(v)]], is more
involved since depending on the semiring, fixed-point iterations can be infinite, and contrary
to the Boolean case, it is not trivial that fixed points can be computed efficiently. However, it
has been shown in [Naa21] that in absorptive, fully-continuous semirings, a least or greatest
fixed point of a polynomial system, such as the ones induced by LFP-formulae, can be
computed using only a polynomial number of semiring operations (including the infinitary
power operation). By evaluating nested fixed points recursively, we can thus compute the
semiring value of a fixed5 formula in a number of semiring operations that is polynomial in
the size of the structure (here in the number of positions).

Whether this computation is efficient depends on the complexity of the semiring oper-
ations and hence on the semiring. Indeed, although the number of semiring operations is
polynomial, the resulting polynomial πstrat[[win0(v)]] can nevertheless have an exponential
number of monomials. This is, in general, unavoidable as both the number of (positional)
winning strategies as well as the number of minimal repairs can be exponential in the size

5In general, this applies to all LFP formulae in which the alternation depth, the arity of fixed-point
relations and the number of free variables in any subformula is bounded by a constant.
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of the game. For instance, games of the following form have an exponential number of
positional (and hence absorption-dominant) winning strategies:

· · ·
a1

b1

a2

b2

an−1

bn−1

an

bn

k

Algorithmically, the computation of the polynomials πstrat[[win0(v)]] or π
±
repair[[win0(v)]] is

thus infeasible in many cases. It should be noted that the questions addressed in Corollary 6.3
can be solved by direct methods, and just for finding some winning strategy or repair, these
will in many cases be more efficient than computing the polynomials. Thus, the main
benefit of semiring semantics in S∞[X] does not lie in a more efficient algorithmic method
to compute some specific winning strategy or repair, but rather in providing a general and
compact description of many important strategies at once, from which we can directly derive
the answers to a number of different questions concerning the strategy analysis of a Büchi
game. This is attractive in cases where the relevant polynomials are reasonably small.

One scenario where we can achieve this is, when only some of the edges are tracked:
instead of the interpretation πstrat that assigns indeterminates to all edges, we map edges we
are not interested in to 1. The resulting S∞[X]-interpretation remains edge-tracking, so the
Sum-of-Strategies Theorem still applies and we can see which sets of the tracked edges are
at least required for a winning strategy. In particular, win0(v) evaluates to 1 if there is a
winning strategy that avoids all tracked edges. If this information is sufficient, for instance
if we know that a certain part of the game must be visited and only care about edges within
this part, we can make provenance analysis more efficient by only tracking small parts of a
potentially large game.

6.5. Limitations. We have seen that semiring semantics in polynomial semirings such as
S∞[X] reveals useful information about strategies. However, there are also limitations to
this framework when it comes to certain typical applications of provenance analysis such
as cost computation. Given cost annotations of the edges, say in the tropical semiring
T = (R∞

+ ,min,+,∞, 0) (which is absorptive and fully continuous), do semiring semantics
provide a sensible cost measure for the evaluation of win0(v)? Or, more intuitively, for the
cost that Player 0 has to pay to win? For first-order logic and acyclic games, this is indeed
the case [GT17a, GT20], but here fixed-point computations and infinite plays complicate
the situation. To see this, let π be an edge-tracking T-interpretation that assigns to each
edge vw in G a cost π(Evw) ̸= ∞ (cost 0 is allowed). By the Sum-of-Strategies Theorem,
we can view π[[win0(v)]] as the minimum over the cost of each strategy, and in the tropical
semiring, this cost can be expressed as follows (computed over real numbers):

π[[S]] =
∑
vw∈E

#vw(S) · π(Evw).

That is, Player 0 has to pay for each occurrence of an edge in the strategy tree. While this
is certainly a possible cost measure for a strategy, it is debatable whether it is an intuitive
one. Many edges will occur infinitely often in a strategy, and then ∞ · π(Evw) is either 0 or
∞, and the latter leads to the overall value π[[S]] = ∞. Even if an edge occurs only once per
play, but infinitely often in S, Player 0 has to pay the cost ∞ · π(Evw). Instead, it might
be more intuitive to define the cost of a strategy so that
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(1) Player 0 only has to pay once for an edge, no matter how often it occurs (think of an
“unlocking fee”),

(2) Player 0 only has to pay for the maximal cost of any play consistent with S, but not for
all plays simultaneously.

We claim that neither of these options is possible without adapting our notion of
semiring semantics. Notice that we can actually solve (1) by first computing the polynomial
πstrat[[win0]] in S∞[X], then dropping exponents (or directly working in PosBool[X]), and
then instantiating each variable Xvw by its cost to obtain a value in T. But this is only an
indirect solution and computing πstrat[[win0]] may incur an exponential blowup even though
we only compute a single cost value.

A direct computation, in the sense that π[[S]] yields the desired cost value for some
suitable π, is not possible. To see this for (1), note that we multiply the cost for each
occurrence of an edge (in T, semiring multiplication is defined as summation on real numbers,
but we stick to the general vocabulary). Say we have two edges vw and v′w′ with the same
cost π(Evw) = π(Ev′w′) = c. To pay only once for vw, we would need π(Evw) ·π(Evw) = c,
but at the same time π(Evw) · π(Ev′w′) = c2 for different edges, a contradiction. The issue
is that the information on whether two edges are equal is abstracted away by π.

A different argument explains why (2) is not possible. At a position in V0, we want to
minimize the cost over all possible choices (corresponding to the existential quantification in
win0). For consecutive edges, we have to add costs up, requiring a second operation. But
for positions in V1, to fulfil (2) we must maximize the cost over all possible choices, thus
requiring a third operation. Hence this cost measure is not expressible in semirings with
only two operations and we would need different algebraic structures.

7. Conclusion

Based on a recent line of research on semiring provenance analysis that lead from database
theory to semiring semantics for LFP, we reported here on a case study that puts semiring
semantics to use for a strategy analysis in Büchi games. The choice of Büchi games has been
motivated on one side by their relevance for applications in the synthesis and verification
of reactive systems, on the other side because they provide one of the simplest non-trivial
cases of infinite games for which the definability of winning positions requires an alternation
between least and greatest fixed points – and can thus not be treated by simpler classes of
semirings such as the ω-continuous ones used for Datalog and reachability games.

The aim of the case study was to illustrate how semiring semantics can be applied to
more complex games, featuring infinite plays and complicated winning conditions, and what
kind of insights it provides (or fails to provide) about the winning strategies in the game. This
is captured in the central Sum-of-Strategies Theorem and its applications. This non-trivial
result can be seen as a simpler version of the general sum-of-strategies characterization in
terms of model-checking games in [DGNT21] and it essentially identifies the value of the
statement that Player 0 wins with the sum of the valuations of all (absorption-dominant)
winning strategies. While this applies to the class of all absorptive, fully-continuous semirings,
the most important semirings for our analysis are generalized absorptive polynomials S∞[X].
Due to their universal property, these provide the most general information, allowing us to
read off the edge profiles of all absorption-dominant strategies.

With this information, we can count positional strategies, we can determine whether
a particular move is needed (once or even infinitely often) for winning the game, and we
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can compute minimal “repairs” for a game. The method of semiring valuations is rather
flexible; we can use different semirings than S∞[X], and we can tailor the set of moves that
we track to make the resulting polynomial smaller and its computation more efficient. Of
course, not all relevant questions about strategies can be answered directly by semiring
valuations, and as an example for a limitation of this method, we have shown that minimal
cost computations provide serious obstacles to a semiring treatment.

The Sum-of-Strategies Theorem motivates the notion of absorption-dominant strategies
which is of interest in its own right as it captures strategies that are minimal with respect
to the multiplicities of the edges they use. To understand these strategies, we discussed
how they relate to other classes of simple strategies, namely to positional and persistent
strategies, and we have shown that these form a strict hierarchy.

Finally, we remark that although Büchi games have been chosen as the topic of our case
study, the method of semiring valuations in absorptive semirings is not confined to this case.
In principle, it can be applied to different formulae and generalizes in particular to other
games such as parity games, as long as the winning positions are definable in fixed-point
logic. The win-formula for parity games is more complicated, and is parametrised by the
number of priorities, and so the Sum-of-Strategies Theorem requires different technical
details, but can be established along the same lines.
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[DGNT19] K. Dannert, E. Grädel, M. Naaf, and V. Tannen. Generalized absorptive polynomials and prove-
nance semantics for fixed-point logic. arXiv:1910.07910 [cs.LO], 2019. Full version of [DGNT21].
URL: https://arxiv.org/abs/1910.07910.
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Vol. 20:1 STRATEGY ANALYSIS IN BÜCHI GAMES BY SEMIRING VALUATIONS 21:27

[DMRT14] D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for datalog provenance. In Proc. 17th
International Conference on Database Theory ICDT, pages 201–212. OpenProceedings.org, 2014.
doi:10.5441/002/icdt.2014.22.

[Dup03] J. Duparc. Positive games and persistent strategies. In International Workshop on Computer
Science Logic, pages 183–196. Springer, 2003. doi:10.1007/978-3-540-45220-1_17.
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