
Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 22:1–22:23
https://lmcs.episciences.org/

Submitted Jun. 16, 2023
Published Mar. 20, 2024

ANALYZING ROBUSTNESS OF ANGLUIN’S

L∗ ALGORITHM IN PRESENCE OF NOISE

LINA YE a, IGOR KHMELNITSKY , SERGE HADDAD b, BENOÎT BARBOT c,
BENEDIKT BOLLIG d, MARTIN LEUCKER e, DANIEL NEIDER f,g, AND RAJARSHI ROY h

aUniversité Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LMF, France
e-mail address: lina.ye@lmf.cnrs.fr

bUniversité Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
e-mail address: serge.haddad@lmf.cnrs.fr

cUniversité Paris-Est Créteil, France

dUniversité Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

e Institute for Software Engineering and Programming Languages, Universität zu Lübeck, Germany

f TU Dortmund University, Germany

g Center for Trustworthy Data Science and Security, University Alliance Ruhr, Germany

hMax Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract. Angluin’s L∗ algorithm learns the minimal deterministic finite automaton
(DFA) of a regular language using membership and equivalence queries. Its probabilistic
approximatively correct (PAC) version substitutes an equivalence query by numerous
random membership queries to get a high level confidence to the answer. Thus it can
be applied to any kind of device and may be viewed as an algorithm for synthesizing
an automaton abstracting the behavior of the device based on observations. Here we
are interested on how Angluin’s PAC learning algorithm behaves for devices which are
obtained from a DFA by introducing some noise. More precisely we study whether Angluin’s
algorithm reduces the noise and produces a DFA closer to the original one than the noisy
device. We propose several ways to introduce the noise: (1) the noisy device inverts the
classification of words w.r.t. the DFA with a small probability, (2) the noisy device modifies
with a small probability the letters of the word before asking its classification w.r.t. the
DFA, (3) the noisy device combines the classification of a word w.r.t. the DFA and its
classification w.r.t. a counter automaton, and (4) the noisy DFA is obtained by a random
process from two DFA such that the language of the first one is included in the second
one. Then when a word is accepted (resp. rejected) by the first (resp. second) one, it is
also accepted (resp. rejected) and in the remaining cases, it is accepted with probability
0.5. Our main experimental contributions consist in showing that: (1) Angluin’s algorithm
behaves well whenever the noisy device is produced by a random process, (2) but poorly
with a structured noise, and, that (3) is able to eliminate pathological behaviours specified
in a regular way. Theoretically, we show that randomness almost surely yields systems
with non-recursively enumerable languages.

Key words and phrases: Angluin’s algorithm, PAC learning, noises, randomness.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:22)2024
© L. Ye et al
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-2217-4752
https://orcid.org/0000-0002-5132-5839
https://orcid.org/0000-0002-1759-1201
https://orcid.org/0000-0003-2417-3064
https://orcid.org/0000-0003-0985-6115
https://orcid.org/0000-0002-3696-9222
https://orcid.org/0000-0001-9276-6342
https://orcid.org/0000-0002-0202-1169
http://creativecommons.org/about/licenses

22:2 L. Ye et al Vol. 20:1

Introduction

Discrete-event systems and their languages. Discrete-event systems [CL10] form a large
class of dynamic systems that, given some internal state, evolve from one state to another
one due to the occurrence of an event. For instance, discrete-event systems can represent a
cyber-physical process whose events are triggered by a controller or the environment, or,
a business process whose events are triggered by human activities or software executions.
Often, the behaviors of such systems are classified as safe (aka correct, representative, etc.)
or unsafe. Since a behavior may be identified by its sequence of occurred events, this leads
to the notion of a language.

Analysis versus synthesis. There are numerous formalisms to specify (languages of)
discrete-event systems. From a designer’s perpective, the simpler it is the better its analysis
will be. So finite automata and their languages (regular languages) are good candidates for
the specification thanks to their simplicity. However, even when the system is specified by an
automaton, its implementation may slightly differ due to several reasons (bugs, unplanned
human activities, unpredictable environment, etc.). Thus, one generally checks whether the
implementation conforms to the specification. However, in many contexts, the system under
consideration has already been implemented and the original specification (if any) is lost, as
for instance in the framework of process mining [vdA12]. Thus, by observing and interacting
with the system, one aims to recover a specification close to the system at hand but that is
robust with respect to its pathologic behaviors.

Language learning. The problem of learning a language from finite samples of strings by
discovering the corresponding grammar is known as grammatical inference. Its significance
was initially stated in [Sol64] and an overview of very first results can be found in [BF72b].
As it may not always be possible to infer a grammar that exactly identifies a language,
approximate language learning was introduced in [Wha74], where a grammar is selected
from a solution space whose language approximates the target language with a specified
degree of accuracy. To provide a deeper insight into language learning, the problem of
identifying a (minimal) deterministic finite automaton (DFA) that is consistent with a given
sample has attracted substantial attention in the literature since several decades [BF72a,
Gol78, Ang87, Val84, JMKO20, FBLJ+21]. An understanding of regular language learning
is very valuable for a generalization to other more complex classes of languages. For example,
Some researchers adapted learning algorithms for regular languages to learn context-free
languages [CE07, Cla10, YC10].

Angluin’s L∗ algorithm. Angluin’s L∗ algorithm learns the minimal DFA of a regular
language with two types of queries: membership queries and equivalence queries [Ang87].
Angluin’s approach triggered a lot of subsequent research on active automata learning
and has numerous applications, such as finding bugs in implementations of security-critical
protocols [FJV16, FLP+17, FH17], learning interfaces of classes in software libraries [HIS+12],
and inferring interface protocols of legacy software components [ACSvdB20]. One could
of course try to adapt it to the synthesis task described above. Since 1987, different
improvements of the original Angluin’s L∗ algorithm have been proposed, thus resulting
in numerous variants [RS89, KV94, MP91, SG09, BHKL09]. It is fair to say that L∗-like
algorithms completely dominate the research area of active automata learning. However, for
most black box systems, it is often impossible to implement the equivalence query. Thus, its

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:3

probabilistic approximatively correct (PAC) version substitutes an equivalence query with
a large enough set of random membership queries. Using a PAC framework, one needs to
define and evaluate the accuracy of such an approach. Hence, here we are interested in how
PAC Angluin’s algorithm behaves for devices which are obtained from a DFA by introducing
some noise.

Noisy learning. Most learning algorithms in the literature assume the correctness of
the training data, including the example data such as attributes as well as classification
results. However, sometimes noise-free datasets are not available. [Qui86] carried out an
experimental study of the noise effects on the learning performance. The results showed
that generally the classification noise had more negative impact than the attribute one,
i.e., errors in the values of attributes. [AL87] studied how to compensate for randomly
introduced noise and discovered a theorem giving a bound on the smaple size that is sufficient
for PAC-identification in the presence of classification noise when the concept classes are
finite. Michael Kearns formalized another related learning model from statistical queries
by extending Valiant’s learning model [Kea98]. One main result shows that any class of
functions learnable from this statistical query model is also learnable with classification
noise in Valiant’s model.

Our contribution. In this paper, we study against which kinds of noise Angluin’s algorithm
is robust. In this work we use the optimized version of this algorithm from [KV94]. So to
avoid confusion, we will call it the KV’s algorithm. To the best of our knowledge, this is
the very first attempt of noise analysis in the automata learning setting. More precisely,
we consider the following setting (cf. Figure 1): Assume that a regular device A is given,
typically as a black box. Due to some noise N , the system A is pertubed resulting in a not
necessarily regular systemMN . This one is consulted by the PAC version of KV’s algorithm
to obtain a regular system AE . The question studied in this paper is whether AE is closer
to A thanMN , or, in other words, to which extent learning via KV’s algorithm is robust
against the noise N .

Extract
DFA Noise

DFA

Noisy
Model DFA

Figure 1. The experimental setup and the studied distances

To this end, we introduce four kinds of noisy devices obtained from A:
(1) the noisy device is obtained by a random process from a given DFA by inverting the

classification of words with a small probability, which corresponds to the classification
noise in the classical learning setting;

(2) the noisy device is obtained by a random process that, with a small probability, replaces
each letter of a word by one chosen uniformly from the alphabet and then determines its

22:4 L. Ye et al Vol. 20:1

classification based on the DFA, which corresponds to the attribute noise in the classical
setting;

(3) the noisy DFA combines the classification of a word w.r.t. the DFA and its status w.r.t.
a counter automaton;

(4) The noisy DFA is obtained by a random process from two DFA such that the language
of the first one is included in the second one. Then when a word is accepted (resp.
rejected) by the first (resp. second) one, it is also accepted (resp. rejected) and in the
remaining cases, it is accepted with probability 0.5.

Our studies are based on the distribution over words that is used for generating words
associated with membership queries and defining (and statistically measuring) the distance
between two devices as the probability that they differ on word acceptance. We have
performed experiments over several hundreds random DFA. We have pursued several goals
along our experiments, expressed by the following questions:

• What is the threshold (in terms of distance) between pertubating the DFA or producing a
device that is no more “similar to” the DFA?

• What is the impact of the nature of noise on the robustness of KV’s algorithm?

• What is the impact of the words distribution on the robustness of KV’s algorithm?

• How to reduce the size of the extracted DFA by KV’s algorithm while keeping as close as
possible to the original DFA?

Due to the approximating nature of the PAC version of L∗, we had to consider the
question of how to choose the accuracy of the approximate equivalence query to get a good
trade-off between accuracy and efficiency. Moreover, since in most cases, KV’s algorithm may
perform a huge number of refinement rounds before a possible termination, we considered
what a “good” number of rounds to stop the algorithm avoiding underfitting and overfitting
is.

We experimentally show that w.r.t. the random noise, i.e., the noise is randomly
introduced, KV’s algorithm behaves quite well, i.e., the learned DFA (AE) is very often
closer to the original one (A) than the noisy random device (MN). When the noise is
obtained using the counter automaton, KV’s algorithm is not robust. Instead, the device
AE is closer to the noisy deviceMN . Moreover, we establish that the expectation of the
length of a random word should be large enough to cover a relevant part of the set of words
in order for KV’s algorithms to be robust. The size of the extracted DFA can be further
reduced by returning an intermediate memorized DFA which is enough close to the DFA
returned by the KV’s algorithm.

In order to understand why KV’s algorithm is robust w.r.t. random noise we have
undertaken a theoretical study establishing that almost surely the language of the noisy
device (MN) for classification noise, i.e., case (1) and, with a further weak assumption
on DFA, also for instance noise, i.e., case (2) is not recursively enumerable. Considering
non-recursively enumerable languages as unstructured, this means that due to the noise,
the (regular) structure of A vanishes. This is not the case for the counter automaton
setting. Altogether, to put it bluntly: the less structure the noisy device has, the better
KV’s algorithm works.

Organization. In Section 1, we introduce the technical background required for the robust-
ness analysis. In Section 2, we detail the goals and the settings of our analysis. In Section 3,

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:5

we provide and discuss the experimental results. In Section 4, we discuss randomness versus
structure. Finally in Section 5, we draw our the conclusions and identify future work.

1. Preliminaries

Here we provide the technical background required for the robustness analysis.

Languages. Let Σ be an alphabet, i.e., a nonempty finite set, whose elements are called
letters. A word w over Σ is a finite sequence over Σ, whose length is denoted by |w|. The
unique word of length 0 is called the empty word and denoted by λ. As usual, Σ∗ is the set
of all words over Σ, and Σ+ = Σ∗ \ {λ} is the set of words of positive length. A language
(over Σ) is any set L ⊆ Σ∗. The symmetric difference of languages L1, L2 ⊆ Σ∗ is defined as
L1∆L2 = (L1 \ L2) ∪ (L2 \ L1).

Words distribution and measure of a language. A distribution D over Σ∗ is defined
by a mapping PrD from Σ∗ to [0, 1] such that

∑
w∈Σ∗ PrD(w) = 1. Let L be a language.

Its probabilistic measure w.r.t. D, PrD(L) is defined by PrD(L) =
∑

w∈LPrD(w), i.e., the
sum of the probabilities for all words in L.

Our analysis requires that we are able to efficiently sample a word according to some
distribution D. Thus we only consider distributions Dµ with µ ∈]0, 1[, that are defined for
a word w = a1 . . . an ∈ Σ∗ by

PrDµ(w) = µ

(
1− µ

|Σ|

)n

.

To sample a random word according to Dµ in practice, we start with the empty word
and iteratively we flip a biased coin with probability 1− µ to add a letter (and µ to return
the current word) and then uniformly select the letter in Σ.

Language distance. Given two languages L1 and L2, their distance w.r.t. a distribution
D, dD(L1, L2), is defined by dD(L1, L2) = PrD(L1∆L2), the sum of the probabilities for
all words that are only in L1 or only in L2. Computing the distance between languages
is in most of the cases impossible. Fortunately whenever the membership problem for L1

and L2 is decidable, then using Chernoff-Hoeffding bounds [Hoe63], this distance can be
statistically approximated as follows. Let α, γ > 0 be an error parameter and a confidence
level, respectively. Let S be a set of words sampled independently according to D, called a

sampling, such that |S| ≥ log(2/γ)
2α2 . Let dist = |S∩(L1∆L2)|

|S| . Then, we have

PrD(|dD(L1, L2)− dist| > α) < γ .

Since we will not simultaneously discuss about multiple distributions, we omit the subscript
D almost everywhere.

Finite Automata. A (complete) deterministic finite automaton (DFA) over Σ is a tuple
A = (Q, σ, q0, F) where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the
set of final states, and σ : Q× Σ→ Q is the transition function. The transition function is
inductively extended over words by σ(q, λ) = q and σ(q, wa) = σ(σ(q, w), a). The language
of A is defined as L(A) = {w ∈ Σ∗ | σ(q0, w) ∈ F}. A language L ⊆ Σ∗ is called regular if
L = L(A) for some DFA A.

22:6 L. Ye et al Vol. 20:1

KV’s algorithm. Given a regular language L, KV’s algorithm learns the unique mimimal
DFA A such that L(A) = L through two queries:

• membership queries: ‘Does a word w belong to L?’
• equivalence queries: ‘Does L(AE) = L? and if not provide a word w ∈ L∆L(AE)’. Here
AE represents an automaton synthetised by the algorithm based on currently collected
membership queries.

The goal of this algorithm is to produce a DFA that recognizes a given regular language
L ⊆ Σ∗. It is worth noting that while Σ is given, L is a priori unknown and can only be
accessed through membership queries and equivalence queries. Let us describe in an informal
way its behaviour:

(1) Initialize a data structure Data to store useful information from an initial set of mem-
bership queries.

(2) Repeat the following steps:
• synthetize a DFA based on the current Data corresponding to the set of membership
queries currently asked (see [KV94] for more details);
• submit an equivalence query, for which the algorithm can return a pair consisting of a
boolean value and a string as a potential counter example: either true with empty
string or false with a counter example w;
• when not equivalent and using the counter example w ∈ L∆L(AE), update Data.

The KV’s algorithm ensures that after each round the number of states of the current DFA
is increased by one. So the number of rounds is equal to the number of states of the minimal
DFA accepting L.

PAC version of KV’s algorithm. The KV’s algorithm is efficient to learn the minimal
DFA when both queries are available and there is no noise in the data. However, as our goal
is to analyze the robustness of this algorithm against noise, the latter should be introduced
into our data, which results in some noisy device that is not necessarily regular. To handle
this, we resort to Probably Approximately Correct (PAC) learning framework, whose goal
is to guarantee with high probability that the hypothesis will have low generalization
error. Precisely, the learner can learn the concept, i.e., here DFA, given any arbitrary
approximation ratio and success probability. The PAC model was later extended to treat
noise [Slo95, Dec97, BEK02].

The PAC version of KV’s algorithm takes as input an error parameter ε and a confidence
level δ, and replaces the equivalence query by a (large enough) number of membership
queries ‘w ∈ L∆L(A)?’, where the words are sampled from some distribution D unknown to
the algorithm. Thus this algorithm can stop too early when all answers are negative while
L ̸= L(A). However due to the large number of such queries which depends on the current

round r (i.e., ⌈ log(1/δ)+(r+1) log(2)
ε ⌉) this algorithm ensures that

PrD(dD(L,L(A)) > ε) < δ .

A key observation is that the PAC version of this algorithm could be used for every
language L for which the membership problem is decidable. However, in some cases, L is
not necessarily a regular language, the algorithm might never stop and thus our adaptation
includes a parameter maxround, the upper bound on the number of rounds, that ensures
termination. This is formalized by Algorithm 1. Observe that if either the automaton is
wrongly considered as equivalent or the maximal round is reached, then AE is not necessarily
minimal and so the algorithm minimizes AE before returning it.

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:7

Algorithm 1: The PAC version of KV’s algorithm applied on general languages

Input: L, a language unknown to the algorithm
Input: an integer maxround ensuring termination

Data: an integer r, a boolean b, a data structure Data and a DFA AE

Output: a DFA

Initialize(Data)

r ← 0

// The control of maxround is unnecessary when L is regular

while r < maxround do
AE ← Synthetize(Data)
(b, w)← IsEquivalent(AE)
if b then return Minimize(AE)

Update(Data,w)
r ← r + 1

end
return Minimize(Synthesize(Data))

2. Robustness Analysis against Noises

2.1. Principle and goals of the robustness analysis.
Principle of the analysis. Figure 1 illustrates the process of our robustness analysis with
respect to different types of noises that will be studied in this paper. First we set the
qualitative and quantitative nature of the noise (N). Then we generate a set of random
DFA (A). Combining A and N , one gets a noisy modelMN . More precisely, depending on
whether the noise is random or not,MN is either generated off-line (deterministic noise)
or on-line (random noise) when a membership query is asked during the execution of KV’s
algorithm. Finally we compare (1) the distances between A and MN , and (2) between
A and AE , the automaton returned by the algorithm. The aim of this comparison is to
establish whether AE is closer to A thanMN . In order to get a quantitative measure, we
define the information gain as:

Information gain =
d(L(A),L(MN))
d(L(A),L(AE))

We consider a low information gain to be in [0, 0.9), a medium information gain to be
in [0.9, 1.5), and a high information gain to be in [1.5,∞). After preliminary experiments,
these thresholds seem to appropriately partition the results into three subsets of relevant
sizes. The higher the information gain is, the closer AE is to A thanMN .

In addition, we also evaluate the distance between AE andMN in order to study in
which cases the algorithm learns in fact the noisy device instead of the original DFA.

Goals of the analysis.

• Quantitative analysis. The information gain highly depends on the ‘quantity’ of the
noise, which is also called error rate. So we analyze the information gain depending of the

22:8 L. Ye et al Vol. 20:1

distance between the original DFA and the noisy device and want to identify a threshold
(if any) where the information gain starts to significantly increase.

• Qualitative analysis. Another important criterion of the information gain is the ‘nature’
of the noise. So we analyze the information gain w.r.t. the different noisy devices that we
have introduced.

• Impact of word distribution. Then, the robustness of the KV’s algorithm with respect
to word distribution is also analyzed.

In order to perform relevant experiments, one needs to tune two critical parameters
of KV’s algorithm. Since the running time of the algorithm quadratically depends on the
number of rounds (i.e. iterations of the loop), selecting an appropriate maximal number of
rounds is a critical issue. We vary this maximal number of rounds and analyze how the
information gain decreases w.r.t. this number. On the other hand, as an equivalence query
is replaced with a set of membership queries whose number depends on the current round
and the pair (ε, δ), it is thus interesting to study (1) what is the effect of accuracy of the
approximate equivalence queries, i.e., the values of (ε, δ) on the ratio of executions that reach
the maximal number of rounds and (2) compare the information gain for executions that
stop before reaching this maximal number and the same execution when letting it run up to
this maximal number.

2.2. Noise. A random language R ⊆ Σ∗ is determined by a random process: for each
w ∈ Σ∗, membership w ∈ R is determined independently at random, once and for all,
according to some probability Pr(w ∈ R) ∈ [0, 1]. The probability Pr(w ∈ R) may depend
on some parameters such as w itself and a given DFA.

We now describe the four types of noise that we analyze in this paper. Each type adds
noise to a given DFA A in form of a random language R. For the first two types, noise with
output and noise with input, the probability Pr(w ∈ R) of including w ∈ Σ∗ in R depends
on w itself, L(A), and some parameter 0 < p < 1. The third kind of noise, counter DFA, is
actually deterministic, i.e., Pr(w ∈ R) ∈ {0, 1} for all w ∈ Σ∗. In that case, the given DFA
A determines a unique “noisy” language. Let us be more precise:

DFA with noisy output. Given a DFA A over the alphabet Σ and 0 < p < 1, the random
language L(A→p) flips the classification of words w.r.t. L(A) with probability p. More
formally, for all w ∈ Σ∗,

Pr(w ∈ L(A→p)) = (1− p)1w∈L(A) + p1w ̸∈L(A)

where 1C is 1 if condition C holds, and 0 otherwise. Observe that the expected value
of the distance d(L(A),L(A→p)) is p. Moreover, in our experiments, we observe that∣∣∣d(L(A),L(A→p))−p

p

∣∣∣ < 5 · 10−2 for all the generated languages.

DFA with noisy input. Given a DFA A over the alphabet Σ (with |Σ| > 1) and 0 < p < 1,
the random language L(A←p) changes every letter of the word with probability p uniformly
to another letter and then returns the classification of the new word w.r.t. L(A). More

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:9

formally, for w = a1 . . . an ∈ Σ∗,

Pr(w ∈ L(A←p)) =
∑

w′=b1...bn∈L(A)
s.t. |w|=|w′|

∏
1≤i≤n

(
(1− p)1ai=bi +

p

|Σ| − 1
1ai ̸=bi

)
.

Counter DFA. Let A be a DFA over the alphabet Σ and c : Σ ∪ {λ} → Z be a function.
We inductively define the function c : Σ∗ → Z by

c(λ) = c(λ) and c(wa) = c(w) + c(a) .

The counter language L(Ac) is now given as the union of the language of A and the set of
words whose value of function c is nonpositive.

L(Ac) = L(A) ∪ {w ∈ Σ∗ | c(w) ≤ 0} .

DFA with pathological behaviours. The forth device that we want to learn is a DFA A
viewed as a formal model for a protocol that should be followed by users in some institution
(hospital, university, etc.). We only consider A for which there is a word denoted wA such
that wAΣ

∗ ∩ L(A) = ∅. This is a reasonable assumption for a realistic protocol for which
after a specific pathological sequence of actions (here wA), one knows that the user cannot
succeed.

The observed language generated by the noisy (random) device, denoted here An, is
obtained as follows:

• L(An) includes L(A). The observed language must contain all correct behaviours w.r.t.
the protocol;
• For every word w ∈ wAΣ

∗, w ∈ L(An) with probability 1
2 . Every pathological behaviour

may equally be observed or not;
• For every word w /∈ L(A)⊎wAΣ∗, w /∈ L(An). One does not observe any behaviour which
is neither correct nor pathological.

3. Experimental Evaluation

In order to empirically evaluate our ideas, we have implemented a prototype and benchmarks
in Python, using the NumPy library. They are available on Zenodo1. All evaluations were
performed on a computer equipped by Intel i5-8250U CPU with 4 cores, 16GB of memory
and Ubuntu Linux 18.03.

3.1. Generating DFAs. We now describe the settings of the experiments we made with
four different types of noises. We choose µ = 10−2 for the parameter of the word distribution
so that the average length of a random word is 99. All the statistic distances were computed
using the Chernoff-Hoeffding bound [Hoe63] with α = 5 · 10−4 as error parameter and
γ = 10−3 as confidence level.

The benchmarks were performed on DFA randomly generated using the following
procedure. Let Mq = 60 and Ma = 20 be two parameters, which impose upper bounds on
the number of states and the size of the alphabet, that could be tuned in future experiments.
The DFA A = (Q, σ, q0, F) on Σ is generated as follows:

1https://doi.org/10.5281/zenodo.8031255

https://doi.org/10.5281/zenodo.8031255

22:10 L. Ye et al Vol. 20:1

• Uniformly choose nq ∈ [20,Mq] and na ∈ [3,Ma];

• Set Q = [0, nq] and Σ = [0, na];

• Uniformly choose nf ∈ [0, nq − 1] and let F = [0, nf];

• Uniformly choose q0 in Q;

• For all (q, a) ∈ Q× Σ, choose the target state σ(q, a) uniformly among all states.

The choice of Mq and Ma was inspired by observing that these values often occur when
modeling realistic processes like in business process management.

3.2. Tunings. Before launching our experiments, we first tune two key parameters for both
efficiency and accuracy purposes: the maximal number of rounds of the algorithm and the
value of ε and of δ for the accuracy of the approximate equivalence query. For the sake of
simplicity, this tuning is based on experiments over the DFA with the noisy output. The
reason is that the expected distance between the DFA and the noisy device is known and
can be controlled (p).

Maximal number of rounds. In order to specify a maximal number of rounds that lead
to a good performance of the KV’s Algorithm, we took a DFA with noisy output A→p for
p ∈ {0.005, 0.0025, 0.0015, 0.001}. We ran the learning algorithm, stopping every 20 rounds
to estimate the distance between the current DFA AE to the original DFA A. Figure 2
shows the evolution graphs of d(L(A),L(AE)) w.r.t. the number of rounds according to the
different values of p, each of them summarizing five runs on five different DFAs. The vertical
axis corresponds to the distance to original DFA A, and the horizontal axis corresponds
to the number of rounds. The red line is the distance with A→p, and the blue line is the
distance with AE .

We observe that after about 250 rounds, the distance d(L(A),L(AE)) is stabilizing
except some rare peaks, which are worth further investigation. Therefore, from now on all
the experiments are made with a maximum of 250 rounds. Of course this number depends
on the size of A. However, for the variable size that we have chosen (between 10 and 50
states), it seems to be a good choice.

Accuracy of the approximate equivalence query. We have generated thirty-five DFA,
and for each of them we generated five A→p with different values of p. Table 1 summarizes
our results with different ε and δ for the approximate equivalence query. The rows correspond
to the value of the noise p, the columns correspond to the values of ε and δ (where we
always choose ε = δ) and each cell shows the average information gain. From this table,
ε = δ = 0.01 and ε = δ = 0.005 seem to be optimal values. We decided to fix ε = δ = 0.005
for all our experiments.

3.3. Qualitative and Quantitative analysis. For the four types of noise, we have
generated numerous DFA (as described shortly above). Furthermore, for the noisy outputs
and inputs given a randomly generated DFA, we have constructed several noisy devices
depending on the ‘quantity’ of noise. By computing the (average) information gain for all
these experiments, we have been able to get conclusions about the effect of the nature and
the quantity of the noise on the performance of KV’s algorithm.

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:11

Figure 2. Number of rounds analysis

HHH
HHHp

ε = δ
0.05 0.01 0.005 0.001 0.0005

0.01 0.081 0.054 0.047 0.048 0.050

0.005 0.086 0.087 0.072 0.070 0.094

0.0025 0.867 0.292 0.591 0.321 0.748

0.0015 1.401 2.933 3.082 0.980 0.710

0.001 5.334 4.524 3.594 1.811 6.440

Table 1. Evaluation of the impact of ε and δ.

When KV’s algorithm is applied to a device with random noise, a corresponding random
language is generated on-the-fly: once membership of a word in the target language has been
determined (e.g., through a membership query), the corresponding truth value is stored and
not changed anymore.

DFA with noisy output. We have generated fifty DFA, and for each such DFA A,
we have generated random languages with noisy output L(A→p) with five values for p
between 0.01 and 0.001. Table 2 summarizes the results. Recall that the expected value of
d(L(A),L(A→p)) is p. We have identified a threshold for p around 0.0025: if the noise is
higher than 0.0025, the resulting DFA AE has a bigger distance to the original one A than
to the corresponding noisy device A→p, and smaller otherwise. Moreover, once we cross the
threshold the robustness of the algorithm increases very quickly. We have also included a

22:12 L. Ye et al Vol. 20:1

column that represents the standard deviation of the random variable d(L(A),L(AE)) to
assess that our conclusions are robust w.r.t. the probabilistic feature.

p d(L(A),L(AE)) d(L(A→p),L(AE)) gain deviation

0.01 0.12625 0.13320 0.07432 0.04102

0.005 0.04420 0.04827 0.11312 0.03366

0.0025 0.00333 0.00568 0.75031 0.00523

0.0015 0.00027 0.00174 5.52999 0.00047

0.001 0.00006 0.00103 15.75817 0.00007

Table 2. Evaluation of the algorithm w.r.t. the noisy output.

DFA with noisy input. We have generated forty-five random DFA, and for each such
DFA A, we have generated random languages with noisy input L(A←p) by choosing p ∈
{10−4, 5 ·10−4, 10−3, 5 ·10−3}. Contrary to the case of noisy output, p does not correspond to
the expected value of d(L(A),L(A←p). Thus we need to calculate this distance for every pair
of the experiments. Thus, we have gathered the pairs whose distances belong to intervals
that are described in the first column of Table 3. The second column of this table reports the
number of pairs in the interval while the third one presents the average value of the distance
for the set of the corresponding pairs. Again we identify a threshold for d(L(A),L(A←p))
between 0.001 and 0.005. Once we cross the threshold, the robustness of the algorithm
increases very quickly.

Range # d(L(A),L(A←p)) d(L(A),L(AE)) d(LA←p),L(AE)) gain deviation

[0.025, 1] 36 0.04027 0.21513 0.22658 0.18 0.05279

[0.005, 0.025] 53 0.00924 0.05416 0.06077 0.17 0.04172

[0.002, 0.005] 33 0.00378 0.01260 0.01611 0.30 0.01783

[0.001, 0.002] 11 0.00123 0.00030 0.00154 4.1 0.00058

[0.0005, 0.001] 25 0.00079 0.00002 0.00082 39.5 0.00007

Table 3. Evaluation of the algorithm w.r.t. the noisy input.

Counter DFA. We have randomly generated the counter function as follows: We have
uniformly chosen c(λ) in [0, |Σ|]. Then, for all a ∈ Σ, Pr(c(a) = −1) = 1

4 and for all

0 ≤ i ≤ 6, Pr(c(a) = i) = 3
28 .

We have generated 160 DFA. For each of them, we have generated a counter automaton
(as described before). The results of our experiments are given in Table 4, from which we
can see that whatever the quantity of noise, the KV’s algorithm is unable to get closer to the
original DFA. Moreover the extracted DFA AE is very often closer to the counter automaton
Ac than the original DFA A.

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:13

Range # d(L(A),L(Ac)) d(L(A),L(AE)) d(L(Ac),L(AE)) gain deviation

[0.005, 0.025] 14 0.01238 0.02586 0.02053 0.47886 0.01898

[0.002, 0.005] 57 0.00245 0.00396 0.00262 0.61765 0.00298

[0.001, 0.002] 22 0.00143 0.00209 0.00121 0.68156 0.00126

[0.0005, 0.001] 20 0.00079 0.00108 0.00064 0.72481 0.00065

[0.0001, 0.0005] 44 0.00025 0.00035 0.00021 0.71054 0.00021

Table 4. Evaluation of the algorithm w.r.t. the ‘noisy’ counter.

Thus we conjecture that when the noise is ‘unstructured’ and the quantity is small
enough such that the word noise is still meaningful, then KV’s algorithm is robust against
such noise. On the contrary when the noise is structured, then KV’s algorithm ‘tries to
learn’ the noisy device whatever the quantity of noise. In Section 4, we will strengthen
this conjecture establishing that in some sense, noise produced by random process implies
unstructured noise.

3.4. DFA with pathological behaviours. Let A+ be a DFA such that L(A+) = L(A) ⊎
wAΣ

∗. Theoretically, d(L(An),L(A+)) is on average equal to d(L(An),L(A)). Thus a priori,
the KV’s algorithm applied on An should not modify this property since A and A+ are
DFA. However due to the particular shape of the pathological behaviours, it could be not
the case. So the goal of studying this device is to detect the general tendancy: is the output

DFA closer to A or to A+? In order to be relevant, Prd(wAΣ
∗) =

(
1−µ
|Σ|

)|wA|
should be

sufficiently small.

DFA construction. We now explain how to randomly generate a DFA A such that there
exists a word wA fulfilling wAΣ

∗ ∩ L(A) = ∅. Since we do not care about the letters
of wA, we choose wA = a3 and randomly select |Σ| with 5 ≤ |Σ| ≤ 20 which leads to
Prd(wAΣ

∗) ≤ 1
125 ≤ 0.008. As for the other parameters, we adopt the same as described

before, for instance the number of states is between 20 and 60.

(1) We first create states q0, q1, q2 ∈ Q and q⊥ ∈ Q \ F with σ(q0, a) = q1, σ(q1, a) = q2,
σ(q2, a) = q⊥, and for all b ∈ Σ, σ(q⊥, b) = q⊥;

(2) Then we proceed as in section 3.1 for achieving the construction of the rest of A but
excluding {q0, q1, q2, q⊥} to be the destinations of a transition.

Such a DFA A is depicted in Figure 3 with Σ = {a, b}, for the sake of simplicity. A+ is
equal to A except that q⊥ is now accepting.

Experimental results. We have constructed and run about 300 benchmarks, each one
being a pair of (A,A+). In this context, the information gain is defined as follows.

Information gain =
d(L(A+),L(An))

d(L(A),L(An))

22:14 L. Ye et al Vol. 20:1

q0 q1 q2 q⊥

q4 q5 q6

a a a

b b

a, b

b

a, b

b

a

a

b

Figure 3. A DFA A where a3Σ∗ ∩ L(A) = ∅.

The goal of our experiments is to check whether the gain is strictly bigger than 1 or not.
Different from Section 2.1, we only consider here a low information gain when it is less than
one and a high one when the information gain otherwise.

Range # d(L(A),L(A+)) d(L(A),L(An)) d(L(A+)),L(An)) gain deviation

[0.005, 0.025] 37 0.00800 0.00291 0.00382 1.31271 0.00010

[0.002, 0.005] 61 0.00384 0.00144 0.00177 1.22917 0.00033

[0.001, 0.002] 84 0.00141 0.00055 0.00065 1.18182 0.00016

[0.0005, 0.001] 59 0.00067 0.00026 0.00033 1.26923 0.00003

[0.00005, 0.0005] 59 0.00041 0.00016 0.00019 1.18750 0.00002

Table 5. Evaluation of the algorithm w.r.t. the elimination of pathological
behaviours.

The experimental results are shown in Table 5, where each row represents the results
of all pairs of A and A+ whose distance inside the range depicted in the first column.
Interestingly, the language of the learned DFA is always closer to the one of A than the one
of A+, and this for all distances between A and A+. However as could be expected, since
A+ is a DFA, the information gain remains close to 1. Hence, our experimentation can be
seen as an evidence of capacity of the KV’s algorithm to partially eliminate pathological
behaviours.

3.5. Words distribution. We now discuss the impact of word distribution on the robustness
of the KV’s algorithm. The parameter µ determines the average length of a random word
(1µ − 1). Table 6 summarizes experimental results with different values of µ indicated on

the first row. The other rows correspond to different values of the noise p for A→p. The
cells (at the intersection of a pair (p, µ)) contain the (average) information gain, where
experiments have been done over twenty-two DFA. Note that the worst and best cases are
always eliminated to avoid that the pathological cases perturb the average values. For values
of p that matter (i.e., when the gain is greater than 1), there is clear tendency for the gain
to first increase w.r.t. µ, reaching a maximum about µ = 0.01 the value that we have chosen
and then decrease. A possible explanation would be the following: too short words (i.e., big

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:15

µ) does not help to discriminate between languages while too long words (i.e., small µ) lead
to overfitting and does not reduce the noise.

HH
HHHHp

µ
0.001 0.005 0.01 0.05 0.1

0.01 0.059 0.067 0.078 0.184 0.317

0.005 0.078 0.130 0.134 0.559 0.966

0.0025 0.165 0.298 0.398 1.246 0.823

0.0015 0.465 0.671 2.267 2.074 1.651

0.001 1.801 10.94 8.907 3.753 2.341

Table 6. Analysis of different distributions on Σ∗

3.6. Reduction of the size of the DFA. Up to now the extracted DFA is obtained by
using as exit condition that either the maximal number of rounds is reached or the current
learned automaton is declared equivalent. In practice, since the language of the noisy device
is generally not regular, the current automaton of the algorithm is rarely declared equivalent
and thus the final AE is very often returned after running the maximal number of rounds. In
other words, after the maximal number of rounds, chosen 250 here, the (minimal) extracted
DFA has normally a larger size than the original one, on average about twice the original
one. In view of eliminating over-fitting, we want to reduce the size of the returned DFA. So
we proceed as follows.

• Every 10 rounds, we memorize the current automaton in an array TA;
• When we exit the while loop, we compute the measure of L(AE), denotedm = PrD(L(AE))
and define a threshold which is c ∗m, where we choose c = 10−3;
• Then we examine the saved DFAs by increasing size and select the first one whose distance
from AE is smaller than the threshold and return it (after a minimization);
• Otherwise we return AE (after a minimization).

This is formalized by Algorithm 2.
Table 7 shows the experimental results in the following setting, where we randomly

generated sixty DFA as before.

• the size of the sixty DFA is randomly selected between 20 and 60;
• we only consider DFA with noisy outputs with the parameter p between 10−2 and 10−3.

In this table, ÂE is the DFA returned by Algorithm 2 while AE is the DFA returned by

Algorithm 1. Similarly, ĝain and gain are the information gains corresponding to Algorithm 2
and Algorithm 1, respectively. We first observe that the information gains are very close

whose better one can equally be ĝain or gain. As long as the information gain is less than
one, the size reduction is not significant while as soon as information gain is more than one,
the size decreases by about 1

3 . So we conclude that this adaptation is useful when the KV’s
algorithm performs well, i.e., robust against the introduced noise.

We also performed experimentations with a threshold equal to 0.1m, 0.01m, and 0.005m
not presented in this table. The results establish that this reduces more the size of the DFA

22:16 L. Ye et al Vol. 20:1

Algorithm 2: Modified KV’s algorithm for size reduction of the DFA

Input: L, a language unknown to the algorithm
Input: an integer maxround ensuring termination

Data: integers r, rfinal and period, a boolean b, and a data structure Data
Output: a DFA

Initialize(Data)

r ← 0

rfinal ← maxround

// The control of maxround is unnecessary when L is regular

while r < maxround do
AE ← Synthetize(Data)
(b, w)← IsEquivalent(AE)
if b then

rfinal ← r

break

Update(Data,w)

r ← r + 1

if r%period == 0 then
TA[r/period]← AE

end

i← 1
threshold← c ∗PrD(L(AE))
repeat

if d(L(TA[i]),L(AE)) ≤ threshold then

rfinal ← r

return Minimize(TA[i])

else i← i+ 1

until i ∗ period > rfinal
return Minimize(AE)

but that the information gain is considerably worse than for Algorithm 1 and most of the
time less than one.

p |ÂE | |AE | |ÂE |/|AE | ĝain gain

0.01 182.480 182.940 0.99749 0.11326 0.11425

0.005 137.040 141.700 0.96711 0.50633 0.49839

0.0025 68.380 94.500 0.72360 2.64267 2.62994

0.0015 48.840 77.480 0.63036 3.33972 3.44385

0.001 44.600 66.980 0.66587 6.81623 6.49229

Table 7. Comparison between Algorithms 1 and 2.

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:17

4. Random languages versus structured languages

Recall that in the precedent section, from the experimental results, we conjecture that KV’s
algorithm is robust, when the noise is random, i.e., unstructured, and its quantity is small
enough, such as for DFA with noisy output and with noisy input. This is however not the
case for structured counter DFA, for which KV’s algorithm learns the noisy device itself
instead of the original one whatever the quantity of noise.

In this section, we want to theoretically establish that the main factor of the robustness
of the KV’s algorithm w.r.t. random noise is that almost surely randomness, in most cases,
yields the perturbated language that is unstructured. We consider a language as structured
if it can be produced by some general device. Thus we identify the family of structured
languages with the family of recursively enumerable languages. More precisely, we show that
almost surely DFA with noisy output leads to a language that is not recursively enumerable.
We then demonstrate further that with a mild condition, almost surely DFA with noisy input
yields also non-recursively enumerable language. As for the counter DFA, by definition, it is
clearly recursively enumerable, thus not being studied further.

The following lemma gives a simple means to establish that almost surely a random
language is not recursively enumerable.

Lemma 4.1. Let R be a random language over Σ. Let (wn)n∈N be a sequence of words of
Σ∗. Let Wn = {wi}i<n and ρn = maxW⊆Wn Pr(R∩Wn = W). Assume that limn→∞ ρn = 0.
Then, for all countable families of languages F , almost surely R /∈ F . In particular, almost
surely R is not a recursively enumerable language.

Proof. Let us consider an arbitrary language L. Then, for all n,

Pr(R = L) ≤ Pr(R ∩Wn = L ∩Wn) ≤ ρn.

Thus, Pr(R = L) = 0 and Pr(R ∈ F) =
∑

L∈F Pr(R = L) = 0.

From Lemma 4.1, we immediately obtain that almost surely the noisy output perturba-
tion of any language is not recursively enumerable. The proofs of the two next theorems use
the same notations as those given in Lemma 4.1.

Theorem 4.2. Let L be a language and 0 < p < 1. Then almost surely L→p is not a
recursively enumerable language.

Proof. Consider any enumeration (wn)n∈N of Σ∗ and any W ⊆ Wn. The probability that
L→p ∩Wn is equal to W is bounded by max(p, 1 − p)n. Thus, ρn ≤ max(p, 1 − p)n and
limn→∞ ρn = 0.

We cannot get a similar result for the noisy input perturbation. Indeed consider the
language Σ∗, whatever the kind of noise brought to the input, the obtained language is still
Σ∗. With the kind of input noise that we study, consider the language that accepts words of
odd length (see the automaton A′ of Figure 4). Then the perturbed language with noisy
input is unchanged, i.e., L(A′) = L(A′←p).

However given a DFA A, we can establish a mild condition on A ensuring that almost
surely the random language L(A←p) is not recursively enumerable. To this end, we now
recall Markov chains with some important relative notions.
Notation. Let Q be a finite set of states. Then Dist(Q) = {∆ : Q→ Q≥0 |

∑
q∈Q∆(q) = 1}

is the set of rational distributions over Q.

22:18 L. Ye et al Vol. 20:1

Definition 4.3 (Markov chain). A finite Markov chain is a tupleM = (Q,P) where:

• Q is a finite set of states;

• P is the transition function from Q to Dist(Q) with P (q)(q′) also denoted P (q, q′).

Definition 4.4 (Irreducibility and Periodicity). LetM = (Q,P) be a finite Markov chain.
Then:

• M is irreducible if for any two states q, q′ ∈ Q, there exists n ∈ N such that Pn(q, q′) > 0;

• Assume thatM is irreducible and pick some q0 ∈ Q. Then the periodicicity ofM denoted
period(M) is defined by period(M) = gcd({n > 0 | Pn(q0, q0) > 0}) (which is in fact
independent of q0).

Notation. As usual in the context of graphs, a bottom strongly connected component will
be denoted by a BSCC.

We are now ready to present a mild condition on a DFA A such that almost surely the
random language L(A←p) is not recursively enumerable.

Definition 4.5 (equal-length-distinguishing DFA). Let A = (Q,F, σ, q0) be a DFA. We call
A equal-length-distinguishing if there exist (possibly identical) BSCC C, C′ of A, q1 ∈ C ∩ F ,
q′1 ∈ C′ \ F , and w,w′ ∈ Σ∗ such that we have q1 = σ(q0, w), q

′
1 = σ(q0, w

′), and |w| = |w′|.

Theorem 4.6. Let Σ be an alphabet with |Σ| > 1. Let A = (Q, σ, q0, F) be a DFA over
Σ, 0 < p < 1 and C, C′ some BSCC of A (possibly equal). Assume that A is equal-length-
distinguishing. Then almost surely L(A←p) is not a recursively enumerable language.

Proof. Let us denote ℓ = |w| and let a ∈ Σ. We build a Markov chainM from C as follows:

every transition q
a−→ q′ has probability 1− p and for all b ̸= a, every transition q

b−→ q′ has
probability p

|Σ|−1 . We proceed similarly from C′ to buildM′. We denote m = period(M)

and m′ = period(M′) in the following.
Let us denote αn (resp. α′n) the probability inM (resp. M′) that starting from q1 (resp.
q′1), the current state at time n is q1 (resp. q′1). For the sake of simplicity, we reuse q1 and
q′1 as in Definition 4.5. SinceM andM′ are irreducible with respectively periodicity m and
m′, limn→∞ αmn (resp. limn→∞ α′m′n) exists and is positive. Let us denote α (resp. α′) this

limit. There exists n0 such that for all n ≥ n0, αmn ≥ α
2 and α′m′n ≥

α′

2 .

Define wn = wamm′(n+n0) for all n ∈ N. The probability that wn is accepted by L(A)←p is
lower bounded by the probability that the prefix w is unchanged (thus reaching q1) and that
after mm′(n+ n0) steps the current state inM is q1. Recall that q1 is a final state. So a
lower bound is: min(p, 1− p)ℓ α2 .
The probability that wn is rejected by L(A)←p is lower bounded by the probability that the
prefix w is changed into w′ (thus reaching q′1) and that after mm′(n+ n0) steps the current

state inM′ is q′1. Note that q′1 is not a final state. So a lower bound is: min(p, 1− p)ℓ α
′

2 .
Let W ⊆Wn. The probability that L←p ∩Wn is equal to W is upper bounded by:(

1−min(p, 1− p)ℓ
min(α, α′)

2

)n

Thus ρn ≤
(
1−min(p, 1− p)ℓmin(α,α′)

2

)n
and limn→∞ ρn = 0.

The DFA A of Figure 4 that represents the formula ‘a Until b’ of temporal logic LTL
is equal-length-distinguishing. The corresponding pair of states consists of the accepting

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:19

state and the leftmost one, both constituting a BSCC with only one of them being a final
state. The DFA A′ on the right part of Figure 4 is not equal-length-distinguishing. The
whole DFA is a BSCC with only one final state. There does not exist a pair of w,w′ ∈ Σ∗

satisfying the condition of Definition 4.5. Given a DFA A = (Q, σ, q0, F), checking whether
it is equal-length-distinguishing can be done in quadratic time with the following procedure.

(1) construct a new graph G from A
• the set of vertices is Q×Q;

• there is an edge (q1, q2) → (q′1, q
′
2) in G if there are some transitions q1

a1−→ q′1 and

q2
a2−→ q′2 in A.

(2) check whether there exists at least one vertex (q1, q2) in some BSCC of G with q1 ∈ F
and q2 /∈ F , such that it is reachable from (q0, q0) in G. The existence of such a vertex
implies that A is equal-length-distinguishing.

The omitted correctness proof of this procedure is straightforward.

Figure 4. Two DFA

Since being equal-length-distinguishing is a sufficient condition for ensuring that almost
surely L(A←p) is not a recursively enumerable language, we want to investigate whether it
is necessary. The next proposition shows a particular case when it is the case.

Proposition 4.7. Let Σ be an alphabet with |Σ| > 1. Let A = (Q, σ, q0, F) be a DFA that
is not equal-length-distinguishing and such that every circuit of A belongs to a BSCC. Then,
for every sampling L′ of L(A←p), L′ is regular.

Proof. Pick some n0 ∈ N such that for all w with |w| ≥ n0 and q0
w−→ q implies that q

belongs to some BSCC. Observe now that, since A is not equal-length-distinguishing, for
words w,w′ with |w| = |w′| ≥ n0, w ∈ L iff w′ ∈ L. Thus, for every sampling L′ of L(A←p),
L′ = (L′ ∩ Σ<n0) ∪ (L ∩ Σ≥n0) implying that L′ is regular.

q0 qfqr

a

b

ab

c c

Σ

Figure 5. A DFA A with L(A) = (a+ b)∗a

22:20 L. Ye et al Vol. 20:1

However in general this condition is not necessary. Observe that we establish the next
proposition using a generalization of Lemma 4.1.

Proposition 4.8. Let A be the DFA of Figure 5. Then, A is not equal-length-distinguishing

while almost surely L(A←
2
3) is not recursively enumerable.

Proof. There is a single BSCC with a single state {qr}. SoA is not equal-length-distinguishing.
Let w ̸= λ be a word with |w| = n and denote w̃ the random word obtained by the noisy
perturbation. Observe that every letter of w̃ is uniformly distributed over Σ. So the proba-
bility that w̃ does not contain a c is (23)

n and the conditional probability that w̃ belongs to

L(A←
2
3) knowing that it does not contain a c is 1

2 .
Fix some 0 < ρ < 1. The probability that for all words w ∈ Σn, w̃ contains a c is equal
to (1 − (23)

n)3
n ≤ e−2

n
. Pick an increasing sequence (nk)k∈N such

∑
k∈N e−2

nk ≤ 1 − ρ.
Then with probability at least ρ, for all k, there is a word wk ∈ Σnk such that w̃k does not
contain a c. Letting ρ go to 1, almost surely there is an infinite number of words w such
that w̃ ∈ (a+ b)+.
Let us consider an arbitrary language L′ and (wn)n∈N be an enumeration of Σ+. Then
almost surely there is an infinite number of wn such that w̃n belong to (a+ b)+. Recall that

for such a word, the probability that it belongs to L(A←
2
3) is equal to 1

2 . Let Wn be the

random set of the first nth such words. Then for all n, Pr(L′ = L(A←
2
3)) ≤ Pr(L′ ∩Wn =

L(A←
2
3) ∩Wn) = 2−n.

Thus Pr(L′ = L(A←
2
3)) = 0 and Pr(L(A←

2
3) ∈ F) =

∑
L′∈F Pr(L′ = L(A←

2
3)) = 0 for

F a countable family of languages.

To show the soundness of the structural criterion described in Theorem 4.6 with
experiments and comparisons, we have refined our experiments on DFA with noisy inputs
by partitioning the randomly generated DFA, depending on whether they are equal-length-
distinguishing or not.

We have chosen |Σ| = 3 since with greater size, it was difficult to generate DFAs that
do not satisfy the hypotheses. Tables 8 and 9 summarize these experiments. The last rows
of the tables (where the information gain is greater than one) confirm our conjecture. More
precisely, for any equal-length-distinguishing DFA A, as almost surely L(A←p) is not a
recursively enumerable language, then beyond a certain threshold, the robustness of the
algorithm increases quickly which is not the case in Table 9.

Range # d(L(A),L(A←p)) d(L(A),L(AE)) d(L(A←p)),L(AE)) gain deviation

[0.005, 0.025] 85 0.01114 0.03604 0.04345 0.30902 0.05162

[0.002, 0.005] 81 0.00338 0.00421 0.00747 0.80443 0.02793

[0.001, 0.002] 25 0.00142 0.00035 0.00174 4.09784 0.00062

[0.0005, 0.001] 16 0.00071 0.00006 0.00077 11.08439 0.00006

Table 8. Experiments on equal-length-distinguishing DFA

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:21

Range # d(L(A),L(A←p)) d(L(A),L(AE)) d(L(A←p),L(AE)) gain deviation

[0.005, 0.025] 36 0.01089 0.02598 0.03410 0.41905 0.06152

[0.002, 0.005] 49 0.00308 0.00387 0.00646 0.79628 0.03763

[0.001, 0.002] 35 0.00136 0.00057 0.00182 2.39863 0.00072

[0.0005, 0.001] 36 0.00075 0.00063 0.00130 1.18583 0.00005

Table 9. Experiments on non equal-length-distinguishing DFA

5. Conclusion

We have studied how the PAC-version of KV’s algorithm behaves for devices which are
obtained from a DFA by introducing noise. More precisely, we have investigated whether
KV’s algorithm reduces the noise producing a DFA closer to the original one than the noisy
device. We have considered four kinds of noise either being random or structured. We
have shown that, on average, KV’s algorithm behaves well for random noise but not for
structured one. We have completed our study by establishing that almost surely the random
noisy devices produce a non recursively enumerable language confirming the relevance of
the structural criterion for robustness of KV’s algorithm.

There are several directions for future work. In the short run, we want investigate
whether our results are specific to the KV’s algorithm or valid for all variants of the Angluin’s
algorithm. In another direction, KV’s algorithm has no information about the original DFA.
It would be interesting to introduce a priori knowledge and design more efficient algorithms.
For instance, the algorithm could take as input the maximal size of the original DFA or a
regular language that is a superset of the original language. In our setting the noise resulted
in a noisy device which, once obtained, answers membership queries deterministically. A
different form of noise to be studied would be that the answer to a query is randomly noisy
meaning that for the same repeated query, different answers could occur.

Finally the language inference capacity of recurrent neural networks (RNN) especially on
DFA has been demonstrated by recent work [WGY18, MY18]. So an interesting subsequent
work would be to examine whether the KV’s algorithm reduces the noise introduced by such
RNNs.

References

[ACSvdB20] Kousar Aslam, Loek Cleophas, Ramon Schiffelers, and Mark van den Brand. Interface protocol
inference to aid understanding legacy software components. Softw. Syst. Model., 19(6):1519–1540,
nov 2020. doi:10.1007/s10270-020-00809-2.

[AL87] Dana Angluin and Philip D. Laird. Learning from noisy examples. Mach. Learn., 2(4):343–370,
1987. doi:10.1023/A:1022873112823.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87–
106, 1987. doi:10.1016/0890-5401(87)90052-6.

[BEK02] Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz. PAC learning with nasty noise.
Theoretical Computer Science, 288(2):255–275, 2002. Algorithmic Learning Theory. doi:

10.1016/S0304-3975(01)00403-0.
[BF72a] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples of

their behavior. IEEE Trans. Comput., 21(6):592–597, jun 1972. doi:10.1109/TC.1972.5009015.

https://doi.org/10.1007/s10270-020-00809-2
https://doi.org/10.1023/A:1022873112823
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/S0304-3975(01)00403-0
https://doi.org/10.1016/S0304-3975(01)00403-0
https://doi.org/10.1109/TC.1972.5009015

22:22 L. Ye et al Vol. 20:1

[BF72b] Alan W. Biermann and Jerome A. Feldman. A survey of results in grammatical inference. In
S. Watanabe, editor, Frontiers of Pattern Recognition, pages 31–54. Academic Press, New York,
1972. doi:10.1016/B978-0-12-737140-5.50007-5.

[BHKL09] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-style learning of
nfa. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI’09,
page 1004–1009. Morgan Kaufmann Publishers Inc., 2009. doi:10.5555/1661445.1661605.

[CE07] Alexander Clark and Rémi Eyraud. Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research, 8:1725–1745, dec 2007. doi:
10.5555/1314498.1314556.

[CL10] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems.
Springer Publishing Company, Incorporated, 2010. doi:10.1007/978-0-387-68612-7.

[Cla10] Alexander Clark. Distributional learning of some context-free languages with a minimally
adequate teacher. In Grammatical Inference: Theoretical Results and Applications, ICGI’10,
page 24–37. Springer-Verlag, 2010. doi:10.5555/1886263.1886269.

[Dec97] Scott E. Decatur. Pac learning with constant-partition classification noise and applications to
decision tree induction. In Proceedings of the Fourteenth International Conference on Machine
Learning, ICML ’97, page 83–91, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers
Inc.

[FBLJ+21] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo.
Induction and exploitation of subgoal automata for reinforcement learning. J. Artif. Int. Res.,
70:1031–1116, may 2021. doi:10.1613/jair.1.12372.

[FH17] Paul Fiterau-Brostean and Falk Howar. Learning-based testing the sliding window behavior
of TCP implementations. In Laure Petrucci, Cristina Seceleanu, and Ana Cavalcanti, editors,
Critical Systems: Formal Methods and Automated Verification - FMICS-AVoCS 2017, Turin,
Italy, September 18-20, 2017, Proceedings, volume 10471 of Lecture Notes in Computer Science,
pages 185–200. Springer, 2017. doi:10.1007/978-3-319-67113-0_12.

[FJV16] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. Combining model learning
and model checking to analyze TCP implementations. In Swarat Chaudhuri and Azadeh Farzan,
editors, 28th International Conference on Computer Aided Verification, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Part II, volume 9780 of Lecture Notes in Computer Science,
pages 454–471. Springer, 2016. doi:10.1007/978-3-319-41540-6_25.

[FLP+17] Paul Fiterau-Brostean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits W. Vaandrager, and
Patrick Verleg. Model learning and model checking of SSH implementations. In Hakan Erdogmus
and Klaus Havelund, editors, Proceedings of the 24th ACM SIGSOFT International SPIN
Symposium on Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017, pages
142–151. ACM, 2017. doi:10.1145/3092282.3092289.

[Gol78] E Mark Gold. Complexity of automaton identification from given data. Information and Control,
37(3):302 – 320, 1978. doi:10.1016/S0019-9958(78)90562-4.

[HIS+12] Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and Bengt Jonsson. Inferring
semantic interfaces of data structures. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA
2012, Heraklion, Crete, Greece, October 15-18, 2012, Part I, volume 7609 of Lecture Notes in
Computer Science, pages 554–571. Springer, 2012. doi:10.1007/978-3-642-34026-0_41.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963. doi:10.2307/2282952.

[JMKO20] Natasha Yogananda Jeppu, Thomas Melham, Daniel Kroening, and John O’Leary. Learning
concise models from long execution traces. In Proceedings of the 57th ACM/EDAC/IEEE Design
Automation Conference, DAC ’20. IEEE Press, 2020. doi:10.5555/3437539.3437631.

[Kea98] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–
1006, 1998. doi:10.1145/293347.293351.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994. doi:10.7551/mitpress/3897.001.0001.

[MP91] Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets. In Proceedings of
the Fourth Annual Workshop on Computational Learning Theory, COLT ’91, page 128–138.
Morgan Kaufmann Publishers Inc., 1991. doi:10.5555/114836.114848.

https://doi.org/10.1016/B978-0-12-737140-5.50007-5
https://doi.org/10.5555/1661445.1661605
https://doi.org/10.5555/1314498.1314556
https://doi.org/10.5555/1314498.1314556
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.5555/1886263.1886269
https://doi.org/10.1613/jair.1.12372
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.2307/2282952
https://doi.org/10.5555/3437539.3437631
https://doi.org/10.1145/293347.293351
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.5555/114836.114848

Vol. 20:1 ANALYZING ROBUSTNESS OF ANGLUIN’S L∗ ALGORITHM IN PRESENCE OF NOISE 22:23

[MY18] Franz Mayr and Sergio Yovine. Regular inference on artificial neural networks. In Andreas
Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar R. Weippl, editors, Proceedings of Interna-
tional Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE
2018, Hamburg, Germany, August 27-30, 2018, volume 11015 of Lecture Notes in Computer
Science, pages 350–369. Springer, 2018. doi:10.1007/978-3-319-99740-7_25.

[Qui86] J. R. Quinlan. The effect of noise on concept learning. In Machine Learning, An Artificial
Intelligence Approach Volume II, chapter 6, pages 149–166. Morgan Kaufmann, 1986.

[RS89] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, STOC ’89,
page 411–420. Association for Computing Machinery, 1989. doi:10.1145/73007.73047.

[SG09] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Proceedings of the 2nd
World Congress on Formal Methods, FM ’09, page 207–222. Springer-Verlag, 2009. doi:10.
1007/978-3-642-05089-3_14.

[Slo95] Robert H. Sloan. Four types of noise in data for pac learning. Inf. Process. Lett., 54(3):157–162,
may 1995. doi:10.1016/0020-0190(95)00016-6.

[Sol64] Ray J. Solomonoff. A formal theory of inductive inference. Inf. Control., 7(1, 2):1–22, 224–254,
1964. doi:10.1016/S0019-9958(64)90223-2.

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:
10.1145/1968.1972.

[vdA12] Wil M. P. van der Aalst. Process mining. CACM, 55(8):76–83, 2012. doi:10.1145/2240236.
2240257.

[WGY18] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80, pages
5247–5256. PMLR, 10–15 Jul 2018. doi:10.48550/arXiv.1711.09576.

[Wha74] R. M. Wharton. Approximate language identification. Information and Control, 26(3):236 –
255, 1974. doi:10.1016/S0019-9958(74)91369-2.

[YC10] Ryo Yoshinaka and Alexander Clark. Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In Proceedings of the 15th and 16th International
Conference on Formal Grammar, FG’10/FG’11, page 192–207, Berlin, Heidelberg, 2010. Springer-
Verlag. doi:10.1007/978-3-642-32024-8_13.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1145/73007.73047
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1016/0020-0190(95)00016-6
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/2240236.2240257
https://doi.org/10.1145/2240236.2240257
https://doi.org/10.48550/arXiv.1711.09576
https://doi.org/10.1016/S0019-9958(74)91369-2
https://doi.org/10.1007/978-3-642-32024-8_13

	Introduction
	1. Preliminaries
	2. Robustness Analysis against Noises
	2.1. Principle and goals of the robustness analysis
	2.2. Noise

	3. Experimental Evaluation
	3.1. Generating DFAs
	3.2. Tunings
	3.3. Qualitative and Quantitative analysis
	3.4. DFA with pathological behaviours
	3.5. Words distribution
	3.6. Reduction of the size of the DFA

	4. Random languages versus structured languages
	5. Conclusion
	References

