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Abstract. In the context of the stream calculus, we present an Implicit Function Theorem
(IFT) for polynomial systems, and discuss its relations with the classical IFT from calculus.
In particular, we demonstrate the advantages of the stream IFT from a computational point
of view, and provide a few example applications where its use turns out to be valuable.

1. Introduction

In theoretical computer science, the last two decades have seen an increasing interest in the
concept of stream and in the related proof techniques, collectively designated as the stream
calculus [Rut01, Rut03b, Rut05a]. A stream σ = (r0, r1, ...) is an infinite sequence of elements
(coefficients) ri drawn from any set; the stream calculus requires that this set be endowed
with some algebraic structure, such as a field. Therefore, as a concrete mathematical object,
a stream is just the same as a formal power series considered in combinatorics and other
fields of mathematics. The use of a different terminology here is motivated by the fact that,
with streams, the basic computational device is that of stream derivative, as opposed to the
ordinary derivative from calculus considered in formal power series. The stream derivative σ′

is obtained by simply removing the first element r0 from σ. The ordinary derivative of a
formal power series, on the other hand, does not enjoy such a simple formulation in terms
of stream manipulation. The simplicity of stream derivative also leads to computational
advantages, as discussed further below. Algebraically, the stream derivative enjoys a nice
relation with the operation of convolution × (one of the possible notions of product for
streams, to be introduced in Section 2), as expressed by the so-called fundamental theorem
of the stream calculus:

σ = σ(0) +X × σ′ .

Here, σ(0) is taken as an abbreviation of the stream (σ(0), 0, 0, ...), while X = (0, 1, 0, 0, ...).
As can be intuited from this equation, multiplying a stream (σ′ in this case) by X has the
effect of shifting one position to the right the stream’s coefficients.

A powerful and elegant proof technique for streams is coinduction [San11], whose
step-by-step flavour naturally agrees with the above mentioned features of streams, in
particular stream derivative. Moreover, an important specification and computational device
is represented by stream differential equations (SDEs, [HKR17]), the analog of ordinary
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differential equations (ODEs) for functions and formal power series [FS01, Sta12]. It is this
toolkit of mechanisms and proof techniques that one collectively designates as the stream
calculus [Rut01, Rut03b, Rut05a]. One point of strength of the stream calculus is that it
provides simple, direct and unified reasoning techniques, that can be applied to a variety of
systems that involve the treatment of sequences. A distinguished feature of proofs conducted
within the stream calculus is that issues related to convergence (of sequences, functions
etc.) basically never enter the picture. As an example, the stream calculus has been proved
valuable in providing a coinductive account of analytic functions and Laplace transform
[PE98], in solving difference and differential equations [Bor19, Bor20, Rut03b, Rut05a], as
well as in formalizing several versions of signal flow graphs [BSZ15, BSZ17, Rut03a, Rut05b].
In Section 2, we provide a quick overview of the basic definitions and features of the stream
calculus.

The main goal and contribution of the present work is to add yet another tool to the
stream calculus: an Implicit Function Theorem (IFT) for systems of stream polynomial
equations. Indeed, while SDEs represent a powerful computational device, depending on the
problem at hand, streams may be more naturally expressed in an algebraic fashion, that is as
the (unique) solution of systems of polynomial equations. In analogy with the classical IFT
from calculus [KP12, Rud76, SR22], our main result provides sufficient syntactic conditions
under which a system of polynomial equations has a unique stream solution. Moreover, the
theorem also provides an equivalent system of SDEs, that is useful to actually generate
the stream solution. It is here that the computational advantage of stream derivatives, as
opposed to ordinary ones, clearly shows up.

In the classical IFT [Rud76, Th.9.28], one considers a system of equations in the variables
(x,yyy), say FFF(x,yyy) = 0; for simplicity, here we assume that x is a scalar, while yyy can be a
vector. The IFT gives sufficient conditions under which, for any fixed point (x0,yyy0) satisfying
FFF(x0,yyy0) = 0, a neighbourhood around x0 and a map f on that neighbourhood exist fulfilling
f(x0) = yyy0 and FFF(x, f(x)) = 0. Otherwise said, FFF(x,yyy) = 0 implicitly defines a function f
(hence the name of the theorem) such that f(x0) = yyy0 and FFF(x, f(x)) is identically 0 in a
neighborhood of x0, The required sufficient condition is that the Jacobian matrix (the matrix
of partial derivatives) of FFF with respect to yyy be nonsingular when evaluated at (x0,yyy0). The
theorem also gives a system of ODEs whose solution is the function f(x). Although the
ODE system will be in general impossible to solve analytically, it can be used to compute a
truncated Taylor series of f(x) to the desired degree of approximation.

In Section 3, in the setting of the stream calculus and of polynomial equations, we obtain
a version of the IFT whose form closely resembles the classical one (Theorem 3.10). The
major difference is that the stream version relies, of course, on stream derivatives, and on a
corresponding notion of stream Jacobian. In particular, the system of ODEs that defines
the solution is here replaced by a system of SDEs. A crucial step towards proving the
result is devising a stream version of the chain rule from calculus, whereby one can express
the derivative of a function FFF(x, y1(x), ..., yn(x)) with respect to x in terms of the partial
derivatives of FFF with respect to yi and the ordinary derivative of the yi with respect to x.

In Section 4, beyond the formal similarity, we discuss the precise mathematical relation
of the stream IFT with the classical IFT (Theorem 4.2). We show that the two theorems
can be applied precisely under the same assumptions on the classical Jacobian of FFF(x,yyy).
Moreover, the sequence of Taylor coefficients of the function defined by the classical IFT
coincides with the solution identified by the stream IFT. Therefore, one has two alternative
methods to compute the (stream) solution. Despite this close relationship, the stream version
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of the theorem is conceptually and computationally very different from the classical one;
the computational aspects will be further discussed below. In Section 4, we also discuss the
relation of the stream IFT with algebraic series as considered in enumerative combinatorics
[FS01, Sta12].

As an extended example of application of the stream IFT, in Section 5 we apply the
result to the problem of enumerating three-colored trees [FS01, Sect.4, Example 14], a typical
class of combinatorial objects that are most naturally described by algebraic equations.

In Section 6 we discuss the computational aspects of the stream IFT. We first outline an
efficient method to calculate the coefficients of the stream solution up to a prescribed order,
based on the SDE system provided by the theorem. Then we offer an empirical comparison
between two methods to compute the stream solution: the above mentioned method based
on the stream IFT, and the method based on the ODEs provided by the classical IFT. This
comparison clearly shows the computational benefits of first method (stream IFT) over the
second one (classical IFT) in terms of running time. An important point is that, when
applied to polynomials, the syntactic size of stream derivatives is approximately half the
size of ordinary (classical) derivatives.

We conclude the paper in Section 7 with a brief discussion on possible directions for
future research.

Related work. The stream calculus in the form considered here has been introduced by
Rutten in a series of works, in particular [Rut01] and [Rut03b]. In [Rut01], streams and
operators on streams are introduced via coinductive definitions and behavioural differential
equations, later called stream differential equations, involving initial conditions and derivatives
of streams. Several applications are also presented to: difference equations, analytical
differential equations, and some problems from discrete mathematics and combinatorics. In
[Rut03b] streams, automata, languages and formal power series are studied in terms of the
notions of coalgebra homomorphisms and bisimulation.

A recent development of the stream calculus that is related to the present work is [BG21],
where the authors introduce a polynomial format for SDEs and an algorithm to automatically
check polynomial equations, with respect to a generic notion of product for streams satisfying
certain conditions. These results can be applied to convolution and shuffle products, among
the others.

In formal language theory, context-free grammars can be viewed as instances of polynomial
systems: see [KS86]. A coinductive treatment of this type of systems is found in Winter’s
work [Win14, Ch.3]. Note that, on one hand, the polynomial format we consider here is
significantly more expressive than context-free grammars, as we can deal with such equations
as x2 + y2 − 1 = 0 (see Example 3.11 in Section 3) that are outside the context-free format.
On the other hand, here we confine to univariate streams, which can be regarded as weighted
languages on the alphabet {x}, whereas in language theory alphabets of any finite size can
be considered. How to extend the present results to multivariate streams is a challenging
direction for future research.

In enumerative combinatorics [FS01, Sta12], formal power series defined via polynomial
equations are named algebraic series. [FS01, Sect.4] discusses several aspects of algebraic
series, including several methods of reduction, involving the theory of resultants and Groebner
bases. We compare our approach to algebraic series in Section 3, Remark 3.12.
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2. Background

2.1. Streams. Let (K, 0, 1,+, ·) be a field. We let Σ⟨K⟩ := Kω, ranged over by σ, τ, ...,
denote the set of streams, that are infinite sequences of elements from K: σ = (r0, r1, r2, ...)
with ri ∈ K. Often K is understood from the context and we shall simply write Σ rather
than Σ⟨K⟩. When convenient, we shall explicitly consider a stream σ as a function from N to
K and, e.g., write σ(i) to denote the i-th element of σ. By slightly overloading the notation,
and when the context is sufficient to disambiguate, the stream (r, 0, 0, ...) (r ∈ K) will be
simply denoted by r, while the stream (0, 1, 0, 0, ...) will be denoted by X; see [Rut03b] for
motivations behind these notations. Given two streams σ and τ , we define the streams σ+ τ
(sum) and σ × τ (convolution product) by

(σ + τ)(i) := σ(i) + τ(i) (σ × τ)(i) :=
∑

0≤j≤i

σ(j) · τ(i− j) (2.1)

for each i ≥ 0, where the + and · on the right-hand sides above denote sum and product in
K, respectively. Sum enjoys the usual commutativity and associativity properties, and has
the stream 0 = (0, 0, ...) as an identity.

Convolution product is commutative, associative, has 1 = (1, 0, 0, ...) as an identity,
and distributes over +; differently from, e.g., [BG21, HKR17], here we only consider the
convolution product.

Multiplication of σ = (r0, r1, ...) by a scalar r ∈ K, denoted rσ = (r r0, r r1, ...), is
also defined and makes (Σ,+, 0) a vector space over K. Therefore, (Σ,+,×, 0, 1) forms
a (associative) K-algebra. We also record the following facts for future use: X × σ =
(0, σ(0), σ(1), ...) and r × σ = (r σ(0), r σ(1), ...), where r ∈ K. In view of the second equation
above, r × σ coincides with rσ.

For each σ, we let its derivative σ′ be the stream defined by σ′(i) = σ(i+ 1) for each
i ≥ 0. In other words, σ′ is obtained from σ by removing the first element σ(0). The equality
X × σ = (0, σ(0), σ(1), ...) above leads to the so called fundamental theorem of the stream
calculus, whereby for each σ ∈ Σ

σ = σ(0) +X × σ′ . (2.2)

Every stream σ such that σ(0) ̸= 0 has a unique inverse with respect to convolution, denoted
σ−1, that satisfies the equations:

(σ−1)′ = −σ(0)−1 · (σ′ × σ−1) (σ−1)(0) = σ(0)−1 . (2.3)

2.2. Polynomial stream differential equations. Let us fix a finite, non empty set of
symbols or variables Y = {y1, . . . , yn} and a distinguished variable x /∈ Y . Notationally, when
fixed an order on such variables, we use the notation yyy := (y1, ..., yn). We fix a generic field
K of characteristic 0; K = R and K = C will be typical choices. We let P := K[x, y1, ..., yn],
ranged over by p, q, ..., be the set of polynomials with coefficients in K and indeterminates in
{x} ∪ Y . As usual, we shall denote polynomials as formal finite sums of distinct monomials
with coefficients in K: p =

∑
i∈I rimi, for ri ∈ K and mi monomials over {x} ∪ Y. For the

sake of uniform notation, we shall sometimes let y0 denote x, so we can write a generic
monomial in P as yk00 · · · yknn , for ki ∈ N for every i. By slight abuse of notation, we shall
write the zero polynomial and the empty monomial as 0 and 1, respectively.
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Over P, one defines the usual operations of sum p+ q and product p · q, with 0 and 1
as identities, and enjoying commutativity, associativity and distributivity, which make P
a ring. Multiplication of p ∈ P by a scalar r ∈ K, denoted rp, is also defined and makes
(P,+, 0) a vector space over K. Therefore, (P,+,×, 0, 1) as well forms a free K-algebra
with generators (x, y1, ..., yn). For each n-tuple of streams σσσ = (σ1, ..., σn), there is a unique
K-algebra homomorphism ϕσσσ : P −→ Σ such that ϕσσσ(x) = X and ϕσσσ(yi) = σi for i = 1, ..., n.
For any p ∈ P , we let p(X,σσσ) := ϕσσσ(p), that is the result of substituting the variables x and
yyy in p with the streams X and σσσ, respectively.

Definition 2.1 (SDE [Rut03b]). Given a tuple of polynomials (p1, ..., pn) ∈ Pn and rrr0 =
(r1, ..., rn) ∈ Kn, the corresponding system of (polynomial) stream differential equations
(SDEs) D and initial conditions are written as follows

D = {y′1 = p1, ..., y
′
n = pn} ρ = {y1(0) = r1, ..., yn(0) = rn} . (2.4)

The pair (D, ρ) is also said to form a (polynomial) SDE initial value problem for the variables
yyy. A solution of (2.4) is a tuple of streams σσσ = (σ1, ..., σn) ∈ Σn such that σ′

i = pi(X,σσσ) and
σi(0) = ri, for i = 1, ..., n.

A natural generalization of the above definition are systems of rational SDEs, where the
right-hand side of each equation is a fraction of polynomials. Systems of rational SDEs have
indeed the same expressive power as polynomial ones: a version of this (well-known) result
will be explicitly formulated in Section 3 (see Lemma 3.4). For a proof of the following
theorem (in a more general context), see e.g. [BG21, HKR17].

Theorem 2.2 (existence and uniqueness of solutions). Every polynomial SDE initial value
problem of the form (2.4) has a unique solution.

Remark 2.3 (stream coefficients computation). We record for future use that a SDE initial
value problem (D, ρ) like (2.4) yields a recurrence relation, hence an algorithm, to compute
the coefficients of the solution streams σi. Indeed, denote by σ:k the stream that coincides
with σ when restricted to {0, ..., k} and is 0 elsewhere. This notation is extended to a tuple
σσσ componentwise. Then we have, for each i = 1, ..., n and k ≥ 0:

σi(0) = yi(0) (2.5)

σi(k + 1) = σ′
i(k) = pi(X,σσσ)(k) = pi(X,σσσ:k)(k) (2.6)

where the last step follows from the fact that the k-th coefficient of pi(X,σσσ) only depends on
the first k coefficients of σσσ (see (2.1)). In the literature, this is referred to as causality (see
[HKR17, Kli11, PR17], just to cite a few).

As an example, consider (here we let y = y1):

y′ = y2 y(0) = 1

for which we get the recurrence: σ(0) = 1 and σ(k + 1) = σ2(k) =
∑k

j=0 σ(j) · σ(k − j).
From the computational point of view this is far from optimal. Indeed, in the case of a single
polynomial equation (n = 1) like this one, a linear (in y) recurrence relation for generating
the Taylor coefficients of the solution can always be efficiently built; see [FS01, Sta12]. In
the case of n > 1 equations, the situation is more complicated. We defer to Section 6 further
considerations on the computation of stream coefficients, including details on an effective
implementation of (2.6).
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3. An implicit function theorem for the stream calculus

Let E ⊆ P be a finite, nonempty set of polynomials that we call polynomial system. A stream
solution of E is a tuple of streams σσσ = (σ1, ..., σn) such that p(X,σσσ) = 0 for each p ∈ E .
We want to show that, under certain syntactic conditions, E has a unique stream solution,
which can be also defined via a polynomial SDE initial value problem (D, ρ). Instrumental
to establish this result is a close stream analog of the well known Implicit Function Theorem
(IFT) from calculus.

Let us introduce some extra notation on polynomials and streams. Beside the variables
x and yyy = (y1, ..., yn), we shall consider a set of new, distinct initial value indeterminates
yyy0 = (y01, ..., y0n) and primed indeterminates y′y′y′ = (y′1, ..., y

′
n). As usual, we let y0 = x;

moreover, by slightly abusing notation, we will let y00 denote 0 (the scalar zero). We will
assume a fixed total order on all variables (x =)y0 < y1 < · · · < yn and, for any monomial
m ̸= 1, on the variables in yyy define min(m) := min{y : y occurs in m}, where the min is
taken according to the fixed total order on variables. In the definition below, we order the
individual variables in a monomial according to < before proceeding to differentiation. It
will turn out that the chosen total order is semantically immaterial, see Remark 3.3 further
below. The total degree of a monomial m is just its size, that is the number of occurrences
of variables in m. Recall that K[x,yyy0,yyy,yyy

′] denotes the set of polynomials having with
coefficients in K and indeterminates in x,yyy0,yyy,yyy

′.

Definition 3.1 (syntactic stream derivative). The syntactic stream derivative operator
(·)′ : P → K[x,yyy0,yyy,yyy

′] is defined as follows. First, we define (·)′ on monomials by induction
on the total degree as follows:

(1)′ := 0 (x)′ := 1 (yi)
′ := y′i (1 ≤ i ≤ n)

(yi ·m)′ := y′i ·m+ y0i · (m)′ (0 ≤ i ≤ n, yi = min(yi ·m) and m ̸= 1).

The operator (·)′ is then extended to polynomials in P by linearity.

As an example, (xy21 + y1y2)
′ = y21 + y′1y2 + y01y

′
2. Note that p′ lives in a polynomial

ring K[x,yyy0,yyy,yyy
′] that includes P . We shall write p′ as p′(x,yyy0,yyy,yyy

′) when wanting to make
the indeterminates that may occur in p′ explicit. With this notation, it is easy to check that
(·)′ commutes with substitution, as stated in the following lemma.

Lemma 3.2. For every p(x,yyy) and σσσ, we have that (p(X,σσσ))′ = p′(X,σσσ(0),σσσ,σσσ′).

Proof. For p a monomial, the proof is by induction on its total degree, and straightforwardly
follows from Definition 3.1. The general case when p is a linear combination of monomials
follows then by linearity of the definition of (·)′.

Remark 3.3. While the definition of syntactic stream derivative does depend on the chosen
total order of indeterminates (y0, ..., yn), Lemma 3.2 confirms that this order becomes
immaterial when the indeterminates are substituted with streams. In particular, if (·)′ and
(·)† are two syntactic stream derivative operators, corresponding to two different total orders,
Lemma 3.2 implies that p′(X,σσσ(0),σσσ,σσσ′) = p†(X,σσσ(0),σσσ,σσσ′) = (p(X,σσσ))′, where the last
occurrence of (·)′ denotes stream derivative.

Ultimately, this coincidence stems from the fact that the asymmetry in the definition of
stream derivative of the convolution product, (σ × τ)′ = σ′ × τ + σ(0) · τ ′, is only apparent.
Indeed, taking into account the equality σ(0) = σ−X×σ′, one can obtain the symmetric rule
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(σ× τ)′ = σ′ × τ + σ× τ ′ −X × σ′ × τ ′. Note, however, that the equality σ(0) = σ−X × σ′

cannot be expressed at the syntactic (polynomial) level.

The next lemma is about rational SDEs, and how to convert them into polynomial SDEs.
This result has already appeared in the literature in various forms, see e.g. [BBHR14, Mil10].
Here we keep its formulation as elementary as possible, and tailor it to our purposes. Its
proof is a routine application of equation (2.3).

Lemma 3.4 (from rational to polynomial SDEs). Let fi(x,yyy0,yyy) for i = 1, ..., n and
g(x,yyy0,yyy) be polynomials, and rrr0 ∈ Kn be such that g(0, rrr0, rrr0) ̸= 0. Let σσσ = (σ1, ...., σn) be
any tuple of streams satisfying the following system of (rational) SDEs and initial conditions:

σ′
i = fi(X, rrr0,σσσ) · g(X, rrr0,σσσ)

−1 σi(0) = r0i (i = 1, ..., n) . (3.1)

Then, for a new variable w, there is a polynomial h(x,yyy0,yyy, w), not depending on σσσ, such
that (σσσ, τ), with τ := g(x, rrr0,σσσ)

−1, is the unique solution of the following initial value problem
of n+ 1 polynomial SDEs and initial conditions:

σ′
i = fi(X, rrr0,σσσ) · τ σi(0) = r0i (i = 1, ..., n) (3.2)

τ ′ = −g(0, rrr0, rrr0)
−1 · h(X, rrr0,σσσ, τ) · τ τ(0) = g(0, rrr0, rrr0)

−1 . (3.3)

In particular, the polynomial h(x,yyy0,yyy, w) is obtained from g′ = g′(x,yyy0,yyy,yyy
′) by replacing

each variable y′i with the polynomial fi(x,yyy0,yyy) ·w, for i = 1, ..., n. Conversely, for any (σσσ, τ)
satisfying (3.2) and (3.3), we have that σσσ also satisfies (3.1).

An important technical ingredient in the proof of the IFT for streams is an operator of
stream partial derivative ð

ðyi on polynomials: this will allow us to formulate a stream analog
of the chain rule from calculus1. For our purposes, a chain rule for polynomials suffices; for a
more general scenario, see [Rut05a, Eq.25], where composition of streams is introduced (and
can be used for covering the case of arbitrary functions). The following result is instrumental
to formally introduce stream partial derivatives and the chain rule for streams.

Lemma 3.5. For every p ∈ P, any y′i ∈ yyy′ can only occur linearly in p′, i.e., there is a
unique (n+1)-tuple (q0, q1, ..., qn) of polynomials in K[x,yyy0,yyy] such that p′ = q0+

∑n
i=1 qi ·y′i.

Proof. Let us first consider existence. We first consider the case in which p is a monomial
and we proceed by induction on its total degree. The base case follows by the first three
cases of Def. 3.1: for p = 1, set all qi’s to 0; for p = x, set q0 = 1 and all other qi’s to 0;
for p = yi, set qi = 1 and all other qj ’s to 0. For the inductive case, consider p = yi · m
with m ̸= 1 and yi = min(yi ·m). By induction hypothesis, there is a unique (n+ 1)-tuple
(q̂0, q̂1, ..., q̂n) of polynomials such that m′ = q̂0 +

∑n
j=1 q̂j · y′j . By the fourth case of Def. 3.1,

p′ := y′i ·m+ y0i ·m′; then, it suffices to set q0 = y0i · q̂0, qi = y0i · q̂i +m, and all other qj ’s
to y0i · q̂j . The case when p is a linear combination of monomials follows by linearity.

As to uniqueness, suppose there are two tuples (q0, q1, ..., qn) and (q̃0, q̃1, ..., q̃n) of poly-
nomials in K[x,yyy0,yyy] such that p′ = q0 +

∑n
i=1 qi · y′i = q̃0 +

∑n
i=1 q̃i · y′i. This implies

(q0 − q̃0) +
∑n

i=1(qi − q̃i) · y′i = 0. For each j = 1, ..., n, the indeterminate y′j in the last sum
does not occur in any of the terms (qi − q̃i) (0 ≤ i ≤ n), which implies that (qj − q̃j) = 0,
hence qj = q̃j . This in turn implies q0 − q̃0 = 0, hence q0 = q̃0 as well.

1The chain rule from calculus is: d
dx

f(y1(x), ..., yn(x)) =
∑n

i=1
∂

∂yi
f(y1(x), ..., yn(x)) · d

dx
yi(x) =

∇yyy f(y1(x), ..., yn(x)) · ( d
dx

y1(x), ...,
d
dx

y1(x))
T .
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For reasons that will be apparent in a while, we introduce the following suggestive
notation for the polynomials qi uniquely determined by p according to Lemma 3.5:

ðp
ðx

:= q0
ðp
ðyi

:= qi (i = 1, ..., n) ∇\ yyy p :=

(
ðp
ðy1

, ...,
ðp
ðyn

)
.

With this notation, the equality for p′ in the lemma can be written in the form of a chain
rule:

p′ :=
ðp
ðx

+ (∇\ yyy p) · yyy′T . (3.4)

Also, it is easy to check that ðp
ðx ∈ P , so that one may write ðp

ðx(x,yyy) if wanting to emphasize
the dependence on indeterminates. Practically, ðp

ðyi (1 ≤ i ≤ n) can be easily computed
from p′ by taking its quotient with respect to y′i: this means expressing the syntactic stream
derivative as p′ = (· · · ) + q · y′i, with y′i not occurring in (· · · ), then letting ðp

ðyi = q. Likewise,
ðp
ðx can be computed by removing from p′ all terms divisible by some y′i. A few examples are
discussed below.

Example 3.6 (partial stream derivatives). Let α be a monomial. For x not occurring in α,
j ≥ 1 and yi ̸= x, we have:
• ð

ðxx
jα = xj−1α, ð

ðxα = 0 and ð
ðyix

jα = 0;
• for yi not occurring in α, ð

ðyiα = 0.

When yi occurrs in α, the position of yi in the total order of variables plays a role in the result
(only at a syntactic level, cf. Remark 3.3). As an example, ð

ðy2 2y
2
1y

2
2y3 = 2y201y3(y2 + y02).

The partial stream derivative operator is linear. As an example, for p = x2y1y
3
2 +2y1y

2
2 +

2x+1, we have: ðp
ðx = xy1y

3
2 +2, ðp

ðy1 = 2y22 and ðp
ðy2 = 2y01(y02 + y2). These are all instances

of a general rule expressed by equation (4.1), which is established in the proof of Lemma 4.1.

The following lemma translates the syntactic formula (3.4) in terms of streams. Its proof
is an immediate consequence of (3.4) and of Lemma 3.2.

Lemma 3.7 (chain rule for stream derivative). For any σσσ and rrr0 = σσσ(0), we have:

(p(X,σσσ))′ =
ðp
ðx

(X, rrr0,σσσ) + (∇\ yyy p)(X, rrr0,σσσ) · σσσ′T .

Now we assume |E| = n, say E = {p1, ..., pn}. Fixing some order on its elements, we will
sometimes regard E as a vector of polynomials, and use the notation E(x,yyy) accordingly.
In particular, we let ∇\ yyy E denote the n × n matrix of polynomials whose rows are ∇\ yyy pi,
for i = 1, ..., n. Evidently, this is the stream analog of the Jacobian of E . Moreover, we let
ðE
ðx :=

(
ðp1
ðx , ....,

ðpn
ðx

)
. The following lemma is an immediate consequence of the fact that

E(X,σσσ)′ = 0 and of previous lemma, considering E componentwise.

Lemma 3.8. Let σσσ = (σ1, ..., σn) be a solution of E and rrr0 = σσσ(0). Then

(∇\ yyy E)(X, rrr0,σσσ) · σσσ′T +

(
ðE
ðx

(X,σσσ)

)T

= 0. (3.5)



Vol. 20:2 AN IMPLICIT FUNCTION THEOREM FOR THE STREAM CALCULUS 15:9

Example 3.9. Consider the polynomial system made up of a single equation, E = {p},
where p(x,yyy) := y − (1 + xy2) with yyy = y = y1 (see also [Rut05a, pg. 117]). We compute

(∇\ yyy E)(x, rrr0,yyy) =∇\ y p(x, r0, y) =
ðp
ðy

(x, r0, y) = 1

ðE
ðx

(x,yyy) =
ðp
ðx

(x, y) = −y2 .

Hence, for any stream solution σ of E , applying Lemma 3.8 we get:

σ′ − σ2 = 0 .

Consider now E = {q} with q(x, y) := x2 + y2 − 1, where y = y1 and y0 = y01. We compute

(∇\ y E)(x, r0, y) = y + y0

ðq
ðx

(x, y) = x .

Hence, for any stream solution σ of E , applying Lemma 3.8 we get:

(σ + σ(0)) · σ′ +X = 0 .

Let us recall a few facts from the theory of matrices and determinants in a commutative
ring, applied to the ring Σ. By definition, a matrix of streams A ∈ Σn×n is invertible iff
there exists a matrix of streams B ∈ Σn×n such that A × B = B × A = I (the identity
matrix of streams); this B, if it exists, is unique and denoted by A−1. It is easy to show
that A ∈ Σn×n is invertible if and only if A(0) ∈ Kn×n is invertible2. By general results on
determinants, det(A × B) = det(A) · det(B) (Binet’s theorem). For streams, this implies
that, if A is invertible, then det(A) as a stream is invertible, that is det(A)(0) ̸= 0. Moreover,
again by virtue of these general results, the formula for the element of row i and column j of
A−1 is given by:

A−1(i, j) = (−1)i+j det(A)−1 · det(Aji) (3.6)

where Aji denotes the (n− 1)× (n− 1) adjunct matrix obtained from A by deleting its j-th
row and i-th column. Also note that, for a n× n matrix of polynomials, say P = P (x,yyy0,yyy),
det(P ) is a polynomial in x,yyy0,yyy, and det(P (X, rrr0,σσσ)) = (det(P ))(X, rrr0,σσσ).

Theorem 3.10 (IFT for streams). Let rrr0 ∈ Kn be such that E(0, rrr0) = 0 and (∇\ yyy E)(0, rrr0, rrr0)
is invertible as a matrix in Kn×n. Then there is a unique stream solution σσσ of E such that
σσσ(0) = rrr0. Moreover, (∇\ yyy E)(X, rrr0,σσσ) is invertible as a matrix in Σn×n and σσσ satisfies the
following system of n rational SDEs and initial conditions:

σσσ′T = −(∇\ yyy E)(X, rrr0,σσσ)
−1 ·

(
ðE
ðx

(X,σσσ)

)T

σσσ(0) = rrr0 . (3.7)

Moreover, from (3.7) it is possible to build a system of n + 1 polynomial SDEs in n + 1
variables and corresponding initial conditions, whose unique solution is (σσσ, τ), for a suitable
τ .

2Note this is true only because we insist that the inverse matrix must also lie in Σn×n. Working in the
field of formal Laurent series, which strictly includes Σ, this would be false: e.g. X(0) = 0, but X has X−1

as an inverse.
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Proof. We will first show that the initial value problem given in (3.7) is satisfied by every,
if any, stream solution σσσ of E such that σσσ(0) = rrr0. Indeed, consider any such σσσ. As (∇\ yyy
E)(X, rrr0,σσσ)(0) = (∇\ yyy E)(0, rrr0, rrr0), which is invertible by hypothesis, the above considerations
on matrix invertibility imply that there exists (∇\ yyy E)(X, rrr0,σσσ)

−1 in Σn×n. Multiplying
equality (3.5) from Lemma 3.8 to the left by (∇\ yyy E)(X, rrr0,σσσ)

−1, we obtain that σσσ satisfies
(3.7). Now define the following (matrix of) polynomials:
• g(x,yyy0,yyy) := det(∇\ yyy E)
• Ã := [ãij ] with ãij := (−1)i+j det((∇\ yyy E)ji)
• fi(x,yyy0,yyy) := −Ãi ·

(ðE
ðx
)T , where Ãi denotes the i-th row of Ã.

Applying our previous observation on the determinant of a matrix of polynomials, we have
that det((∇\ yyy E)(X, rrr0,σσσ)) = g(X, rrr0,σσσ), and similarly (−1)i+j det((∇\ yyy E)(X, rrr0,σσσ))ji) =
ãij(X, rrr0,σσσ). Therefore, by the formula for the inverse matrix (3.6), equation (3.7) can be
written componentwise as follows

σ′
i = fi(X, rrr0,σσσ) · g(X, rrr0,σσσ)

−1 σi(0) = ri0 (i = 1, ..., n) . (3.8)

This is precisely the rational form in (3.1). Then Lemma 3.4 implies that there is a set D
of n+ 1 polynomial SDEs in the indeterminates yyy, w, and corresponding initial conditions
ρ := (rrr0, g(0, rrr0, rrr0)

−1), satisfied when letting yyy, w = σσσ, τ , where τ = g(X, rrr0,σσσ)
−1:

y′i = fi(x, rrr0,yyy) · w yi(0) = ri0 (i = 1, ..., n) (3.9)

w′ = −g(0, rrr0, rrr0)
−1 · h(x, rrr0,yyy, w) · w w(0) = g(0, rrr0, rrr0)

−1 (3.10)

with h obtained from g as described in Lemma 3.4. Note the SDEs D we have arrived at are
purely syntactic and do not depend on the existence of any specific σσσ. Now, by Theorem 2.2
there is a (unique) solution, say (σσσ, τ), of the polynomial SDE initial value problem (D, ρ)
defined by (3.9)-(3.10).

We now show that σσσ is a stream solution of E . By the last part of Lemma 3.4, σσσ satisfies
(3.8), which, as discussed above, is just another way of writing (3.7). Now we have

E(0,σσσ)(0) = E(0, rrr0) = 0

E(0,σσσ)′ = (∇\ yyy E)(X, rrr0,σσσ) · σσσ′T +

(
ðE
ðx

(X,σσσ)

)T

= − (∇\ yyy E)(X, rrr0,σσσ) · (∇\ yyy E)(X, rrr0,σσσ)
−1 ·

(
ðE
ðx

(X,σσσ)

)T

+

(
ðE
ðx

(X,σσσ)

)T

= −
(
ðE
ðx

(X,σσσ)

)T

+

(
ðE
ðx

(X,σσσ)

)T

= 0

where the second equality is just the chain rule on streams (Lemma 3.7), and the third
equality follows from (3.7). As E(0,σσσ)(0) = 0 and E(0,σσσ)′ = 0, by e.g. the fundamental
theorem of the stream calculus (2.2) it follows that E(0,σσσ) = 0. This completes the existence
part of the statement.

As to uniqueness, consider any tuple of streams ζζζ ∈ Σn that is a stream solution of
E and such that ζζζ(0) = rrr0. As shown above, (ζζζ, ξ), with ξ = g(X, rrr0, ζζζ)

−1, satisfies the
polynomial SDE initial value problem (D, ρ) defined by (3.9)-(3.10). By uniqueness of the
solution (Theorem 2.2), (ζζζ, ξ) = (σσσ, τ).
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The above theorem guarantees existence and uniqueness of a solution of E , provided
that there exists a unique tuple of “initial conditions” rrr0 ∈ Kn for which E satisfies the
hypotheses of Theorem 3.10. The existence and uniqueness of such a rrr0 must be ascertained
by other means. In particular, it is possible that the algebraic conditions E(0, rrr0) = 0 and
det((∇\ yyy E)(x, rrr0, rrr0)) ̸= 0 are already sufficient to uniquely determine rrr0. There are powerful
tools from algebraic geometry that can be applied to this purpose, such as elimination theory:
we refer the interested reader to [CLO15] for an introduction. For now we shall content
ourselves with a couple of elementary examples. An extended example is presented in Section
5.

Example 3.11. Let us consider again E = {p} with p(x, y) := y − (1 + xy2), described in
Example 3.9. Note that p(0, r0) = 0 uniquely identifies the initial condition r0 = σ(0) = 1.
Also note that ∇\ y p = 1 is invertible at y = r0 = 1: hence Theorem 3.10 applies. The system
(3.7) followed by the transformation of Lemma 3.4 becomes the following polynomial system
of SDEs and initial conditions:

y′ = y2w y(0) = 1

w′ = 0 w(0) = 1 .

Note that the SDEs and initial condition for w define the constant stream 1 = (1, 0, 0, ...),
hence the above system can be simplified to the single SDE and initial condition: y′ = y2 and
y(0) = 1. The unique stream solution of this initial value problem is σ = (1, 1, 2, 5, 14, 42, ...),
the stream of Catalan numbers. Hence σ is the only stream solution of E .

More generally, any set of guarded polynomial equations [BBHR14] of the form E =
{yi − (ci + xpi) : i = 1, ..., n} satisfies the hypotheses of Theorem 3.10 precisely when
rrr0 = (c1, ..., cn). Indeed, E(0, rrr0) = 0, while ∇\ yyy E = I, the n× n identity matrix, which is
clearly invertible. The SDEs and initial conditions (D, ρ) determined by the theorem are
given by y′i = pi and yi(0) = ci for i = 1, ..., n, plus the trivial w′ = 0 and w(0) = 1, that can
be omitted.

For a non guarded example, consider E = {q} where q := x2+y2−1, again from Example
3.9. q(0, r0) = 0 gives two possible values, r0 = ±1. Let us fix r0 = 1. We have ∇\ y p = y+y0,
which is ̸= 0 when evaluated at y = y0 = r0. Applying Theorem 3.10 and Lemma 3.4 yields
the following SDEs and initial conditions:

y′ = −xw y(0) = 1

w′ =
xw2

2
w(0) =

1

2
.

The SDE for w arises considering equation (2.3) for the multiplicative inverse of a stream,
in detail, letting w = 1

y+1 , we get: w′ = −w(0) · (y + 1)′ · w = −1
2 · (−xw) · w = xw2

2 .
The unique solution of the derived initial value problem is the stream σ = (1, 0,−1/2, 0,

−1/8, 0,−1/16, ...); these are the Taylor coefficients of the function
√
1− x2 around x = 0.

This stream is therefore the unique solution of E with r0 = 1. If we fix r0 = −1, we obtain
−σ as the unique solution, as expected.

Remark 3.12 (relation with algebraic series). Recall from [FS01, Sta12] that a stream σ is
algebraic if there exists a nonzero polynomial p(x, y) in the variables x, y such that p(X,σ) = 0.
For |E| > 1, algebraicity of the solution is not in general guaranteed. [FS01, Th.8.7] shows
that a sufficient condition for algebraicity in this case is that E be zero-dimensional, i.e. that
E has finitely many solutions when considered as a set of polynomials with coefficients in
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C(x), the fraction field of univariate polynomials in x with coefficients in C. In this case,
in fact, for each variable yi one can apply results from elimination theory to get a single
nonzero polynomial p(x, yi) satisfied by σi. See also the discussion in Section 5.

On the other hand, we do not require zero-dimensionality of E in Theorem 3.10. Moreover,
for the case of polynomials with rational coefficients, [BG21, Cor.5.3] observes that the unique
solution of a polynomial SDE initial value problem like (2.4) is a tuple of algebraic streams.
Then, an immediate corollary of Theorem 3.10 is that, under the conditions stated for E
and rrr0, the unique stream solution of E is algebraic, even for positive-dimensional systems —
at least in the case of polynomials with rational coefficients. As an example, consider the
following system of three polynomials in the variables x and yyy = (y1, y2, y3):

E = {y1y34 + x2 − y2
2 + y2 , −y1

2y2 + xy3 + y1 , (3.11)

−y1
3xy3

5 + y1
4y3

4 − y1
2x3y3 + x2y1

3 + x2y2y3
2 − x2y3

2 + y1
2 − xy3 − y1

}
.

Considered as a system of polynomials with coefficients in C(x), E is not zero-dimensional
— in fact, its dimension is 13. It is readily checked, though, that for rrr0 = (1, 1, 1) we have
E(0, rrr0) = 0 and det((∇\ yyy E)(0, rrr0, rrr0)) = 12 ̸= 0. From Theorem 3.10, we conclude that the
unique stream solution σσσ of E satisfying σσσ(0) = rrr0 is algebraic.

4. Relations with the classical IFT

We now discuss a relation of our IFT with the classical IFT from calculus; hence, in the rest
of the section, we fix K = R. We start with the following lemma.

Lemma 4.1. Let p(x,yyy) be a polynomial, rrr0 ∈ Rn, and yi in yyy. Consider the ordinary
∂p
∂yi

(x,yyy) and stream ðp
ðyi (x,yyy0,yyy) partial derivatives. Then ∂p

∂yi
(0, rrr0) =

ðp
ðyi (0, rrr0, rrr0).

Proof. Let p = x · p0 + q where x does not occur in q. Write q as a sum of k monomials,
q =

∑k
j=1 αjy

kj
i , where both x and yi do not occur in any of the monomials αj . Moreover,

let us write each αj as αj = βj ·γj , where βj (resp. γj) contains all the y’s with index smaller
(resp., greater) than i.

For the ordinary partial derivative, we have that

∂p

∂yi
(x,yyy) = x · ∂p0

∂yi
+

k∑
j=1

kjαjy
kj−1
i .

For the stream partial derivative, let us denote with chyi the quantity
∑h

j=0 y
j
0iy

h−j
i , with

c0yi := 1 and c−1
yi := 0. Taking into account the rules for ð and writing m(uuu) for the evaluation

of a monomial m at yyy = uuu, we have

ðp
ðyi

(x,yyy0,yyy) =

k∑
j=1

βj(yyy0)(c
kj−1
yi )γj(yyy0) . (4.1)

By denoting with chyi(r1, r2) the term chyi with r1 (∈ R) in place of y0i and r2 (∈ R) in place
of yi, we have that chyi(r, r) = (h + 1) rh, for any r ∈ R. Upon evaluation of the above

3As checked with Maple’s IsZeroDimensional function of the Groebner package.
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polynomials at x = 0, yyy0 = rrr0, yyy = rrr0, we get

∂p

∂yi
(0, rrr0) =

k∑
j=1

kjαj(rrr0)r0i
kj−1

ðp
ðyi

(0, rrr0, rrr0) =

k∑
j=1

βj(rrr0)(c
kj−1
yi (r0i, r0i))γj(rrr0)

=
k∑

j=1

βj(rrr0)(kjr
kj−1
0i )γj(rrr0) =

k∑
j=1

kjαj(rrr0)r
kj−1
0i .

The above lemma implies that the classical and stream Jacobian matrices evaluated
at x = 0,yyy = rrr0 are the same: (∇yyy E)(0, rrr0) = (∇\ yyy E)(0, rrr0, rrr0). In particular, the first is
invertible if and only if the latter is invertible. Therefore, the classical and stream IFT can
be applied exactly under the same hypotheses on E and rrr0. What is the relationship between
the solutions provided by the two theorems? The next theorem precisely characterizes this
relationship. In its statement and proof, we make use of the following concept. Consider
the set A of functions R → R that are real analytic around the origin, i.e., those functions
that admit a Taylor expansion with a positive radius of convergence around x = 0. It is
well-known that A forms a R-algebra. Now consider the function T that sends each f ∈ A to
the stream T [f ] of its Taylor coefficients around 0, that is T [f ](j) = f (j)(0)/j! for each j ≥ 0.
It is easy to check that T acts as a R-algebra homomorphism from A to Σ; in particular, by
denoting with ‘ · ’ the (pointwise) product of functions, we have that T [f · g] = T [f ]× T [g].

Theorem 4.2 (stream IFT, classical version). Let rrr0 ∈ Rn be such that E(0, rrr0) = 0 and
(∇yyy E)(0, rrr0) is invertible as a matrix in Rn×n. Then there is a unique stream solution σσσ
of E such that σσσ(0) = rrr0. In particular, σσσ = T [f ], for f : R → Rn a real analytic function
at the origin, which is the unique solution around the origin of the following system of n
rational ODEs and initial conditions:

d

dx
f(x) = −(∇yyy E)(x, f(x))−1 ·

(
∂E
∂x

(x, f(x))

)T

f(0) = rrr0 . (4.2)

Proof. Under the conditions on E and rrr0 stated in the hypotheses, the classical IFT implies
the existence of a unique real analytic function f : R → Rn, say f = (f1, ..., fn), such that
f(0) = rrr0 and E(x, f(x)) is identically 0. Moreover, it tells us that f satisfies the system of
(polynomial) nonlinear ODEs and initial conditions in (4.2). Note that det((∇yyy E)(0, rrr0)) ̸= 0
and the continuity of det(E(x, f(x))) around the origin, guaranteed by the IFT [Rud76,
Th.9.28], in turn guarantee that (∇yyy E)(x, f(x)) is nonsingular in a neighborhood of x = 0.
Let σσσ = (σ1, ..., σn) be the stream of the coefficients of the Taylor series of f expanded at
x = 0, taken componentwise: σσσ = T [f ] := (T [f1], ..., T [fn]). Now σσσ is a stream solution
of E , as a consequence of the fact that T is a R-algebra homomorphism between A and
Σ: indeed, for each p(x,yyy) ∈ E , 0 = p(x, f(x)) implies (0, 0, ...) = T [0] = T [p(x, f(x))] =
p(T [x], T [f ]) = p(X,σσσ). Uniqueness of σσσ is guaranteed by Theorem 3.10, because (∇\ yyy
E)(0, rrr0) = (∇yyy E)(0, rrr0, rrr0) (see Lemma 4.1) and it is invertible by hypothesis.

A corollary of the above theorem is that one can obtain the unique stream solution of E
also by computing the Taylor coefficients of the solution f of (4.2). Such coefficients can
be computed without having to explicitly solve the system of ODEs. We will elaborate on
this point in Section 6, where, we will compare in terms of efficiency the method based on
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SDEs with the method based on ODEs, on two nontrivial polynomial systems. Here, we
just consider the ODEs method on a simple example.

Example 4.3. Consider again the polynomial system E = {y−(1+xy2)} in the single variable
y = y1, with the initial condition r0 = 1, seen in Example 3.11. Since (∇y E)(x, y) = 1− 2xy
is nonzero at (0, r0), we can apply Theorem 4.2. The ODE and initial condition in (4.2) in this
case are, letting f = y: d

dxy(x) =
y2

1−2xy and y(0) = 1. This system can be solved explicitly.
Alternatively, one can compute the coefficients of the Taylor expansion of the solution, e.g.
by successive differentiation: y(x) =

∑
j≥0

y(j)(0)
j! xj = 1+1x+2x2 +5x3 +14x4 +42x5 + · · · .

Such coefficients form again the stream σ of Catalan numbers that is therefore the unique
stream solution of E with σ(0) = r0 = 1.

5. An extended example: three-coloured trees

We consider a polynomial system E implicitly defining the generating functions of ‘three-
coloured trees’, Example 14 in [FS01, Sect.4]. For each of the three considered colours
(variables), [FS01, Sect.4] shows how to reduce E to a single nontrivial equation. This implies
algebraicity of the series implicitly defined by E : the reduction is conducted using results from
elimination theory [CLO15]. Here we will show how to directly transform E into a system
of polynomial SDEs and initial conditions, (D, ρ), as implied by the stream IFT (Theorem
3.10). As the coefficients in E are rational, reduction to SDEs directly implies algebraicity
(Remark 3.12), besides giving a method of calculating the streams coefficients. We will also
consider reduction of E to a system of polynomial ODEs, as implied by the classical version
of the IFT (Theorem 4.2), and compare the obtained SDE and ODE systems.

Three-coloured trees are binary trees (plane and rooted) with nodes coloured by any of
three colours, a, b, c, such that any two adjacent nodes have different colours and external
nodes are coloured by the a-colour. Let A,B, C denote the sets of three-coloured trees
with root of the a, b, c color respectively, and A,B,C the corresponding ordinary generating
functions: the n-th coefficient of A is the number of trees with a-coloured root and n external
nodes; similarly for B and C. Below, we report from [FS01, Sect.4,eq.(40)] the polynomial
system E ; to adhere to the notation of Section 2, we have replaced the variables (A,B,C)
with yyy = (y1, y2, y3).4

E :


y1 − x− (y2 + y3)

2 = 0

y2 − (y3 + y1)
2 = 0

y3 − (y1 + y2)
2 = 0 .

(5.1)

System (5.1) has been derived via the symbolic method [FS01], a powerful technique to
translate formal definitions of combinatorial objects into equations on generating functions
to count those objects. For instance, consider a three-coloured tree with an a-coloured root.
It can either be single node, accounted by x in the first equation, or a root with two subtrees,
each with root either of b- or of c-colour. Considering this structure, system (5.1) can be
readily deduced.

Since the number of external nodes of any empty tree is 0, we set rrr0 = (0, 0, 0). It is
immediate to verify that E(0, rrr0) = 0 and (∇\ yyy E)(0, rrr0, rrr0) =

[
1 0 0
0 1 0
0 0 1

]
= I, that is obviously

4We note that there is a slip in the first equation appearing in [FS01], by which the term (B+C)2 = (y2+y3)
2

appears with the wrong sign. The correct sign is used here.
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invertible, hence Theorem 3.10 holds, and we generate system (3.7) in Theorem 3.10. In
particular, after applying Lemma 3.4, we get the following polynomial system of SDEs and
initial conditions:

y′1 = 2wy1y2 + wy2y3 − w y1(0) = 0

y′2 = −2wy21 − 4wy1y2 − wy1y3 − wy1 − 2wy2y3 y2(0) = 0

y′3 = −wy1y2 − wy1 − 2wy2 y2(0) = 0

w′ = 4w2y21y
2
2 + 4w2y21y2y3 − 8w2y21y

2
3 − 6w2y21y3 + 8w2y1y

3
2+ w(0) = −1

14w2y1y
2
2y3 + 6w2y1y

2
2 − 10w2y1y2y

2
3 − 8w2y1y2y3 − 2w2

y1y2 − 4w2y1y
3
3 − 7w2y1y

2
3 − 7w2y1y3 + 4w2y32y3 + 6w2y22

y23 + 3w2y22y3 − 4w2y22 − 6w2y2y
3
3 − 3w2y2y

2
3 − 10w2y2y3−

3w2y2 − 2w2y23 − 3w2y3 .

(5.2)

See Appendix A for details of the derivation. By Theorem 3.10, the original polynomial system
E in (5.1) has a unique stream solution σσσ such that σσσ(0) = rrr0, and (σσσ, τ) = (σ1, σ2, σ3, τ),
for a suitable τ , is the unique stream solution of (5.2). In particular, we have: σ1 =
(0, 1, 0, 0, 4, 16, 56, 256, 1236, ...). This matches the generating function expansion for y1 in
Example 14 of [FS01]: g1(z) = z + 4z4 + 16z5 + 56z6 + 256z7 + 1236z8 + ....

On the other hand, applying the classic IFT (Theorem 4.2) to system (5.1), there is a
unique real analytic solution f(x) = yyy(x) = (y1(x), y2(x), y3(x)) of the ODE initial value
problem (4.2) such that yyy(0) = rrr0 = (0, 0, 0). The system in question can be computed

starting from the classical Jacobian of E , (∇yyy E)(x,yyy) =
[

1 −2y2+−2y3 −2y3−2y2
−2y1−2y3 1 −2y3−2y1
−2y1−2y2 −2y2−2y1 1

]
.

Since ∂E
∂x (x,yyy)|x=0,yyy=rrr0 = (−1, 0, 0), (4.2) yields the following system of rational ODEs

and initial conditions:

d

dx
yyy(x) = −(∇yyy E)−1 ·

(
∂E
∂x

)T

= ∆̃−1 ·

[
4y21+4y1y2+4y1y3+4y2y3−1

−4y21−4y1y3−4y1y2−2y1−4y2y3−2y3

−4y21−4y1y2−4y1y3−2y1−4y2y3−2y2

]
yyy(0) = rrr0.

(5.3)

where ∆̃ := −16y21y2 − 16y21y3 − 4y21 − 16y1y
2
2 − 32y1y2y3 − 12y1y2 − 16y1y

2
3 − 12y1y3 −

16y22y3 − 4y22 − 16y2y
2
3 − 12y2y3 − 4y33 + 1 is the determinant of ∇yyy E .

Considering a series solution of the system, we obtain, for the first component of the
solution f :

y1(x) = x+ 4x4 + 16x5 + 56x6 + 256x7 + 1236x8 + 5808x9 +O(x10)

whose coefficients match those of σ1 for (5.2).

6. Classical vs. stream IFT: computational aspects

We compare the stream and the classical versions of the IFT from a computational point
of view. First, we discuss how the recurrence (2.6) can be effectively implemented for any
polynomial SDE initial value problem of the form (2.4), not necessarily arising from an
application of Theorem 3.10. The basic idea is to always reduce products involving more
than two factors to binary products, for which the convolution formula (2.1) can be applied.
In order to perform this reduction systematically, let us consider the set T of all subterms
t = t(x,yyy) that occur in the polynomials pi in D. We assume that T also includes all the
constants appearing in D, the constant 1, and all the variables y0 (:= x), y1, ...., yn. For each
term t in T , a stream σt is introduced via the following recurrence relation that defines σt(k).
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Formally, the definition goes by lexicographic induction on (k, t), with the second elements
ordered according the “subterm of ” relation. For the sake of notation, below we let p0 = 1,
and let the case t = c · t1 for c ∈ K be subsumed by the last clause, where c is treated as the
constant stream (c, 0, 0, ...). Finally, k > 0.

σt(0) = t(0, rrr0)
σyi(k) = σpi(k − 1) (i = 0, ..., n)
σc(k) = 0 (c ∈ K)

σt1+t2(k) = σt1(k) + σt2(k)

σt1·t2(k) =
∑k

j=0 σt1(j) · σt2(k − j) .

(6.1)

This algorithm for turning a system of SDEs into a system of recurrence relations can be
considered as folklore. It has been applied in e.g. [HKR17, Sect.10], to the SDE for the
Fibonacci numbers, which is linear. Here we explicitly describe it for the general case of
polynomial SDEs. Its correctness, as stated by the next lemma, is obvious.

Lemma 6.1. Let σσσ = (σ1, ..., σn) be the unique stream solution of a problem (D, ρ) of the
form (2.4). With the above definition of σt, we have σi = σyi , for i = 1, ..., n.

In a practical implementation of this scheme, one can avoid recurring over the structure
of t, as follows. At the k-th iteration (k > 0), the values σt(k) are computed and stored by
examining the terms t ∈ T according to a total order on T compatible with the “subterm
of ” relation. In this way, whenever either of the last two clauses is applied, one can access
the required values σt1(j), σt2(j) up to j = k already computed and stored away in the
current iteration. The computation of the k-th coefficient σσσ(k), given the previous ones,
requires therefore O(Pk + S) multiplications and additions, where P and S are the number
of overall occurrences in T of the product and sum operators, respectively. Overall, this
means O(Pk2 + Sk) operations for the first k coefficients. This complexity is minimized by
choosing a format of polynomial expressions that minimizes P : for example, a Horner scheme
(note that Horner schemes exist also for multivariate polynomials). Memory occupation
grows linearly as O(k(P + S)).

Another method to generate the coefficients of the stream solution is applying the
classical version of the IFT (Theorem 4.2), and rely on the ODE initial value problem in
(4.2). However, this choice appears to be computationally less convenient. Indeed, apart
from the rare cases where (4.2) can be solved explicitly, one must obtain the coefficients of
the solution by expanding it as a power series — indeed its Taylor series. Once the rational
system (4.2) is reduced to a polynomial form, which is always possible by introducing one
extra variable, the coefficients of this power series can be computed by a recurrence relation
similar to that discussed in Lemma 6.1 for (2.6). The catch is that the size of the resulting
set of terms T is significantly larger for the ODE system (4.2) than it is for the SDE system
(3.7). To understand why, consider that, under the given hypotheses, the SDE system in
(3.7) is equivalent to E ′ = 0, while the ODE system in (4.2) is equivalent to d

dxE = 0. Now,
the terms appearing in E ′ are approximately half the size of those appearing in d

dxE . This is
evident already when comparing with one another the stream and the ordinary derivatives of
a bivariate polynomial p(x, y) = qm(y)xm + · · ·+ q1(y)x+ q0(y):

p(x, y)′ = qm(y)xm−1 + · · ·+ q1(y) + (q0(y))
′

d

dx
p(x, y) =

(
qm(y)mxm−1 + xm

d

dx
qm(y)

)
+ · · ·+

(
q1(y) + x

d

dx
q1(y)

)
+

d

dx
q0(y) .
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Figure 1: Execution time as a function of the number of computed coefficients for the stream
solution of system (5.1) (left) and of system (3.11) (right). The orange (lower)
curve is the recurrence relation (6.1) computed via Lemma 6.1 (authors’ Python
code); the blue (upper) curve is the power series solution of (4.2) (Maple’s dsolve).

A small experiment conducted with two different systems of polynomials, the three-
coloured trees (5.1) and the one-dimensional system (3.11), is in agreement with these
qualitative considerations. For each of these systems, we have computed a few hundreds
coefficients of the solution, using both the methods in turn: SDEs via the recurrence relation
of Lemma 6.1 (Theorem 3.10), and ODEs via a power series solution (Theorem 4.2). In the
second case, we have used Maple’s dsolve command with the series option5. For both systems,
we plot in Figure 1 the execution time as a function of the number of computed coefficients.

Remark 6.2 (Newton method). In terms of complexity with respect to k (number of
computed coefficients), Newton iteration applied to formal power series [Lip76, Sch82, Gal00,
BCG+18] does asymptotically better than the O(k2) algorithm outlined above. In particular,
[BCG+18, Th.3.12] shows that, under the same hypotheses of IFT, the first k coefficients of
the solution of a system of algebraic equations can be computed by Newton iteration in time
O(k log k); on the downside, each iteration of Newton involves in general finding the solution
of a n× n linear system.

7. Conclusion

In this paper, we have presented an implicit function theorem for the stream calculus, a
powerful set of tools for reasoning on infinite sequences of elements from a given field. Our
theorem is directly inspired from the analogous one from classical calculus. We have shown
that the stream IFT has clear computational advantages over the classical one.

The present work can be extended in several directions. First, we would like to explore the
relations of our work with methods proposed in the realm of numerical analysis for efficient
generation of the Taylor coefficients of ODE’ solutions; see e.g. [FW11] and references
therein. Second, we would like to go beyond the polynomial format, and allow for systems of
equations E involving, for example, functions that are in turn defined via SDEs. Finally, we
would like to extend the present results to the case of multivariate streams, that is consider

5Python and Maple code for this example available at https://github.com/Luisa-unifi/IFT

https://github.com/Luisa-unifi/IFT
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a vector xxx = (x1, ..., xm) of independent variables, akin to the more general version of the
classical IFT. Both extensions seem to pose nontrivial technical challenges.
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Appendix A. Three-coloured trees example: details

In order to generate the rational system (3.7), rather than explicitly determining the inverse
of the Jacobian ∇\ yyy E , it is practically convenient firstly to form the equivalent system (3.5)
and then solve for y′y′y′. To this purpose, we apply the syntactic stream derivative operator to
the polynomial equations of system (5.1), obtaining:

y′1 − 1− y′2y2 − y′3y3 − 2y′2y3 = 0

y′2 − y′3y3 − y′1y1 − 2y′3y1 = 0

y′3 − y′1y1 − y′2y2 − 2y′1y2 = 0 .

(A.1)

Then we note that (A.1) is a linear system in the variables yyy′ = (y′1, y
′
2, y

′
3)

T of the form

Ay′y′y′ = bbb, where A = (∇\ yyy E)(0, rrr0,yyy) =
[

1 −y2−2y3 −y3
−y1 1 −y3−2y1

−y1−2y2 −y2 1

]
and bbb = −(∇\ x E)(0,yyy)T =

(1, 0, 0)T . Note that this is another way of writing system (3.5). Now, we solve Ay′y′y′ = bbb for
y′y′y′. Denoting the determinant of ∇\ yyy E as

∆ = 2y21y2 + 4y21y3 + 4y1y
2
2 + 10y1y2y3 + 3y1y2 + 2y1y

2
3 + 3y1y3 + 2y22y3 + 4y2y

2
3 + 3y2y3 − 1

and taking into account the initial condition, we arrive at (3.7):
y′1 = ∆−1 · (2y1y2 + y2y3 − 1) y1(0) = 0

y′2 = ∆−1 · (−2y21 − 4y1y2 − y1y3 − y1 − 2y2y3) y2(0) = 0

y′3 = ∆−1 · (−y1y2 − y1 − 2y2) y3(0) = 0 .

(A.2)

In order to convert the above rational SDE initial value problem to a polynomial one, we
can apply Lemma 3.4. In practice, we replace ∆−1 with a new variable w, then we add the
corresponding equation to system (A.2). In order to derive a SDE for the variable w, we
recall that the multiplicative inverse σ−1 of a stream σ such that σ(0) ̸= 0 satisfies the SDE
and initial condition (2.3). In our case, starting from w′ = w(0)∆′w, and calling p1, p2, p3
the right-hand sides of the SDEs in (A.2), we get

w′ = w(0) · (2y′1y1y2 + 4y′1y1y3 + 4y′1y
2
2 + 10y′1y2y3 + 3y′1y2 + 2y′1y

2
3 + 3y′1 + y3

+2y′2y2y3 + 4y′2y
2
3 + 3y′2y3)w

= −(2p1y1y2 + 4p1y1y3 + 4p1y
2
2 + 10p1y2y3 + 3p1y2 + 2p1y

2
3 + 3p1 + y3

+2p2y2y3 + 4p2y
2
3 + 3p2y3)w

w(0) = −1

where the initial condition w(0) = −1 is implied by ∆(0, rrr0) = −1. Finally, expanding the
pi’s and putting everything together, we obtain the following polynomial system of SDEs
and initial conditions:

y′1 = 2wy1y2 + wy2y3 − w y1(0) = 0

y′2 = −2wy21 − 4wy1y2 − wy1y3 − wy1 − 2wy2y3 y2(0) = 0

y′3 = −wy1y2 − wy1 − 2wy2 y2(0) = 0

w′ = 4w2y21y
2
2 + 4w2y21y2y3 − 8w2y21y

2
3 − 6w2y21y3 + 8w2y1y

3
2+ w(0) = −1

14w2y1y
2
2y3 + 6w2y1y

2
2 − 10w2y1y2y

2
3 − 8w2y1y2y3 − 2w2

y1y2 − 4w2y1y
3
3 − 7w2y1y

2
3 − 7w2y1y3 + 4w2y32y3 + 6w2y22

y23 + 3w2y22y3 − 4w2y22 − 6w2y2y
3
3 − 3w2y2y

2
3 − 10w2y2y3−

3w2y2 − 2w2y23 − 3w2y3 .

(A.3)

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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