
Logical Methods in Computer Science
Volume 20, Issue 2, 2024, pp. 16:1–16:54
https://lmcs.episciences.org/

Submitted Aug. 21, 2020
Published Jun. 19, 2024

TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE

ANDREAS NUYTS AND DOMINIQUE DEVRIESE

DistriNet, KU Leuven, Belgium
e-mail address: andreas.nuyts@kuleuven.be, dominique.devriese@kuleuven.be

Abstract. Presheaf models of dependent type theory have been successfully applied to
model HoTT, parametricity, and directed, guarded and nominal type theory. There has
been considerable interest in internalizing aspects of these presheaf models, either to make
the resulting language more expressive, or in order to carry out further reasoning internally,
allowing greater abstraction and sometimes automated verification. While the constructions
of presheaf models largely follow a common pattern, approaches towards internalization do
not. Throughout the literature, various internal presheaf operators (

√
, Φ/extent, Ψ/Gel,

Glue, Weld, mill, the strictness axiom and locally fresh names) can be found and little is
known about their relative expressiveness. Moreover, some of these require that variables
whose type is a shape (representable presheaf, e.g. an interval) be used affinely.

We propose a novel type former, the transpension type, which is right adjoint to universal
quantification over a shape. Its structure resembles a dependent version of the suspension
type in HoTT. We give general typing rules and a presheaf semantics in terms of base
category functors dubbed multipliers. Structural rules for shape variables and certain
aspects of the transpension type depend on characteristics of the multiplier. We demonstrate
how the transpension type and the strictness axiom can be combined to implement all and
improve some of the aforementioned internalization operators (without formal claim in the
case of locally fresh names).

1. Introduction and Related Work

1.1. The power of presheaves. Presheaf semantics [Hof97, HS97] are an excellent tool
for modelling relational preservation properties of (dependent) type theory. They have been
applied to parametricity (which is about preservation of relations) [AGJ14, BCM15, ND18a,
NVD17], univalent type theory (preservation of equivalences) [BCH14, CMS20, CCHM17,
Hub16, KL18, Ort18, OP18], directed type theory (preservation of morphisms), guarded
type theory (preservation of the stage of advancement of computation) [BM20] and even

Key words and phrases: dependent type theory, presheaf models, modal type theory, homotopy type
theory, parametricity, directed type theory, guarded type theory.

Andreas Nuyts holds a Postdoctoral Fellowship from the Research Foundation - Flanders (FWO; 1247922N),
and carried out most of this research holding a PhD Fellowship from the Research Foundation - Flanders
(FWO; 1110817N). This research was partially conducted at Vrije Universiteit Brussel and funded by the
Research Foundation - Flanders (FWO; G0G0519N). This research is partially funded by the Research Fund
KU Leuven.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(2:16)2024
© A. Nuyts and D. Devriese
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-1571-5063
https://orcid.org/0000-0002-3862-6856
http://creativecommons.org/about/licenses

16:2 A. Nuyts and D. Devriese Vol. 20:2

combinations thereof [BBC+19, CH21, RS17, WL20].1 The presheaf models just cited almost
all follow a common pattern: First one chooses a suitable base category W. The presheaf
category overW is automatically a model of dependent type theory with the important basic
type formers [Hof97] as well as a tower of universes [HS97]. Next, one identifies a suitable
notion of fibrancy and replaces or supplements the existing type judgement Γ ⊢ T type with
one that classifies fibrant types:

HoTT: For homotopy type theory (HoTT, [Uni13]), one considers Kan fibrant types, i.e.
presheaves in which edges can be composed and inverted as in an ∞-groupoid. The
precise definition may differ in different treatments.

Parametricity: For parametric type theory, one considers discrete types [AGJ14, CH21,
ND18a, NVD17]: essentially those that satisfy Reynolds’ identity extension property
[Rey83] which states that homogeneously related objects are equal. This can be
expressed by requiring that any non-dependent function I → A from the relational
interval, is constant.

Directed: In directed type theory, one may want to consider Segal, covariant, discrete
and Rezk types [RS17] and possibly also Conduché types [Gir64, Nuy18b][Nuy20a, ex.
8.1.27].

Guarded: In guarded type theory, one considers clock-irrelevant types [BM20]: types A
such that any non-dependent function �→ A from the clock type, is constant.

Nominal: Nominal type theory [Che12, PMD15] can be modelled in the Schanuel topos
[Pit13, §6.3]. This is the subcategory of nullary affine cubical sets (see Example 6.14
later on) that send pushouts in the base category to pullbacks in Set. This ensures
that if a cell depending on names {i, j, k} in fact only depends on {i, j} and in fact
also only depends on {i, k}, then it only depends on {i}.

To the extent possible, one subsequently proves that the relevant notions of fibrancy are
closed under basic type formers, so that we can restrict to fibrant types and still carry out
most of the familiar type-theoretic reasoning and programming. Special care is required for
the universe U: it is generally straightforward to adapt the standard Hofmann-Streicher
universe to classify only fibrant types, but the universe of fibrant types is in general not
automatically fibrant itself.

HoTT: In HoTT, the Hofmann-Streicher universe of Kan types is usually automatically
Kan.

Parametricity: In earlier work on parametricity with Vezzosi [NVD17, ND18a], we made
the universe of discrete types discrete by modifying its presheaf structure and intro-
duced a parametric modality in order to use that universe. In contrast, Atkey et al.
[AGJ14] and Cavallo and Harper [CH21] simply accept that their universes of discrete
types are not discrete.

Directed: In directed type theory, one could expect, perhaps via a directed univalence
result [WL20], that the universe of covariant types is Segal.

Guarded: In guarded type theory, Bizjak et al. [BGC+16] let the universe depend on a
collection of in-scope clock variables lest the clock-indexed later modality � : ∀(κ :
�).U∆ → U∆ (where κ ∈ ∆) be non-dependent and therefore constant (not clock-
indexed) by clock-irrelevance of U → U [BM20].

1We omit models that are not explicitly structured as presheaf models [AHH18, LH11, Nor19].

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:3

1.2. Internalizing the power of presheaves. Purely metatheoretic results about type
theory certainly have their value. Parametricity, for instance, has originated and proven its
value as a metatheoretic technique for reasoning about programs. However, with dependent
type theory being not only a programming language but also a logic, it is preferable to
formulate results about it within the type system, rather than outside it. We highlight two
particular motivations for doing so: to enlarge the end user’s toolbox, and to be able to
prove internally that a type is fibrant.

Enlarging the end user’s toolbox. One motivation for internalizing metatheorems is to enlarge
the toolbox of the end user of the proof assistant. If this is the only goal, then we can prove
the desired results in the model on pen and paper and then internalize them ad hoc with an
axiom with or without computation rules.

HoTT: Book HoTT [Uni13] simply postulates the univalence axiom without computational
behaviour, as justified e.g. by the model of Kan-fibrant simplicial sets [KL18].

CCHM cubical type theory [CCHM17] provides the Glue type, which comes with
introduction, elimination, β- and η-rules and which turns the univalence axiom into a
theorem with computational behaviour. It also contains CCHM-Kan-fibrancy of all
types as an axiom, in the form of the CCHM-Kan composition operator, with decreed
computational behaviour that is defined by induction on the type.

Parametricity: Bernardy, Coquand and Moulin [BCM15, Mou16] (henceforth: BCM)
internalize their (unary, but generalizable to k-ary) cubical set model of parametricity
using two combinators Φ and Ψ [Mou16], a.k.a. extent and Gel [CH21]. Φ internalizes
the presheaf structure of the function type, and Ψ that of the universe.

The combinator Φ and at first sight also Ψ require that the cubical set model lacks
diagonals. Indeed, to construct a value over the primitive interval, Φ and Ψ each take
one argument for every endpoint and one argument for the edge as a whole. Nested
use of these combinators, e.g. to create a square, will take (k + 1)2 arguments for
k2 vertices, 2k sides and 1 square as a whole but none for specifying the diagonal.
For this reason, BCM’s type system enforces a form of affine use of interval variables.
Similarly, connections as in CCHM [CCHM17] are ruled out. In the current paper,
we will see that these requirements are not absolute for Ψ: there is apparently a very
natural ‘automatic’ way to define the behaviour on diagonals and connections where
the Ψ-type is not explicitly specified by its arguments.

In earlier work with Vezzosi [NVD17], we have internalized parametricity instead
using the Glue type [CCHM17] and its dual Weld. Later on, we added a primitive mill
[ND18b] for swapping Weld and Π(i : I). These operations are sound in presheaves
over any base category where we can multiply with I – including cube categories with
diagonals or connections – and are (therefore) strictly less expressive than Φ which is
not. Discreteness of all types was internalized as a non-computing path degeneracy
axiom.2

2It is worth noting that it was not possible to use affine interval variables in the setting of [NVD17]:
The type system features parametric Π-types which are modelled as ordinary Π-types with non-discrete
domain. Discreteness of the Π-type can be proven solely from discreteness of the codomain, simply by
swapping interval variable and function argument. This is however not possible in the affine setting, where
only variables introduced prior to an interval variable are taken to be fresh for that interval variable and the
exchange rule with an interval variable only works one way.

16:4 A. Nuyts and D. Devriese Vol. 20:2

Directed: Weaver and Licata [WL20] use a bicubical set model to show that directed HoTT
[RS17] can be soundly extended with a directed univalence axiom.

Guarded: In guarded type theory [BM20], one axiomatizes Löb induction and clock-
irrelevance.

Nominal: One version of nominal type theory [PMD15] provides the locally fresh name
abstraction ν(i : I) which can be used anywhere (i.e. the goal type remains the same
after we abstract over a fresh name). The operation introduces a name but requires a
body that is fresh for the name (i.e. we do not get to use it). This would be rather
useless, were it not that we are allowed to capture the fresh name (see Section 10).

Internalizing fibrancy proofs. Another motivation to internalize aspects of presheaf categories,
is for building parts of the model inside the type theory, thus abstracting away certain
categorical details such as the very definition of presheaves, and for some type systems
enabling automatic verification of these constructions. Given the common pattern in models
described in the previous section, it is particularly attractive to try and define fibrancy and
prove results about it internally.

In the context of HoTT, Orton and Pitts [Ort18, OP18] study CCHM-Kan-fibrancy
[CCHM17] in a type theory extended with a set of axioms, of which all but one serve to
characterize the interval and the notion of cofibration. One axiom, strictness, provides a type
former Strict for strictifying partial isomorphisms, which exists in every presheaf category.
In order to construct a universe of fibrant types, Licata et al. postulate an “amazing right
adjoint” I

√
⌞⌟ to the non-dependent path functor I→ ⌞⌟ [LOPS18, Ort18], which indeed

exists in presheaves over cartesian base categories if I is representable. Since I
√

⌞⌟ and
its related axioms are global operations (only applicable to closed terms, unless you want
to open Pandora’s box as we do in the current paper), they keep everything sound by
introducing a judgemental comonadic global modality ♭.

Orton et al.’s formalization [LOPS18, Ort18, OP18] is only what we call meta-internal :
the argument is internalized to some type theory which still only serves as a metatheory
of the type system of interest. Ideally, we would also be able to define and prove fibrancy
of types within the type theory of interest, which we call auto-internal. This has several
advantages:

• A general approach to auto-internalization of notions of fibrancy saves us from a prolifera-
tion of type systems, each with axiomatic internal fibrancy operations with hard-coded
computational behaviour that proceeds by case analysis on the construction of the type.
Proving fibrancy auto-internally will in general be more typesafe than hard-coding it in a
language implementation that is often written in a simply-typed language such as Haskell
and OCaml.
• Given an auto-internal implementation, we can still pretend that we have a meta-internal
situation by restricting ourselves to a subset of the language. But we automatically get
a two-level type theory [Voe13, ACKS23], where we have access to non-fibrant types
from within. (This does not prove conservativity of two-level type theory over the object
system.)
• In directed type theory, there are various relevant notions of fibrancy, many of which are
not well preserved by basic type formers, so access to non-fibrant types may be a necessity
to get any work done at all.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:5

Auto-internal treatments exist of discrete types in parametricity [CH21], and discrete,
fibrewise-Segal and Rezk types in directed type theory [RS17], but not yet for covariant,
Segal or Kan fibrant types due to the need to consider paths in the context I→ Γ.

1.3. The transpension type. What is striking about the previous section is that, while
most authors have been able to solve their own problems, a common approach is completely
absent. We have encountered Φ and Ψ [Mou16], the amazing right adjoint

√
[LOPS18], Glue

[CCHM17, NVD17], Weld [NVD17], mill [ND18b], the strictness axiom [OP18] and locally
fresh names [PMD15]. We have also seen that Φ and Ψ presently require an affine base
category, and that

√
presently requires the global modality ♭.

The goal of the current paper is to develop a smaller collection of internal primitives that
impose few restrictions on the choice of base category and allow the internal construction of
the aforementioned operators when sound. To this end, we introduce the transpension
type former ≬[i] : Ty(Γ) → Ty(Γ, i : I) which in cartesian settings is right adjoint to
Π(i : I) : Ty(Γ, i : I)→ Ty(Γ) and is therefore not a quantifier binding i, but a coquantifier
that depends on it. This same operation was already considered in topoi by Yetter [Yet87],
who named it ∇. Using the transpension and Strict, we can construct Φ (when sound), Ψ,√

and Glue, and heuristically translate a subsystem of the nominal dependent type system
FreshMLTT [PMD15] featuring variable capture and locally fresh names. Given a type
former for certain pushouts, we can also construct Weld and mill.

The transpension coquantifier ≬[u : U] : Ty(Γ) → Ty(Γ, u : U) is part of a sequence
of adjoints Σu ⊣ Ω[u] ⊣ Πu ⊣ ≬[u], preceded by the Σ-type, weakening and the Π-type.
Adjointness of the first three is provable from the structural rules of type theory. However,
it is not immediately clear how to add typing rules for a further adjoint. Birkedal et al.
[BCM+20] explain how to add a single modality that has a left adjoint in the semantics. If
we want to have two or more adjoint modalities internally, then we can use a multimodal
type system such as MTT [GKNB21, GKNB20a]. Each modality in MTT needs a semantic
left adjoint, so we can only internalize Ω[u], Πu and ≬[u]. A drawback which we accept (as
a challenge for future work), is that Ω[u] and Πu become modalities which are a bit more
awkward to deal with than ordinary weakening and Π-types.

A further complication is that the aforementioned modalities bind or depend on a
variable, a phenomenon which is not supported by MTT. We solve this by grouping shape
variables such as u : U in a shape context which is not considered part of the type-theoretic
context but instead serves as the mode of the judgement. This way, we are also rid of
the requirement that all internal operations commute with shape substitution; in fact, the
transpension generally does not (Section 2.1.7, [Nuy20b]).

1.4. Contributions. Our central contribution is to reduce the plethora of interal presheaf
operators in the literature to only a few operations.

• To this end, we formulate a type system MTraS featuring a transpension type ≬[u : U],
right adjoint to Π(u : U), with typing rules built on extensional MTT [GKNB21, GKNB20a].
We explain how it is reminiscent of the suspension type from HoTT [Uni13].
• More generally, the transpension type can be right adjoint to any quantifier-like operation
∀(u : U) which need neither respect the exchange rule, nor weakening or contraction. In
this setting, we also introduce the fresh weakening coquantifier Ⅎ[u : U], which is left
adjoint to ∀(u : U) and therefore coincides with weakening Ω[u : U] in cartesian settings.

16:6 A. Nuyts and D. Devriese Vol. 20:2

• We provide a categorical semantics for ≬[u : U] in almost any presheaf category Psh(W) over
base category W , for almost any representable object U = yU , U ∈ W. To accommodate
non-cartesian variables, our system is not parametrized by a representable object U = yU ,
but by an arbitrary endofunctor ⌞⌟⋉U on W : the multiplier.3 We introduce criteria for
characterizing the multiplier (Definition 6.2) which we use as requirements for internal type
theoretic features. We identify a complication for base categories (most notably in guarded
and nominal type theory) that are not objectwise pointable, and define dimensionally
split morphisms (a generalization of split epimorphisms) in order to include those base
categories. We exhibit relevant multipliers in base categories found in the literature
(Section 6.3).
• We show that all general presheaf internalization operators that we are aware
of – viz. Φ/extent (when sound), Ψ/Gel [Mou16, BCM15], the amazing right adjoint

√

[LOPS18], Glue [CCHM17, NVD17], Weld [NVD17], mill [ND18b] and (with no formal
claim) locally fresh names – can be recovered from just the transpension type, the
strictness axiom and pushouts along snd : φ × A → A where φ : Prop (see Fig. 9 for
a dependency graph). In the process, some of these operators can be improved: We
generalize Ψ from affine-like (⊤-slice full) to arbitrary multipliers, including cartesian ones
and we justify U

√
⌞⌟ without a global modality and get β- and η-rules for it. Moreover,

since our system provides an operation µ≬[u] for quantifying contexts, we take a step
towards auto-internalizing Orton et al.’s work [LOPS18, Ort18, OP18]. When Φ is not
sound (e.g. in settings with diagonals or connections), we suggest the internal notion of
transpensive types to retain some of its power. Finally, a form of higher dimensional
pattern matching is enabled by exposing ∀(u : U) internally as a left adjoint.
• In a technical report [Nuy20b], we investigate how the modalities introduced in this
paper commute with each other, and with prior modalities (i.e. those already present
before adding the transpension type). We also consider composite multipliers, and
natural transformations between modalities (called 2-cells in MTT) arising from natural
transformations between multipliers.

While MTT [GKNB21, GKNB20a] satisfies canonicity and even normalization insofar as its
modality system (called the mode theory) does [Gra22], we will instantiate MTT on a mode
theory for which we presently do not have a computational theory, and we will extend it with
some additional typing rules. For this reason, we build on extensional MTT [GKNB20a],
and defer canonicity and decidability of type-checking to future work.

1.5. Overview of the paper. In Section 2, we study in a simplified setting (a system
called FFTraS) how the transpension type resembles the suspension type from HoTT and
demonstrate how to put it in action. In Section 3, we give a brief overview of the typing
rules of MTT and decorate the MTT syntax with left adjoint reminders. In Section 4, we
define the mode theory of MTraS, an instantiation of MTT. This mode theory is extremely
general and essentially contains all semantic adjoint pairs of a given domain and codomain
as modalities between the corresponding modes. In the next two sections, we highlight
a number of interesting modalities: in Section 5 we consider modalities related to shape
substitutions, and in Section 6 we define and study multipliers and consider modalities
arising from them, including the transpension modality. In Section 7, we pseudo-embed
FFTraS in MTraS and generalize some of the results obtained for FFTraS. In Section 8,

3In the technical report [Nuy20b], we generalize multipliers beyond endofunctors.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:7

we supplement MTraS with a few specialized typing rules. In Section 9, we investigate the
structure of the transpension type in MTraS. In Section 10, we explain how to recover known
internal presheaf operators. We conclude in Section 11.

2. First Steps: A Fully Faithful Transpension System (FFTraS)

In this section, for purposes of demonstration, we present simplified typing rules for the
transpension type which apply in a specific setting (as proven in Section 7). Using these,
we will already be able to exhibit the transpension type as similar to a dependent version
of the suspension type in HoTT [Uni13], and to prove internally that it is right adjoint to
universal quantification. Moreover, in order to showcase how the transpension type allows us
to internalize the presheaf structure of other types, we will demonstrate a technique which
we call higher-dimensional pattern matching and which has already been demonstrated by
Pitts [Pit14] in nominal type theory using locally fresh names [PMD15].

2.1. Typing rules. To do this, we first present, in Fig. 1, typing rules for the transpension
type in a specific setting: a dependent type system with linear or affine shape variables
u : U, where shape variable contraction is forbidden.

2.1.1. Linear/affine shape variables. Variables to the left of u are understood to be fresh
for u; variables introduced after u may be substituted with terms depending on u. In
particular, we have no contraction (w/u,w/v) : (w : U) → (u, v : U), while exchange
(x : A, u : U) → (u : U, x : A) only works in one direction. This is enforced by the special
substitution rule for shape variables (ff:ctx-shp:fmap). Weakening of shape variables is
optionally allowed (ff:ctx-shp:wkn). The examples in which the type system will be put
to use, are agnostic as to whether exchange of shape variables (u : U, v : U)→ (v : U, u : U)
is possible and models of both situations exist.

2.1.2. Linear/affine function type. The system features a linear/affine function type ∀u.A
over U, with unsurprising formation and introduction rules (ff:forall, ff:forall:intro).
The rule for f u (ff:forall:elim) requires that the function f be fresh for u, i.e. that f
depend only on variables to the left of u [BCM15, Mou16]. For simplicity, we require that u
is the last shape variable in the context.

2.1.3. Transpension type. Additionally, the system contains a transpension type ≬[u]A
over U, with more unusual rules. Similar to the introduction rule of multimode type
theory (MTT) (wdra:intro in Fig. 4), the meridian constructor of the transpension type
(ff:transp:intro) works by dependent transposition [BCM+20][Nuy18a, §2.1.3][Nuy20a,
§5.1.3-5.2]: a term of type ≬[u]A in a given context, is equivalent to a term of type A in the
context obtained by applying the left adjoint to ≬[u] – which is universal quantification over
u – to the context. However, the situation is a bit more subtle than in MTT, in the sense
that the left adjoint ∀u is itself a binder and therefore acts on objects already living in a
context. For this reason, we consider the entire situation in a further context Γ. So we start
from a context Γ, a telescope δ : ∆ (where δ denotes the vector of variables in the telescope)
in context Γ, u : U and a term a : A that does not live in telescope ∆ but in the universally
quantified telescope ∀u.(δ : ∆) [BV17, ND19], which extends Γ. The resulting meridian

16:8 A. Nuyts and D. Devriese Vol. 20:2

Linear/affine shape variables:

ff:ctx-shp
Γ ctx

Γ, u : U ctx

ff:ctx-shp:fmap
σ : Γ→ Γ′

(σ, u/u′) : (Γ, u : U)→ (Γ′, u′ : U)

ff:ctx-shp:wkn (optional)
σ : Γ→ Γ′

σ : (Γ, u : U)→ Γ′

Linear/affine function type:

ff:forall
Γ, u : U ⊢ A type

Γ ⊢ ∀u.A type

ff:forall:intro
Γ, u : U ⊢ a : A

Γ ⊢ λu.a : ∀u.A

ff:forall:elim
Γ ⊢ f : ∀u.A
No shape vars in ∆

Γ, u : U, δ : ∆ ⊢ f u : A

Telescope quantification:
ff:ctx-forall
Γ, u : U, δ : ∆ ctx
No shape vars in ∆

Γ,∀u.(δ : ∆) ctx

ff:ctx-forall:fmap
(σ, u/u′, τ/δ′) : (Γ, u : U, δ : ∆)→ (Γ′, u′ : U, δ′ : ∆′)

(σ, λ̄u.τ/λ̄u′.δ′) : (Γ,∀u.(δ : ∆))→ (Γ′,∀u′.(δ′ : ∆′))

ff:ctx-forall:nil ff:ctx-forall:fmap:nil
(Γ,∀u.()) = Γ (σ, λ̄u.()/λ̄u′.()) = σ

Telescope application
ff:ctx-app
Γ, u : U, δ : ∆ ctx

(v/u, (λ̄u.δ) v/δ) : (Γ,∀u.(δ : ∆), v : U)→ (Γ, u : U, δ : ∆)

ff:ctx-app:nat : The following diagram commutes:

(Γ,∀u.(δ : ∆), v : U)
(v/u,(λ̄u.δ) v/δ) //

(σ,λ̄u.τ/λ̄u′.δ′,v/v′)

��

(Γ, u : U, δ : ∆)

(σ,u/u′,τ/δ′)

��
(Γ′,∀u′.(δ′ : ∆′), v′ : U)

(v′/u′,(λ̄u′.δ′) v′/δ′)

// (Γ′, u′ : U, δ′ : ∆′)

ff:ctx-app:nil
(v/u, (λ̄u.()) v/()) = (v/u)

ff:ctx-forall:fmap:ctx-app
(λ̄v.(λ̄u.δ) v/λ̄u.δ) = 1(Γ,∀u.(δ:∆))

Transpension type:
ff:transp
Γ, u : U, δ : ∆ ctx
Γ,∀u.(δ : ∆) ⊢ A type

Γ, u : U, δ : ∆ ⊢ ≬[u]A type

ff:transp:intro
Γ,∀u.(δ : ∆) ⊢ a : A

Γ, u : U, δ : ∆ ⊢ mer[u] a : ≬[u]A

ff:transp:elim
Γ, u : U ⊢ t : ≬[u]A
Γ ⊢ unmer(u.t) : A

ff:transp:beta
Γ ⊢ a : A

Γ ⊢ unmer(u.mer[u] a) = a : A

ff:transp:eta
Γ, u : U, δ : ∆ ⊢ t : ≬[u : U]A
Γ, u : U, δ : ∆ ⊢ t =

mer[u] (unmer(v.t[v/u, (λ̄u.δ) v/δ])) : ≬[u]A

ff:transp:nat
Γ′,∀u′.(δ′ : ∆′) ⊢ A type
(σ, u/u′, τ/δ′) :

(Γ, u : U, δ : ∆)→ (Γ′, u′ : U, δ′ : ∆′)

Γ, u : U, δ : ∆ ⊢ (≬[u′]A)[σ, u/u′, τ/δ′] =
≬[u] (A[σ, λ̄u.τ/λ̄u′.δ′]) type

ff:transp:intro:nat
Γ′,∀u′.(δ′ : ∆′) ⊢ a : A
(σ, u/u′, τ/δ′) :

(Γ, u : U, δ : ∆)→ (Γ′, u′ : U, δ′ : ∆′)

Γ, u : U, δ : ∆ ⊢ (mer[u′] a)[σ, u/u′, τ/δ′] =
mer[u] (a[σ, λ̄u.τ/λ̄u′.δ′]) : (≬[u′]A)[σ, u/u′, τ/δ′]

Figure 1: Selection of typing rules for a fully faithful transpension type.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:9

mer[u] a : ≬[u]A then lives in telescope ∆, which extends Γ, u : U. Thus, we remark that
both ≬[u]A and mer[u] a depend on u, whereas A and a do not, so in a way the transpension
lifts data to a higher dimension, turning points into U-cells.

The type formation rule ff:transp is parallel to the modal type formation rule of MTT
(wdra in Fig. 4), which internalizes a (weak) dependent right adjoint; its premises are such
that the introduction rule is well-typed.

The elimination rule ff:transp:elim is equivalent to the existence of the function

λf.unmer(u.f u) : (∀u.≬[u]A)→ A,

which is essentially the co-unit of the adjunction; this differs from the elimination rule of MTT
(wdra:elim in Fig. 4) which works by pattern-matching, but is parallel to the projection
function in Proposition 3.3, as are the β- and η-rules which internalize the adjunction laws
and to which we get back in Section 2.1.6. The elimination rule takes data again to a lower
dimension: it turns a dependent U-cell in the transpension into a point in A.

2.1.4. Admissibility of telescope rules. The typing rules for the transpension type rely on
the unusual notions of telescope quantification and application, which remain to
be discussed. Before doing so, we remark that one can take either of two viewpoints
w.r.t. these rules. One can take a syntactic viewpoint, viewing each of the typing rules
concerned as a formal typing rule, i.e. as a constructor of our generalized algebraic syntax
[Car86, Car78, AK16]. Alternatively, it is possible to prove metatheoretically that each of
these rules is admissible, by defining ∀u.(δ : ∆) as a telescope of the same length as ∆,
but where each variable’s type is universally quantified over u : U. This latter view is the
one that inspires most of our notations, but we make a point of not violating the former
possibility, because that one allows a pseudo-embedding4 of the current specialized system
in the main system of this paper (Section 7).

2.1.5. Telescope quantification. Given a context Γ, u : U, δ : ∆ with no shape variables in ∆,
the rule ff:ctx-forall creates a new context Γ,∀u.(δ : ∆), which is just Γ again if ∆ has
zero variables (ff:ctx-forall:nil). From the syntactic viewpoint, it would perhaps be
cleaner to write something like [∀u](Γ, u : U, δ : ∆), or more generally [∀u]Θ for any context
Θ featuring u : U as its last shape variable. However, the notation we have chosen is possible
since every such context is of the form Θ = Γ, u : U, δ : ∆ for some context Γ and telescope
∆, and moreover it is justified by the admissibility proof as well as in the following sense:

(1) The variables in Γ can be accessed in context [∀u](Γ, u : U, δ : ∆),
(2) For every variable y : B in ∆, we get a term of type ∀ v.B[σ] in context [∀u](Γ, u : U, δ : ∆)

(for a suitable substitution σ).

To see (1), we make use of the functoriality rule ff:ctx-forall:fmap, which from the
syntactic viewpoint we could more cleanly write as [∀(u/u′)]ρ : [∀u]Θ → [∀u′]Θ′ for
ρ : Θ→ Θ′. The alternative notation in the typing rule is again possible since any such ρ is
of the form ρ = (σ, u/u′, τ/δ′) for some σ : Γ → Γ′ and well-typed vector of terms τ , and
justified for similar reasons as above. By applying functoriality to the weakening substitution
(Γ, u : U, δ : ∆)→ (Γ, u : U), we get a substitution (Γ,∀u.(δ : ∆))→ (Γ,∀u.()) = Γ, which
we can use to ignore ∀u.(δ : ∆) altogether and thus get access to the variables in context Γ.

4Pseudo, because ff:ctx-forall:nil is only an isomorphism in the general system, but that would
undidactically complicate notations in the current section.

16:10 A. Nuyts and D. Devriese Vol. 20:2

To see (2), we need telescope application.
The transpension type and the meridian constructor respect substitution (ff:transp:nat,

ff:transp:intro:nat), and this can only be stated thanks to functoriality (ff:ctx-
forall:fmap).

2.1.6. Telescope application. In Section 2.1.3 above, we noted that the formation and
introduction rules of the transpension type are in line with those of the modal type in MTT
(Fig. 4) and act by dependent transposition. In fact, the same is true for the formation and
introduction rules of the linear/affine function type, which is a dependent right adjoint to
shape variable extension of contexts (ff:ctx-shp). In order for the types to be adjoints
internally – which requires that we can define unit and co-unit functions and that the
adjunction laws are statable and satisfied – we need their left adjoint operations to be
adjoints, i.e. for any context Ψ and any context Θ = (Γ, u : U,∆), we need substitutions
Ψ→ [∀u]Θ = (Γ,∀u.(δ : ∆)) to be equivalent to substitutions (Ψ, u : U)→ Θ = (Γ, u : U, δ :
∆) respecting u.

One way to ensure this is by providing natural unit and co-unit substitutions. For
the unit, we need substitutions Ψ → [∀u](Ψ, u : U) = (Ψ,∀u.()) = Ψ, so we can take the
identity. In other words, the unit is given by ff:ctx-forall:nil, with naturality given by
ff:ctx-forall:fmap:nil.

For the co-unit, we need substitutions (Γ,∀u.(δ : ∆), v : U)→ (Γ, u : U,∆), which are
given by ff:ctx-app and made natural by ff:ctx-app:nat. Again, from the syntactic
viewpoint it would be cleaner to write appΘ : ([∀u]Θ, v : U) → Θ. However, intuitively,
semantically and in the admissibility proof, what it does is applying the ‘function’ λ̄u.δ : ∀u.∆
to v : U, which inspires the notation in the typing rule.

Since the unit is the identity, the adjunction laws simply require that whiskering the co-
unit with either adjoint also yields the identity. The fact that app(Γ,u:U) = 1(Γ,u:U) is exactly

what is asserted by ff:ctx-app:nil. The fact that [∀(v/u)]app(Γ,u:U,δ:∆) = 1(Γ,∀u.(δ:∆)) is
exactly what is asserted by ff:ctx-forall:fmap:ctx-app.

With the unit and co-unit for the adjunction (−, u : U) ⊣ [∀u] on contexts in place, we
can now state the β- and η-rules of the transpension type (ff:transp:beta, ff:transp:eta)
parallel to those for the modal type in MTT (Proposition 3.3).

We now show (2) from above, i.e. assuming ∆ lists a variable y : B, we seek to derive a
term Γ, ∀u.(δ : ∆) ⊢ t : ∀ v.B[σ]. This can be done using ff:ctx-app as follows:

Γ, u : U, δ : ∆ ⊢ y : B

Γ, ∀u.(δ : ∆), v : U ⊢ y[v/u, (λ̄u.δ) v/δ] : B[v/u, (λ̄u.δ) v/δ]

Γ,∀u.(δ : ∆) ⊢ λv.(y[v/u, (λ̄u.δ) v/δ]) : ∀ v.(B[v/u, (λ̄u.δ) v/δ])
.

Definition 2.1. For any variable y : B in telescope ∆, we define Γ,∀u.(δ : ∆) ⊢ λ̄u.y :=
λv.(y[v/u, (λ̄u.δ) v/δ]) : ∀ v.(B[v/u, (λ̄u.δ) v/δ]).

Proposition 2.2. For any variable y : B in telescope ∆ and any substitution (1Γ, u/u, τ/δ) :
(Γ, u : U, δ′ : ∆′)→ (Γ, u : U, δ : ∆), we have

Γ ⊢ (λ̄u.y)[λ̄u.τ/λ̄u.δ] = λu.(τy[u/u, (λ̄u.δ
′)u/δ′]) : ∀u.B[τ/δ],

where τy = y[τ/δ] is the component of the vector τ for variable y.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:11

Proof. We have

(λ̄u.y)[u/u, τ/δ] = (λu.y[u/u, (λ̄u.δ)u/δ])[λ̄u.τ/λ̄u.δ] (Definition 2.1)

= λu.(y[u/u, (λ̄u.δ)u/δ][λ̄u.τ/λ̄u.δ, u/u])

= λu.(y[u/u, τ/δ][u/u, (λ̄u.δ′)u/δ′]) (ff:ctx-app:nat)

= λu.(τy[u/u, (λ̄u.δ
′)u/δ′]).

Corollary 2.3. For any variable y : B in telescope ∆ and any substitution (1Γ, u/u, τ/δ) :
(Γ, u : U) → (Γ, u : U, δ : ∆), we have Γ ⊢ (λ̄u.y)[λ̄u.τ/λ̄u.δ] = λu.τy : ∀u.B[τ/δ], where
τy = y[τ/δ] is the component of the vector τ for variable y.

Proof. This follows from ff:ctx-app:nil.

2.1.7. Discussion. The type system presented above is less general than the paper’s main
system MTraS. In Section 2.1.6, we saw that the unit of the adjunction on contexts is
invertible. This is equivalent to the left adjoint (−, u : U) : Ctx→ Ctx/(u : U) being fully
faithful [nLa23a], and the requirement on presheaf models to support the typing rules in the
current section (with ff:ctx-forall:nil an isomorphism) is exactly that: the multiplier
functor interpreting (−, u : U) has to be fully faithful w.r.t. the slice category over (u : U).

By uniqueness of the adjoint, we can also conclude that the co-unit of the adjunction
∀u ⊣ ≬[u] is invertible,5 which is equivalent to the right adjoint ≬[u] being fully faithful
[nLa23c], whence the section title.

However, the current typing rules become unusable in a more general setting, as
well as in more specific settings where we may start adding operations that we need in
important applications. First, we have no story for substitutions which exist in cubical type
systems such as endpoints (0/i) : Γ→ (Γ, i : I) [BCM15, BCH14, CCHM17] or connections
(j ∧ k/i) : (Γ, j, k : I) → (Γ, i : I) [CCHM17], as there is no formation rule for ≬[0]A or
≬[j ∧ k]A. Secondly, in non-fully-faithful generalizations featuring the contraction rule for
shape variables, the transpension is not stable under substitution of the shape variables
preceding u, so in those settings the way we internalized the transpension type here was
too näıve.6 In order to obtain a type system that does not fail in the presence of endpoints,
connections or shape variable contraction, in the rest of the paper we will rely on MTT,
which we briefly summarize in Section 3.

2.2. Poles. We can still try to get a grasp on ≬[0]A in cubical type systems, however. In
general we have T [0/i] ∼= (∀ i.(i ≡I 0)→ T). Assuming T = ≬[i]A and oneIsNotZero : (1 ≡I
0)→ Empty, the latter type is inhabited by

pole0 := λi.λe.mer[i] (case (oneIsNotZero ((λ̄i.e) 1)) of{}) : ∀ i.(i ≡I 0)→ ≬[i]A

where λ̄i.e has type ∀ i.(i ≡I 0). Moreover, using the η-rules for functions and the transpension
type and a (provable propositional) η-rule for Empty, we can show that this is the only

5In fact, this is exactly what the β- and η-rules of the transpension type say (when ∆ is empty).
6Indeed, write Ω[u] for the operation of cartesian weakening over a shape variable u : U, which is an

example of a substitution involving shape variables. If in general Ω[u] ◦ ≬[v] ∼= ≬[v] ◦Ω[u], then by uniqueness
of the left adjoint we would find that Π v ◦ Σu ∼= Σu ◦Π v. This is clearly false for cartesian shapes such as
the interval I in HoTT. For more information on how the transpension type commutes with other operations,
see the technical report [Nuy20b].

16:12 A. Nuyts and D. Devriese Vol. 20:2

element. Thus we see that the transpension type essentially consists of one meridian
(i : I)→ ≬[i]T for every t : T , and that these meridians are all equal to pole0 at i = 0 and
analogously to pole1 at i = 1. This makes the transpension type quite reminiscent of a
dependent version of the suspension type from HoTT [Uni13], although the quantification of
the context in the formation and construction rules is obviously a distinction.

2.3. Internal transposition. We can internally show that the following types are isomor-
phic:7

(∀(u : U).A)→ B ∼= ∀(u : U).(A→ ≬[u]B).

Indeed, given f : (∀(u : U).A)→ B, we can define g : ∀(u : U).(A→ ≬[u]B) by

g u a = mer[u] (f (λ̄u.a)).

Conversely, given g : ∀(u : U).(A→ ≬[u]B), we can define f : (∀(u : U).A)→ B by

f â = unmer(u.g u (â u)).

These constructions are mutually inverse. Indeed, plugging the definition of f into that of g,
we find in context (Γ, u : U, a : A):

mer[u] (unmer(u.g u ((λ̄u.a)u))) = mer[u] (unmer(u.(g u a)[u/u, (λ̄u.(a))u/(a)])) = g u a

using the η-rule of the transpension type. Conversely, plugging g into f , we find in context
(Γ, â : ∀u.A):

unmer(u. (mer[u] (f (λ̄u.a)))[u/u, â u/a])

= unmer(u.(mer[u] ((f (λ̄u.a))[λ̄u.(â u)/λ̄u.(a)]))) (ff:transp:intro:nat)

= unmer(u.(mer[u] ((f (λu.â u))))) (Corollary 2.3)

= f (λu.(â u)) = f â. (ff:transp:beta)

2.4. Higher-dimensional pattern matching. Now that we know internally that ∀u is a
left adjoint (with internal right adjoint ≬[u]), we can proceed to conclude that it preserves
colimits, e.g. we can show i : (∀u.A⊎B) ∼= (∀u.A)⊎ (∀u.B). The map to the left is trivially
defined by case analysis. The map to the right is equivalent by transposition to a function
∀u.(A⊎B → ≬[u] ((∀ v.A[v/u])⊎ (∀ v.B[v/u]))). This is in turn constructed by case analysis
from the transpositions of the coproduct’s constructors inl and inr.

By straightforward application of Section 2.3, the transpositions of the constructors are:

λu.λa.mer[u] (inl (λ̄u.a)) : ∀u.(A→ ≬[u] ((∀ v.A[v/u]) ⊎ (∀ v.B[v/u])))

λu.λb.mer[u] (inr (λ̄u.b)) : ∀u.(B → ≬[u] ((∀ v.A[v/u]) ⊎ (∀ v.B[v/u])))

Pasting these together, we get

λu.λc.case c of

{
inl a 7→ mer[u] (inl (λ̄u.a))
inr b 7→ mer[u] (inr (λ̄u.b))

}
: ∀u.(A ⊎B → ≬[u] ((∀ v.A[v/u]) ⊎ (∀ v.B[v/u]))).

Transposing again as in Section 2.3, we find

i : (∀u.A ⊎B)→ (∀u.A) ⊎ (∀u.B)

7This statement of internal transposition is not parallel to the general MTT one (Proposition 3.4). The
current variation is provable from the general result because the right adjoint ≬[u] is fully faithful.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:13

i ĉ = unmer

(
u.case ĉ u of

{
inl a 7→ mer[u] (inl (λ̄u.a))
inr b 7→ mer[u] (inr (λ̄u.b))

})
.

Let us consider our categorically motivated creation from a more type-theoretical perspective.
We obtain an argument ĉ : ∀u.A ⊎ B which we would like to pattern match on, in order
to create an element of type (∀u.A) ⊎ (∀u.B). Of course we cannot pattern match on a
function, so we call the unmer constructor which brings u : U in scope and changes the goal
to ≬[u] ((∀ v.A[v/u]) ⊎ (∀ v.B[v/u])). We can then reduce ĉ by one dimension by applying it
to u, allowing a case analysis. The first case brings in scope a : A (and the second case will
be analogous), so we are in context (Γ, ĉ : ∀u.A ⊎B, u : U, a : A). We then use the meridian
constructor, which again removes u from scope, turns a : A into a function λ̄u.a : ∀u.A
and again reduces the goal to (∀u.A) ⊎ (∀u.B), so that inl completes the proof. We have
essentially pattern matched on a higher-dimensional object!

Let us now check that i is indeed inverse to the trivial implementation of i−1. We have:

(i ◦ i−1)(inl â) = i(λu.inl (â u))

= unmer(u. (mer[u] (inl (λ̄u.a)))[u/u, â u/a])

= unmer(u.(mer[u] (inl (λ̄u.a)[λ̄u.â u/λ̄u.a]))) (ff:transp:intro:nat)

= unmer(u.(mer[u] (inl (λu.â u)))) (Corollary 2.3)

= inl â. (ff:transp:beta)

and similar for (i ◦ i−1)(inr b̂). Using the technique of higher dimensional pattern matching
just developed, we can prove the other equation also by pattern matching! By similar steps
as before, we have:

(i−1 ◦ i)(λu.inl (â u)) = i−1(unmer(u. (mer[u] (inl (λ̄u.a)))[u/u, â u/a]))

= i−1(unmer(u.(mer[u] (inl â)))) = i−1(inl â) = λu.inl (â u),

and a similar result for (i−1 ◦ i)(λu.inr (b̂ u)).

3. Multimode Type Theory

As announced, we will rely on the extensional version of Gratzer et al.’s multimode and
multimodal dependent type system MTT [GKNB21, GKNB20a] in order to frame the
transpension and its left adjoints as modal operators. We refer to the original work for
details, but give a brief overview in the current section. In Section 3.4, we decorate the
usual MTT notation with reminders of the modalities’ semantic left adjoints, which are
syntactically obscured by the lock notation.

3.1. The mode theory. MTT is parametrized by a mode theory, which is a strict 2-category
whose objects, morphisms and 2-cells we will refer to as modes, modalities and, well,
2-cells respectively. Semantically, every mode p will correspond to an entire model of
dependent type theory JpK. A modality µ : p→ q will consist of a functor JµµK : JqK→ JpK
acting on contexts and substitutions, and an operation JµK that is almost a dependent right
adjoint (DRA [BCM+20]) to JµµK; for all our purposes it will be an actual DRA and even
one arising from a weak CwF morphism [BCM+20, lemma 17][Nuy18a]. A 2-cell α : µ⇒ ν
is interpreted as a natural transformation J¤αK : JµνK→ JµµK and hence also gives rise to
an appropriate transformation JαK : JµK→ JνK.

16:14 A. Nuyts and D. Devriese Vol. 20:2

Judgement forms:

p | Γ ctx Γ is a context at mode p,

p | σ : ∆→ Γ σ is a simultaneous substitution from ∆ to Γ at mode p,

p | Γ ⊢ T type T is a type in context Γ at mode p,

p | Γ ⊢ t : T t has type T in context Γ at mode p.

Figure 2: Judgement forms of MTT [GKNB21].

The type theory at each mode:
Basic rules of dependent type theory (including all desired types) at each mode q, e.g.:

ctx-empty
qmode

q | · ctx

ctx-ext
q | Γ ⊢ T type

q | Γ, x : T ctx

ctx-ext:intro
q | σ : ∆→ Γ q | ∆ ⊢ t : T [σ]
q | (σ, t/x) : ∆→ (Γ, x : T)
where τ = ((x/⊘) ◦ τ, x[τ]/x)

(σ, t/x) ◦ ρ = (σ ◦ ρ, t[ρ]/x)

ctx-ext:wkn
q | Γ ctx q | Γ ⊢ T type

q | (x/⊘) : (Γ, x : T)→ Γ
where (x/⊘) ◦ (σ, t/x) = σ

ctx-ext:var
q | Γ ctx q | Γ ⊢ T type

q | Γ, x : T ⊢ x : T [(x/⊘)]
where x[σ, t/x] = t

sigma
q | Γ ⊢ A type
q | Γ, x : A ⊢ B type

q | Γ ⊢ (x : A)×B type

uni
q | Γ ctx ℓ ∈ N
q | Γ ⊢ Uqℓ typeℓ+1

uni:elim
q | Γ ⊢ t : Uqℓ
q | Γ ⊢ El(t) typeℓ
where El(⌜T⌝) = T

uni:intro
q | Γ ⊢ T typeℓ
q | Γ ⊢ ⌜T⌝ : Uqℓ
where ⌜El(t)⌝ = t

Figure 3: MTT includes all rules of ordinary DTT at each mode.

3.2. Judgement forms. The judgement forms of MTT are listed in Fig. 2. All forms
are annotated with a mode p which specifies in what category they are to be interpreted.
Every judgement form also has a corresponding equality judgement, which is respected by
everything as the typing rules are to be read as a specification of a generalized algebraic
theory (GAT [Car86, AK16]). The statements pmode and µ : p → q and α : µ ⇒ ν are
simply requirements about the mode theory. This means we give no syntax or equality rules
for modalities and 2-cells: these are fixed by the choice of mode theory.

3.3. Typing rules. The typing rules are listed in Figs. 3 to 6 and discussed below.

3.3.1. The type theory at each mode. Since every mode corresponds to a model of all of
dependent type theory (DTT), we start by importing all the usual typing rules of DTT,
to be applied in MTT at any given fixed mode. Some examples of such rules are given
in Fig. 3, where we have consciously included rules for non-modal context extension, even
though these will be generalized to modal rules later on. One reason to do so is that other
rules of DTT, such as sigma, depend on these and therefore cannot be imported without.
Another is that this way, we have a warm-up towards the modal rules and in particular we

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:15

wdra
µ : p→ q
p | Γ,µµ ⊢ A typeℓ
q | Γ ⊢ ⟨µ | A⟩ typeℓ

wdra:intro
µ : p→ q
p | Γ,µµ ⊢ a : A

q | Γ ⊢ modµ a : ⟨µ | A⟩

wdra:elim
µ : p→ q ν : q → r
q | Γ,µν ⊢ â : ⟨µ | A⟩
r | Γ, ν p x̂ : ⟨µ | A⟩ ⊢ C type
r | Γ, ν ◦ µ p x : A ⊢ c : C[modµ x/x̂]

r | Γ ⊢ letν (modµ x = â) in c : C[â/x̂]
where letν (modµ x = modµ a) in c = c[a/x]

Figure 4: Typing rules for MTT’s modal types (weak DRAs) [GKNB21][Nuy20a, fig. 5.6].

can make a point about de Bruijn indices. Although variables in Fig. 3 are named, the rules
ctx-ext:wkn and ctx-ext:var effectively enforce a de Bruijn discipline, where we can
only name the last variable in the context and have to weaken explicitly if it is deeper down,
e.g.

x : A, y : B, z : C ⊢ x[(y/⊘)][(z/⊘)] : A[(x/⊘)][(y/⊘)][(z/⊘)].
We take the viewpoint8 that the official system is unnamed and uses this substitution-based
de Bruijn discipline to refer to variables. In order to improve human communication, we will
name variables anyway and use the resulting redundancy to leave weakening substitutions
implicit unambiguously. This allows for the following unofficial admissible ‘rule’

ctx-ext:var:lookup
q | Γ, x : T,∆ ctx

q | Γ, x : T,∆ ⊢ x : T
.

Furthermore, we use other common notational conventions such as writing (t/x) instead of
(idΓ, t/x) : Γ→ (Γ, x : T).

We assume that DTT has a universe à la Coquand with mutually inverse encoding and
decoding operations (which we will henceforth suppress), and we ignore cumulativity-related
hassle, referring to Gratzer et al. [GKNB21] for details.

3.3.2. Modal types, part 1. Before proceeding to the MTT-specific structural rules, let us
first have a look at the formation and introduction rules wdra and wdra:intro of modal
types ⟨µ | A⟩ in Fig. 4. These are not unlike the formation and introduction rules of the
transpension type in Fig. 1 and work by transposition: we apply the left adjoint of the
modality µ (in the form of a lock) to the premise’s context. As such, they behave like DRAs,
but their elimination rule wdra:elim (which we consider later) is weaker, so we call them
weak DRAs.

3.3.3. Structural rules. The structural rules of MTT are listed in Fig. 5. Context formation
starts with the empty context which exists at any mode, and proceeds by adding locks and
variables.

8as is done in the MTT technical report [GKNB20a]; the paper [GKNB21] speaks from a more
implementation-oriented perspective.

16:16 A. Nuyts and D. Devriese Vol. 20:2

Context locking:

Note: We write (σ,µµ) as shorthand for (σ,¤1:µ⇒µ), an instance of lock:fmap.

lock
q | Γ ctx µ : p→ q

p | Γ,µµ ctx
where Γ = (Γ,µ1)

(Γ,µν ,µµ) = (Γ,µν◦µ)

lock:fmap
q | σ : Γ→ ∆ µ, ν : p→ q α : µ⇒ ν

p | (σ,¤α) : (Γ,µν)→ (∆,µµ)
where σ = (σ,¤1:1⇒1) (σ,¤α′ ,¤α) = (σ,¤(α′⋆α))

1 = (1,¤1:µ⇒µ) (σ,¤α) ◦ (τ,¤β) = (σ ◦ τ,¤(β◦α))

Modal context extension:

We consider the non-modal rule ctx-ext and its introduction, elimination and computation
rules as a special case of ctx-modext for p = q and µ = 1.

ctx-modext
q | Γ ctx µ : p→ q
p | Γ,µµ ⊢ T type

q | Γ, µ p x : T ctx

ctx-modext:intro
q | σ : ∆→ Γ µ : p→ q
p | ∆,µµ ⊢ t : T [σ,µµ]
q | (σ, t/x) : ∆→ (Γ, µ p x : T)
where τ = ((x/⊘) ◦ τ, x[τ,µµ]/x)

(σ, t/x) ◦ ρ = (σ ◦ ρ, t[ρ,µµ]/x)
ctx-modext:wkn
q | Γ ctx µ : p→ q
p | Γ,µµ ⊢ T type

q | (x/⊘) : (Γ, µ p x : T)→ Γ
where (x/⊘) ◦ (σ, t/x) = σ

ctx-modext:var
q | Γ ctx µ : p→ q
p | Γ,µµ ⊢ T type

q | Γ, µ p x : T,µµ ⊢ x : T [(x/⊘),µµ]
where ∆,µµ ⊢ x[σ, t/x,µµ] = t : T [σ,µµ]

Figure 5: Structural rules of MTT [GKNB21][Nuy20a, fig. 5.5].

Adding locks (lock) is strictly functorial: it preserves identity and composition of
modalities. In fact, it is strictly 2-functorial: it also has an action on 2-cells (lock:fmap,
producing substitutions between locked contexts) that preserves identity and composition
of 2-cells. It is also strictly bifunctorial: we can combine a substitution and a 2-cell to
a substitution between locked contexts. If the 2-cell is the identity, then we write µµ for
¤1:µ⇒µ.

A modal variable µ p x : T introduced by ctx-modext is essentially the same as
a non-modal variable x̂ : ⟨µ | T ⟩ (which in turn is shorthand for 1 p x̂ : ⟨µ | T ⟩), but the
judgemental modal annotation allows direct access to a variable of type A through the
variable rule. Hence, the type T is checked the same way as it would be in ⟨µ | T ⟩. Terms t
substituted for a modal variable x are also checked in the locked context, as if we would
be substituting modµ t instead. The variable rule does not produce x : ⟨µ | T ⟩ but instead
uses transposition to move the modality µ to the left in the form of a lock. As such, it can
be seen as implicitly involving a co-unit.

By analogy with ctx-ext:var:lookup, we would like a more general unofficial variable
‘rule’ that allows accessing a variable x that is buried under a general telescope ∆ rather than
a single lock. By lock:fmap, we can weaken under locks (which, like ordinary weakening, we
will leave notationally implicit), so we can easily remove all variables from ∆ and then apply
strict functoriality of lock to fuse the remaining locks, obtaining a single lock µlocks(∆),
where the modality locks(∆) is defined as follows:

locks(·) = 1, locks(∆,µµ) = locks(∆) ◦ µ, locks(∆, µ p x : T) = locks(∆).

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:17

modpi
p | Γ,µµ ⊢ A typeℓ µ : p→ q
q | Γ, µ p x : A ⊢ B typeℓ
q | Γ ⊢ (µ p x : A)→ B typeℓ

modpi:intro
µ : p→ q
q | Γ, µ p x : A ⊢ b : B
q | Γ ⊢ λ(µ p x).b : (µ p x : A)→ B
where λ(µ p x).(f ·µ x) = f

modpi:elim
q | Γ ⊢ f : (µ p x : A)→ B
p | Γ,µµ ⊢ a : A µ : p→ q

q | Γ ⊢ f ·µ a : B[a/x]
where (λ(µ p x).b) ·µ a = b[a/x]

Figure 6: Typing rules for MTT’s modal Π-types [GKNB21][Nuy20a, fig. 5.7] (of which
non-modal Π-types are a special case for p = q and µ = 1).

Then the only remaining thing we need is a 2-cell α : µ ⇒ locks(∆). This leads to the
following admissible variable ‘rule’

ctx-modext:var:lookup
q | Γ ctx µ : p→ q
p | Γ,µµ ⊢ T type α : µ⇒ locks(∆)

q | Γ, µ p x : T,∆ ⊢ xα : T [idΓ,¤α]

where xα is defined as x[id(Γ,µpx:T),¤α:µ⇒locks(∆)], leaving the necessary weakenings under
locks implicit. Substitution is then given by

xα[idΓ, a/x, id∆] = x[id(Γ,µpx:T),¤α][idΓ, a/x, id∆]

= x[idΓ, a/x,µµ][idΓ,¤α]

= a[idΓ,¤α],

or more briefly xα[a/x] = a[¤α].

3.3.4. Modal types, part 2. Modal elimination (wdra:elim, Fig. 4) uses a let-syntax to
turn the modal type into a judgemental annotation on a variable.

3.3.5. Modal function types. Modal function type formation and introduction (Fig. 6) are
by simple abstraction. Modal function application checks the argument in a locked context,
just like modal variable substitution does.

3.4. Left adjoint reminders. In MTT, we can on one hand apply a modality µ : p→ q to
a type T to obtain a modal type ⟨µ | T ⟩, and on the other hand we can apply its left adjoint
µµ to a context Γ to obtain Γ,µµ. Type-theoretically, it is only sensible that the lock µµ
mentions µ for µ is a premise of the lock rule. From a semantic/categorical viewpoint
however, the indirection of mentioning µ when you are actually talking about some left
adjoint functor K = JµµK to M = JµK can really get in the way of understanding what is
going on.

16:18 A. Nuyts and D. Devriese Vol. 20:2

For example, in Section 6, we will come up with a modality ≬[u] for the transpension,
and then the introduction rule wdra:intro will take the form

p | ∆,µ≬[u] ⊢ t : T
q | ∆ ⊢ mod≬[u] t : ⟨≬[u] | T ⟩

for certain modes p and q, which is quite reminiscent of the introduction rule of the
transpension type in FFTraS (Section 2) if you bear in mind that

q
µ≬[u]

y
is essentially ∀u.

Instead of littering this paper with remarks of the form ‘recall that JµµK = . . .’, we will
decorate locks, keys and variables with superscript reminders of the left adjoints to the
modalities (and 2-cells mediating them) that are already in subscript. Concretely, we will
assign:

• to every modality µ : p→ q a left name κ : q → p (writing this succinctly as κ ⊩µ : p→ q),
• to every 2-cell α : µ ⇒ µ′ a left name ω : κ′ ⇒ κ (where κ ⊩µ and κ′ ⊩µ′; writing
succinctly κ⇐ κ′ : ω ⊨α : µ⇒ µ′).

Of course if κ′ ⊩µ′ and κ ⊩µ, then the composite will be κ ◦ κ′ ⊩µ′ ◦ µ. If a modality µ
has a left adjoint modality ν, then we will always use ν as the left name of µ, and similar for
2-cells. Then, we can write µκµ for µµ, and ¤ω:κ′⇒κ

α:µ⇒µ′ or just ¤ω
α for ¤α:µ⇒µ′ , and x

ω:κ′⇒κ
α:µ⇒µ′ or

just xωα for xα:µ⇒µ′ . Note that we have

(Γ,µκ1µ1 ,µ
κ2
µ2) = (Γ,µκ2◦κ1µ1◦µ2), (σ,¤ω1

α1
,¤ω2

α2
) = (σ,¤ω2⋆ω1

α1⋆α2
), a[¤ω

α][¤
ψ
β] = a[¤ω◦ψ

β◦α]. (3.1)

3.5. Results. We highlight some results about MTT that are relevant in the current paper.

Proposition 3.1. We have ⟨1 | A⟩ ∼= A and ⟨ν ◦ µ | A⟩ ∼= ⟨ν | ⟨µ | A⟩⟩.

Proposition 3.2. For any 2-cell α : µ⇒ ν, we have ⟨µ | A⟩ → ⟨ν | A[¤α]⟩.

Proposition 3.3 (Projection). If κ ⊣ µ internal to the mode theory, with unit η : 1⇒ µ ◦ κ
and co-unit ε : κ ◦ µ⇒ 1, then there is a function ε : (κ p ⟨µ | A⟩)→ A[¤ε], satisfying a β-
and (thanks to extensionality) an η-law:

ε ·κ (modµ a) = a[¤ε], â = modµ (ε ·κ (â[¤η])).

Combined with these rules, ε is equally expressive as the let-eliminator for ⟨µ | ⌞⌟⟩.

Proposition 3.4 (Internal transposition). Let κ ⊣ µ internal to the mode theory, with
unit η : 1 ⇒ µ ◦ κ and co-unit ε : κ ◦ µ ⇒ 1. Adding left names, we get ζ ⊩κ ⊣ µ with
1⇐ ζ ◦ κ : ε′ ⊨η : 1⇒ µ ◦ κ and κ ◦ ζ ⇐ 1 : η′ ⊨ε : κ ◦ µ⇒ 1.

Then there is an isomorphism of contexts expressing that κ respects context extension:

σ = (xε
′
η /y) : (Γ, x : A,µκµ)

∼= (Γ,µκµ, κ p y : A[¤ε′
η]).

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:19

The inverse is given by:

(Γ,µκµ, κ p y : A[¤ε′
η])

(id(Γ,µκ
µ,y)

,¤η′
ε)

��

(Γ,µκµ, κ p y : A[¤ε′
η],µ

ζ
κ,µ

κ
µ)

(1Γ,¤
ε′
η , y/x,µ

κ
µ)

��
(Γ, x : A,µκµ)

Correspondingly, given B in the codomain context of σ, there is an isomorphism of types

(x : A)→ ⟨µ | B[σ]⟩ ∼=
〈
µ | (κ p y : A[¤ε′

η])→ B
〉

expressing internal transposition.

4. The Modal Transpension System (MTraS):
General Mode Theory and Semantics

As mentioned in Section 1.3, in our modal transpension system (MTraS), the transpension
modality ≬[u] will be part of an adjoint triple of internal modalities Ω[u] ⊣ Πu ⊣ ≬[u] together
with weakening Ω[u] and universal quantification Πu or, more generally in potentially non-
cartesian systems, an adjoint triple Ⅎ[u] ⊣ ∀u ⊣ ≬[u] together with fresh weakening Ⅎ[u] and
substructural (e.g. linear/affine) universal quantification ∀u. The further left adjoints Σu
(cartesian) or ∃u (potentially non-cartesian) cannot be internalized because every internal
MTT modality needs to have a further semantic left adjoint; thus, they will only appear as
left names.

Notably, the aforementioned modalities all bind or depend on a variable, a phenomenon
which is not supported by MTT. We shall address this issue in the current section by
grouping shape variables such as u : U in a shape context which is not considered part of
the type-theoretic context but instead serves as the mode of the judgement.

We assume that there are no prior modalities, i.e. that the type system to which we
wish to add a transpension type is non-modal in the sense that it has a single mode and only
the identity modality. We assume that this single prior mode is modelled by the presheaf
category Psh(W). Prior modalities and in particular their commutation with the modalities
mentioned above, are considered in the technical report [Nuy20b].

4.1. Shape contexts. Assume we have in the prior system a context X modelled by a
presheaf Ξ over W. Then the presheaves Psh(W/Ξ) over the category of elements W/Ξ of
the presheaf Ξ are also a model of dependent type theory. Denoting the judgements of the
latter system with a prefix X |, it happens to be the case that judgements X | Γ ⊢ J (i.e.
Γ ⊢ J in Psh(W/Ξ)) have precisely the same meaning as judgements X.Γ ⊢ J in Psh(W)
(for a suitable but straightforward translation of J). Thus, we will group together all shape
variables (variables for which we want a transpension type) in a shape context X in front
of the typing context. Our judgements will then take the form X | Γ ⊢ J . Modal techniques
will be used to signal what part of the context Γ is fresh for a shape variable u : U, as this
can then no longer be signalled by the position of u : U in the context. All of this allows us

16:20 A. Nuyts and D. Devriese Vol. 20:2

to frame the shape context X as the mode of the judgement, as it determines the category
Psh(W/Ξ) in which the judgement is modelled.

Concretely, we fix a set of shapes and generate shape contexts by the following rules:

shp-ctx-empty

· shpctx

shp-ctx-ext
X shpctx U shape

X, u : U shpctx

In Section 8.2, we will additionally add boundary variables. More generally, users of the
current system could add shape context constructors at will, as long as they can be interpreted
as presheaves over W.

4.2. Mode theory. For simplicity, we take a highly general mode theory and will then
only be able to say interesting things about specific modalities and 2-cells. In practice, and
especially in implementations, one will want to select a more syntactic subtheory right away.

As modes, we take shape contexts. An interpretation function J⌞⌟K from shape contexts
to presheaves overW will be defined in Section 6.1. The mode X is modelled in Psh(W/JXK).9

As modalities µ : X1 → X2, we take all functors JµµK : Psh(W/JX2K)→ Psh(W/JX1K)
which have a right adjoint JµK that is then automatically a weak CwF morphism [Nuy20b]
[Nuy20a, thm. 6.4.1] giving rise to a DRA [BCM+20, lemma 17][Nuy18a, §2.1.3].10

As 2-cells α : µ⇒ ν, we take all natural transformations J¤αK : JµνK→ JµµK, which
automatically give rise to natural transformations JαK : JµK→ JνK.

5. MTraS Modalities for Substitution

In the previous section, we have defined modalities as left adjoint functors and 2-cells as
natural transformations. As such, we have neglected to provide an actual syntax; any syntax
we use should be shallowly defined on semantic objects.

We take a similar approach to shape substitutions. A shape substitution from X1 to
X2 is defined as a presheaf morphism σ : JX1K → JX2K. We will consistently write the
interpretation brackets so as to avoid confusion with modalities X1 → X2. A presheaf
morphism is not a modality but it gives rise to a pair of modalities:11

Theorem 5.1. Any presheaf morphism σ : Ξ1 → Ξ2 gives rise to a triple of adjoint functors

Σσ| ⊣ Ωσ| ⊣ Πσ|,

Σσ|,Πσ| : Psh(W/Ξ1)→ Psh(W/Ξ2) Ωσ| : Psh(W/Ξ2)→ Psh(W/Ξ1)

9As we will see later on, the available shapes must in some sense already be present in the base category,
so that a context consisting purely of shapes will in general be representable. As such, we could alternatively
interpret modes as representable presheaves over W, which via the Yoneda-embedding are just the objects
of W. This is perfectly possible and would (again by inserting the Yoneda-embedding) require virtually
no changes to our approach, although a number of intermediate results in the technical report [Nuy20b]
would become unnecessary. However, the current approach is strictly more general, allows us to speak about
boundaries (definitions 6.6 and 6.23) in the shape context, and did not require any compromise in the strength
of our results.

10A designated right adjoint can be retrieved from the left adjoint without the axiom of choice [Nuy20b,
§2.3.6].

11Note in particular that Ω[⌞⌟] turns the arrow around: a presheaf morphism (shape substitution)
σ : JX1K → JX2K gives rise to a substitution modality Ω[σ] : X2 → X1 sending types T in shape context X2 to
types ⟨Ω[σ] | T ⟩ in shape context X1.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:21

the latter two of which can be internalized as modalities (with an additional left name)
Σσ ⊩Ω[σ] ⊣ Πσ with

r
µΣσ
Ω[σ]

z
= Σσ|, JΩ[σ]K = Ωσ|,

r
µ
Ω[σ]
Πσ

z
= Ωσ|, JΠσK = Πσ|.

We denote the units and co-units as

copyσ| : 1→ Ωσ| ◦ Σσ| dropσ| : Σσ| ◦ Ωσ| → 1

constσ| : 1→ Πσ| ◦ Ωσ| appσ| : Ωσ| ◦Πσ| → 1

dropσ ⊨constσ : 1⇒ Πσ ◦ Ω[σ] copyσ ⊨appσ : Ω[σ] ◦Πσ ⇒ 1

Under the correspondence of semantic contexts X | Γ ctx (i.e. presheaves over W/JXK)
with semantic types JXK ⊢ Γ type, the functor Ωσ| is exactly the semantics of ordinary type
substitution in the standard presheaf model [Hof97] and hence, if σ is a weakening substitution,

then Σσ| and Πσ| are naturally isomorphic to the semantics of ordinary Σ- and Π-types.
The functor Ω⌞⌟| and the modality Π ⌞⌟ are strictly functorial (they respect identity and

composition of presheaf morphisms on the nose) whereas the functors Σ⌞⌟|, Π⌞⌟| and the
modality Ω[⌞⌟] are pseudofunctorial12.

Proof. The morphism σ gives rise to a functor Σ/σ : W/Ξ1 → W/Ξ2 : (W,ψ) → (W,σψ)
and hence via left Kan extension, precomposition and right Kan extension [Sta19] to a triple

of adjoint functors Σσ| ⊣ Ωσ| ⊣ Πσ| between the presheaf categories. The claim about type
substitution follows from unfolding the definitions and the claims about Σ- and Π-types
then follow from uniqueness of adjoints.

Strict functoriality of Ω⌞⌟| follows immediately from the construction. Strict functoriality
of Π ⌞⌟ then follows from the fact that a modality µ is fully defined by the semantic left
adjoint JµµK. Pseudofunctoriality of the others follows by uniqueness of the adjoint.

Remark 5.2 (Substitution as a DRA). In presheaf models, contexts are essentially the
same thing as closed types (a property called democracy). The shape substitution operation

for contexts µ
Ω[σ]
Πσ is modelled by Ωσ|, i.e. by ordinary substitution. However, the shape

substitution operation applicable to types is the modal type former ⟨Ω[σ] | ⌞⌟⟩, which is
not equivalent. Indeed, if ⟨Ω[σ] | T ⟩ is closed, i.e. X1 | · ⊢ ⟨Ω[σ] | T ⟩ type, then T lives in

context X2 | ·,µΣσ
Ω[σ] ⊢ T type, so it is not closed. The operation ⟨Ω[σ] | ⌞⌟⟩ is in general

still modelled as a substitution, but now it is one between the semantic contexts JX1K.JΓK
and JX2K.Σσ|JΓK which are isomorphic. This is especially clear if σ : JXK.J∆K → JXK is a
weakening substitution for a context X | ∆ ctx, in which case we are dealing with JXK.J∆K.JΓK
and JXK.(ΣJ∆KJΓK). We can still let ⟨Ω[σ] | ⌞⌟⟩ act on a closed type Ξ2 | · ⊢ S type, however,

but we first have to weaken S to bring it to context ·,µΣσ
Ω[σ]. The composite of these two

operations – weakening over µΣσ
Ω[σ] and then applying ⟨Ω[σ] | ⌞⌟⟩ – is in fact equivalent with

the operation µΣσ
Ω[σ] on contexts.

This remark is relevant to the Ω[σ] modality specifically because its lock µΣσ
Ω[σ] does not

preserve the empty context, whereas most other modalities’ locks do.

12However, Gratzer et al. [GKNB20a] have a strictification theorem for models of MTT which could be
used to strictify Ω[⌞⌟].

16:22 A. Nuyts and D. Devriese Vol. 20:2

Notation 5.3. We will use a slightly unconventional notation for substitutions in order to
have them make maximal sense both as a substitution (as in Ω[σ]) and as a function domain
(as in Πσ):

• Every weakened variable (if weakening is available for the given shape) will be declared, e.g.
we get a presheaf morphism (u : U) : JX, u : UK→ JXK and hence Ω[u : U] : X→ (X, u : U)
and Π(u : U) : (X, u : U) → X. Furthermore, we may omit the shape, writing just Ω[u]
and Πu. Thus, this is what weakening and shape abstraction look like:

X | Γ,µΣu
Ω[u] ⊢ t : T

X, u : U | Γ ⊢ modΩ[u] t : ⟨Ω[u] | T ⟩
,

X, u : U | Γ,µΩ[u]
Πu ⊢ t : T

X | Γ ⊢ modΠu t : ⟨Πu | T ⟩
.

The projection function (Proposition 3.3) for Πu is function application:

X, u : U | Γ,µΩ[u]◦Σu
Ω[u]◦Πu ⊢ A type

X, u : U | Γ ⊢ appu : (Ω[u] p ⟨Πu | A⟩)→ A
[
¤

copyu:1⇒Ω[u]◦Σu
appu:Ω[u]◦Πu⇒1

] Proposition 3.3

The 2-cell Ω[u] ◦ Σu ⇐ 1 : copyu ⊨appu : Ω[u] ◦Πu ⇒ 1 signals a contraction of shape
variables, namely of the one bound by the Π-modality and the one to which the function
is applied.
• When a variable is substituted, we denote this as u := t instead of t/u, e.g. in a cubical
type theory we get a presheaf morphism (i := 0) : JXK → JX, i : IK and hence Ω[i := 0] :
(X, i : I)→ X which binds i and Π(i := 0) : X→ (X, i : I) which depends on i, so we may
substitute 0 for i but we may also abstract over the assumption that i is 0:

X, i : I | Γ,µΣ(i:=0)
Ω[i:=0] ⊢ t : T

X | Γ ⊢ modΩ[i:=0] t : ⟨Ω[i := 0] | T ⟩
,

X | Γ,µΩ[i:=0]
Π(i:=0) ⊢ t : T

X, i : I | Γ ⊢ modΠ(i:=0) t : ⟨Π(i := 0) | T ⟩
.

And apply:

X | Γ,µΩ[i:=0]◦Σ(i:=0)
Ω[i:=0]◦Π(i:=0) ⊢ A type

X | Γ ⊢ appi:=0 : (Ω[i := 0] p ⟨Π(i := 0) | A⟩)→ A
[
¤

copyi:=0:1⇒Ω[i:=0]◦Σ(i:=0)
appi:=0:Ω[i:=0]◦Π(i:=0)⇒1

] prop. 3.3

• Finally, if σ involves weakening, then the codomain of the co-unit may be a variable
renaming that is sugar for the identity, e.g.

app(u/v:U) : Ω[u : U] ◦Π(v : U)⇒ Ω[u : U, v := u]

is exactly the same thing as

app(u:U) : Ω[u : U] ◦Π(u : U)⇒ 1.

This way, we may adjust app(u:U) in order to be able to apply to a different variable:

X, v : U | Γ,µΩ[v]◦Σu
Ω[u]◦Π v ⊢ A type

X, u : U | Γ ⊢ appu/v : (Ω[u] p ⟨Π v | A⟩)→
〈
Ω[u, v := u] | A

[
¤

copyv/u:Ω[v,u:=v]⇒Ω[u]◦Σu
appu/v :Ω[u]◦Πu⇒Ω[u,v:=u]

]〉
Again, bear in mind that shape substitutions are in fact defined as presheaf morphisms and
that therefore, notions such as weakening and contraction reflected by the syntax introduced
here, need to be shallowly interpreted in presheaf morphisms.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:23

Example 5.4. If U is cartesian, i.e. JX, u : UK = JXK × JUK, then there is a diagonal
substitution (w : U, u := w, v := w) : JX, w : UK→ JX, u : U, v : UK. Writing

α = 1Πu ⋆ 1Π v ⋆ const(w,u:=w,v:=w) : Πu ◦Π v ⇒
Πu ◦Π v ◦Π(w, u := w, v := w) ◦ Ω[w, u := w, v := w]

= Π((u : U) ◦ (v : U) ◦ (w, u := w, v := w)) ◦ Ω[w, u := w, v := w]

= Π((u : U) ◦ (w, u := w)) ◦ Ω[w, u := w, v := w]

= Πw ◦ Ω[w, u := w, v := w],

where the equations use strict functoriality of Π ⌞⌟ and ordinary calculation of composition of
substitutions, this allows us to type the näıvely typed function λf.λw.f ww : (Πu.Π v.A)→
Πw.A[w/u,w/v] as

⟨Π(u : U) | ⟨Π(v : U) | A⟩⟩ → ⟨Π(w : U) | ⟨Ω[w : U, u := w, v := w] | A[¤α]⟩⟩.

Remark 5.5. The reframing of shape substitutions as a modality, has the annoying
consequence that substitution no longer reduces. However, both ⟨Ω[σ] | ⌞⌟⟩ and modΩ[σ] are
semantically an ordinary substitution (along an isomorphism, see Remark 5.2). Thus, we
could add computation rules such as:

⟨Ω[σ] | A×B⟩ = ⟨Ω[σ] | A⟩ × ⟨Ω[σ] | B⟩, ⟨Ω[σ] | U⟩ = U,
modΩ[σ] (a, b) = (modΩ[σ] a,modΩ[σ] b), modΩ[σ] ⌜A⌝ = ⌜⟨Ω[σ] | A⟩⌝.

This is fine in an extensional type system, but would not play well with the β-rule for modal
types in an intensional system. Indeed, β-reduction for ⟨Ω[σ] | A⟩ requires a solution to the
following problem: when â = modΩ[σ] a definitionally, then we need to be able to infer a up
to definitional equality from â. Alternatively, the eliminator for ⟨Ω[σ] | A⟩ should somehow
proceed by induction on A, e.g. an element of ⟨Ω[σ] | A×B⟩ could be eliminated as an
element of ⟨Ω[σ] | A⟩ × ⟨Ω[σ] | B⟩. A third possibility would be to abolish elimination of
⟨Ω[σ] | ⌞⌟⟩ altogether, except when applied to type formers for which there is no definitional
substitution-commutation law.

Remark 5.6. In type theory, we generally expect admissibility of substitution: given a
derivable judgement Γ ⊢ J and a substitution σ : ∆→ Γ, we expect derivability of ∆ ⊢ J [σ],
where the operation ⌞⌟[σ] can be applied to any term, type or other object in context
and traverses its structure, leaving everything untouched except variables. A good way to
guarantee admissibility of substitution is by making sure that every inference rule has a
conclusion in a general context Γ and that the context of any premise is obtained by applying
a functorial operation to Γ.

There is no such result for shape substitutions. The conclusion of modal inference rules
often has a non-general shape context, and the transpension type is in general not even
respected by shape substitution [Nuy20b]. However, until we extend MTraS with additional
rules in Sections 8 to 10,13 we do have a form of the usual result: given a derivable judgement
X | Γ ⊢ J and a substitution X | σ : ∆→ Γ, we can derive X | ∆ ⊢ J [σ].

13And possibly even after, see Remark 9.4.

16:24 A. Nuyts and D. Devriese Vol. 20:2

6. Multipliers

In this section, we introduce multipliers as a semantics for shapes, as well as the associated
modalities Ⅎ[u] ⊣ ∀u ⊣ ≬[u]. In Section 6.1, we define multipliers and a number of criteria
by which we can classify them. In Section 6.2, we deal with a technical complication that
we dubbed unpointability§A, which shows up especially in models of guarded and nominal
type theory. In Section 6.3, we discuss an extensive number of examples. In Section 6.4,
we consider how copointed§A multipliers give rise to shape weakening modalities that are a
special instance of the modalities in Section 5. In Section 6.5, we discuss how a multiplier and
its associated operations lift from acting on base and slice categories to acting on categories
of elements of semantic shape contexts. Then in Section 6.6, we are finally ready to define
the transpension modality and its adjoints and to state the quantification Theorem 6.31
that helps to understand them. In Section 6.7, we say a bit more on cartesian multipliers.
In Section 6.8, we briefly list the matters that are not discussed in the current paper but
can be found in the technical report [Nuy20b].

6.1. Shapes and multipliers. In Section 4, we defined shape contexts as lists of variables
and announced that these would be modelled as presheaves over W . Several times, we have
hinted at the fact that these shape variables need not satisfy all the usual structural rules
(weakening, exchange and contraction). In this section, we make these matters precise.

We associate to each shape U a functor ⌞⌟ ⋉ U : W → W which extends by left Kan
extension to a functor ⌞⌟ ⋉ yU : Psh(W) → Psh(W).14 We define the semantics of shape
contexts J⌞⌟K : ShpCtx→ Obj(Psh(W)) as follows:

J·K = ⊤, JX, u : UK = JXK ⋉ yU.

Of course, if we model shape context extension with u : U by an arbitrary functor, then
we will not be able to prove many results. Depending on the properties of the functor,
the variable u will obey different structural rules and the Φ-combinator [Mou16, BCM15]
(Section 10.2) will or will not be sound for U. For this reason, we introduce some criteria that
help us classify shapes. Some of these criteria concern in fact the fresh weakening functor
for the given multiplier, which is essentially an instance of the following construction:

Definition 6.1. Given a functor F : V → W and V0 ∈ Obj(V), we define the action of F
on slice objects over V0 as the functor

F /V0 : V/V0 →W/FV0 : (V, φ) 7→ (FV, Fφ).

Definition 6.2. Assume W has a terminal object ⊤. A multiplier for an object U is
an endofunctor15 ⌞⌟ ⋉ U : W → W such that ⊤ ⋉ U ∼= U . This gives us a natural second
projection π2 : (⌞⌟⋉ U)→ U .

We define the fresh weakening functor to the slice category as ℲU : W → W/U :
W 7→ (W ⋉ U, π2), which is essentially the action of the multiplier on slice objects over ⊤.

We say that a multiplier (as well as its shape) is:

14Both ⌞⌟⋉ U and ⌞⌟⋉ yU are to be regarded as single-character symbols, i.e. ⋉ in itself is meaningless.
In most concrete applications, however, the multiplier is defined as some monoidal product ⌞⌟⊗ U with a
given object U , in which case the left Kan extension is naturally isomorphic to Day convolution with yU .
For this reason, we also refrain from defining U := ⊤⋉ U because we may not have ⊤⊗ U = U on the nose
for the object of interest U .

15In the technical report [Nuy20b], we generalize beyond endofunctors.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:25

• Copointed§A if it is equipped with a natural first projection π1 : (⌞⌟⋉ U)→ Id.
This property carries over to ⌞⌟⋉ yU and thus allows for shape weakening.
• A comonad§A if it is additionally equipped with a natural diagonal δ : (⌞⌟⋉ U)→ ((⌞⌟⋉
U)⋉U) such that π1◦δ = (π1⋉U)◦δ = 1(⌞⌟⋉U) and δ◦δ = (δ⋉U)◦δ : (⌞⌟⋉U)→ (⌞⌟⋉U)3.
This property carries over to ⌞⌟⋉ yU and thus allows for shape variable contraction.
• Cartesian if it is naturally isomorphic to the cartesian product with U .
This property carries over to ⌞⌟ ⋉ yU and is thus a sufficient condition for allowing
exchange. Additionally, it will erase the distinction between weakening Ω[u] (Section 6.4)
and fresh shape weakening Ⅎ[u] (Section 6.6), see Theorem 6.31.
• ⊤-slice faithful§A if ℲU is faithful.
This is a basic well-behavedness property that is satisfied by all examples of interest.
Example 6.20 is a counterexample.
• ⊤-slice full§A if ℲU is full.
For multipliers for objects other than ⊤, this property precludes the exchange rule (Propo-
sition 6.3). ⊤-slice fully faithful multipliers will give rise to fully faithful modalities for
fresh weakening Ⅎ[u] and transpension ≬[u] (Theorem 6.31).
• ⊤-slice shard-free§A if ℲU is essentially surjective on slice objects (V, ψ) such that
ψ : V → U is dimensionally split (Definition 6.6). A shard§A is a slice object (V, ψ) that
is not up to isomorphism in the image of ℲU even though ψ is dimensionally split.
Intuitively, a shard is a shape over U that covers all of U (as expressed by the fact that
ψ is dimensionally split, which just means split epi in most applications), but that is not
prism-shaped in the direction of U (as it would then be in the image of ℲU). Shard-freedom
will be a requirement for the Φ-rule [Mou16] to hold (Theorem 10.1) and for elimination
of the transpension type by pattern matching to be sound (Theorem 9.3).
• ⊤-slice right adjoint if ℲU has a left adjoint ∃U :W/U →W.16

Proposition 6.3. If a ⊤-slice full multiplier for U is:

• a comonad, then U is terminal,
• cartesian, then it is naturally isomorphic to the identity functor.

Proof. The second statement clearly follows from the first, so we only prove the first. Consider
the following diagram:

⊤⋉ U
δ //

π2
""

(⊤⋉ U)⋉ U

π2
yy

U

(6.1)

It commutes, because π2 = π2 ◦ (π1 ⋉U) : (⊤⋉U)⋉U → U and (π1 ⋉U) ◦ δ = 1. So it is a
morphism of slice objects δ : ℲU⊤ → ℲU (⊤× U) and thus, since ℲU is full, of the form ℲUυ
for some υ : ⊤ → ⊤× U . This means in particular that

id⊤×U = π1 ◦ δ = π1 ◦ (υ × U) = υ ◦ π1 : ⊤× U → ⊤× U, (6.2)

so the identity on ⊤⋉ U factors over ⊤. Then ⊤⋉ U ∼= U is terminal.

16A functor ⌞⌟⋉ U with this property is usually called a parametric or local right adjoint, but the word
‘local’ is overloaded [nLa23b] and so is ‘parametric’, and we wanted uniform terminology.

16:26 A. Nuyts and D. Devriese Vol. 20:2

6.2. Pointability, dimensional splitness and boundaries. Before we move on to a
list of examples, we owe the reader a definition for dimensional splitness (although the
impatient reader may first read the example Section 6.3, ignoring shard-freedom, pointability
and boundaries). In most popular base categories, namely all the objectwise pointable
ones, we could have gotten away with saying ‘split epi’ instead of ‘dimensionally split’
(Proposition 6.8).

Definition 6.4. Let W be a category with terminal object ⊤. An object W is pointable§A

if () :W → ⊤ is split epi, i.e. if there exists at least one morphism ⊤ →W . A category is
objectwise pointable§A if each object is pointable.

We have carefully chosen the above terminology to emphasize (1) that pointability
is a property, not structure (the corresponding structure is called pointed), and (2) that
objectwise pointability does not require that the pointings can be chosen naturally.

Proposition 6.5. Let ⌞⌟⋉ U be a multiplier on an objectwise pointable category W. Then
for any object W , the slice object ℲUW is split epi.

Proof. Any functor preserves split epimorphisms. We have ℲUW = (W ⋉ U, π2) and
π2 :W ⋉ U → U ∼= ⊤⋉ U is essentially the image of W → ⊤.

When dealing with a category that is not objectwise pointable, the above theorem does
not hold and the definition of shard-freedom w.r.t. split epi slice objects would not make
sense, so we need a somewhat more general notion:

Definition 6.6. Given a multiplier ⌞⌟⋉ U :W →W, we say that a morphism φ : V → U
is dimensionally split if there is some W ∈ W such that π2 : W ⋉ U → U factors over
φ. The other factor χ :W ⋉ U → V such that π2 = φ ◦ χ will be called a (dimensional)
section of φ. We write W//U for the full subcategory of W/U of dimensionally split slice
objects.

We define the boundary ∂U as the subpresheaf of the Yoneda-embedding yU consisting
of those morphisms that are not dimensionally split.

Thus, a multiplier is ⊤-slice shard-free if and only if every dimensionally split slice
object has an invertible dimensional section.

Proposition 6.7. Let ⌞⌟⋉U be a multiplier on W. Then for any object W , the slice object
ℲUW is dimensionally split with section idW⋉U .

Proposition 6.8. If W is objectwise pointable, then a morphism φ : V → U is split epi if
and only if it is dimensionally split. [Nuy20b]

The notion of dimensionally split morphisms lets us consider the boundary and shard-
freedom (a requirement for modelling Φ) also in base categories that are not objectwise
pointable, where the output of ℲU may not be split epi.

Remark 6.9. ⊤-slice shard-freedom can also be formulated using (co)sieves [nLa23d]. A
sieve in W is a full subcategory S such that if W ∈ S and φ : V →W , then V ∈ S. The
dual (where φ points the other way) is called a cosieve in W. Being full subcategories,
(co)sieves can be regarded as subsets of Obj(W). A sieve on U ∈ W is a sieve in W/U or,
equivalently, a subpresheaf of yU .

A multiplier is ⊤-slice shard-free if either of the following equivalent criteria is satisfied:

• The objects in the essential image of ℲU constitute a cosieve in W/U [Nuy23a].

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:27

• The objects outside the essential image of ℲU constitute a sieve in W/U , i.e. a sieve on U .

The slice objects of the cosieve generated by objects of the essential image of ℲU , are called
dimensionally split. The boundary ∂U is the largest sieve on U that is disjoint with the
objects of the essential image of ℲU .

If ⌞⌟⋉ U is ⊤-slice fully faithful, then the above conditions are furthermore equivalent
to ℲU being a Street opfibration.

6.3. Examples. Let us look at some examples of multipliers. Their properties are listed in
Fig. 7. Most properties are easy to verify, so we omit the proofs.

Example 6.10 (Identity). The identity functor on an arbitrary category W is a multiplier
for ⊤. All slice objects (W, ()) are dimensionally split with invertible section idW : IdW ∼=W ;
hence the boundary is empty and there are no shards. It is ⊤-slice right adjoint, with
∃⊤ :W/⊤ →W : (W, ()) 7→W .

Example 6.11 (Cartesian product). Let W be a category with finite products and U ∈ W .
Then ⌞⌟ × U is a multiplier for U , which is ⊤-slice full if and only if it is the identity
(i.e. U is terminal, cf. Proposition 6.3 and Example 6.10). It is ⊤-slice right adjoint with
∃U :W/U →W : (W,ψ) 7→W . Hence, we have ∃UℲU = ⌞⌟× U .

Definition 6.12. Let RG be the category generated by the following diagram and equations:

N
s
""

t

<< Iroo
r ◦ s = idN,
r ◦ t = idN.

A presheaf over RG is a reflexive graph. More generally, let aRG (with a ≥ 0) be the category
generated by the following:

N

e0,...,ea−1

����""&& Iroo r ◦ ei = idN.

Example 6.13 (Cartesian cubes). Let aCube be the category of cartesian a-ary cubes. It is
the free cartesian monoidal category with same terminal object over aRG. Concretely:

• Its objects take the form (i1 : I, . . . , in : I) (the names are desugared to de Bruijn indices,
i.e. the objects are really just natural numbers),
• Its morphisms (i1 : I, . . . , in : I)→ (j1 : I, . . . , jm : I) are arbitrary functions

φ : {j1, . . . , jm} → {i1, . . . , in} ∪ {0, . . . , a− 1} : j 7→ j⟨φ⟩.
We also write φ = (j1⟨φ⟩/j1, . . . , jm⟨φ⟩/jm). If a variable i is not used, we may write i/⊘
to emphasize this.

This category is objectwise pointable if and only if a ̸= 0. On this category, we consider
the multiplier ⌞⌟× (i : I), which is an instance of Example 6.11 and therefore inherits all
properties of cartesian multipliers. A slice (V, φ) where φ : V → (i : I) is dimensionally
split if i⟨φ⟩ is not an endpoint, i.e. i⟨φ⟩ ̸∈ {0, . . . , a− 1}, and in that case it is isomorphic
to Ⅎ(i:I)V ′ where V ′ is V with i⟨φ⟩ removed, so there are no shards. Clearly then, any
morphism on the boundary factors through one of a morphisms (ε/i) : ⊤ → (i : I) where
ε ∈ {0, . . . , a− 1}, so ∂I ∼=

⊎a−1
k=0⊤.

16:28 A. Nuyts and D. Devriese Vol. 20:2

E
x
a
m
p
le

B
a
se

ca
te
g
o
ry

M
u
lt
ip
li
er

O
b
je
ct
w
is
e
p
o
in
-

ta
b
le

ca
te
g
o
ry

C
o
p
o
in
te
d
/

W
ea
k
en

in
g

E
x
ch
a
n
g
e

C
o
m
o
n
a
d
/

C
o
n
tr
a
ct
io
n

C
a
rt
es
ia
n

⊤
-s
.
fa
it
h
fu
l

⊤
-s
.
fu
ll

⊤
-s
.
sh
a
rd
-f
re
e

⊤
-s
.
ri
g
h
t
a
d
jo
in
t

6.10 W Id ? Ë Ë Ë Ë Ë Ë Ë Ë

6.11 W (⌞⌟× U) ̸∼= Id ? Ë Ë Ë Ë ? é ? Ë
6.13 aCube ⌞⌟× (i : I) a ̸= 0 Ë Ë Ë Ë Ë é Ë Ë
6.14 aCube2 ⌞⌟ ∗ (i : I) a ̸= 0 Ë Ë é é Ë Ë Ë Ë
6.15 CCHM ⌞⌟× (i : I) Ë Ë Ë Ë Ë Ë é é Ë
6.16 DCubed ⌞⌟× (i : LkM) Ë Ë Ë Ë Ë Ë é Ë Ë
6.17 Clock ⌞⌟× (i : �k) é Ë Ë Ë Ë Ë é Ë Ë
6.18 TwCube ⌞⌟⋉ I Ë é é é é Ë Ë Ë Ë
6.19 n min(⌞⌟, i) é Ë Ë Ë Ë Ë é Ë Ë
6.20 2Cube⊥ ⌞⌟×⊥ Ë Ë Ë Ë Ë é é Ë Ë

Figure 7: Some interesting multipliers and their properties. Properties that follow from
being cartesian are greyed out.

Example 6.14 (Affine cubes). Let aCube2 be the category of affine a-ary cubes as used in
[BCH14] (binary) or [BCM15] (unary). It is the free semicartesian monoidal category with
same terminal unit over aRG. Concretely:

• Objects are as in aCube,
• Morphisms are as in aCube such that if j⟨φ⟩ = k⟨φ⟩ ̸∈ {0, . . . , a− 1}, then j = k. This
rules out diagonal maps.

This category is objectwise pointable if and only if a ̸= 0. On this category, we consider
the functor ⌞⌟ ∗ (i : I) : W 7→ (W, i : I), which is a multiplier for (i : I). Dimensional
splitness and the boundary are as in aCube. This functor is ⊤-slice right adjoint with
∃(i:I)((W, j : I), (j/i)) =W and ∃(i:I)(W, (ε/i)) =W for each of the a endpoints ε.

In the nullary case, 0Cube2 is the base category of the Schanuel topos, a sheaf topos
equivalent to the category of nominal sets [Pit13]. In that case, ∃(i:I) is not just left adjoint
to Ⅎ(i:I), but in fact an inverse and hence also right adjoint. This is in line with the fact that
in nominal type theory [PMD15], there is a single name quantifier which can be read as
either existential or universal quantification.

Example 6.15 (CCHM cubes). Let CCHM be the category of CCHM cubes [CCHM17],
which is objectwise pointable. Its objects are as in 2Cube and its morphisms (i1 : I, . . . , in :
I)→ (j1 : I, . . . , jm : I) are functions from {j1, . . . , jm} to the free de Morgan algebra over
{i1, . . . , in}. We again consider ⌞⌟× (i : I), another instance of Example 6.11. A slice object
(V, φ) is now (dimensionally) split if i⟨φ⟩ is not an endpoint, so the boundary is again ⊤⊎⊤.
The so-called connections (j ∨ k/i), (j ∧ k/i) : (j : I, k : I) → (i : I) are shards, because
they have sections (i/j, 0/k) : (i : I) → (j : I, k : I) and (i/j, 1/k) : (i : I) → (j : I, k : I)
respectively but are not in the image of Ⅎ(i:I).

Example 6.16 (Depth d cubes). Let DCubed with d ≥ −1 be the category of depth d cubes,
used as a base category in degrees of relatedness [ND18a, Nuy18a]. This is a generalization
of the category of binary cartesian cubes Cube, where instead of typing every dimension with

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:29

the interval I, we type them with the k-interval LkM, where k ∈ {0, . . . , d} is called the degree
of relatedness of the edge. Its objects take the form (i1 : Lk1M, . . . , in : LknM). Conceptually,
we have a map LkM → LℓM if k ≥ ℓ. Thus, morphisms φ : (i1 : Lk1M, . . . , in : LknM) → (j1 :
Lℓ1M, . . . , jm : LℓmM) send every variable j : LℓM of the codomain to a value j⟨φ⟩, which is
either 0, 1 or a variable i : LkM of the domain such that k ≥ ℓ.
• If d = −1, then there is only one object () and only the identity morphism, i.e. we have
the point category.
• If d = 0, we just get Cube.
• If d = 1, we obtain the category of bridge/path cubes BPCube := DCube1. We write P for

L0M (the path interval) and B for L1M (the bridge interval). Bridge/path cubical sets are
used as a model for parametric quantifiers [NVD17, Nuy18a].

On this category, we consider ⌞⌟× (i : LkM), which is another instance of Example 6.11. A
slice object (V, φ) is dimensionally split w.r.t. this multiplier if i⟨φ⟩ is a variable of type LkM
(and not k′ > k), in which case a preimage is obtained as in Cube (so there are no shards).
Hence, a slice object is on the boundary if it factors over (0/i), (1/i) : () → (i : LkM) or
over (i/i) : (i : Lk′M) → (i : LkM) for k′ > k. These morphisms correspond to the cells of
y(i : Lk + 1M) for k < d, so ∂(i : LkM) ∼= y(i : Lk + 1M) for k < d and ∂(i : LdM) ∼= ⊤ ⊎⊤.

Example 6.17 (Clocks). Let Clock be the category of clocks, used as a base category in
guarded type theory [BM20]. It is the free cartesian category over ω. Concretely:

• Its objects take the form (i1 : �k1 , . . . , in : �kn) where all kj ≥ 0. We can think of a
variable of type �k as representing a clock (i.e. a time dimension) paired up with a
certificate that we do not care what happens after the time on this clock exceeds k.
• Correspondingly, we should have a map �k → �ℓ if k ≤ ℓ, because if the time exceeds ℓ,
then it certainly exceeds k so our certificate can be legitimately adjusted. Then morphisms
φ : (i1 : �k1 , . . . , in : �kn)→ (j1 : �ℓ1 , . . . , jm : �ℓm) are functions that send (de Bruijn)
variables j : �ℓ of the codomain to a variable j⟨φ⟩ : �k of the domain such that k ≤ ℓ.

This category is not objectwise pointable; indeed, the only pointable object is (). On this
category we consider ⌞⌟× (i : �k), which is another instance of Example 6.11. A slice object
(V, φ) is dimensionally split w.r.t. this multiplier if i⟨φ⟩ is a variable of type �k (and not
k′ < k), in which case a preimage is obtained as in Cube (so there are no shards). Thus,
∂(i : �k) ∼= y(i : �k−1) for k > 0 and ∂(i : �0) ∼= ⊥.

Example 6.18 (Twisted cubes). Pinyo and Kraus’s category of twisted cubes TwCube
[PK20] can be described as a subcategory of the category of non-empty finite linear orders
(or, if you want, of its skeletalization: the category of simplices Simplex). On Simplex, we
can define a functor ⌞⌟⋉ I such that W ⋉ I =W op ⊎<W , where we consider elements from
the left smaller than those from the right. Now TwCube is the subcategory of Simplex whose
objects are generated by ⊤ and ⌞⌟ ⋉ I (note that every object then also has an opposite
since ⊤op = ⊤ and (V ⋉ I)op ∼= V ⋉ I), and whose morphisms are given by

• (φ, 0) : HomTwCube(V,W ⋉ I) for all φ : HomTwCube(V,W
op),

• (φ, 1) : HomTwCube(V,W ⋉ I) for all φ : HomTwCube(V,W),
• φ⋉ I : HomTwCube(V ⋉ I,W ⋉ I) for all φ : HomTwCube(V,W),
• () : HomTwCube(V,⊤).
Note that this collection automatically contains all identities, composites, and opposites.
Isomorphism to Pinyo and Kraus’s category of twisted cubes can be seen from their ternary
representation [PK20, def. 34]. We now consider the multiplier ⌞⌟⋉ I : TwCube→ TwCube,

16:30 A. Nuyts and D. Devriese Vol. 20:2

which Pinyo and Kraus call the twisted prism functor. A slice object (V, φ) is dimensionally
split if and only if it is of the form φ = ψ⋉ I (so there are no shards). Hence, all slice objects
on the boundary factor over ((), 0) : ()→ ()⋉ I or ((), 1) : ()→ ()⋉ I, so that ∂I ∼= ⊤ ⊎⊤.
The multiplier is ⊤-slice right adjoint with

∃I :

 (W, ((), 0)) 7→ W op

(W, ((), 1)) 7→ W
(W ⋉ I, ()⋉ I) 7→ W,

(6.3)

with the obvious action on morphisms.

Example 6.19 (Finite ordinals). In the base category ω of the topos of trees, used in
guarded type theory [BMSS12], where Hom(i, j) = {∗ | i ≤ j}, a cartesian product is given by
i×j = min(i, j). However, this category lacks a terminal object. Instead, on the subcategory
n with terminal object n− 1, which is endowed with the same cartesian product, we consider
the multiplier ⌞⌟ × i, which is again an instance of Example 6.11. Any slice object (j, ∗)
(where necessarily j ≤ i) is dimensionally split with section ∗ : min(i, j) = j → j; hence
there are no shards and ∂i = ⊥.

Example 6.20 (Counterexample for ⊤-slice faithful). Let 2Cube⊥ be the category of binary
cartesian cubes extended with an initial object. We consider the cartesian product ⌞⌟×⊥
which sends everything to ⊥. This is not ⊤-slice faithful, as Ⅎ⊥ sends both (0/i) and
(1/i) : ()→ (i : I) to [] : (⊥, [])→ (⊥, []). It is not ⊤-slice full, as there is no ψ : ()→ ⊥ such
that ψ ×⊥ = [] : Ⅎ⊥()→ Ⅎ⊥⊥.

6.4. MTraS Modalities for weakening. Recall that we write ⌞⌟⋉ yU for the left Kan
extension of a multiplier ⌞⌟⋉ U . For any copointed multiplier ⌞⌟⋉ U :W →W and any
presheaf Ξ ∈ Psh(W), we get a presheaf morphism π1 : Ξ⋉ yU → Ξ. In this situation, the
notations in Theorem 5.1 are not very illuminating as they would only mention π1 and not
Ξ or U . Instead, we use the following notations:

Notation 6.21. A functor acting on elements:

• Σ
/Ξ
U := Σ/π1 :W/Ξ⋉ yU →W/Ξ

Functors acting on presheaves:

• Σ
Ξ|
yU := Σπ1| : Psh(W/Ξ⋉ yU)→ Psh(W/Ξ)

• Ω
Ξ|
yU := Ωπ1| : Psh(W/Ξ)→ Psh(W/Ξ⋉ yU)

• Π
Ξ|
yU := Ππ1| : Psh(W/Ξ⋉ yU)→ Psh(W/Ξ)

Natural transformations:

copy
Ξ|
yU := copyπ1| : 1→ Ω

Ξ|
yU ◦ Σ

Ξ|
yU drop

Ξ|
yU := dropπ1| : Σ

Ξ|
yU ◦ Ω

Ξ|
yU → 1

const
Ξ|
yU := constπ1| : 1→ Π

Ξ|
yU ◦ Ω

Ξ|
yU app

Ξ|
yU := appπ1| : Ω

Ξ|
yU ◦Π

Ξ|
yU → 1

For modalities, we use the weakening notations already introduced in Notation 5.3: for
Ξ = JXK, we internalize the above functors as Σ(u : U) ⊩Ω[u : U] : X → (X, u : U) and
Π(u : U) : (X, u : U) → X, sometimes abbreviating to Σu ⊩Ω[u] and Πu, and the above
natural transformations as dropu ⊨constu and copyu ⊨appu.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:31

6.5. Acting on elements. A ⊤-slice right adjoint multiplier ⌞⌟⋉ U :W →W as defined
in Definition 6.2 gives rise to a pair of adjoint functors ∃U ⊣ ℲU between W and the slice

category W/U , and hence a pair of adjoint functors ∃/⊤U ⊣ Ⅎ/⊤U between the categories of
elements W/⊤ and W/(⊤⋉yU) of the empty shape context J·K := ⊤ and the single variable
shape context Ju : UK := ⊤⋉ yU ∼= yU respectively. As any functor between base categories
gives rise to a triple of adjoint functors between presheaf categories, the adjoint pair ∃U ⊣ ℲU
gives rise to an adjoint quadruple ∃⊤|

yU ⊣ Ⅎ⊤|
yU ⊣ ∀

⊤|
yU ⊣ ≬⊤|

yU between the categories Psh(W/⊤)
and Psh(W/yU) that model the modes () and (u : U) respectively. Thus, we are presently
well-equipped to study the transpension type in a setting with at most one shape variable.
Deeming this unsatisfactory, in the current section we intend to generalize the above functors,
so that everywhere we mentioned ⊤ above we can instead have an arbitrary presheaf Ξ.

Definition 6.22. Given a multiplier ⌞⌟⋉ U : W → W and a presheaf Ξ ∈ Obj(Psh(W)),
we define:

Ⅎ/ΞU :W/Ξ→W/(Ξ⋉ yU) : (W, ξ) 7→ (W ⋉ U, ξ ⋉ yU),

where ξ ⋉ yU denotes the (W ⋉ U)-shaped cell of Ξ⋉ yU obtained from ξ.
We say that ⌞⌟⋉ U is:

• Presheafwise faithful§A if for all Ξ, the functor Ⅎ/ΞU is faithful,

• Presheafwise full§A if for all Ξ, the functor Ⅎ/ΞU is full,

• Presheafwise shard-free§A if for all Ξ, the functor Ⅎ/ΞU is essentially surjective on
elements (V, φ) ∈ W/(Ξ⋉ yU) such that φ is directly dimensionally split (Definition 6.23).
A direct shard§A is an element (V, ξ) ∈ W/Ξ⋉ yU that is not up to isomorphism in the

image of Ⅎ/ΞU even though ξ is directly dimensionally split.

• Presheafwise right adjoint§A if for all Ξ, the functor Ⅎ/ΞU has a left adjoint ∃/ΞU :

W/(Ξ ⋉ yU) → W/Ξ. We denote the unit as copy
/Ξ
U : Id → Ⅎ/ΞU ∃

/Ξ
U and the co-unit as

drop
/Ξ
U : ∃/ΞU Ⅎ/ΞU → Id.

Definition 6.23. Given a multiplier ⌞⌟⋉U :W →W , we say that a V -shaped presheaf cell φ
of Ξ⋉ yU is directly dimensionally split§A with direct dimensional section χ :W⋉U → V
if φχ is of the form ξ ⋉ yU . The section can alternatively be presented as a morphism

of elements χ : Ⅎ/ΞU (W, ξ) → (V, φ). We write W//(Ξ ⋉ yU) for the full subcategory of
W/(Ξ⋉ yU) of directly dimensionally split cells.

We define the (direct) boundary§A Ξ⋉ ∂U as the subpresheaf of Ξ⋉ yU consisting
of those cells that are not directly dimensionally split.

Remark 6.24. Just like ⊤-slice shard-freedom (Remark 6.9), presheafwise shard-freedom
can be formulated using (co)sieves. A multiplier is presheafwise shard-free if either of the
following equivalent criteria is satisfied:

• The objects in the essential image of Ⅎ/ΞU constitute a cosieve in W/(Ξ⋉ yU).

• The objects outside the essential image of Ⅎ/ΞU constitute a sieve in W/(Ξ⋉ yU).

The objects of the cosieve generated by objects of the essential image of Ⅎ/ΞU , are called
directly dimensionally split. The boundary Ξ ⋉ ∂U is the largest sieve in W/(Ξ ⋉ yU)

(largest subpresheaf of Ξ⋉yU) that is disjoint with the objects of the essential image of Ⅎ/ΞU .
If ⌞⌟ ⋉ U is presheafwise fully faithful, then the above conditions are furthermore

equivalent to Ⅎ/ΞU being a Street opfibration.

16:32 A. Nuyts and D. Devriese Vol. 20:2

Since we can instantiate Ξ with the terminal presheaf ⊤ ∼= y⊤, we see that each of
the presheafwise criteria implies the ⊤-slice criterion from Definition 6.2. Below we give
sufficient conditions for a multiplier to satisfy the presheafwise criteria:

Proposition 6.25. The multiplier ⌞⌟⋉ U :W →W is:

• presheafwise faithful if it is ⊤-slice faithful,
• presheafwise full if it is ⊤-slice fully faithful,
• presheafwise shard-free if it is ⊤-slice full and shard-free,
• presheafwise right adjoint if it is ⊤-slice right adjoint.

Proof. See [Nuy20b].

Example 6.26. Continuing Example 6.14 about a-ary affine cubes, let Ξ = yW . Then
Ξ ⋉ y(i : I) ∼= y(W, i : I). Pick (V, φ) in the category of elements, which is essentially
the slice category over (W, i : I), i.e. we view φ as a morphism V → (W, i : I). Then φ is
directly dimensionally split if i⟨φ⟩ is not an endpoint, and in that case (V, φ) is isomorphic

to Ⅎ/yW(i:I) (V
′, φ′) where φ′ : V ′ → W is obtained by removing i⟨φ⟩ and i from the domain

and codomain respectively. Thus, there are no direct shards, and the boundary cells are the
ones where i⟨φ⟩ is an endpoint, i.e. yW ⋉ ∂I ∼=

⊎a−1
i=0 yW .

Example 6.27. Continuing Example 6.13 about a-ary cartesian cubes, let Ξ = yW . Then
Ξ ⋉ y(i : I) ∼= y(W, i : I). Pick (V, φ) in the category of elements, again we view φ
as a morphism V → (W, i : I). Then φ is directly dimensionally split if i⟨φ⟩ is not an
endpoint, nor equal to j⟨φ⟩ for some variable j in W , and in that case (V, φ) is isomorphic

to Ⅎ/yW(i:I) (V
′, φ′) where φ′ : V ′ → W is obtained by removing i⟨φ⟩ and i from the domain

and codomain respectively. Thus, there are no direct shards, and the boundary cells are the
ones where i⟨φ⟩ is an endpoint or equal to j⟨φ⟩ for some variable in W .

The following (fairly obvious) theorem is paramount to the semantics of transpension
elimination (Section 9.3) and the Φ-rule (Section 10.2):

Theorem 6.28 (Quotient§A theorem). If a multiplier ⌞⌟ ⋉ U : W → W is ⊤-slice fully

faithful and shard-free (hence presheafwise fully faithful and shard-free), then Ⅎ/ΞU :W/Ξ→
W//(Ξ⋉ yU) is an equivalence of categories.

6.6. MTraS Modalities for multipliers. We are now well-equipped to study the transpen-
sion type in a setting with multiple shape variables.

Theorem 6.29. Any ⊤-slice right adjoint17 multiplier ⌞⌟⋉ U :W →W and any presheaf
Ξ ∈ Psh(W) give rise to a quadruple of adjoint functors

∃Ξ|yU ⊣ ℲΞ|yU ⊣ ∀
Ξ|
yU ⊣ ≬Ξ|yU ,

∃Ξ|yU , ∀
Ξ|
yU : Psh(W/Ξ⋉ yU)→ Psh(W/Ξ) ℲΞ|yU , ≬

Ξ|
yU : Psh(W/Ξ)→ Psh(W/Ξ⋉ yU).

If Ξ = JXK, the latter three can be internalized as modalities (with an additional left name)
∃(u : U) ⊩Ⅎ[u : U] ⊣ ∀(u : U) ⊣ ≬[u : U] with
r
µ∃u
Ⅎ[u]

z
= ∃Ξ|yU , JℲ[u]K =

r
µ
Ⅎ[u]
∀u

z
= ℲΞ|yU , J∀uK =

r
µ∀u
≬[u]

z
= ∀Ξ|yU , J≬[u]K = ≬Ξ|yU .

17Without ⊤-slice right adjointness, we lose the leftmost adjoint functor ∃Ξ|
yU and the leftmost adjoint

modality Ⅎ[u].

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:33

Overloading some notations from Theorem 5.1 we denote the units and co-units as

copy
Ξ|
yU : 1→ ℲΞ|yU ◦ ∃

Ξ|
yU drop

Ξ|
yU : ∃Ξ|yU ◦ Ⅎ

Ξ|
yU → 1

const
Ξ|
yU : 1→ ∀Ξ|yU ◦ Ⅎ

Ξ|
yU app

Ξ|
yU : ℲΞ|yU ◦ ∀

Ξ|
yU → 1

reidx
Ξ|
yU : 1→ ≬Ξ|yU ◦ ∀

Ξ|
yU unmer

Ξ|
yU : ∀Ξ|yU ◦ ≬

Ξ|
yU → 1

dropu ⊨constu : 1⇒ ∀u ◦ Ⅎ[u] copyu ⊨appu : Ⅎ[u] ◦ ∀u⇒ 1

appu ⊨reidxu : 1⇒ ≬[u] ◦ ∀u constu ⊨unmeru : ∀u ◦ ≬[u]⇒ 1

where reidx stands for reindex and unmer is the negation of mer which stands for meridian.

Proof. Via left Kan extension, precomposition and right Kan extension [Sta19], the pair of

adjoint functors ∃/ΞU ⊣ Ⅎ/ΞU gives rise to a quadruple of adjoint functors ∃Ξ|yU ⊣ ℲΞ|yU ⊣ ∀
Ξ|
yU ⊣

≬Ξ|yU between the presheaf categories. (For the middle two, we can choose whether we derive

them from ∃/ΞU or from Ⅎ/ΞU ; the resulting functors are naturally isomorphic. We will specify
our choice when relevant.)

Notation 6.30. Again, due to the (purely sugarous) usage of shape variables, we may end
up with variable renamings that are sugar for the identity, e.g.

app(v/u:U) : Ⅎ[v : U] ◦ ∀(u : U)⇒ Ω[v : U, u := v]

reidx(v/u:U) : Ω[v : U, u := v]⇒ ≬[v : U] ◦ ∀(u : U)
are exactly the same 2-cells as

app(u:U) : Ⅎ[u : U] ◦ ∀(u : U)⇒ 1

reidx(u:U) : 1⇒ ≬[u : U] ◦ ∀(u : U).

Whereas Theorem 5.1 clearly states the meaning of the functors introduced there, little
can be said about the meaning of the functors introduced in Theorem 6.29 without knowing
more about the multiplier involved. The following theorem clarifies the leftmost three
functors:

Theorem 6.31 (Quantification). If ⌞⌟⋉ U is

(1) ⊤-slice fully faithful, then drop
Ξ|
yU , const

Ξ|
yU and unmer

Ξ|
yU are natural isomorphisms.

(2) copointed, then we have

(a) hide
Ξ|
yU : Σ

Ξ|
yU → ∃

Ξ|
yU (if ⊤-slice right adjoint),

(b) spoil
Ξ|
yU : ℲΞ|yU → Ω

Ξ|
yU , which can be internalized (if ⊤-slice right adjoint) as ∃u⇐

Σu : hideu ⊨spoilu : Ⅎ[u]⇒ Ω[u],

(c) cospoil
Ξ|
yU : Π

Ξ|
yU → ∀

Ξ|
yU , which can be internalized as Ω[u]⇐ Ⅎ[u] : spoilu ⊨cospoilu :

Πu⇒ ∀u.
(3) cartesian, then we have:

∃Ξ|yU = Σ
Ξ|
yU , ℲΞ|yU = Ω

Ξ|
yU , ∀Ξ|yU = Π

Ξ|
yU .

The equalities assume that ∃U :W/U →W is defined on the nose by ∃U (W,ψ) =W and

that ℲΞ|yU and ∀Ξ|yU are constructed from ∃/ΞU by precomposition and right Kan extension,
respectively. Failing this, we only get natural isomorphisms.

Let us try to interpret this on a more intuitive level:

16:34 A. Nuyts and D. Devriese Vol. 20:2

(1) For ⊤-slice fully faithful U, invertibility of constu means that any ‘function’ f of type
⟨∀u | ⟨Ⅎ[u] | T ⟩⟩ is necessarily constant, i.e. elements of ⟨Ⅎ[u] | T ⟩ cannot depend on the

shape variable u and are instead fresh for u. With that in mind, invertibility of drop
Ξ|
yU

indicates that the Σ-like operation ∃Ξ|yU hides its first component u : U. Indeed, knowing
that the second component of ∃Ξ|yUℲ

Ξ|
yUΓ is fresh for u, one might expect that ∃Ξ|yUℲ

Ξ|
yUΓ

behaves somewhat like a non-dependent product (which is exactly what happens in the

cartesian setting). Instead, ∃Ξ|yU cancels out ℲΞ|yU , so apparently if the second component
does not depend on u, then u is lost altogether. Finally function application, which is
basically the projection operation from Proposition 3.3,

appu : (Ⅎ[u] p ⟨∀u | T ⟩)→ T [¤appu]. (6.4)

requires that the applied function of type ⟨∀u | T ⟩ be fresh for u, as one would expect
in linear and affine systems and as we saw in ff:forall:elim in Fig. 1.

(2) If U is copointed (which is perfectly combinable with being ⊤-slice fully faithful),
i.e. if weakening is allowed for u : U, then we get three additional operations. The
2-cell spoilu allows us to forget that something is fresh for u. This would not be
possible without weakening because then the modality Ω[u] expressing potential non-
freshness would not even be available. The 2-cell cospoilu allows us to unnecessarily
restrict a function’s usage to variables w.r.t. which the function is fresh. The semantic

substitution hide
Ξ|
yU : Σ

Ξ|
yU JΓK → ∃Ξ|yUΓ at mode Ξ which is internally available as

¤
hideu
spoilu

: (Γ,µΣu
Ω[u])→ (Γ,µ∃u

Ⅎ[u]) allows us to hide the first component u : U. The effect of

applying this substitution is effectively a weakening over u : U, in the sense that the

context ∃Ξ|yUΓ can be regarded as not containing the variable u except in the form of a
hidden mention necessary to make the dependencies of Γ work out. Note that for shapes
that are not ⊤-slice fully faithful, the words ‘hidden’ and ‘fresh’ need to be taken with a
grain of salt. Indeed, for cartesian shapes we should ignore them altogether:

(3) If U is cartesian, then the leftmost three functors become identical to the ones in
Section 6.4. In particular, fresh weakening and weakening coincide and the word ‘fresh’
becomes meaningless.

In order to have some general terminology, we will speak of the hiding existential ∃u, fresh
weakening Ⅎ[u] and substructural (e.g. linear/affine) functions ∀u even when the specifics
of the multiplier are unclear and it is potentially cartesian.

6.7. Cartesian multipliers. The cartesian case of the quantification Theorem 6.31 may
look like all our efforts with multipliers are useless, but let’s not forget that there is now a
further right adjoint to these well-known functors:

Σ
Ξ|
yU ⊣ Ω

Ξ|
yU ⊣ Π

Ξ|
yU ⊣ ≬Ξ|yU .

What we have proven for cartesian shapes is that, for any representable presheaf yU ∈ Psh(W)
such that cartesian products with U exist in the base category W (yielding a cartesian
multiplier ⌞⌟× U :W →W), there is a right adjoint to the Π-type! Licata et al. [LOPS18]

have used a right adjoint to the non-dependent function type functor (yU → ⌞⌟) = Π
Ξ|
yU ◦Ω

Ξ|
yU ,

called the amazing right adjoint and necessarily given by (yU
√

⌞⌟) = Π
Ξ|
yU ◦ ≬

Ξ|
yU , but the

current result appears stronger.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:35

Remarkably, it is not, and it is not novel either. As conjectured by Lawvere, proven
by Freyd and published by Yetter [Yet87], for an arbitrary object U in an arbitrary topos,
the transpension functor (there unnamed and denoted ∇) over U exists if the amazing right
adjoint exists. Indeed, in that case it can be constructed by the following pullback:

Σ(u : U).≬[u]T //

fst

⌟

��

U
√

(Σ(P : Prop).(P → T))

U
√
fst

��
U

(λf.f≡idU)
⊤

// U
√

Prop

where g⊤ denotes the transpose of g under (U→ ⌞⌟) ⊣ (U
√

⌞⌟).

6.8. Further reading. We refer to the technical report [Nuy20b] for more information on

• composite multipliers ⌞⌟⋉ (U ⋉ U ′) := (⌞⌟⋉ U)⋉ U ′,
• morphisms of multipliers ⌞⌟⋉ υ : ⌞⌟⋉ U → ⌞⌟⋉ U ′ (together with the previous point one
could formalize the exchange rule),
• acting on slice objects as opposed to acting on elements (Section 6.5),
• properties of ⌞⌟ ⋉ yU : Psh(W) → Psh(W), the left Kan extension along ⌞⌟ ⋉ U , again
viewed as a multiplier for yU ,
• non-endo multipliers ⌞⌟⋉ U :W → V,
• rules for commuting (co)quantifiers for multipliers, (co)quantifiers for substitution, and
(when adding the transpension type to an already modal type system) prior modalities.

7. The Fully Faithful Transpension System (FFTraS) Revisited

In Section 7.1, we give a pseudo-embedding of FFTraS (Section 2) into MTraS instantiated
on a ⊤-slice fully faithful shape U. In Sections 7.2 and 7.3, we revisit the results about
internal transposition and higher-dimensional pattern-matching from Sections 2.3 and 2.4,
as these also work for other shapes. Poles (Section 2.2) will be revisited in Section 9.1.

7.1. Pseudo-Embedding of FFTraS in MTraS. We give a pseudo-embedding of FFTraS
into MTraS instantiated on a ⊤-slice fully faithful shape U. Pseudo, in the sense that
ff:ctx-forall:nil will be only an isomorphism and some commutation properties w.r.t.
shape substitution will only hold up to isomorphism, implying that a few other rules will
need some adjustments before their translation is well-typed. We do not pay too much
attention to those matters: the purpose of Section 2 was didactical and the purpose of the
embedding is to show that it was also morally correct.

7.1.1. Metatype of the embedding. The judgement forms are translated as follows:

• A context Γ ctx is translated as a pair consisting of a shape context {Γ} shpctx listing the
shape variables in Γ and an internal context {Γ} | ⟨Γ⟩ ctx.

16:36 A. Nuyts and D. Devriese Vol. 20:2

• A substitution σ : ∆ → Γ is translated as a pair consisting of a shape substitution

{σ} : J{Γ}K→ J{∆}K and an internal substitution {Γ} | ⟨σ⟩ : ⟨Γ⟩ → (⟨∆⟩,µΩ[{σ}]
Π {σ}).

18 We

point out that if {σ} ≠ 1, then translating t[σ] : T [σ] is far from trivial. Since ff:ctx-
shp:wkn is the only source of such substitutions, we will generally assume that {σ} = 1
and not worry about the general case. Then, we have {Γ} = {∆} | ⟨σ⟩ : ⟨Γ⟩ → ⟨∆⟩.
• A type Γ ⊢ T type is translated to {Γ} | ⟨Γ⟩ ⊢ ⟨T ⟩ type.
• A term Γ ⊢ t : T is translated to {Γ} | ⟨Γ⟩ ⊢ ⟨t⟩ : ⟨T ⟩.

7.1.2. Structural rules of MLTT. The shape interpretation {⌞⌟} ignores non-shape variables,
and the internal interpretation ⟨⌞⌟⟩ respects the structural rules of MLTT:

{·} = · ⟨·⟩ = ·
{Γ, x : A} = {Γ} ⟨Γ, x : A⟩ = ⟨Γ⟩, x : ⟨A⟩
{1, t/x} = 1 ⟨t/x⟩ = ⟨t⟩/x
{x/⊘} = 1 ⟨x/⊘⟩ = x/⊘

⟨x⟩ = x

7.1.3. Linear/affine shape variables. The shape interpretation {⌞⌟} retains shape variables.
In the fully faithful system, if a variable occurred to the left of u : U, this meant that it was
fresh for u. In MTraS, the shape variable u : U is of course added to the shape context, so
we cannot use its position to signal which variables in Γ are and are not fresh for u. Instead,

we keep track of this using the fresh weakening operation on contexts µ
Ⅎ[u]
∀u .

{Γ, u : U} = {Γ}, u : U ⟨Γ, u : U⟩ = ⟨Γ⟩,µℲ[u]
∀u (ff:ctx-shp)

{σ, u/u} = {σ}, u/u ⟨σ, u/u⟩ = ⟨σ⟩,µℲ[u]
∀u (ff:ctx-shp:fmap)

{σ, u/⊘} = {σ}, u/⊘ ⟨σ, u/⊘⟩ = ⟨σ⟩,¤spoilu:Ⅎ[u]⇒Ω[u]
cospoilu:Πu⇒∀u (ff:ctx-shp:wkn)

7.1.4. Linear/affine function type. The ∀-type translates to a modal type:

ff:forall

{Γ}, u : U | ⟨Γ⟩,µℲ[u]
∀u ⊢ ⟨A⟩ type

{Γ} | ⟨Γ⟩ ⊢ ⟨∀u | ⟨A⟩⟩ type

ff:forall:intro

{Γ}, u : U | ⟨Γ⟩,µℲ[u]
∀u ⊢ ⟨a⟩ : ⟨A⟩

{Γ} | ⟨Γ⟩ ⊢ mod∀u ⟨a⟩ : ⟨∀u | ⟨A⟩⟩

18Note that the latter is equivalent to an internal substitution {∆} | ⟨σ⟩′ : (⟨Γ⟩,µΣ {σ}
Ω[{σ}]) → ⟨∆⟩, but the

advantage of µ
Ω[{σ}]
Π {σ} is that it is strictly functorial.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:37

Application is translated using Proposition 3.3. Let Θ = Γ, u : U, δ : ∆ with no shape

variables in ∆. Then {Θ} = {Γ}, u : U and ⟨Θ⟩ = ⟨Γ⟩,µℲ[u]
∀u , ⟨∆⟩.

ff:forall:elim
{Γ} | ⟨Γ⟩ ⊢ f : ⟨∀u | ⟨A⟩⟩

{Γ} | ⟨Γ⟩,µ∃u◦Ⅎ[u]
∀u◦Ⅎ[u] ⊢ f [¤

dropu
constu] :

〈
∀u | ⟨A⟩[¤dropu

constu ,µ
Ⅎ[u]
∀u]

〉
{Γ} | ⟨Γ⟩,µℲ[u]

∀u , ⟨∆⟩,µ
∃u
Ⅎ[u] ⊢ f [¤

dropu
constu] :

〈
∀u | ⟨A⟩[¤dropu

constu ,µ
Ⅎ[u]
∀u]

〉
{Γ}, u : U | ⟨Γ⟩,µℲ[u]

∀u , ⟨∆⟩ ⊢ appu ·Ⅎ[u] f [¤
dropu
constu] : ⟨A⟩[¤

dropu
constu ,µ

Ⅎ[u]
∀u][µ

Ⅎ[u]
∀u ,¤

copyu
appu] = ⟨A⟩

Observe that, lacking existential quantification for contexts in Section 2, the application rule
ff:forall:elim simply discarded the non-fresh part ∆. In the target language, variables

under µ∃u
Ⅎ[u] can only be used if they are annotated with a modality µ from which there is a

2-cell α : µ⇒ Ⅎ[u], i.e. if they are fresh for u. However, recall that the word ‘fresh’ needs to
be taken with a grain of salt when we are not dealing with a ⊤-slice fully faithful shape.

For example, if U is cartesian, then µ∃u
Ⅎ[u] = µΣu

Ω[u], so that the aggregation of shape and type
context in the premise and conclusion of the appu-rule

X, | Γ,µΣu
Ω[u] ⊢ f : ⟨Πu | A⟩

X, u : U | Γ ⊢ appu ·Ω[u] f : A[¤
copyu
appu]

are isomorphic: JXK.(Σ(yU).JΓK) ∼= (JXK× yU).JΓK.

7.1.5. Telescope quantification. Let Θ = (Γ, u : U, δ : ∆) with no shape variables in ∆. Then
[∀u]Θ = (Γ, ∀u.(δ : ∆)). We translate this as follows:

{[∀u]Θ} = {Γ,∀u.(δ : ∆)} = {Γ} ⟨[∀u]Θ⟩ = ⟨Θ⟩,µ∀u
≬[u] (ff:ctx-forall)

Let ρ = (σ, u/u, τ/δ′) : Θ = (Γ, u : U, δ : ∆) → Θ′ = (Γ′, u : U, δ′ : ∆′). Then [∀(u/u)]ρ =
(σ, λ̄u.τ/λ̄u.δ′). We translate this as follows:

{[∀(u/u)]ρ} =
{
σ, λ̄u.τ/λ̄u.δ′

}
= {σ} ⟨[∀(u/u)]ρ⟩ = ⟨ρ⟩,µ∀u

≬[u] (ff:ctx-forall:fmap)

The rule ff:ctx-forall:nil concerns (Γ,∀u.()) = [∀u](Γ, u : U) which translates to {Γ} |
⟨Γ⟩,µℲ[u]

∀u ,µ
∀u
≬[u] ctx, which is isomorphic to {Γ} | ⟨Γ⟩ ctx by the 2-cell (1Γ,¤

constu:1⇒∀u◦Ⅎ[u]
unmeru:∀u◦≬[u]⇒1

)

because U is ⊤-slice fully faithful (quantification Theorem 6.31). Naturality of ¤constu
unmeru

models ff:ctx-forall:fmap:nil.

7.1.6. Telescope application. Let Θ = (Γ, u : U, δ : ∆) with no shape variables in ∆. Then
appΘ = (u/u, (λ̄u.δ)u/δ) : ([∀u]Θ, u : U) = (Γ, ∀u.(δ : ∆), u : U) → Θ. We translate this
using the 2-cell

{Γ}, u : U | ⟨appΘ⟩ = (¤
appu:Ⅎ[u]◦∀u⇒1
reidxu:1⇒≬[u]◦∀u) : (⟨Θ⟩,µ

∀u
≬[u],µ

Ⅎ[u]
∀u)→ ⟨Θ⟩ (ff:ctx-app)

naturality of which models ff:ctx-app:nat.

If ∆ is empty, then ⟨Θ⟩ = (⟨Γ⟩,µℲ[u]
∀u), so that

{Γ}, u : U |
〈
app(Γ,u:U)

〉
= (µ

Ⅎ[u]
∀u ,¤

appu
reidxu

) = (¤const−1
u

unmer−1
u
,µ

Ⅎ[u]
∀u)

: (⟨Γ⟩,µℲ[u]
∀u ,µ

∀u
≬[u],µ

Ⅎ[u]
∀u)→ (⟨Γ⟩,µℲ[u]

∀u)

16:38 A. Nuyts and D. Devriese Vol. 20:2

Now ¤constu
unmeru models the equation in ff:ctx-forall:nil which well-typedness of ff:ctx-

app:nil relies on, so it can be regarded as the identity and the above essentially models
ff:ctx-app:nil.

Similarly, the rule ff:ctx-forall:fmap:ctx-app concerns [∀u/u]appΘ, which trans-
lates to

{Γ} | (⟨appΘ⟩,µ
∀u
≬[u]) = (¤

appu
reidxu

,µ∀u
≬[u]) = (µ∀u

≬[u],¤
const−1

u

unmer−1
u
)

: (⟨Θ⟩,µ∀u
≬[u],µ

Ⅎ[u]
∀u ,µ

∀u
≬[u])→ (⟨Θ⟩,µ∀u

≬[u]),

essentially modelling ff:ctx-forall:fmap:ctx-app.

7.1.7. Transpension type. Let Θ = (Γ, u : U, δ : ∆) with no shape variables in ∆. The
transpension type translates to a modal type:

ff:transp

{Γ} | ⟨Θ⟩,µ∀u
≬[u] ⊢ ⟨A⟩ type

{Γ}, u : U | ⟨Θ⟩ ⊢ ⟨≬[u] | ⟨A⟩⟩ type

ff:transp:intro

{Γ} | ⟨Θ⟩,µ∀u
≬[u] ⊢ ⟨a⟩ : ⟨A⟩

{Γ}, u : U | ⟨Θ⟩ ⊢ mod≬[u] a : ⟨≬[u] | ⟨A⟩⟩

The eliminator is translated using Proposition 3.3.

ff:transp:elim

{Γ}, u : U | ⟨Γ⟩,µℲ[u]
∀u ⊢ t :

〈
∀u | ⟨A⟩[¤const−1

u

unmer−1
u
]
〉

{Γ} | ⟨Γ⟩ ⊢ unmeru ·∀u t : ⟨A⟩

Again ¤
const−1

u

unmer−1
u

just models ff:ctx-forall:nil and can be ignored. The β- and η-rules are

the ones form Proposition 3.3, and the naturality rules amount to

(mod∀u ⟨a⟩)[⟨ρ⟩] = mod∀u

(
⟨a⟩

[
⟨ρ⟩,µ∀u

≬[u]

])
, ⟨∀u | ⟨A⟩⟩[⟨ρ⟩] =

〈
∀u | ⟨A⟩

[
⟨ρ⟩,µ∀u

≬[u]

]〉
.

This concludes the embedding for the selected typing rules in Fig. 1.

7.2. Internal transposition. In Section 2.3, we proved the isomorphism

(∀(u : U).A)→ B ∼= ∀(u : U).(A→ ≬[u]B). (7.1)

The MTraS equivalent,

(∀u p A)→ B′ ∼=
〈
∀u | A→

〈
≬[u] | B′[¤const−1

u

unmer−1
u
]
〉〉

is not in general true (or even statable) but for ⊤-slice fully faithful multipliers it follows
from the following instance of Proposition 3.4 (which holds in general)〈

≬[u] | (∀u p A[¤appu
reidxu

])→ B
〉 ∼= (A→ ⟨≬[u] | B⟩) (7.2)

by applying ⟨∀u | ⌞⌟⟩ to both sides, redefining B′ = B[¤constu
unmeru] and using the quantification

Theorem 6.31.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:39

7.3. Higher-dimensional pattern matching. Deriving HDPM from internal transposition
for general multipliers is a bit more involved than it was for FFTraS (Section 2.4) because
we have to use Eq. (7.2) instead of Eq. (7.1). However, we can construct an isomorphism
i : ⟨∀u | A ⊎B⟩ ∼= ⟨∀u | A⟩ ⊎ ⟨∀u | B⟩ directly by translating from Section 2.4. Again, the
map to the left is trivial by pattern matching (which is still the original eliminator for modal
types!). The map to the right is given in either system by:

i : (∀u.A ⊎B)→ (∀u.A) ⊎ (∀u.B) FFTraS

i ĉ = unmer

(
u.case ĉ u of

{
inl a 7→ mer[u] (inl (λ̄u.a))
inr b 7→ mer[u] (inr (λ̄u.b))

})
i : ⟨∀u | A ⊎B⟩ → ⟨∀u | A⟩ ⊎ ⟨∀u | B⟩ MTraS

i ĉ = unmeru ·∀u case (appu ·Ⅎ[u] ĉ
dropu
constu) of

{
inl a 7→ mod≬[u] (inl (mod∀u (a

appu
reidxu

)))

inr b 7→ mod≬[u] (inr (mod∀u (b
appu
reidxu

)))

}
.

8. Additional Typing Rules

In this section, we add a few extensions to MTraS in order to reason about boundaries, and
in order to recover all known presheaf operators in Section 10.

8.1. Subobject classifier. We add a universe of propositions (semantically the subobject
classifier) Prop : U0, with implicit encoding and decoding operations à la Coquand. This
universe is closed under logical operators and weak DRAs [Nuy20a, §6.5]. This is necessary
to talk about Ψ and Φ. We identify all proofs of the same proposition.

8.2. Boundary predicate. We add the following shape context constructor:

shp-ctx-boundary
X shpctx U shape

X, u : ∂U shpctx

modelling JX, u : ∂UK = JXK ⋉ ∂U (Definition 6.23). Write (u ∈ ∂U) for the presheaf
morphism that includes JX, u : ∂UK in JX, u : UK. We add a predicate of the same name X, u :
U | · ⊢ u ∈ ∂U : Prop corresponding in the model to this subobject JX, u : ∂UK ⊆ JX, u : UK.
Note that, since the direct boundary was not defined by pullback, the boundary predicate is
not preserved by shape substitution σ : JX1K→ JX2K, i.e. ⟨Ω[σ, u := u] | (u ∈ ∂U)X2⟩ is not
in general isomorphic to (u ∈ ∂U)X1 .

If we had modal type formers for left adjoints, then we could define the boundary

predicate as (⊤,µΣ(u∈∂U)
Ω[u∈∂U]). However, MTT does not support such type formers and we do

not know how to do this19 so we simply axiomatize the predicate by decreeing for every type
X, u : U | Γ ⊢ A type an isomorphism

(u ∈ ∂U)→ A ∼=
〈
Π(u ∈ ∂U) |

〈
Ω[u ∈ ∂U] | A[¤drop(u∈∂U)

const(u∈∂U)
]
〉〉
. (8.1)

19It is worth noting that Σσ| is a parametric right adjoint so the work by Gratzer et al. [GCK+22] could
be relevant.

16:40 A. Nuyts and D. Devriese Vol. 20:2

In practice, for concrete systems, we will want axioms based on our findings in Section 6.3,
e.g. in a binary cubical system we would decree · | (i ∈ ∂I)↔ (i ≡I 0) ∨ (i ≡I 1) where the
latter two predicates could be axiomatized similarly to (8.1).

8.3. Strictness axiom. The strictness axiom [OP18] allows to extend a partial type T to
a total type if T is isomorphic to a total type A, effectively strictifying the isomorphism:

X | Γ ⊢ φ : Prop X | Γ ⊢ A : Uℓ X | Γ, : φ ⊢ T : Uℓ X | Γ, : φ ⊢ i : A ∼= T

X | Γ ⊢ Strict{A ∼= (φ ? T ; i)} : Uℓ X | Γ ⊢ strict{φ ? i} : A ∼= Strict{A ∼= (φ ? T ; i)}
where Γ, : φ ⊢ Strict{A ∼= (φ ? T ; i)} = T : Uℓ Γ, : φ ⊢ strict{φ ? i} = i : A ∼= T

9. Investigating the Transpension Type

In Section 2.2, we have briefly investigated the structure of a fully faithful transpension type
in FFTraS. In this section, we investigate the structure of the general transpension type
⟨≬[u] | A⟩ in MTraS.

9.1. Poles. Our first observation is that on the boundary, the transpension type is trivial.
Let ⊤ : X1 → X2 be the modality, between any two modes, which maps any presheaf to the
terminal presheaf. We clearly have ⊤ ◦ µ = ⊤ for any µ, but also µ ◦ ⊤ ∼= ⊤ because all
internal modalities are right adjoints and therefore preserve the terminal object.

Theorem 9.1 (Pole). We have Ω[u ∈ ∂U] ◦ ≬[u] ∼= ⊤. We can thus postulate a term
X, u : U | Γ, : u ∈ ∂U ⊢ pole : ⟨≬[u] | T ⟩ for any X | Γ,µ≬[u] ⊢ T type, with an η-rule
X, u : U | Γ, : u ∈ ∂U ⊢ t = pole : ⟨≬[u] | T ⟩.
Sketch of proof. The left adjoints ∀(u : U) ◦ Σ(u ∈ ∂U) and ⊥ of the concerned modalities
are isomorphic because ∀(u : U).(u ∈ ∂U) is false. We give a full proof in the technical report
[Nuy20b].

Definition 6.6 of the boundary relied on the notion of dimensional splitness. The following
result shows that it was a good one: the transpension is only trivial on the boundary:

Theorem 9.2 (Boundary). In the model, we have [Nuy20b]

X, u : U | Γ ⊢ (u ∈ ∂U) ∼= ⟨≬[u : U] | Empty⟩.

9.2. Meridians. As all our modalities are proper DRAs [BCM+20], the modal introduction
rule is invertible in the model. This immediately shows that sections20 of the transpension
type

X | Γ ⊢ f : ⟨∀(u : U) | ⟨≬[u : U] | T ⟩⟩
(which we call meridians) are in 1-1 correspondence with terms

X | Γ,µ∀u◦Ⅎ[u]
∀u◦≬[u] ⊢ t : T.

If it were not for the locking of the context, this characterization in terms of poles and
meridians would make the transpension type look quite similar to a dependent version of
the suspension type in HoTT [Uni13], whence our choice of name. If U is ⊤-slice (hence

20By a section of a dependent type, we mean a dependent function with the same domain as the type.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:41

transp:elim
X, u : U | Γ ctx

X | Γ,µ∀u
≬[u] ⊢ A type

X, u : U | Γ, r : ⟨≬[u] | A⟩ ⊢ C type
X, u : U | Γ, : u ∈ ∂U ⊢ cpole : C[pole/r]
X, u : U | Γ,µ∀u

≬[u], x : A,µ
Ⅎ[u]
∀u ⊢ cmer : C

[
idΓ,¤

appu
reidxu

,mod≬[u] (x
const−1

u

unmer−1
u
)/r

]
X, u : U | Γ,µ∀u

≬[u], x : A,µ
Ⅎ[u]
∀u , : u ∈ ∂U ⊢ cmer = cpole[idΓ,¤

appu
reidxu

] : C[idΓ,¤
appu
reidxu

, pole/r]

X, u : U | Γ ⊢ t : ⟨≬[u] | A⟩
X, u : U | Γ ⊢ c := case t of

{
pole 7→ cpole | mer x 7→ cmer

}
: C[t/r]

where c[pole/t] = cpole

X, u : U | ∆,µℲ[u]
∀u ⊢ c = cmer[id∆,¤

constu
unmeru , unmeru ·∀u t/x,µ

Ⅎ[u]
∀u] : C

Figure 8: Transpension elimination by pattern matching (sound if U is ⊤-slice fully faithful
and shard-free). Recall Eq. (3.1).

presheafwise) fully faithful, then the applied locks are actually isomorphic to the identity
lock (Theorem 6.31). In any case, regardless of the properties of U, Proposition 3.3 tells us
that the let-rule for ≬[u : U] has the same power as

unmeru : (∀(u : U) p ⟨≬[u : U] | T ⟩)→ T [¤constu
unmeru]

which extracts meridians. If U is ⊤-slice fully faithful, then the 2-cell unmeru is invert-
ible (Theorem 6.31) and we can also straightforwardly create meridians from elements of
T [¤constu

unmeru].

9.3. Pattern matching. The eliminator unmeru is only capable of eliminating sections of
the transpension type. If the quotient Theorem 6.28 applies to U, we can eliminate locally
by pattern matching:

Theorem 9.3. If U is ⊤-slice (hence presheafwise) fully faithful and shard-free, then the
rule transp:elim in Fig. 8 is sound [Nuy20b].

The elimination rule is best understood by looking at the left names. We get a context Γ

depending on u : U, a type A depending on sections of Γ (as represented by Γ,µ∀u
≬[u]), a type

C depending on u and r : ⟨≬[u] | A⟩, and an argument t of type ⟨≬[u] | A⟩. To obtain a value
of type C, we need to give an action cpole on the boundary, where t is necessarily pole (pole
Theorem 9.1), and a compatible action on sections of the transpension type, i.e. meridians,
which live over sections of Γ but are themselves essentially elements of A (quantification
Theorem 6.31), producing sections of C (but the quantifier ∀u has been brought to the left

as µ
Ⅎ[u]
∀u). Thanks to shard-freedom, we know that everything that is not a section21, is on

the boundary, so this suffices.
The computation rule for meridians fires when all of Γ is fresh for u. In this situation,

the judgement for t is X, u : U | ∆,µℲ[u]
∀u ⊢ t : ⟨≬[u] | A⟩ which by transposition boils down to

X | ∆ ⊢ t′ : ⟨∀ a | ⟨≬[u] | A⟩⟩, i.e. it fires when t can actually be seen as a full section of the
transpension type, so that we can apply the action on sections given by cmer.

21or a ‘dimensional section’ in case of base categories that are not objectwise pointable

16:42 A. Nuyts and D. Devriese Vol. 20:2

Transpension
∀u ⊣ ≬[u]

[Yet87], this paper

ww

~~ �� �� &&

§8.3 Strictness
Strict
[OP18]

�� &&

��

Pushout
[Nuy20a, §6.3.3]

��§10.1 Amazing r. adj.
(U→ ⌞⌟) ⊣ (U

√
⌞⌟)

[LOPS18]
for HoTT

§10.5 Glue
[CCHM17, NVD17, WL20]
for HoTT/DirTT/param.

§10.5 Weld
[NVD17]
for param.

xx
§10.6 Nominal TTN

i, ⟨⟨i⟩⟩, ν[i]
[PMD15]

§10.2 Φ/extent
[BCM15]

Relates functions

§10.3 Ψ/Gel
[BCM15]

Relates types

ss

§10.5 mill
[ND18b]

Swaps Weld and ∀ i

§10.4 Transpensivity
Poor man’s Φ/extent

Figure 9: Recovering known operators: Dependency graph

Remark 9.4. This computation rule for transp:elim is in a non-general context and needs
to be forcibly closed under substitution. We could not find a better way to phrase this
computation rule at the time of writing, but while preparing the camera-ready version of

this paper, we believe the rule can be mended using the fact that µ
Ⅎ[u]
∀u has a further left

adjoint µ∃u
Ⅎ[u] so that an arbitrary context Θ can be universally approximated in the image

of µ
Ⅎ[u]
∀u as

(
Θ,µ∃u

Ⅎ[u],µ
Ⅎ[u]
∀u

)
, not unlike how the modal formation and introduction rules of

MTT itself were conceived (Fig. 4).

10. Recovering Known Operators

In this section, we explain how to recover the amazing right adjoint
√

[LOPS18], BCM’s
Φ and Ψ combinators [BCM15, Mou16], Glue [CCHM17, NVD17], Weld [NVD17] and mill
[ND18b] and (without formal claims) locally fresh names [PMD15] from the transpension
type, the strictness axiom [OP18] and certain pushouts. Figure 9 gives an overview of the
dependencies.

10.1. The amazing right adjoint
√
. Licata et al. [LOPS18] use presheaves over a cartesian

base category of cubes and introduce
√

as the right adjoint to the non-dependent exponential
I → ⌞⌟. We generalize to semicartesian base categories (indeed to copointed multipliers)
and look for a right adjoint to U ⊸ ⌞⌟, which decomposes as substructural quantification
after cartesian weakening ∀(u : U) ◦ Ω[u : U]. Then the right adjoint is obviously

√
U :=

Π(u : U) ◦ ≬[u : U]. The type constructor has type ⟨
√

U | ⌞⌟⟩ : (
√

U p Uℓ) → Uℓ and the
transposition rule is as in Proposition 3.4. This is an improvement in two ways: First, we
have introduction, elimination and computation rules, so that we do not need to postulate
functoriality of

√
U and invertibility of transposition. Secondly, we have no need for a

global sections modality ♭. Instead, we use the modality
√

U to escape Licata et al.’s no-go
theorems.

Our overly general mode theory does contain a global sections modality ♭ : · → · acting
in the empty shape context, and we can use this to recover Licata et al.’s axioms for the

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:43

amazing right adjoint. Let us write 1 ⇐ Σu ◦ Ⅎ[u] : spdropu ⊨spconstu : 1 ⇒ ∀u ◦ Ω[u]
and spunmeru : Πu ◦ ≬[u] ⇒ 1 for the 2-cells built by partial transposition from either
hideu ⊨spoilu or cospoilu (Theorem 6.31), which are each other’s transposite. The following
are isomorphisms:

κ := spconstu ⋆ 1♭ : ♭
∼= ∀u ◦ Ω[u] ◦ ♭,

ζ := 1♭ ⋆ spunmeru : ♭ ◦Πu ◦ ≬[u] ∼= ♭.

For κ, this is intuitively clear from the fact that we are considering U-cells in a discrete
presheaf produced by ♭. For ζ, this is similarly clear after taking the left adjoints:

spconstu ⋆ 1+ : + ∼= ∀u ◦ Ω[u] ◦ +

where +, the left name of ♭, is semantically the connected components functor which also
produces discrete presheaves. Write +⇐ 1 : η ⊨ε : ♭⇒ 1 for the co-unit of the comonad ♭.
We can define

U
√

⌞⌟ : (♭ p U)→ U U ⊸ ⌞⌟ : U → U

U
√
A =

〈
Πu ◦ ≬[u] | A[¤ζ−1][¤η

ε ,µ
∀u◦Ω[u]
Πu◦≬[u]]

〉
U ⊸ A =

〈
∀u ◦ Ω[u] | A[¤spdropu

spconstu
]
〉
.

Let two global types · | Γ,µ♭ ⊢ A,B type be given. Applying the non-dependent version of
Proposition 3.4 to the adjunction ∀u ◦ Ω[u] ⊣

√
U = Πu ◦ ≬[u] with unit (1Πu ⋆ reidxu ⋆ 1Ω[u])

◦ constu : 1⇒ Πu ◦ ≬[u] ◦ ∀u ◦ Ω[u] yields:
(A[¤η

ε]→ U
√
B)

∼=
〈√

U |
〈
∀u ◦ Ω[u] | A[¤η

ε][¤
dropu
constu][µ

Ω[u]
Πu ,¤

appu
reidxu

,µΣu
Ω[u]]

〉
→ B[¤ζ−1][¤η

ε ,µ
∀u◦Ω[u]
Πu◦≬[u]]

〉
=

〈√
U |

〈
∀u ◦ Ω[u] | A[¤spdropu

spconstu
]
〉
[¤ζ−1][¤η

ε ,µ
∀u◦Ω[u]
Πu◦≬[u]]→ B[¤ζ−1][¤η

ε ,µ
∀u◦Ω[u]
Πu◦≬[u]]

〉
=

〈√
U |

(〈
∀u ◦ Ω[u] | A[¤spdropu

spconstu
]
〉
→ B

)
[¤ζ−1][¤η

ε ,µ
∀u◦Ω[u]
Πu◦≬[u]]

〉
= U
√

((U ⊸ A)→ B).

Equality of the substitutions applied to A is proven by transposing ∀u ◦ Ω[u] to the left as
Πu ◦ ≬[u]. Then the unit constu ◦ (1Πu ⋆ reidxu ⋆ 1Ω[u]) : 1⇒ Πu ◦ ≬[u] ◦ ∀u ◦ Ω[u] becomes
1Πu◦≬[u], leaving just ε : ♭ ⇒ 1, whereas spconstu : 1 ⇒ ∀u ◦ Ω[u] becomes spunmeru :

Πu ◦ ≬[u]⇒ 1 and cancels against ζ−1, again leaving just ε.
Applying the ♭ modality to both sides of the isomorphism and using ζ to get rid of the

amazing right adjoint on the right, yields transposition functions as given by Licata et al.
[LOPS18].

We refer back to Section 6.7 for the opposite construction: a transpension type for a
cartesian multiplier can be constructed from an amazing right adjoint [Yet87].

10.2. The Φ-combinator. In Fig. 10, we state BCM’s Φ-rule [BCM15, Mou16], also known
as extent [CH21]; both a slight reformulation adapted to FFTraS and the rule phi adapted
to MTraS.

In the binary version of the BCM system, or in FFTraS with an interval shape as in
cubical type theory, the Φ-combinator allows us to define functions of type ∀ i.(y : B i)→ C i y
from an action cϵ at every endpoint ϵ and a compatible action c∀ on sections ∀ i.B i. When the
resulting function Φ c0 c1 c∀ is applied to an endpoint ϵ : I it just reduces to the corresponding
action λy.cϵ. When it is applied to an interval variable i : I and expression b that depends

16:44 A. Nuyts and D. Devriese Vol. 20:2

Binary and destrictified reformulation of the original Φ-rule
[BCM15, Mou16, CH21]:

∆, i : I ⊢ B type
∆, i : I, y : B ⊢ C type
∆, y : B[ϵ/i] ⊢ cϵ : C[ϵ/i] (ϵ ∈ {0, 1})
∆, h : ∀(i : I).B, i : I ⊢ c∀ : C[h i/y]
∆, h : ∀(i : I).B ⊢ c∀[ϵ/i] = cϵ[h ϵ/y] : C[h ϵ/y] (ϵ ∈ {0, 1})
∆ ⊢ Φ c0 c1 c∀ : ∀ i.(y : B)→ C
where Φ c0 c1 c∀ ϵ b = cϵ[b/y] (ϵ ∈ {0, 1})

∆, i : I ⊢ Φ c0 c1 c∀ i b = c∀[λi.b/h]

Φ-rule in MTraS (recall Eq. (3.1)):

phi
X, u : U | Γ ⊢ C type
X, u : U | Γ, : u ∈ ∂U ⊢ c∂ : C

X, u : U | Γ,µ∀u
≬[u],µ

Ⅎ[u]
∀u ⊢ c∀ : C[¤

appu:Ⅎ[u]◦∀u⇒1
reidxu:1⇒≬[u]◦∀u]

X, u : U | Γ,µ∀u
≬[u],µ

Ⅎ[u]
∀u , : u ∈ ∂U ⊢ c∀ = c∂ [¤

appu
reidxu

] : C[¤
appu
reidxu

]

X, u : U | Γ ⊢ Φu c∂ c∀ : C
where X, u : U | Γ, : u ∈ ∂U ⊢ Φu c∂ c∀ = c∂ : C

X, u : U | ∆,µℲ[u]
∀u ⊢ Φu c∂ c∀ = c∀[¤

constu:1⇒∀u◦Ⅎ[u]
unmeru:∀u◦≬[u]⇒1

,µ
Ⅎ[u]
∀u] : C

Figure 10: The Φ-rule (sound if U is ⊤-slice fully faithful and shard-free).

only on i and variables fresh for i, then the variable i can be captured in b yielding a section
λi.b : ∀ i.B i to which we can apply the action on sections c∀.

A few remarks are necessary in order to move to MTraS. First of all, note that the fully
applied conclusion of the Φ-rule is ∆, i : I, y : B ⊢ Φ c0 c1 c∀ i y : C. Of course the endpoints
together constitute the boundary of the interval, so if we want to generalize away from
cubical type theory, we can expect something like ∆, u : U, y : B ⊢ Φ c∂ c∀ u y : C. We will
assume that the shape U is ⊤-slice fully faithful and shard-free. In order to translate the
context (∆, u : U, y : B) to MTraS, recall that in FFTraS (as well as in the BCM system) the
variables to the left of u are fresh for u, whereas those to the right need not be. In MTraS

we put the shape variables in the shape context, so the context translates to (∆,µ
Ⅎ[u]
∀u , y : B).

In MTraS we will treat this entire thing as a single abstract context Γ, so we do not grant
the domain of the Φ-function any special status; in a way all of Γ takes the role of B.

Then, completely analogously to BCM, we need a type C in context Γ, an object c∂ : C
whenever u is on the boundary, and a compatible action c∀ that acts on sections of Γ and

produces sections of C, but the quantifier ∀u has been brought to the left as µ
Ⅎ[u]
∀u . Again

the resulting term Φu c∂ c∀ reduces to c∂ when on the boundary, and to c∀ when all variables
in use are fresh for u. Again, the computation rule for sections is in a non-general context
and needs to be forcibly closed under substitution, but see Remark 9.4.

Note that the FFTraS/BCM substitutions h i/b and h ϵ/b (i.e. h i/b where i is on the
boundary) involving applications, all turn into usages of¤

appu
reidxu

whereas the variable capturing

substitution λi.b/h has turned into (¤constu
unmeru ,µ

Ⅎ[u]
∀u) : (∆,µ

Ⅎ[u]
∀u)→ (∆,µ

Ⅎ[u]
∀u ,µ

∀u
≬[u],µ

Ⅎ[u]
∀u) which

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:45

for ⊤-slice fully faithful multipliers is inverse to (µ
Ⅎ[u]
∀u ,¤

appu
reidxu

) and therefore denotes an
inverse of application: variable capture. Furthermore, regarding the context of c∀, we remark
that for ⊤-slice fully faithful multipliers there is an isomorphism of contexts

(∆,µ
Ⅎ[u]
∀u , y : B,µ∀u

≬[u])
∼=3.4

(
∆,µ

Ⅎ[u]
∀u ,µ

∀u
≬[u], ∀u p y : B

[
µ
Ⅎ[u]
∀u ,¤

appu
reidxu

])
∼=6.31 (∆,∀u p y : B,µ

Ⅎ[u]
∀u) (10.1)

so, recalling from Section 7.1.3 that i : I translates to µ
Ⅎ[i]
∀ i in the internal context, there

really is a close correspondence to what happens in the BCM system.
We remark that if U is ⊤-slice fully faithful but not necessarily shard-free, then the

Φ-rule remains valid for creating terms of a transpension type C = ⟨≬[u] | D⟩. Indeed, using
pole Theorem 9.1 we can then define:

Φu pole c∀ := mod≬[u] (unmeru ·∀u c∀) : ⟨≬[u] | D⟩.
The non-trivial computation rule follows from the η-rule for projections (Proposition 3.3)
and quantification Theorem 6.31.

Theorem 10.1. If U is ⊤-slice fully faithful and shard-free, then the Φ-rule (Fig. 10) is
sound and indeed derivable from transp:elim for all C.

Proof. Use the case-eliminator for ⟨≬[u] | Unit⟩ (Theorem 9.3):

Φu c∂ c∀ := case (mod≬[u] unit) of
{

pole 7→ c∂ | mer 7→ c∀
}
.

10.3. The Ψ-type. BCM’s Ψ-combinator (Fig. 11, also known as Gel [CH21]) constructs
a line ∀(i : I).U in the universe with endpoints Aϵ from a relation R : A0 → A1 → U. A
section of the Ψ-type with endpoints aϵ is a proof of Ra0 a1. The constructor inΨ creates a
section ∀(i : I).ΨiA0A1 (x0.x1.R) from the expected inputs. The disappearance of Θ in the
premises of Ψ and inΨ is entirely analogous to the shape application rule ff:forall:elim
in Fig. 1. The eliminator outΨ extracts from a section of the Ψ-type the proof that its
endpoints satisfy the relation R.

In fact, using the typing rules of FFTraS and a strictness axiom as in Section 8.3 we
can already implement a stronger Ψ-type, also given in Fig. 11, where Θ does not disappear
but gets universally quantified. This is done by strictifying the right hand sides below:22

α : ΨiA0A1 (x0.x1.R) :∼= (x̂0 : (refl : i ≡I 0)→ A0)× (x̂1 : (refl : i ≡I 1)→ A1)×
≬[i] (R[(λ̄i.x̂0) 0 refl/x0, (λ̄i.x̂1) 1 refl/x1])

inΨi a0 a1 r := α−1(λrefl.a0, λrefl.a1,mer[i] r)

outΨ(i.q) := unmer(i.π3(α(q)))

The fact that this construction is isomorphic to Aϵ at endpoint ϵ follows from our findings
about poles in Section 2.2.

When we move to MTraS, once again we translate the context (∆, u : U,Θ) to

(∆,µ
Ⅎ[u]
∀u ,Θ), which we treat as a single abstract context Γ. By a reasoning identical

to that in Eq. (10.1), applying µ∀u
≬[u] only affects the non-fresh part Θ if the shape U is ⊤-slice

fully faithful. This leads to the MTraS rules listed in Fig. 11. Note again how substitutions

22For the identity type, we use pattern-matching abstractions to abbreviate the usage of the J-rule. We
are in an extensional type system anyway.

16:46 A. Nuyts and D. Devriese Vol. 20:2

Binary and destrictified reformulation of the original Ψ-type [BCM15, Mou16, CH21]:

∆ ⊢ Aϵ type (ϵ ∈ {0, 1})
∆, x0 : A0, x1 : A1 ⊢ R type

∆, i : I, θ : Θ ⊢ ΨiA0A1 (x0.x1.R) type
where ΨϵA0A1R = Aϵ (ϵ ∈ {0, 1})

∆ ⊢ aϵ : Aϵ (ϵ ∈ {0, 1})
∆ ⊢ r : R[a0/x0, a1/x1]
∆, i : I, θ : Θ ⊢ inΨi a0 a1 r : ΨiA0A1 (x0.x1.R)
where inΨϵ a0 a1 r = aϵ (ϵ ∈ {0, 1})

∆, i : I ⊢ q = inΨi q[0/i] q[1/i] (outΨ(j.q[j/i]))

∆, i : I ⊢ q : ΨiA0A1 (x0.x1.R)

∆ ⊢ outΨ(i.q) : R[q[0/i]/x0, q[1/i]/x1]
where outΨ(i.inΨi a0 a1 r) = r

Ψ-type in FFTraS:

∆, θ : Θ[ϵ/i] ⊢ Aϵ type (ϵ ∈ {0, 1})
∆,∀ i.(θ : Θ), x0 : A0[(λ̄i.θ) 0/θ], x1 : A1[(λ̄i.θ) 1/θ] ⊢ R type

∆, i : I, θ : Θ ⊢ ΨiA0A1 (x0.x1.R) type
where ΨϵA0A1R = Aϵ (ϵ ∈ {0, 1})

∆, θ : Θ[ϵ/i] ⊢ aϵ : Aϵ (ϵ ∈ {0, 1})
∆,∀ i.(θ : Θ) ⊢

r : R[a0[(λ̄i.θ) 0/θ]/x0, a1[(λ̄i.θ) 1/θ]/x1]

∆, i : I, θ : Θ ⊢ inΨi a0 a1 r : ΨiA0A1 (x0.x1.R)
where inΨϵ a0 a1 r = aϵ (ϵ ∈ {0, 1})

q = inΨi q[0/i] q[1/i] (outΨ(j.q[j/i, (λ̄i.θ) j/θ]))

∆, i : I ⊢ q : ΨiA0A1 (x0.x1.R)

∆ ⊢ outΨ(i.q) : R[q[0/i]/x0, q[1/i]/x1]
where outΨ(i.inΨi a0 a1 r) = r

Ψ-type in MTraS:

psi
X, u : U | Γ, : u ∈ ∂U ⊢ A type

X | Γ, x̂ : (: u ∈ ∂U)→ A,µ
∀u
≬[u] ⊢ R type

X, u : U | Γ ⊢ ΨuA (x̂.R) type
where : u ∈ ∂U ⊢ ΨuA (x̂.R) = A

psi:intro
X, u : U | Γ, : u ∈ ∂U ⊢ a : A

X | Γ,µ∀u
≬[u] ⊢ r : R[λ .a/x̂,µ

∀u
≬[u]]

X, u : U | Γ ⊢ inΨu (.a) r : ΨuA (x̂.R)
where : u ∈ ∂U ⊢ inΨu (.a) r = a

q = inΨu (.q)
(
outΨ ·∀u q[¤

appu
reidxu

]
)

psi:elim

X, u : U | ∆,µℲ[u]
∀u ⊢ q : ΨuA (x̂.R)

X | ∆ ⊢ outΨ ·∀u q : R[λ .q/x̂,µ
∀u
≬[u]][¤

constu
unmeru]

where outΨ ·∀u inΨu (.a) r = r[¤constu
unmeru]

Figure 11: Typing rules for the Ψ-type.

(λ̄i.θ) j/θ in FFTraS give rise to usages of ¤
appu
reidxu

in MTraS. The usages of ¤constu
unmeru are

entirely absent in FFTraS, but for ⊤-slice fully faithful multipliers, this is an isomorphism
anyway.

The eliminator outΨ only eliminates sections. For ⊤-slice fully faithful and shard-
free multipliers, the Φ-rule provides a pattern-matching eliminator which lets us treat the
boundary and section cases separately.

Theorem 10.2. For any multiplier, the Ψ-type in Fig. 11 is implementable from the
transpension type and the strictness axiom.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:47

Proof. We strictify the right hand sides below:

α : ΨuA (x̂.R) :∼= (x̂ : (: u ∈ ∂U)→ A)× ⟨≬[u] | R⟩,
inΨu (.a) r := α−1(λ .a,mod≬[u] r),

outΨ ·∀u q := unmeru ·∀u π2(α(q)).
The fact that this is isomorphic to A on the boundary follows from pole Theorem 9.1

Obviously then the transpension type ⟨≬[u] | T ⟩ is also implementable from the Ψ-type
as Ψu Unit (.T).

10.4. Transpensivity. The Φ-rule is extremely powerful but not available in all systems.
However, when the codomain C is a Ψ-type, then the inΨ-rule is actually quite similar to
the Φ-rule if we note that sections of the Ψ-type are essentially elements of R. As such, we
take an interest in types that are very Ψ-like. We have a monad (idempotent if U is ⊤-slice
fully faithful)

Ψ̄uA := Ψu (.A)
(
x̂.
〈
∀u | A ext{u ∈ ∂U ? x̂ }[¤appu

reidxu
]
〉)
,

where A ext{φ ? a} is the type of elements of A that are equal to a when φ holds:

A ext{φ ? a} := (x : A)× ((: φ)→ (x ≡A a)).

Definition 10.3. A type is transpensive over u if it is a monad-algebra for Ψ̄u.

For ⊤-slice fully faithful and shard-free multipliers, Φ entails that all types are transpen-
sive. For other systems, the universe of u-transpensive types will still be closed at least
semantically under many interesting type formers, allowing to eliminate to these types in a
Φ-like way.

10.5. Glue, Weld, mill. Glue{A← (φ ? T ; f)} and Weld{A→ (φ ? T ; g)} are similar to
Strict but extend unidirectional functions. Orton and Pitts [OP18] already show that
Glue [CCHM17, NVD17] can be implemented by strictifying a pullback along A → (φ →
A) [ND18b] which is definable internally using a Σ-type. Dually, Weld [NVD17] can be
implemented if there is a type former for pushouts along φ×A→ A where φ : Prop [Nuy20a,
§6.3.3], which is sound in all presheaf categories.

Finally, mill [ND18b] states that ∀(u : U) preserves Weld and is provable by higher-
dimensional pattern matching (where ⊛ is the applicative operation of the modal type):

mill : ⟨∀u |Weld{A→ (φ ? T ; g)}⟩
→Weld{⟨∀u | A⟩ → (⟨∀u | φ⟩ ? ⟨∀u | T ⟩ ; (mod∀u g)⊛ ⌞⌟)}

mill ŵ = unmeru ·∀u

case (appu ·Ⅎ[u] (ŵ
dropu
constu)) of

{
weld a 7→ mod≬[u] (weld (mod∀u (a

appu
reidxu

)))

φ ? t 7→ mod≬[u] (mod∀u (t
appu
reidxu

))

}
.

In the first clause, we get an element a : A and can proceed as in Section 7.3. In the
second clause, we are asserted that φ holds (call the witness p) so that the left hand Weld-type
equals T , and we are given t : T . Then inside the meridian constructor mod≬[u] we know that

⟨∀u | φ⟩ holds as this is proven by mod∀u (p
appu
reidxu

); hence the Weld-type in the codomain

16:48 A. Nuyts and D. Devriese Vol. 20:2

name FreshMLTT MTraS

name quantification
N
[i : N].T ⟨

N
(i : I) | JT K⟩

name abstraction α[i : N].t modN(i:I) JtK
name application t@i appi ·Ⅎ[i] JtK
non-binding quant. ⟨⟨i : N⟩⟩.T

〈
Ⅎ[i] |

〈N
i | JT K[¤appi

copyi]
〉〉

non-binding abs. ⟨i : N⟩.t copyi JtK :=
modℲ[i] (modN i (JtK[¤

appi
copyi]))

locally fresh name ν[i : N].t dropi ·N i (modℲ[i] JtK)

Figure 12: A heuristic for translating FreshMLTT [PMD15] to the current system.

simplifies to ⟨∀u | T ⟩. When φ holds and t = weld a = g a, then the weld-constructor of
the right hand Weld-type reduces to (mod∀u g) ⊛ ⌞⌟ which effectively applies g under the
mod∀u -constructor, so that both clauses match as required.

10.6. Locally fresh names. Nominal type theory is modelled in the Schanuel topos [Pit14]
which is a subcategory of nullary affine cubical sets Psh(0Cube2) (Example 6.14). As
fibrancy is not considered in this paper, we will work directly in Psh(0Cube2). Names can
be modelled using the multiplier ⌞⌟∗ (i : I). Interestingly, the fresh weakening functor Ⅎ(i:I) is
then inverse to its left adjoint ∃(i:I). By consequence, we get ∃ i ∼= ∀ i =:

N
i (the fresh name

quantifier) with inverse Ⅎ[i] ∼= ≬[i]. For consistency, we will only use
N
i and Ⅎ[i], and these

will be each other’s left names. The relevant 2-cells are appi : Ⅎ[i] ◦
N
i⇒ 1 and its inverse

copyi : 1⇒ Ⅎ[i] ◦
N
i (these are each other’s left names), as well as consti : 1⇒

N
i ◦ Ⅎ[i] and

its inverse dropi :
N
i ◦ Ⅎ[i]⇒ 1 (these are each other’s left names).

The nominal dependent type system FreshMLTT [PMD15] used in Pitts’s examples of
interest [Pit14] is substantially different from ours:

• It features a name swapping operation that is semantically not merely a substitution.
• Freshness for a name i is not a modality or a type, but a judgement that can be derived
for an expression t if and only if t is invariant under swapping i with a newly introduced
name j. As a consequence, freshness propagates through type and term constructors.
• Many equalities are strict where we can only guarantee an isomorphism.

For these reasons, we do not try to formally state that we can support locally fresh names
in the sense of FreshMLTT. Nevertheless, in Fig. 12 we give at least a heuristic J⌞⌟K for
translating programs in a subsystem of FreshMLTT to programs in the current system. This
subsystem does not feature name swapping, but it does feature the non-binding abstractions
originally defined in terms of it, as well as locally fresh names.

Ordinary name quantification is simply translated to the modality
N
i, and as usual

application corresponds to the modal projection function (Proposition 3.3). The non-
binding abstraction in FreshMLTT abstracts over a name that is already in scope, without
shadowing, i.e. it is a variable capturing operation. This is translated essentially to the 2-cell
copyi : 1⇒ Ⅎ[i] ◦

N
i, which is inverse to appi as we have seen earlier for a variable capturing

operation (Section 10.2). Finally, a locally fresh name abstraction ν[i : N].t brings a name i
into scope in its body t, but requires that t be fresh for i; in our system we would say that t
is a subterm of modality

N
i ◦ Ⅎ[i]. The type of ν[i : N].t is the same as the type of t, which

we can justify with the isomorphism dropi :
N
i ◦ Ⅎ[i] ∼= 1. This isomorphism is essentially

the content of the modal projection function of Ⅎ[i], which we use to translate locally fresh
name abstractions.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:49

Note that for general multipliers, Ⅎ[i] does not have an internal left adjoint and hence
not a modal projection function either. For the nullary affine interval, however, Ⅎ[i] ∼= ≬[i],
so the projection function is essentially unmeri!

Example 10.4. Consider Pitts’s implementation of higher dimensional pattern matching
[Pit14]:

j : (
N
[i : N].A ⊎B)→ (

N
[i : N].A) ⊎ (

N
[i : N].B)

j ĉ = ν[i : N].case ĉ@i of

{
inl a 7→ inl (⟨i : N⟩.a)
inr b 7→ inr (⟨i : N⟩.b)

}
A brainless translation using Fig. 12 yields a type mismatch, because the non-binding
abstractions will put the freshness constructor inside the coproduct constructors, whereas
the translation of the locally fresh name abstraction mentions it again on the outside. This
is related to our earlier remark that in FreshMLTT, freshness silently propagates through
type and term constructors, so here we have to manually intervene. This is also necessary to
insert invertible 2-cell substitutions in some places, and to check whether we need a modal
argument (i.e. the modality is handled at the judgemental level) or we need to explicitly use
the modal constructor as is always done in Fig. 12. Doing so, we find

j : ⟨
N
i | A ⊎B⟩ → ⟨

N
i | A⟩ ⊎ ⟨

N
i | B⟩

j ĉ = dropi ·N i case (appi ·Ⅎ[i] (ĉ
dropi
consti)) of

{
inl a 7→ modℲ[i] (inl (modN i (a

appi
copyi)))

inr b 7→ modℲ[i] (inr (modN i (b
appi
copyi)))

}
,

which is exactly what we found in Section 7.3 adapted to our convention that we only want
to mention Ⅎ[i] and ∀ i, appi, copyi, consti and dropi.

Example 10.5. Consider Pitts et al.’s implementation [PMD15, ex. 2.2] of what is essentially
BCM’s Φ-rule [Mou16, BCM15] since the boundary is empty:

g : ((
N
[i : N].A)→

N
[i : N].B)→

N
[i : N].(A→ B)

g f = α[i : N].(λx.f (⟨i : N⟩.x)@ i.

We can translate this to the current system using Fig. 12:

g : (⟨
N
i | A⟩ → ⟨

N
i | B⟩)→ ⟨

N
i | A→ B⟩

g f = modN i

(
λx.appi ·Ⅎ[i] (f [¤

dropi
consti] (modN i (x

appi
copyi)))

)
.

The effect of conflating µ∃ i
Ⅎ[i] with µ∀ i

≬[i] is that affine function application no longer

renders the non-fresh part of the context inaccessible using µ∃ i
Ⅎ[i] but instead universally

quantifies it using µ∀ i
≬[i], so that we can capture variables as in FreshMLTT. Remarkably, we

do not need the Φ-rule (Fig. 10) for this nor pattern-matching for the transpension type
(Fig. 8), although these rules hold as the affine cubical interval is ⊤-slice fully faithful and
shard-free (Example 6.14).

11. Conclusion

To summarize, the transpension type can be defined in a broad class of presheaf models and
generalizes previous internalization operators. For now, we only present an extensional type
system without an algorithmic typing judgement. The major hurdles towards producing an
intensional version with decidable type-checking, are the following:

16:50 A. Nuyts and D. Devriese Vol. 20:2

• We need to decide equality of 2-cells. Solutions may exist in the literature on higher-
dimensional rewriting. Alternatively, we need to extend MTT with a language to reason
about 2-cell equality [Nuy23b].
• The substitution modality should ideally reduce like ordinary substitution. Remark 5.5
explores what is needed for this to work.
• We need a syntax-directed way to close the section computation rules of Φ (Fig. 10) and
transpension elimination (Section 9) under substitution, but see Remark 9.4.
• We need to be able to decide whether the boundary predicate, or any similar predicate
about shape variables such as i ≡I 0 in cubical type theory, is true. This problem has
been dealt with in special cases, e.g. in implementations of cubical type theory [VMA19].

Applications include all applications (discussed in Section 1) of the presheaf internalization
operators recovered from the transpension type in Section 10. Moreover, our modal approach
to shape variables via multipliers allows the inclusion of Pinyo and Kraus’s twisted prism
functor [PK20] as a semantics of an interval variable, which we believe is an important
advancement towards higher-dimensional directed type theory.

Acknowledgements

We thank Jean-Philippe Bernardy, Lars Birkedal, Daniel Gratzer, Alex Kavvos, Magnus
Baunsgaard Kristensen, Daniel Licata, Rasmus Ejlers Møgelberg and Andrea Vezzosi for
relevant discussions, and the anonymous reviewers for their feedback which has been a great
guidance in improving the clarity of this paper.

Appendix A. Changelog

The first preprint of this paper appeared in 2020 and is subsumed in [Nuy20a, ch. 7]. Since
then, there have been significant changes, primarily terminological ones. To help out readers
coming back to this paper after having consulted earlier versions (or associated presentations),
we list the most important changes here.

A.1. Terminology.

A.1.1. Definition 6.2.

• Copointed multipliers were formerly called semicartesian,
• Multipliers that are comonads were formerly called 3/4-cartesian,
• ⊤-slice faithful multipliers were formerly called cancellative,
• ⊤-slice full multipliers were formerly called affine,
• ⊤-slice shard-free multipliers were formerly called connection-free, and shards were
formerly called connections,
• ⊤-slice right adjoint multipliers were formerly called quantifiable.

A.1.2. Definition 6.4.

• Unpointable objects were formerly called spooky,
• Not objectwise pointable categories were formerly called spooky.

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:51

A.1.3. Definition 6.22. Presheafwise faithful/full/shard-free/right adjoint multipliers were
formerly called providently cancellative/affine/connection-free/quantifiable.

A previous version of the paper featured a different definition of shards/connections and
presheafwise shard-freedom / provident connection-freedom, that was based on the indirect
boundary and indirectly dimensionally split morphisms (Appendix A.1.4). These notions
are obsolete and are retained in the technical report [Nuy20b] under the names indirect
shard and indirect shard-freedom (alongside the direct notions from Definition 6.22)
solely for consistency with [Nuy20a, ch. 7].

A.1.4. Definition 6.23. A previous version of this paper had a different definition of boundary
and of dimensionally split cells which was defined using the pullback of Ξ⋉yU → yU ⊇ ∂U .
These notions are obsolete and are retained in the technical report [Nuy20b] under the
name indirect boundary and indirectly dimensionally split cells (alongside the direct
notions) solely for consistency with [Nuy20a, ch. 7].

As the notions coincide for Ξ = ⊤, Theorem 9.2 holds w.r.t. the indirect boundary
if Ξ = ⊤. By construction, the indirect boundary is respected by substitution, while the
transpension type is generally not if the multiplier is not ⊤-slice fully faithful (Section 2.1.7).
Hence, the indirect notions generally diverge from the direct ones and the indirect version of
Theorem 9.2 breaks down if Ξ ̸= ⊤ and the multiplier is not ⊤-slice fully faithful.

A.1.5. Theorem 6.28. The quotient theorem was formerly called kernel theorem.

A.2. Ticks. A previous version of this paper assigned names to locks, called ticks, after the
tick of the (c)lock in [BGM17]. The usage of this notation is orthogonal to the introduction
of MTraS; a version of the original MTT paper [GKNB20b] in tick notation is included in
[Nuy20a, §5.3]. An improved notation is proposed in [Nuy23b].

A.3. Lockless notation. A previous version of this paper supplemented the MTT notation
with a so-called lockless notation in which (Γ,µκµ) was denoted as κ(Γ). This notation was
abolished in favour of left adjoint reminders (Section 3.4).

References

[ACKS23] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type
theory and applications. Math. Struct. Comput. Sci., 33(8):688–743, 2023. doi:10.1017/

S0960129523000130.
[AGJ14] Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent

type theory. In Principles of Programming Languages, 2014. doi:10.1145/2535838.2535852.
[AHH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian Cubical Computational

Type Theory: Constructive Reasoning with Paths and Equalities. In Dan Ghica and Achim Jung,
editors, Computer Science Logic (CSL 2018), volume 119 of LIPIcs, pages 6:1–6:17, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.
2018.6.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. In Rastislav Bod́ık and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/2837614.
2837638.

https://doi.org/10.1017/S0960129523000130
https://doi.org/10.1017/S0960129523000130
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.4230/LIPIcs.CSL.2018.6
https://doi.org/10.4230/LIPIcs.CSL.2018.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638

16:52 A. Nuyts and D. Devriese Vol. 20:2

[BBC+19] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and Andrea
Vezzosi. Guarded cubical type theory. Journal of Automated Reasoning, 63(2):211–253, 8 2019.
doi:10.1007/s10817-018-9471-7.

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in Cubical Sets. In
19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26,
pages 107–128, Dagstuhl, Germany, 2014. doi:10.4230/LIPIcs.TYPES.2013.107.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of parametric
type theory. Electron. Notes in Theor. Comput. Sci., 319:67 – 82, 2015. doi:10.1016/j.entcs.
2015.12.006.

[BCM+20] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts,
and Bas Spitters. Modal dependent type theory and dependent right adjoints. Mathematical
Structures in Computer Science, 30(2):118–138, 2020. doi:10.1017/S0960129519000197.

[BGC+16] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal. Guarded dependent type theory with coinductive types. In FOSSACS ’16, 2016.
doi:10.1007/978-3-662-49630-5_2.

[BGM17] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The clocks are ticking: No
more delays! In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005097.

[BM20] Ales Bizjak and Rasmus Ejlers Møgelberg. Denotational semantics for guarded dependent type
theory. Math. Struct. Comput. Sci., 30(4):342–378, 2020. doi:10.1017/S0960129520000080.

[BMSS12] Lars Birkedal, Rasmus Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in
Computer Science, 8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

[BV17] Jean-Philippe Bernardy and Andrea Vezzosi. Parametric application. Private communication,
2017.

[Car78] John Cartmell. Generalised Algebraic Theories and Contextual Categories. PhD thesis, Oxford
University, 1978. URL: https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf.

[Car86] John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic,
32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.

[CCHM17] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
A constructive interpretation of the univalence axiom. FLAP, 4(10):3127–3170, 2017. URL:
http://www.cse.chalmers.se/~simonhu/papers/cubicaltt.pdf.

[CH21] Evan Cavallo and Robert Harper. Internal parametricity for cubical type theory. Log. Methods
Comput. Sci., 17(4), 2021. doi:10.46298/lmcs-17(4:5)2021.

[Che12] James Cheney. A dependent nominal type theory. Log. Methods Comput. Sci., 8(1), 2012.
doi:10.2168/LMCS-8(1:8)2012.

[CMS20] Evan Cavallo, Anders Mörtberg, and Andrew W Swan. Unifying Cubical Models of Univalent
Type Theory. In Maribel Fernández and Anca Muscholl, editors, Computer Science Logic (CSL
2020), volume 152 of LIPIcs, pages 14:1–14:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2020.14.

[GCK+22] Daniel Gratzer, Evan Cavallo, G. A. Kavvos, Adrien Guatto, and Lars Birkedal. Modalities and
parametric adjoints. ACM Trans. Comput. Logic, 23(3), apr 2022. doi:10.1145/3514241.

[Gir64] Jean Giraud. Méthode de la descente. Bull. Soc. Math. Fr., Suppl., Mém., 2:115, 1964. doi:
10.24033/msmf.2.

[GKNB20a] Daniel Gratzer, Alex Kavvos, Andreas Nuyts, and Lars Birkedal. Type theory à la mode.
Pre-print, 2020. URL: https://anuyts.github.io/files/mtt-techreport.pdf.

[GKNB20b] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent type
theory. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20:
35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany,
July 8-11, 2020, pages 492–506. ACM, 2020. doi:10.1145/3373718.3394736.

[GKNB21] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal Dependent
Type Theory. Logical Methods in Computer Science, Volume 17, Issue 3, July 2021. doi:
10.46298/lmcs-17(3:11)2021.

https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.2168/LMCS-8(4:1)2012
https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf
https://doi.org/10.1016/0168-0072(86)90053-9
http://www.cse.chalmers.se/~simonhu/papers/cubicaltt.pdf
https://doi.org/10.46298/lmcs-17(4:5)2021
https://doi.org/10.2168/LMCS-8(1:8)2012
https://doi.org/10.4230/LIPIcs.CSL.2020.14
https://doi.org/10.1145/3514241
https://doi.org/10.24033/msmf.2
https://doi.org/10.24033/msmf.2
https://anuyts.github.io/files/mtt-techreport.pdf
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.46298/lmcs-17(3:11)2021

Vol. 20:2 TRANSPENSION: THE RIGHT ADJOINT TO THE PI-TYPE 16:53

[Gra22] Daniel Gratzer. Normalization for multimodal type theory. In Christel Baier and Dana Fisman,
editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, August 2 - 5, 2022, pages 2:1–2:13. ACM, 2022. doi:10.1145/3531130.3532398.

[Hof97] Martin Hofmann. Syntax and Semantics of Dependent Types, chapter 4, pages 79–130. Cambridge
University Press, 1997.

[HS97] Martin Hofmann and Thomas Streicher. Lifting grothendieck universes. Unpublished note, 1997.
URL: https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf.

[Hub16] Simon Huber. Cubical Interpretations of Type Theory. PhD thesis, University of Gothenburg,
Sweden, 2016. URL: http://www.cse.chalmers.se/~simonhu/misc/thesis.pdf.

[KL18] Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foundations
(after Voevodsky), 2018. arXiv:1211.2851.

[LH11] Daniel R. Licata and Robert Harper. 2-dimensional directed type theory. Electr. Notes Theor.
Comput. Sci., 276:263–289, 2011. doi:10.1016/j.entcs.2011.09.026.

[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in models of
homotopy type theory. In 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, pages 22:1–22:17, 2018. doi:10.4230/
LIPIcs.FSCD.2018.22.

[Mou16] Guilhem Moulin. Internalizing Parametricity. PhD thesis, Chalmers University of Technology,
Sweden, 2016. URL: publications.lib.chalmers.se/records/fulltext/235758/235758.pdf.

[ND18a] Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for
parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent
type theory. In Logic in Computer Science (LICS) 2018, Oxford, UK, July 09-12, 2018, pages
779–788, 2018. doi:10.1145/3209108.3209119.

[ND18b] Andreas Nuyts and Dominique Devriese. Internalizing Presheaf Semantics: Charting the Design
Space. In Workshop on Homotopy Type Theory / Univalent Foundations, 2018. URL: https:
//hott-uf.github.io/2018/abstracts/HoTTUF18_paper_1.pdf.

[ND19] Andreas Nuyts and Dominique Devriese. Dependable atomicity in type theory. In TYPES, 2019.
URL: https://lirias.kuleuven.be/retrieve/540872.

[nLa23a] nLab authors. coreflective subcategory. https://ncatlab.org/nlab/show/coreflective+

subcategory, January 2023. Revision 18.
[nLa23b] nLab authors. locally. https://ncatlab.org/nlab/show/locally, February 2023. Revision 3.
[nLa23c] nLab authors. reflective subcategory. https://ncatlab.org/nlab/show/reflective+

subcategory, January 2023. Revision 106.
[nLa23d] nLab authors. sieve. https://ncatlab.org/nlab/show/sieve, February 2023. Revision 49.
[Nor19] Paige Randall North. Towards a directed homotopy type theory. Proceedings of the Thirty-Fifth

Conference on the Mathematical Foundations of Programming Semantics, MFPS 2019, London,
UK, June 4-7, 2019, pages 223–239, 2019. doi:10.1016/j.entcs.2019.09.012.

[Nuy18a] Andreas Nuyts. Presheaf models of relational modalities in dependent type theory. CoRR,
abs/1805.08684, 2018. arXiv:1805.08684.

[Nuy18b] Andreas Nuyts. Robust notions of contextual fibrancy. In Workshop on Homotopy Type Theory /
Univalent Foundations, 2018. URL: https://hott-uf.github.io/2018/abstracts/HoTTUF18_
paper_2.pdf.

[Nuy20a] Andreas Nuyts. Contributions to Multimode and Presheaf Type Theory. PhD thesis, KU Leuven,
Belgium, 8 2020. URL: https://anuyts.github.io/files/phd.pdf.

[Nuy20b] Andreas Nuyts. The transpension type: Technical report, 2020. Version 4 (2024). URL: https:
//arxiv.org/abs/2008.08530, arXiv:2008.08530.

[Nuy23a] Andreas Nuyts. Functor whose essential image is a cosieve? MathOverflow, 2023. (version:
2023-02-08). URL: https://mathoverflow.net/q/440372.

[Nuy23b] Andreas Nuyts. A lock calculus for multimode type theory. In TYPES, 2023. URL: https:
//anuyts.github.io/files/2023/mtt-lc-types.pdf.

[NVD17] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent
type theory. PACMPL, 1(ICFP):32:1–32:29, 2017. doi:10.1145/3110276.

[OP18] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos. Logical
Methods in Computer Science, 14(4), 2018. doi:10.23638/LMCS-14(4:23)2018.

https://doi.org/10.1145/3531130.3532398
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
http://www.cse.chalmers.se/~simonhu/misc/thesis.pdf
http://arxiv.org/abs/1211.2851
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
publications.lib.chalmers.se/records/fulltext/235758/235758.pdf
https://doi.org/10.1145/3209108.3209119
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_1.pdf
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_1.pdf
https://lirias.kuleuven.be/retrieve/540872
https://ncatlab.org/nlab/show/coreflective+subcategory
https://ncatlab.org/nlab/show/coreflective+subcategory
https://ncatlab.org/nlab/show/locally
https://ncatlab.org/nlab/show/reflective+subcategory
https://ncatlab.org/nlab/show/reflective+subcategory
https://ncatlab.org/nlab/show/sieve
https://doi.org/10.1016/j.entcs.2019.09.012
http://arxiv.org/abs/1805.08684
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_2.pdf
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_2.pdf
https://anuyts.github.io/files/phd.pdf
https://arxiv.org/abs/2008.08530
https://arxiv.org/abs/2008.08530
http://arxiv.org/abs/2008.08530
https://mathoverflow.net/q/440372
https://anuyts.github.io/files/2023/mtt-lc-types.pdf
https://anuyts.github.io/files/2023/mtt-lc-types.pdf
https://doi.org/10.1145/3110276
https://doi.org/10.23638/LMCS-14(4:23)2018

16:54 A. Nuyts and D. Devriese Vol. 20:2

[Ort18] Ian Orton. Cubical Models of Homotopy Type Theory - An Internal Approach. PhD thesis,
University of Cambridge, 2018. doi:10.17863/CAM.36690.

[Pit13] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

[Pit14] Andrew Pitts. Nominal sets and dependent type theory. In TYPES, 2014. URL: https://www.
irif.fr/~letouzey/types2014/slides-inv3.pdf.

[PK20] Gun Pinyo and Nicolai Kraus. From Cubes to Twisted Cubes via Graph Morphisms in Type
Theory. In Marc Bezem and Assia Mahboubi, editors, 25th International Conference on Types
for Proofs and Programs (TYPES 2019), volume 175 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 5:1–5:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2019.5.

[PMD15] Andrew M. Pitts, Justus Matthiesen, and Jasper Derikx. A dependent type theory with
abstractable names. Electronic Notes in Theoretical Computer Science, 312:19 – 50, 2015.
Ninth Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2014). doi:
10.1016/j.entcs.2015.04.003.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages
513–523, 1983.

[RS17] E. Riehl and M. Shulman. A type theory for synthetic ∞-categories. ArXiv e-prints, May 2017.
arXiv:1705.07442.

[Sta19] The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2019. Tags
00VC and 00XF.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. http://homotopytypetheory.org/book, IAS, 2013.

[VMA19] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: a dependently typed
programming language with univalence and higher inductive types. PACMPL, 3(ICFP):87:1–
87:29, 2019. doi:10.1145/3341691.

[Voe13] Vladimir Voevodsky. A simple type system with two identity types. unpublished note, 2013.
URL: https://ncatlab.org/homotopytypetheory/files/HTS.pdf.

[WL20] Matthew Z. Weaver and Daniel R. Licata. A constructive model of directed univalence in
bicubical sets. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors,
LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020, pages 915–928. ACM, 2020. doi:10.1145/3373718.3394794.

[Yet87] David Yetter. On right adjoints to exponential functors. Journal of Pure and Applied Algebra,
45(3):287–304, 1987. doi:10.1016/0022-4049(87)90077-6.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.17863/CAM.36690
https://www.irif.fr/~letouzey/types2014/slides-inv3.pdf
https://www.irif.fr/~letouzey/types2014/slides-inv3.pdf
https://doi.org/10.4230/LIPIcs.TYPES.2019.5
https://doi.org/10.1016/j.entcs.2015.04.003
https://doi.org/10.1016/j.entcs.2015.04.003
http://arxiv.org/abs/1705.07442
http://stacks.math.columbia.edu
https://stacks.math.columbia.edu/tag/00VC
https://stacks.math.columbia.edu/tag/00XF
http://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
https://ncatlab.org/homotopytypetheory/files/HTS.pdf
https://doi.org/10.1145/3373718.3394794
https://doi.org/10.1016/0022-4049(87)90077-6

	1. Introduction and Related Work
	1.1. The power of presheaves
	1.2. Internalizing the power of presheaves
	1.3. The transpension type
	1.4. Contributions
	1.5. Overview of the paper

	2. First Steps: A Fully Faithful Transpension System (FFTraS)
	2.1. Typing rules
	2.2. Poles
	2.3. Internal transposition
	2.4. Higher-dimensional pattern matching

	3. Multimode Type Theory
	3.1. The mode theory
	3.2. Judgement forms
	3.3. Typing rules
	3.4. Left adjoint reminders
	3.5. Results

	4. The Modal Transpension System (MTraS): General Mode Theory and Semantics
	4.1. Shape contexts
	4.2. Mode theory

	5. MTraS Modalities for Substitution
	6. Multipliers
	6.1. Shapes and multipliers
	6.2. Pointability, dimensional splitness and boundaries
	6.3. Examples
	6.4. MTraS Modalities for weakening
	6.5. Acting on elements
	6.6. MTraS Modalities for multipliers
	6.7. Cartesian multipliers
	6.8. Further reading

	7. The Fully Faithful Transpension System (FFTraS) Revisited
	7.1. Pseudo-Embedding of FFTraS in MTraS
	7.2. Internal transposition
	7.3. Higher-dimensional pattern matching

	8. Additional Typing Rules
	8.1. Subobject classifier
	8.2. Boundary predicate
	8.3. Strictness axiom

	9. Investigating the Transpension Type
	9.1. Poles
	9.2. Meridians
	9.3. Pattern matching

	10. Recovering Known Operators
	10.1. The amazing right adjoint
	10.2. The Phi-combinator
	10.3. The Psi-type
	10.4. Transpensivity
	10.5. Glue, Weld, mill
	10.6. Locally fresh names

	11. Conclusion
	Acknowledgements
	Appendix A. Changelog
	A.1. Terminology
	A.2. Ticks
	A.3. Lockless notation

	References

