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Abstract. We present fully abstract encodings of the call-by-name and call-by-value λ-
calculus into HOcore, a minimal higher-order process calculus with no name restriction. We
consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative
bisimilarity, and contextual equivalence—that we internalize into abstract machines in
order to prove full abstraction of the encodings. We also demonstrate that this technique
scales to the λµ-calculus, i.e., a standard extension of the λ-calculus with control operators.

1. Introduction

HOcore is a minimal process calculus with higher-order communication, meaning that
messages are executable processes. It is a subcalculus of HOπ [San96] with no construct
to generate names or to restrict the scope of communication channels. Even with such a
limited syntax, HOcore is Turing complete [LPSS11]. However, as a higher-order calculus, it
is less expressive than the name passing π-calculus: polyadic message sending cannot be
compositionally encoded in monadic message sending in HOπ [LPSS10], while it can be
done in π [SW01].

Although HOcore is Turing complete, a fully abstract encoding of the λ-calculus into
HOcore appears impossible at first. Indeed, a λ-term potentially has an unbounded number
of redexes. A straightforward encoding would use communication to emulate β-reduction,
but since HOcore does not provide means to restrict the scope of communication, one would
need as many distinct names as there are redexes to avoid interference. Moreover, as new
redexes may be created by β-reduction, we also need a way to generate new names on
which to communicate. To circumvent these problems and illustrate the expressiveness
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of HOcore, we consider encodings where the reduction strategy is fixed, thus for which at
most one redex is enabled at any time. In this setting, β-reduction can be emulated using
communication on a single, shared, name. A first contribution of this paper is the definition
of novel encodings of the call-by-name and call-by-value λ-calculus—more precisely the
Krivine Abstract Machine (KAM) [Kri07] and CK machine [FFF09]—into HOcore.

A faithful encoding not only reflects the operational semantics of a calculus, it should
also reflect its equivalences. Ideally, an encoding is fully abstract : two source terms are
behaviorally equivalent iff their translations are equivalent. On the HOcore side, we use
barbed equivalence with hidden names [LPSS11], where a fixed number of names used for
the translation cannot be observed. On the λ-calculus side, we consider three equivalences.
First, we look at normal-form bisimilarity [Las99b], where normal forms are decomposed
into subterms that must be bisimilar. Next, we turn to applicative bisimilarity [AO93],
where normal forms must behave similarly when applied to identical arguments. And finally,
we consider contextual equivalence, where terms must behave identically when put into
arbitrary contexts.

Our second contribution is an internalization of these equivalences into extended abstract
machines: these machines expand the underlying machine evaluating the term (the KAM
or CK machine) with additional transitions with flags interpreting the equivalences. By
doing so, we can express these different equivalences on terms by a simpler bisimilarity
on the flag-generating machines, which can be seen as labeled transition systems (LTS).
We then translate these extended machines into HOcore and prove full abstraction for all
three equivalences. The result of the translation is therefore a HOcore process representing
the source λ-term augmented with the machine of the internalized equivalence under
consideration. A surrounding context may then interact with that process by communicating
on the machine flags.

Finally, we show that the internalization principle scales to the λµ-calculus [Par92], an
extension of the λ-calculus with control operators. The µ operator is able to capture the
current continuation for later use. Its semantics can be defined with an extended KAM, in
which we can internalize normal-form and applicative bisimilarities as well as contextual
equivalence. Altogether, this work shows that a minimal process calculus with no name
restriction can faithfully encode the call-by-name and call-by-value λ-calculus, with or
without control operators.

The chosen equivalences. It is enough to faithfully encode contextual equivalence to
get full abstraction. We choose to study other equivalences (normal-form and applicative
bisimilarities) for two reasons. First, we start with normal-form bisimilarity because it is the
simplest to translate, as we do not need to inject terms from the environment to establish
the equivalence. We next show how we can inject terms for applicative bisimilarity, and we
finally extend this approach to contexts for contextual equivalence. Second, the study of
quite different equivalences illustrate the robustness of the internalization technique.

Related work. Since Milner’s seminal work [Mil92], other encodings of λ into π have
been proposed either as a result in itself [CF11, DHS22], or to study other properties such
as connections with logic [Acc13, Bef11, TCP12], termination [CCS10, Ama11, YBH04],
sequentiality [BHY01], control [CCS10, HYB14, vBV14], references [Pre22], or Continuation-
Passing Style (CPS) transforms [San99, SW01, DMAV14]. These works use the more ex-
pressive first-order π-calculus, except for [San99, SW01], discussed below; full abstraction
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is proved w.r.t. contextual equivalence in [BHY01, YBH04, HYB14], normal-form bisimi-
larity in [vBV14, DHS22, Pre22], applicative bisimilarity in [CF11], and both bisimilarities
in [SW01]. The encodings of [BHY01, YBH04, HYB14] are driven by types, and therefore
cannot be compared to our untyped setting. In [vBV14], van Bakel et al. establish a full
abstraction result between the λµ-calculus with normal-form bisimilarity and the π-calculus.
Their encoding relies on an unbounded number of restricted names to evaluate several
translations of λ-terms in parallel, while we rely on flags and on barbed equivalence. We
explain the differences between the two approaches in Section 4.2. The encoding of [CF11]
also uses an unbounded number of restricted names, to represent a λ-term as a tree and to
process it.

Sangiorgi translates the λ-calculus into a higher-order calculus as an intermediary step
in [San99, SW01], but it is an abstraction-passing calculus, which is strictly more expressive
than a process-passing calculus [LPSS10]. Like in our work, Sangiorgi fixes the evaluation
strategy in the λ-calculus, except that he uses CPS translations rather than abstract machines.
In the light of Danvy et al.’s functional correspondence [ABDM03], the two approaches
appear closely related, however it is difficult to compare our encoding with Sangiorgi’s, since
we target different calculi, and we internalize the bisimilarities in the abstract machines.
Still, name restriction plays an important role in Sangiorgi’s encodings, since a local channel
is used for each application in a λ-term. The encoding is fully abstract w.r.t. normal-form
bisimilarity [SW01, Chapter 18] but not w.r.t. applicative bisimilarity [SW01, Chapter 17].
Indeed, a translated λ-abstraction waits for the outside to provide an access to an encoded
argument to be applied to. However, the environment may give access to a random process
and not to a translated λ-term. The encoding of [SW01] does not protect itself against this
unwanted behavior from the environment. In contrast, the encoding of Section 5 and the
one in [CF11] are fully abstract w.r.t. applicative bisimilarity, because they take this issue
into account, as we explain in Section 5.2.

Outline. Section 2 describes HOcore. We present the main ideas behind our encodings in
Section 3 on the KAM. We explain how to internalize equivalences into abstract machines
and how to translate the resulting machines for three languages: call-by-name λ-calculus (Sec-
tions 4 and 5), call-by-value λ-calculus (Section 6), and call-by-name λµ-calculus (Section 7).
For each of them, we discuss normal-form and applicative bisimilarities, and contextual
equivalence. Section 8 concludes this paper.

Compared to the conference publication [BBL+17], Sections 6 and 7 are new, and the
proofs have been inlined in Sections 4 and 5.

2. The Calculus HOcore

Syntax and semantics. HOcore [LPSS11] is a simpler version of HOπ [San96] where name
restriction is removed. We let a, b, etc. range over channel names, and x, y, etc. range over
process variables. The syntax of HOcore processes is as follows.

P,Q ∶∶= a(x).P ∣ a⟨P ⟩ ∣ P ∥ Q ∣ x ∣ 0
The process a(x).P is waiting for a message on a which, when received, is substituted

for the variable x in P . If x does not occur in P , then we write a( ).P . The process a⟨P ⟩ is
sending a message on a. Note that communication is higher order—processes are sent—and
asynchronous—there is no continuation after a message output. The parallel composition
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Out

a⟨P ⟩
a⟨P ⟩
ÐÐÐ→ 0

Inp

a(x).Q
a(P )
ÐÐÐ→ [P / x]Q

Par

P
lÐÐÐ→ P ′

P ∥ Q lÐÐÐ→ P ′ ∥ Q

Tau

P
a⟨R⟩
ÐÐÐ→ P ′ Q

a(R)
ÐÐÐ→ Q′

P ∥ Q τÐÐÐ→ P ′ ∥ Q′

Figure 1: HOcore LTS

of processes is written P ∥ Q, and the process 0 cannot perform any action. Input has a
higher precedence than parallel composition, e.g., we write a(x).P ∥ Q for (a(x).P ) ∥ Q.
We implicitly consider that parallel composition is associative, commutative, and has 0 as
a neutral element. In an input a(x).P , the variable x is bound in P . We assume bound
names to be pairwise distinct and distinct from free names, using α-conversion if necessary;
we follow this convention for all binding constructs in this paper. We write fn(P ) for the
free channel names of P .

Informally, when an output a⟨P ⟩ is in parallel with an input a(x).Q, a communication
on a takes place, producing [P / x]Q, the capture avoiding substitution of x by P in Q. We
define in Figure 1 the semantics of HOcore as a LTS, omitting the rules symmetric to Par
and Tau. The labels (ranged over by l) are either τ for internal communication, a⟨P ⟩ for
message output, or a(P ) for process input. We label a an input where the received process

does not matter (e.g., a( ).P aÐÐÐ→ P ).
Weak transitions allow for internal actions before and after a visible one. We write

τÔÔ⇒ for the reflexive and transitive closure
τÐÐÐ→

∗
, and

lÔÔ⇒ for
τÔÔ⇒ lÐÐÐ→ τÔÔ⇒ when

l ≠ τ .

Barbed equivalence. Our definition of observable action (or barb) and barbed equivalence
depends on a finite set H of hidden names, which allows some observable actions to be
ignored. Instead of adding top-level name restrictions on these names, as in [LPSS11],
we prefer to preserve the semantics of the calculus and simply hide some names in the
equivalence. Hidden names are not a computational construct and are not required for the
encoding of the KAM, but they are necessary to protect the encoding from an arbitrary
environment when proving full abstraction. We emphasize that we do not need the full
power of name restriction: the set of hidden names is finite and static—there is no way to
create new hidden names.

We let γ range over names a and conames a.

Definition 2.1. The process P has a strong observable action on a (resp. a) w.r.t. H,

written P ↓Ha (resp. P ↓Ha ), if a ∉ H and P
a(Q)
ÐÐÐ→ R (resp. P

a⟨Q⟩
ÐÐÐ→ R) for some Q and R. A

process P has a weak observable action on γ w.r.t. H, written P ⇓Hγ , if P
τÔÔ⇒ P ′ ↓Hγ for

some P ′. We write WkObsH(P ) for the set of weak observable actions of P w.r.t. H.

Definition 2.2. A symmetric relation R is a barbed bisimulation w.r.t. H if P R Q implies

● P ↓Hγ implies Q ⇓Hγ ;
● for all R such that fn(R) ∩H = ∅, we have P∥R R Q∥R;
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● if P
τÐÐÐ→ P ′, then there exists Q′ such that Q

τÔÔ⇒ Q′ and P ′ R Q′.

Barbed equivalence w.r.t. H, noted ≈HHO, is the largest barbed bisimulation w.r.t. H.

A strong barbed equivalence can be defined by replacing ⇓Hγ with ↓Hγ in the first item,

and
τÔÔ⇒ with

τÐÐÐ→ in the third. From [LPSS11], we know that strong barbed equivalence

is decidable when all names can be observed (H = ∅), but undecidable with 4 hidden names.
We lower this bound to 2 in Theorem 3.3.

3. Encoding the Krivine Abstract Machine

We show in this section that HOcore may faithfully encode a call-by-name λ-calculus through
an operationally equivalent encoding of the KAM.

3.1. Definition of the KAM. The KAM [Kri07] is a machine for call-by-name evaluation
of closed λ-calculus terms. We present a substitution-based variant of the KAM for simplicity,
and to reuse the substitution of HOcore in the translation. A configuration C of the machine
is composed of the term t being evaluated, and a stack π of λ-terms. Their syntax and the
transitions are as follows.

C ∶∶= ⟨t, π⟩ (configurations)

t, s ∶∶= x ∣ t s ∣ λx.t (terms)

π ∶∶= t ∶∶π ∣ [] (stacks)

⟨t s, π⟩ ↦ ⟨t, s ∶∶π⟩ (Push)

⟨λx.t, s ∶∶π⟩ ↦ ⟨[s / x]t, π⟩ (Grab)

A λ-abstraction λx.t binds x in t; a term is closed if it does not contain any free variables.
We use [] to denote the empty stack. In Push, the argument s of an application is stored
on the stack while the term t in function position is evaluated. If we get a λ-abstraction
λx.t, then an argument s is fetched from the stack (transition Grab), and the evaluation
continues with [s / x]t, the capture-avoiding substitution of x by s in t. If a configuration of
the form ⟨λx.t, []⟩ is reached, then the evaluation is finished, and the result is λx.t. Because
we evaluate closed terms only, it is not possible to obtain a configuration of the form ⟨x,π⟩.

3.2. Translation into HOcore. The translation of the KAM depends essentially on how
we push and grab terms on the stack. We represent the stack by two messages, one on name
hdc for its head, and one on name c (for continuation) for its tail (henceforth, a stack q is
always encoded as a message on hdq for its head and one on q for its tail). The empty stack
can be represented by an arbitrary, non-diverging, deterministic process, e.g., 0; here we use
a third name to signal that the computation is finished with b⟨0⟩. As an example, the stack

1 ∶∶2 ∶∶3 ∶∶4 ∶∶[] is represented by hdc⟨1⟩ ∥ c⟨hdc⟨2⟩ ∥ c⟨hdc⟨3⟩ ∥ c⟨hdc⟨4⟩ ∥ c⟨b⟨0⟩⟩⟩⟩⟩.

With this representation, pushing an element e on a stack p is done by creating the
process hdc⟨e⟩ ∥ c⟨p⟩, while grabbing the head of the stack corresponds to receiving on hdc.
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With this idea in mind, we define the translations of the entities defining the KAM, starting
with stacks.

v[]w ▵= b⟨0⟩

vt ∶∶πw
▵= hdc⟨vtw⟩ ∥ c⟨vπw⟩

In the translation of a configuration ⟨t, π⟩, we reuse the name c to store the stack, meaning
that before pushing on π or grabbing the head of π, we have to get vπw by receiving on c.

v⟨t, π⟩w ▵= vtw ∥ c⟨vπw⟩
For instance, in the application case vt sw, we start by receiving the current stack p on c, and

we then run vtw in parallel with the translation of the new stack hdc⟨vsw⟩ ∥ c⟨p⟩. Henceforth,
we assume the variable p does not occur free in the translated entities.

vt sw
▵= c(p).(vtw ∥ c⟨hdc⟨vsw⟩ ∥ c⟨p⟩⟩)

Similarly, in the λ-abstraction case vλx.tw, we get the current stack p on c, that we run in

parallel with hdc(x). vtw. If p is not empty, then it is a process of the form hdc⟨vsw⟩ ∥ c⟨vπw⟩,
and a communication on hdc is possible, realizing the substitution of x by s in t; the
execution then continues with v[s / x]tw ∥ c⟨vπw⟩. Otherwise, p is b⟨0⟩, and the computation
terminates.

vλx.tw
▵= c(p).(hdc(x). vtw ∥ p)

vxw
▵= x

Formally, the operational correspondence between the KAM and its translation is as follows.

Theorem 3.1. In the forward direction, if C ↦∗ C ′, then vCw
τÔÔ⇒ vC ′w. In the backward

direction, if vCw
τÔÔ⇒ P , then there exists a C ′ such that C ↦∗ C ′ and either

● P = vC ′w,

● or there exists P ′ such that P
τÐÐÐ→ P ′ = vC ′w,

● or C ′ = ⟨λx.t, []⟩ and P = hdc(x). vtw ∥ b⟨0⟩.

Proof. The proof is straightforward in the forward direction. In the backward direction, we

show that the translation is deterministic (if vCw
τÔÔ⇒ P

τÐÐÐ→ Q1 and vCw
τÔÔ⇒ P

τÐÐÐ→
Q2, then Q1 = Q2) and we rely on the fact that the translation of a Push step uses one
communication, while we use two communications for a Grab step.

A direct consequence is we can observe on the HOcore side when the reduction of a λ-term
converges.

Corollary 3.2. C ↦∗ ⟨λx.t, []⟩ for some t iff vCw ⇓∅
b
.

Proof. If C ↦∗ ⟨λx.t, []⟩ for some t, then by Theorem 3.1, vCw
τÔÔ⇒ v⟨λx.t, []⟩w τÐÐÐ→

hdc(x). vtw ∥ b⟨0⟩, and the result holds.

Conversely, suppose vCw ⇓∅
b
: there exists P such that vCw

τÔÔ⇒ P ↓∅
b
. One can check

that in the first two cases of the backward direction of Theorem 3.1, P cannot exhibit b as
an observable action, so we are in the last case, as wished.
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We can then improve over the result of [LPSS11] about undecidability of strong barbed
equivalence by hiding hdc and c.

Theorem 3.3. Strong barbed equivalence is undecidable in HOcore with 2 hidden names.

Proof. Assume we can decide strong barbed equivalence with two hidden names. Let t be a

closed λ-term and PΩ
▵= c(x).(x ∥ c⟨x⟩) ∥ c⟨c(x).(x ∥ c⟨x⟩)⟩. We can thus decide if v⟨t, []⟩w is

strong barbed-equivalent to PΩ when hdc and c are hidden, but PΩ loops with no observable
action, and t converges iff v⟨t, []⟩w has a weak observable action on b by Corollary 3.2. By
deciding barbed equivalence, we can therefore decide whether the reduction of t converges,
hence a contradiction.

4. Normal-Form Bisimilarity

Our first full abstraction result is for normal-form bisimilarity [Las99b]. We show how to
internalize this equivalence in an extension of the KAM such that it may be captured by
a simple barbed bisimilarity. We then translate this extended KAM into HOcore, and we
finally prove full abstraction.

4.1. Normal-Form Bisimilarity. Normal-form bisimilarity compares terms by reducing
them to weak head normal forms, if they converge, and then decomposes these normal forms
into subterms that must be bisimilar. Unlike the KAM, normal-form bisimilarity is defined
on open terms, thus we distinguish free variables, ranged over by f , from bound variables,
ranged over by x. The grammars of terms (t, s) and values (v) become as follows.

t, s ∶∶= f ∣ x ∣ λx.t ∣ t s v ∶∶= f ∣ λx.t
Henceforth, we assume that λ-terms are well formed, i.e., all variables ranged over by x

are bound: x is not a valid term but f is. We write fv(t) for the set of free variables of t. A
variable f is said fresh if it does not occur in any of the entities under consideration.

When evaluating an open term, we can obtain either a λ-abstraction with an empty
stack, or a free variable and a stack. We inductively extend a relation R on λ-terms to
stacks by writing π1 R π2 if π1 = π2 = [], or if π1 = t ∶∶π′1, π2 = s ∶∶π′2, tR s, and π′1 R π′2.

Definition 4.1. A symmetric relation R is a normal-form bisimulation if tR s implies:

● if ⟨t, []⟩ ↦∗ ⟨λx.t′, []⟩, then there exists s′ such that ⟨s, []⟩ ↦∗ ⟨λx.s′, []⟩ and [f / x]t′ R
[f / x]s′ for a fresh f ;

● if ⟨t, []⟩ ↦∗ ⟨f, π⟩, then there exists π′ such that ⟨s, []⟩ ↦∗ ⟨f, π′⟩ and π R π′.

Normal-form bisimilarity ≈nf is the largest normal-form bisimulation.

Normal-form bisimilarity is not complete w.r.t. contextual equivalence in λ-calculus:
there exists contextually equivalent terms which are not normal-form bisimilar [San92,
Example 5.5]. In this work, we evaluate terms to weak-head normal forms, and the
resulting bisimilarity characterizes Lévy-Longo tree equivalence [Lév75, Ong88, San92].
If we were to evaluate to head normal forms instead, it would characterize Böhm tree
equivalence [Bar84, Las99b].



3:8 M. Biernacka, D. Biernacki, S. Lenglet, P. Polesiuk, D. Pous, and A. Schmitt Vol. 20:3

⟨t s, π, n⟩ev
τ
ÞÐ→ ⟨t, s ∶∶π,n⟩ev (Push)

⟨λx.t, s ∶∶π,n⟩ev
τ
ÞÐ→ ⟨[s / x]t, π, n⟩ev (Grab)

⟨λx.t, [], n⟩ev
⊚
ÞÐ→ ⟨[n / x]t, [], n + 1⟩ev (Lambda)

⟨f, π, n⟩ev
f
ÞÐ→ ⟨π,n⟩ct (Var)

⟨[], n⟩ct
☆
ÞÐ→ (Done)

⟨t ∶∶π,n⟩ct
▼
ÞÐ→ ⟨t, [], n⟩ev (Enter)

⟨t ∶∶π,n⟩ct
▶
ÞÐ→ ⟨π,n⟩ct (Skip)

Figure 2: NFB Machine

4.2. Abstract Machine. We extend the KAM so that it provides additional steps, identified
by labeled transitions, that capture the testing done by normal-form bisimilarity. Roughly,
the extended machine explores the Lévy-Longo tree of a λ-term, choosing arbitrarily a
branch when several are available, but signaling these choices to the outside so that they
can be mimicked. To do so, we rely on flagged transitions, terminating transitions, and a
restricted form of non-determinism.

Flagged transitions are usual transitions of the machine with some additional information
to convey to the environment that a particular event is taking place. Machine bisimilarity,
defined below, ensures that bisimilar machines have matching flags. Transitions without flags
use a τ label. Terminating transitions are flagged transitions that indicate the computation
has stopped. They are needed for bisimilarity: as machine bisimilarity ignores τ labels, we
use terminating transitions to distinguish between terminated and divergent machine runs.
Finally, we allow some non-determinism in machines, i.e., a given configuration may take
two different transitions, only if the transitions are flagged and have different flags. In other
words, the non-deterministic choice is made explicit to the environment.

We define the NFB machine in Figure 2. When computation stops with a λ-abstraction
and an empty stack, we have to restart the machine to evaluate the body of the abstraction
with a freshly generated free variable (rule Lambda). To do so, we consider free variables as
natural numbers, and we keep a counter n in the machine which is incremented each time a
fresh variable is needed. For a configuration ⟨f, π⟩, normal-form bisimilarity evaluates each
of the ti in the stack (rule Var). To internalize this step, we could launch several machines
in parallel, as in [vBV14], where the translated ti are run in parallel. This approach has
two drawbacks: first, it is a further extension of abstract machines—a machine no longer
steps to a single machine state but to a multiset of states. Second, when translating such
extended machines into HOcore, we want to prevent them from interacting with each other,
but we cannot rely on name restriction, as in [vBV14], to encapsulate an unbounded number
of translations. Alternatively, one could evaluate the elements of the stack sequentially, but
this approach fails if one of the elements of the stack diverges, as the later elements will
never be evaluated.

We thus consider a third approach, built upon flagged non-determinism: the machine
chooses arbitrarily an element of the stack to evaluate, and signals this choice using flags
(rules Enter, Skip, and Done). The burden of evaluating every element of the stack is



Vol. 20:3 ENCODINGS OF THE λ-CALCULUS IN HOcore 3:9

thus relegated to the definition of machine bisimilarity: as every flagged execution must
be matched by an execution with the same flags, every possible choice is explored. It is
reminiscent of how operational game semantics [LS14, Jab15] equates terms: the possible
interactions of a program with its environment are represented with labeled transitions, the
execution of a program is a trace of such labels, and trace equivalence ensures that every
possible execution has been considered.

As before, we use C to range over configurations, which are now of two kinds. In
evaluation mode, ⟨t, π, n⟩ev is reducing t within stack π and with counter n. The transitions
Push and Grab are as in the KAM, except for the extra parameter. If we reach a λ-
abstraction in the empty context (transition Lambda), then the machine flags ⊚ and then
restarts to evaluate the body, replacing the bound variable by a fresh free variable, i.e., the
current value n of the counter. If we reach a free variable f , i.e., a number, then we flag f
before entering the next mode (transition Var).

In continuation mode ⟨π,n⟩ct, the transition Done simply finishes the execution if π = [],
using the flag ☆. Otherwise, π = t ∶∶π′, and the machine either evaluates t with flag ▼ (and
forgets about π′), or skips t with a flag ▶ to possibly evaluate a term in π′. The machine
may skip the evaluation of all the terms in π, but it would still provide some information, as
it would generate m ▶ messages (followed by ☆), telling us that π has m elements. Note
that the counter n is stored in continuation mode just to be passed to the evaluation mode
when one of the ti is chosen with transition Enter.

Example 4.2. To illustrate how the machine works, we show the transitions starting from

the term (λx.x) (λy.y 0 Ω), where Ω
▵= (λx.x x) (λx.x x). The term is executed in the

empty context, and with a counter initialized to a value greater than its free variables.

⟨(λx.x) (λy.y 0 Ω), [],1⟩ev
τ
ÞÐ→ ⟨λx.x, λy.y 0 Ω ∶∶[],1⟩ev (Push)
τ
ÞÐ→ ⟨λy.y 0 Ω, [],1⟩ev (Grab)
⊚
ÞÐ→ ⟨1 0 Ω, [],2⟩ev (Lambda)
τ
ÞÐ→ ⟨1 0,Ω ∶∶[],2⟩ev

τ
ÞÐ→ ⟨1,0 ∶∶Ω ∶∶[],2⟩ev (Push - Push)

1
ÞÐ→ ⟨0 ∶∶Ω ∶∶[],2⟩ct (Var)

We then have three possibilities. First, we reduce the top of the stack, with the se-

quence ⟨0 ∶∶Ω ∶∶[],2⟩ct
▼
ÞÐ→ ⟨0, [],2⟩ev

0
ÞÐ→ ⟨[],2⟩ct

☆
ÞÐ→. Second, we evaluate Ω with the sequence

⟨0 ∶∶Ω ∶∶[],2⟩ct
▶
ÞÐ→ ⟨Ω ∶∶[],2⟩ct

▼
ÞÐ→ ⟨Ω, [],2⟩ev, and then the machine loops without generating

any flag. Third, we skip both terms with ⟨0 ∶∶Ω ∶∶[],2⟩ct
▶
ÞÐ→ ⟨Ω ∶∶[],2⟩ct

▶
ÞÐ→ ⟨[],2⟩ct

☆
ÞÐ→ . Note

that the three options generate different traces of flags.

Because the rules Grab and Push are the same between the KAM and the NFB
machine, there is a direct correspondence between the two.

Lemma 4.3. For all t, t′, π, π′, n, ⟨t, π⟩ ↦ ⟨t′, π′⟩ iff ⟨t, π, n⟩ev
τ
ÞÐ→ ⟨t′, π′, n⟩ev.

We finally show that a notion of bisimilarity between configurations of an NFB machine
captures normal-form bisimilarity. To this end, we first define machine bisimilarity, where
we denote the flags of the machine by F .

Definition 4.4. A symmetric relation R is a machine bisimulation if C1 R C2 implies:
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● if C1
τ
ÞÐ→
∗ F
ÞÐ→ C ′1, then there exists C ′2 such that C2

τ
ÞÐ→
∗ F
ÞÐ→ C ′2 and C ′1 R C ′2;

● if C1
τ
ÞÐ→
∗ F
ÞÐ→, then C2

τ
ÞÐ→
∗ F
ÞÐ→.

Machine bisimilarity ≈m is the largest machine bisimulation.

Intuitively, machine bisimilarity ensures that every flag emitted by a machine is matched
by an identical flag from the other machine, up to internal reductions. Note that a machine
that diverges with τ labels can be related to any other diverging machine or any machine
stuck without a flag. We make sure the latter case cannot occur in our machines by having
only terminating transitions, which are flagged, as stuck transitions. We can now state that
normal-form bisimilarity coincides with machine bisimilarity of NFB machines.

Theorem 4.5. t ≈nf s iff there exists n > max (fv(t) ∪ fv(s)) such that ⟨t, [], n⟩ev ≈m
⟨s, [], n⟩ev.

Proof. To prove that machine bisimilarity implies normal-form bisimilarity, we show that

R
▵= {(t, s) ∣ ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev, n >max (fv(t) ∪ fv(s))}

is a normal-form bisimulation. Suppose ⟨t, []⟩ ↦∗ ⟨λx.t′, []⟩. By Lemma 4.3, we have

⟨t, [], n⟩ev
τ
ÞÐ→
∗
⟨λx.t′, [], n⟩ev, which can only be followed by the transition ⟨λx.t′, [], n⟩ev

⊚
ÞÐ→

⟨[n / x]t′, [], n + 1⟩ev. Because ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev, there exists a configuration C ′ such

that ⟨s, [], n⟩ev
τ
ÞÐ→
∗ ⊚
ÞÐ→ C ′ and ⟨[n/x]t′, [], n+1⟩ev ≈m C ′. The τ -steps cannot change the value

of n, and the flag ⊚ ensures that there exists s′ such that ⟨s, [], n⟩ev
τ
ÞÐ→
∗
⟨λx.s′, [], n⟩ev

⊚
ÞÐ→ C ′

with C ′ = ⟨[n /x]s′, [], n+ 1⟩ev. Using Lemma 4.3 again, we deduce ⟨s, []⟩ ↦∗ ⟨λx.s′, []⟩ with
⟨[n / x]t′, [], n + 1⟩ev R ⟨[n / x]s′, [], n + 1⟩ev, as wished. The case ⟨t, []⟩ ↦∗ ⟨f, π⟩ is similar.

For the reverse implication, we show that

R ▵= {(⟨t, [], n⟩ev, ⟨s, [], n⟩ev) ∣ t ≈nf s, n >max (fv(t) ∪ fv(s))}
∪ {(⟨π,n⟩ct, ⟨π′, n⟩ct) ∣ π ≈nf π′, n >max (fv(π) ∪ fv(π′))}

is a machine bisimulation. Suppose ⟨t, [], n⟩ev
τ
ÞÐ→
∗ ⊚
ÞÐ→ ⟨[n / x]t′, [], n + 1⟩ev. By Lemma 4.3,

we have ⟨t, []⟩ ↦∗ ⟨λx.t′, []⟩. Because t ≈nf s, there exists s′ such that ⟨s, []⟩ ↦∗ ⟨λx.s′, []⟩
and [n /x]t′ ≈nf [n /x]s′. From Lemma 4.3, we deduce ⟨s, [], n⟩ev

τ
ÞÐ→
∗ ⊚
ÞÐ→ ⟨[n /x]s′, [], n+ 1⟩ev,

with ⟨[n /x]t′, [], n+ 1⟩ev R ⟨[n /x]s′, [], n+ 1⟩ev, as wished. The other cases are similar.

4.3. Translation into HOcore. In Figure 3, we present the translation of the NFB
machine into HOcore, where we consider flags as channel names. Configurations now
contain a counter n, which is represented by a message on k containing the value of n
encoded as a process. We use v.wInt to translate a natural number n into a process

suc( ). . . . suc( )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

.z( ).init⟨0⟩; the role of the final output on init is explained later. Since

we cannot generate new names in HOcore, free variables f are also numbers, and we use
the same translation for them. We also use non-deterministic internal choice, encoded as

follows: P +Q ▵= ch⟨P ⟩ ∥ ch⟨Q⟩ ∥ ch(x).ch( ).x: both messages are consumed, and only one
process is executed. This encoding supposes that at most one choice is active at a given
time, as we use only one name ch to encode all the choices. We also use n-ary choices for
n > 2 in Section 5.3, which can be encoded in the same way.
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vt sw
▵= c(p).(vtw ∥ c⟨hdc⟨vsw⟩ ∥ c⟨p⟩⟩)

vλx.tw
▵= c(p).(p ∥ b⟨Restart⟩ ∥ hdc(x).b( ). vtw)

vxw
▵= x

vfw
▵= vfwInt

Restart
▵= ⊚( ).k(x).(hdc⟨x⟩ ∥ k⟨suc( ).x⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩)

Rec
▵= init( ).rec(x).(x ∥ rec⟨x⟩ ∥ Cont)

Cont
▵= c(p).(p ∥ b⟨☆( ).0⟩ ∥ hdc(x).b( ).Chce(x))

Chce(Pt)
▵= ▼( ).c( ).(Pt ∥ c⟨v[]w⟩) +▶( ).init⟨0⟩

v[]w ▵= b(x).x

vt ∶∶πw
▵= hdc⟨vtw⟩ ∥ c⟨vπw⟩

v0wInt
▵= z( ).init⟨0⟩

vn + 1wInt
▵= suc( ). vnwInt

v⟨t, π, n⟩evw
▵= vtw ∥ c⟨vπw⟩ ∥ k⟨vnwInt⟩ ∥ Rec ∥ rec⟨Rec⟩

v⟨π,n⟩ctw
▵= c⟨vπw⟩ ∥ k⟨vnwInt⟩ ∥ Cont ∥ Rec ∥ rec⟨Rec⟩

Figure 3: Translation of the NFB machine into HOcore

A stack is represented as in the KAM, by messages on hdc and c, and the translation
of an application vt sw is exactly the same as for the KAM. The encoding of the empty
context [] is different, however, because contexts are used to distinguish between execution
paths at two points in the machine: when evaluating a function λx.t in evaluation mode, and
when deciding whether the execution is finished in continuation mode. The empty context
is thus encoded as b(x).x, waiting to receive the process to execute in the empty case. For
the non-empty case, this input on b is absent and there are instead messages on hdc and c.
Thus the generic way to choose a branch is as follows:

b⟨do this if empty⟩ ∥ hdc(x).c(y).b( ).do this if non-empty.

In the non-empty case, the input on b discards the message for the empty behavior that was
not used.

For λ-abstractions, the behavior for the empty case is described in the process Restart.
More precisely, vλx.tw receives the current stack vπw on c to run it in parallel with b⟨Restart⟩ ∥
hdc(x).b( ). vtw. If vπw is of the form hdc⟨vt′w⟩ ∥ c⟨vπ′w⟩, then we have the same behavior as
with the KAM, with an extra communication on b to garbage collect the Restart process.
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Otherwise, vπw = b(x).x and we obtain the following sequence of transitions.

b(x).x ∥ b⟨Restart⟩ ∥ hdc(x).b( ). vtw ∥ k⟨vnwInt⟩
τÐÐÐ→ ⊚ ( ).k(x).(hdc⟨x⟩ ∥ k⟨suc( ).x⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩) ∥ hdc(x).b( ). vtw ∥ k⟨vnwInt⟩
⊚ÔÔ⇒ hdc⟨vnwInt⟩ ∥ k⟨suc( ). vnwInt⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩ ∥ hdc(x).b( ). vtw
τÐÐÐ→ k⟨suc( ). vnwInt⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩ ∥ b( ). v[n / x]tw
τÐÐÐ→ k⟨vn + 1wInt⟩ ∥ c⟨v[]w⟩ ∥ v[n / x]tw

In the end, we have effectively restarted the machine to evaluate [n / x]t, as wished.
In continuation mode, the branching is done by the process Cont, which is executed

after applying the transition Var. More precisely, a free variable f is translated using v.wInt,
which signals first the value of f (with the names suc and z), and then sends a message
on init to enter the continuation mode. The way the NFB machine chooses which ti to
evaluate in a stack t1 ∶∶ . . . ∶∶ tm ∶∶[] is a recursive mechanism, and recursion can be encoded in
a higher-order calculus: Rec ∥ rec⟨Rec⟩ reduces to Cont ∥ Rec ∥ rec⟨Rec⟩ when it receives a
message on init. The process Cont is doing a case analysis on vπw when it is executed in
parallel with c⟨vπw⟩: if π = [], then vπw = b(x).x receives the message on b which flags ☆ and

the machine stops. Otherwise, vπw = hdc⟨vtw⟩ ∥ c⟨vπ′w⟩, and we have the following reductions:

Cont ∥ c⟨vπw⟩ τÐÐÐ→ hdc⟨vtw⟩ ∥ c⟨
0

π′
8

⟩ ∥ b⟨☆( ).0⟩ ∥ hdc(x).b( ).Chce(x)
τÐÐÐ→

2
c⟨

0

π′
8

⟩ ∥ Chce(vtw)

At this point, Chce(vtw) either evaluates t with flag ▼, or flags ▶ and continues exploring π′.
In the former case, the current stack π′ is replaced by an empty stack, and in the latter, a
message on init is issued to produce Cont ∥ c⟨vπ′w⟩ after some reduction steps.

4.4. Operational Correspondence and Full Abstraction. Establishing full abstraction
requires first to state the correspondence between the NFB machine and its translation. We
call machine process a process obtained by reducing a translated configuration.

Definition 4.6. A process P is a machine process if there exists a configuration C of the

machine such that vCw
τÔÔ⇒ P .

We recall that F range over the flags of the NFB machine, i.e., ⊚, ▼, ▶, ☆, and f .
We let F̂ range over flags and τ . The translation maps the flags to corresponding channel
names, except for f , which is represented using the suc and z channel names. We call flag

names the channel names ⊚, ▼, ▶, ☆, suc, and z. We write
f
ÐÐÐ→ as a shorthand for f

transitions
sucÐÐÐ→ followed by a transition

zÐÐÐ→, i.e., ( sucÐÐÐ→)f zÐÐÐ→, and
f
ÔÔ⇒ stands for

τÔÔ⇒
f
ÐÐÐ→ τÔÔ⇒. We define H as the set of names in the translation that are not flag names.

We write ↓γ as a shorthand for ↓Hγ , ⇓γ for ⇓Hγ , WkObs(P ) for WkObsH(P ), and ≈HO for ≈HHO.

Given a machine process P and a flag F̂ , we define a set next(F̂ , P ) such that Q ∈
next(F̂ , P ) implies there is a weak reduction between P and Q with at least one transition

labeled F̂ , Q is the translation of a configuration, and there is no other machine translation
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in between. Intuitively, it is the set of translations that are reachable from P just after a
step F̂ .

Definition 4.7. We define next(F̂ , P ) so that Q ∈ next(F̂ , P ) implies P
τÔÔ⇒ F̂ÐÐÐ→ τÔÔ⇒ Q,

Q = vC ′w for some C ′, and for any P ′ such that P ′ ≠ P , P ′ ≠ Q, and P
F̂ÔÔ⇒ P ′

τÔÔ⇒ Q or

P
τÔÔ⇒ P ′

F̂ÔÔ⇒ Q, we have P ′ ≠ vCw for any C.

The translation has been designed so that each machine process is either stuck waiting
for a message on a flag name, or has at most one possible communication, except when a
non-deterministic choice has to be made. The latter case occurs when the NFB machine is
exploring a stack, with a translated configuration of the form v⟨t ∶∶π,n⟩ctw: as explained at
the end of Section 4.3, we have

v⟨t ∶∶π,n⟩ctw
τÔÔ⇒ Chce(vtw) ∥ c⟨vπw⟩ ∥ k⟨vnw⟩ ∥ Rec ∥ rec⟨Rec⟩

We call the resulting process Choice(t, π, n) ▵= Chce(vtw) ∥ c⟨vπw⟩ ∥ k⟨vnw⟩ ∥ Rec ∥ rec⟨Rec⟩
a choice process, as it is about to make an arbitrary choice in Chce(vtw). Unfolding the

encoding of choice, we have Chce(vtw) = ch⟨P▼,t⟩ ∥ ch⟨P▶⟩ ∥ ch(x).ch( ).x, with P▼,t
▵=

▼( ).c( ).(vtw ∥ c⟨v[]w⟩) and P▶
▵= ▶( ).init⟨0⟩. Let Pπ,n

▵= c⟨vπw⟩ ∥ k⟨vnw⟩ ∥ Rec ∥ rec⟨Rec⟩.
Then the two possible transitions from Choice(t, π, n) lead to the following machine transla-
tions:

Choice(t, π, n) τÐÐÐ→ ch⟨P▶⟩ ∥ ch( ).P▼,t ∥ Pπ,n
τÐÐÐ→ P▼,t ∥ Pπ,n

▼ÐÐÐ→ τÐÐÐ→
2

v⟨t, [], n⟩evw

Choice(t, π, n) τÐÐÐ→ ch⟨P▼,t⟩ ∥ ch( ).P▶ ∥ Pπ,n
τÐÐÐ→ P▶ ∥ Pπ,n

▶ÐÐÐ→ τÐÐÐ→
2

v⟨π,n⟩ctw

The first transition
τÐÐÐ→ is making the choice. From there, one process flags ▼, while the

other flags ▶: we know which choice has been made by looking at the weak observable
actions. Note that next(τ,Choice(t, π, n)) is empty, because we need to flag either ▼ or ▶
to reach a machine translation.

The next lemma expresses the fact that the translation is deterministic, relying on flags
in the case of choice processes.

Lemma 4.8 (Determinism). Let P be a machine process.

● If P is not a choice process, then either P cannot reduce, or there exist a unique P ′ and

F̂ such that P
F̂ÐÐÐ→ P ′;

● if P is a choice process, then there exist P1 and P2 such that P
τÐÐÐ→ P1, P

τÐÐÐ→ P2, and

WkObs(P1) ≠WkObs(P2). For all F̂ , P ′ such that P
F̂ÐÐÐ→ P ′, we have F̂ = τ and either

P ′ = P1 or P ′ = P2.

Proof. The proof is a straightforward case analysis on the shape of the machine processes,
checking that for each of them, the lemma holds.

Lemma 4.8 implies that next(F̂ , P ) is either empty or a singleton for every F̂ and P . In

the following, we write next(F̂ , P ) to assert that it is not empty and to directly denote the
corresponding unique machine translation.

A consequence is that a machine process may only have flag names as possible observable
actions. In particular, it cannot have a coname a as an observable action.
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Corollary 4.9. For all machine process P , WkObs(P ) ⊆ {⊚,▼,▶,☆, suc, z}.

The second property we need is an operational correspondence between the machine
and its translation.

Lemma 4.10 (Faithfulness). The following holds:

● C F̂
ÞÐ→ C ′ iff next(F̂ , vCw) = vC ′w;

● C ☆
ÞÐ→ iff vCw

τÔÔ⇒ ☆ÐÐÐ→ P and P ≈HO 0.

Proof. The proof is by a straightforward case analysis on C in the “only if” direction, and
by case analysis on vCw in the “if” direction.

With these properties, we can prove that the translation from NFB machines to HOcore
processes is fully abstract. We define the process complementing a flag as follows: for a flag

F ≠ f , we write F for the process F ⟨0⟩. We define f inductively so that n + 1
▵= suc⟨0⟩ ∥ n

and 0
▵= z⟨0⟩. The following lemma allows us to reason up to τ -transitions on the HOcore

side.

Lemma 4.11. Let P , P ′ be machine processes. If P
τÔÔ⇒ P ′ and WkObs(P ) =WkObs(P ′),

then P ≈HO P ′.

Proof. One can check that {(P ∥ R,P ′ ∥ R) ∣ P τÔÔ⇒ P ′,WkObs(P ) = WkObs(P ′)} ∪
{(R,R)} is a barbed bisimulation using Lemma 4.8.

Lemma 4.12. If vCw ≈HO vC ′w, then C ≈m C ′.

Proof. We prove that R
▵= {(C,C ′) ∣ vCw ≈HO vC ′w} is a machine bisimulation. Let C1 R C ′1.

Suppose C1
τ
ÞÐ→
∗
C2

F
ÞÐ→ C3. By Lemma 4.10, we have

vC1w ∥ F τÔÔ⇒ vC2w ∥ F τÔÔ⇒ vC3w .

Because vC1w ≈HO vC ′1w, there exists P such that vC ′1w ∥ F τÔÔ⇒ P and vC3w ≈HO P . Since

WkObs(vC3w) =WkObs(P ), we have in particular ¬(P ↓F ) by Corollary 4.9. Consequently,

there exists P ′ such that vC ′1w
τÔÔ⇒ P ′, P ′ ↓F , and P ′ ∥ F

τÔÔ⇒ P . Consider next(F,P ′) =

vC ′3w for some C ′3, which must exists since P ′ still has a barb on F . We have vC ′1w
τÔÔ⇒

P ′
FÔÔ⇒ vC ′3w, which implies C ′1

τ
ÞÐ→
∗ F
ÞÐ→ C ′3 by Lemma 4.10. To show that C3 R C ′3, we need

to prove that vC3w ≈HO vC ′3w. Because vC3w ≈HO P , it is enough to prove P ≈HO vC ′3w.

Suppose there is a choice process Q so that P ′ ∥ F τÔÔ⇒ Q
τÔÔ⇒ vC ′3w. It means that

a communication on F ′ ∈ {▼,▶} happens, as it is the only possibility for a choice process
to reach a translated configuration. The communication cannot be with F , because that
output is consumed by P ′. Therefore, it implies that P ′ ⇓F ′ , but P

′ is a machine process, so
it is not possible by Corollary 4.9.

In the end, we have both P ′ ∥ F τÔÔ⇒ P and P ′ ∥ F τÔÔ⇒ vC ′3w, and there is no

choice process between P ′ ∥ F and vC ′3w. As this is the only source of non-determinism, by

Lemma 4.8, we either have P
τÔÔ⇒ vC ′3w or vC ′3w

τÔÔ⇒ P .
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We now prove that WkObs(vC ′3w) =WkObs(P ), to be able to conclude with Lemma 4.11.
The only way to have WkObs(vC ′3w) ≠WkObs(P ) is if a choice has been made between vC ′3w

and P , i.e., if there is a choice process Q making at least one τ -transition between the two.

The case P
τÔÔ⇒ Q

τÐÐÐ→ τÔÔ⇒ vC ′3w has been ruled out, because there is no choice process

between P ′ ∥ F and vC ′3w. The other possibility is vC ′3w
τÔÔ⇒ Q

τÐÐÐ→ τÔÔ⇒ P , where Q

is a choice process. Because a choice has been made, we have either WkObs(P ) ⊆ {▼} or
WkObs(P ) ⊆ {▶}. However, we have WkObs(P ) =WkObs(vC3w), and the translation of a
configuration cannot have only a single flag of a non-deterministic choice as weak observable
action, which leads to a contradiction. Consequently, we have WkObs(P ) =WkObs(vC ′3w),
hence P ≈HO vC ′3w by Lemma 4.11.

Suppose C1
τ
ÞÐ→
∗
C2

☆
ÞÐ→; then vC1w ∥ ☆ τÔÔ⇒ vC2w ∥ ☆ τÔÔ⇒ P with P ≈HO 0 by

Lemma 4.10. Therefore, there exists P ′ such that vC ′1w ∥ ☆ τÔÔ⇒ P ′ and P ≈HO P ′ ≈HO 0.

With Lemma 4.10, we have C ′1
τ
ÞÐ→
∗ ☆
ÞÐ→, as wished.

Lemma 4.13. If C ≈m C ′, then vCw ≈HO vC ′w.

Proof. We prove that

R ▵=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(P ∥ R,Q ∥ R) ∣ C ≈m C ′,WkObs(P ) =WkObs(Q), fn(R) ∩H = ∅

P
τÔÔ⇒ vCw ,Q

τÔÔ⇒
0

C ′
8

or vCw
τÔÔ⇒ P,

0

C ′
8 τÔÔ⇒ Q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∪ {(P ∥ R,Q ∥ R) ∣ P ≈HO 0 ≈HO Q, fn(R) ∩H = ∅}

is a barbed bisimulation. The congruence condition holds by definition of R, and the
observable actions are the same because of the condition WkObs(P ) = WkObs(Q). The
reductions from R are easy to match; we thus only check the reductions involving P or Q.

If P
τÐÐÐ→ P ′, then we show that there exists Q′ such that Q ∥ R τÔÔ⇒ Q′ ∥ R and

P ′ ∥ R R Q′ ∥ R. If P
τÔÔ⇒ vCw and Q

τÔÔ⇒ vC ′w, then taking Q′ = vC ′w works. If

vCw
τÔÔ⇒ P and vC ′w

τÔÔ⇒ Q, then we distinguish two cases. If P is not a choice process,

then WkObs(P ) =WkObs(P ′), and we can simply choose Q′ = Q. Otherwise, the transition

P
τÐÐÐ→ P ′ is making a choice and WkObs(P ′) ⊊WkObs(P ). But WkObs(P ) =WkObs(Q)

implies that Q also reduces to a choice process. Then it is possible to choose the same
branch as P ′ and to define Q′ accordingly.

Suppose P ∥ R τÐÐÐ→ P ′ with a communication on a flag F—a communication on
another name is not possible because fn(R) ∩H = ∅. Then R ↓F and P ↓F , which is possible

only in the case vCw
τÔÔ⇒ P . Therefore we also have vC ′w

τÔÔ⇒ Q by definition of R.

Suppose F ≠ ☆: then we also have P
FÐÐÐ→ P ′′

τÔÔ⇒ vC ′′w for some P ′′ with vC ′′w =

next(F,P ). By Lemma 4.8, there exist R′ such that P ′ = P ′′ ∥ R′. We have vCw
FÔÔ⇒ vC ′′w,

which implies C
τ
ÞÐ→
∗ F
ÞÐ→ C ′′ by Lemma 4.10. Because C ≈m C ′, there exists C ′′′ such that

C ′
τ
ÞÐ→
∗ F
ÞÐ→ C ′′′ and C ′′ ≈m C ′′′. By Lemma 4.10, this implies vC ′w

FÔÔ⇒ vC ′′′w; in particular,
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there exists Q′′ such that vC ′w
τÔÔ⇒ FÐÐÐ→ Q′′

τÔÔ⇒ vC ′′′w. By Lemma 4.8, we also have

Q
τÔÔ⇒ FÐÐÐ→ Q′′, therefore Q ∥ R τÔÔ⇒ Q′′ ∥ R′. To show that P ′′ ∥ R′ R Q′′ ∥ R′, what

is left to check is WkObs(P ′′) =WkObs(Q′′). We have P ′′
τÔÔ⇒ vC ′′w, so there is no choice

process between P ′′ and vC ′′w, because a transition with label ▼ or ▶ is necessary to go
from a choice process to the translation of a configuration. Therefore, we have WkObs(P ′′) =
WkObs(vC ′′w), and similarly WkObs(Q′′) =WkObs(vC ′′′w). Because C ′′ ≈m C ′′′, any action
from C ′′ is matched by C ′′′ and conversely, which implies WkObs(vC ′′w) =WkObs(vC ′′′w)
by Lemma 4.10. In the end, we have WkObs(P ′′) =WkObs(Q′′), and therefore P ′′ ∥ R′ R
Q′′ ∥ R′, as wished.

If F = ☆, then P
☆ÐÐÐ→ P ′′ for some P ′′ such that P ′′ ≈HO 0. By Lemma 4.8, there

exists R′ such that P ′ = P ′′ ∥ R′. We have vCw
τÔÔ⇒ ☆ÐÐÐ→ P ′′, so C

τ
ÞÐ→
∗ ☆
ÞÐ→ holds by

Lemma 4.10. Because C ≈m C ′, we have C ′
τ
ÞÐ→
∗ ☆
ÞÐ→, so by Lemma 4.10, there exists Q′′ such

that vC ′w
τÔÔ⇒ ☆ÐÐÐ→ Q′′ and Q′′ ≈HO 0. By Lemma 4.8, we also have Q

τÔÔ⇒ ☆ÐÐÐ→ Q′′,

therefore we have Q ∥ R τÔÔ⇒ Q′′ ∥ R′. The resulting processes P ′′ ∥ R′ and Q′′ ∥ R′ are in

the second set defining R.

Theorem 4.14. C ≈m C ′ iff vCw ≈HO vC ′w.

Proof. By Lemmas 4.12 and 4.13.

As a result, we can deduce full abstraction between HOcore and the λ-calculus with
normal-form bisimilarity.

Corollary 4.15. t ≈nf s iff there exists n > max (fv(t) ∪ fv(s)) such that v⟨t, [], n⟩evw ≈HO

v⟨s, [], n⟩evw.

Proof. By Theorems 4.5 and 4.14.

The proofs of Lemmas 4.12 and 4.13 rely on the translation being deterministic
(Lemma 4.8) and faithful (Lemma 4.10). In particular, flagged non-determinism in machines
is represented by choice processes in HOcore, so that these processes make the choice
observable with different flags before reducing to the next translated configurations. The
machine translations defined in the upcoming sections satisfy these properties, and the
correspondence between machines and their translation in HOcore can be proved in a similar
fashion.

5. Applicative Bisimilarity

Proving full abstraction w.r.t. normal-form bisimilarity requires minimal interactions—
synchronizations on flags—between a machine process and the outside. Achieving full
abstraction w.r.t. applicative bisimilarity is intuitively more difficult, since this bisimilarity
tests λ-abstractions by applying them to an arbitrary argument. Internalizing such bisimi-
larity is simple using higher-order flags: one may think of the following transition to test
the result of a computation:

⟨λx.t, []⟩ s
ÞÐ→ ⟨[s / x]t, []⟩
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Although HOcore has higher-order communications, we cannot use them to obtain a fully
abstract encoding of such a machine for two reasons. First, allowing interactions where
the environment provides a term may allow arbitrary processes to be received, including
processes that are not in the image of the translation, thus potentially breaking invariants
of the translation. Second, the translation of the KAM has to hide the names it uses for the
translation to be fully abstract; it is thus impossible for the context to use such names and
to provide translated λ-terms to be tested.

We thus propose in this section to internalize applicative bisimilarity using ordinary
flags: when the abstract machine reaches a value, it switches to a different mode where it
non-deterministically builds a test term step by step, using flags to indicate its choices so as
to ensure that a bisimilar machine builds the same term. The translation of such a machine
into HOcore is then similar to the translation of the NFB machine.

Using simple flags to generate terms step by step implies we need to deal with binders.
In particular, and anticipating on the HOcore translation, we no longer can rely on the
definition of binding and substitution from HOcore, as we cannot write a process that inputs
a translation of t and outputs a translation of λx.t using an HOcore binding for x. We
thus switch to a pure data description of bindings, using de Bruijn indices. As such terms
still need to be executed, we first recall the definition of the KAM with de Bruijn indices
and the definitions of contextual equivalence and applicative bisimilarity for λ-terms with
de Bruijn indices. We then present the machine internalizing applicative bisimilarity, its
translation into HOcore, and show they are fully abstract. We finally conclude this section
by showing how contextual equivalence is internalized in an abstract machine, generating
contexts instead of terms.

5.1. The KAM and Behavioral Equivalences. In the λ-calculus with de Bruijn indices,
a variable is a number that indicates how many λ’s are between the variable and its binder.
For example, λx.x is written λ.0 and λxy.x y is written λ.λ.1 0. The syntax of terms (t, s),
closures (η), environments (e, d), and values (v) is as follows.

t, s ∶∶= n ∣ t s ∣ λ.t η ∶∶= (t, e) e, d ∶∶= η ∶∶ e ∣ ϵ v ∶∶= (λ.t, e)
A closure η is a pair (t, e) where e is an environment mapping the free variables of t to
closures; environments are used in lieu of substitutions. A term t is closed if fv(t) = ∅, and a
closure (t, e) is closed if the number of elements of e is bigger than the highest free variable
of t, and e is composed only of closed closures.

The semantics is given by the original, environment-based KAM, where a configuration C
is now composed of the closed closure (t, e) being evaluated, and a stack π of closures. The
transitions rules are as follows.

C ∶∶= ⟨t, e, π⟩ev (configurations) π ∶∶= η ∶∶π ∣ [] (stacks)
⟨t s, e, π⟩ev

τ
ÞÐÐ→ ⟨t, e, (s, e) ∶∶π⟩ev (Push)

⟨0, (t, e) ∶∶d, π⟩ev
τ

ÞÐÐ→ ⟨t, e, π⟩ev (Zero)

⟨n + 1, (t, e) ∶∶d, π⟩ev
τ

ÞÐÐ→ ⟨n, d, π⟩ev (Env)

⟨λ.t, e, η ∶∶π⟩ev
τ

ÞÐÐ→ ⟨t, η ∶∶ e, π⟩ev (Grab)

In Push, the argument s of an application is stored on the stack with its environment e
while the term t in function position is evaluated. If we get a λ-abstraction λ.t (transition
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Grab), then an argument η is moved from the stack to the top of the environment to
remember that η corresponds to the de Bruijn index 0, and the evaluation continues with t.
Looking up the closure corresponding to a de Bruijn index in the environment is done with
the rules Env and Zero. Because we evaluate closed closures only, it is not possible to
obtain a configuration of the form ⟨n, ϵ, π⟩ev. If a configuration of the form ⟨λ.t, e, []⟩ev is
reached, then the evaluation is finished, and the result is (λ.t, e).

Behavioral equivalences. Contextual equivalence compares closed terms by testing them
within all contexts. A context C is a term with a hole ◻ at a variable position; plugging a
term t in C is written C[t]. A context is closed if fv(C) = ∅. Contextual equivalence is then
defined as follows.

Definition 5.1. Two closed terms t and s are contextually equivalent, written t ≈ctx s, if for
all closed contexts C, ⟨C[t], ϵ, []⟩ev

τ
ÞÐÐ→

∗
⟨λ.t′, e, []⟩ev for some t′ and e iff ⟨C[s], ϵ, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.s′, d, []⟩ev for some s′ and d.

Contextual equivalence is characterized by applicative bisimilarity [AO93], which reduces
closed terms to values that are then applied to an arbitrary argument.

Definition 5.2. A symmetric relation R on closed closures is an applicative bisimulation if

(t, e) R (s, d) and ⟨t, e, []⟩ev
τ

ÞÐÐ→
∗
⟨λ.t′, e′, []⟩ev implies that there exist s′ and d′ such that

⟨s, d, []⟩ev
τ

ÞÐÐ→
∗
⟨λ.s′, d′, []⟩ev, and for all closed t′′, we have (t′, (t′′, ϵ) ∶∶ e′) R (s′, (t′′, ϵ) ∶∶d′).

Applicative bisimilarity ≈app is the largest applicative bisimulation.

We can prove full abstraction between HOcore and the λ-calculus by either internalizing
contextual equivalence or applicative bisimilarity. We choose the latter, as it is closer to
normal-form bisimilarity. We briefly show in Section 5.4 how the machine of Section 5.2 can
be adapted to handle contextual equivalence.

5.2. Argument Generation for the Applicative Bisimilarity. After evaluating a term
thanks to the KAM, we want to produce a closed argument to pass it to the resulting
value, and then restart the evaluation process. The approach of [CF11] consists in waiting
for a name from the outside, giving access to a translated λ-term to be applied to. If the
environment does not provide access to a well-formed translation, the process simulating β-
reduction remains stuck. In contrast, our machine directly generates a well-formed argument:
we represent a λ-term as a syntax tree, with de Bruijn indices at the leaves, and applications
and λ-abstractions at the nodes. We start generating from the leftmost variable, and we
then go left to right, meaning that in an application, we create the term in function position
before the argument. These choices are completely arbitrary, as doing the opposite—starting
from the rightmost variable and go right to left—is also possible. To be sure that we produce
a valid, closed, λ-term, we have to check that each de Bruijn index n has at least n + 1
λ-abstractions enclosing it, and that each application node has two children.

To do so, we consider machine states with four components: the term t being constructed,
a counter κ giving the minimal number of λ-abstractions required to close the term, a stack ρ
used to build applications, whose syntax is

ρ ∶∶= (t, κ) ∶∶ρ ∣ ⊙ (application stacks)

and which is explained in more detail later, and finally the closure η for which the argument
is being built. This last element is never modified by the building process, and is just used
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⟨λ.t, e, []⟩ev
⊚

ÞÐÐ→ ⟨0,⊙, (t, e)⟩ind (Arg)

⟨n, ρ, η⟩ind
⊞

ÞÐÐ→ ⟨n + 1, ρ, η⟩ind (Suc)

⟨n, ρ, η⟩ind
⊡

ÞÐÐ→ ⟨n,n + 1, ρ, η⟩tm (Var)

⟨t, κ + 1, ρ, η⟩tm
λ

ÞÐÐ→ ⟨λ.t, κ, ρ, η⟩tm (Lambda)

⟨t,0, ρ, η⟩tm
λ

ÞÐÐ→ ⟨λ.t,0, ρ, η⟩tm (Lambda0)

⟨t, κ, ρ, η⟩tm
ê

ÞÐÐ→ ⟨0, (t, κ) ∶∶ρ, η⟩ind (AppFun)

⟨s, κ1, (t, κ2) ∶∶ρ, η⟩tm
@

ÞÐÐ→ ⟨t s,max(κ1, κ2), ρ, η⟩tm (App)

⟨t,0,⊙, (s, e)⟩tm
☆

ÞÐÐ→ ⟨s, (t, ϵ) ∶∶ e, []⟩ev (Restart)

Figure 4: AB machine: argument generation

to restart the machine in evaluation mode when the argument is finished. We distinguish
two kinds of states: the index state ⟨n, ρ, η⟩ind, where only de Bruijn indices can be built,
and the term state ⟨t, κ, ρ, η⟩tm, where any term can be produced. The transitions for these
states are given in Figure 4, and we call the extension of the KAM with these transitions
the AB machine.

The transition Arg starts the building process when we reach a λ-abstraction in
evaluation mode with the empty continuation []. We begin with the index 0 and with the
empty stack ⊙. The value of the index can then be increased with the transition Suc. When
we reach the needed value for the index, the transition Var switches to the term mode,
indicating that we need at least n+ 1 λ-abstractions to close the term. We use two modes to
prevent a Suc transition on a term which is not an index.

In term mode, we can add λ-abstractions to the term, decreasing κ if κ > 0 with transition
Lambda, or leaving κ at 0 with transition Lambda0; the abstractions we introduce when
κ = 0 do not bind any variable. Once we are done building a term t in function position
of an application, we use transition AppFun to build the argument s. We start again in
index mode, but we store on top of ρ the term t with its counter κ2. When we finish s
with a counter κ1, we build the application with transition App, which takes the maximum
of κ1 and κ2 as the new minimal number of λ-abstractions needed above t s. Note that
the App transition is allowed only if ρ is not empty, meaning that at least one AppFun
has been done before. Finally, we can conclude the term building process with transition
Restart only if κ = 0, meaning that all the variables of the term are bound, and if ρ is
empty, meaning that there is no application waiting to be finished.

Example 5.3. Figure 5 presents how we generate the term λ.λ.(λ.0) (1 λ.0); we start with
the underlined 0.

Any closed term t can be generated with the AB machine, and it is possible to define
the sequence of flags Seq(t) that will be raised. We write () for the empty sequence, and
(F1, . . . , Fn, (F ′1, . . . , F ′m), Fn+1, . . . , Fl) for the sequence (F1, . . . , Fn, F

′
1, . . . , F

′
m, Fn+1, . . . , Fl).
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⟨0,⊙, η⟩ind
⊡

ÞÐÐ→ ⟨0,1,⊙, η⟩tm
λ

ÞÐÐ→ ⟨λ.0,0,⊙, η⟩tm
ê

ÞÐÐ→ ⟨0, (λ.0,0) ∶∶ ⊙, η⟩ind

0

λ

0 0

λ

0

⊞
ÞÐÐ→ ⊡

ÞÐÐ→ ⟨1,2, (λ.0,0) ∶∶ ⊙, η⟩tm
ê

ÞÐÐ→ ⟨0, (1,2) ∶∶(λ.0,0) ∶∶ ⊙, η⟩ind

1

λ

0 01

λ

0

⊡
ÞÐÐ→ λ

ÞÐÐ→ ⟨λ.0,0, (1,2) ∶∶(λ.0,0) ∶∶ ⊙, η⟩tm
@

ÞÐÐ→ ⟨1 λ.0,2, (λ.0,0) ∶∶ ⊙, η⟩tm

λ

0

1

λ

0

@

λ

0

1

λ

0

@
ÞÐÐ→ ⟨(λ.0) (1 λ.0),2,⊙, η⟩tm

λ
ÞÐÐ→ ⟨λ.(λ.0) (1 λ.0),1,⊙, η⟩tm

@

@

λ

0

1

λ

0

λ

@

@

λ

0

1

λ

0

λ
ÞÐÐ→ ⟨λ.λ.(λ.0) (1 λ.0),0,⊙, η⟩tm

☆
ÞÐÐ→

λ

λ

@

@

λ

0

1

λ

0

Figure 5: Example of argument generation

Definition 5.4. Given a term t, we define Seq(t) as

Seq(t) ▵= (SeqTm(t),☆) SeqTm(n) ▵= (SeqInd(n),⊡)

SeqTm(t s) ▵= (SeqTm(t),ê,SeqTm(s),@) SeqInd(0) ▵= ()

SeqTm(λ.t) ▵= (SeqTm(t), λ) SeqInd(n + 1) ▵= (SeqInd(n),⊞)
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We write C
Seq(t)
ÞÐÐ→C ′ for C F1

ÞÐÐ→ . . . Fm
ÞÐÐ→C ′ where Seq(t) = (F1, . . . , Fm).

Lemma 5.5. If t′ is closed, then ⟨0,⊙, (t, e)⟩
Seq(t′)
ÞÐÐ→ ⟨t, (t′, ϵ) ∶∶ e, []⟩ev.

Proof. Let η = (t, e). First, for all n, we have ⟨0, ρ, η⟩ind
⊞

ÞÐÐ→
n ⊡

ÞÐÐ→ ⟨n,n + 1, ρ, η⟩tm. Then we

show by induction on t′ that ⟨0, ρ, η⟩ind
SeqTm(t′)

ÞÐÐ→ ⟨t′, κ, ρ, η⟩tm where κ =max (fv(t′)) + 1 if t′ is
not closed, and κ = 0 otherwise. The case t = n is concluded with the previous observation.
If t′ = t′1 t′2, then

⟨0, ρ, η⟩ind
SeqTm(t′1)

ÞÐÐ→ ⟨t′1, κ1, ρ, η⟩tm (by induction)
ê

ÞÐÐ→ ⟨0, (t′1, κ1) ∶∶ρ, η⟩ind
SeqTm(t′2)

ÞÐÐ→ ⟨t′2, κ2, (t′1, κ1) ∶∶ρ, η⟩tm (by induction)

ÞÐÐ→ @⟨t′1 t′2,max (κ1, κ2), ρ, η⟩tm
By case analysis on (κ1, κ2), one can check that max (κ1, κ2) is the desired value. If t′ = λ.t′′,

then by induction, we have ⟨0, ρ, η⟩ind
SeqTm(t′′)

ÞÐÐ→ ⟨t′′, κ, ρ, η⟩tm, and then ⟨t′′, κ, ρ, η⟩tm
λ

ÞÐÐ→
⟨t′, κ′, ρ, η⟩tm where κ′ is as wished depending on κ.

This implies that for a closed term t′, we have ⟨0,⊙, η⟩ind
SeqTm(t′)

ÞÐÐ→ ⟨t′,0,⊙, η⟩tm, and the

last transition
☆

ÞÐÐ→ gives what we want.

This lemma allows us to prove the correspondence between the AB machine and
applicative bisimilarity.

Theorem 5.6. (t, e) ≈app (s, d) iff ⟨t, e, []⟩ev ≈m ⟨s, d, []⟩ev.

Proof. To prove that machine bisimilarity implies applicative bisimilarity, we show that

R ▵= {((t, e), (s, d)) ∣ ⟨t, e, []⟩ev ≈m ⟨s, d, []⟩ev}
is an applicative bisimulation. Suppose ⟨t, e, []⟩ev

τ
ÞÐÐ→

∗
⟨λ.t′, e′, []⟩ev. Because we have also

⟨λ.t′, e′, []⟩ev
⊚

ÞÐÐ→ ⟨0,⊙, (t′, e′)⟩ind, there exist s′ and d′ such that

⟨s, d, []⟩ev
τ

ÞÐÐ→
∗
⟨λ.s′, d′, []⟩ev

⊚
ÞÐÐ→ ⟨0,⊙, (s′, d′)⟩ind

and ⟨0,⊙, (t′, e′)⟩ind ≈m ⟨0,⊙, (s′, d′)⟩ind. Let t′′ be a closed term. By Lemma 5.5, we

have ⟨0,⊙, (t′, e′)⟩
Seq(t′′)
ÞÐÐ→ ⟨t′, (t′′, ϵ) ∶∶ e′, []⟩ev, which can only be matched by ⟨0,⊙, (s′, d′)⟩

Seq(t′′)
ÞÐÐ→

⟨s′, (t′′, ϵ) ∶∶d′, []⟩ev. From ⟨0,⊙, (t′, e′)⟩ind ≈m ⟨0,⊙, (s′, d′)⟩ind, we get ⟨t′, (t′′, ϵ) ∶∶ e′, []⟩ev ≈m
⟨s′, (t′′, ϵ) ∶∶d′, []⟩ev. It implies that (t′, (t′′, ϵ) ∶∶ e′) R (s′, (t′′, ϵ) ∶∶d′) holds, as wished.

For the reverse implication, we show that

R ▵= {(⟨t, e, []⟩ev, ⟨s, d, []⟩ev) ∣ (t, e) ≈app (s, d)}
∪ {(⟨n, ρ, (t, e)⟩ind), ⟨n, ρ, (s, d)⟩ind) ∣ (λ.t, e) ≈app (λ.s, d)}
∪ {(⟨t′, κ, ρ, (t, e)⟩tm), ⟨t′, κ, ρ, (s, d)⟩tm) ∣ (λ.t, e) ≈app (λ.s, d)}

is a machine bisimulation. Suppose ⟨t, e, []⟩ev R ⟨s, d, []⟩ev. The only possible flagged tran-

sition is ⟨t, e, []⟩ev
τ

ÞÐÐ→
∗ ⊚

ÞÐÐ→ ⟨0,⊙, (t′, e′)⟩ind, which implies in particular ⟨t, e, []⟩ev
τ

ÞÐÐ→
∗

⟨λ.t′, e′, []⟩ev. Because (t, e) ≈app (s, d), there exists (s′, d′) such that ⟨s, d, []⟩ev
τ

ÞÐÐ→
∗
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⟨λ.s′, d′, []⟩ev and (λ.t′, e′) ≈app (λ.s′, d′). We also have ⟨λ.s′, d′, []⟩ev
⊚

ÞÐÐ→ ⟨0,⊙, (s′, d′)⟩ind,
hence ⟨s, d, []⟩ev

τ
ÞÐÐ→

∗ ⊚
ÞÐÐ→ ⟨0,⊙, (s′, d′)⟩ind and ⟨0,⊙, (t′, e′)⟩ind R ⟨0,⊙, (s′, d′)⟩ind hold, as

wished.
To cover the last two sets of the bisimulation, let ⟨t′, κ, ρ, (t, e)⟩arg R ⟨t′, κ, ρ, (s, d)⟩arg

with arg ∈ {ind, tm}. If ⟨t′, κ, ρ, (t, e)⟩arg
F

ÞÐÐ→ C with F ≠ ☆, then ⟨t′, κ, ρ, (s, d)⟩arg
F

ÞÐÐ→
C ′ where C ′ is the same as C except for the closures. These are not changed by the
transition and are still applicative bisimilar; we have therefore C R C ′. Otherwise, we

have ⟨t′, κ, ρ, (t, e)⟩ ☆ÞÐÐ→⟨t, (t′, ϵ) ∶∶ e, []⟩ev, and also ⟨t′, κ, ρ, (s, d)⟩ ☆ÞÐÐ→⟨s, (t′, ϵ) ∶∶d, []⟩ev. The
resulting configurations are in R because (λ.t, e) ≈app (λ.s, d) implies (t, (t′, ϵ) ∶∶ e) ≈app
(s, (t′, ϵ) ∶∶d) for all closed t′.

5.3. Translation into HOcore. We detail each component of the translation of the AB
machine into HOcore, starting with the evaluation mode, i.e., the KAM.

v⟨t, e, π⟩evw
▵= vtw ∥ env⟨vew⟩ ∥ c⟨vπw⟩ ∥ Prec v(t, e)w ▵= η1⟨vtw⟩ ∥ η2⟨vew⟩

vη ∶∶πw
▵= hdc⟨vηw⟩ ∥ c⟨vπw⟩ vη ∶∶ ew ▵= hde⟨vηw⟩ ∥ env⟨vew⟩

v[]w ▵= . . . vϵw
▵= 0

We follow the same principles as in Section 3: a non-empty stack π or environment e is
represented by a pair of messages, respectively on hdc and c, and hde and env (we use the
longer env for legibility reasons). A closure is represented by two messages, one containing
the term on η1 and the other the environment on η2. The process representing the empty
environment ϵ should never be executed, because all the closures we manipulate are closed;
as a result, we can choose any process to represent it, e.g., 0. The empty stack v[]w and the
process Prec are used to generate an argument and are defined and explained later.

vt sw
▵= Appev(vtw , vsw)

Appev(Pt, Ps)
▵= c(x).env(y).(Pt ∥ c⟨hdc⟨η1⟨Ps⟩ ∥ η2⟨y⟩⟩ ∥ x⟩ ∥ env⟨y⟩)

vλ.tw
▵= Lamev(vtw)

Lamev(Pt)
▵= c(x).(x ∥ hdc(y).env(z).(Pt ∥ env⟨hde⟨y⟩ ∥ env⟨z⟩⟩))

vn + 1w
▵= Indev(vnw)

Indev(Pn)
▵= env(x).(x ∥ hde( ).Pn)

v0w
▵= env(x).(x ∥ hde(y).env( ).(y ∥ η1(y1).η2(y2).(y1 ∥ env⟨y2⟩)))

The encoding of t s simulates the rule Push: we receive the current stack and environ-
ment e to create the new stack with (s, e) on top. Because we receive the current environment
to put it on the stack, we have to recreate it on env, unchanged. In the encoding of λ.t, we
capture the stack and environment, and if the stack is non-empty, we fetch its head η to
create a new environment with η on top. Finally, a de Bruijn index n > 0 goes through the
current environment, until we reach the correct closure (case n = 0). In that case, we receive
the head η and tail of the environment, we discard the tail as it is no longer useful, and we
restore the term and environment stored in η.
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If λ.t is run in the environment e and the empty stack [], then we obtain v[]w ∥
Stuck((t, e)), where Stuck((t, e)) ▵= hdc(z).(vtw ∥ env⟨hde⟨z⟩ ∥ env⟨vew⟩⟩). The process v[]w
has to start the argument generating process, and the result has then to be sent on hdc
for the evaluation to restart. The process Stuck((t, e)) remains stuck during the whole
generation process. We now explain how ⟨n, ρ, η⟩ind and ⟨t, κ, ρ, η⟩tm are encoded, starting
with κ and ρ.

v0wc
▵= zero(x).suc( ).x v⊙w

▵=mt(x).cs( ).x

vκ + 1wc
▵= Suk(vκwc) v(t, κ) ∶∶ρw

▵= ConsR(v(t, κ)w , vρw)

Suk(Pκ)
▵= suk⟨Pκ⟩ ∥ zero( ).suc(x).x ConsR(Phd, Pρ)

▵= hdr⟨Phd⟩ ∥ r⟨Pρ⟩ ∥mt( ).cs(x).x

v(t, κ)w ▵= w1⟨vtw⟩ ∥ w2⟨vκwc⟩

The machine distinguishes cases based on whether κ is 0 or not, to know if we should
apply the transition Lambda or Lambda0. In the encoding of these rules (see the definition
of Lambda below), we send on name zero the expected behavior if κ = 0, and on suc
what to do otherwise. The translation of the counter receives both messages, executes the
corresponding one (e.g., the one on zero for the encoding of 0), and discards the other.
Apart from that, κ is translated as nested sending on name suk. Similarly, the translation of
ρ combines the regular encodings of pairs and stacks, but also indicates whether ρ is empty
or not, to know if we can apply the transitions App and Restart.

v[]w ▵= ⊚( ).(ind⟨v0w⟩ ∥ k⟨v1wc⟩ ∥ r⟨v⊙w⟩ ∥ initInd⟨0⟩)

v⟨n, ρ, η⟩indw
▵= ind⟨vnw⟩ ∥ k⟨vn + 1wc⟩ ∥ r⟨vρw⟩ ∥ Prec ∥ initInd⟨0⟩ ∥ Stuck(η)

RecInd
▵= initInd( ).recind(x).(x ∥ recind⟨x⟩ ∥ Succ +Var)

Succ
▵= ⊞( ).ind(x).k(y).(ind⟨Indev(x)⟩ ∥ k⟨Suk(y)⟩ ∥ initInd⟨0⟩)

Var
▵= ⊡( ).ind(x).(tm⟨x⟩ ∥ initTm⟨0⟩)

v⟨t, κ, ρ, η⟩tmw
▵= tm⟨vtw⟩ ∥ k⟨vκwc⟩ ∥ r⟨vρw⟩ ∥ Prec ∥ initTm⟨0⟩ ∥ Stuck(η)

After flagging ⊚, the process v[]w starts the argument generation process in index mode:
the index being built is sent on ind (here, initialized with v0w) and the stack on r. We also
build on k the counter κ corresponding to the index: at any point, we have κ = n + 1. We
keep two messages on ind and k encoding almost the same information, but with different
encodings, as the index n and the counter κ are used differently.

The message on initInd triggers the recursive process RecInd, which non-deterministically
chooses between Succ and Var. Executing Succ flags ⊞, increases the values of the index
(thanks to Indev) and the counter (with Suk), and relaunches the RecInd process with a
message on initInd. Executing Var flags ⊡, moves the index from ind to tm, and initiates
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the term mode by sending a message on initTm, which triggers the recursive process RecTm.

RecTm
▵= initTm( ).rectm(x).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x ∥ rectm⟨x⟩ ∥ r(y).y ∥ cs ⟨
k(z).hdr(y1).r(y2).
(Lambda(z) ∥ r⟨y⟩) +AppFun(z, y) +App(z, y1, y2)

⟩

∥mt ⟨k(z).

⎛
⎜⎜⎜⎜⎜
⎝

z ∥ zero ⟨
(Lambda(z) ∥ r⟨v⊙w⟩)

+AppFun(z, v⊙w) +Done
⟩

∥ suc ⟨suk( ).
(Lambda(z) ∥ r⟨v⊙w⟩)

+AppFun(z, v⊙w)
⟩

⎞
⎟⎟⎟⎟⎟
⎠

⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The goal of RecTm is to non-deterministically choose between the four transitions

available in term mode, namely
λ

ÞÐÐ→, ê
ÞÐÐ→, @

ÞÐÐ→, and ☆
ÞÐÐ→. However, some of these transitions

have requirements:
@

ÞÐÐ→ needs ρ ≠ ⊙ and
☆

ÞÐÐ→ needs ρ = ⊙ and κ = 0. The process RecTm
is therefore doing a case analysis to check these conditions. First, it captures vρw on r: if
ρ ≠ ⊙, it executes the message on cs, which makes a choice between λ, ê, and @, which are
represented by respectively Lambda, AppFun, and App. If ρ = ⊙, then we do a case analysis
on κ. If κ = 0, then we can do either λ, ê, or ☆ (represented by Done), otherwise, only λ
or ê are possible.

Lambda(Pκ)
▵= λ( ).tm(x).

⎛
⎝
tm⟨Lamev(x)⟩ ∥ Pκ ∥ zero⟨k⟨Pκ⟩ ∥ initTm⟨0⟩⟩

∥ suc⟨suk(y).(k⟨y⟩ ∥ initTm⟨0⟩)⟩
⎞
⎠

AppFun(Pκ, Pρ)
▵=ê ( ).tm(x).

⎛
⎜
⎝

r⟨ConsR(hdr⟨w1⟨x⟩ ∥ w2⟨Pκ⟩⟩, Pρ)⟩ ∥

ind⟨v0w⟩ ∥ k⟨v1wc⟩ ∥ initInd⟨0⟩)

⎞
⎟
⎠

App(Pκ, Phd, Pρ)
▵= @( ).tm(x2).

⎛
⎜⎜⎜
⎝
Phd ∥ w2(y).w1(x1).

⎛
⎜⎜⎜
⎝

max1⟨y⟩ ∥max2⟨Pκ⟩ ∥ init1⟨y⟩ ∥ init2⟨Pκ⟩ ∥

resu(z).
⎛
⎝
tm⟨Appev(x1, x2)⟩ ∥ r⟨Pρ⟩ ∥

k⟨z⟩ ∥ initTm⟨0⟩
⎞
⎠

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

The process Lambda adds a λ-abstraction to the term in tm, updating κ (represented by Pκ)
accordingly: if κ = 0, then it is restored unchanged on k, otherwise, it is decreased by 1 by
releasing the message in suk. The process AppFun pushes on the stack Pρ the current term t1
on tm and its counter κ1 (represented by Pκ), which is the term in function position of an
application. It then relaunches the index mode to build the argument t2 with its counter κ2.
The process App can then build the application itself, by computing the maximum between κ1
and κ2 with the processes RecMax and Max.

RecMax
▵= init1(x1).init2(x2).recmax(y).(y ∥ recmax⟨y⟩ ∥Max(x1, x2))

Max(P1, P2)
▵= P1 ∥ zero⟨max2(x).resu⟨x⟩⟩

∥ suc ⟨suk(x1).
⎛
⎝
P2 ∥ zero⟨max1(x).resu⟨x⟩⟩
∥ suc⟨suk(x2).(init1⟨x1⟩ ∥ init2⟨x2⟩)⟩

⎞
⎠
⟩

We compute the maximum between κ1 and κ2 by removing the layers of successors common
to κ1 and κ2, until we reach 0 for one of them. If we reach 0 for κ1 first, then κ2 is the max,
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otherwise it is κ1. We store the initial values of κ1 and κ2 in respectively max1 and max2,
and the decomposition occurs in Max, where init1 is initialized with κ1 and init2 with κ2.
If P1 = vκ1wc = v0wc, then we send κ2 (stored in max2) on resu. Otherwise, P1 = suk⟨P ′1⟩,
and we do a case analysis on the process P2 = vκ2wc. If P2 = v0wc, then we send κ1 on resu,

otherwise P2 = suk⟨P ′2⟩, and we restart RecMax by sending P ′1 and P ′2 on init1 and init2,
respectively. Once the max is known on resu, then App builds the application t1 t2 and
relaunches RecTm.

Done
▵= ☆( ).tm(x).(hdc⟨η1⟨x⟩ ∥ η2⟨vϵw⟩⟩ ∥ c⟨v[]w⟩)

Prec
▵= RecInd ∥ recind⟨RecInd⟩ ∥ RecTm ∥ rectm⟨RecTm⟩ ∥ RecMax ∥ recmax⟨RecMax⟩

Finally, the process Done ends the argument generation phase, and restarts the compu-
tation by restoring the empty continuation and by passing the term in tm to Stuck(η). The
process Prec contains all the processes necessary to encode the different recursive mechanisms.

Full abstraction. A case analysis on the configurations of the machine shows that the
translation of the AB machine satisfies the conditions of Section 4.4, and we can prove a full
abstraction result between AB machines and HOcore similar to Theorem 4.14. We deduce a
full abstraction result between the λ-calculus with applicative bisimilarity and HOcore.

Corollary 5.7. For all closed closures (t, e) and (s, d), (t, e) ≈app (s, d) iff v⟨t, e, []⟩evw ≈HO

v⟨s, d, []⟩evw.

5.4. Internalizing Contextual Equivalence. Corollary 5.7 is enough to deduce full
abstraction w.r.t. contextual equivalence, since t ≈ctx s ⇐⇒ (t, ϵ) ≈app (s, ϵ). However,
it is possible to prove a similar result directly, by internalizing contextual equivalence in
an abstract machine. We do so to show how the resulting contextual equivalence machine
differs from the AB machine.

Figure 6 gives the transitions of the contextual equivalence machine, except for the
τ

ÞÐÐ→
transitions, which are the same as in Section 5.1. In contrast with the AB machine, the
contextual equivalence machine produces a context first, and then reduces the resulting
term; consequently, the starting point is a state ⟨t,0,⊙⟩tm, where t is the closed term we

want to plug in the context. When the context is finished, the transition
⍟

ÞÐÐ→ switches to
the evaluation mode. Also, the evaluation part of the machine is not executed several times,
since ≈ctx is not coinductive. We flag ☆ when the evaluation terminates, to distinguish a
terminating term from a diverging one.

Creating a context C is almost the same as generating an argument in the AB machine,
except that we want to plug a closed term t inside. We build C[t] by starting the generation
process from t; t can be anywhere in C[t], not necessarily at the leftmost position, so we
cannot do the generation process going left to right in an application, as with the AB
machine (Section 5.2). Instead, after producing a term t and with a term s on the stack, we
can do either the transition AppLeft to build t s, or AppRight to build s t.
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⟨n,κ, ρ⟩ind
⊞

ÞÐÐ→ ⟨n + 1, κ + 1, ρ⟩ind (Suc)

⟨n,κ, ρ⟩ind
⊡

ÞÐÐ→ ⟨n,κ, ρ⟩tm (Var)

⟨t, κ + 1, ρ⟩tm
λ

ÞÐÐ→ ⟨λ.t, κ, ρ⟩tm (Lambda)

⟨t,0, ρ⟩tm
λ

ÞÐÐ→ ⟨λ.t,0, ρ⟩tm (Lambda0)

⟨t, κ, ρ⟩tm
ê

ÞÐÐ→ ⟨0,1, (t, κ) ∶∶ρ⟩ind (AppPush)

⟨t, κ1, (s, κ2) ∶∶ρ⟩tm
←Ð
@

ÞÐÐ→ ⟨t s,max(κ1, κ2), ρ⟩tm (
←ÐÐ
App)

⟨t, κ1, (s, κ2) ∶∶ρ⟩tm
Ð→
@

ÞÐÐ→ ⟨s t,max(κ1, κ2), ρ⟩tm (
ÐÐ→
App)

⟨t,0,⊙⟩tm
⍟

ÞÐÐ→ ⟨t, ϵ, []⟩ev (Start)

⟨λ.t, e, []⟩ev
☆

ÞÐÐ→ (Done)

Figure 6: Contextual equivalence machine

Example 5.8. We show how to generate the context λ.(0 0) (◻ 0) around t.

⟨t,0,⊙⟩tm
ê

ÞÐÐ→ ⊡
ÞÐÐ→⟨0,1, (t,0) ∶∶ ⊙⟩tm

Ð→
@

ÞÐÐ→ ⟨t 0,1,⊙⟩tm
ê

ÞÐÐ→ ⊡
ÞÐÐ→⟨0,1, (t 0,1) ∶∶ ⊙⟩tm

ê
ÞÐÐ→ ⊡

ÞÐÐ→⟨0,1, (0,1) ∶∶(t 0,1) ∶∶ ⊙⟩tm
Ð→
@

ÞÐÐ→ ⟨0 0,1, (t 0,1) ∶∶ ⊙⟩tm
←Ð
@

ÞÐÐ→ ⟨(0 0) (t 0),1,⊙⟩tm
λ

ÞÐÐ→ ⟨λ.(0 0) (t 0),0,⊙⟩tm

The translation of the contextual equivalence machine into HOcore and the full abstrac-
tion proofs are similar to the AB machine ones.

Theorem 5.9. If t and s are closed terms, then t ≈ctx s iff v⟨t,0,⊙⟩tmw ≈HO v⟨s,0,⊙⟩tmw.

6. Call-by-Value

We adapt our techniques to the call-by-value setting, by internalizing equivalences into the
CK machine.
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6.1. The CK machine. As in call-by-name, we internalize normal-form bisimilarity into a
substitution-based abstract machine, namely the CK machine [FFF09].

C ∶∶= ⟨t, π⟩ ∣ ⟨π, v⟩ct (configurations)

v ∶∶= x ∣ λx.t (values)

t, s ∶∶= v ∣ t s (terms)

π ∶∶= ● t ∶∶π ∣ v ● ∶∶π ∣ [] (stacks)

⟨t s, π⟩ ↦ ⟨t, ● s ∶∶π⟩ (Fun)

⟨v, π⟩ ↦ ⟨π, v⟩ct (Switch)

⟨● t ∶∶π, v⟩ct ↦ ⟨t, v ● ∶∶π⟩ (Arg)

⟨λx.t ● ∶∶π, v⟩ct ↦ ⟨[v / x]t, π⟩ (Beta)

The machine distinguishes configurations of the form ⟨t, π⟩, which evaluates t in the stack π,
from configurations ⟨π, v⟩ct, which decide how computation should proceed depending on the
stack π. In left-to-right call-by-value evaluation, we evaluate the function before reducing its
argument. What we remember on the stack reflects this order: ● t means that we evaluate
the function and remembers its argument t, while v ● means that we evaluate the argument
of an already computed function v.

The Fun machine step focuses on the term in function position. When it is evaluated,
we look at the stack by switching to the continuation mode (rule Switch). Either the top
of the stack is an argument which needs to be evaluated (rule Arg), or it is a λ-abstraction
ready to be applied to its argument (rule Beta). When we reduce closed terms, we cannot
get a configuration of the form ⟨x ● ∶∶π, v⟩ct.

The encoding of the CK machine in HOcore is given in Figure 7. Unlike in the KAM,
the stack has some control on how the reduction proceeds. It is reflected in the encoding of
⟨π, v⟩ct, where the encoded value vvwv is sent on a channel name val, waiting to be consumed
by the stack. The top of the stack decides what becomes of vvwv: in the case of ● t, the
value vvwv is forwarded to the top of the stack and vtw can reduce. For λx.t ●, the encoded
λ-abstraction val(x). vtw is receiving vvwv, and the computation continues as [vvwv / x] vtw:
as for the KAM, we encode β-reduction by a HOcore communication.

The encoding of values considered as terms vvw is uniform, and recreates the encoding

of ⟨π, v⟩ct by capturing the current stack and running it in parallel with val⟨vvwv⟩. The
encoding of the application vt sw is as expected: it runs vtw and pushes vsw on the current
stack. Like for the KAM, the encoding of the CK machine needs only two names, c and val.

We have a one-to-one correspondence between the CK-machine and its translation, a
result stronger than for the KAM (cf. Theorem 3.1): the administrative Switch step, which
does not exist in the KAM, corresponds to a communication in the HOcore translation.

Theorem 6.1. If C ↦ C ′, then vCw
τÐÐÐ→ vC ′w. If vCw

τÐÐÐ→ P , then there exists C ′ such
that P = vC ′w.

6.2. Bisimilarities. To internalize normal-form bisimilarity, we distinguish free variables f
from bound variables x, as in Section 4. We assume λ-terms to be well-formed, so that every
bound variable has its binder.

t, s ∶∶= f ∣ x ∣ λx.t ∣ t s v ∶∶= f ∣ λx.t
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v⟨t, π⟩w ▵= vtw ∥ c⟨vπw⟩

v⟨π, v⟩ctw
▵= vπw ∥ val⟨vvwv⟩

v[]w ▵= b⟨0⟩

v● t ∶∶πw
▵= Arg(vtw , vπw)

vv ● ∶∶πw
▵= Fun(vvwv , vπw)

Arg(Pt, Pπ)
▵= val(x).(Pt ∥ c⟨Fun(x,Pπ)⟩)

Fun(Pv, Pπ)
▵= Pv ∥ c⟨Pπ⟩

vxwv
▵= x

vλx.twv
▵= val(x). vtw

vvw
▵= c(p).(p ∥ val⟨vvwv⟩)

vt sw
▵= c(p).(vtw ∥ c⟨Arg(vsw , p)⟩)

Figure 7: Encoding of the CK machine in HOcore

The evaluation of an open term may result either in a value in an empty stack, or in a stuck
term of the form ⟨f ● ∶∶π, v⟩ct: because the function is a free variable, the β-reduction cannot
be triggered. Normal-form bisimilarity should be defined on these two kinds of normal forms.

For values, a first possibility is to proceed as in call-by-name, i.e., to equate identical free
variables, and to relate the bodies of λ-abstractions. This variant (discussed in Remark 6.4)
is too discriminating in the plain λ-calculus: e.g., it distinguishes a free variable f from
its η-expansion λx.f x although these terms are contextually equivalent in call-by-value.
Lassen [Las05] proposes instead to compare values by applying them to a fresh variable. For
instance, applying f and λx.f x to a fresh variable f ′ produces the same term f f ′ on both
sides after evaluation.

Normal-form bisimilarity compares two stuck terms ⟨f ● ∶∶π, v⟩ct and ⟨f ● ∶∶π′, v′⟩ct by
relating v and v′, and by testing π and π′ with a fresh variable f ′. To reflect this test on
stacks, we define normal-form bisimilarity not on terms, but on configurations.

Definition 6.2. A symmetric relation R on configurations is a normal-form bisimulation if
C R C ′ implies:

● if C ↦∗ ⟨[], v⟩ct, then there exists v′ such that C ′ ↦∗ ⟨[], v′⟩ct and for all fresh f , we have
⟨v ● ∶∶[], f⟩ct R ⟨v′ ● ∶∶[], f⟩ct;

● if C ↦∗ ⟨f ● ∶∶π, v⟩ct, then there exist π′ and v′ such that C ′ ↦∗ ⟨f ● ∶∶π′, v′⟩ct, and for all
fresh f ′, we have ⟨v ● ∶∶[], f ′⟩ct R ⟨v′ ● ∶∶[], f ′⟩ct and ⟨π, f ′⟩ct R ⟨π′, f ′⟩ct.

Normal-form bisimilarity ≈nf , is the largest normal-form bisimulation.

In both clauses, we compare values by considering configurations of the form ⟨v ●
∶∶[], f⟩ct, which corresponds to the application v f , as wished. Normal-form bisimilarity
is extended to terms so that t ≈nf s if ⟨t, []⟩ ≈nf ⟨s, []⟩. This equivalence can be related
to Böhm tree equivalence up to infinite η expansion through a continuation passing style



Vol. 20:3 ENCODINGS OF THE λ-CALCULUS IN HOcore 3:29

⟨t s, π, n⟩ev
τ
ÞÐ→ ⟨t, ● s ∶∶π,n⟩ev (Fun)

⟨v, π, n⟩ev
τ
ÞÐ→ ⟨π, v, n⟩ct (Switch)

⟨● t ∶∶π, v, n⟩ct
τ
ÞÐ→ ⟨t, v ● ∶∶π,n⟩ev (Arg)

⟨λx.t ● ∶∶π, v, n⟩ct
τ
ÞÐ→ ⟨[v / x]t, π, n⟩ev (Beta)

⟨[], v, n⟩ct
⊚
ÞÐ→ ⟨v ● ∶∶[], n, n + 1⟩ct (Val)

⟨f ● ∶∶π, v, n⟩ct
f
ÞÐ→▼ÞÐ→ ⟨v ● ∶∶[], n, n + 1⟩ct (Stuck-Val)

⟨f ● ∶∶π, v, n⟩ct
f
ÞÐ→▶ÞÐ→ ⟨π,n,n + 1⟩ct (Stuck-Context)

Figure 8: NFB machine for call by value

transformation [Las05]. It is not complete w.r.t. the contextual equivalence of the call-by-
value λ-calculus [Las05, Example 3.2].

We internalize applicative bisimilarity as in call-by-name (Section 5), by considering
a λ-calculus with de Bruijn indices and an environment-based CK machine, i.e., the CEK
abstract machine [FF86, FFF09]. The definition of the bisimilarity differs from call-by-name
only in the fact that the testing argument must be a λ-abstraction. Consequently, we just
use the argument-generating rules from Figure 4 on top of the CEK machine, and change
the rule Restart so that it can trigger only if the constructed term is a λ-abstraction.
Internalizing contextual equivalence in call-by-value simply consists in adding the unmodified
rules for generating a context (Section 5.4) on top of the CEK machine. In the rest of this
section, we discuss only the more interesting case of the NFB machine and its translation in
HOcore.

6.3. NFB Machine. We extend the CK machine into a NFB machine in Figure 8. Config-
urations include a counter n to generate fresh variables, as in call-by-name. The first four
machine steps correspond to the CK machine, while the last three ones compare normal
forms.

If we get a value, we flag ⊚ and apply it to a fresh variable (transition Val). In the case
of a stuck term ⟨f ● ∶∶π, v⟩ct, we have to choose whether we test v (transition Stuck-Val)
or π (transition Stuck-Context). In both cases, we flag the free variable f . The test for
values is the same as in the transition Val. If we choose the stack π, we simply restart the
machine in continuation mode with π and a fresh variable.

We prove that the resulting machine equivalence coincides with normal-form bisimilarity
using the same proof technique as in call-by-name.

Theorem 6.3. t ≈nf s iff there exists n > max (fv(t) ∪ fv(s)) such that ⟨t, [], n⟩ev ≈m
⟨s, [], n⟩ev.

Remark 6.4. In extensions of the λ-calculus where functions are not the only values (e.g.,
with booleans or integers as primitive constructs), a value is no longer equivalent to its
η-expansion in general, and we would have to consider the finer normal-form bisimilarity
which distinguishes values based on their kind. To internalize it in the plain λ-calculus, we
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would replace Val with the transitions Done and Lambda below, and Stuck-Val with
the new step below.

⟨[], f, n⟩ct
f
ÞÐ→☆ÞÐ→ (Done)

⟨[], λx.t, n⟩ct
⊚
ÞÐ→ ⟨[n / x]t, [], n + 1⟩ev (Lambda)

⟨f ● ∶∶π, v, n⟩ct
f
ÞÐ→▼ÞÐ→ ⟨[], v, n⟩ct (Stuck-Val)

If we get a free variable, we signal it and we are done. We instantiate λ-abstractions
with a fresh variable. Finally, the transition Stuck-Val goes to ⟨[], v, n⟩ct, after which we
immediately apply either Done or Lambda depending on v.

We present the encoding of the call-by-value NFB machine in Figure 9. We follow the
same principles as in Section 4.3. For example, we still use an output on b to describe what
to do when the stack is empty—run the Restart process; the message on b is simply discarded
when the stack is not empty. The Restart process flags ⊚ and then recreates the configuration
where the value in val is applied to a fresh variable, represented by the counter n stored
in k.

A free variable f is observable in a stuck configuration ⟨f ● ∶∶π, v, n⟩ct; in that case, it
signals itself with a sequence of inputs on suc ended by an input on z, and then it non-
deterministically chooses between testing v or π. The Chce(Pv, Pπ, Pn) process is making
that choice, applying Pn to Pv in the first case, or running Pn in Pπ in the second one. Unlike
in call-by-name, we do not have to go recursively through the stack: as a result, although
the CK machine is more complex than the KAM, the translation of the call-by-value NFB
machine is arguably simpler than the call-by-name one.

We can prove full abstraction between the call-by-value NFB machines and their
translated HOcore processes as in Section 4.4, from which we can deduce full abstraction
between HOcore and the λ-calculus with normal-form bisimilarity.

Theorem 6.5. t ≈nf s iff there exists n > max (fv(t) ∪ fv(s)) such that v⟨t, [], n⟩evw ≈HO

v⟨s, [], n⟩evw.

7. Control Operators

The benefit of using abstract machines as an intermediary step is that our encoding can easily
be extended to control operators, the semantics of which can be expressed using abstract
machines. Among the existing control operators, we choose to encode the λµ-calculus [Par92],
to show how to deal with a calculus with multiple binders.

7.1. Extended KAM for the Call-by-Name λµ-calculus. The λµ-calculus extends the
λ-calculus with names or continuation variables—ranged over by α and β—which represent
an unknown continuation, and a µ operator to capture continuations. The syntax of terms
becomes as follows.

t, s ∶∶= x ∣ λx.t ∣ t s ∣ µα.[β]t
The semantics of the λµ-calculus is not defined on plain terms but on named terms of the
form [α]t. In µα.[β]t, the occurrences of α in [β]t are bound. We write fn(t) and fn([α]t)
for the set of free names of a term or named term. A term is closed if it has no free variable
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vt sw
▵= c(p).(vtw ∥ c⟨Arg(vsw , p)⟩)

vvw
▵= c(p).(p ∥ val⟨vvwv⟩ ∥ b⟨Restart⟩)

vλx.twv
▵= val(x).b( ). vtw

vfwv
▵= vfwInt

v0wInt
▵= z( ).val(x).c(p).k(y).b( ).Chce(x, p, y)

vn + 1wInt
▵= suc( ). vnwInt

Restart
▵= ⊚( ).val(x).k(y).(Fun(x, v[]w) ∥ val⟨y⟩ ∥ k⟨suc( ).y⟩ ∥ b⟨0⟩)

Chce(Pv, Pπ, Pn)
▵= ▼( ).(Fun(Pv, v[]w) ∥ val⟨Pn⟩ ∥ k⟨suc( ).Pn⟩ ∥ b⟨Restart⟩)

+▶( ).(Pπ ∥ val⟨Pn⟩ ∥ k⟨suc( ).Pn⟩ ∥ b⟨Restart⟩)

v[]w ▵= b(x).x

v● t ∶∶πw
▵= Arg(vtw , vπw)

vv ● ∶∶πw
▵= Fun(vvwv , vπw)

Arg(Pt, Pπ)
▵= val(x).b( ).(Pt ∥ c⟨Fun(x,Pπ)⟩)

Fun(Pv, Pπ)
▵= Pv ∥ c⟨Pπ⟩

v⟨t, π, n⟩evw
▵= vtw ∥ c⟨vπw⟩ ∥ k⟨vnwInt⟩

v⟨π, v, n⟩ctw
▵= vπw ∥ val⟨vvwv⟩ ∥ k⟨vnwInt⟩ ∥ b⟨Restart⟩

Figure 9: Encoding of the call-by-value NFB machine into HOcore

and no free name. A named term [α]t cannot be closed as it has at least α among its free
names.

We define the semantics of the λµ-calculus using an extension of the KAM, meaning
that the continuations captured by the µ operator are represented by stacks. Like in the
call-by-name λ-calculus, a stack represents a sequence of applications of terms; the difference
is that it is ended by a name which represents the toplevel in which the term is executed.

π ∶∶= t ∶∶π ∣ α
The term µα.[β]t captures such a stack π to replace α in [β]t with it. Structural

substitution [AH08] ⟨π / α⟩t produces a plain term where the name α is replaced by π in t.
It is defined in Figure 10, alongside two auxiliary operations: name substitution ⟨π / α⟩α
which produces a stack, and plugging π{t} which produces a named term. Plugging simply
reconstructs around t the applications represented by the stack π. In the case ⟨π/α⟩µβ1.[β2]t,
we assume the free name α to be distinct from β1, which is always possible using α-conversion.
The captured stack π is restored when β2 = α, as we plug ⟨π / α⟩t inside π.
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⟨π / α⟩α ▵= π α{t} ▵= [α]t

⟨π / α⟩β ▵= β if α ≠ β (s ∶∶π){t} ▵= π{t s}

⟨π / α⟩x ▵= x

⟨π / α⟩λx.t ▵= λx.⟨π / α⟩t

⟨π / α⟩(t s) ▵= ⟨π / α⟩t ⟨π / α⟩s

⟨π / α⟩µβ1.[β2]t
▵= µβ1.(⟨π / α⟩β2){⟨π / α⟩t}

Figure 10: Structural Substitution

The semantics is given by the extended KAM, defined on the same configurations as in
Section 3.

C ∶∶= ⟨t, π⟩ (configurations)

⟨t s, π⟩ ↦ ⟨t, s ∶∶π⟩ (Push)

⟨λx.t, s ∶∶π⟩ ↦ ⟨[s / x]t, π⟩ (Grab)

⟨µα.[β]t, π⟩ ↦ ⟨⟨π / α⟩t, ⟨π / α⟩β⟩ (Capture)

The Push and Grab steps are unchanged. The last step captures the stack π and replaces α
with it, thanks to the operations defined in Figure 10. To evaluate a closed term, we assume
the existence of a distinguished name tp representing the toplevel [AH08], and we execute
⟨t, tp⟩.

Example 7.1. Unlike the µ operator, the control operator call/cc from Scheme leaves the
captured stack in place when it triggers. This behaviour can be encoded in the λµ-calculus
as follows [Par92]:

callcc
▵= λx.µα.[α]x λy.µβ.[α]y

The captured stack is immediately restored, but also saved in the value passed to x. To

illustrate the extended KAM, we run it on an example. Let id
▵= λx.x, Ω ▵= (λx.x x) (λx.x x),

v
▵= λz.z id Ω, and t be any term. We compute callcc v t in the name tp.

⟨callcc v t, tp⟩ ↦2 ⟨callcc, v ∶∶ t ∶∶ tp⟩ (Push - Push)

↦ ⟨µα.[α]v λy.µβ.[α]y, t ∶∶ tp⟩ (grab)

↦ ⟨v λy.µβ.[tp]y t, t ∶∶ tp⟩ (Capture)

↦2 ⟨(λy.µβ.[tp]y t) id Ω, t ∶∶ tp⟩ (Push - Grab)

↦3 ⟨µβ.[tp]id t,Ω ∶∶ t ∶∶ tp⟩ (Push - Push - Grab)

↦ ⟨id t, tp⟩ (Capture)

↦2 ⟨t, tp⟩ (Push - Grab)

After the first capture, the stack t ∶∶ tp is still in place, while the stack Ω ∶∶ t ∶∶ tp disappears
during the second capture, because β does not occur in the body of the µ operator.
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Using a substitution-based semantics for the µ operator means it can easily be encoded
in HOcore as a higher-order communication. We translate names as HOcore variables, chosen
to be distinct from the set of translated term variables. When we evaluate closed terms, the
distinguished name tp is the end of the stack and is translated as such. The µ operator is
translated as follows.

vtpw
▵= b⟨0⟩

vµα.[β]tw ▵= c(α).(vtw ∥ c⟨β⟩)
The rest of the translation is the same as in Section 3. The translated µ operator reflects
the Capture step by receiving the current stack on c. Because we execute closed terms,
either β = α, or β is bound higher in the term and has been substituted before we get to
this point. The term vtw is therefore executed in a previously captured stack.

The correspondence between the extended KAM and its HOcore translation can be
stated the same way as for the regular KAM (Theorem 3.1). The Capture step corresponds
to exactly one communication in the translation of the machine.

7.2. NFB Machine. To internalize normal-form bisimilarity into the extended KAM, we
need to distinguish not only free variables f from bound variables x, but also free names ϕ, ψ
from bound names δ. Indeed, normal-form bisimilarity uses fresh names to compare terms
and discriminates terms based on these names. We change the syntax of terms as follows.

α ∶∶= ϕ ∣ δ t, s ∶∶= f ∣ x ∣ λx.t ∣ t s ∣ µδ.[α]t
We assume terms to be well-formed, i.e., to not contain a bound variable or bound name
without its binder. The name at the end of a stack is necessarily free.

π ∶∶= t ∶∶π ∣ ϕ
Given two stacks π1, π2, we write π1 R π2 if their elements are pairwise related and

they are ended by the same name. Formally, we have either π1 = π2 = ϕ for some ϕ, or
π1 = t ∶∶π′1, π2 = s ∶∶π′2, tR s, and π′1 R π′2. The definition of normal-form bisimilarity for the
call-by-name λµ-calculus is as follows.

Definition 7.2. A symmetric relation R is a normal-form bisimulation if tR s and ϕ fresh
implies:

● if ⟨t, ϕ⟩ ↦∗ ⟨λx.t′, ψ⟩, then there exists s′ such that ⟨s, ϕ⟩ ↦∗ ⟨λx.s′, ψ⟩ and [f / x]t′ R
[f / x]s′ for a fresh f ;

● if ⟨t, ϕ⟩ ↦∗ ⟨f, π⟩, then there exists π′ such that ⟨s, ϕ⟩ ↦∗ ⟨f, π′⟩ and π R π′.

Normal-form bisimilarity is the largest normal-form bisimulation.

Normal-form bisimilarity is not complete w.r.t. contextual equivalence of the λµ-calculus
when defined either with weak-head reduction [Las99a] or head reduction [Las06]. For an
extended λµ-calculus— the so-called Λµ calculus [Sau05]—with head reduction, it coincides
with solvable equivalence [Bar84, Las06].

The bisimulation definition is almost the same as in λ-calculus (Definition 4.1) except
for names. Terms are compared within some fresh name ϕ for each bisimulation round, as
using a single name like tp for all rounds would not be discriminating enough. It would
relate for instance x and µδ.[tp]x, because ⟨x, tp⟩ and ⟨µδ.[tp]x, tp⟩ evaluate to ⟨x, tp⟩, but
they behave differently: the second term discards its continuation while the first one does
not. Similarly, we expect the resulting normal forms to exhibit a common name ψ (not
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⟨t s, π, n,m⟩ev
τ
ÞÐ→ ⟨t, s ∶∶π,n,m⟩ev (Push)

⟨λx.t, s ∶∶π,n,m⟩ev
τ
ÞÐ→ ⟨[s / x]t, π, n,m⟩ev (Grab)

⟨µδ.[α]t, π, n,m⟩ev
τ
ÞÐ→ ⟨⟨π / δ⟩t, ⟨π / δ⟩α,n,m⟩ev (Capture)

⟨λx.t, ϕ, n,m⟩ev
ϕ
ÞÐ→ ⊚ÞÐ→ ⟨[n / x]t,m,n + 1,m + 1⟩ev (Lambda)

⟨f, π, n,m⟩ev
f
ÞÐ→ ⟨π,n,m⟩ct (Var)

⟨ϕ,n,m⟩ct
ϕ
ÞÐ→☆ÞÐ→ (Done)

⟨t ∶∶π,n,m⟩ct
▼
ÞÐ→ ⟨t,m,n,m + 1⟩ev (Enter)

⟨t ∶∶π,n,m⟩ct
▶
ÞÐ→ ⟨π,n,m⟩ct (Skip)

Figure 11: NFB machine for the call-by-name λµ-calculus

necessarily equal to ϕ). Terms evaluating to normal forms with distinct toplevel names
would imply that they return to different continuations, and a surrounding context could
easily distinguish them by picking a terminating continuation for a term and a diverging
continuation for the other.

We adapt the λ-calculus NFB machine to take these changes into account, resulting in
the machine of Figure 11. In the machine, free names are natural numbers, and configurations
⟨t, π, n,m⟩ev include an extra counter m to generate fresh names. This counter is used as
a new stack whenever we restart a computation, in the Lambda and Enter steps. The
Lambda and Done steps now flag the free name f of the resulting normal forms. The rest
of the machine is the same as in λ-calculus, except for the Capture step.

The translation of the NFB machine for the λµ-calculus into HOcore follows the same
principles as in λ-calculus. We just need to be careful to distinguish between numbers
representing free variables from those standing for free names—by using distinct HOcore
names sucv, zv and sucn, zn. We can prove the equivalence between normal-form bisimilarity
and its machine, and between the NFB machine and its translation as in Section 4.

Theorem 7.3. t ≈nf s iff there exists n > max (fv(t) ∪ fv(s)) and m > max (fn(t) ∪ fn(s))
such that v⟨t,m,n,m + 1⟩evw ≈HO v⟨s,m,n,m + 1⟩evw.

7.3. Environment-based Abstract Machine. As in λ-calculus (Section 5), internalizing
applicative bisimilarity requires to generate a testing argument. Because we cannot gen-
erate binders in the HOcore translation, we consider a de Bruijn syntax for terms and an
environment-based machine. However, unlike in λ-calculus, named terms are not completely
closed, because of the toplevel name, and when we play the bisimulation game, considering a
single free name tp is not enough, as it would not be sound, like with normal-form bisimilarity
(cf Section 7.2). We therefore need to consider three distinct families of de Bruijn indices:
term variables n, bound names δ, and free names ϕ. The de Bruijn syntax of the λµ-calculus
is therefore as follows.

α ∶∶= δ ∣ ϕ t, s ∶∶= n ∣ λ.t ∣ t s ∣ µ.[α]t
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e ∶∶= η ∶∶ e ∣ ϵt (term-variables environments)

∆ ∶∶= π ∶∶∆ ∣ ϵb (bound-names environments)

η ∶∶= (t, e,∆) (closures)

π ∶∶= η ∶∶π ∣ α (stacks)

C ∶∶= ⟨t, e,∆, π⟩ev ∣ ⟨δ,∆, η⟩bn (configurations)

⟨t s, e,∆, π⟩ev
τ

ÞÐÐ→ ⟨t, e,∆, (s, e,∆) ∶∶π⟩ev (Push)

⟨0, (t, e,∆) ∶∶d,Γ, π⟩ev
τ

ÞÐÐ→ ⟨t, e,∆, π⟩ev (Zero-Term)

⟨n + 1, η ∶∶ e,∆, π⟩ev
τ

ÞÐÐ→ ⟨n, e,∆, π⟩ev (Env-Term)

⟨λ.t, e,∆, η ∶∶π⟩ev
τ

ÞÐÐ→ ⟨t, η ∶∶ e,∆, π⟩ev (Grab)

⟨µ.[α]t, e,∆, π⟩ev
τ

ÞÐÐ→ ⟨t, e, π ∶∶∆, α⟩ev (Capture)

⟨λ.t, e,∆, δ⟩ev
τ

ÞÐÐ→ ⟨δ,∆, (λ.t, e,∆)⟩bn (Restore)

⟨0, π ∶∶Γ, (t, e,∆)⟩bn
τ

ÞÐÐ→ ⟨t, e,∆, π⟩ev (Zero-BName)

⟨δ + 1, π ∶∶∆, η⟩bn
τ

ÞÐÐ→ ⟨δ,∆, η⟩bn (Env-BName)

Figure 12: Environment-based KAM for the λµ-calculus

We present in Figure 12 the environment-based extended KAM. It is similar to the
Streicher and Reus machine [SR98], except their syntax uses names and not de Bruijn
indices, and they use a single environment for term variables and bound names. Instead,
we distinguish the environment mapping term variables to closures (ranged by e, d) from
the one mapping bound names to stacks (ranged by ∆, Γ). An extra environment mapping
free names to stacks is added when we internalize applicative bisimilarity (Section 7.4).
Closures η are triples (t, e,∆), and stacks π are composed of closures and ended by a free or
bound name.

The first four steps are as in the λ-calculus. The Capture step replaces the current
stack π with α and puts π on top of the bound-name environment ∆. Whenever a λ-
abstraction is executed within a stack composed only of a bound name δ, we restore the
previously captured stack, by looking into ∆. It is the role of the Zero-BName and
Env-BName steps, which operate on dedicated configurations of the form ⟨δ,∆, η⟩bn.

7.4. AB machine. The definition of the sound and complete applicative bisimilarity for the
λµ-calculus [BL14] is more intricate than in λ-calculus, because we compare named terms.
We first recall its definition [BL14] and using named binders, before moving to de Bruijn
indices, and then to an AB machine.
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7.4.1. Informal definition with named binders. Assume two named terms [α]t and [α]s
where t and s are closed. If they evaluate to respectively [α]λx.t′ and [α]λx.s′, a surrounding
context cannot test them by applying them to an arbitrary closed term t′′, as ([α]λx.t′) t′′
is not a valid λµ-term. The simplest named term that can be built to lead to such an
application is [β](µα.[α]λx.t′) t′′ for a fresh β. Indeed, the µ-binder captures the named
context [β] ◻ t′′ (represented as a stack t′′ ∶∶β) to reduce to [β](λx.⟨t′′ ∶∶β / α⟩t′) t′′; the
structural substitution ⟨t′′ ∶∶β /α⟩t′ is necessary because α may occur in t′. The β-reduction
is now possible and the previous named term reduces to [β][t′′ / x]⟨t′′ ∶∶β / α⟩t′. We get the
same sequence of reductions with [α]s, so that applicative bisimilarity compares

[β][t′′ / x]⟨t′′ ∶∶β / α⟩t′ and [β][t′′ / x]⟨t′′ ∶∶β / α⟩s′.

We need to write such a test with de Bruijn indices and environments. We represent the
successive fresh names α, β, . . . used by the bisimilarity with indices 0, 1, . . . Assume we
evaluate the closed closures (t, e,∆) and (s, d,Γ) in the free name 0, resulting respectively
into (λ.t′, e′,∆′) and (λ.s′, d′,Γ′) in the same name 0. Let t′′ be a closed term. The term
substitution [t′′ / x]⋅ is represented as in plain λ-calculus, by extending e′ and d′ with the
closure corresponding to t′′. To represent the structural substitution ⟨t′′ ∶∶β /α⟩⋅ we introduce
an extra environment dedicated to free names.

7.4.2. Testing environments. A free-names environment Φ is a mapping from free names
(represented as de Bruijn indices) to stacks, defined as follows.

Φ ∶∶= π ∶∶Φ ∣ ϵf (free-names environments)

This environment is extended by the bisimilarity each time it tests pairs of named values.
We write ⌜t′′⌝ for the closure (t′′, ϵt, ϵb, ϵf) used in these tests. The stack t′′ ∶∶β is represented
as ⌜t′′⌝ ∶∶ 1, and Φ maps 0 to ⌜t′′⌝ ∶∶ 1. A subsequent test would extend Φ to map 1 to ⌜t′′′⌝ ∶∶ 2
for some t′′′, then a following test would map 2 to another closure, etc.

We see that the bisimilarity extends Φ at the end, and we write Φ ∶∶∶π for such an
extension. We also notice that the resulting Φ maps each free name to a stack containing
only one element. More precisely, an environment Φ generated by successive bisimilarity
tests is either empty, or its ith element is of the form ⌜t⌝ ∶∶ i for some closed term t. We say
such an environment is a testing environment, of rank ϕ if it has ϕ elements. A testing
environment of rank ϕ > 0 has only ϕ as free-name index without a mapping, at the end
of its last stack. For example, a testing environment of rank 2 is of the form π0 ∶∶π1 ∶∶ ϵf ,
mapping 0 to π0 = ⌜t0⌝ ∶∶1 for some closed t0, and 1 to π1 = ⌜t1⌝ ∶∶2 for some closed t1.

7.4.3. Applicative bisimilarity. We extend closures to include testing environments η ∶∶=
(t, e,∆,Φ), and we say that η is of rank ϕ when its testing environment is of rank ϕ. A
stack is closed if it is composed only of closed closures. A closure is closed if e contains
more elements than the highest term-variable index in t, ∆ contains more elements than the
highest bound-name index in t, e contains only closed closures, and ∆ only closed stacks.

We add the testing environment Φ to configurations, and we define steps to look in Φ
for the stack corresponding to a given free-name index. We discuss these changes in details
when defining the AB machine. We adapt the definition of applicative bisimilarity [BL14] to
our setting as follows.
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Definition 7.4. A symmetric relation R on closed closures is an applicative bisimulation

if (t, e,∆,Φ) R (s, d,Γ,Φ) with Φ of rank ϕ and ⟨t, e,∆,Φ, ϕ⟩ev
τ

ÞÐÐ→
∗
⟨λ.t′, e′,∆′,Φ, ϕ⟩ev

implies that there exists s′, d′, and Γ′ such that ⟨s, d,Γ,Φ, ϕ⟩ev
τ

ÞÐÐ→
∗
⟨λ.s′, d′,Γ′,Φ, ϕ⟩ev and

for all closed t′′, we have

(t′, ⌜t′′⌝ ∶∶ e′,∆′,Φ ∶∶∶(⌜t′′⌝ ∶∶ϕ + 1)) R (s′, ⌜t′′⌝ ∶∶d′,Γ′,Φ ∶∶∶(⌜t′′⌝ ∶∶ϕ + 1)).
Applicative bisimilarity ≈app is the largest applicative bisimulation.

Applicative bisimilarity executes closed closures with the same testing environment of
rank ϕ within the stack composed only of the free name ϕ. It then compares the resulting
values by considering a closed closure ⌜t′′⌝ to instantiate the λ-abstractions, and to extend
the testing environment which becomes of rank ϕ + 1.

7.4.4. AB machine. We present the most interesting steps of the corresponding AB machine
in Figure 13. Evaluation configurations ⟨t, e,∆,Φ, π⟩ev now include the testing environment Φ,
which is passed along unchanged in the steps corresponding to the extended KAM (omitted
in Figure 13).

Whenever a λ-abstraction is executed in a stack composed only of a free name ϕ, we
have two possibilities: either ϕ is mapped in Φ, otherwise we have to generate the closure ⌜t⌝
of the bisimulation test. The configuration ⟨ϕ,Φ, η,Φr, ϕ

′⟩fn is designed with these two cases
in mind. Its main role is to look for ϕ in Φ and to restore the corresponding stack if the
mapping exists.

If ϕ is not mapped, then it is stored as the last parameter of the fn mode in the
Lookup-FName step, and passed along during the argument generation process. Its
successor is needed to create the stack ⌜t⌝ ∶∶ϕ + 1 (Init-Rev step).

The second-to-last parameter Φr of the fn mode is used to compute the reverse of Φ.
Indeed, we remind that applicative bisimilarity extends Φ from its tail. To do so, we
reverse Φ, add the generated closure, and reverse the result again. We set Φr to empty in the
Lookup-FName step, and then the elements of Φ are pushed on Φr when we go through Φ
in the Env-FName step. As a result, when Φ is empty in the Arg transition, Φr contains
the original environment in reverse.

The Arg step initiates the argument generation. It triggers when Φ is empty, and we
know that the index at this point is 0, because the only free-name index without a mapping
allowed by design is the rank of Φ, i.e., its size. As in Section 5.2, we start argument
generation with the leftmost de Bruijn index representing a term variable, and then generate
the term from left to right. Compared to λ-calculus, the ind and tm configurations carry
three extra parameters: the already discussed Φr and ϕ, and κµ, which counts how many
µ-binders are necessary for the generated term to be closed. In Figure 13, we omit the steps
that are the same as in Figure 4 up to these three parameters.

We generate a term µ.[δ]t by starting with the bound name index δ (Ind-Mu and
Suc-Mu steps). We then add the µ-binder and update the κµ counter accordingly (Mu
step).

After generating the argument t, we step to a configuration of the form ⟨Φr,Φ, η, π⟩envfn,
the goal of which is to construct the extended testing environment. The Init-Rev step
constructs the bottom of the extended environment and remembers ⌜t⌝ ∶∶ϕ + 1 as the new
stack. The Rev step goes through Φr and pushes its elements on Φ to reconstruct the
original environment on top of its new bottom. When Φr is empty, the Restart step
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⟨t s, e,∆,Φ, π⟩ev
τ

ÞÐÐ→ ⟨t, e,∆,Φ, (s, e,∆,Φ) ∶∶π⟩ev (Push)

⋮ (cf. Figure 12)

⟨λ.t, e,∆,Φ, ϕ⟩ev
τ

ÞÐÐ→ ⟨ϕ,Φ, (λ.t, e,∆,Φ), ϵf , ϕ⟩fn (Lookup-FName)

⟨0, π ∶∶Φ′, (t, e,∆,Φ),Φr, ϕ⟩fn
τ

ÞÐÐ→ ⟨t, e,∆,Φ, π⟩ev (Zero-FName)

⟨ϕ + 1, π ∶∶Φ, η,Φr, ϕ
′⟩fn

τ
ÞÐÐ→ ⟨ϕ,Φ, η, π ∶∶Φr, ϕ

′⟩fn (Env-FName)

⟨0, ϵf , η,Φr, ϕ⟩fn
⊚

ÞÐÐ→ ⟨0,1,0,⊙, η,Φr, ϕ⟩ind (Arg)

⟨n,κ, κµ, ρ, η,Φr, ϕ⟩ind
⊞

ÞÐÐ→ ⟨n + 1, κ + 1, κµ, ρ, η,Φr, ϕ⟩ind (Suc)

⋮ (cf. Figure 4)

⟨t, κ, κµ, ρ, η,Φr, ϕ⟩tm
iµ

ÞÐÐ→ ⟨0, t, κ, κµ, ρ, η,Φr, ϕ⟩indMu (Ind-Mu)

⟨δ, t, κ, κµ, ρ, η,Φr, ϕ⟩indMu
sµ

ÞÐÐ→ ⟨δ + 1, t, κ, κµ, ρ, η,Φr, ϕ⟩indMu (Suc-Mu)

⟨δ, t, κ, κµ, ρ, η,Φr, ϕ⟩indMu
µ

ÞÐÐ→ ⟨µ.[δ]t, κ,max(δ + 1, κµ) − 1, ρ, η,Φr, ϕ⟩tm (Mu)

⟨t,0,0,⊙, η,Φr, ϕ⟩tm
®

ÞÐÐ→ ⟨Φr, (⌜t⌝ ∶∶ϕ + 1) ∶∶ ϵf , η, ⌜t⌝ ∶∶ϕ + 1⟩envfn (Init-Rev)

⟨π ∶∶Φr,Φ, η, π⟩envfn
®

ÞÐÐ→ ⟨Φr, π ∶∶Φ, η, π⟩envfn (Rev)

⟨ϵf ,Φ, (λ.s, e,∆,Φ′), π⟩envfn
☆

ÞÐÐ→ ⟨λ.s, e,∆,Φ, π⟩ev (Restart)

Figure 13: AB machine for the call-by-name λµ-calculus

restarts the machine, executing λ.s in the stack ⌜t⌝ ∶∶ϕ + 1: the next step is a β-reduction
which produces the configuration we want.

7.4.5. Full abstraction. As in λ-calculus, the AB machine flags each step of its argument
generation process, and for each generated argument t there is a corresponding sequence
of flags Seq(t). We can prove as in Section 5.2 that applicative bisimilarity and the AB
machine equivalence coincide. Besides, the AB machine relies on ingredients and operations
(counters, max, etc.) that we know how to translate in HOcore in a faithful and deterministic
way (see Appendix A), and for which we can prove the following full abstraction theorem.

Theorem 7.5. For all closed closures (t, e,∆,Φ) and (s, d,Γ,Φ) of rank ϕ, (t, e,∆,Φ) ≈app
(s, d,Γ,Φ) iff v⟨t, e,∆,Φ, ϕ⟩evw ≈HO v⟨s, d,Γ,Φ, ϕ⟩evw.

Full abstraction can also be achieved by internalizing contextual equivalence directly.
The resulting machine would extend the machine of Figure 6 with the steps generating
µ-binders of Figure 13.
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8. Conclusion and Future Work

We propose encodings of the call-by-name and call-by-value λ-calculus with or without
control operators into HOcore, fully abstract w.r.t. normal-form and applicative bisimilarities,
and contextual equivalence. This shows that a minimal higher-order calculus with a fixed
number of hidden names, which is much less expressive than the name-passing π-calculus,
still has enough expressive power to faithfully encode these calculi.

We use abstract machines not only to fix the reduction strategy, but also as an interme-
diary step between the λ-calculus and HOcore. We turn the equivalences of the λ-calculus,
and their potentially complex testing conditions, into a first-order bisimilarity over an LTS
(a flag-generating machine), which is closer to the HOcore equivalence. We believe this
internalization technique can be applied to any language for which an abstract machine has
been defined. No matter how intricate the bisimilarities for such a language are, it should be
always possible to generate a context as in Section 5.4 to internalize contextual equivalence.

The encodings of the extended abstract machines into HOcore rely on the same principles,
e.g., to represent stacks, non-deterministic choice, case analyses on terms, etc. We believe
it is possible to automatically derive the encoding from an abstract machine so that the
generated translation verify Lemmas 4.8 and 4.10, giving us Theorem 4.14 for free.

Our encodings are weak compositional [Gor10, Par06], i.e., they consist of a compositional
translation of the λ-term inside a fixed process representing the machine. We conjecture
there is no fully abstract compositional encoding of the λ-calculus into HOcore. In such an
encoding, a translated λ-abstraction could be composed with an argument (a translated
λ-term) to β-reduce. It would require at least one communication on a public channel name,
but the λ-abstraction should still be able to protect itself from unwanted behaviours from
the outside. It seems difficult if not impossible to achieve with only hidden names and no
name restriction.

As demonstrated in other settings [Pre22, JS22], our encodings could be useful to import
proof techniques such as up-to techniques [SR12] from the process calculus world into the
λ-calculus world. It would be interesting especially for applicative bisimilarity for which
powerful up-to techniques have not been defined yet.

Finally, we would like to explore further the expressiveness of process calculi by translat-
ing the λ-calculus without a predefined reduction strategy. The encodings defined so far in
the literature (cf. Section 1) assumes a given strategy for the λ-calculus. An exception is the
work by Cai and Fu [CF11], where a λ-term is represented as a tree, and β-reduction is a
transformation on trees. It relies on an unbounded number of restricted names to represent
tree nodes; we wonder if we can use the same ideas with only a fixed number of names.
However, such an encoding works for any source language, as it is a manipulation of syntax
trees. We would like the encoding to be more tailored to the λ-calculus, to tell us more
about the relationship between the λ-calculus and process calculi.
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Appendix A. Translation of the λµ-calculus AB Machine into HOcore

The translation of the AB machine for the call-by-name λµ-calculus extends the one for the
plain λ-calculus of Section 5.3. We omit the parts of the translation which are the same or
similar to the plain λ-calculus one.

The translation of the evaluation mode is as follows. A closure is now composed of
four messages. Because the closures are supposed to be closed, the process representing the
empty environments ϵt and ϵb should never be executed, and we choose to represent them
with 0. The definitions of vϵfw and vαw are discussed later.

v⟨t, e,∆,Φ, π⟩evw
▵= vtw ∥ et⟨vew⟩ ∥ eb⟨v∆w⟩ ∥ ef⟨vΦw⟩ ∥ c⟨vπw⟩ ∥ Prec

v(t, e,∆,Φ)w ▵= η1⟨vtw⟩ ∥ η2⟨vew⟩ ∥ η3⟨v∆w⟩ ∥ η4⟨vΦw⟩

vη ∶∶ ew ▵= hde⟨vηw⟩ ∥ et⟨vew⟩ vϵtw
▵= 0

vπ ∶∶∆w
▵= hdb⟨vπw⟩ ∥ eb⟨v∆w⟩ vϵbw

▵= 0

vπ ∶∶Φw
▵= hdf⟨vπw⟩ ∥ ef⟨vΦw⟩ vϵfw

▵= . . .

vη ∶∶πw
▵= hdc⟨vηw⟩ ∥ c⟨vπw⟩ vαw

▵= . . .

The representations of λ-abstractions, applications and indices are the same as in plain
λ-calculus, adapted to the fact that closures are composed of four elements now. A µ
operator captures the current stack and extend the bound-names environment ∆ accordingly.

vµ.[α]tw ▵=Muev(vαw , vtw) Muev(Pα, Pt)
▵= c(x).eb(y).(Pt ∥ eb⟨hdb⟨x⟩ ∥ eb⟨y⟩⟩ ∥ c⟨Pα⟩)

The translation vδw implements the mode bn resolving bound names. The translation
vδwb implements the search of δ in ∆, while vδw make a save of ∆ before starting the search.
The environment ∆ is restored by v0wb when the search is over.

vδw
▵= Boundev(vδwb) Boundev(Pδ)

▵= eb(x).(Pδ ∥ eb⟨x⟩ ∥ svb⟨x⟩)

vδ + 1wb
▵= IdMuev(vδwb) IdMuev(Pδ)

▵= eb(x).(x ∥ hdb( ).Pδ)

v0wb
▵= eb(x).(x ∥ hdb(y).eb( ).svb(z).(y ∥ eb⟨z⟩))

Similarly, the translation vϕw implements the mode fn resolving free names. The
translation vϕwf implements the search of ϕ in Φ, while vϕw make a save of Φ (on svf) and ϕ
(on svϕ) before starting the search. We compute the reverse of Φ on the name rev using the
processes MtRev and ConsRev, which basically encode a stack. If the search succeeds, the
messages on rev on svϕ are not useful and are discarded, and the save of Φ is restored.

MtRev
▵=mtrev(x).csrev( ).x

ConsRev(Pπ, PΦ)
▵= hdrev⟨Pπ⟩ ∥ rev⟨PΦ⟩ ∥mtrev( ).csrev(x).x

vϕw
▵= Free(vϕwf) Free(Pϕ)

▵= ef(x).(Pϕ ∥ ef⟨x⟩ ∥ svf⟨x⟩ ∥ svϕ⟨Pϕ⟩ ∥ rev⟨MtRev⟩)

vϕ + 1wf
▵= IdF(vϕwf) IdF(Pϕ)

▵= ef(x).rev(y).(x ∥ hdf(z).(Pϕ ∥ rev⟨ConsRev(z, y)⟩))

v0wf
▵= ef(x).(x ∥ hdf(y).ef( ).svf(z).svϕ( ).rev( ).(y ∥ ef⟨z⟩))
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If the search fails, it means that ϕ is not mapped to a stack, and vϵfw should start generating
the argument. It first discards the message on svf which is no longer useful and sets up the
ind mode.

vϵfw
▵= ⊚( ).svf( ).(ind⟨v0w⟩ ∥ k⟨v1wc⟩ ∥ km⟨v0wcm⟩ ∥ r⟨v⊙w⟩ ∥ initInd⟨0⟩)

The message on km is for the counter κµ, and the translation vκµwcm is the same as vκwc,
but using different names zerom and sucm. The RecTm process generating terms needs
an extra case analysis on κµ, as the term generation process may end only if κµ = 0. The
process RecTm of Section 5.3 is modified to do this case analysis when κ = 0.

RecTm
▵= . . .

zero ⟨km(u).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u ∥ zerom ⟨
(Lambda(z) ∥ r⟨v⊙w⟩ ∥ km⟨u⟩) + (AppFun(z, v⊙w) ∥ km⟨u⟩)

+ (Mu ∥ r⟨v⊙w⟩ ∥ k⟨z⟩ ∥ km⟨u⟩) +DoneTm
⟩

∥ sucm ⟨sukm( ).
⎛
⎜⎜⎜
⎝

(Lambda(z) ∥ r⟨v⊙w⟩ ∥ km⟨u⟩)

+(AppFun(z, v⊙w) ∥ km⟨u⟩)

+(Mu ∥ r⟨v⊙w⟩ ∥ k⟨z⟩ ∥ km⟨u⟩)

⎞
⎟⎟⎟
⎠
⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟩

Generating a de Bruijn index for a term variable, a λ-abstraction, or an application is done
the same way as in plain λ-calculus: the processes RecInd, Succ, Var, Lambda, AppFun, and
App are the same as in Section 5.3.

The process Mu generates a µ binder, starting with the bound name δ, simulating the
indMu mode. It initiates a counter on km2, which is increased in parallel with δ. That
counter is then compared in MuTm with the one on km to compute the maximum between
them, using the same technique as in App but on different names. The processes RecIMu
and SuccMu behave like their respective counterpart RecInd and Succ.

Mu
▵= iµ( ).(indMu⟨v0wb⟩ ∥ km2⟨v1wcm⟩ ∥ initIMu⟨0⟩)

RecIMu
▵= initIMu( ).recimu(x).(x ∥ recimu⟨x⟩ ∥ SuccMu +MuTm)

SuccMu
▵= sµ( ).indMu(x).km2(y).(indMu⟨IdMuev(x)⟩ ∥ km2⟨Sukm(y)⟩ ∥ initIMu⟨0⟩)

MuTm
▵= µ( ).tm(x).km(y1).km2(y2).indMu(z).

⎛
⎜⎜⎜
⎝

maxm1⟨y1⟩ ∥maxm2⟨y2⟩ ∥ initm1⟨y1⟩ ∥ initm2⟨y2⟩ ∥

resu(y).
⎛
⎝
tm⟨Muev(Boundev(z), x)⟩ ∥ y ∥

sukm(y′).(zerom⟨0⟩ ∥ sucm⟨km⟨y′⟩ ∥ initTm⟨0⟩⟩)
⎞
⎠

⎞
⎟⎟⎟
⎠

The process DoneTm is executed when we are done computing the term t and start
computing the new testing environment Φ. Using the process representing ϕ saved on the
name svϕ, it computes the stack at the bottom of this new environment ⌜t⌝ ∶∶ϕ + 1, saves it
on the name svπ, and put it also on the name newf on which Φ is computed.

DoneTm
▵=®( ).tm(x).svϕ(y).

⎛
⎝
newf⟨hdf⟨Stk(x, y)⟩ ∥ ef⟨vϵfw⟩⟩ ∥
svπ⟨Stk(x, y)⟩ ∥ initRev⟨0⟩

⎞
⎠

Stk(Pt, Pϕ)
▵= hdc⟨η1⟨Pt⟩ ∥ η2⟨vϵtw⟩ ∥ η3⟨vϵbw⟩ ∥ η4⟨vϵfw⟩⟩ ∥ c⟨Free(IdF(Pϕ))⟩
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The process RecRev computes Φ on newf by reversing the environment that hs been saved
on rev. It proceeds by case analysis on the process on rev, which is either encoding a stack
constructor or an empty stack.

RecRev
▵= initRev( ).recrev(x).(x ∥ recrev⟨x⟩ ∥ rev(y).newf(z).

⎛
⎝
y ∥ csrev⟨®( ).hdrev(u).(newf⟨hdf⟨u⟩ ∥ ef⟨z⟩⟩ ∥ initRev⟨0⟩)⟩

∥mtrev⟨Done(z)⟩

⎞
⎠
⎞
⎠

During the argument generation, the process v0wf was stuck expecting several messages,
which can now be provided by the process Done.

Done(PΦ) = ☆( ).svπ(x).(hdf⟨z⟩ ∥ ef⟨0⟩ ∥ svf⟨PΦ⟩ ∥ svϕ⟨0⟩ ∥ rev⟨0⟩)

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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10777 Berlin, Germany
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