
Logical Methods in Computer Science
Volume 20, Issue 3, 2024, pp. 7:1–7:76
https://lmcs.episciences.org/

Submitted Dec. 16, 2022
Published Jul. 22, 2024

SYNTHESIZING NESTED RELATIONAL QUERIES FROM IMPLICIT

SPECIFICATIONS: VIA MODEL THEORY AND VIA PROOF THEORY

MICHAEL BENEDIKT a, CÉCILIA PRADIC b, AND CHRISTOPH WERNHARD c

aUniversity of Oxford, UK
e-mail address: michael.benedikt@cs.ox.ac.uk

bUniversity of Swansea, UK
e-mail address: c.pradic@swansea.ac.uk

cUniversity of Potsdam, Germany
e-mail address: christoph.wernhard@uni-potsdam.de

Abstract. Derived datasets can be defined implicitly or explicitly. An implicit definition

(of dataset O in terms of datasets I⃗) is a logical specification involving two distinguished

sets of relational symbols. One set of relations is for the “source data” I⃗, and the other

is for the “interface data” O. Such a specification is a valid definition of O in terms of I⃗,

if any two models of the specification agreeing on I⃗ agree on O. In contrast, an explicit

definition is a transformation (or “query” below) that produces O from I⃗. Variants of Beth’s
theorem [Bet53] state that one can convert implicit definitions to explicit ones. Further,
this conversion can be done effectively given a proof witnessing implicit definability in a
suitable proof system.

We prove the analogous implicit-to-explicit result for nested relations: implicit definitions,
given in the natural logic for nested relations, can be converted to explicit definitions in the
nested relational calculus (NRC). We first provide a model-theoretic argument for this result,
which makes some additional connections that may be of independent interest, between
NRC queries, interpretations, a standard mechanism for defining structure-to-structure
translation in logic, and between interpretations and implicit to definability “up to unique
isomorphism”. The latter connection uses a variation of a result of Gaifman concerning
“relatively categorical” theories. We also provide a proof-theoretic result that provides
an effective argument: from a proof witnessing implicit definability, we can efficiently
produce an NRC definition. This will involve introducing the appropriate proof system for
reasoning with nested sets, along with some auxiliary Beth-type results for this system. As
a consequence, we can effectively extract rewritings of NRC queries in terms of NRC views,
given a proof witnessing that the query is determined by the views.

Key words and phrases: Beth definability, Determinacy, Nested relational calculus, Nested relations, Proof
theory, Rewriting, Synthesis, Views.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(3:7)2024
© M. Benedikt, C. Pradic, and C. Wernhard
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-2964-0880
https://orcid.org/0000-0002-1600-8846
https://orcid.org/0000-0002-0438-8829
http://creativecommons.org/about/licenses

7:2 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

1. Introduction

One way of describing a virtual datasource is via implicit definition: a specification Σ – e.g.

in logic – involving symbols for the “virtual” object O and the stored “input” data I⃗. The
specification may mention other data objects (e.g. auxiliary views). But to be an implicit

definition, any two models of Σ that agree on I⃗ must agree on O. In the case where Σ is
in first-order logic, this hypothesis can be expressed as a first-order entailment, using two
copies of the vocabulary, primed and unprimed, representing the two models:

Σ ∧ Σ′ ∧
∧
Ii∈I⃗

∀x⃗i [Ii(x⃗i) ↔ I ′i(x⃗i)] |= ∀x⃗ [O(x⃗) ↔ O′(x⃗)] (⋆)

Above Σ′ is a copy of Σ with primed versions of each predicate.
A fundamental result in logic states that we can replace an implicit definition with an

explicit definition: a first-order query Q such that whenever Σ(I⃗ , O, . . .) holds, O = Q(I⃗).
The original result of this kind is Beth’s theorem [Bet53], which deals with classical first-order
logic. Segoufin and Vianu’s [SV05] looks at the case where Σ is in active-domain first-order
logic, or equivalently a Boolean relational algebra expression. Their conclusion is that one

can produce an explicit definition of O over I⃗ in relational algebra. [SV05] focused on the

special case where Σ(I1 . . . Ij , B⃗, O) specifies each Ii as a view defined by an active-domain

first-order formula φVi over base data B⃗, and also defines O as an active-domain first-order

query φQ over B⃗. In this case, Σ implicitly defining O in terms of I⃗ is called “determinacy
of the query by the views”. Segoufin and Vianu’s result implies that whenever a relational

algebra query Q is determined by relational algebra views V⃗ , then Q is rewritable over the
views by a relational algebra query.

Prior Beth-style results like [Bet53, SV05] are effective. From a proof of the entailment
(⋆) in a suitable proof system, one can extract an explicit definition effectively, even in
polynomial time. While in early proofs of Beth’s theorem, the proof systems were custom-
designed for the task of proving implicit definitions, and the bounds were not stated, later
on standard proof systems such as tableaux [Smu68b] or resolution [Hua95] were employed,
and the polynomial claim was explicit. It is important that in our definition of implicit
definability, we require the existence of a proof witness. By the completeness theorem for
first-order logic, requiring such a proof witness is equivalent to demanding that implicit

definability of O over I⃗ holds for all instances, not just finite ones.
Nested relations are a natural data model for hierarchical data. Nested relations are

objects within a type system built up from basic types via tupling and a set-former. In the
1980’s and 90’s, a number of algebraic languages were proposed for defining transformations
on nested collections. Eventually a standard language emerged, the nested relational calculus
(NRC). The language is strongly-typed and functional, with transformations built up via
tuple manipulation operations as well as operators for lifting transformations over a type T to
transformations taking as input a set of objects of type T , such as singleton constructors and
a mapping operator. One common formulation of these uses variables and a “comprehension”
operator for forming new objects from old ones [BNTW95], while an alternative algebraic
formalism presents the language as a set of operators that can be freely composed. It
was shown that each NRC expression can be evaluated in polynomial time in the size of
a finite data input, and that when the input and output is “flat” (i.e. only one level of
nesting), NRC expresses exactly the transformations in the standard relational database

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:3

language relational algebra. Wong’s thesis [Won94] summarizes the argument made by
this line of work “NRC can be profitably regarded as the ‘right’ core for nested relational
languages”. NRC has been the basis for most work on transforming nested relations. It is
the basis for a number of commercial tools [MGL+10], including those embedding nested
data transformations in programming languages [MBB06], in addition to having influence in
the effective implementation of data transformations in functional programming languages
[GHHW18, Gib16].

Although NRC can be applied to other collection types, such as bags and lists, we will
focus here on just nested sets. We will show a new connection between NRC and first-order
logic.

There is a natural logic for describing properties of nested relations, the well-known
∆0 formulas, built up from equalities using quantifications ∃x ∈ τ and ∀y ∈ τ where τ is
a term. For example, formula ∀x ∈ c π1(x) ∈ π2(x) might describe a property of a nested
relation c that is a set of pairs, where the first component of a pair is of some type T and the
second component is a set containing elements of type T . A ∆0 formula Σ(o1in . . . o

k
in, oout)

over variables o1in . . . o
k
in and variable oout thus defines a relationship between o1in . . . o

k
in and

oout. For such a formula to define a transformation it must be functional : it must enforce
that oout is determined by the values of o1in . . . o

k
in. More generally, if we have a formula

Σ(o1in . . . o
k
in, oout, a⃗), we say that Σ implicitly defines oout as a function of o1in . . . o

k
in if:

For each two bindings σ1 and σ2 of the variables o1in . . . o
k
in, a⃗, oout to nested

relations satisfying Σ, if σ1 and σ2 agree on each oiin, then they agree on oout.
(1.1)

That is, Σ entails that the value of oout is a partial function of the value of o1in . . . o
k
in.

Note that when we say “for each binding of variables to nested relations” in the definitions
above, we include infinite nested relations as well as finite ones. An alternative characteriza-
tion of Σ being an implicit definition, which will be more relevant to us in the second part
of the paper, is that there is a proof that Σ defines a functional relationship. Note that (1.1)
could be expressed as a first-order entailment: Σ(o1in . . . o

k
in, oout, a⃗)∧Σ(o1in . . . o

k
in, o

′
out, a⃗

′) |=
oout = o′out where in the entailment we omit some first-order “sanity axioms” about tuples
and sets. We refer to a proof of (1.1) for a given Σ and subset of the input variables o1in . . . o

k
in,

as a proof that Σ implicitly defines oout as a function of o1in . . . o
k
in, or simply a proof of

functionality dropping Σ, oout, and o1in . . . o
k
in when they are clear from context. By the

completeness theorem of first-order logic, whenever Σ defines oout as a function of o1in . . . o
k
in

according to the semantic definition above, this could be witnessed by a proof in any of
the standard complete proof calculi for classical first-order logic (e.g. tableaux, resolution).
Such a proof will use the sanity axioms referred to above, which capture extensionality of
sets, the compatibility of the membership relation with the type hierarchy, and properties of
projections and tupling. This notion of proof is only presented as an illustration. In the
second half of the paper, rather than using a general-purpose first-order system, we will
present more restrictive proof calculi that are tailored to reasoning about equivalence of
nested sets relative to ∆0 theories.

Example 1.1. We consider a specification in logic involving two nested collections, F and
G. The collection F is of type Set(U × U), where U refers to the basic set of elements,
the “Ur-elements” in the sequel. That is, F is a set of pairs. The collection G is of type
Set(U × Set(U)), a set whose members are pairs, the first component an element and the
second a set.

7:4 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Our specification Σ will state that for each element g in G there is an element f1
appearing as the first component of a pair in F , such that g represents f1, in the sense that
its first component is f1 and its second component accumulates all elements paired with f1
in F . This can be specified easily by a ∆0 formula:

∀g ∈ G ∃f ∈ F π1(g) = π1(f) ∧ ∀x ∈ π2(g) ⟨π1(f), x⟩ ∈ F

∧ ∀f ′ ∈ F
[
π1(f

′) = π1(f) → π2(f
′) ∈ π2(g)

]
Σ also states that for each element f1 lying within a pair in F there is a corresponding

element g of G that pairs f1 with all of the elements linked with f in F .

∀f ∈ F ∃g ∈ G π1(g) = π1(f) ∧ ∀x ∈ π2(g) ⟨π1(f), x⟩ ∈ F

∧ ∀f ′ ∈ F
[
π1(f

′) = π1(f) → π2(f
′) ∈ π2(g)

]
We can argue that in a nested relation satisfying Σ, G is a function of F . Thus Σ

implicitly defines a function from F to G.
We give the argument informally here. Fixing F,G and F,G′ satisfying Σ, we will prove

that if g ∈ G then g ∈ G′. The proof begins by using the conjunct in the first item to obtain
an f ∈ F . We can then use the second item on G′ to obtain a g′ ∈ G′. We now need to prove
that g′ = g. Since g and g′ are pairs, it suffices to show that their two projections are the
same. We can easily see that π1(g) = π1(f) = π1(g

′), so it suffices to prove π2(g
′) = π2(g).

Here we will make use of extensionality, arguing for containments between π2(g
′) and π2(g)

in both directions. In one direction we consider an x ∈ π2(g
′), and we need to show x is in

π2(g). By the second conjunct in the second item we have ⟨π1(f), x⟩ ∈ F . Now using the
first item we can argue that x ∈ π2(g). In the other direction we consider x ∈ π2(g), we
can apply the first item to claim ⟨π1(f), x⟩ ∈ F and then employ the second item to derive
x ∈ π2(g

′).
Now let us consider G as the input and F as the output. We cannot say that Σ describes

F as a total function of G, since Σ enforces constraints on G: that the second component of
a pair in G cannot be empty, and that any two pairs in G that agree on the first component
must agree on the second. But we can prove from Σ that F is a partial function of G: fixing
F,G and F ′, G satisfying Σ, we can prove that F = F ′.

Our first contribution is to show that whenever a ∆0 formula Σ implicitly defines a
function T , that function can be expressed in a slight variant of NRC. The result can be
seen as an analog of the well-known Beth definability theorem for first-order logic [Bet53].

The argument that we employ in our first contribution will go through some connections
that give further insight. We first note that NRC-expressible functions have the same expres-
siveness as interpretations, a standard way of defining structure-to-structure transformations
using logic. We will need a special notion of interpretation appropriate for nested sets.
We will then establish an equivalence between interpretations and transformations that
are implicitly definable up to unique isomorphism. This equivalence will hold in a much
more general setting of multi-sorted first-order logic. The argument will be model-theoretic
and non-constructive, relying on a variation of Gaifman’s coordinatisation theorem [Hod93].
Putting these two connections together will establish our result.

Our second contribution is an effective version. We will start by providing a proof system
which we show is complete for entailments involving ∆0 formulas over nested relations. An
advantage of our system compared to a classical first-order proof system mentioned above,
is that we do not require special axioms about sets, like extensionality. In particular, we

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:5

never need to reason about formulas that are not ∆0. We give two variations of the system,
one that is lower-level (and less succinct). Our effective variant is then:

From a proof p that Σ implicitly defines o in terms of i⃗, we can obtain, in
PTIME, an NRC expression E that explicitly defines o from i⃗, relative to Σ.

(1.2)

The PTIME claim refers to the lower-level calculus. The proof of the effective Beth
result uses completely distinct techniques from the model-theoretic argument. We synthesize
NRC expressions directly, rather than going through interpretations. The key to our proof-
theoretic analysis is an auxiliary result about equalities between ∆0 expressions, the NRC
Parameter Collection Theorem, Theorem 5.9. It is a kind of interpolation theorem for
parameterized definability. Roughly speaking, it says that when the conjunction of two ∆0

formulas proves that two variables are equal, then there must be an expression definable with
parameters that are common to both formulas that sits between them. We also make use
of the interplay between reasoning about equivalence of nested sets “up to extensionality”,
without extensionality axioms, and the equality of nested sets in the presence of extensionality
axioms.

A special case of our results will be in the case of NRC views and queries.

Example 1.2. We consider a variation of Example 1.1, where our specification Σ(Q,V,B)
describes a view V , a query Q, as well as some constraints on the base data B. Our base data
B is of type Set(U× Set(U)), where U refers to the basic set of elements, the “Ur-elements”.
That is, B is a set of pairs, where the first item is a data item and the second is a set of
data items. View V is of type Set(U×U), a set of pairs, given by the query that is the usual
“flattening” of B: in NRC this can be expressed as {⟨π1(b), c⟩ | c ∈ π2(b) | b ∈ B}. The view
definition can be converted to a specification in our logic.

A query Q might ask for a selection of the pairs in B, those whose first component
is contained in the second: {b ∈ B | π1(b) ∈ π2(b)}. The definition of Q can also be
incorporated into our specification.

View V is not sufficient to answer Q in general. This is the case if we assume as part of
Σ an integrity constraint stating that the first component of B is a key. We can argue that
Σ(Q,V,B) implicitly defines Q in terms of V .

From first our main contribution, it follows that there is an NRC rewriting of Q in terms
of V . From our second contribution, it follows that there is a polynomial time function that
takes as input a proof in a certain proof system formalizing the implicit definability of Q in
terms of V , which produces as output an NRC rewriting of Q in terms of V .

Overall our results show a close connection between logical specifications of transforma-
tions on nested collections and the functional transformation language NRC, a result which
is not anticipated by the prior theory.

Organization. After a discussion of related work in Section 2, we provide preliminaries in
Section 3. Section 4 presents our first main result, the expressive equivalence of implicit
and explicit definitions, proven using model-theoretic techniques. As mentioned above,
this requires an excursion into the relationship between NRC and a notion of first-order
interpretation. Section 5 presents the effective version, which relies on a proof system for
reasoning with nested relations. We close with discussion in Section 6. Some proofs of a
routine nature, as well as some auxiliary results, are deferred to the appendix.

7:6 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

2. Related work

In addition to the theorems of Beth and Segoufin-Vianu mentioned in the introduction, there
are numerous works on effective Beth-style results for other logics. Some concern fragments of
classical first-order logic, such as the guarded fragment [HMO99, BtCV16]; others deal with
non-classical logics such as description logics [tCFS13]. The Segoufin-Vianu result is closely
related to variations of Beth’s theorem and Craig interpolation for relativized quantification,
such as Otto’s interpolation theorem [Ott00]. There are also effective interpolation and
definability results for logics richer than or incomparable to first-order logic, such as fragments
of fixpoint logics [DH00, BBV19]. There are even Beth-style results for full infinitary logic
[LE65], but there one can not hope for effectivity. The connection between Beth-style results
and view rewriting originates in [SV05, NSV10]. The idea of using effective Beth results to
generate view rewritings from proofs appears in [FKN13], and is explored in more detail
first in [TW11] and later in [BCLT16].

Our first main result relates to Beth theorems “up-to-isomorphism”. Our implicit
definability hypothesis is that two models that satisfy a specification and agree on the
inputs must agree on the output nested relations, where “agree on the output” means up to
extensional equivalence of sets, which is a special (definable) kind of isomorphism. Beth-like
theorems up to isomorphism originate in Gaifman’s [Gai74]. are studied extensively by
Hodges and his collaborators (e.g. [Hod75, HHM90, Hod93]). The focus of these works is
model-theoretic, with emphasis on connections with categoricity and classification in classical
model theory. More specifically, [Hod93] defines the notion of rigidly relatively categorical
which is the single-sorted analog of the notion of implicitly interpretable which we will
introduce in the model-theoretic part of this work. [Hod93] does not prove any connection
of this notion to explicit interpretability, although he proves the equivalence with a related
notion called “coordinatisability”. Most of the ingredients in our main model-theoretic
arguments are present in his exposition. The later unpublished draft [AMN08] extends these
ideas to a multi-sorted setting, but without full proofs.

Conference versions. Our first contribution comes from the conference paper [BP21]. Our
second result derives from the conference paper [BPW23].

3. Preliminaries

3.1. Nested relations. We deal with schemas that describe objects of various types given
by the following grammar.

T, U ::= U | T × U | Unit | Set(T)

For simplicity throughout the remainder we will assume only two basic types. There is
the one-element type Unit, which will be used to construct Booleans. And there is U, the
“scalars” or Ur-elements whose inhabitants are not specified further. From the Ur-elements
and a unit type we can build up the set of types via product and the power set operation.
We use standard conventions for abbreviating types, with the n-ary product abbreviating an
iteration of binary products. A nested relational schema consists of declarations of variable
names associated to objects of given types.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:7

Example 3.1. An example nested relational schema declares two objects R : Set(U× U)
and S : Set(U× Set(U)). That is, R is a set of pairs of Ur-elements: a standard “flat” binary
relation. S is a collection of pairs whose first elements are Ur-elements and whose second
elements are sets of Ur-elements.

The types have a natural interpretation. The unit type has a unique member and the
members of Set(T) are the sets of members of T . An instance of such a schema is defined in
the obvious way.

For the schema in Example 3.1 above, assuming that U = N, one possible instance has
R = {⟨4, 6⟩, ⟨7, 3⟩} and S = {⟨4, {6, 9}⟩}.

3.2. ∆0 formulas. We need a logic appropriate for talking about nested relations. A natural
and well-known subset of first-order logic formulas with a set membership relation are the
∆0 formulas. They are built up from equality of Ur-elements via Boolean operators as
well as relativized existential and universal quantification. All terms involving tupling and
projections are allowed. Our definition of ∆0 formula is a variation of a well-studied notion
in set theory [Jec03].

Formally, we deal with multi-sorted first-order logic, with sorts corresponding to each of
our types. We use the following syntax for ∆0 formulas and terms. Terms are built from
variables using tupling and projections. All formulas and terms are assumed to be well-typed
in the obvious way, with the expected sort of t and u being U in expressions t =U u and
t ̸=U u, and in ∃t ∈T u φ the sort of t is T and the sort of u is Set(T).

t, u ::= x | ⟨⟩ | ⟨t, u⟩ | π1(t) | π2(t)
φ,ψ ::= t =U t

′ | t ̸=U t
′ | ⊤ | ⊥ | φ ∨ ψ | φ ∧ ψ |

∀x ∈T t φ(x) | ∃x ∈T t φ(x)
We call a formula atomic if it does not have a strict subformula. In the syntax presented
above, atomic formulas are either of the form t =U t

′ or t ̸=U t
′ (note that there are no

equalities for sorts other than U). Negation ¬φ will be defined as a macro by induction on φ
by dualizing every connective and then the atomic formulas recursively. Other connectives
can be derived in the usual way on top of negation: φ→ ψ by ¬φ ∨ ψ.

More crucial is the fact that membership is not itself a formula, it is only used in the
relativized quantifiers. An extended ∆0 formula allows also membership atomic formulas
x ∈T y, x /∈T y and equalities x =T y, x ̸=T y at every type T .

The notion of an extended ∆0 formula φ entailing another formula ψ is the standard
one in first-order logic, meaning that every model of φ is a model of ψ. We emphasize here
that by every model, we include models where membership is not extensional. We will
require only one “sanity axiom”: projection and tupling commute. An important point is
that there is no distinction between entailment in such “general models” and entailment
over nested relations.

Proposition 3.2. For φ and ψ are ∆0, rather than extended ∆0, φ entails ψ iff every
nested relation that models φ is a model of ψ.

The point above is due to two facts. First, we have neither ∈ or equality at higher
types as predicates. This guarantees that any model can be modified, without changing the
truth value of ∆0 formulas, into a model satisfying extensionality: if we have x and y with
(∀z ∈T x z ∈T y) ∧ (∀z ∈T y z ∈T x) then x and y must be the same. Secondly, a well-typed
extensional model is isomorphic to a nested relation, by the well-known Mostowski collapse

7:8 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

E,E′ ::= x | ⟨⟩ | ⟨E,E′⟩ | π1(E) | π2(E) | (variable, (un)tupling)

{E} | getT (E) |
⋃
{E | x ∈ E′} ((un)nesting, binding union)

| ∅ | E ∪ E′ | E \ E′ (finite unions, difference)

Figure 1: NRC syntax (typing rules omitted)

construction that iteratively identifies elements that have the same members. The lack of
primitive membership and equality relations in ∆0 formulas allows us to avoid having to
consider extensionality axioms, which would require special handling in our proof system.

Equality, inclusion and membership predicates “up to extensionality” may be defined as
macros by induction on the involved types, while staying within ∆0 formulas. Formally we
have:

Definition 3.3.

t ∈̂T u := ∃z ∈T u t ≡T z
t ⊆T u := ∀z ∈T t z ∈̂T u

t ≡Set(T) u := t ⊆T u ∧ u ⊆T t
t ≡Unit u := ⊤
t ≡U u := t =U u

t ≡T1×T2 u := π1(t) ≡T1 π1(u) ∧ π2(t) ≡T2 π2(u)

We will use small letters for variables in ∆0 formulas, except in examples when we
sometimes use capitals to emphasize that an object is of set type. We drop the type subscripts
T in bounded quantifiers, primitive memberships, and macros ≡T when clear. Of course
membership-up-to-equivalence ∈̂ and membership ∈ agree on extensional models. But ∈
and ∈̂ are not interchangeable on general models, and hence are not interchangeable in ∆0

formulas. For example:
x ∈ y, x ∈ y′ |= ∃z ∈ y z ∈ y′

But we do not have
x ∈̂ y, x ∈̂ y′ |= ∃z ∈ y z ∈ y′

3.3. Nested Relational Calculus. We review the main language for declaratively trans-
forming nested relations, Nested Relational Calculus (NRC). Variables occurring in expres-
sions are typed, and each expression is associated with an output type, both of these being
in the type system described above. We let Bool denote the type Set(Unit). Then Bool
has exactly two elements, and will be used to simulate Booleans. The grammar for NRC
expressions is presented in Figure 1.

The definition of the free and bound variables of an expression is standard, the union
operator

⋃
{E | x ∈ R} binding the variable x. The semantics of these expressions should

be fairly evident, see [Won94]. If E has type T , and has input (i.e. free) variables x1 . . . xn
of types T1 . . . Tn, respectively, then the semantics associates with E a function that given a
binding associating each free variable with a value of the appropriate type, returns an object
of type T . For example, the expression ⟨⟩ always returns the empty tuple, while ∅T returns
the empty set of type T .

As explained in prior work (e.g. [Won94]), on top of the NRC syntax above we can
support richer operations as “macros”. For every type T there is an NRC expression =T of
type Bool representing equality of elements of type T . In particular, there is an expression

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:9

=U representing equality between Ur-elements. For every type T there is an NRC expression
∈T of type Bool representing membership between an element of type T in an element of
type Set(T). We can define conditional expressions, joins, projections on k-tuples, and
k-tuple formers. Arbitrary arity tupling and projection operations ⟨E1, . . . En⟩, πj(E) for
j > 2 can be seen as abbreviations for a composition of binary operations. Further

• If B is an expression of type Bool and E1, E2 expressions of type T , then there is an
expression case(B,E1, E2) of type T that implements “if B then E1 else E2”.

• If E1 and E2 are expressions of type Set(T), then there are expressions E1∩E2 and E1 \E2

of type Set(T).

The derivations of these are not difficult. For example, the conditional required by the first
item is given by: ⋃

{{E1} | x ∈ B} ∪
⋃

{{E2} | x ∈ (¬ B)}
Finally, we note that NRC is closed under ∆0 comprehension: if E is in NRC, φ is an

extended ∆0 formula, then we can efficiently form an expression {z ∈ E | φ} which returns
the subset of E such that φ holds. We make use of these macros freely in our examples of
NRC, such as Example 1.2.

Example 3.4. Consider an input schema including a binary relation F : Set(U× U). The
query TProj with input F returning the projection of F on the first component can be
expressed in NRC as

⋃
{{π1(f)} | f ∈ F}. The query TFilter with input F and also v of

type U that filters F down to those pairs which agree with v on the first component can be
expressed in NRC as

⋃
{case([π1(f) =U v], {f}, ∅) | f ∈ F}. Consider now the query TGroup

that groups F on the first component, returning an object of type Set(U × Set(U)). The
query can be expressed in NRC as

⋃
{{⟨v,

⋃
{{π2(f)} | f ∈ TFilter}⟩} | v ∈ TProj}. Finally,

consider the query TFlatten that flattens an input G of type Set(U× Set(U)) . This can be
expressed in NRC as ⋃{⋃

{{⟨π1(g), x⟩} | x ∈ π2(g)} | g ∈ G
}

The language NRC as originally defined cannot express certain natural transformations
whose output type is U. To get a canonical language for such transformations, above we
included in our NRC syntax a family of operations getT : Set(T) → T that extracts the
unique element from a singleton. get was considered in [Won94]. The semantics are: if
E returns a singleton set {x}, then getT (E) returns x; otherwise it returns some default
object of the appropriate type. In [Suc95], it is shown that get is not expressible in NRC at
sort U. However, getT for general T is definable from getU and the other NRC constructs.

Since get will be needed for our key results, in the remainder of the paper, we will
write simply NRC for NRC as defined as usual, augmented with get. The role of get will
only be for transformations that return something of type U.

3.4. Connections between NRC queries using ∆0 formulas. Since we have a Boolean
type in NRC, one may ask about the expressiveness of NRC for defining transformations of
shape T1, . . . , Tn → Bool. It turns out that they are equivalent to ∆0 formulas. This gives
one justification for focusing on ∆0 formulas.

Proposition 3.5. There is a polynomial time algorithm taking an extended ∆0 formula
φ(x⃗) as input and producing an NRC expression Verifyφ(x⃗) of type Bool such that, for any
valuation in any nested relation, Verifyφ(x⃗) returns true if and only if φ(x⃗) holds.

7:10 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

This useful result is proved by an easy induction over φ: see Appendix B for details.
In the opposite direction, given an NRC expression E with input relations i⃗, we can

create a ∆0 formula ΣE (⃗i, o) that is an input-output specification of E: a formula such that

ΣE implies o = E (⃗i) and whenever o = E (⃗i) holds there is a set of objects including i⃗ and o
satisfying ΣE . For the “composition-free” fragment – in which comprehensions

⋃
can only

be over input variables – this conversion can be done in PTIME. But it cannot be done
efficiently for general NRC, under complexity-theoretic hypotheses [Koc06].

We also write entailments that use NRC expressions. For example, we write:

φ(x, c⃗ . . .) |=nested x ∈ E(c⃗)

for φ ∆0 and E ∈ NRC. An entailment with |=nested involving NRC expressions means that
in every nested relation satisfying φ, x is in the output of E on c⃗. Note that the semantics
of NRC expressions is only defined on nested relations.

4. Synthesizing via model theory: the expressive equivalence
of NRC, interpretations, and implicit definitions

Our first result will show the expressive equivalence of several specification languages for
transformations. We will show that NRC expressions are equivalent to implicit definitions,
but in the process we will show that both transformation languages are equivalent to
transformations given in a natural logical language which we call ∆0 interpretations. While
the equivalence between interpretations and NRC will be effective, the key direction from
implicit definitions to interpretations will be a model-theoretic argument.

4.1. Statement of the first result: equivalence between implicit and explicit. We
consider an input schema SCH in with one input object oin and an output schema with
one output object oout. Using product objects, we can easily model any nested relational
transformation in this way. We deal with a ∆0 formula φ(oin, oout, a⃗) with distinguished
variables oin, oout. Recall from the introduction that such a formula implicitly defines oout
as a function of oin if for each nested relation oin there is at most one oout such that
φ(oin, oout, a⃗) holds for some a⃗. A formula φ(oin, oout, a⃗) implicitly defines a function T from
oin to oout if for each oin, φ(oin, oout, a⃗) holds for some a⃗ if and only T (oin) = oout.

Example 4.1. Consider the transformation TGroup from Example 3.4. It has a simple
implicit ∆0 definition, which we can restate as follows. First, define the auxiliary formula
χ(x, p,R) stating that π1(p) is x and π2(p) is the set of the ys such that ⟨x, y⟩ is in R (the
”fiber of R above x”):

χ(x, p,R) := π1(p) = x ∧
(
∀t′ ∈ R

[
π1(t

′) = x → π2(t
′) ∈ π2(p)

])
∧ ∀z ∈ π2(p) ⟨x, z⟩ ∈ R

Then the transformation TGroup from Q to R is implicitly defined by

∀t ∈ R ∃p ∈ Q χ(π1(t), p, R)) ∧ ∀p ∈ Q χ(π1(p), p, R)

We can now state our first main result:

Theorem 4.2 (Implicit-to-explicit for nested relations via model theory). For any ∆0

formula Σ(oin, oout, a⃗) which implicitly defines oout as a function of oin, there is an NRC
expression E such that whenever Σ(oin, oout, a⃗) holds, then E(oin) = oout.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:11

In particular, suppose that, in addition, for each oin there is some oout and a⃗ such that
Σ(oin, oout, a⃗) holds: then the expression and the formula define the same transformation.

Recall that our notion of implicit definitions allows extra parameters a⃗. Sometimes
these are called “projective” implicit definitions in the literature. From Theorem 4.2 we
easily see that no additional expressiveness is gained by allowing parameters:

Corollary 4.3. The following are equivalent for a transformation T :

(1) T is implicitly definable by a ∆0 formula
(2) T is implicitly definable by a ∆0 formula φ(oin, oout)
(3) T is NRC definable

Finite instances versus all instances. In Theorem 4.2 and Corollary 4.3 we emphasize
that our results concern the class FunAll of transformations T such that there is a ∆0

formula Σ which defines a functional relationship between oin and oout on all instances, finite
and infinite, and where the function agrees with T . We can consider FunAll as a class of
transformations on all instances or on all finite instances, but the class is defined by reference
to all instances for oin. Expressed semantically

Σ(oin, oout, a⃗) ∧ Σ(oin, o
′
out, a⃗

′) |= o′out = oout

An equivalent characterization of FunAll is proof-theoretic: these are the transformations
such that there is a classical proof of functionality in a complete first-order proof system.
There are various choices for the system. The most straightforward choice would be a system
using some basic axioms about Ur-elements, products and projection functions, and the
extensionality axiom for the membership relation. We will see a slightly different approach
to proof systems in Section 5.

Whether one thinks of FunAll semantically or proof-theoretically, our results say that
FunAll is identical with the set of transformations given by NRC expressions. But the
proof-theoretic perspective is crucial in order to even talk about an effective synthesis
procedure.

It is natural to ask about the analogous class FunFin of transformations T over finite
inputs for which there is a ∆0 ΣT which is functional, when only finite inputs are considered,
and where the corresponding function agrees with T . It is well-known that FunFin is not
identical to NRC and is not so well-behaved. The transformation returning the powerset
of a given input relation oin is in FunFin: the powerset of a finite input oin is the unique
collection oout of subsets of oin that contains the empty set and such that for each element
e of oin, if a set s is in oout then s − {e} and s ∪ {e} are in oout. From this we can see
that FunFin contains transformations of high complexity. Indeed, even when considering
transformations from flat relations to flat relations, FunFin contains transformations whose
membership in polynomial time would imply that UP∩coUP, the class of problems such that
both the problem and its complement can be solved by an unambiguous non-deterministic
polynomial time machine, is identical to PTIME [Kol90]. Most importantly for our goals,
membership in FunFin is not witnessed by proofs in any effective proof system, since this set
is not computably enumerable.

Total versus partial functions. When we have a proof that Σ(oin, oout, a⃗) defines oout
as a function of oin, the corresponding function may still be partial. Our procedure will
synthesize an expression E defining a total function that agrees with the partial function
defined by Σ. If a⃗ is empty, we can also synthesize a Boolean NRC expression VerifyInDomain

7:12 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

that verifies whether a given oin is in the domain of the function: that is whether there is
oout such that Σ(oin, oout) holds. VerifyInDomain can be taken as:⋃

{VerifyΣ(oin, e) | e ∈ {E(oin)}}

where VerifyΣ is from Proposition 3.5.
When a⃗ is not empty we can not generate a domain check VerifyInDomain, since the

auxiliary parameters might enforce some second-order property of i⃗: for example Σ(i0, i1, a, o)
might state that a is a bijection from i0 to i1 and o = ⟨i1, i2⟩. This clearly defines a
functional relationship between i1, i2 and o, but the domain consists of i1, i2 that have the
same cardinality, which cannot be expressed in first-order logic.

Organization of the proof of the theorem. Our proof of Theorem 4.2 will go through
a notion of ∆0 interpretation, which we introduce in Subsection 4.2. We will show that
∆0 interpretations define the same transformations as NRC, which will allow us to restate
the main result as moving from implicit definitions to interpretations. We then proceed
first by some reductions (Subsection 4.3), showing that it suffices to prove a general result
about implicit definability and definability by interpretations in multi-sorted first-order logic,
rather than dealing with higher-order logic and ∆0 formulas. In Subsection 4.4 we give the
argument for this multi-sorted logic theorem.

Interpolation for ∆0 formulas. Often a key ingredient in moving from implicit to explicit
definition is an interpolation theorem, stating that for each entailment between formulas
φL and φR there is an intermediate formula (an interpolant for the entailment), which is
entailed by φL and entails φR while using only symbols common to φL and φR. We can
show using any of the standard approaches to interpolation (e.g. [Fit96]) that ∆0 formulas
admit interpolation.

Proposition 4.4. Let ΓL, ΓR, and ψ be ∆0 formulas and call C = FV(ΓL)∩(FV(ΓR)∪FV(ψ))
the set of common free variables of ΓL on the one hand and ΓR or ψ on the other hand. If
we have an entailment

ΓL, ΓR |= ψ

then there exists a ∆0 formula θ with FV(θ) ⊆ C such that the following holds

ΓL |= θ and ΓR, θ |= ψ

A stronger effective statement – stating that the interpolant can be found efficiently in
the size of a proof of the entailment – will be proven later in the paper: see Theorem 5.4.

The interpolation result above should be thought of as giving us the result we want
for implicit definitions of Boolean variables. From it we can derive that whenever we have
a ∆0 Σ(⃗i . . . o) which implicitly defines a Boolean variable o in terms of input variables i⃗,

there must be a ∆0 φ(⃗i, o) that defines o in terms of i⃗. Setting o to be true we get a formula

φ′(⃗i) that defines the inputs that correspond to true. By Proposition 3.5, there is an NRC
expression outputting a Boolean that explicitly defines o.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:13

4.2. Interpretations and nested relations. Our first goal will be to show that for any
∆0 implicit definitions there is an NRC query that realizes it. For this result, it will be useful
to have another characterization of NRC, an equivalence with transformations defined by
interpretations.

We first review the notion of an interpretation, which has become a common way of
defining transformations using logical expressions [BDK18, CL07]. Let SCH in and SCHout

be multi-sorted vocabularies. A first-order interpretation with input signature SCH in and
output signature SCHout consists of:

• for each output sort S′, a sequence of input sorts τ(S′) = S⃗,

• a formula φS′
≡ (x⃗1, x⃗2) for each output sort S′ in SCHout (where both tuples of variables

x⃗1 and x⃗2 have types τ(S′)),

• a formula φS′
Domain(x⃗1) for each output sort S′ in SCHout (where the variables x⃗1 have

types τ(S′)),
• a formula φR(x⃗1, . . . x⃗n) for every relation R of arity n in SCHout (where the variables x⃗i
have types τ(S′i), provided the ith argument of R has sort S′i),

• for every function symbol f(x1, . . . , xk) of SCHout with output sort S′ and input xi of sort
Si, a sequence of terms f1(x⃗1, . . . , x⃗k), . . . , fm(x⃗1, . . . , x⃗k) with sorts enumerating τ(Sout)
(so in particular m corresponds to the length of τ(Sout)) and x⃗i of sorts τ(Si).

subject to the following constraints

• φS
≡(x⃗, y⃗) should define a partial equivalence relation, i.e. be symmetric and transitive,

• φS
Domain(x⃗) should be equivalent to φS

≡(x⃗, x⃗),

• φR(x⃗1, . . . , x⃗n) and φ
Si
≡ (x⃗i, y⃗i) for 1 ≤ 1 ≤ n (where Si is the output sort associated with

position i of the relation R) should jointly imply φR(y⃗1, . . . , y⃗n).

• for every output function symbol f(x1, . . . , xk) represented by terms f⃗(⃗⃗x), we have

∀⃗⃗x ⃗⃗y

(∧
i

φSi
≡ (x⃗i, y⃗i) → φS′

≡ (f⃗(⃗⃗x), f⃗(⃗⃗y))

)
where S′ is the sort of the output of f and the Si correspond to the arities.

In φS
≡ and φS

Domain, each x⃗1, x⃗2 is a tuple containing variables of sorts agreeing with the
prescribed sequence of input sorts for S′. Given a structure M for the input sorts and a sort
S we call a binding of these variables to input elements of the appropriate input sorts an
M,S input match. If in output relation R position i is of sort Si, then in φR(⃗t1, . . . t⃗n) we
require t⃗i to be a tuple of variables of sorts agreeing with the prescribed sequence of input
sorts for Si. Each of the above formulas is over the vocabulary of SCH in.

An interpretation I defines a function from structures over vocabulary SCH in to
structures over vocabulary SCHout as follows:

• The domain of sort S′ is the set of equivalence classes of the partial equivalence relation
defined by φS′

≡ over the M, S′ input matches.
• A relation R in the output schema is interpreted by the set of those tuples a⃗ such that
φR(⃗t1, . . . t⃗n) holds for some t⃗1 . . . t⃗n with each t⃗i a representative of ai.

An interpretation I also defines a map φ 7→ φ∗ from formulas over SCHout to formulas
over SCH in in the obvious way. This map commutes with all logical connectives and thus
preserves logical consequence.

In the sequel, we are concerned with interpretations preserving certain theories consisting
of sentences in first-order logic. Recall that a theory in first-order logic is a deductively closed

7:14 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

set of sentences. A sentence belonging to a given theory is called one of its theorems. Given
a theory Σ over SCH in and a theory Σ′ over SCHout, we say that I is an interpretation of
Σ′ within Σ if I is an interpretation such that for every theorem φ of Σ′, φ∗ is a theorem of
Σ. Since φ 7→ φ∗ preserves logical consequence, if Σ′ is generated by a set of axioms A, it
suffices to check that Σ′ proves φ for φ ∈ A.

Finally, we are also interested in interpretations restricting to the identity on part of the
input. Suppose that SCHout and SCH in share a sort S. An interpretation I of SCHout

within SCH in is said to preserve S if the output sort associated to S is S itself and the
induced map of structures is the identity over S. Up to equivalence, that means we fix
φTDomain(x) to be, up to equivalence, ⊤, φS

≡(x, y) to be the equality x = y and map constants
of type S to themselves.

Interpretations defining nested relational transformations. We now consider how
to define nested relational transformations via interpretations. The main idea will be to
restrict all the constituent formulas to be ∆0 and to relativize the notion of interpretation
to a background theory that corresponds to our sanity axioms about tupling and sets.

We define the notion of subtype of a type T inductively as follows.

• T is a subtype of Set(T ′) if T = Set(T ′) or if it is a subtype of T ′.
• T is a subtype of T1 × T2 if T = T1 × T2 or if it is a subtype of either T1 or T2.
• The only subtypes of U and Unit are themselves.

For every type T , we build a multi-sorted vocabulary SCHT as follows.

• The sorts are all subtypes of T , Unit and Bool = Set(Unit).
• The function symbols are the projections, tupling, the unique element of type Unit, the
constants ff, tt of sort Bool representing ∅, {⟨⟩} and a special constant o of sort T .

• The relation symbols are the equalities at every sort and the membership predicates ∈T .
Let Tobj be a type which will represent the type of a complex object obj. We build a theory
Σ(Tobj) on top of SCHTobj from the following axioms:

• Equality should satisfy the congruence axioms for every formula φ

∀xy (x = y ∧ φ → φ[y/x])

Note that it is sufficient to require this for atomic formulas to infer it for all formulas.
• We require that projection and tupling obey the usual laws for every type of SCHTobj .

∀xT1 yT2 π1(⟨x, y⟩) = x ∀xT1 yT2 π2(⟨x, y⟩) = y ∀xT1×T2 ⟨π1(x), π2(x)⟩ = x

• We require that Unit be a singleton and every Set(T) in SCHTobj

∀xUnit ⟨⟩ = x

• Lastly our theory imposes set extensionality

∀xSet(T) ySet(T)
(
[∀zT (z ∈T x↔ z ∈T y)] → x =T y

)
Note that in interpretations we associate the input to a structure that includes a

distinguished constant. For example, an input of type Set(U) will be coded by a structure
with an element relation, an Ur-element sort, and a constant whose sort is the type Set(U).
In other contexts, like NRC expressions and implicit definitions of transformations, we
considered inputs to be free variables. This is only a change in terminology, but it reflects
the fact that in evaluating the interpretation on any input i0 we will keep the interpretation

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:15

of the associated constant fixed, while we need to look at multiple bindings of the variables
in each formula in order to form the output structure.

We will show that NRC expressions defining transformations from a nested relation of
type T1 to a nested relation of type T2 correspond to a subset of interpretations of Σ(T2)
within Σ(T1) that preserve U. The only additional restriction we impose is that all formulas
φTDomain and φT≡ in the definition of such an interpretation must be ∆0. This forbids, for
instance, universal quantification over the whole set of Ur-elements. We thus call a first-order
interpretation of Σ(T2) within Σ(T1) consisting of ∆0 formulas a ∆0 interpretation of Σ(T2)
within Σ(T1).

We now describe what it means for such an interpretation to define a transformation
from an instance of one nested relational schema to another; that is, to map one object to
another. We will denote the distinguished constant lying in the input sort by oin and the
distinguished constant in the output sort by oout. Given any object o of type T , define Mo,
a structure satisfying Σ(T), as the least structure such that

• every subobject of o is part of Mo

• when T1 × T2 is a subtype of T and a1, a2 are objects of sort T1, T2 of Mo, then ⟨a1, a2⟩ is
an object of Mo

• a copy of ∅ is part of Mo for every sort Set(T) in SCHT

• ⟨⟩ and {⟨⟩} are in Mo at sorts Unit and Bool.

The map o 7→Mo shows how to translate an object to a logical structure that is appropriate
as the input of an interpretation. Note that the further constraints ensure that every sort has
at least one element inMo and that there is one sort, U, which contains at least two elements;
these technicality are important to ensure that interpretations are expressive enough.

We now discuss how the output of an interpretation is mapped back to an object. The
output of an interpretation is a multi-sorted structure with a distinguished constant oout
encoding the output nested relational schema, but it is not technically a nested relational
instance as required by our semantics for nested relational transformations. We can convert
the output to a semantically appropriate entity via a modification of the well-known
Mostowski collapse [Mos49]. We define Collapse(e,M) on elements e of the domain of a
structure M for the multi-sorted encoding of a schema, by structural induction on the type
of e:

• If e has sort T1×T2 then we set Collapse(e,M) = ⟨Collapse(π1(e),M),Collapse(π2(e),M)⟩
• If e has sort Set(T), then we set Collapse(e,M) = {Collapse(t,M) | t ∈ e}
• Otherwise, if e has sort Unit or U, we set Collapse(e,M) = e

We now formally describe how ∆0 interpretations define functions between objects in
the nested relational data model.

Definition 4.5. We say that a nested relational transformation T from T1 to T2 is defined
by a ∆0 interpretation I if, for every object oin of type T1, the structure M associated with
oin is mapped to M ′ where T (oin) is equal to Collapse(oout,M

′).

We will often identify a ∆0 interpretation with the corresponding transformation,
speaking of its input and output as a nested relation (rather than the corresponding
structure). For such an interpretation I and an input object oin we write I(oin) for the
output of the transformation defined by I on oin.

Example 4.6. Consider an input schema consisting of a single binary relation R : Set(U×
Set(U)), so an input object is a set of pairs, with each pair consisting of an Ur-element

7:16 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

and a set of Ur-elements. The corresponding theory is Σ(Set(U× Set(U))), which has sorts
Tin = Set(U× Set(U)), U× Set(U) and U and relation symbols ∈U and ∈U×Set(U) on top of
equalities.

If we consider the following instance of the nested relational schema

R0 = {⟨a, {a, b}⟩, ⟨a, {a, c}⟩, ⟨b, {a, c}⟩}

Then the corresponding encoded structure M consists of:

• MTin containing only the constant R0

• MU×Set(U) consisting of the elements of R0,
• MU consisting of {a, b, c}
• MSet(U) consisting of the sets {a, b}, {a, c},
• MUnit = {⟨⟩} and MBool = {∅, {⟨⟩}}
• the element relations interpreted in the natural way

Consider the transformation that groups on the first component, returning an output
object of type O = Set(U× Set(Set(U))). This is a variation of the grouping transformation
from Example 3.4. On the example input R0 the transformation would return

O0 = {⟨a, {{a, b}, {a, c}}⟩, ⟨b, {{a, c}}⟩}

The output would be represented by a structure having sorts Tout = Set(U×Set(Set(U))),
U× Set(Set(U), U, Set(Set(U)) and Set(U) in addition to Unit and Bool. It is easy to capture
this transformation with a ∆0 interpretation. For example, the interpretation could code
the output sort Set(U× Set(Set(U)) by the sort Set(U× Set(U)), representing each group by
the corresponding Ur-element.

We will often make use of the following observation about interpretations:

Proposition 4.7. ∆0 interpretations can be composed, and their composition correspond to
the underlying composition of transformations.

The composition of nested relational interpretations amounts to the usual composition
of FO-interpretations (see e.g. [BK09]) and an easy check that the additional requirements
we impose on nested relational interpretations are preserved.

We can now state the equivalence of NRC and interpretations formally:

Theorem 4.8. Every transformation in NRC can be translated effectively to a ∆0 interpre-
tation. Conversely, for every ∆0 interpretation, one can effectively form an equivalent NRC
expression. The translation from NRC to interpretations can be done in EXPTIME while the
converse translation can be performed in PTIME.

This characterization holds when equivalence is over finite nested relational inputs and
also when arbitrary nested relations are allowed as inputs to the transformations.

Note that very similar results occur in the literature, going back at least to [Van01].
Thus we defer the proof to Appendix E. The direction from interpretations to NRC will
be the one that is directly relevant to us in the sequel, and its proof is given by a simple
translation.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:17

4.3. Reduction to a characterization theorem in multi-sorted logic. The first step
in the proof of Theorem 4.2 is to reduce to a more general statement relating implicit
definitions in multi-sorted logic to interpretations.

The first part of the reduction is to argue that we can suppress auxiliary parameters a⃗
in implicit definitions, proving the equivalence of the first two items in 4.3:

Lemma 4.9. For any ∆0 formula Σ(oin, oout, a⃗) that implicitly defines oout as a function of
oin, there is another ∆0 formula Σ′(oin, oout) which implicitly defines oout as a function of
oin, such that Σ(oin, oout, a⃗) → Σ′(oin, oout).

Note that from this lemma we get the equivalence of 1 and 2 in Corollary 4.3.

Proof. The assumption that Σ implicitly defines oout as a function of oin means that we
have an entailment

Σ(oin, oout, a⃗) |= Σ(oin, o
′
out, a⃗

′) → oout = o′out

Applying ∆0 interpolation, Proposition 4.4, we may obtain a formula θ(oin, oout) such that

Σ(oin, oout, a⃗) |= θ(oin, oout) and θ(oin, oout) ∧ Σ(oin, o
′
out, a⃗

′) |= oout = o′out

Now we can derive the following entailment

Σ(oin, oout, a⃗) |= [θ(oin, o
′
out) ∧ θ(oin, o′′out)] → o′out = o′′out

This entailment is obtained from the second property of θ, since we can infer that o′out = oout
and o′′out = oout.

Now we can apply interpolation again to obtain a formula D(oin) such that

Σ(oin, oout, a⃗) |= D(oin) and D(oin) ∧ θ(oin, o′out) ∧ θ(oin, o′′out) |= o′out = o′′out

We now claim that Σ′(oin, oout) := D(oin) ∧ θ(oin, oout) is an implicit definition extending
Σ. Functionality of Σ′ is a consequence of the second entailment witnessing that D is
an interpolant. Finally, the implication ∃a⃗ Σ(oin, oout, a⃗) |= Σ′(oin, oout) is given by the
combination of the first entailments witnessing that θ and D are interpolants.

With the above result in hand, from this point on we assume that we do not have
auxiliary parameters a⃗ in our implicit definitions.

Reduction to Monadic schemas. A monadic type is a type built only using the atomic
type U and the type constructor Set. To simplify notation we define U0 := U, U1 :=
Set(U0), . . . ,Un+1 := Set(Un). A monadic type is thus a Un for some n ∈ N. A nested
relational schema is monadic if it contains only monadic types, and a ∆0 formula is said to
be monadic if all of its variables have monadic types.

Restricting to monadic formulas simplifies our arguments considerably. It turns out
that by the usual “Kuratowski encoding” of pairs by sets, we can reduce all of our questions
about implicit versus explicit definability to the case of monadic schemas. The following
proposition implies that we can derive all of our main results for arbitrary schemas from
their restriction to monadic formulas. The proof is routine but tedious, so we defer it to
Appendix C–D.

Proposition 4.10. For any nested relational schema SCH, there is a monadic nested
relational schema SCH ′, an injection Convert from instances of SCH to instances of SCH ′

that is definable in NRC, and an NRC[get] expression Convert−1 such that Convert−1◦Convert
is the identity transformation from SCH → SCH.

7:18 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Furthermore, there is a ∆0 formula ImConvert from SCH ′ to Bool such that ImConvert(i
′)

holds if and only if i′ = Convert(i) for some instance i of SCH.
These translations can also be given in terms of ∆0 interpretations rather than NRC

expressions.

As we now explain, Proposition 4.10 allows us to reduce Theorem 4.2 to the special
case where we have only monadic nested relational schemas. Given a ∆0 implicit definition
Σ(oin, oout) we can form a new definition that computes the composition of the following
transformations: Convert−1

SCHin
, a projection onto the first component, the transformation

defined by Σ, and ConvertSCHout . Our new definition captures this composition by a formula
Σ′(o′in, o

′
out) that defines o

′
out as a function of oin, where the formula is over a monadic schema.

Assuming that we have proven the theorem in the monadic case, we would get an NRC
expression E′ from SCH ′

in to SCH ′
out agreeing with this formula on its domain. Now we

can compose ConvertSCHin , E
′, Convert−1

SCHout
, and the projection to get an NRC expression

agreeing with the partial function defined by Σ(oin, oout) on its domain, as required.

Reduction to a result in multi-sorted logic. Now we are ready to give our last reduction,
relating Theorem 4.2 to a general result concerning multi-sorted logic.

Let SIG be any multi-sorted signature, Sorts1 be its sorts and Sorts0 be a subset of
Sorts1. We say that a relation R is over Sorts0 if all of its arguments are in Sorts0. Let Σ be
a set of sentences in SIG. Given a model M for SIG, let Sorts0(M) be the union of the
domains of relations over Sorts0, and let Sorts1(M) be defined similarly.

We say that Sorts1 is implicitly interpretable over Sorts0 relative to Σ if:

Fix any modelsM1 andM2 of Σ. Supposem is an isomorphism from Sorts0(M1)
to Sorts0(M2): that is a bijection from the domain of each sort, that preserves
all relations over Sorts0 in both directions. Then m extends to a unique mapping
from Sorts1(M1) to Sorts1(M2) which preserves all relations over Sorts1.

Informally, implicit interpretability states that the sorts in Sorts1 are semantically
determined by the sorts in Sorts0. The property implies in particular that if M1 and M2

agree on the interpretation of sorts in Sorts0, then the identity mapping on sorts in Sorts0
extends to a mapping that preserves sorts in Sorts1.

We relate this semantic property to a syntactic one. We say that Sorts1 is explicitly
interpretable over Sorts0 relative to Σ if for all S in Sorts1 there is a formula ψS(x⃗, y) where
x⃗ are variables with sorts in Sorts0, y a variable of sort S, such that:

• In any model M of Σ, ψS defines a partial function FS mapping Sorts0 tuples surjectively
on to S.

• For every relation R of arity n over Sorts1, there is a formula ψR(x⃗1, . . . x⃗n) using only
relations of Sorts0 and only quantification over Sorts0 such that in any model M of Σ,
the pre-image of R under the mappings FS for the different arguments of R is defined by
ψR(x⃗1, . . . x⃗n).

Explicit interpretability states that there is an interpretation in the sense of the previous
section that produces the structure in Sorts1 from the structure in Sorts0, and in addition
there is a definable relationship between an element e of a sort in Sorts1 and the tuple that
codes e in the interpretation. Note that ψS, the mapping between the elements y in S and
the tuples in Sorts0 that interpret them, can use arbitrary relations. The key property is
that when we pull a relation R over Sorts1 back using the mappings ψS, then we obtain
something definable using Sorts0.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:19

With these definitions in hand, we are ready to state a result in multi-sorted logic which
allows us to generate interpretations from classical proofs of functionality:

Theorem 4.11. For any Σ,Sorts0, Sorts1 such that Σ entails that a sort of Sorts0 has at
least two elements, Sorts1 is explicitly interpretable over Sorts0 if and only if it is implicitly
interpretable over Sorts0.

This can be thought of as an analog of Beth’s theorem [Bet53, Cra57b] for multi-sorted
logic. The proof is given in the next subsection. For now we explain how it implies Theorem
4.2. In this explanation we assume a monadic schema for both input and output. Thus
every element e in an instance has sort Un for some n ∈ N.

Consider a ∆0 formula Σ(oin, oout) over a monadic schema that implicitly defines oout
as a function of oin. Σ can be considered as a multi-sorted first-order formula with sorts for
every subtype occurrence of the input as well as distinct sorts for every subtype occurrence
of the output other than U. Because we are dealing with monadic input and output schema,
every sort other than U will be of the form Set(T), and these sorts have only the element
relations ∈T connecting them. We refer to these as input sorts and output sorts. We modify
Σ by asserting that all elements of the input sorts lie underneath oin, and all elements of
the output sorts lie underneath oout. Since Σ was ∆0, this does not change the semantics.
We also conjoin to Σ the sanity axioms for the schema, including the extensionality axiom
at the sorts corresponding to each object type. Let Σ∗ be the resulting formula. In this
transformation, as was the case with interpretations, we change our perspective on inputs
and outputs, considering them as constants rather than as free variables. We do this only to
match our result in multi-sorted logic, which deals with a set of sentences in multi-sorted
first-order logic, rather than formulas with free variables.

Given models M and M ′ of Σ∗, we define relations ≡i connecting elements of M of
depth i with elements of M ′ of depth i. For i = 0, ≡i is the identity: that is, it connects
elements of U if and only if they are identical. For i = j + 1, ≡i (x, x

′) holds exactly when
for every y ∈ x there is y′ ∈ x′ such that y ≡j y

′, and vice versa.
The fact that Σ implicitly defines oout as a function of oin tells us that:

Suppose M |= Σ∗, M ′ |= Σ∗ and M and M ′ are identical on the input sorts.
Then the mapping taking a y ∈ M of depth i to a y′ ∈ M ′ such that y′ ≡i y
is an isomorphism of the output sorts that is the identity on U. Further, any
isomorphism of Sorts1(M) on to Sorts1(M

′) that is the identity on U must be
equal to M : one can show this by induction on the depth i using the fact that
Σ∗ includes the extensionality axiom.

From this, we see that the output sorts are implicitly interpretable over the input
sorts relative to Σ∗. Using Theorem 4.11, we conclude that the output sorts are explicitly
interpretable in the input sorts relative to Σ∗. Applying the conclusion to the formula x = x,
where x is a variable of a sort corresponding to object type T of the output, we obtain a
first-order formula φTDomain(x⃗) over the input sorts. Applying the conclusion to the formula
x = y for x, y variables corresponding to the object type T we get a formula φ≡T (x⃗, x⃗

′)
over the input sorts. Finally applying the conclusion to the element relation ϵT at every
level of the output, we get a first-order formula φϵT (x⃗, x⃗

′) over the input sorts. Because Σ∗

asserts that each element of the input sorts lies beneath a constant for oin, we can convert
all quantifiers to bind only beneath oin, giving us ∆0 formulas. It is easy to verify that
these formulas give us the desired interpretation. This completes the proof of Theorem 4.2,
assuming Theorem 4.11.

7:20 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

4.4. Proof of the multi-sorted logic result. In the previous subsection we reduced our
goal result about generating interpretations from proofs to a result in multi-sorted first-order
logic, Theorem 4.11. We will now present the proof of Theorem 4.11. The direction from
explicit interpretability to implicit interpretability is straightforward, so we will be interested
only in the direction from implicit to explicit. Although the theorem appears to be new as
stated, each of the components is a variant of arguments that already appear in the model
theory literature. The core of our presentation here is a variation of the proof of Gaifman’s
coordinatisation theorem as presented in [Hod93].

We make use of only quite basic results from model theory:

• the compactness theorem for first-order logic, which states that for any theory Γ, if every
finite subcollection of Γ is satisfiable, then Γ is satisfiable;

• the downward Löwenheim-Skolem theorem, which states that if Γ is countable and has a
model, then it has a countable model;

• the omitting types theorem for first-order logic. A first-order theory Σ is said to be complete
if for every other first-order sentence φ in the vocabulary of Σ, either φ or ¬φ is entailed
by Σ. Given a set of constants B, a type over B is an infinite collection τ(x⃗) of formulas
using variables x⃗ and constants B. A type is complete with respect to a theory Σ if
every first-order formula with variables in x⃗ and constants from B is either entailed or
contradicted by τ(x⃗) and Σ. A type τ is said to be realized in a model M if there is a x⃗0
in M satisfying all formulas in τ . τ is non-principal (with respect to a first-order theory
Σ) if there is no formula γ0(x⃗) such that Σ ∧ γ0(x⃗) entails all of τ(x⃗). The version of the
omitting types theorem that we will use states that

if we have a countable set Γ of complete types that are all non-principal relative
to a complete theory Σ, there is some model M of Σ in which none of the types
in Γ are realized.

Each of these results follows from a standard model construction technique [Hod93].
We can easily show that to prove the multi-sorted result, it suffices to consider only

those Σ which are complete theories.

Proposition 4.12. Theorem 4.11 follows from its restriction to Σ a complete theory.

Recall that we are proving the direction from implicit interpretability to explicit inter-
pretability. Our first step will be to show that each element in the output sort is definable
from the input sorts, if we allow ourselves to guess some parameters. For example, consider
the grouping transformation mentioned in Example 3.4. Each output is obtained from group-
ing input relation F over some Ur-element a. So each member of the output is definable
from the input constant F and a “guessed” input element a. We will show that this is true
in general.

For the next results, we have a blanket assumption that our underlying language is
countable, which will be necessary in some applications of the compactness theorem.

Given a model M of Σ and x⃗0 ∈ Sorts1 within M , the type of x⃗0 with parameters
from Sorts0 is the set of all formulas satisfied by x⃗0, using any sorts and relations but only
constants from Sorts0.

A type p is isolated over Sorts0 if there is a formula φ(x⃗, a⃗) with parameters a⃗ from
Sorts0 such that M |= φ(x⃗, a⃗) → γ(x⃗) for each γ ∈ p. The following is a step towards
showing that elements in the output are well-behaved:

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:21

Lemma 4.13. Suppose Sorts1 is implicitly interpretable over S0 with respect to Σ. Then in

any countable model M of Σ the type of any b⃗ over Sorts1 with parameters from Sorts0 is
isolated over Sorts0.

Proof. Fix a counterexample b⃗, and let Γ be the set of formulas in Sorts1 with constants

from Sorts0 satisfied by b⃗ in M . We claim that there is a model M ′ with Sorts0(M
′) identical

to Sorts0(M) where there is no tuple satisfying Γ. This follows from the failure of isolation
and the omitting types theorem.

Now we have a contradiction of implicit interpretability, since the identity mapping on
Sorts0 can not extend to an isomorphism of relations over Sorts1 from M to M ′.

The next step is to argue that every element of Sorts1 is definable by a formula using
parameters from Sorts0.

Lemma 4.14. Assume implicit interpretability of Sorts1 over Sorts0 relative to Σ. In any
model M of Σ, for every element e of a sort S1 in Sorts1, there is a first-order formula
ψe(y⃗, x) with variables y⃗ having sort in Sorts0 and x a variable of sort S1, along with a tuple
a⃗ in Sorts0(M) such that ψe(⃗a, x) is satisfied only by e in M .

In a single-sorted setting, this can be found in [Hod93] Theorem 12.5.8 where it is
referred to as “Gaifman’s coordinatisation theorem”, credited independently to unpublished
work of Haim Gaifman and Dale Myers. The multi-sorted version is also a variant of Remark
1.2, part 4 in [Hru14], which points to a proof in the appendix of [CH99]; the remark assumes
that Sorts1 is the set of all sorts. Another variation is Theorem 3.3.4 of [AMN08].

Proof. Since a counterexample involves only formulas in a countable language, by the
Löwenheim-Skolem theorem mentioned above, it is enough to consider the case where M
is countable. By Lemma 4.13, the type of every e is isolated by a formula φ(x⃗, a⃗) with
parameters from Sorts0 and relations from Sorts1. We claim that φ defines e: that is, e is
the only satisfier. If not, then there is e′ ̸= e that satisfies φ. Consider the relation j⃗ ≡ j⃗′

holding if j⃗ and j⃗′ satisfy all the same formulas using relations and variables from Sorts1 and
parameters from Sorts0. Isolation implies that e ≡ e′. Further, isolation of types shows that

≡ has the “back-and-forth property” given d⃗ ≡ d⃗′, and c⃗ we can obtain c⃗′ with d⃗c⃗ ≡ d⃗′c⃗′. To

see this, fix d⃗ ≡ d⃗′ and consider c⃗. We have γ(x⃗, y⃗, a⃗) isolating the type of d⃗, c⃗, and further d⃗

satisfies ∃y⃗ γ(x⃗, y⃗, a⃗) and thus so does d⃗′ with witness c⃗′. But then using d⃗ ≡ d⃗′ again we

see that d⃗, c⃗ ≡ d⃗′, c⃗′. Using countability of M and this property we can inductively create a
mapping on M fixing Sorts0 pointwise, preserving all relations in Sorts1, and taking e to e′.
But this contradicts implicit interpretability.

Lemma 4.15. The formula in Lemma 4.14 can be taken to depend only on the sort S1.

Proof. Consider the type over the single variable x in S1 consisting of the formulas ¬δφ(x)
where δφ(x) is the following formula

∃⃗b [φ(⃗b, x) ∧ ∀x′ (φ(⃗b, x′) → x′ = x)]

where the tuple b⃗ ranges over Sorts0. By Lemma 4.14, this type cannot be satisfied in a
model of Σ. Since it is unsatisfiable, by compactness, there are finitely many formulas

φ1(⃗b, x), . . . , φn(⃗b, x) such that ∀x
∨n
i=1 δφi(x) is satisfied. Therefore, each φi(⃗b, x) defines a

partial function from tuples of S0 to S1 and every element of S1 is covered by one of the φi.
Recall that we assumed that Σ enforces that Sorts0 has a sort with at least two elements.

7:22 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Thus we can combine the φi(⃗b, x) into a single formula ψ(⃗b, c⃗, x) defining a surjective partial
function from S0 to S1 where c⃗ is an additional parameter in Sorts0 selecting some i ≤ n.

We now need to go from the “sub-definability” or “element-wise definability” result
above to an interpretation. Consider the formulas ψS produced by Lemma 4.15. For a
relation R of arity n over Sorts1, where the ith argument has sort Si, consider the formula

ψR(y⃗1 . . . y⃗n) = ∃x1 . . . xn [R(x1 . . . xn) ∧
∧
i

ψSi(y⃗i, xi)]

where x⃗i is a tuple of variables of sorts in Sorts0.
The formulas ψS for each sort S and the formulas ψR for each relation R are as required

by the definition of explicitly interpretable, except that they may use quantified variables
and relations of Sorts1, while we only want to use variables and relations from Sorts0. We
take care of this in the following lemma, which says that formulas over Sorts1 do not allow
us to define any more subsets of Sorts0 than we can with formulas over Sorts0.

Lemma 4.16. Under the assumption of implicit interpretability, for every formula φ(y⃗)
over Sorts1 with y⃗ variables whose sorts are in Sorts0 there is a formula φ◦(y⃗) over Sorts0 –
that is, containing only variables, constants, and relations from Sorts0 – such that for every
model M of Σ,

M |= ∀y⃗ [φ(y⃗) ↔ φ◦(y⃗)]

Proof. We give an argument assuming the existence of a saturated model for the theory:
that is, a model M in which for every set of formulas Γ(x⃗), with parameters from the model,
of cardinality strictly smaller than the model, if Γ is finitely satisfiable in M then it is
realized in M . Such models exist for any theory under the generalized continuum hypothesis
GCH. The additional set-theoretic hypothesis can be removed by using weaker notions of
saturation – the modification is a standard one in model theory, see [CK92, Hod93].

Assume not, with φ(y⃗) as a counterexample. By completeness and our assumption, we
know that there is a saturated model M of Σ containing c⃗, c⃗′ that agree on all formulas
in Sorts0 but that disagree on φ. Call R the reduct of M to Sorts0. The partial map that
sends c⃗ to c⃗′ is a partial automorphism of R. Since M is saturated, so is R, so in particular
R is strongly homogeneous and the aforementioned partial map can be extended to an
automorphism of R that sends c⃗ to c⃗′. But then by weak implicit interpretability, this
should extend to an automorphism of M that sends c⃗ to c⃗′. This implies that M satisfies
φ(c⃗) ↔ φ(c⃗′), a contradiction.

Above we obtained the formulas ψR for each relation symbol R needed for an explicit
interpretation. We can obtain formulas defining the necessary equivalence relations ψ≡ and
ψDomain easily from these.

Putting Lemmas 4.14, 4.15, and 4.16 together yields a proof of Theorem 4.11.

4.5. Putting it all together to complete the proof of Theorem 4.2. We summarize
our results on extracting NRC expressions from classical proofs of functionality. We have
shown in Subsection 4.3 how to convert the problem to one with no extra variables other
than input and output and with only monadic schemas – and thus no use of products or
tupling. We also showed how to convert the resulting formula into a theory in multi-sorted
first-order logic. That is, we no longer need to talk about ∆0 formulas.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:23

In Subsection 4.4 we showed that from a theory in multi-sorted first-order logic we can
obtain an interpretation. This first-order interpretation in a multi-sorted logic can then
be converted back to a ∆0 interpretation, since the background theory forces each of the
input sorts in the multi-sorted structure to correspond to a level of nesting below one of
the constants corresponding to an input object. Finally, the results of Subsection 4.2 allow
us to convert this interpretation to an NRC expression. With the exception of the result in
multi-sorted logic, all of the constructions are effective. Further, these effective conversions
are all in polynomial time except for the transformation from an interpretation to an NRC
expression, which is exponential time in the worst case. Outside of the multi-sorted result,
which makes use of infinitary methods, the conversions are each sound when equivalence
over finite input structures is considered as well as the default case when arbitrary inputs are
considered. As explained in Subsection 4.3, when equivalence over finite inputs is considered,
we cannot hope to get a synthesis result of this kind.

5. The effective result: efficiently generating NRC expressions from proofs

We now turn to the question of effective conversion from implicit definitions to explicit NRC
transformations, leading up to our second main contribution.

5.1. Moving effectively from implicit to explicit: statement of the main result.
Recall that previously we have phased implicit definability as an entailment in the presence
of extensionality axioms. We also recall that we can rephrase it without explicitly referring
to extensionality.

A ∆0 formula φ(⃗i, a⃗, o), implicitly defines variable o in terms of variables i⃗ if we have

φ(⃗i, a⃗, o) ∧ φ(⃗i, a⃗′, o′) |=nested o ≡T o
′ (5.1)

Here ≡T is equivalence-modulo-extensionality, as defined in Section 3. It is the same
as equality if we add extensionality axioms on the left of the entailment symbol. Thus
this entailment is the same as entailment with the sanity axioms from the previous section,
using native equality rather than ≡T . And since these are ∆0 formulas, it is also the same
as entailment over “general models”, where we assume only correct typing and projection
commuting with tupling.

Proof systems for ∆0 formulas. Recall that our goal is an effective version of Corollary
4.3. For this we need to formalize our proof system for ∆0 formulas, which will allow us to
talk about proof witnesses for implicit definability.

A finite multiset of primitive membership expressions t ∈ u (i.e. extended ∆0 formulas)
will be called an ∈-context. These expressions arise naturally when breaking down bounded
quantifiers during a proof.

We introduce notation for instantiating a block of bounded quantifiers at a time in a
∆0 formula.

A term is a tuple-term if it is built up from variables using pairing.
If we want to talk only about effective generation of NRC witnesses from proofs, we can

use a basic proof system for ∆0 formulas, whose inference rules are shown in Figure 2.
The node labels are a variation of the traditional rules for first-order logic, with a couple

of quirks related to the specifics of ∆0 formulas. Each node label has shape Θ; Γ ⊢ ∆ where

7:24 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Ax
Θ; Γ, φ ⊢ φ,∆

⊥-L
Θ; Γ,⊥ ⊢ ∆

¬-L
Θ; Γ ⊢ ¬φ,∆
Θ; Γ, φ ⊢ ∆

¬-R
Θ; Γ, φ ⊢ ∆

Θ; Γ ⊢ ¬φ,∆

∧-R
Θ; Γ ⊢ φ1,∆ Θ; Γ ⊢ φ2,∆

Θ; Γ ⊢ ∆, φ1 ∧ φ2
∨-R

Θ; Γ ⊢ φ1, φ2,∆

Θ; Γ ⊢ φ1 ∨ φ2,∆

∀-R
Θ, y ∈ b; Γ ⊢ φ[y/x],∆
Θ; Γ ⊢ ∀x ∈ b φ,∆

y fresh ∃-R
Θ, t ∈ b; Γ ⊢ φ[t/x], ∃x ∈ b φ,∆

Θ, t ∈ b; Γ ⊢ ∃x ∈ b φ,∆

Refl
Θ; Γ, t =U t ⊢ ∆

Θ; Γ ⊢ ∆
Repl

Θ; Γ, t =U u, φ[u/x], φ[t/x] ⊢ ∆

Θ; Γ, t =U u, φ[t/x] ⊢ ∆

×η

Θ[⟨x1, x2⟩/x]; Γ[⟨x1, x2⟩/x] ⊢ ∆[⟨x1, x2⟩/x]
Θ; Γ ⊢ ∆

x1, x2 fresh

×β

Θ[ti/x]; Γ[ti/x] ⊢ ∆[ti/x]

Θ[πi(⟨t1, t2⟩)/x]; Γ[πi(⟨t1, t2⟩)/x] ⊢ ∆[πi(⟨t1, t2⟩)/x]
i∈{1, 2}

Figure 2: Proof rules for a ∆0 calculus, without restrictions for efficient generation of
witnesses. The left side of ; specifies the ∈-context. The negation rules ¬-L and
¬-R permit to exchange formulas between both sides of ⊢ such that it suffices to
have the rules for the connectives only for one side, where we choose the right
side.

• Θ is an ∈-context. Recall that these are multisets of membership atoms — the only
formulas in our proof system that are extended ∆0 but not ∆0. They will emerge during
proofs involving ∆0 formulas when we start breaking down bounded-quantifier formulas.

• Γ and ∆ are finite multisets of ∆0 formulas.1

For example, Repl in the figure is a “congruence rule”, capturing that terms that are equal
are interchangeable. Informally, it says that to prove conclusion ∆ from a hypothesis that
includes a formula φ including variable t and an equality t =U u, it suffices to add to the
hypotheses a copy of φ with u replacing some occurrences of t.

A proof tree whose root is labelled by Θ; Γ ⊢ ∆ witnesses that, for any given meaning
of the free variables, if all the membership relations in Θ and all formulas in Γ are satisfied,
then there is a formula in ∆ which is true. We say that we have a proof of a single formula
φ when we have a proof of ∅; ∅ ⊢ φ.

The proof system is easily seen to be sound: if Θ; Γ ⊢ ∆, then Θ; Γ |= ∆, where we
remind the reader that |= considers all models, not just extensional ones. It can be shown
to be complete by a standard technique (a “Henkin construction”, see Appendix F).

1Much of our machinery also works if sequents are built from finite sets instead of finite multisets. However,
the specification of certain proof transformations (e.g. Appendix G) is much simpler with multisets.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:25

=
Θ ⊢ x =U x,∆

⊤
Θ ⊢ ⊤,∆

̸=
Θ ⊢ t ̸=U u, α[u/x], α[t/x],∆

EL

Θ ⊢ t ̸=U u, α[t/x],∆
EL

α atomic

∧
Θ ⊢ φ1,∆ Θ ⊢ φ2,∆

Θ ⊢ φ1 ∧ φ2,∆
∨

Θ ⊢ φ1, φ2,∆

Θ ⊢ φ1 ∨ φ2,∆

∀
Θ, y ∈ b ⊢ φ[y/x],∆
Θ ⊢ ∀x ∈ b. φ,∆

y fresh ∃
Θ, t ∈ b; Γ ⊢ φ[t/x],∃x ∈ b φ,∆EL

Θ, t ∈ b; Γ ⊢ ∃x ∈ b φ,∆EL
t tuple-term

×η

Θ[⟨x1, x2⟩/x] ⊢ ∆EL[⟨x1, x2⟩/x]
Θ ⊢ ∆EL

x1, x2 fresh

×β

Θ[ti/x] ⊢ ∆EL[ti/x]

Θ[πi(⟨t1, t2⟩)/x] ⊢ ∆EL[πi(⟨t1, t2⟩)/x]
i ∈ {1, 2}

Figure 3: Our EL-normalized calculus for efficient generation of witnesses. The left side of
⊢ specifies the ∈-context. The right side a finite multiset of ∆0 formulas. Recall
that an atomic formula is an equality or inequality for U. Formula multisets ∆EL

are existential-leading, that is, they contain only atomic formulas and formulas
with existential quantification as top-level connective.

To generate NRC definitions efficiently from proof witnesses will require a more restrictive
proof system, in which we enforce some ordering on how proof rules can be applied, depending
on the shape of the hypotheses. We refer to proofs in this system as EL-normalized proofs,
To this end we consider a multiset of formulas existential-leading (EL) if it contains only
atomic formulas (i.e. formulas of the form t =U t

′ or t ̸=U t
′), formulas with existential

quantification as top-level connective and the truth-value constant ⊥.
Our restricted proof system – EL-normalized proofs – is shown in Figure 3. A superficial

difference from Figure 2 is that the restricted system is “almost 1-sided”: ∆0 formulas only
occur on the right, with only ∈-contexts on the left. In particular, a top-level goal Θ; Γ ⊢ ∆ in
the higher-level system would be expressed as Θ ⊢ ¬Γ,∆ in this system. We will often abuse
notation by referring to EL-normalized proofs of a 2-sided sequent Θ; Γ ⊢ ∆, considering
them as “macros” for the corresponding 1-sided sequent. For example, the hypothesis of
the ̸= rule could be written in 2-sided notation as Θ, t =U u ⊢ α[u/x], α[t/x],∆EL while the
conclusion could be written as Θ, t =U u ⊢ α[t/x],∆EL. As with Repl in the prior system,
this rule is about duplicating a hypothesis with some occurrences of t replaced by u.

A major aspect of the restriction is baked into the shape of the ∃ rule. It enforces
that existentials are instantiated only in a context which is EL, and that the term being
substituted is of a simple shape (tupling of variables).

Soundness is evident, since it is a special case of the proof system above. Completeness
is not as obvious, since we are restricting the proof rules. But we can translate proofs in

7:26 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

the more general system of Figure 2 into a EL-normalized proof, but with an exponential
blow-up: see Appendix G for details.

Furthermore, since for ∆0 formulas equivalence over all structures is the same as
equivalence over nested relations, a ∆0 formula φ is provable exactly when |=nested φ.

Example 5.1. Let us look at how to formalize a variation of Example 1.2. The specification
Σ(B, V) includes two conjuncts C1(B, V) and C2(B, V). C1(B, V) states that every pair
⟨k, e⟩ of V corresponds to a ⟨k, S⟩ in B with e ∈ S:

∀v ∈ V ∃b ∈ B. π1(v) =U π1(b) ∧ π2(v) ∈̂ π2(b)

C2(B, V) is:

∀b ∈ B ∀e ∈ π2(b) ∃v ∈ V. π1(v) =U π1(b) ∧ π2(v) =U e

Let us assume a stronger constraint, Σlossless(B), saying that the first component is a
key and second is non-empty:

∀b ∈ B ∀b′ ∈ B.π1(b) =U π1(b
′) → b ≡ b′

∧ ∀b ∈ B ∃e ∈ π2(b).⊤

With Σlossless we can show something stronger than in Example 1.2: Σ∧Σlossless implicitly
defines B in terms of V . That is, the view determines the identity query, which is witnessed
by a proof of

Σ(B, V) ∧ Σlossless(B) ∧ Σ(B′, V) ∧ Σlossless(B
′) → B ≡ B′

Let’s prove this informally. Assuming the premise, it is sufficient to prove B ⊆ B′ by
symmetry. So fix ⟨k, S⟩ ∈ B. By the second conjunct of Σlossless(B), we know there is e ∈ S.
Thus by C2(B, V), V contains the pair ⟨k, e⟩. Then, by C1(B

′, V), there is a S′ such that
⟨k, S′⟩ ∈ B′. To conclude it suffices to show that S ≡ S′. There are two similar directions, let
us detail the inclusion S ⊆ S′; so fix s ∈ S. By C2(B, V), we have ⟨k, s⟩ ∈ V . By C1(B

′, V)
there exists S′′ such that ⟨k, S′′⟩ ∈ B′ with s ∈̂ S′′. But since we also have ⟨k, S′⟩ ∈ B′, the
constraint Σlossless(B) implies that S′ ≡ S′′, so s ∈ S′ as desired.

Effective Beth result. A derivation of implicit definability in our proof system will be
referred to as a witness to the implicit definability of o in terms of i⃗ relative to φ. Formally,
this is a derivation witnessing the judgement:

φ(⃗i, a⃗, o) ∧ φ(⃗i, a⃗′, o′) ⊢ o ≡T o
′

With these definitions, we now state formally our main result, the effective version of
Corollary 4.3.

Theorem 5.2 (Effective implicit to explicit for nested data). Given a witness to the implicit

definition of o in terms of i⃗ relative to ∆0 φ(⃗i, a⃗, o), one can compute NRC expression E

such that for any i⃗, a⃗ and o, if φ(⃗i, a⃗, o) then E(⃗i) = o. Furthermore, if the witness is
EL-normalized, this can be done in polynomial time.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:27

Application to views and queries. We now state the consequence for effective rewriting
queries over views mentioned in the introduction. Consider a query given by NRC expression

EQ over inputs B⃗ and NRC expressions EV1 . . . EVn over B⃗. EQ is determined by EV1 . . . EVn ,

if every two nested relations (finite or infinite) interpreting B⃗ that agree on the output of
each EVi agree on the output of EQ. An NRC rewriting of EQ in terms of EV1 . . . EVn is an

expression R(V1 . . . Vn) such that for any nested relation B⃗, if we evaluate each EVi on B⃗ to

obtain Vi and evaluate R on the resulting V1 . . . Vn, we obtain Q(B⃗).

Given EQ and EV1 . . . EVn , let ΣV⃗ ,Q(V⃗ , B⃗, Q, . . .) conjoin the input-output specifications,

as defined in Section 3, for EV1 . . . EVn and EQ. This formula has variables B⃗, V1 . . . Vn, Q
along with auxiliary variables for subqueries. A proof witnessing determinacy of EQ by

EV1 . . . EVn , is a proof that ΣV,Q implicitly defines Q in terms of V⃗ .

Corollary 5.3. From a witness that a set of NRC views V⃗ determines an NRC query Q, we

can produce an NRC rewriting of Q in terms of V⃗ . If the witness is EL-normalized, this can
be done in PTIME.

The notion of determinacy of a query over views relative to a ∆0 theory (e.g. the key
constraint in Example 1.2) is a straightforward generalization of the definitions above, and
Corollary 5.3 extends to this setting.

In the case where we are dealing with flat relations, the effective version is well-known:
see Toman and Weddell’s [TW11], and the discussion in [FKN13, BCLT16].

We emphasize that the result involves equivalence up to extensionality, which underlines
the distinction from the classical Beth theorem. If we wrote out implicit definability up to
extensionality as an entailment involving two copies of the signature, we would run into
problems in applying the standard proof of Beth’s theorem.

5.2. Tools for the effective Beth theorem.

5.2.1. Interpolation. The first tool for our effective Beth theorem, Theorem 5.2, will be an
effective version of interpolation Proposition 4.4. Recall that interpolation results state that
if we have an entailment involving two formulas, a “left” formula φL and a “right” formula
φR, we can get an “explanation” for the entailment that factors through an expression only
involving non-logical symbols (in our case, variables) that are common to φL and φR.

Theorem 5.4. Let Θ be an ∈-context and Γ,∆ finite multisets of ∆0 formulas. Then from
any proof of Θ; Γ ⊢ ∆, we can compute in linear time an extended ∆0 formula θ with
FV (θ) ⊆ FV (Θ,Γ) ∩ FV (∆) such that Θ; Γ ⊢ θ and ∅; θ ⊢ ∆.

The θ produced by the theorem is a Craig interpolant. Craig’s interpolation theorem
[Cra57a] states that when Γ ⊢ ∆ with Γ,∆ in first-order logic, such a θ exists in first-order
logic. Our variant states one can find θ in ∆0 efficiently from a proof of the entailment in
either of our ∆0 proof systems. We have stated the result for the 2-sided system. It holds
also for the EL-normalized system, where the partition of the formulas into left and right of
the proof symbol is arbitrary. The argument is induction on proof length, roughly following
prior interpolation algorithms [Smu68b]. See Appendix H.

We compare with the model-theoretic statement Proposition 4.4. There, the interpolant
is ∆0, while here in the effective version it is extended ∆0. This is due to the linear time

7:28 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

requirement, which leads to the involvement of equalities =T in the interpolation algorithm.
The construction would also work in plain ∆0 if ≡T is used instead. However, ≡T is a
shorthand for a formula whose size is exponential in the term depth of the type T .

5.2.2. Some admissible rules. As we mentioned earlier, our EL-normalized proof system is
extremely low-level, and so it is convenient to have higher-level proof rules as macros. We
formalize this below.

Definition 5.5. A rule with premise Θ′ ⊢ ∆′ and conclusion Θ ⊢ ∆

Θ′ ⊢ ∆′

Θ ⊢ ∆

is (polytime) admissible in a given calculus if a proof of the conclusion Θ ⊢ ∆ in that calculus
can be computed from a proof of the premise Θ′ ⊢ ∆′ (in polynomial time).

Up to rewriting the sequent to be one-sided, all the rules in Figure 2 are polytime
admissible in the EL-normalized calculus. Our main theorem will rely on the polytime
admissibility within the EL-normalized calculus of additional rules that involve chains of
existential quantifiers. To state them, we need to introduce a generalization of bounded
quantification: “quantifying over subobjects of a variable”.

Definition 5.6. For every type T , define a subset of the non-empty words over the three-letter
alphabet {1, 2,∋} of subtype occurrences of T inductively as follows:

• If p is a subtype occurrence of T or the empty word then the concatenation ∋, p is a subtype
occurrence of Set(T).

• If i ∈ {1, 2} and p is a subtype occurrence of Ti, i, p is a subtype occurrence of T1 × T2.

Given subtype occurrence p and quantifier symbol Q ∈ {∀, ∃}, define the notation Q x ∈p t.φ
by induction on p:

• Q x ∈∋ t.φ is Q x ∈ t
• Q x ∈∋,p t.φ is Q y ∈ t.Q x ∈p y.φ with y a fresh variable
• Q x ∈i,p t.φ is Q x ∈p πi(t).φ when i ∈ {1, 2}.

Now we are ready to state the results we need on admissibility, referring in each case to
the EL-normalized calculus. Some further rules, that are easily seen to be admissible, are
used in the appendices. All proofs are found in Appendix I. The first states that if we have
proven that there exists a subobject of o′ equivalent to object r, then we can prove that for
each element z of r there is a corresponding equivalent subobject z′ within o′. Furthermore,
this can be done effectively, and the output proof has at most the same size: that is, there is
not even a polynomial blow-up involved.

Lemma 5.7. Assume p is a subtype occurrence for the type of the term o′. The following is
polytime admissible

Θ ⊢ ∆, ∃r′ ∈p o′. r ≡Set(T ′) r
′

Θ, z ∈ r ⊢ ∆, ∃z′ ∈∋,p o′. z ≡T ′ z′

Furthermore, the size of the output proof is at most the size of the input proof.

The second result states that we can move between an equivalence of r, r′ and a
universally-quantified biconditional between memberships in r and r′. Because we are
dealing with ∆0 formulas, the universal quantification has to be bounded by some additional
variable a.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:29

Lemma 5.8. The following is polytime admissible (where p is a subtype occurrence of the
type of o′)

Θ ⊢ ∆, ∃r′ ∈p o′. r ≡Set(T ′) r
′

Θ ⊢ ∆,∃r′ ∈p o′.∀z ∈ a. z ∈̂ r ↔ z ∈̂ r′

5.2.3. The NRC Parameter Collection Theorem. Our last tool is a kind of interpolation
result connecting ∆0 formulas and NRC:

Theorem 5.9 (NRC Parameter Collection). Let L, R be sets of variables with C = L ∩R
and

• φL and λ(z) ∆0 formulas over L
• φR and ρ(z, y) ∆0 formulas over R
• r a variable of R and c a variable of C.

Suppose that we have an EL-normalized proof of

φL ∧ φR → ∃y ∈p r ∀z ∈ c (λ(z) ↔ ρ(z, y))

Then one may compute in polynomial time an NRC expression E with free variables in
C such that

φL ∧ φR → {z ∈ c | λ(z)} ∈ E

If λ was a “common formula” — one using only variables in C — then the nested relation
{z ∈ c | λ(z)} would be definable over C in NRC via ∆0-comprehension. Unfortunately λ is
a “left formula”, possibly with variables outside of C. Our hypothesis is that it is equivalent
to a “parameterized right formula”: a formula with variables in R and parameters that lie
below them. Intuitively, this can happen only if λ can be rewritten to a formula ρ′(z, x)
with variables of C and a distinguished c0 ∈ C such that

φL ∧ φR → ∃x ∈p c0 ∀z ∈ c (λ(z) ↔ ρ′(z, x))

And if this is true, we can use an NRC expression over C to define a set that will contain
the correct “parameter” value x defining λ. From this we can define a set containing the
nested relation {z ∈ c | λ(z)}. A formalization of this rough intuition — “when left formulas
are equivalent to parameterized right formulas, they are equivalent to parameterized common
formulas” — is given in Section K, where a similar statement that does not mention NRC is
proven for first-order logic (sadly it does not seem strong enough to derive Theorem 5.9).

We now give the proof of the theorem.
To get the desired conclusion, we need to prove a more general statement by induction

over proof trees. Besides making the obvious generalization to handle two multisets of
formulas instead of the particular formulas φL and φR, as well as some corresponding left
and right ∈-contexts, that may appear during the proof, we need to additionally generate a
new formula θ that only uses common variables, which can replace φR in the conclusion.
This is captured in the following lemma:

Lemma 5.10. Let L, R be sets of variables with C = L ∩R and

• ∆L, λ(z) a multiset of ∆0 formulas over L
• ∆R, ρ(z, y) a multiset of ∆0 formulas over R
• ΘL (respectively ΘR) an ∈-context over L (respectively over R)
• r1, . . . , rk variables of R and c a variable of C.

7:30 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

• we write G(ri) for ∃y ∈pi ri ∀z ∈ c (λ(z) ↔ ρ(z, y))

Suppose that we have a EL-normalized proof tree with conclusion

ΘL,ΘR ⊢ ∆L,∆R,G(r1), . . . ,G(rk)

Then one may compute in polynomial time an NRC expression E and an extended ∆0

formula θ using only variables from C such that

ΘL |=nested ∆L, θ ∨ {z ∈ c | λ(z)} ∈ E and ΘR |=nested ∆R,¬θ

The theorem follows easily from this lemma, so we focus on proving the lemma, by
induction over the size of the proof of ΘL,ΘR ⊢ ∆L,∆R,G(r1), . . . ,G(rk), making a case
distinction according to which rule is applied last. The way θ will be built will, perhaps
unsurprisingly, be very reminiscent of the way interpolants are normally constructed in
standard proof systems [Fit96, Smu68b].

For readability, we adopt the following conventions:

• We write G̃ for the multiset of formulas G(r1), . . . ,G(rk) and Λ for the expression {z ∈ c |
λ(z)}.

• For formulas and NRC expressions obtained by applying the induction hypothesis, we use
the names θIH and EIH (or θIH1 , θ

IH
2 and EIH

1 , E
IH
2 when the induction hypothesis is applied

several times). In each subcase, our goal will be to build suitable θ and E.
• We will color pairs of terms, formulas and multisets of formulas according to whether they
are part of either ΘL; ∆L or ΘR; ∆R either at the start of the case analysis or when we
want to apply the induction hypothesis. In particular, the last sequent of the proof under
consideration will be depicted as

ΘL,ΘR ⊢ ∆L,∆R,G

• Unless it is non-trivial, we leave checking that the free variables in our proposed definition
for E and Θ are taken among variables of C to the reader.

In two of the cases below, we will make use of some syntactic sugar on top of bounded
quantification. We introduce

∃x1 . . . xn|t ∈ b . φ and ∀x1 . . . xn|t ∈ b . φ

as notation. This will be an extended ∆0 formula, intuitively quantifying over variables
x1, . . . , xn that occur in tuple-term t, which is bounded by set b. Here φ is an extended
∆0 formula. The variables other than x1, . . . , xn occurring in t remain free in the resulting
formula.

To make this precise, let Ref (t, v, u) be the set of the terms expressed with projection
applied to u that refer to an occurrence of variable v in tuple-term t, ordered according to
the occurrences when t is printed. Formally, Ref (t, t, u) := {u}; Ref (t, v, u) := {} if t is
a variable other than v; and Ref (⟨t1, t2⟩, v, u) := Ref (t1, v, π1(u)) ∪ Ref (t2, v, π2(u)). We
write Ref i(t, v, u) for the i-th member of Ref (t, v, u). We can then define ∃x1 . . . xn|t ∈ b . φ
as

∃y ∈ b . φ[Ref 1(t, x1, y)/x1, . . . ,Ref 1(t, xn, y)/xn] ∧∧
z is a variable occurring in t other than x1,...,xn

z = Ref 1(t, z, y) ∧∧
u is a variable occurring in t and Ref j(t,y,u) for j>1 in Ref (t,y,u)Ref 1(t, u, y) = Ref j(t, u, y)

∀x1 . . . xn|t ∈ b . φ can be defined analogously.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:31

Here equality =T (written above without the type decoration) of extended ∆0 formulas
comes into play, in contrast to ≡T , to meet the polynomial time requirements of Theorems 5.4
and 5.9 as indicated on p. 27.

As an example for the notation consider

∃x1x2|⟨⟨x1, x2⟩, z⟩ ∈ b . x1 ≡ x2,

which stands for

∃y ∈ b . π1(π1(y)) ≡ π2(π1(y)) ∧ z = π2(y).

With these conventions in mind, let us proceed.

• If the last rule applied is the ⊤ rule, in both cases we are going to take E := ∅, but pick θ
to be ⊥ or ⊤ according to whether ⊤ occurs in ∆L or ∆R; we leave checking the details
to the reader.

• If the last rule applied is the ∧ rule, we have two cases according to the position of the
principal formula φ1 ∧φ2. In both cases, E will be obtained by unioning NRC expressions
obtained from the induction hypothesis, and θ will be either a disjunction or a conjunction.
– If we have ∆L = φ1 ∧ φ2,∆

′
L, so that the proof has shape

ΘL,ΘR ⊢ φ1,∆
′
L,∆R, G̃ ΘL,ΘR ⊢ φ2,∆

′
L,∆R, G̃

ΘL,ΘR ⊢ φ1 ∧ φ2,∆
′
L,∆R, G̃

by the induction hypothesis, we have NRC expressions EIH
1 , EIH

2 and formulas θIH1 , θ
IH
2

such that

ΘL |=nested φ1,∆
′
L, θ

IH
1 ∨ Λ ∈ EIH

1 and ΘR |=nested ∆R,¬θIH1
ΘL |=nested φ2,∆

′
L, θ

IH
2 ∨ Λ ∈ EIH

1 and ΘR |=nested ∆R,¬θIH2
In that case, we take E = EIH

1 ∪ EIH
2 and θ := θIH1 ∨ θIH2 . Weakening the properties on

the left column, we have

ΘL |=nested φi,∆
′
L, θ ∨ Λ ∈ E

for both i ∈ {1, 2}, so we have

ΘL |=nested φ1 ∧ φ2,∆
′
L, θ ∨ Λ ∈ E

as desired. Since ¬θ = ¬θIH1 ∧ ¬θIH2 , we get

ΘR |=nested ∆R,¬θ

by combining both properties from the right column.
– The dual case where ∆R = φ1 ∧ φ2,∆

′
R is handled similarly, except that we set θ :=

θIH1 ∧ θIH2 .
• Suppose the last rule applied is ∨ with principal formula φ1 ∨ φ2. Depending on whether
∆L = φ1 ∨ φ2,∆

′
L or ∆R = φ1 ∨ φ2,∆

′
R, the proof will end with one of the following steps

ΘL,ΘR ⊢ φ1, φ2,∆
′
L,∆R, G̃

ΘL,ΘR ⊢ φ1 ∨ φ2,∆′
L,∆R, G̃

or
ΘL,ΘR ⊢ ∆′

L, φ1, φ2,∆R, G̃
ΘL,ΘR ⊢ ∆′

L, φ1 ∨ φ2,∆R, G̃

In both cases, we apply the inductive hypothesis according to the obvious splitting of
contexts and multisets of formulas, to get an NRC definition EIH along with a formula θIH

that satisfy the desired semantic property. We set E := EIH and θ := θIH.

7:32 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

• Suppose the last rule applied is ∀ with principal formula ∀x ∈ b.φ. As in the previous
case, depending on whether ∆L = ∀x ∈ b.φ,∆′

L or ∆R = ∀x ∈ b.φ,∆′
R, the proof will end

with one of the following steps (assuming y is fresh below)

ΘL, y ∈ b,ΘR ⊢ φ[y/x],∆′
L,∆R, G̃

ΘL,ΘR ⊢ ∀x ∈ b.φ,∆′
L,∆R, G̃

or
ΘL,ΘR, y ∈ b ⊢ ∆′

L, φ[y/x],∆R, G̃
ΘL,ΘR ⊢ ∆′

L,∀x ∈ b.φ,∆R, G̃

In both cases, we again apply the inductive hypothesis according to the obvious splitting
of contexts and multisets of formulas to get an NRC definition EIH and a formula θIH that
satisfy the desired semantic property. We set E := EIH and θ := θIH.

• Now we consider the case where the last rule applied is ∃. Here we have two main subcases,
according to whether the formula that is instantiated in the premise, that is, the principal
formula, belongs to G̃ or not. In the first case, we have two further subcases according to
whether the instantiated formula still has a leading existential quantifier or not.
– If the principal formula is of the shape G = ∃y ∈ r ∀z ∈ c. (λ(z) ↔ ρ(z, y)) (so in

particular, G has a single leading existential quantifier) and is a member of G̃, the proof
necessarily has shape

ΘL,ΘR, x ∈ c ⊢ ∆L,∆R,¬ρ(x,w), λ(x), G̃
∨

ΘL,ΘR, x ∈ c ⊢ ∆L,∆R, ρ(x,w) → λ(x), G̃
ΘL,ΘR, x ∈ c ⊢ ∆L,∆R,¬λ(x), ρ(x,w), G̃

∨
ΘL,ΘR, x ∈ c ⊢ ∆L,∆R, λ(x) → ρ(x,w), G̃

∧
ΘL,ΘR, x ∈ c ⊢ ∆L,∆R, λ(x) ↔ ρ(x,w), G̃

∀
ΘL,ΘR ⊢ ∆L,∆R,∀z ∈ c. (λ(z) ↔ ρ(z, w)), G̃

∃
ΘL,ΘR ⊢ ∆L,∆R, G̃

where x is a fresh variable So in particular, we have two strict subproofs with respective
conclusions

ΘL, x ∈ c,ΘR ⊢ λ(x),∆L,¬ρ(x,w),∆R, G̃
and ΘL, x ∈ c,ΘR ⊢ ¬λ(x),∆L, ρ(x,w),∆R, G̃

Applying the inductive hypothesis, we obtain NRC expressions EIH
1 , EIH

2 and formulas
θIH1 , θ

IH
2 which contain free variables in C ∪ {x} such that all of the following hold

ΘL, x ∈ c |=nested λ(x),∆L, θ
IH
1 ∨ Λ ∈ EIH

1 (5.2)

and ΘL, x ∈ c |=nested ¬λ(x),∆L, θ
IH
2 ∨ Λ ∈ EIH

2 (5.3)

and ΘR |=nested ¬ρ(x,w),∆R,¬θIH1 (5.4)

and ΘR |=nested ρ(x,w),∆R,¬θIH2 (5.5)

With this in hand, we set

θ := ∃x ∈ c. θIH1 ∧ θIH2 and E :=
{{

x ∈ c | θIH2
}}

∪
⋃{

EIH
1 ∪ EIH

2 | x ∈ c
}

Note in particular that the free variables of E and θ are contained in C, since we bind
x. The bindings of x have radically different meaning across the two main components
E1 :=

{{
x ∈ c | θIH2

}}
and E2 :=

{
EIH

1 ∪ EIH
2 | x ∈ c

}
of E = E1 ∪ E2. E1 consists of a

single definition corresponding to the restriction of c to θIH2 , and there x plays the role
of an element being defined. On the other hand, E2 corresponds to the joining of all
the definitions obtained inductively, which may contain an x ∈ c as a parameter. So we
have two families of potential definitions for Λ indexed by x ∈ c that we join together.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:33

Now let us show that we have the desired semantic properties. First we need to show
that E contains a definition for Λ under the right hypotheses, i.e.,

ΘL |=nested ∆L,∃x ∈ c. θIH1 ∧ θIH2 ,Λ ∈
({{

x ∈ c | θIH2
}}

∪
⋃{

EIH
1 ∪ EIH

2 | x ∈ c
})

(5.6)

which can be rephrased as

ΘL |=nested ∆L,∃x ∈ c. θIH1 ∧ θIH2 ,Λ =
{
x ∈ c | θIH2

}
,∃x ∈ c. Λ ∈ EIH

1 ∪ EIH
2

Now concentrate on the statement Λ =
{
x ∈ c | θIH2

}
. It would follow from the two

inclusions Λ ⊆
{
x ∈ c | θIH2

}
and

{
x ∈ c | θIH2

}
⊆ Λ, so, recalling that Λ = {x ∈ c | λ(x)},

the overall conclusion would follow from having

ΘL, x ∈ c |=nested ∆L, ∃x ∈ c. θIH1 ∧ θIH2 , λ(x) → θIH2 ,∃x ∈ c. Λ ∈ EIH
1 ∪ EIH

2

and ΘL, x ∈ c |=nested ∆L, ∃x ∈ c. θIH1 ∧ θIH2 , θIH2 → λ(x),∃x ∈ c. Λ ∈ EIH
1 ∪ EIH

2

Those in turn follow from the following two statements

ΘL, x ∈ c |=nested ∆L, θ
IH
1 ∧ θIH2 ,¬λ(x), θIH2 ,Λ ∈ EIH

1 ∪ EIH
2

and ΘL, x ∈ c |=nested ∆L, θ
IH
1 ∧ θIH2 ,¬θIH2 , λ(x),Λ ∈ EIH

1 ∪ EIH
2

which are straightforward consequences of 5.3 and 5.2 respectively. This concludes the
proof of 5.6.
Now we only need to prove a final property, which is

ΘR |=nested ∆R,∀x ∈ c. ¬θIH1 ∨ ¬θIH2
which is equivalent to the validity of

ΘR, x ∈ c |=nested ∆R,¬θIH1 ∨ ¬θIH2
which can be obtained by combining 5.4 and 5.5 with excluded middle for ρ(x,w).

– If the principal formula is of the shape G = ∃r′ ∈ r G′ where G′ begins with another
existential quantifier and G is a member of G̃ = G, G̃′, the proof necessarily has shape

ΘL,ΘR ⊢ ∆L,∆R,G′, G̃
ΘL,ΘR ⊢ ∆L,∆R, G̃

then we can apply the induction hypothesis where in lieu of G̃ we have G′, G̃ and obtain
θIH and EIH. It is then clear that we can simply set θ := θIH and E := EIH.

– If the principal formula is not a member of G̃, then we have two subcases corresponding
to whether the principal formula under consideration occurs in ∆L or ∆R, and whether
the relevant membership statement that witnesses the instantiation is a member of ΘL

or ΘR. Let us list all of the different alternatives
∗ If the last step of the proof has shape

Θ′
L, w ∈ b,ΘR ⊢ ∆′

L, φ[w/x], ∃x ∈ b φ,∆R, G̃
Θ′
L, w ∈ b,ΘR ⊢ ∆′

L,∃x ∈ b φ,∆R, G̃

with ΘL = Θ′
L, w ∈ b and ∆L = ∆′

L,∃x ∈ b φ, we can conclude by setting θ := θIH

and E := EIH, essentially because the set of free variables L,R and C can be taken
to be the same in the premise.

7:34 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

∗ In the dual case where the last step has shape

ΘL,Θ
′
R, w ∈ b ⊢ ∆L,∆

′
R, φ[w/x], ∃x ∈ b φ, G̃

ΘL,ΘR, w ∈ b ⊢ ∆L,∆′
R,∃x ∈ b φ, G̃

with ΘR = Θ′
R, w ∈ b and ∆R = ∆′

R,∃x ∈ b φ, we can also conclude immediately by

setting θ := θIH and E := EIH.
∗ If the last step has shape

Θ′
L, w ∈ b,ΘR ⊢ ∆L,∆

′
R, φ[w/x],∃x ∈ b φ, G̃

Θ′
L, w ∈ b,ΘR ⊢ ∆L,∆′

R,∃x ∈ b φ, G̃

with ΘL = Θ′
L, w ∈ b and ∆R = ∆′

R, ∃x ∈ b φ, we need to do something non-trivial.

We can still use the inductive hypothesis to obtain θIH and EIH, but they may
feature variables x1, . . . , xn of w that are in L as free variables. But we also have
that the free variables of b are included in C. With that in mind, we can set
θ := ∃x1 . . . xn|w ∈ b . θIH and E :=

⋃{
EIH | w ∈ b

}
.

∗ If the last step has shape

ΘL,ΘR, w ∈ b ⊢ ∆′
L, φ[w/x], ∃x ∈ b φ,∆R, G̃

ΘL,Θ′
R, w ∈ b ⊢ ∆′

L,∃x ∈ b φ,∆R, G̃

with ΘR = Θ′
R, w ∈ b and ∆L = ∆′

L, ∃x ∈ b φ, we proceed similarly by setting

θ := ∀x1 . . . xn|w ∈ b . θIH and E :=
⋃{

EIH | w ∈ b
}
.

• The case of the = rule can be handled exactly as the ⊤ rule.
• For the ̸= rule, we distinguish several subcases:
– If we have ∆L = y ̸=U z, α[y/x],∆

′
L or ∆R = y ̸=U z, α[y/x],∆

′
R, so that the last step

has one of the two following shapes

ΘL,ΘR ⊢ y ̸=U z, α[y/x], α[z/x],∆
′
L,∆

′
R, G̃

ΘL,ΘR ⊢ y ̸=U z, α[y/x],∆
′
L,∆

′
R, G̃

ΘL,ΘR ⊢ ∆′
L, y ̸=U z, α[y/x], α[z/x],∆

′
R, G̃

ΘL,ΘR ⊢ ∆′
L, y ̸=U z, α[y/x],∆

′
R, G̃

we can apply the induction hypothesis to obtain some θIH and EIH such that setting
θ := θIH and E := EIH solves this subcase; we leave checking the additional properties
to the reader.

– Otherwise, if we have ∆L = y ̸=U z,∆
′
L, ∆R = α[y/x],∆′

R and a last step of shape

ΘL,ΘR ⊢ y ̸=U z,∆
′
L, α[y/x], α[z/x],∆

′
R, G̃

ΘL,ΘR ⊢ y ̸=U z,∆
′
L, α[y/x],∆

′
R, G̃

In that case, the inductive hypothesis gives θIH and EIH with free variables in C ∪ {z}
such that

ΘL |=nested y ̸=U z,∆
′
L, θ

IH,Λ ∈ EIH and ΘR |=nested α[y/x], α[z/x],∆
′
R,¬θIH

We then have two subcases according to whether z ∈ C or not
∗ If z ∈ C, we can take θ := θIH ∧ y =U z and E := EIH. Their free variables are in C
and we only need to check

ΘL |=nested y ̸=U z,∆
′
L, θ

IH ∧ y =U z,Λ ∈ EIH and ΘR |=nested α[y/x],∆
′
R,¬θIH, y ̸=U z

which follow easily from the induction hypothesis.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:35

∗ Otherwise, we take θ := θIH[y/z] and E := EIH[y/z]. In that case, note that we have
α[z/x][y/z] = α[y/x] (which would not be necessarily the case if z belonged to C).
This allows to conclude that we have

ΘL |=nested y ̸=U z,∆
′
L, θ

IH[y/z],Λ ∈ EIH[y/z] and ΘR |=nested α[y/x],∆
′
R,¬θIH[y/z]

directly from the induction hypothesis.
– Otherwise, if we have ∆L = α[y/x],∆′

L, ∆R = y ̸=U z,∆
′
R and a last step of shape

ΘL,ΘR ⊢ α[y/x], α[z/x],∆′
L, y ̸=U z,∆

′
R, G̃

ΘL,ΘR ⊢ α[y/x],∆′
L, y ̸=U z,∆

′
R, G̃

In that case, the inductive hypothesis gives θIH and EIH with free variables in C ∪ {z}
such that

ΘL |=nested α[y/x], α[z/x],∆
′
L, θ

IH,Λ ∈ EIH and ΘR |=nested y ̸=U z,∆
′
R,¬θIH

We then have two subcases according to whether z ∈ C or not
∗ If z ∈ C, we can take θ := θIH ∨ y ̸=U z and E := EIH. Their free variables are in C
and we only need to check

ΘL |=nested α[y/x],∆
′
L, θ

IH∨y ̸=U z,Λ ∈ EIH and ΘR |=nested y ̸=U z,∆
′
R,¬θIH∧y =U z

which follow easily from the induction hypothesis.
∗ Otherwise, we take θ := θIH[y/z] and E := EIH[y/z]. In that case, note that we have
α[z/x][y/z] = α[y/x] (which would not be necessarily the case if z belonged to C).
This allows to conclude that we have

ΘL |=nested α[y/x],∆
′
L, θ

IH[y/z],Λ ∈ EIH[y/z] and ΘR |=nested y ̸=U z,∆
′
R,¬θIH[y/z]

directly from the induction hypothesis.
• If the last rule applied is ×η, the proof has shape

ΘL[⟨x1, x2⟩/x],ΘR[⟨x1, x2⟩/x] ⊢ ∆L[⟨x1, x2⟩/x],∆R[⟨x1, x2⟩/x], G̃[⟨x1, x2⟩/x]
ΘL,ΘR ⊢ ∆L,∆R, G̃

and one applies the inductive hypothesis as expected to get θIH and EIH such that

ΘL[⟨x1, x2⟩/x]|=nested ∆L[⟨x1, x2⟩/x], θIH,Λ[⟨x1, x2⟩/x] ∈ E
and ΘR[⟨x1, x2⟩/x]|=nested ∆R[⟨x1, x2⟩/x],¬θIH

and with free variables included in C if x /∈ C or (C ∪ {x1, x2}) \ {x} otherwise. In
both cases, it is straightforward to check that taking θ := θIH[π1(x)/x1, π2(x)/x2] and
E := EIH[π1(x)/x1, π2(x)/x2] will yield the desired result.

• Finally, if the last rule applied is the ×β rule, it has shape

(ΘL,ΘR)[xi/x] ⊢ (∆L,∆R, G̃′)[xi/x]

(ΘL,ΘR)[πi(⟨x1, x2⟩)/x] ⊢ (∆L,∆R, G̃′)[πi(⟨x1, x2⟩)/x]

and we can apply the induction hypothesis to get satisfactory θIH and EIH (moving from

G̃ to G̃′[xi/x] is unproblematic, as we can assume the lemma works for G̃ with arbitrary
subformulas λ and ρ); it is easy to see that we can set θ := θIH and E := EIH and conclude.

This completes the proof of Lemma 5.10.

7:36 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

5.3. Proof of the main result. We now turn to the proof of our second main result, which
we recall from the earlier subsection:

Theorem 5.2 (Effective implicit to explicit for nested data). Given a witness to the implicit

definition of o in terms of i⃗ relative to ∆0 φ(⃗i, a⃗, o), one can compute NRC expression E

such that for any i⃗, a⃗ and o, if φ(⃗i, a⃗, o) then E(⃗i) = o. Furthermore, if the witness is
EL-normalized, this can be done in polynomial time.

We have as input a proof of

φ(⃗i, a⃗, o) ∧ φ(⃗i, a⃗′, o′) → o ≡T o
′

and we want an NRC expression E(⃗i) such that

φ(⃗i, a⃗, o) |=nested E(⃗i) ≡T o

This will be a consequence of the following theorem.

Theorem 5.11. Given ∆0 φ(⃗i, a⃗, o) and ψ(⃗i, b⃗, o′) together with a EL-normalized proof with
conclusion

Θ(⃗i, a⃗, r); φ(⃗i, a⃗, r), ψ(⃗i, b⃗, o′) ⊢ ∃r′ ∈p o′. r ≡T r
′

we can compute in polynomial time an NRC expression E(⃗i) such that

Θ(⃗i, a⃗, r); φ(⃗i, a⃗, r), ψ(⃗i, b⃗, o′) |=nested r ∈ E(⃗i)

That is, we can find an NRC query that “collects answers”. Assuming Theorem 5.11,
let’s prove the main result.

Proof of Theorem 5.2. We assume o has a set type, deferring the simple product and Ur-
element cases (the latter using get) to Appendix J. Fix an implicit definition of o up to

extensionality relative to φ(⃗i, a⃗, o) and a EL-normalized proof of

φ(⃗i, a⃗, o) ∧ φ(⃗i, a⃗′, o′) ⊢ o ≡Set(T) o
′

We can apply Lemma 5.7, in the simple case where p is the “empty path”, to obtain a
EL-normalized derivation of

r ∈ o; φ(⃗i, a⃗, o), φ(⃗i, a⃗′, o′) ⊢ ∃r′ ∈ o′ r ≡T r
′ (5.7)

Then applying Theorem 5.11 gives an NRC expression E(⃗i) such that

φ(⃗i, a⃗, o) ∧ r ∈̂ o ∧ φ(⃗i, a⃗′, o′) |=nested r ∈ E(⃗i)

Thus, the object determined by i⃗ is always contained in E(⃗i). Recall that by (5.7), we have
a derivation of

r ∈ o; φ(⃗i, a⃗, o) ⊢ φ(⃗i, a⃗′, o′) → ∃r′ ∈ o′ r ≡T r
′

and applying interpolation (Theorem 5.4) to that gives a ∆0 formula κ(⃗i, r) such that the
following are valid

r ∈ o ∧ φ(⃗i, a⃗, o) → κ(⃗i, r) (5.8)

κ(⃗i, r) ∧ φ(⃗i, a⃗′, o′) → ∃r′ ∈ o′. r ≡T r
′ (5.9)

We claim that Eκ(⃗i) =
{
x ∈ E(⃗i) | κ(⃗i, x)

}
is the desired NRC expression. To show this,

assume φ(⃗i, a⃗, o) holds. We know already that o ⊆ E(⃗i) and, by (5.8), every r ∈ o satisfies

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:37

κ(⃗i, o), so o ⊆ Eκ(⃗i). Conversely, if x ∈ Eκ(⃗i), we have κ(⃗i, x), so by (5.9), we have that

x ∈ o, so Eκ(⃗i) ⊆ o. So Eκ(⃗i) = o, which concludes the proof.

We now turn to the proof of Theorem 5.11.

Proof of Theorem 5.11. We prove the theorem by induction over the type T . We only
prove the inductive step for set types: the inductive case for products is straightforward.

For T = U, the base case of the induction, it is clear that we can take for E an expression
computing the set of all U-elements in the transitive closure of i⃗. This can clearly be done
in NRC.

So now, we assume T = Set(T ′) and that Theorem 5.11 holds up to T ′. We have a
EL-normalized derivation of

Θ; φ(⃗i, r), ψ(⃗i, o′) ⊢ ∃r′ ∈p o′. r ≡Set(T ′) r
′ (5.10)

omitting the additional variables for brevity.
From our input derivation, we can easily see that each element of r must be equivalent

to some element below o′. This is reflected in Lemma 5.7, which allows us to efficiently
compute a proof of

Θ, z ∈ r; φ(⃗i, r), ψ(⃗i, o′) ⊢ ∃z′ ∈mp o′. z ≡T ′ z′ (5.11)

We can then apply the inductive hypothesis of our main theorem at sort T ′, which is strictly
smaller than Set(T ′), on that new proof. This yields an NRC expression EIH(⃗i) of type
Set(T ′) such that

Θ, z ∈ r; φ(⃗i, r), ψ(⃗i, o′) |=nested z ∈ EIH(⃗i)

That is, our original hypotheses entail r ⊆ EIH(⃗i).
Thus, we have used the inductive hypothesis to get a “superset expression”. But now

we want an expression that has r as an element. We will do this by unioning a collection of
definable subsets of EIH(⃗i). To get these, we come back to our input derivation (5.10). By
Lemma 5.8, we can efficiently compute a derivation of

Θ; φ(⃗i, r), ψ(⃗i, o′) ⊢ ∃r′ ∈p o′ ∀z ∈ a (z ∈̂ r ↔ z ∈̂ r′)

where we take a to be a fresh variable of sort Set(T ′). Now, applying our NRC Parameter

Collection result (Theorem 5.9) we obtain an NRC expression Ecoll(⃗i, a) satisfying

Θ; φ(⃗i, r), ψ(⃗i, o′) |=nested a ∩ r ∈ Ecoll(⃗i, a)

Now, recalling that we have r ⊆ EIH(⃗i) and instantiating a to be EIH(⃗i), we can conclude
that

Θ; φ(⃗i, r), ψ(⃗i, o′) |=nested r ∈ Ecoll(⃗i, EIH(⃗i))

Thus we can take Ecoll(⃗i, EIH(⃗i)) as an explicit definition.

7:38 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Complexity. Now let us sketch the complexity analysis of the underlying transformation.
The main induction is the type T of the object to be defined, and most of the lemmas we
use have a complexity that depend on the size of the proofs, which is commensurate with
the size of the proof tree multiplied by the size of the input sequent, that we will write
n. Let us call C(T, n) the time complexity of our procedure and show it can be taken to
be polynomial. For the base case and the product case, we have that C(U, n) is O(nk) for
k ≥ 1. For set types Set(T), we first have a polynomial-time procedure in n to obtain the
new proof in Lemma 5.11, and we have a recursive call on this proof. Note that Lemma 5.7
also tells us that this proof has size at most n, so the recursive call has complexity at most
C(T, n). Then the subsequent transformations are simply polynomial-time on the input
proof, so we have for some exponent k large enough

C(Set(T), n) ≤ C(T, n) + nk

A similar analysis for products yields that

C(T1 × T2, n) ≤ C(T1, n) + C(T2, n) + nk

All in all, if we call s(T) the size of a type defined in the obvious way, we have

C(T, n) = O(s(T)nk)

by induction on T , so since s(T) ≤ n, the overall time complexity is indeed polynomial in
the size of the input derivation.

6. Discussion and future work

Our first contribution implies that whenever a set of NRC views determines an NRC query,
the query is rewritable over the views in NRC. By our second result, from a proof witnessing
determinacy in our EL-normalized proof system, we can efficiently generate the rewriting.
Both results apply to a setting where we have determinacy with respect to constraints and
views, as in Example 1.2, or to general ∆0 implicit definitions that may not stem from views.

In terms of impact on databases, a crucial limitation of our work is that we do not
yet know how to find the proofs. In the case of relational data, we know of many “islands
of decidability” where proofs of determinacy can be found effectively – e.g. for views and
queries in guarded logics [BBtC18]. But it remains open to find similar decidability results
for views/queries in fragments of NRC.

It is possible to use our proof system without full automation – simply search for a
proof, and then when one finds one, generate the rewriting. We have had some success with
this approach in the relational setting, where standard theorem proving technology can be
applied [BKMT17]. But for the proof systems proposed here, we do not have either our own
theorem prover or a reduction to a system that has been implemented in the past. The need
to find proofs automatically is pressing since our system is so low-level that it is difficult to
do proofs by hand. Indeed, a formal proof of implicit definability for Example 1.2, or even
the simpler Example 5.1, would come to several pages.

In [BP21], we introduce an intuitionistic version of our proof system, and give a
specialized algorithm for generating NRC transformations from proofs of implicit definability
within this system. The algorithm for the intuitionistic case is considerably simpler than for
the proof systems we present here, and would probably make a good starting point for an
implementation of the system.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:39

The implicit-to-explicit methodology requires a proof of implicit definability, which
implies implicit definability over all instances, not just finite ones. This requirement is
necessary: one cannot hope to convert implicit definitions over finite instances to explicit
NRC queries, even ineffectively. We do not believe that this is a limitation in practice. See
Appendix A for details.

For the effective Beth result, the key proof tool was the NRC Parameter Collection
theorem, Theorem 5.9. There is an intuition behind this theorem that concerns a general
setting, where we have a first-order theory Σ that factors into a conjunction of two formulas
ΣL ∧ ΣR, and from this we have a notion of a ”left formula” (with predicates from ΣL),
a ”right formula” (predicates from ΣR), and a “common formula” (all predicates occur in
both ΣL and ΣR). Under the hypothesis that a left formula λ is definable from a right
formula with parameters, we can conclude that the left formula must actually be definable
from a common formula with parameters: see Appendix K for a formal version and the
corresponding proof.

Our work contributes to the broader topic of proof-theoretic vs model-theoretic techniques
for interpolation and definability theorems. For Beth’s theorem, there are reasonably short
model-theoretic [Lyn59, CK92] and proof-theoretic arguments [Cra57b, Fit96]. In database
terms, you can argue semantically that relational algebra is complete for rewritings of
queries determined by views, and producing a rewriting from a proof of determinacy is
not that difficult. But for a number of results on definability proved in the 60’s and 70’s
[Cha64, Mak64, Kue71, Gai74], there are short model-theoretic arguments, but no proof-
theoretic ones. For our NRC analog of Beth’s theorem, the situation is more similar to the
latter case: the model-theoretic proof of completeness is relatively short and elementary,
but generating explicit definitions from proofs is much more challenging. We hope that
our results and tools represent a step towards providing effective versions, and towards
understanding the relationship between model-theoretic and proof-theoretic arguments.

Acknowledgements. We thank Szymon Toruńczyk and Ehud Hrushovski for pointing
us towards the model-theoretic approach to these results. This paper extends abstracts
appearing in POPL 2021 [BP21] and PODS [BPW23] We thank in particular the POPL
conference reviewers for their detailed feedback. Most of all we are deeply grateful to the
reviewers of LMCS for their detailed comments on the submission.

This research was funded in whole or in part by EPSRC grant EP/T022124/1. Funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-
ID 457292495. For the purpose of Open Access, the authors have applied a CC BY public
copyright license to any Author Accepted Manuscript (AAM) version arising from this
submission.

References

[AMN08] H. Andréka, J. X. Madarász, and I. Németi. Definability of new universes in many-sorted logic,
2008. manuscript available at old.renyi.hu/pub/algebraic-logic/kurzus10/amn-defi.pdf.

[BBtC18] Vince Bárány, Michael Benedikt, and Balder ten Cate. Some model theory of guarded negation.
J. Symb. Log., 83(4):1307–1344, 2018.

[BBV19] Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. Definability and interpolation
within decidable fixpoint logics. Log. Methods Comput. Sci., 15(3):29:1–29:53, 2019.

[BCLT16] Michael Benedikt, Balden Ten Cate, Julien Leblay, and Efthymia Tsamoura. Generating Plans
from Proofs: The Interpolation-Based Approach to Query Reformulation. Morgan Claypool, San
Rafael, CA, 2016.

old.renyi.hu/pub/algebraic-logic/kurzus10/amn-defi.pdf

7:40 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

[BDK18] Mikolaj Bojanczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and first-order
list functions. In LICS, 2018.

[Bet53] E. W. Beth. On Padoa’s method in the theory of definitions. Indag. Mathematicae, 15:330 – 339,
1953.

[BK09] Michael Benedikt and Christoph Koch. From XQuery to Relational Logics. ACM TODS,
34(4):25:1–25:48, 2009.

[BKMT17] Michael Benedikt, Egor V. Kostylev, Fabio Mogavero, and Efthymia Tsamoura. Reformulating
queries: Theory and practice. In IJCAI, 2017.

[BNTW95] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Principles of programming
with complex objects and collection types. Theor. Comput. Sci., 149(1):3–48, 1995.

[BP21] Michael Benedikt and Cécilia Pradic. Generating collection transformations from proofs. In
POPL, 2021.

[BPW23] Michael Benedikt, Cécilia Pradic, and Christoph Wernhard. Synthesizing nested relational queries
from implicit specifications. In PODS, pages 33–45, 2023.

[BtCV16] Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Effective interpolation and
preservation in guarded logics. ACM TOCL, 17(2):8:1–8:46, 2016.

[CH99] Zoé Chatzadakis and Ehud Hrushovski. Model theory of difference fields. Transactions of the
American Mathematical Society, 351:2997–3071, 1999.

[Cha64] C. C. Chang. Some new results in definability. Bull. of the AMS, 70(6):808 – 813, 1964.
[CK92] C. C. Chang and H. Jerome Keisler. Model Theory. North-Holland, 1992.
[CL07] Thomas Colcombet and Christof Löding. Transforming structures by set interpretations. Logical

Methods in Computer Science, 3(2), 2007.
[Cra57a] William Craig. Linear reasoning. a new form of the Herbrand-Gentzen theorem. J. Symb. Log.,

22(03):250–268, 1957.
[Cra57b] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof

theory. J. Symb. Log., 22(3):269–285, 1957.
[DH00] Giovanna D’Agostino and Marco Hollenberg. Logical Questions Concerning The mu-Calculus:

Interpolation, Lyndon and Los-Tarski. J. Symb. Log., 65(1):310–332, 2000.
[Fit96] Melvin Fitting. First-order Logic and Automated Theorem Proving. Springer, second edition,

1996.
[FKN13] Enrico Franconi, Volha Kerhet, and Nhung Ngo. Exact query reformulation over databases with

first-order and description logics ontologies. J. Artif. Int. Res., 48:885–922, 2013.
[Gai74] Haim Gaifman. Operations on relational structures, functors and classes I. In Proc. of the Tarski

Symposium, volume 25 of Proc. of Symposia in Pure Mathematics, pages 20–40, 1974.
[GHHW18] Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu. Relational algebra by way of

adjunctions. PACMPL, 2(ICFP), 2018.
[Gib16] Jeremy Gibbons. Comprehending Ringads - for Phil Wadler, on the occasion of his 60th birthday.

In A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, 2016.

[HHM90] Wilfrid Hodges, I.M. Hodkinson, and Dugald Macpherson. Omega-categoricity, relative cate-
goricity and coordinatisation. Annals of Pure and Applied Logic, 46(2):169 – 199, 1990.

[HMO99] Eva Hoogland, Maarten Marx, and Martin Otto. Beth definability for the guarded fragment. In
LPAR, 1999.

[Hod75] Wilfrid Hodges. A normal form for algebraic constructions II. Logique et Analyse, 18(71/72):429–
487, 1975.

[Hod93] Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.
[Hru14] Ehud Hrushovski. Groupoids, imaginaries and internal covers. Turkish Journal of Mathematics,

36:173 – 198, 2014.
[Hua95] Guoxiang Huang. Constructing Craig interpolation formulas. In Computing and Combinatorics.

1995.
[Jec03] Thomas Jech. Set Theory. Springer, 2003.
[Kle52] S. C. Kleene. Permutability of inferences in Gentzen’s calculi lk and lj. Memoirs of the American

Mathematical Society, 10:1–26, 1952.
[Koc06] Christoph Koch. On the Complexity of Non-recursive XQuery and Functional Query Languages

on Complex Values. ACM TODS, 31(4):1215–1256, 2006.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:41

[Kol90] Phokion G. Kolaitis. Implicit definability on finite structures and unambiguous computations. In
LICS, 1990.

[Kue71] David Kueker. Generalized interpolation and definability. Annals of Mathematical Logic, 1(4):423–
468, 1971.

[LE65] E. G. K. Lopez-Escobar. An interpolation theorem for denumerably long sentences. Fundamenta
Mathametica, 57:253–272, 1965.

[Lyn59] Roger C. Lyndon. An interpolation theorem in the predicate calculus. Pacific J. Math., 9:129–142,
1959.

[Mak64] Michael Makkai. On a generalization of a theorem of E. W. Beth. Acta Math. Ac. Sci. Hung.,
15:227–235, 1964.

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling object, relations and XML
in the .NET framework. In SIGMOD, 2006.

[MGL+10] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB,
3(1-2):330–339, 2010.

[Mos49] Andrzej Mostowski. An undecidable arithmetical statement. Fundamenta Mathematicae,
36(1):143–164, 1949.

[NSV10] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting.
ACM TODS, 35(3):1–41, 2010.

[NvP98] Sara Negri and Jan von Plato. Cut elimination in the presence of axioms. Bull. Symb. Log.,
4(4):418–435, 1998.

[NvP01] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University Press, 2001.
[Ott00] Martin Otto. An interpolation theorem. Bull. Symb. Log., 6(4):447–462, 2000.
[Smu68a] Raymond Smullyan. First Order Logic. Springer, 1968.
[Smu68b] Raymond M. Smullyan. Craig’s Interpolation Lemma and Beth’s Definability Theorem. In:

First-Order Logic, pages 127–133. Springer, 1968.
[Suc95] Dan Suciu. Parallel Programming Languages for Collections. PhD thesis, Univ. Pennsylvania,

1995.
[SV05] Luc Segoufin and Victor Vianu. Views and queries: Determinacy and rewriting. In PODS, 2005.
[Tak87] Gaisi Takeuti. Proof Theory. North-Holland, second edition, 1987.
[tCFS13] Balder ten Cate, Enrico Franconi, and Inanç Seylan. Beth definability in expressive description

logics. J. Artif. Int. Res., 48(1):347–414, 2013.
[TS00] Arne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University Press,

2000.
[TW11] David Toman and Grant Weddell. Fundamentals of Physical Design and Query Compilation.

Morgan Claypool, 2011.
[Van01] Jan Van den Bussche. Simulation of the Nested Relational Algebra by the Flat Relational

Algebra, with an Application to the Complexity of Evaluating Powerset Algebra Expressions.
Theor. Comput. Sci., 254(1–2):363–377, 2001.

[Won94] Limsoon Wong. Querying Nested Collections. PhD thesis, Univ. Pennsylvania, 1994.

Appendix A. Comparison to the situation with finite instances

Our result concerns a specification Σ(I⃗ , O . . .) such that I⃗ implicitly defines O. This can be
defined “syntactically” – via the existence of a proof (e.g. in our own proof system). Thus,
the class of queries that we deal with could be called the “provably implicitly definable
queries”. The same class of queries can also be defined semantically, and this is how implicitly
defined queries are often presented. But in order to be equivalent to the proof-theoretic

version, we need the implicit definability of the object O over I⃗ to holds considering all

nested relations I⃗ , O . . ., not just finite ones. Of course, the fact that when you phrase the
property semantically requires referencing unrestricted instance does not mean that our
results depend on the existence of infinite nested relations.

7:42 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Discussions of finite vs. unrestricted instances appear in many other papers (e.g. [BP21]).
And the results in this submission do not raise any new issues with regard to the topic.
But we discuss what happens if we take the obvious analog of the semantic definition, but

using only finite instances. Let us say that a ∆0 specification Σ(I⃗ , OA⃗) implicitly defines

O in terms of I⃗ over finite instances if for any finite nested relations I⃗ , O, A⃗, O′, A⃗′, if

Σ(I⃗ , O, A⃗) ∧ Σ(I⃗ , O′, A⃗′) holds, then O = O′. If this holds, then Σ defines a query, and we
call such a query finitely implicitly definable.

This class of queries is reasonably well understood, and we summarize what is known
about it:

• Can finitely implicitly definable queries always be defined in NRC? The answer is a
resounding “no”: one can implicitly define the powerset query over finite nested relations.
Bootstrapping this, one can define iterated powersets, and show that the expressiveness
of implicit definitions is the same as queries in NRC enhanced with powerset – a query
language with non-elementary complexity. Even in the setting of relational queries,
considering only finite instances leads to a query class that is not known to be in PTIME
[Kol90].

• Can we generate explicit definitions from specifications Σ, given a proof that Σ implicitly

defines O in terms of I⃗ over finite instances? It depends on what you mean by “a proof”,
but in some sense there is no way to make sense of the question: there is no recursively
enumerable complete proof system for such definitions. This follows from the fact that
the set of finitely implicitly definable queries is not computably enumerable.

• Is sticking to specifications Σ that are implicit definitions over all inputs – as we do in this
work – too strong? Here the answer can not be definitive. But we know of no evidence
that this is too restrictive in practice. Implicit specifications suffice to specify any NRC
query. And the answer to the first question above says that if we modified the definition
in the obvious way to get a larger class, we would allow specification of queries that do
not admit efficient evaluation. The answer to the second question above says that we do
not have a witness to membership in this larger class.

Appendix B. Proof of Proposition 3.5: obtaining
NRC expressions that verify ∆0 formulas

Recall that in the body of the paper, we claimed the following statement, concerning the
equivalence of NRC expressions of Boolean type and ∆0 formulas:

There is a polynomial time function taking an extended ∆0 formula φ(x⃗) and producing
an NRC expression Verifyφ(x⃗), where the expression takes as input x⃗ and returns true if and
only if φ holds.

We refer to this as the “Verification Proposition” later on in these supplementary
materials.

Proof. First, one should note that every term in the logic can be translated to a suitable
NRC expression of the same sort. For example, a variable in the logic corresponds to a
variable in NRC.

We prove the proposition by induction over the formula φ(x⃗); we only treat the case for
half of the connectives, as the dual connectives can be then be handled similarly using De
Morgan rules and the fact that boolean negation is definable in NRC:

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:43

• If φ(x⃗) is an equality t =T t
′, then one can translate that to the NRC expression

⋃
{{⟨⟩} |

z ∈ {t} ∩ {t′}}.
• If φ(x⃗) is a membership t ∈T t′, then it can be translated to the NRC expression

⋃
{{⟨⟩} |

z ∈ {{t}} ∩ {t′}}.
• If φ(x⃗) is a disjunction φ1(x⃗) ∨ φ2(x⃗), we take Verifyφ(x⃗) = Verifyφ1

(x⃗) ∪ Verifyφ2
(x⃗).

• If φ(x⃗) begins with a bounded existential quantification ∃z ∈ y ψ(x⃗, y, z), we simply set
Verifyφ(x⃗, y) =

⋃
{Verifyψ(x⃗,y,z) | z ∈ y}.

Note that the converse (without the polynomial time bound) also holds; this will follow
from the more general result on moving from NRC to interpretations that is proven later in
the supplementary materials.

Appendix C. First part of Proposition 4.10:
Reduction to monadic schemas for NRC

In the body of the paper we mentioned that it is possible to reduce questions about definability
within NRC to the case of monadic schemas. We now give the details of this reduction.

Recall that monadic type is a type built only using the atomic type U and the type
constructor Set. Monadic types are in one-to-one correspondence with natural numbers
by setting U0 := U and Un+1 := Set(Un). A monadic type is thus a Un for some n ∈ N. A
nested relational schema is monadic if it contains only monadic types, and a ∆0 formula is
said to be monadic if it all of its variables have monadic types.

We start with a version of the reduction only for NRC expressions:

Proposition C.1. For any nested relational schema SCH, there is a monadic nested
relational schema SCH ′, an injection Convert from instances of SCH to instances of SCH ′

that is definable in NRC, and an NRC[get] expression Convert−1 such that Convert−1◦Convert
is the identity transformation from SCH → SCH.

Furthermore, there is a ∆0 formula ImConvert from SCH ′ to Bool such that ImConvert(i
′)

holds if and only if i′ = Convert(i) for some instance i of SCH.

To prove this we give an encoding of general nested relational schemas into monadic
nested relational schemas that will allow us to reduce the equivalence between NRC expression,
interpretations, and implicit definitions to the case where input and outputs are monadic.

Note that it will turn out to be crucial to check that this encoding may be defined
either through NRC expressions or interpretations, but in this subsection we will give the
definitions in terms of NRC expressions.

The first step toward defining these encodings is actually to emulate in a sound way the
cartesian product structure for types Un. Here “sound” means that we should give terms for
pairing and projections that satisfy the usual equations associated with cartesian product
structure.

Proposition C.2. For every n1, n2 ∈ N, there are NRC expressions P̂air(x, y) : Un1 ,Un2 →
Umax(n1,n2)+2 and NRC expressions π̂i(x) : Umax(n1,n2)+2 → Uni for i ∈ {1, 2} such that the
following equations hold

π̂1

(
P̂air(a1, a2)

)
= a1 π̂2

(
P̂air(a1, a2)

)
= a2

7:44 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Furthermore, there is a ∆0 formula Im
P̂air

(x) such that Im
P̂air

(a) holds if and only if there

exists a1, a2 such that P̂air(a1, a2) = a. In such a case, the following also holds

P̂air(π̂1(a), π̂2(a)) = a

Proof. We adapt the Kuratowski encoding of pairs (a, b) 7→ {{a}, {a, b}}. The notable thing
here is that, for this encoding to make sense in the typed monadic setting, the types of a and
b need to be the same. This will not be an issue because we have NRC-definable embeddings

↑mn : Un → Um

for n ≤ m defined as the m− n-fold composition of the singleton transformation x 7→ {x}.
This will be sufficient to define the analogues of pairing for monadic types and thus to define
ConvertT by induction over T . On the other hand, Convert−1

T will require a suitable encoding
of projections. This means that to decode an encoding of a pair, we need to make use of a
transformation inverse to the singleton construct ↑. But we have this thanks to the get
construct. We let

↓mn : Um → Un

the transformation inverse to ↑mn , defined as the m− n-fold composition of get.

Firstly, we define the family of transformations P̂airn1,n2(x1, x2), where xi is an input of
type Uni for i ∈ {1, 2} and the output is of type Umax(n1,n2)+2, as follows

P̂airn1,n2(x1, x2) := {{↑ x1}, {↑ x1, ↑ x2}}

The associated projections π̂n1,n2
i (x) where x has type Umax(n1,n2)+2 and the output is of

type Uni are a bit more challenging to construct. The basic idea is that there is first a case

distinction to be made for encodings P̂airn1,n2(x1, x2): depending on whether ↑ x1 =↑ x2 or
not. This can be actually tested by an NRC expression. Once this case distinction is made,
one may informally compute the projections as follows:

• if ↑ x1 =↑ x2, both projections can be computed as a suitable downcasting ↓ (the depth
of the downcasting is determined by the output type, which is not necessarily the same
for both projections).

• otherwise, one needs to single out the singleton {↑ x1} and the two-element set {↑ x1, ↑ x2}
in NRC. Then, one may compute the first projection by downcasting the singleton, and
the second projection by first computing {↑ x2} as a set difference and then downcasting
with ↓.
We now give the formal encoding for projections, making a similar case distinction. To

this end, we first define a generic NRC expression

AllPairsT (x) : Set(T) → Set(T × T)

computing all the pairs of distinct elements of its input x

AllPairsT (x) =
⋃

{
⋃

{{(y, z)} | y ∈ x \ {z}} | z ∈ x}

Note in particular that AllPairs(i) = ∅ if and only if i is a singleton or the empty set. The
projections can thus be defined as

π̂1(x) := case (AllPairs(x) = ∅, ↓ x, ↓
⋃
{π1(z) ∩ π2(z) | z ∈ AllPairs(x)})

π̂2(x) := case (AllPairs(x) = ∅, ↓ x, ↓ (x\ ↑ π̂1(x))))

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:45

These definitions crucially ensure that, for every object ai with i ∈ {1, 2}, we have

π̂i

(
P̂air(a1, a2)

)
= ai

Now all remains to be done is to define Im
P̂air

. Before that, it is helpful to define a
formula Im↑mn (x) which holds if and only if x is in the image of Im↑mn .

As a preliminary step, define generic ∆0 formulas IsSing(x) and IsTwo(x) taking an
object of type Set(T) and returning a Boolean indicating whether the object is a singleton
or a two-element set. Defining Im↑mn is straightforward using IsSing and Boolean connectives.
Then Im

P̂airn,n
(x) can be defined as follows for each n ∈ N

Im
P̂airn,n

(x) :=

(
IsSing(x) ∧ ImIsSing

P̂airn,n
(x)

)
∨
(
IsTwo(x) ∧ ImIsSing

P̂airn,n
(x)

)
ImIsSing

P̂airn,n
(x) := ∃z ∈ x IsSing(z)

ImIsTwo
P̂airn,n

(x) := ∃z z′ ∈ x (IsTwo(z) ∧ IsSing(z′) ∧ ∀y ∈ z y ∈ z′)

Then, the more general Im
P̂airn1,n2

can be defined using Im↑mni
where m = max(n1, n2).

Im
P̂airn1,n2

(x) := Im
P̂airm,m

(x) ∩ Im↑mn1
(π̂1(x)) ∩ Im↑mn2

(π̂2(x))

One can then easily check that Im
P̂air

does have the advertised property: if Im
P̂air

(a)

holds for some object a, then there are a1 and a2 such that P̂air(a1, a2) = a and we have

P̂air(π̂1(a), π̂2(a)) = a

We are now ready to give the proof of the proposition given at the beginning of this
subsection.

Proof. ConvertT , Convert
−1
T and ImConvertT are defined by induction over T . Beforehand,

define the map d taking a type T to a natural number d(T) so that Convert maps instances
of type T to monadic types Ud(T).

d(U) = 0 d(Set(T)) = 1 + d(T)
d(T1 × T2) = 2 +max(d(T1), d(T2)) d(Unit) = 0

ConvertT , Convert
−1
T and ImConvertT are then defined by the following rules, where we

write Map (z 7→ E) (x) for the NRC expression
⋃
{{E} | z ∈ x}.

7:46 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

ConvertU(x) := x
ConvertSet(T)(x) := Map (z 7→ ConvertT (z)) (x)
ConvertUnit(x) := c0
ConvertT1×T2(x) := P̂air(ConvertT1(π1(x)),ConvertT2(π2(x)))

Convert−1
U (x) := x

Convert−1
Set(T)(x) := Map

(
z 7→ Convert−1

T (z)
)
(x)

ConvertUnit(x) := ⟨⟩
Convert−1

T1×T2(x) :=
〈
Convert−1

T1
(π̂1(x)),Convert

−1
T2

(π̂2(x))
〉

ImConvertU(x) := True
ImConvertSet(T)

(x) := ∀z ∈ x ImConvertT (z)

ImConvertT1×T2
(x) := ImPaird(T1),d(T2)

(x) ∧ ImConvertT1
(π̂1(x)) ∧ ImConvertT2

(π̂2(x))

It is easy to check, by induction over T , that for every object a of type T

Convert−1(Convert(a)) = a

and that for every object b of type Ud(T), if ImConvertT (b) = True, then it lies in the image of

ConvertT and Convert(Convert−1(b)) = b.

Appendix D. Second part of Proposition 4.10:
Monadic reduction for interpretations

We have seen so far that it is possible to reduce questions about definability within NRC to
the case of monadic schema. Now we turn to the analogous statement for interpretations,
given by the following proposition:

Proposition D.1. For any object schema SCH, there is a monadic nested relational
schema SCH ′, a ∆0 interpretation IConvert from instances of SCH to instances of SCH ′,
and another interpretation IConvert−1 from instances of SCH to instances of SCH ′ compatible

with Convert and Convert−1 as defined in Proposition D.1 in the following sense: for every
instance I of SCH and for every instance J of SCH ′ in the codomain of Convert, we have

Convert−1(J) = Collapse(IConvert−1(J)) Convert(I) = Collapse(IConvert(I))

Before proving Proposition D.1, it is helpful to check that a number of basic NRC
connectives may be defined at the level of interpretations. To do so, we first present a
technical result for more general interpretations.

Proposition D.2. For any sort T , there is an interpretation of SCHT into SCHT taking
a models M whose every sort is non-empty and Bool has at least two elements to a model
M of O(T). Furthermore, we have that M ′ is (up to isomorphism) the largest quotient of
M ′ satisfying O(T).

Proof. This interpretation corresponds to a quotient of the input, that is definable at every
sort

φ
Set(T)
≡ (x, y) = ∀z (z ∈ x↔ z ∈ y) φT1×T2≡ (x, y) = π1(x) = π1(y) ∧ π2(x) = π2(y)

φUnit
≡ (x, y) = ⊤ φU

≡(x, y) = x =U y

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:47

Proposition D.3. The following ∆0-interpretations are definable:

• ISing defining the transformation x 7→ {x}.
• I∪ defining the transformation x, y 7→ x ∪ y.
Furthermore, assuming that I is a ∆0-interpretation defining a transformation E and I ′ is
a ∆0-interpretation defining a transformation R, the following ∆0-interpretations are also
definable:

• Map(I) defining the transformation x 7→ {E(y) | x ∈ y}.
• ⟨I, I ′⟩ defining the transformation x, y 7→ (E(x), F (y)).

Proof.

• For the singleton construction {e} with e of type T , we take the interpretation Ie for e,
where e itself is interpreted by a constant c and we add an extra level represented by an

input constant c′. Then φ
Set(T)
Domain(x) is set to y = c′ and φT∈(x, y) to x = c ∧ y = c′.

• The empty set {} at type Set(T) is given by the trivial interpretation where φ
Set(T)
Domain(x) is

set to x = c for some constant c and φT
′

Domain is set to false for T ′ a component type of T ,

as well as all the φT∈ .
• For the binary union ∪ : Set(T),Set(T) → Set(T), the interpretation is easy: T is
interpreted as itself. The difference between input and output is that Set(T)× Set(T) is
not an output sort and that Set(T) is interpreted as a single element, the constant ⟨⟩ of
Unit.

φ
Set(T)
Domain(x) := x = ⟨⟩

φT∈(z, x) := z ∈ π1(oin) ∨ z ∈ π2(oin)

• We now discuss the Map operator. Assume that we have an interpretation I defining a
transformation S → T that we want to lift to an interpretation Map(I) : Set(S) → Set(T).

Let us write ψT
′

Domain, ψ
T ′
∈ and ψT

′
≡ for the formulas making up I and reserve the φ formulas

for Map(I). At the level of sort, let us write τI and τMap(I) to distinguish the two.
For every T ′ ≤ T such that T ′ is not a cartesian product or a component type of Bool,

we set τMap(I)(T ′) = S, τI . This means that objects of sort T ′ are interpreted as in I
with an additional tag of sort S. We interpret the output object Set(T) as a singleton by

setting τMap(I)(Set(T)) = Unit.
Assuming that T ̸= U,Unit, Map(I) is determined by setting the following

φU
Domain(a) := ∃s ∈ oin ψDomain(a)[s/oin]

φU
∈(a, s, x⃗) := ψU

∈(a, x⃗)[s/oin]

φT
′

Domain(s, x⃗) := ψT
′

Domain(x)[s
′/oin]

φT
′

∈ (s, x⃗, s′, y⃗) := ∃x⃗′ ψT ′
∈ (x⃗′, y⃗)[s′/oin] ∧ φT

′
≡ (s, x⃗, s′, x⃗′)

φTDomain(s, x⃗) := s ∈ oin
φT∈(s, x⃗) := φTDomain(s, x⃗)

where [x/oin] means that we replace occurrences of the constant oin by the variable x and
sorts T ′ and T ′ × T ′′ are component types of T . Note that this definition is technically by
induction over the type, as we use φT

′
≡ to define φT

′
∈ . In case T is U or Unit, the last two

formulas φTDomain and φT∈ need to change. If T = Unit, then we set

φUnit
Domain(c0) := φUnit

∈ (c0, c0) := ∃s ∈ oin ⊤

7:48 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

and if T = U, we set

φU
Domain(a) := φU

∈(a) := ∃s ∈ oin ψDomain(a)[s/oin]

• Finally we need to discuss the pairing of two interpretation-definable transformations
⟨I1, I2⟩ : S → T1 × T2. Similarly as for map we reserve φTDomain, φ

T
∈ and φT≡ formulas for

the interpretation ⟨I1, I2⟩. We write ψTDomain, ψ
T
∈ and ψT≡ for components of I and θTDomain,

θT∈ and θT≡ for components of I ′.
Now, the basic idea is to interpret output sorts of ⟨I1, I2⟩ as tagged unions of elements

that either come from I1 or I2. Here, we exploit the assumption that SCHT contains the
sort Bool. and that every sort is non-empty to interpret the tag of the union. The union
itself is then encoded as a concatenation of a tuple representing a would-be element form
I1 with another tuple representing a would-be element from I2, the correct component
being selected with the tag. For that second trick to work, note that we exploit the fact
that every sort has a non-empty denotation in the input structure. Concretely, for every
T component type of either T1 or T2, we thus set

τ ⟨I1,I2⟩(T) := Bool, τI1(T), τI2(T)

φTDomain(u, x⃗, y⃗) := (u = tt ∧ ψTDomain(x⃗)) ∨ (u ̸= tt ∧ θTDomain(y⃗))

φT∈(u, x⃗, y⃗, u
′, x⃗′, y⃗′) := (u = u′ = tt ∧ ψT∈ (x⃗, x⃗′)) ∨ (u = u′ = ff ∧ θT∈(y⃗, y⃗′))

φT≡(u, x⃗, y⃗, u
′, x⃗′, y⃗′) := (u = u′ = tt ∧ ψT≡(x⃗, x⃗′)) ∨ (u = u′ = ff ∧ θT≡(y⃗, y⃗′))

Note that this interpretation does not quite correspond to a pairing because it is not a
complex object interpretation: the interpretation of common subobjects of T1 and T2 are
not necessarily identified, so the output is not necessarily a model of O. This is fixed by
postcomposing with the interpretation of Proposition D.2 to obtain ⟨I1, I2⟩.

Proof of Proposition D.1. Similarly as with Proposition C.1, we define auxiliary interpreta-
tions I↑, I↓ I

P̂air
, Iπ̂1 and Iπ̂2 mimicking the relevant constructs of Proposition C.1. Then

we will dispense with giving the recursive definitions of IConvertT and IConvert−1
T
, as they will

be obvious from inspecting the cases given in the proof of Proposition C.1 and replicating
them using Proposition D.3 together with closure under composition of interpretations.

I↑, I↓ and IPair are easy to define through Proposition D.3, so we focus on the projections
Iπ̂n1,n2

1
and Iπ̂n1,n2

2
, defining transformations from Um to Uni for i ∈ {1, 2} where m :=

max(n1, n2). Note that in both cases, the output sort is part of the input sorts. Thus an
output sort will be interpreted by itself in the input, and the formulas will be trivial for
every sort lying strictly below the output sort: we take

φ∈Uk
(x, y) := x ∈ y ∧ φUk+1

Domain(y) φUk
≡ (x, y) := x = y φUk

Domain(x) := ⊤

for every k < ni (i according to which projection we are defining). The only remaining

important data that we need to provide are the formulas φ
Uni
Domain, which, of course, differ for

both projections. We provide those below, calling oin the designated input object. For both
cases, we use an auxiliary predicate x ∈k y standing for ∃y1 ∈ y . . .∃yk−1 ∈ yk−2 x ∈ yk−1

for k > 1; for k = 0, 1, we take x ∈1 y to be x ∈ y and x ∈0 y for x = y.

• For Iπ̂n1,n2
1

, we set

φ
Un1
Domain(x) := ∀z ∈ oin ∃z′ ∈ z x ∈m−n1 z′

The basic idea is that the outermost ∀∃ ensures that we compute the intersection of the
two sets contained in the encoding of the pair.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:49

• For Iπ̂n1,n2
2

, first note that there are obvious ∆0-predicates IsSing(x) and IsTwo(x) classi-

fying singletons and two element sets. This allows us to write the following ∆0 formula

φ
Un1
Domain(x) :=

∨[
IsSing(x) ∧ ∀z ∈ oin ∃z′ ∈ z x ∈m−n2 z′

IsTwo(x) ∧ ∃z z′ ∈ oin ∃y ∈ z′ (y /∈ z ∧ x ∈m−n2 z′)

It is then easy to check that, regarded as transformations, those interpretation also implement
the projections for Kuratowski pairs.

Appendix E. Proof of Theorem 4.8: converting
between NRC expressions and interpretations

In the body of the paper we claimed that NRC expressions have the same expressiveness as
interpretations. One direction of this expressive equivalence is given in the following lemma:

Lemma E.1. There is an EXPTIME computable function taking an NRC expression E to
an equivalent FO interpretation IE.

As we mentioned in the body of the paper, very similar results occur in the prior
literature, going as far back as [Van01].

Proof. We can assume that the input and output schemas are monadic, using the reductions
to monadic schemas given previously. Indeed, if we solve the problem for expressions
where input and output schemas are monadic, we can reduce the problem of finding an
interpretation for an arbitrary NRC expression E(x) as follows: construct a ∆0 interpretation
I for the expression Convert(E(Convert−1(x))) – where Convert and Convert−1 are taken
as in Proposition C.1 – and then, using closure under composition of interpretations (see
e.g. [BK09]), one can then leverage Proposition D.1 to produce the composition of IConvert−1 ,
I and IConvert which is equivalent to the original expression E.

The argument proceeds by induction on the structure of E : T⃗ → S in NRC. Some
atomic operators were treated in the prior section, like singleton ∪, tupling, and projections.
Using closure of interpretations under composition, we are thus able to translate compositions
of those operators. We are only left with a few cases.

• For the set difference, since interpretations are closed under composition, it suffices to
prove that we can code the transformation

(x, y) 7→ x \ y

at every sort Set(Un). Each sort gets interpreted by itself. We thus set

φUn
Domain(z) := z ∈ π1(oin) ∧ z /∈ π1(oin)

φUk
Domain(z) := ∃z′ (φUn

Domain ∧ z ∈
n−k z′)

φUk
∈ (z, z′) := z ∈ z′ ∧ φUk

Domain(z) ∧ φ
Uk+1

Domain(z
′)

• To get NRC expressions, it suffices to create a ∆0 interpretation corresponding to get
which follows

φU
Domain(a) := (∃! z ∈ oin z = a) ∨ (¬(∃! z ∈ oin) ∧ a = c0)

7:50 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

• For the binding operator ⋃
{E1 | x ∈ E2}

we exploit the classical decomposition⋃
◦ Map(E1) ◦ E2

As interpretations are closed under composition and the mapping operations was handled
in Proposition D.3, it suffices to give an interpretation for the expression

⋃
: Set(Set(T)) →

Set(T) for every sort T . This is straightforward: each sort gets interpreted as itself, except
for Set(T) itself which gets interpreted as the singleton {c0}. The only non-trivial case is
the following

φT∈(x, y) := φTDomain := ∃y′ ∈ oin x ∈ y′

From interpretations to NRC expressions. The other direction of the expressive equiva-
lence is provided by the following lemma:

Lemma E.2. There is a polynomial time function taking a ∆0 interpretation to an equivalent
NRC expression.

This direction is not used directly in the conversion from implicitly definable transfor-
mations to NRC, but it is of interest in showing that NRC and ∆0 interpretations are equally
expressive.

Proof of Lemma E.2. Using the reductions to monadic schemas, it suffices to show this for
transformations that have monadic input schemas as input and output.

Fix a ∆0 interpretation I with input Un and output Um.
Before we proceed, first note that for every d ≤ m, there is an NRC expression

Ed : Un → Set(Ud)

collecting all of the subobjects of its input of sort Ud. It is formally defined by the induction
over n− d.

Em(x) := {x} Ed(x) =
⋃
Ed−1(x)

Write Ed1,...,dk(x) for ⟨Ed1 , . . . , Edk⟩(x) for every tuple of integers d1 . . . dk.
For d ≤ m, let d1, . . . , dk be the tuple such that the output sort Ud is interpreted by the

list of input sorts Ud1 , . . . ,Udk . By induction over d, we build NRC expressions

Ed : Um,Ud1 , . . . ,Udk → Ud

such that, provided that φUd
Domain(⃗a) and φ

Ud+1

Domain(⃗b) hold, we have

φUd
∈ (⃗a, b⃗) if and only if Ed(⃗a) ∈ Ed+1(⃗b)

For E0 : Um,U → U, we simply take the second projection. Now assume that Ed is
defined and that we are looking to define Ed+1. We want to set

Ed+1(xin, y⃗) := {Ed(xin, x⃗) | x⃗ ∈ Ed1,...,dk(xin, y⃗) ∧ Verifyφi
∈
(xin, x⃗, yin, y⃗)}

which is NRC-definable as follows⋃{
case

(
Verifyφi

∈
(xin, x⃗, yin, y⃗), {Ed(xin)}, {}

)
| x⃗ ∈ Ed1,...,dk(xin)

}

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:51

where Verify is given as in the Verification Proposition proven earlier in the supplementary
materials and {E(x⃗, y⃗) | x⃗ ∈ E′(y⃗)} is a notation for

⋃
{. . .

⋃
{E(x⃗, y⃗) | x1 ∈ π1(E

′(y⃗))} . . . |
xk ∈ πk(E

′(y⃗))}. It is easy to check that the inductive invariant holds.
Now, consider the transformation Em : Un,Um1 , . . . ,Umk

→ Um. The transformation

R := {Em(xin, y⃗) | y⃗ ∈ Em1,...,mk
(xin) ∧ φUm

Domain(y⃗)}

is also NRC-definable using Verify. Since the inductive invariant holds at level m, R returns
the singleton containing the output of I. Therefore NRC(R) : Un → Um is the desired NRC
expression equivalent to the interpretation I.

Note that the argument can be easily modified to produce an NRC expression that is
composition-free: in union expressions

⋃
{E1 | x ∈ E2}, the range E2 of the variable x is

always another variable. In composition-free expressions, we allow as a native construct
case(B,E1, E2) where B is a Boolean combination of atomic transformations with Boolean
output, since we can not use composition to derive the conditional from the other operations.

Thus every NRC expression can be converted to one that is composition-free, and similarly
for NRC. The analogous statements have been observed before for related languages like
XQuery [BK09].

Appendix F. Completeness of proof systems

In the body of the paper we mentioned that the completeness of the high-level proof system
of Figure 2 can be argued using a standard method – see, for example [Smu68a]. We outline
this for the reader who is unfamiliar with these arguments. In Appendix G we will prove
that the lower level system is complete, by reducing it to completeness of the higher level
system.

We turn to the outline of the general method. One has a sequent Θ; Γ ⊢ ∆ that is not
provable. We want to construct a countermodel: one that satisfies all the formulas in Θ
and Γ but none of the formulas in ∆. We construct a tree with Θ; Γ ⊢ ∆ at the root by
iteratively applying applicable inference rules in reverse: in “proof search mode”, generating
subgoals from goals. We apply the rules whenever possible in a given order, enforcing some
fairness constraints: a rule that is active must be eventually applied along an infinite search,
and if a choice of terms must be made (as with the ∃-R rule), all possible choices of terms
are eventually made in an application of the rule. For example, if we have a disjunction
ρ1 ∨ ρ2 on the right, we may immediately “apply ∨-R”: we generate a subgoal where on the
right hand side we add ρ1, ρ2. Finite branches leading to a sequent that does not match the
conclusion of any rule or axiom are artificially extended to infinite branches by repeating
the topmost sequent.

By assumption, this process does not produce a proof, and thus we have an infinite
branch b of the tree. We create a model Mb whose elements are the closure under tupling of
the variables of types, other than product types, that appear on the branch. The model
interprets these “non-tuple” variables by themselves, while variables with a product type are
interpreted by – possibly nested – tuples of “non-tuple” variables. Specifically, Mb interprets
terms t by these domain elements as follows.

• If t is a variable of type U or of a set type, then tMb is t.
• If t is a variable of type Unit or is the term ⟨⟩, then tMb is ⟨⟩.

7:52 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

• If t is a variable of a product type, then tMb is ⟨xMb
1 , xMb

2 ⟩, where t in the role of x and
x1, x2 are the respective parameters of an instance of rule ×η on the branch. By our
assumption that all applicable rules are applied in some fair way, there must be such
an instance. Since it replaces all occurrences of t with a pair of fresh variables, there is
exactly one such application, such that x1 and x2 are uniquely determined.

• If t is a term ⟨t1, t2⟩, then tMb = ⟨tMb
1 , tMb

2 ⟩.
• If t is a term π1(t

′), then tMb is x1, where t
′Mb = ⟨x1, x2⟩.

• If t is a term π2(t
′), then tMb is x2, where t

′Mb = ⟨x1, x2⟩.
The memberships correspond to the membership atoms that appear on the left of any sequent
in b, and also the atoms that appear negated on the right hand side of any sequent.

We claim that Mb is the desired countermodel. It suffices to show that for every sequent
Θ; Γ,⊢ ∆ in b,Mb is a counterexample to the sequent: it satisfies the conjunction of formulas
on the left and none of the formulas on the right. We prove this by induction on the logical
complexity of the formula. Each inductive step will involve the assumptions about inference
rules not terminating proof search. For example, suppose for some sequent bi in b of the
above form, ∆ contains ρ1 ∨ ρ2, we want to show that Mb satisfies ¬(ρ1 ∨ ρ2).

But we know that in some successor (viewed root-first) bj of bi, we would have applied
∨-R, and thus have a descendant with ρ′1, ρ

′
2 within the right, where ρ′1 is identical to ρ1 and

ρ′2 to ρ2, except possibly modified by applications of rules ×η and ×β in between bi and bj .
By induction Mb satisfies ¬ρ′1 and ¬ρ′2. The rules ×η and ×β just perform replacement of
terms, where the replaced and the replacing terms have the same denotation in Mb. Hence
Mb also satisfies ¬ρ1 and ¬ρ2. Thus Mb satisfies ¬(ρ1∨ρ2) as desired. The other connectives
and quantifiers are handled similarly.

Appendix G. Completeness – translating to EL-normalized form

We show the completeness of our EL-normalized calculus of Figure 3 by giving a translation
from proofs in the high-level calculus of Figure 2, whose completeness can be established
with standard techniques, as outlined in Appendix F. We will give a precise account of the
translation that starts from the following base calculus.

Definition G.1. Define the base calculus for ∆0 formulas as the following modification of
the EL-normalized calculus of Figure 3.

(1) Remove all EL decorations, i.e. do not require any contexts or sequents to be EL.
(2) In the ∃ rule drop the requirement that t is a tuple-term.

This base calculus may be seen as an intermediate between the high-level and the
EL-normalized system. The high-level calculus in essence just provides some sugar on the
base calculus, such that translation between both is straightforward. On the other hand,
the base calculus is a relaxed version of the EL-normalized calculus: if a base calculus proof
satisfies the respective EL requirements and all instances of the ∃ rule have as t a tuple-term,
the proof can be considered as a proof in the EL-normalized calculus. The objective of our
translation is then to enforce these constraints. The core technique for achieving the EL
requirements is permutation of rules, investigated for standard systems in [Kle52] and [TS00,
Section 5.3], adapted here to our proof system and applied in specific ways. Of particular
relevance for us is the interaction of rule permutation with the following property of sequents
in a proof.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:53

Definition G.2. A top-level occurrence of a logic operator ∨, ∧, or ∀ in a proof sequent
is called rule-dominated if in all branches through the sequent it is a descendant2 of the
principal formula of an instance of the respective rule that introduces the operator. A proof
is called ∨∧∀-rule-dominated if the top-level occurrences of ∨, ∧ and ∀ in all its sequents
are rule dominated.

Recall that a multiset of formulas is EL if its members are positive atoms, negative
atoms, existential quantifications and the truth-value constant ⊥. In other words, it does
not contain formulas with ∨, ∧, ∀ or ⊤ as top-level operator. The following lemma is then
easy to see.

Lemma G.3. In an ∨∧∀-rule-dominated proof, any sequent that is not below3 an instance
of one of the rules ∨, ∧, or ∀ has the EL property.

Correspondingly, our translation achieves the EL requirements by first extending the
upper part of the given proof to bring it into ∨∧∀-rule-dominated form and then permuting
∨, ∧, or ∀ down over ∃, ̸=, ×η and ×β , where the ∨∧∀-rule-dominated property is preserved.
In a final step, parts of the proof are rewritten with special transformations to ensure that
in all instances of the ∃ rule the term t is a tuple-term. Figure 4 specifies the steps of this
method in detail.

To make claims about the involved rule permutations precise, we define permutable as
follows.

Definition G.4. Rule Rα (with one or two premises) is said to be permutable down over
rule Rβ (with one premise) if for all instances α of Rα and β of Rβ such that

(1) α is immediately above β where the conclusion of α is the premise of β,
(2) the principal formulas of α are disjoint with the active formulas of β,

α or β is void, i.e. has a single premise that is identical to its conclusion, or there is a
deduction from the premises of α to the conclusion of β that consists of instances β′i of Rβ ,
one for each premise of α, whose conclusions are the premises of an instance α′ of Rα, where
α′ has the same conclusion as β.

Also more general versions of permutability are possible, where, e.g., permutation of a
one-premise rule down over a multi-premise rule like ∧ is considered [TS00], but not required
for our purposes.

Permutability properties of the rules of our base calculus, along with proof transfor-
mations to achieve the tuple-term property required for instances of the ∃ rule, justify the
following claim.

Theorem G.5 (Completeness of the EL-normalized calculus for ∆0 formulas (Figure 3)). A
∆0 formula provable in the base calculus for ∆0 formulas (Def. G.1) is also provable in the
EL-normalized calculus for ∆0 formulas (Figure 3).

Proof. Figure 4 shows a procedure for translating a proof in the base calculus to a proof
in the EL-normalized calculus. Both proofs have the same bottom sequent, that is, prove
the same ∆0 formula. For step 1 of the procedure it is evident that the result is still a legal
proof with the same bottom sequent and is in ∨∧∀-rule-dominated form.

2In the non-strict sense: an occurrence is a descendant of itself.
3In the non-strict sense: the conclusion of a rule instance is below the rule instance.

7:54 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Input: A proof in the base calculus for ∆0 formulas (Def. G.1).

Method:

(1) Bringing to ∨∧∀-rule-dominated form by extending upwards at the top. Bring the
proof into ∨∧∀-rule-dominated form by exhaustively extending its top nodes as
follows: Select a top node (instance of = or ⊤) whose sequent contains a formula
occurrence with ∨, ∧ or ∀ as top-level operator. Attach an instance of the rule for
the respective operator such that the former top sequent becomes its conclusion,
with the formula occurrence as principal formula.

(2) Permuting rules to achieve the EL condition. Permute all instances of ∨, ∧ and ∀
down over instances of ∃, ̸=, ×η and ×β. Replace all derivations of sequents that
have ⊤ as a member with applications of the ⊤ rule. Add the EL superscript to the
contexts of the instances of ∃ and ̸= as well as to the sequents in instances of ×η

and ×β, as required by the EL-normalized calculus.
(3) Bringing terms t in all instances of rule ∃ to tuple-term form. As long as there is an

occurrence of π1 or π2 in a term t of an instance of ∃, rewrite the proof part rooted
at that instance with proof transformation Elim-π-var or Elim-π-pair .

Output: A proof in the EL-normalized calculus for ∆0 formulas (Figure 3) with the
same bottom sequent as the input proof.

Figure 4: EL-Normalization procedure.

The rule permutations in step 2 are justified by Lemma G.6 and Lemma G.7, presented
below. It is easy to see from the particular deduction conversions used to justify these
lemmas that the permutations preserve the ∨∧∀-rule-dominated property of the proof. From
Lemma G.3, the EL property required by the EL-normalized calculus for instances of ∃, ̸=,
×η and ×β then follows. Step 2 finishes with straightforward conversions to let the proof
literally match with the EL-normalized calculus: truncating redundant proof parts above
sequents with ⊤ as a member and adding the EL decoration.

Step 3 is justified by Lemma G.8, presented below in Section G.3. The overall bottom
sequent with the proven formula is unaltered by all involved permutations and transfor-
mations. The proof is then a proof in the EL-normalized calculus with the same bottom
sequent as the initially given proof.

In the following Sects. G.1–G.3 we supplement the permutation lemmas and proof
transformations referenced in Fig 4 and in the proof of Theorem G.5.

G.1. Permutability justified by generic permutation schemas. We begin our justifi-
cation of the permuting of rules, used in the normalization algorithm. Permutability among
rules that correspond to logic operators can be shown with straightforward generic schemas.
The following lemmas express cases that were used in the proof of Theorem G.5.

Lemma G.6. In the base calculus ∨, ∧ and ∀ are permutable down over ∃ and ̸=.

Lemma G.6 hold since all of the involved permutations can be performed according to
two generic schemas, one for permuting a one-premise rule down over a one-premise rule
and a second schema for permuting the two-premise rule ∧ down over a one-premise rule.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:55

The considered one-premise rules ̸=,∨, ∀, ∃ are all of the form

Θ, C ⊢ A,∆
Θ, C ′ ⊢ A′,∆,

(G.1)

where C,C ′ are (possibly empty) multisets of membership atoms and A,A′ are multisets of
formulas. For instances of the rule, C and A constitute the active formulas and C ′, A′ the
principal formulas.

Consider an instance α of a one-premise rule Rα followed by an instance β of a one-
premise rule Rβ , both rules of the form (G.1). Let the active formulas of the rule instances be
C,A and D,B, respectively, and let their principal formulas be C ′, A′ and D′, B′, respectively.
Assume that the multiset A′ of principal formulas of α and the multiset B of active formulas
of β have no formula occurrences in common. (C ′ and D are not constrained in this way.)
The two rule applications then match the left side of the following permutation schema.
Except in the case where Rα = ∃ and Rβ = ∀, the schema can be applied to permute the
instance of Rα down over that of Rβ.

Rα

Θ, C,D ⊢ A,B,∆

Rβ

Θ, C ′, D ⊢ A′, B,∆

Θ, C ′, D′ ⊢ A′, B′,∆

becomes
Rβ

Θ, C,D ⊢ A,B,∆

Rα

Θ, C,D′ ⊢ A,B′,∆

Θ, C ′, D′ ⊢ A′, B′,∆

(G.2)

Permutation schema (G.2) can for example be applied to permute ∀ down over ∃:

∀
Θ, t ∈ c, y ∈ b ⊢ φ[y/x], ψ[t/z],∃z ∈ c . ψ,∆

∃
Θ, t ∈ c ⊢ ∀x ∈ b . φ, ψ[t/z], ∃z ∈ c . ψ,∆

Θ, t ∈ c ⊢ ∀x ∈ b . φ, ∃z ∈ c . ψ,∆

becomes

∃
Θ, t ∈ c, y ∈ b ⊢ φ[y/x], ψ[t/z],∃z ∈ c . ψ,∆

∀
Θ, t ∈ c, y ∈ b ⊢ φ[y/x],∃z ∈ c . ψ,∆

Θ, t ∈ c ⊢ ∀x ∈ b . φ, ∃z ∈ c . ψ,∆

The excluded case of permuting ∃ down over ∀ is not required for our purposes. To
illustrate how this case might fail, consider the following instantiation, which shows two legal
inferences matching the left side of permutation schema (G.2), but clearly not permitting
permutation.

∃
Θ, y ∈ b ⊢ φ[y/x], ψ[y/z], ∃z ∈ b . ψ,∆

∀
Θ, y ∈ b ⊢ φ[y/x], ∃z ∈ b . ψ,∆

Θ ⊢ ∀x ∈ b . φ, ∃z ∈ b . ψ,∆

An instance of the two-premise rule ∧ can be permuted below an instance of a one-
premise rule Rβ of the form (G.1) with active formulas D,B and principal formulas D′, B′

according to the following permutation schema.

∧
Θ, D ⊢ φ1, B,∆ Θ, D ⊢ φ2, B,∆

Rβ

Θ, D ⊢ (φ1 ∧ φ2), B,∆

Θ, D′ ⊢ (φ1 ∧ φ2), B
′,∆

becomes (G.3)

7:56 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Rβ

Θ, D ⊢ φ1, B,∆
Rβ

Θ, D ⊢ φ2, B,∆

∧
Θ, D′ ⊢ φ1, B

′,∆ Θ, D′ ⊢ φ2, B
′,∆

Θ, D′ ⊢ (φ1 ∧ φ2), B
′,∆

As an example for the permutation schema (G.3) consider permuting ∧ down over ̸=:

∧
Θ ⊢ φ1, t ̸=U u, α[u/z], α[t/z],∆ Θ ⊢ φ2, t ̸=U u, α[u/z], α[t/z],∆

̸=
Θ ⊢ φ1 ∧ φ2, t ̸=U u, α[u/z], α[t/z],∆

Θ ⊢ φ1 ∧ φ2, t ̸=U u, α[t/z],∆

becomes

̸=
Θ ⊢ φ1, t ̸=U u, α[u/z], α[t/z],∆

̸=
Θ ⊢ φ2, t ̸=U u, α[u/z], α[t/z],∆

∧
Θ ⊢ φ1, t ̸=U u, α[t/z],∆ Θ ⊢ φ2, t ̸=U u, α[t/z]∆

Θ ⊢ φ1 ∧ φ2, t ̸=U u, α[t/z],∆

G.2. Permutability down over pairing and projection. We now continue the justifi-
cation of the rule permutations used in proof normalization. The rules ×η and ×β do not
fit the generic shape (G.1) underlying the generic permutation schemas (G.2) and (G.3).
Hence permuting a rule that corresponds to a logic operator down under ×η or ×β requires
dedicated schemas. We consider rule ×β there just for π1 (for π2 the analogy is obvious).
The following lemma expresses the cases of permutability over ×η and ×β needed in the
proof of Theorem G.5.

Lemma G.7. In the base calculus ∨, ∧ and ∀ are permutable down over ×η and ×β.

The permutation schemas for ∨ and ∧ down over ×η and ×β are straightforward. In
their specification we use the following shorthands for a formula or multiset of formulas
Γ: Γ∗ stands for Γ[⟨x1, x2⟩/x], Γ′ for Γ[t1/x] and Γ′′ for Γ[π1(⟨t1, t2⟩)/x]. The respective
permutation schemas then are as follows.

∨
Θ∗ ⊢ φ∗

1, φ
∗
2,∆

∗

×η

Θ∗ ⊢ φ∗
1 ∨ φ∗

2,∆
∗

Θ ⊢ φ1 ∨ φ2,∆

becomes
×η

Θ∗ ⊢ φ∗
1, φ

∗
2,∆

∗

∨
Θ ⊢ φ1, φ2,∆

Θ ⊢ φ1 ∨ φ2,∆

∧
Θ∗ ⊢ φ∗

1,∆
∗ Θ∗ ⊢ φ∗

2,∆
∗

×η

Θ∗ ⊢ φ∗
1 ∧ φ∗

2,∆
∗

Θ ⊢ φ1 ∧ φ2,∆

becomes
×η

Θ∗ ⊢ φ∗
1,∆

∗
×η

Θ∗ ⊢ φ∗
2,∆

∗

∧
Θ ⊢ φ1,∆ Θ ⊢ φ2,∆

Θ ⊢ φ1 ∧ φ2,∆

∨
Θ′ ⊢ φ′

1, φ
′
2,∆

′

×β

Θ′ ⊢ φ′
1 ∨ φ′

2,∆
′

Θ′′ ⊢ φ′′
1 ∨ φ′′

2,∆
′′

becomes
×β

Θ′ ⊢ φ′
1, φ

′
2,∆

′

∨
Θ′′ ⊢ φ′′

1, φ
′′
2,∆

′′

Θ′′ ⊢ φ′′
1 ∨ φ′′

2,∆
′′

∧
Θ′ ⊢ φ′

1,∆
′ Θ′ ⊢ φ′

2,∆
′

×β

Θ′ ⊢ φ′
1 ∧ φ′

2,∆
′

Θ′′ ⊢ φ′′
1 ∧ φ′′

2,∆

becomes
×β

Θ′ ⊢ φ′
1,∆

′
×β

Θ′ ⊢ φ′
2,∆

′

∧
Θ′′ ⊢ φ′′

1,∆
′′ Θ′′ ⊢ φ′′

2,∆
′′

Θ′′ ⊢ φ′′
1 ∧ φ′′

2,∆
′′

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:57

Permuting ∀ down over ×η and ×β is more intricate, because of the potential interaction
of involved variables and substitutions. We make here explicit use of the assumption w.l.o.g.
that bound and free variables are kept distinct.

For permuting ∀ down over ×η the given deduction is, under the assumption x ̸= z, as
follows.

∀
Θ[⟨z1, z2⟩/z], y ∈ b[⟨z1, z2⟩/z] ⊢ φ[⟨z1, z2⟩/z, y/x],∆[⟨z1, z2⟩/z]

×η

Θ[⟨z1, z2⟩/z] ⊢ ∀x ∈ b[⟨z1, z2⟩/z] . φ[⟨z1, z2⟩/z],∆[⟨z1, z2⟩/z]
Θ ⊢ ∀x ∈ b . φ,∆

(G.4)

We can exclude the cases x = z1 or x = z2, which would violate the freshness requirement of
×η because x already appears in the bottom sequent.
Assuming x ̸= z, x ̸= z1 and x ̸= z2 it holds that

φ[⟨z1, z2⟩/z, y/x] = φ[y/x, ⟨z1, z2⟩/z]

and thus (G.4) becomes

×η

Θ[⟨z1, z2⟩/z], y ∈ b[⟨z1, z2⟩/z] ⊢ φ[y/x, ⟨z1, z2⟩/z],∆[⟨z1, z2⟩/z]

∀
Θ, y ∈ b ⊢ φ[y/x],∆
Θ ⊢ ∀x ∈ b . φ,∆

(G.5)

So far, for permuting ∀ down over ×η we assumed x ̸= z. It remains to consider the
case x = z. Since x occurs bound in the bottom sequent, it cannot occur in Θ, ∆ and b.
Since φ is in that sequent in the scope of a quantification upon x, the ×η inference cannot
have any effect on φ. Hence, in the case x = z the ×η inference would have no effect at
all. Just deleting this void inference is then the result of permuting. This concludes the
specification of permuting ×η down over ∀.

We now turn to permuting ∀ down over ×β . Assuming w.l.o.g. that z does not occur in
any sequent of the proof and thus x ̸= z, the given deduction is as follows.

∀
Θ[t1/z], y ∈ b[t1/z] ⊢ φ[t1/z, y/x],∆[t1/z]

×β

Θ[t1/z] ⊢ ∀x ∈ b[t1/z] . φ[t1/z],∆[t1/z]

Θ[π1(⟨t1, t2⟩)/z] ⊢ ∀x ∈ b[π1(⟨t1, t2⟩)/z] . φ[π1(⟨t1, t2⟩)/z],∆[π1(⟨t1, t2⟩)/z]
(G.6)

In the case where x occurs neither in t1 nor in t2 it holds that

φ[t1/z, y/x] = φ[y/x, t1/z]

φ[y/x, π1(⟨t1, t2⟩)/z] = φ[π1(⟨t1, t2⟩)/z, y/x]

and thus (G.6) becomes

×β

Θ[t1/z], y ∈ b[t1/z] ⊢ φ[y/x, t1/z],∆[t1/z]

∀
Θ[π1(⟨t1, t2⟩)/z], y ∈ b[π1(⟨t1, t2⟩)/z] ⊢ φ[π1(⟨t1, t2⟩)/z, y/x],∆[t1/z]

Θ[π1(⟨t1, t2⟩)/z] ⊢ ∀x ∈ b[π1(⟨t1, t2⟩)/z] . φ[π1(⟨t1, t2⟩)/z],∆[π1(⟨t1, t2⟩)/z]

We now consider the case where x occurs in t1 or in t2. Since x occurs bound in the
bottom sequent, there can be no free occurrences of x in that sequent. Hence z, mapped in

7:58 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

that sequent to a pair in which x occurs, cannot occur in Θ, ∆ and b. The given deduction
(G.6) then specializes to

∀
Θ, y ∈ b ⊢ φ[t1/z, y/x],∆

×β

Θ ⊢ ∀x ∈ b . φ[t1/z],∆

Θ ⊢ ∀x ∈ b . φ[π1(⟨t1, t2⟩)/z],∆
(G.7)

Since x ̸= z it holds that

φ[t1/z, y/x] = φ[y/x, t1[y/x]/z] (G.8)

φ[y/x, π1(⟨t1, t2⟩)[y/x]/z] = φ[π1(⟨t1, t2⟩)/z, y/x] (G.9)

and thus (G.7) becomes

×β

Θ, y ∈ b ⊢ φ[y/x, t1[y/x]/z],∆

∀
Θ, y ∈ b ⊢ φ[π1(⟨t1, t2⟩)/z, y/x],∆
Θ ⊢ ∀x ∈ b . φ[π1(⟨t1, t2⟩)/z],∆

(G.10)

In (G.10) the ×β inference viewed top-down replaces occurrences of t1[y/x], which, in case
t1 = x is y, with π1(⟨t1, t2⟩)[y/x]. Justified by (G.9), the middle sequent is shown in (G.10)
in the form suitable as premise for the application of ∀.

This concludes the specification of permuting ∀ down over ×β and thus the specification
of all permutation schemas required for step 2 of the EL-normalization procedure (Figure 4).

G.3. Conversion to tuple-terms. The objective of this conversion is to ensure that the
term t in instances of the ∃ rule is always a tuple-term, i.e., does not involve the projection
functions π1 and π2. This is achieved with proof transformations where instances of ×η and
×β are inserted below instances of ∃ and the effects of these interspersed rules are propagated
upwards. The following lemma states the desired overall property of this transformation.

Lemma G.8. A ∆0 formula provable in the base calculus with a proof where the EL
requirements of the EL-normalized calculus of Figure 3 are met (but not necessarily its
tuple-term condition of the ∃ rule) is also provable in the EL-normalized calculus.

Lemma G.8 presupposes a proof whose contexts and sequents meet the EL requirements
of the EL-normalized calculus. The claimed tuple-term condition can be achieved by
exhaustively applying the proof transformations Elim-π-var and Elim-π-pair , specified
below, which are applicable whenever there is an occurrence of π1 or π2 in the term t of an
instance of the ∃ rule. These transformations lead from a legal proof in the base calculus to
another one with the same bottom formula. They require and preserve the EL requirements
from the EL-normalized calculus.

Proof transformation Elim-π-var. This transformation applies to an instance of the ∃ rule
whose term t has an occurrence of π1(z) or π2(z), where z is a variable. The instance of
the ∃ rule is replaced with an instance of ∃ followed by an instance of ×η and the subproof

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:59

above is adjusted, according to the following schema.

P
.

∃
Θ, t ∈ b ⊢ φ[t/x],∃x ∈ b φ,∆EL

Θ, t ∈ b ⊢ ∃x ∈ b . φ,∆EL

is replaced by

P ∗
.

∃
Θ∗, t∗ ∈ b∗ ⊢ φ∗[t∗/x],∃x ∈ b∗ φ,∆∗

EL

×η

Θ∗, t∗ ∈ b∗ ⊢ ∃x ∈ b∗ . φ∗,∆∗
EL

Θ, t ∈ b ⊢ ∃x ∈ b . φ,∆EL

The starred components are specified there as follows: For a term, formula, or multiset
of formulas Γ, Γ∗ stands for Γ[⟨z1, z2⟩/z], where z1, z2 are fresh variables. Subproof P ∗ is
obtained from P by removing each instance of ×η upon the variable z and some pair ⟨z′1, z′2⟩,
while replacing and z′1 with z1 and of z′2 with z2, and then replacing all occurrences of z
with ⟨z1, z2⟩.

Proof transformation Elim-π-pair . This transformation applies to an instance of the ∃ rule
whose term t has an occurrence of π1(⟨t1, t2⟩) (the case for π2(⟨t1, t2⟩) is analogous). The
instance of the ∃ rule is replaced with an instance of ∃ followed by an instance of ×β and
the subproof above is adjusted, according to the following schema.

P
.

∃
Θ, t ∈ b ⊢ φ[t/x],∃x ∈ b φ,∆EL

Θ, t ∈ b ⊢ ∃x ∈ b . φ,∆EL

is replaced by

P ′
.

∃
Θ, t′ ∈ b ⊢ φ[t′/x],∃x ∈ b φ,∆EL

×β

Θ, t′ ∈ b ⊢ ∃x ∈ b . φ,∆EL

Θ, t ∈ b ⊢ ∃x ∈ b . φ,∆EL

The primed components are specified there as follows: Term t′ is t with the occurrence
of π1(⟨t1, t2⟩) replaced by t1. Subproof P

′ is P with that replacement propagated upward.
It may be obtained by performing the inference steps of P in upward direction, but now
starting from Θ, t′ ∈ b ⊢ φ[t′/x], ∃x ∈ b φ,∆EL instead of Θ, t ∈ b ⊢ φ[t/x],∃x ∈ b φ,∆EL.
Instances of ×β and ×η may get void there (identical premise and conclusion) and can then
be removed.

G.4. Complexity considerations. In step 1 of the EL-normalization procedure (Figure 4),
through the two-premise rule ∧ a leaf can get extended upwards by a number of nodes that
is exponential in the number of occurrences of ∧ in its conclusion. Hence the time required
for step 1 is exponential in the number of occurrences of ∧ in a leaf conclusion.

Step 2 where the proof is permuted, may, through permuting ∧ down over one-premise
rules, increase the number of nodes. However, none of the permutations increases the
height h or the number of leaves l of the proof tree. Both h and l are less than or equal to
the number n of nodes of the input proof, the output of step 1. Since a tree with height h
and number of leaves l can in general not have more than h× l nodes, our proof tree can
never have more than n2 nodes when we perform the permutations. Since for each node we
can apply at most h downward permutation steps, and h ≤ n, we can conclude that step 2
involves not more that n3 permutation steps.

Step 3, where instances of ×η and ×β are inserted below instances of ∃ and adjustments
to these insertions are propagated upwards, is polynomial. This step does not increase

7:60 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

the number of branches, but may increase the length of a branch by twice the number of
occurrences of πi in terms t of instances of ∃ on the branch.

Thus, for EL-normalization we have exponential time complexity. However, the source of
the exponential complexity can be associated with the first stage of the procedure, extending
the proof tree at its leaves, which may be seen as a blow up of irrelevant parts of the
proof that accompany the axioms. The rule permutation stage is only a polynomial-time
operation.

Appendix H. ∆0 interpolation: proof sketch of Theorem 5.4

We recall the statement:

Let Θ be an ∈-context and Γ,∆ finite multisets of ∆0 formulas. Then from any proof of
Θ; Γ ⊢ ∆ we can compute in linear time a ∆0 formula θ with FV (θ) ⊆ FV (Θ,Γ) ∩ FV (∆),
such that Θ; Γ ⊢ θ and ∅; θ ⊢ ∆

Recall also that we claim this for both the higher-level 2-sided system and the 1-sided
system, where the 2-sided syntax is a “macro”: Θ; Γ ⊢ ∆ is a shorthand for Θ ⊢ ¬Γ,∆,
where ¬Γ is itself a macro for dualizing connectives. Thus in the 1-sided version, we are
arbitrarily classifying some of the ∆0 formulas as Left and the others as Right, and our
interpolant must be common according to that partition.

We stress that there are no new ideas needed in proving Theorem 5.4 — unlike for
our main tool, the Parameter Collection Theorem, or our final result. The construction
for Theorem 5.4 proceeds exactly as in prior interpolation theorems for similar calculi
[Tak87, TS00, Smu68b]. Similar constructions are utilized in works for query reformulation
in databases, so for a presentation geared towards a database audience one can check [TW11]
or the later [BCLT16].

We explain the argument for the higher-level 2-sided system. We prove a more general
statement, where we partition the context and the formulas on both sides of ⊢ into Left and
Right. So we have

ΘLΘR; ΓL,ΓR ⊢ ∆L,∆R

And our inductive invariant is that we will compute in linear time a θ such that:

ΘL; ΓL ⊢ θ,∆L

ΘR; ΓR, θ ⊢ ∆R

And we require that FV (θ) ⊆ FV (ΘL,ΓL,∆L) ∩ FV (ΘR,ΓR,∆R). This generalization is
used to handle the negation rules, as we explain below.

We proceed by induction on the depth of the proof tree.
One of the base cases is where we have a trivial proof tree, which uses rule (Ax) to

derive:
Θ; Γ, φ ⊢ φ,∆

We do a case distinction on where the occurrences of φ sit in our partition. Assume the
occurrence on the left is in ΓL and the occurrence on the right is in ∆R. Then we can take
our interpolant θ to be φ. Suppose the occurrence on the left is ΓL and the occurrence on
the right is in ∆L. Then we can take θ to be ⊥. The other base cases are similar.

The inductive cases for forming the interpolant will work “in reverse” for each proof rule.
That is, if we used an inference rule to derive sequent S from sequents S1 and S2, we will
partition the sequents S1 and S2 based on the partition of S. We will then apply induction

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:61

to our partitioned sequent for S1 to get an interpolant θ1, and also apply induction to our
partitioned version of S2 to get an interpolant θ2. We then put them together to get the
interpolant for the partitioned sequent S. This “putting together” will usually reflect the
semantics of the connective mentioned in the proof rule.

Consider the case where the last rule applied is the ¬-L rule: this is the case that
motivates the more general invariant involving partitions. We have a partition of the final
sequent Θ; Γ, φ ⊢ ∆. We form a partition of the sequent Θ; Γ ⊢ ¬φ,∆ by placing ¬φ on the
same side (Left, Right) as φ was in the original partition. We then get an interpolant θ by
induction. We just use θ for the final interpolant.

We consider the inductive case for ∧-R. We have two top sequents, one for each conjunct.
We partition them in the obvious way: each φi in the top is in the same partition that
φ1 ∧ φ2 was in the bottom. Inductively we take the interpolants θ1 and θ2 for each sequent.
We again do a case analysis based on whether φ1 ∧ φ2 was in ∆L or in ∆R.

Suppose φ1 ∧ φ2 was in ∆R, so ∆R = φ1 ∧ φ2,∆
′
R. Then we arranged that each

φi was in ∆R in the corresponding top sequent. So we know that ΘL; ΓL ⊢ θi,∆L and
ΘR; ΓR, θi ⊢ φi,∆′

R for i = 1, 2. Now we can set the interpolant θ to be θ1 ∧ θ2.
In the other case, φ1 ∧ φ2 was in ∆L, say ∆L = φ1 ∧ φ2,∆

′
L. Then we would arrange

each φi to be “Left” in the corresponding top sequent, so we know that ΘL; ΓL ⊢ θi, φi,∆′
L

and ΘR; ΓR, θi ⊢ ∆R for i = 1, 2. We set θ = θ1 ∨ θ2 in this case.
With the ∃ rule, a term in the inductively-assumed θ′ for the top sequent may become

illegal for the θ for the bottom sequent, since it has a free variable that is not common. In
this case, the term in θ is replaced by a quantified variable, where the quantifier is existential
or universal, depending on the partitioning, and bounded according to the requirements
for ∆0 formulas. The non-common variables are then replaced and variable constraints are
added as described with the notation ∃x1 . . . xn|t ∈ b . φ and ∀x1 . . . xn|t ∈ b . φ on p. 30.

Appendix I. Proofs of polytime admissibility

The goal of this section is to prove most claims of polytime admissibility made in the body
of the paper, crucially those of Subsection 5.3. Recall that a rule

Θ ⊢ ∆

Θ′ ⊢ ∆′

is polytime admissible if we can compute in polynomial time a proof of the conclusion Θ′ ⊢ ∆′

from a proof of the antecedent Θ ⊢ ∆.
Throughout this section we deal with the EL-normalized proof system of Figure 3.

I.1. Standard rules. Here we collect some useful standard sequent calculi rules, which are
all polytime admissible in our system. The arguments for these rules are straightforward.

Lemma I.1. The following weakening rule is polytime admissible:

Θ ⊢ ∆

Θ′ ⊢ ∆,∆′

Lemma I.2. The following inference, witnessing the invertibility of the ∧ rule, is polytime
admissible for both i ∈ {1, 2}:

Θ ⊢ φ1 ∧ φ2,∆

Θ ⊢ φi,∆

7:62 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Lemma I.3. The following, witnessing the invertibility of the ∀ rule, is polytime admissible:

Θ ⊢ ∀x ∈ t.φ,∆

Θ, x ∈ t ⊢ φ,∆
Lemma I.4. The following substitution rule is polytime admissible:

Θ ⊢ ∆

Θ[t/x] ⊢ ∆[t/x]

I.2. Admissibility of generalized congruence. Recall the admissibility claim concerning
the rule related to congruence:

Lemma I.5. The following generalized congruence rule is polytime admissible:

Θ[t/x, t/y] ⊢ ∆[t/x, t/y]

Θ[t/x, u/y] ⊢ ¬(t ≡ u),∆[t/x, u/y]

Recall that in a two-sided reading of this, the hypothesis is t ≡ u; Θ[t/x, u/y] ⊢
∆[t/x, u/y]. So the rule says that if we Θ entails ∆ where both contain t, then if we assume
t ≡ u and substitute some occurrences of t with u in Θ, we can conclude the corresponding
substitution of ∆.

To prove Lemma I.5 in the case where the terms t and u are of type Set(T), we will
need a more general statement. We are going to generalize the statement to treat tuples of
terms and use EL formulas instead of ¬(t ≡ u) to simplify the inductive invariant.

Given two terms t and u of type t, define by induction the set of formulas Et,u:
• If T = U, then Et,u is t ̸=U u
• If T = T1 × T2, then Et,u is Eπ1(t),π1(u), Eπ2(t),π2(u)
• If T = Set(T ′), Et,u is ¬(t ⊆T u),¬(u ⊆T t)

The reader can check that Et,u is essentially ¬(t ≡ u).

Lemma I.6. The following rule is polytime admissible:

Θ ⊢ ∆, Et,u
Θ ⊢ ∆,¬(t ≡ u)

Proof. Straightforward induction over T .

Since we will deal with multiple equivalences, we will adopt vector notation t⃗ = t1, . . . , tn
and x⃗ = x1, . . . , xn for lists of terms and variables. Call Et⃗,u⃗ the union of the Eti,ui . We can
now state our more general lemma:

Lemma I.7. The following generalized n-ary congruence rule for set variables is polytime
admissible:

Θ[⃗t/x⃗, t⃗/y⃗] ⊢ ∆[⃗t/x⃗, t⃗/y⃗]

Θ[⃗t/x⃗, u⃗/y⃗] ⊢ ∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗
Proof of Lemma I.7. We proceed by induction over the proof of Θ[⃗t/x⃗, t⃗/y⃗] ⊢ ∆[⃗t/x⃗, u⃗/y⃗],

• If the last rule applied is the = rule, i.e. we have

Θ[⃗t/x⃗, t⃗/y⃗] ⊢ a[⃗t/x⃗, t⃗/y⃗] =U b[⃗t/x⃗, t⃗/y⃗],∆[⃗t/x⃗, t⃗/y⃗]

and a[⃗t/x⃗, t⃗/y⃗] = b[⃗t/x⃗, t⃗/y⃗], with a, b variables. Now if a and b are equal, or if they belong
both to either x⃗ or y⃗, it is easy to derive the desired conclusion with a single application of

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:63

the = rule. Otherwise, assume a = xi and b = yj (the symmetric case is handled similarly).
In such a case, we have that Et⃗,u⃗ contains ti ̸=U tj . So the desired proof

Θ[⃗t/x⃗, t⃗/y⃗] ⊢ ti =U uj ,∆[⃗t/x⃗, t⃗/y⃗], Et⃗,u⃗, ti ̸=U tj

follows from the polytime admissibility of the axiom rule.
• Suppose the last rule applied is the ⊤ rule:

Θ[⃗t/x⃗, t⃗/y⃗] ⊢ ⊤,∆[⃗t/x⃗, t⃗/y⃗]

Then we do not need to apply the induction hypothesis. Instead we can immediately
apply the ⊤ rule to obtain

Θ[⃗t/x⃗, u⃗/y⃗] ⊢ ⊤,∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗
• If the last rule applied is the ∧ rule

Θ[⃗t/x⃗, t⃗/y⃗] ⊢ φ1 [⃗t/x⃗, t⃗/y⃗],∆[⃗t/x⃗, t⃗/y⃗] Θ[⃗t/x⃗, t⃗/y⃗] ⊢ φ2 [⃗t/x⃗, t⃗/y⃗],∆[⃗t/x⃗, t⃗/y⃗]

Θ[⃗t/x⃗, t⃗/y⃗] ⊢ (φ1 ∧ φ2)[⃗t/x⃗, t⃗/y⃗],∆[⃗t/x⃗, t⃗/y⃗]

then the induction hypothesis gives us proofs of

Θ[⃗t/x⃗, u⃗/y⃗] ⊢ φi [⃗t/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗
for both i ∈ {1, 2}. So we can apply the ∧ rule to conclude that we have

Θ[⃗t/x⃗, u⃗/y⃗] ⊢ (φ1 ∧ φ2)[⃗t/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗
as desired.

• The cases of the rules ∨,∀ and ×η are equally straightforward and left to the reader.
• Now, let us handle the case of the ∃ rule.

Θ, t ∈ u ⊢ φ[t/x],∆EL

Θ, t ∈ u ⊢ ∃x ∈ u. φ,∆EL

So assume that z is fresh wrt x⃗, y⃗, t⃗, u⃗, a, b and that the last step of the proof is

Θ[⃗t/x⃗, t⃗/y⃗], a[⃗t/x⃗, t⃗/y⃗] ∈ b[⃗t/x⃗, t⃗/y⃗] ⊢ φ[a/z][⃗t/x⃗, t⃗/y⃗], ∃z ∈ c[⃗t/x⃗, t⃗/y⃗]. φ[⃗t/x⃗, t⃗/y⃗],∆[⃗t/x⃗, t⃗/y⃗]

Θ[⃗t/x⃗, t⃗/y⃗], a[⃗t/x⃗, t⃗/y⃗] ∈ b[⃗t/x⃗, t⃗/y⃗] ⊢ ∃z ∈ c[⃗t/x⃗, t⃗/y⃗]. φ[⃗t/x⃗, t⃗/y⃗],∆[⃗t/x⃗, t⃗/y⃗]

with b[⃗t/x⃗, t⃗/y⃗] = c[⃗t/x⃗, t⃗/y⃗]. Set a′ = a[⃗t/x⃗, u⃗/y⃗], b′ = b[⃗t/x⃗, u⃗/y⃗], c′ = c[⃗t/x⃗, u⃗/y⃗]. We
have three subcases:
– If we have that b′ = c′, using the induction hypothesis, we have a proof of

Θ[⃗t/x⃗, u⃗/y⃗], a′ ∈ b′ ⊢ φ[a/z][⃗t/x⃗, u⃗/y⃗], ∃z ∈ c′. φ[u⃗/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗
we can simply apply an ∃ rule to that proof and we are done.

– Otherwise, if we have that b′ = ti and c
′ = uj for some i, j ≤ n. In that case, extending

the tuples t⃗ and u⃗ with a′ and a fresh variable z′ (the substitutions under consideration
would be, we can apply the induction hypothesis to obtain a proof of

Θ[⃗t/x⃗, u⃗/y⃗, a′/z], a′ ∈ ti, z
′ ∈ uj ⊢

φ[⃗t/x⃗, u⃗/y⃗, z′/z],∃z ∈ uj . φ[u⃗/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗, Ea′,z′

7:64 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Note that Et⃗,u⃗ contains an occurrence of ¬(ti ⊆ uj), which expands to ∃z ∈ ti.∀z′ ∈
uj .¬(z ≡ z′), so we can construct the partial derivation

Θ[⃗t/x⃗, u⃗/y⃗, a
′
/z], a

′ ∈ ti, z
′ ∈ uj ⊢ φ[⃗t/x⃗, u⃗/y⃗, z

′
/z

′
], ∃z ∈ uj . φ[u⃗/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗, Ea′,z′

∃
Θ[⃗t/x⃗, u⃗/y⃗], a

′ ∈ ti, z
′ ∈ uj ⊢ ∃z ∈ uj .φ[⃗t/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗, Ea′,z′

Lemma I.6
Θ[⃗t/x⃗, u⃗/y⃗, a

′
/z], a

′ ∈ ti, z
′ ∈ uj ⊢ ∃z ∈ uj . φ[u⃗/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗, a

′ ≡ z
′

∀
Θ[⃗t/x⃗, u⃗/y⃗, a

′
/z], a

′ ∈ ti ⊢ ∃z ∈ c
′
. φ[u⃗/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗, ∀z

′ ∈ uj .a
′ ≡ z

′

∃
Θ[⃗t/x⃗, u⃗/y⃗, a

′
/z], a

′ ∈ ti ⊢ ∃z ∈ c
′
. φ[⃗t/x⃗, u⃗/y⃗],∆[⃗t/x⃗, u⃗/y⃗], Et⃗,u⃗

whose conclusion matches what we want.
– Otherwise, we are in a similar case where b′ = uj and c′ = ti. We proceed similarly,

except that we use the formula ¬(uj ⊆ ti) of Eti,uj instead of ¬(ti ⊆ uj).
– For the rule ×β, which has general shape

Θ[zi/z] ⊢ ∆[zi/z]

Θ[πi(⟨z1, z2⟩)/z] ⊢ ∆[πi(⟨z1, z2⟩)/z]
we can assume, without loss of generality, that z occurs only once in Θ,∆. Let us only
sketch the case where z occurs in a formula φ and the rule has shape

Θ ⊢ φ[zi/z],∆
Θ ⊢ φ[πi(⟨z1, z2⟩)/z],∆

We have that φ[πi(⟨z1, z2⟩)/z)] is also of the shape ψ[⃗t/x⃗, u⃗/y⃗] in our situation. We can
also assume without loss of generality that each variable in x⃗ and y⃗ occur each a single
time in Θ,∆. Now if we have a couple of situations:
∗ If the occurrence of z do not interfere with the substitution [⃗t/x⃗, u⃗/y⃗], i.e., there is a
formula θ such that

φ[πi(⟨z1, z2⟩)/z] = ψ[⃗t/x⃗, u⃗] = θ[⃗t/x⃗, u⃗/y⃗, ⟨z1, z2⟩/z]

we can simply apply the induction hypothesis on the subproof and conclude with one
application of ×η.

∗ If we have that z clashes with a variable of x⃗, y⃗, say xj , but that tj = v[πi(⟨z1, z2⟩/xj)]
for some term v. Then we can apply the induction hypothesis with the matching
tuples of terms t⃗, xi and u⃗, ti and conclude by applying the β rule.

∗ Otherwise, the occurrence of z does interfere with the substitution in such a way
that we have, say tj = ⟨z1, z2⟩. Then we can apply the induction hypothesis on
the subproof with the matching tuples of terms x⃗, zi and y⃗, πi(uj) and conclude by
applying the β rule.

One easy consequence of the above is Lemma I.5:

Proof of Lemma I.5. Combine Lemma I.7 and Lemma I.6.

Another consequence is the following corollary, which will be used later in this section:

Corollary I.8. The following rule is polytime admissible:

Θ, t ∈ u ⊢ ∆

Θ ⊢ ¬t ∈̂ u,∆

Proof. Recall that t ∈̂ u expands to ∃x ∈ u. x ≡ t, so that ¬t ∈̂ u is ∀x ∈ u. ¬(x ≡ t). So
we have

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:65

Θ, t ∈ u ⊢ ∆
Lemma I.5

Θ, x ∈ u ⊢ ¬(x ≡ t),∆
∀

Θ ⊢ ¬t ∈̂ u,∆

I.3. Proof of Lemma 5.7. We now recall the claim of admissibility concerning rules for
“moving down in an equivalence”. These will make use of the notation for quantifying on a
path below an object, defined in the body in Definition 5.6.

Lemma 5.7. Assume p is a subtype occurrence for the type of the term o′. The following is
polytime admissible

Θ ⊢ ∆, ∃r′ ∈p o′. r ≡Set(T ′) r
′

Θ, z ∈ r ⊢ ∆, ∃z′ ∈∋,p o′. z ≡T ′ z′

Furthermore, the size of the output proof is at most the size of the input proof.

Proof. First, let us consider the simpler case where p =∋. We proceed by induction over the
input proof of Θ ⊢ ∆,∃r′ ∈ o′. r ≡Set(T ′) r

′ and make a case distinction according to which
rule was applied last. All cases are straightforward, save for one: when a ∃ rule is applied
on the formula ∃r′ ∈ o′. r ≡Set(T ′) r

′. Let us only detail that one.
In that case, the last step has shape

Θ, w ∈ o′ ⊢ ∆EL, r ≡Set(T ′) w,∃r′ ∈ o′. r ≡Set(T ′) r
′

Θ, w ∈ o′ ⊢ ∆EL,∃r′ ∈ o′. r ≡Set(T ′) r′

Now observe that r ≡Set(T ′) w is not EL, since if you unfold the macros it begins with a
universal. Thus the final rule that is applied in the proof witnessing the hypothesis sequent
cannot be the ∃ rule. We can thus infer that the expanded proof tree ends with:

Θ, w ∈ o′, z ∈ r ⊢ ∆EL, z ∈̂ w,∃r′ ∈ o′. r ≡Set(T ′) r
′

Θ, w ∈ o′ ⊢ ∆EL, r ⊆ w,∃r′ ∈ o′. r ≡Set(T ′) r
′

...

Θ, w ∈ o′ ⊢ ∆EL, w ⊆ r, ∃r′ ∈ o′. r ≡Set(T ′) r
′

Θ, w ∈ o′ ⊢ ∆EL, r ≡Set(T ′) w,∃r′ ∈ o′. r ≡Set(T ′) r
′

Θ, w ∈ o′ ⊢ ∆EL,∃r′ ∈ o′. r ≡Set(T ′) r
′

In particular, we have a strictly smaller subproof of

Θ, w ∈ o′, z ∈ r ⊢ ∆EL, z ∈̂ w,∃r′ ∈ o′. r ≡Set(T ′) r
′

Recall that ∈̂ is a macro: see Definition 3.3. Applying the induction hypothesis, we get a
proof of

Θ, w ∈ o′, z ∈ r ⊢ ∆EL, z ∈̂ w,∃z′ ∈∋,∋ o
′. z ≡Set(T ′) z

′

Applying the ∃-rule we can then obtain a proof with conclusion

Θ, w ∈ o′, z ∈ r ⊢ ∆EL,∃r ∈ o′. z ∈̂ r, ∃z′ ∈∋,∋ o
′. z ≡Set(T ′) z

′

which concludes our argument, since ∃r ∈p o′. z ∈̂ r and ∃z′ ∈∋,∋ o′. z ≡Set(T ′) z
′ are

syntactically the same.
For the more complex case where p is non-trivial, we can conduct a similar argument,

at the cost of making the induction hypothesis more elaborate. We would prove that the
following rule is polytime admissible

Θ,Θ1, . . . ,Θn ⊢ ∆, φ1, . . . , φn
Θ,Θ1, . . . ,Θn ⊢ ∆,∃z′ ∈∋,p o′. z ≡Set(T ′) z′

7:66 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Here n is any natural number and for each i ≤ n, we have a decomposition of p as
a concatenation pi, p

′
i, where p′i is non-empty and multiple pi can be the same. From

this decomposition we define φi = ∃z′ ∈p′i oi. z ≡Set(T ′) z
′ (with oi = o′ iff pi = ε) and

Θi is a context witnessing that oi ∈pi o′. Formally, Θi = Θ(pi, oi, o
′) with Θ(ε, x, y) = ·,

Θ(∋, x, y) = x ∈ y, Θ((p,∋), x, y) = Θ(p, x, z), z ∈ y and Θ((p, j), x, y) = Θ(p, x, πj(y)) when
j ∈ {1, 2}. The induction over a proof of the premise can be carried out in an analogous
way to show admissibility, and the only non-trivial case, when a rule interacts with one of
the φi that has p

′
i =∋, is handled in the same way as the non-trivial case for p =∋.

I.4. Proof of Lemma 5.8.

Lemma 5.8. The following is polytime admissible (where p is a subtype occurrence of the
type of o′)

Θ ⊢ ∆, ∃r′ ∈p o′. r ≡Set(T ′) r
′

Θ ⊢ ∆,∃r′ ∈p o′.∀z ∈ a. z ∈̂ r ↔ z ∈̂ r′

Proof. Much like what happened in the proof of 5.7, the proof can be done by induction over
the shape of the input derivation when p =∋. When this is not the case, we can generalize
our inductive hypothesis in a similar way and use the same ideas. So for the sake of legibility,
let us focus on the case where p =∋ and go through the induction, making a case distinction
according to what was the last rule applied.

All cases are trivial, except for the case of the rule ∃, where ∃r′ ∈ o′.r ≡Set(T ′) r
′ is the

principal formula. So let us focus on that one.
In that case, the proof necessarily has shape

Θ, y ∈ w ⊢ ∆EL, y ∈̂ r, ∃r′ ∈ o′. r ≡Set(T ′) r
′

∀
Θ ⊢ ∆EL, w ⊆T ′ r, ∃r′ ∈ o′. r ≡Set(T ′) r

′

Θ, x ∈ r ⊢ ∆EL, x ∈̂ w,∃r′ ∈ o′. r ≡Set(T ′) r
′

∀
Θ ⊢ ∆EL, r ⊆T ′ w,∃r′ ∈ o′. r ≡Set(T ′) r

′
∧

Θ ⊢ ∆EL, r ≡Set(T ′) w,∃r′ ∈ o′. r ≡Set(T ′) r
′

∃
Θ ⊢ ∆EL, ∃r′ ∈ o′. r ≡Set(T ′) r

′

Applying the induction hypothesis to the leaves of that proof, we obtain two proofs of

Θ, y ∈ w ⊢ ∆EL, y ∈̂ r, ∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′

and

Θ, x ∈ r ⊢ ∆EL, x ∈̂ w,∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′

so we can conclude using the admissibility of weakening and Corollary I.8 twice and replaying
the ∧/∀/∃ steps in the appropriate order (a branch of the proof derivation is elided below
for lack of horizontal space):

Θ, y ∈ w ⊢ ∆EL, y ∈̂ r, ∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′
Corollary I.8

Θ ⊢ ∆EL,¬(y ∈̂ w), y ∈̂ r, ∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′
∨

Θ ⊢ ∆EL, y ∈̂ w → y ∈̂ r,∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′
...

Θ ⊢ ∆EL, y ∈̂ r ↔ y ∈̂ w,∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′
Lemma I.1

Θ, y ∈ a ⊢ ∆EL, y ∈̂ r ↔ y ∈̂ w,∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′
∀

Θ ⊢ ∆EL,∀z ∈ a. z ∈̂ r ↔ z ∈̂ w,∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′
∃

Θ ⊢ ∆EL,∃r′ ∈ o′.∀z ∈ a, z ∈̂ r ↔ z ∈̂ r′

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:67

Appendix J. Proof of the main theorem for non-set types

Recall again our main result:

Theorem 5.2 (Effective implicit to explicit for nested data). Given a witness to the implicit

definition of o in terms of i⃗ relative to ∆0 φ(⃗i, a⃗, o), one can compute NRC expression E

such that for any i⃗, a⃗ and o, if φ(⃗i, a⃗, o) then E(⃗i) = o. Furthermore, if the witness is
EL-normalized, this can be done in polynomial time.

In the body of the paper, we gave a proof for the case where the type of the defined
object is Set(T) for any T . We now discuss the remaining cases: the base case and the
inductive case for product types.

So assume we are given an implicit definition φ(⃗i, a⃗, o) and a EL-normalized witness,
and proceed by induction over the type o:

• If o has type Unit, then, since there is only one inhabitant in type Unit, then we can take
our explicit definition to be the corresponding NRC expression ⟨⟩.

• If o has type U, then using interpolation on the entailment φ(⃗i, a⃗, o) → (φ(⃗i, a⃗′, o′) →
o =U o

′), we obtain θ(⃗i, o) with φ(⃗i, a⃗, o) → θ(⃗i, a⃗, o) and θ(⃗i, o) ∧ φ(⃗i, a⃗, o′) → o =U o
′.

But then we know that φ implies o is a subobject of i⃗: otherwise we could find a model
that contradicts the entailment. There is an NRC definition A(⃗i) that collects all of the

U-elements lying beneath i⃗. We can then take E(⃗i) = getT ({x ∈ A(⃗i) | θ(⃗i, x)}) as our
NRC definition of o. The correctness of E follows from the properties of θ above.

• If o has type T1 × T2, recalling the definition of ≡T1×T2 , we have a derivation of

φ(⃗i, a⃗, o) ∧ φ(⃗i, a⃗, o′) ⊢ π1(o) ≡T1 π1(o
′) ∧ π2(o) ≡T2 π2(o

′)

By Lemma I.2, we have proofs of

φ(⃗i, a⃗, o) ∧ φ(⃗i, a⃗, o′) ⊢ πi(o) ≡Ti πi(o
′)

for i ∈ {1, 2}. Take o1 and o2 to be fresh variables of types T1 and T2. Take φ̃(⃗i, a⃗, o1, o2)

to be φ(⃗i, a⃗, ⟨o1, o2⟩). By substitutivity (the admissible rule given by Lemma I.4) and
applying the ×β rule, we have EL-normalized proofs of

φ(⃗i, a⃗, ⟨o1, o2⟩) ∧ φ(⃗i, a⃗, ⟨o′1, o′2⟩) ⊢ oi ≡Ti o
′
i

We can apply our inductive hypothesis to obtain a definition EIH
i (⃗i) for both i ∈ {1, 2}.

We can then take our explicit definition to be ⟨EIH
1 (⃗i), EIH

2 (⃗i)⟩.

Appendix K. Variant of Parameter Collection Theorem,
Theorem 5.9, for parameterized definability in first-order logic

Our paper has focused on the setting of nested relations, phrasing our results in terms of
the language NRC. We indicated in the conclusion of the paper that there is a variant of the
NRC parameter collection theorem, Theorem 5.9, for the broader context of first-order logic.
In fact, this first-order version of the result provided the intuition for the theorem. In this
section we present this variant.

We consider first-order logic with equality and without function symbols, which also
excludes nullary function symbols, that is, individual constants, whose role is just taken by

7:68 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

free individual variables. Specifically, we consider first-order formulas with the following
syntax

φ,ψ ::= P (x⃗) | ¬P (x⃗) | x = y | x ̸= y | ⊤ | ⊥ | φ ∧ ψ | φ ∨ ψ | ∀xφ | ∃xφ.

Amongst the formulas given in the grammar above, those of the shape P (x⃗),¬P (x⃗), x = y
and x ≠ y are called literals. Literals come with a polarity: those of the shape P (x⃗) and
x = y are positive while the other, of the shape ¬P (x⃗) or x ̸= y are negative.

On top of this, we give some “syntactic sugar”. We define ¬φ by induction over φ,
dualizing every connective, including the quantifiers, and removing doubled negation over
literals. We define implication φ → ψ as an abbreviation of ¬φ ∨ ψ and bi-implication
φ ↔ ψ as an abbreviation of (φ → ψ) ∧ (ψ → φ). The set of free variables occurring in a
formula φ is denoted by FV (φ) and the set of predicates occurring in φ by PR(φ).

Figure 5 shows our proof system for first-order logic. It is identical to a system from the
prior literature.4 Like the EL-normalized proof system we used in the body of the paper for
∆0 formulas, it is a 1-sided calculus. The formulas other than Γ in the premise are the active
formulas of the rule, while the principal formulas are the other formulas in its conclusion.
The complementary principal formulas in Ax have to be literals. The replacement of symbols
induced by equality with Repl is only performed on negative literals.

Ax
⊢ Γ, φ,¬φ

φ a positive literal ⊤
⊢ Γ,⊤

∧
⊢ Γ, φ1 ⊢ Γ, φ2

⊢ Γ, φ1 ∧ φ2

∨
⊢ Γ, φ1, φ2

⊢ Γ, φ1 ∨ φ2

∀
⊢ Γ, φ[y/x]

⊢ Γ,∀x φ
y /∈ FV (Γ,∀x φ) ∃

⊢ Γ, φ[t/x],∃x φ
⊢ Γ,∃x φ

Ref
⊢ t ̸= t,Γ

⊢ Γ
Repl

⊢ t ̸= u, φ[u/x], φ[t/x],Γ

⊢ t ̸= u, φ[t/x],Γ
φ a negative literal

Figure 5: One-sided sequent calculus for first-order logic with equality.

As in the body of the paper, a proof tree or derivation is a tree whose nodes are labelled
with sequents, such that the labels of the children of a given node and that of the node
itself are the premises and conclusion, resp., of an instance of a rule from Figure 5. The
conclusion of a proof tree is the sequent that labels its root. The proof system is closed under
cut, weakening and contraction. Closure under contraction in particular makes it suited as
basis for “root-first” proof search. Read in this “bottom-up” way, the ∃ rule states that a
disjunction with an existentially quantified formula can be proven if the extension of the
disjunction by a copy of the formula where the formerly quantified variable x is instantiated

4G3c+Ref+Repl [NvP01, TS00], in the one-sided form of GS3, discussed in Chapter 3 of [TS00], which
reduces the number of rules.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:69

with an arbitrary variable t can be proven. The existentially quantified formula is retained
in the premise and may be used to add further instances by applying ∃ again in the course
of the proof.

Soundness of the rules is straightforward. For example the ∃ rule could be read as
stating that if we deduce a disjunction in which one disjunct is a formula φ with t in it,
then we can deduce the same disjunction but with some occurrences of t replaced in that
disjunct with an existentially quantified variable. Completeness of the proof system can
also be proven by a standard Henkin-style construction: indeed, since this is really ordinary
first-order logic, there are proofs in the literature for systems that are very similar to this
one [TS00, NvP98].

Like our higher-level system in the body of the paper (Figure 2) the first-order system
in Figure 5 does not impose any special constraints on the shape of the proof. We adapt the
extra conditions on contexts of the EL-normalized system for ∆0 formulas (Figure 3) to our
first-order system. We characterize a proof in the system of Figure 5 as FO-normalised if no
application of Ax, ⊤, ∃, Ref, Repl contains in its conclusion a formula whose top-level
connective is ∨, ∧ or ∀.

The FO-normalised property may be either incorporated directly into a “root-first” proof
procedure by constraining rule applications or it may be ensured by converting an arbitrary
given proof tree to a FO-normalised proof tree with the same ultimate consequence. This
conversion is achieved by a straightforward adaption of the method for the ∆0 calculus
from Appendix G, Figure 4. Only steps (1) and (2) of the method are relevant here, since
step (3) is specifically for the pair terms of ∆0 formulas. In step (2), instances of ∨, ∧ or ∀
are permuted down over ∃, Ref and Repl according to the generic permutation schemas
of Lemma G.6. The left sides of ⊢ in these schemas can be ignored since they represent
the ∈-contexts for ∆0 formulas. Finally, derivations of sequents containing ⊤ are replaced
by applications of rule ⊤ and derivations of sequents containing complementary literals
φ,¬φ by applications of rule Ax. The conversion, however, may increase the proof size
exponentially as discussed in Section G.4.

We now discuss our generalization of the NRC Parameter Collection Theorem from
the body of the paper to this first-order setting. The concept of explicit definition can be
generalized to definition up to parameters and disjunction: A family of formulas χi(z⃗, y⃗, r⃗),
1 ≤ i ≤ n, provides an explicit definition up to parameters and disjunction of a formula

λ(z⃗, l⃗) relative to a formula φ if

φ |=
n∨
i=1

∃y⃗∀z⃗ (λ(z⃗, l⃗) ↔ χi(z⃗, y⃗, r⃗)). (⋆)

The entailment (⋆) is considered with restrictions on the predicates and variables permitted

to occur in the χi. In the simplest case, λ(z⃗, l⃗) is a positive literal p(z⃗) with a predicate that
is permitted in φ but not in the χi. The predicate p is then said to be explicitly definable up
to parameters and disjunction with respect to φ [CK92].

The disjunction over a finite family of formulas χi can be consolidated into a single
quantified biconditional as long as the domain has size at least 2 in every model of φ. Notice
that if φ has only finite models, then by the compactness theorem of first-order logic, the
size of models must be bounded. In such cases every formula λ is definable with sufficiently
many parameters.

We can now state our analog of the Parameter Collection Theorem, Theorem 5.9.

7:70 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Theorem K.1. Let φ, ψ, λ(z⃗, l⃗), and ρ(z⃗, y⃗, r⃗) be first-order formulas such that

φ ∧ ψ |= ∃y⃗∀z⃗ (λ(z⃗, l⃗) ↔ ρ(z⃗, y⃗, r⃗)).

Then there exist first-order formulas χi(z⃗, v⃗i, c⃗i), 1 ≤ i ≤ n, such that

(1) φ ∧ ψ |=
∨n
i=1 ∃v⃗i∀z⃗(λ(z⃗, l⃗) ↔ χi(z⃗, v⃗i, c⃗i)),

(2) c⃗i ⊆ (FV (φ) ∪ l⃗) ∩ (FV (ψ) ∪ r⃗),
(3) PR(χi) ⊆ (PR(φ) ∪ PR(λ)) ∩ (PR(ψ) ∪ PR(ρ)).

Moreover, given a FO-normalised proof of the precondition with the system of Figure 5, a
family of formulas χi, 1 ≤ i ≤ n, with the claimed properties can be computed in polynomial
time in the size of the proof tree.

In the theorem statement, the free variables of λ are z⃗ and l⃗, and the free variables of ρ
are z⃗, y⃗, and r⃗. The precondition supposes an explicit definition ρ of λ up to parameters with
respect to a conjunction φ∧ψ. The conclusion then claims that one can effectively compute
another definition of λ with respect to φ ∧ ψ that is up to parameters and disjunction and
has a constrained signature: free variables and predicates must occur in at least one of the
“left side” formulas φ and λ and also in at least one of the “right side” formulas ψ and ρ. In
other words, the theorem states that if SIGL and SIGR are “left” and “right” signatures
such that φ and λ are over SIGL, ψ and ρ are over SIGR, and ρ provides an explicit
definition of λ up to parameters with respect to φ ∧ ψ, then one can effectively compute
another definition of λ with respect to φ∧ψ that is up to parameters and disjunction and is
just over the intersection of the signatures SIGL and SIGR.

We now prove Theorem K.1 by induction on the depth of the proof tree, generalizing
the constructive proof method for Craig interpolation often called Maehara’s method
[Tak87, TS00, Smu68b]. To simplify the presentation we assume that the tuples z⃗ and
y⃗ in the theorem statement each consist of a single variable z and y, respectively. The
generalization of our argument to tuples of variables is straightforward.

To specify conveniently the construction steps of the family of formulas χi we introduce
the following concept: A pre-defining equivalence up to parameters and disjunction (briefly

PDEPD) for a formula λ(z, l⃗) is a formula δ built up from formulas of the form ∀z (λ(z, l⃗) ↔
χ(z, p⃗)) (where the left side is always the same formula λ(z, l⃗) but the right sides χ(z, p⃗)
may differ) and a finite number of applications of disjunction and existential quantification
upon variables from the vectors p⃗ of the right sides. The empty disjunction ⊥ is allowed as a
special case of a PDEPD. By rewriting with the equivalence ∃v (δ1 ∨ δ2) ≡ ∃v δ1 ∨ ∃v δ2, any
PDEPD for λ can be efficiently transformed into the form

∨n
i=1 ∃v⃗i∀z (λ(z, l⃗) ↔ χi(z, v⃗i, r⃗i))

for some natural number n ≥ 0. That is, although a PDEPD has in general not the syntactic
form of the disjunction of quantified biconditionals in the theorem statement (thus “pre-”),
it corresponds to such a disjunction. The more generous syntax will be convenient in the

induction. The sets of additional variables l⃗ and p⃗ in the biconditionals λ(z, l⃗) ↔ χ(z, p⃗) can
overlap, but the overlap will be top-level variables that never get quantified. Although we
have defined the notion of PDEPD for a general λ, in the proof we just consider PDEPDs for
the formula λ from the theorem statement.

For PDEPDs δ we provide analogs to FV and PR that only yield free variables and
predicates of δ that occur in a right side of its biconditionals, which helps to express the
restrictions by definability properties that constrains the signature of exactly those right
sides. Recall that we refer of these right sides as subformulas χ(z, p⃗). For PDEPD δ, define
PRRHS(δ) as the set of the predicate symbols that occur in a subformula χ(z, p⃗) of δ and

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:71

define FV RHS(δ) as the set of all variables that occur in a subformula χ(z, p⃗) of δ and are
free in δ. In other words, FV RHS(δ) is the set of all variables p in the vectors p⃗ of the
subformulas χ(z, p⃗) that have an occurrence in δ which is not in the scope of a quantifier

∃p. If, for example δ =
∨n
i=1 ∃v⃗i∀z (λ(z, l⃗) ↔ χi(z, v⃗i, r⃗i)), then FV

RHS(δ) is the set of all
variables in the vectors ri, for 1 ≤ i ≤ n.

To build up PDEPDs we provide an operation that only affects the right sides of the
biconditionals, a restricted form of existential quantification. It is for use in interpolant
construction to convert a free variable in right sides that became illegal into an existentially
quantified parameter. For variables p, y define δ[y/p]RHS as δ after substituting all occurrences
of p that are within a right side χ(z, p⃗) and are free in δ with y. Define ∃RHSp δ as shorthand for
∃y δ[y/p]RHS, where y is a fresh variable. Clearly δ |= ∃RHSp δ and p has no free occurrences
in ∃RHSp δ that are in any of the right side formulas χ(z, p⃗), i.e., p /∈ FV RHS(∃RHSp δ).
Occurrences of p in the left sides λ(z, l⃗), if p is a member of l⃗, are untouched in ∃RHSp δ. If
p is not in l⃗, then ∃RHSp δ reduces to ordinary existential quantification ∃y δ[y/p].

We introduce the following symbolic shorthand for the parametric definition on the
right side in the theorem’s precondition.

G := ∃y∀z (λ(z, l⃗) ↔ ρ(z, y, r⃗)).

Note that our proof rules are such that if we have a proof (FO-normalised or not) that
our original top-level “global” parametric definition is implied by some formula, then every
one-sided sequent in the proof must include that parametric definition in it. This is because
the rules that eliminate a formula when read “bottom-up” cannot apply to that parametric
definition, whose outermost logic operator is the existential quantifier. Thus, in our inductive
argument, we can assume that G is always present.

We write

⊢ ΓL; ΓR; G : ⟨θ,D⟩,
where ⊢ ΓL,ΓR,G is a sequent, partitioned into three components, multisets ΓL and ΓR
of formulas and the formula G from the theorem’s hypothesis, θ is a formula and D is a
PDEPD, to express that the following properties hold:

I1. |= ΓR ∨ θ.
I2. |= ¬θ ∨ ΓL ∨ D.
I3. PR(θ) ⊆ (PR(ΓL) ∪ PR(λ)) ∩ (PR(ΓR) ∪ PR(ρ)).

I4. FV (θ) ⊆ (FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗).
I5. D is a PDEPD for λ(z, l⃗).
I6. PRRHS(D) ⊆ (PR(ΓL) ∪ PR(λ)) ∩ (PR(ΓR) ∪ PR(ρ)).

I7. FV RHS(D) ⊆ (FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗).
For a given proof with conclusion ⊢ ¬φ,¬ψ,G, corresponding to the hypothesis φ∧ψ |= G

of the theorem, we show the construction of a formula θ and PDEPD D such that

⊢ ¬φ; ¬ψ; G : ⟨θ,D⟩.

From properties I1.–I2. and I5.– I7. it is then straightforward to read off that the formula∨n
i=1 ∃v⃗i∀z⃗(λ(z⃗, l⃗) ↔ χi(z⃗, v⃗i, r⃗i)) obtained from D by propagating existential quantifiers

inwards is as claimed in the theorem’s conclusion.
Formula θ plays an auxiliary role in the induction. For the overall conclusion of the

proof it a side result that is like a Craig interpolant of ψ and φ→ D, but slightly weaker

7:72 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

syntactically constrained by taking λ and ρ into account: FV (θ) ⊆ ((FV (φ)∪l⃗)∩(FV (ψ)∪r⃗))
and PR(θ) ⊆ (PR(φ) ∪ PR(λ)) ∩ (PR(ψ) ∪ PR(ρ)).

As basis of the induction, we have to show constructions of θ and D such that ⊢
ΓL; ΓR; G : ⟨θ,D⟩ holds for Ax and ⊤, considering each possibility in which the principal
formula(s) can be in ΓL or ΓR. For the induction step, there are a number of subcases,
according to which rule is last applied and which of the partitions ΓL, ΓR or G contain the
principal formula(s). We first discuss the most interesting case, the induction step where
G is the principal formula. This case is similar to the most interesting case in the NRC
Parameter Collection Theorem, covered in the body of the paper.

Case where the principal formula is G. We now give more detail on the most complex
case. If the principal formula of a conclusion ⊢ ΓL; ΓR; G is G, then the rule that is applied
rule must be ∃. From the FO-normalised property of the proof it follows that the derivation
tree ending in ⊢ ΓL; ΓR; G must have the following shape, for some u /∈ FV (ΓL,ΓR,G)
and w ̸= u. Note that u could be either a top-level variable from λ, i.e., a member of l⃗, or
one introduced during the proof.

∨
⊢ ΓL,¬λ(u, l⃗),ΓR, ρ(u,w, r⃗),G

∨
⊢ ΓL, λ(u, l⃗),ΓR,¬ρ(u,w, r⃗),G

∧
⊢ ΓL,ΓR, λ(u, l⃗) → ρ(u,w, r⃗),G ⊢ ΓL, λ(u, l⃗),ΓR, ρ(u,w, r⃗) → λ(u, l⃗),G

∀
⊢ ΓL,ΓR, λ(u, l⃗) ↔ ρ(u,w, r⃗),G

∃
⊢ ΓL,ΓR,∀z (λ(z, l⃗) ↔ ρ(z, w, r⃗)),G

⊢ ΓL,ΓR,G
The important point is that the two “leaves” of the above tree are both sequents where we
can apply our induction hypothesis. Taking into account the partitioning of the sequents at
the bottom conclusion and the top premises in this figure, we can express the induction step
in the form of a “macro” rule that specifies the how we constructed the required θ and D for
the conclusion, making use of the θ1,D1 and θ2,D2 that we get by applying the induction
hypothesis to each of the two premises.

⊢ ΓL,¬λ(u, l⃗); ΓR, ρ(u,w, r⃗); G : ⟨θ1,D1⟩ ⊢ ΓL, λ(u, l⃗); ΓR,¬ρ(u,w, r⃗); G : ⟨θ2,D2⟩
⊢ ΓL; ΓR; G : ⟨θ,D⟩,

where u is as above. The values of θ and D – the new formula and definition that we are
building – will depend on occurrences of w, and we give their construction in cases below:

(i) If w /∈ FV (ΓL) ∪ l⃗ or w ∈ FV (ΓR) ∪ r⃗, then
θ := ∀u (θ1 ∨ θ2).
D := ∃RHSuD1 ∨ ∃RHSuD2 ∨ ∀z (λ(z, l⃗) ↔ θ2[z/u]).

(ii) Else it holds that w ∈ FV (ΓL) ∪ l⃗ and w /∈ FV (ΓR) ∪ r⃗. Then
θ := ∀w∀u (θ1 ∨ θ2).
D := ∃RHSw (∃RHSuD1 ∨ ∃RHSuD2 ∨ ∀z (λ(z, l⃗) ↔ θ2[z/u])).

We now verify that ⊢ ΓL; ΓR; G : ⟨θ′,D′⟩, that is, properties I1.–I7., hold. The proofs
for the individual properties are presented in tabular form, with explanations annotated in
the side column, where IH stands for induction hypothesis. We concentrate on the case (i)
and indicate the modifications of the proofs for case (ii) in remarks, where we refer to the

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:73

values of θ and D for that case in terms of the values for the case (i) as ∀w θ and ∃RHSwD.
In the proofs of the semantic properties I1. and I2. we let sequents stand for the disjunction
of their members.

Property I1.:

(1) |= ΓR ∨ ρ(u,w, r⃗) ∨ θ1. IH
(2) |= ΓR ∨ ¬ρ(u,w, r⃗) ∨ θ2. IH
(3) |= ΓR ∨ θ1 ∨ θ2. by (1), (2)
(4) |= ΓR ∨ ∀u (θ1 ∨ θ1) by (3) since u /∈ FV (ΓR)
(5) |= ΓR ∨ θ. by (4) and def. of θ

For case (ii), it follows from the precondition w /∈ FV (ΓR) and step (5) that |= ΓR∨∀w θ.

Property I2.:

(1) |= ¬θ1 ∨ ΓL ∨ ¬λ(u, l⃗) ∨ D1. IH

(2) |= ¬θ2 ∨ ΓL ∨ λ(u, l⃗) ∨ D2. IH

(3) |= ¬(θ1 ∨ θ2) ∨ ΓL ∨ ¬λ(u, l⃗) ∨ D1 ∨ θ2. by (1)

(4) |= ¬(θ1 ∨ θ2) ∨ ΓL ∨ ¬λ(u, l⃗) ∨ D1 ∨ D2 ∨ θ2. by (3)

(5) |= ¬∀u (θ1 ∨ θ2) ∨ ΓL ∨ ¬λ(u, l⃗) ∨ D1 ∨ D2 ∨ θ2. by (4)

(6) |= ¬∀u (θ1 ∨ θ2) ∨ ¬θ2 ∨ ΓL ∨ λ(u, l⃗) ∨ D1 ∨ D2. by (2)
(7) |= ¬∀u (θ1 ∨ θ2) ∨ ΓL ∨ D1 ∨ D2 ∨

(λ(u, l⃗) ↔ θ2). by (6), (5)
(8) |= ¬∀u (θ1 ∨ θ2) ∨ ΓL ∨ ∃RHSuD1 ∨ ∃RHSuD2 ∨

(λ(u, l⃗) ↔ θ2). by (7)
(9) |= ¬∀u (θ1 ∨ θ2) ∨ ΓL ∨ ∃RHSuD1 ∨ ∃RHSuD2 ∨

∀z (λ(z, l⃗) ↔ θ2[z/u]). by (8) since u /∈ FV (ΓL, λ(z, l⃗))
(10) |= ¬θ ∨ ΓL ∨ D. by (9), defs. θ,D

That u /∈ FV (λ(z, l⃗)) follows from the precondition u /∈ FV (G). It is used in step (9)

to justify that the substitution [z/u] has only to be applied to θ2 and not to λ(z, l⃗) and,
in addition, to justify that u /∈ FV (∃RHSuD1) and u /∈ FV (∃RHSuD2), which follow from

u /∈ FV (λ(z, l⃗)) and the induction hypotheses that property I5. applies to D1 and D2.
For case (ii), it follows from step (10) that |= ¬∀w θ ∨ ΓL ∨ ∃RHSwD.

Property I3.:

(1) PR(θ1) ⊆ (PR(ΓL,¬λ(u, l⃗)) ∪ PR(λ)) ∩ (PR(ΓR, ρ(u,w, r⃗)) ∪ PR(ρ)). IH

(2) PR(θ2) ⊆ (PR(ΓL, λ(u, l⃗)) ∪ PR(λ)) ∩ (PR(ΓR,¬ρ(u,w, r⃗)) ∪ PR(ρ)). IH
(3) PR(∀u (θ1 ∨ θ1)) by (1), (2)
(4) PR(θ) ⊆ (PR(ΓL) ∪ PR(λ)) ∩ (PR(ΓR) ∪ PR(ρ)) by (3), def. θ

For case (ii) the property follows since PR(θ) = PR(∀w θ).

7:74 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

Property I4.:

(1) FV (θ1) ⊆ (FV (ΓL,¬λ(u, l⃗)) ∪ l⃗) ∩ (FV (ΓR, ρ(u,w, r⃗)) ∪ r⃗). IH
(2) FV (θ2) ⊆ (FV (ΓL, λ(u, l⃗)) ∪ l⃗) ∩ (FV (ΓR,¬ρ(u,w, r⃗)) ∪ r⃗). IH
(3) FV (θ1) ⊆ (FV (ΓL) ∪ l⃗ ∪ {u}) ∩ (FV (ΓR) ∪ r⃗ ∪ {u,w}). by (1)

(4) FV (θ1) ⊆ (FV (ΓL) ∪ l⃗ ∪ {u}) ∩ (FV (ΓR) ∪ r⃗ ∪ {u,w}). by (2)

(5) FV (∀u (θ1 ∨ θ2)) ⊆ (FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗). by (3), (4),

and w /∈ FV (ΓL) ∪ l⃗ or w ∈ FV (ΓR) ∪ r⃗
(6) FV (θ) ⊆ (FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗). by (5), def. θ

For case (ii) step (5) has to be replaced by

FV (∀w∀u (θ1 ∨ θ2)) ⊆ (FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗),
which follows just from (3) and (4). Instead of step (6) we then have FV (∀w θ) ⊆ (FV (ΓL)∪
l⃗) ∩ (FV (ΓR) ∪ r⃗).
Property I5.: Immediate from the induction hypothesis and the definition of D.

Property I6.:

(1) PRRHS(D1) ⊆ (PR(ΓL,¬λ(u, l⃗)) ∪ PR(λ)) ∩ (PR(ΓR, ρ(u,w, r⃗)) ∪ PR(ρ)). IH

(2) PRRHS(D2) ⊆ (PR(ΓL, λ(u, l⃗)) ∪ PR(λ)) ∩ (PR(ΓR,¬ρ(u,w, r⃗)) ∪ PR(ρ)). IH

(3) PR(θ2) ⊆ (PR(ΓL, λ(u, l⃗)) ∪ PR(λ)) ∩ (PR(ΓR,¬ρ(u,w, r⃗)) ∪ PR(ρ)). IH

(4) PRRHS(∃RHSuD1 ∨ ∃RHSuD2 ∨ ∀z (λ(z, l⃗) ↔ θ2[z/u])) ⊆
(PR(ΓL) ∪ PR(λ)) ∩ (PR(ΓR) ∪ PR(ρ)) by (1)–(3)

(5) PRRHS(D) ⊆ (PR(ΓL) ∪ PR(λ)) ∩ (PR(ΓR) ∪ PR(ρ)) by (4), def. D

For case (ii) the property follows since PRRHS(D) = PRRHS(∃RHSwD).

Property I7.:

(1) FV RHS(D1) ⊆ (FV (ΓL,¬λ(u, l⃗)) ∪ l⃗) ∩ (FV (ΓR, ρ(u,w, r⃗)) ∪ r⃗). IH
(2) FV RHS(D2) ⊆ (FV (ΓL, λ(u, l⃗)) ∪ l⃗) ∩ (FV (ΓR,¬ρ(u,w, r⃗)) ∪ r⃗). IH
(3) FV (θ2) ⊆ (FV (ΓL, λ(u, l⃗)) ∪ l⃗) ∩ (FV (ΓR,¬ρ(u,w, r⃗)) ∪ r⃗). IH

(4) FV RHS(D1) ⊆ (FV (ΓL) ∪ l⃗ ∪ {u}) ∩ (FV (ΓR) ∪ r⃗ ∪ {u,w}). by (1)

(5) FV RHS(D2) ⊆ (FV (ΓL) ∪ l⃗ ∪ {u}) ∩ (FV (ΓR) ∪ r⃗ ∪ {u,w}). by (2)

(6) FV (θ2) ⊆ (FV (ΓL) ∪ l⃗ ∪ {u}) ∩ (FV (ΓR) ∪ r⃗ ∪ {u,w}). by (3)

(7) FV RHS(∃RHSuD1 ∨ ∃RHSuD2 ∨ ∀z (λ(z, l⃗) ↔ θ2[z/u])) ⊆
(FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗). by (4), (5), (6),

and w /∈ FV (ΓL) ∪ l⃗ or w ∈ FV (ΓR) ∪ r⃗
(8) FV RHS(D) ⊆ (FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗). by (7), def. D
For case (ii) step (7) has to be replaced by

FV RHS(∃RHSw(∃RHSuD1 ∨ ∃RHSuD2 ∨ ∀z (λ(z, l⃗) ↔ θ2[z/u]))) ⊆
(FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗),

which follows just from (4), (5), (6). Instead of step (8) we then have FV RHS(∃RHSwD) ⊆
(FV (ΓL) ∪ l⃗) ∩ (FV (ΓR) ∪ r⃗).

This completes the verification of correctness, and thus ends our discussion of this case.
We now turn to the base of the induction along with the other inductive cases.

Vol. 20:3 SYNTHESIZING NESTED RELATIONAL QUERIES 7:75

Cases where the principal formulas are in the ΓL or ΓR partition. The inductive
cases where the principal formulas are in the ΓL or ΓR partition can be conveniently specified
in the form of rules that lead from induction hypotheses of the form ⊢ ΓL; ΓR; G : ⟨θ,D⟩
as premises to an induction conclusion of the same form. Base cases can be taken as rules
without premises. The axioms and rules shown below correspond to those of the calculus,
but replicated for each possible way in which the partitions ΓL, ΓR or G of the conclusion
can contain the principal formula(s). To verify that properties I1.–I7. are preserved by each
of the constructions is straightforward, and therefore we only point out a few subtleties.

(1) Ax φ a positive literal
⊢ ΓL, φ,¬φ; ΓR; G : ⟨⊤,⊥⟩

(2) Ax φ a positive literal
⊢ ΓL; ΓR, φ,¬φ; G : ⟨⊥,⊥⟩

(3) Ax φ a literal
⊢ ΓL, φ; ΓR,¬φ; G : ⟨φ,⊥⟩

(4) ⊤
⊢ ΓL,⊤; ΓR; G : ⟨⊤,⊥⟩

(5) ⊤
⊢ ΓL; ΓR,⊤; G : ⟨⊥,⊥⟩

(6)
∨

⊢ ΓL, φ1, φ2; ΓR; G : ⟨θ,D⟩
⊢ ΓL, φ1 ∨ φ2; ΓR; G : ⟨θ,D⟩

(7)
∨

⊢ ΓL; ΓR, φ1, φ2; G : ⟨θ,D⟩
⊢ ΓL; ΓR, φ1 ∨ φ2; G : ⟨θ,D⟩

(8)
∧

⊢ ΓL, φ1; ΓR; G : ⟨θ1,D1⟩ ⊢ ΓL, φ2; ΓR; G : ⟨θ2,D2⟩
⊢ ΓL, φ1 ∧ φ2; ΓR; G : ⟨θ1 ∧ θ2,D1 ∨ D2⟩

(9)
∧

⊢ ΓL; ΓR, φ1; G : ⟨θ1,D1⟩ ⊢ ΓL; ΓR, φ2; G : ⟨θ2,D2⟩
⊢ ΓL; ΓR, φ1 ∧ φ2; G : ⟨θ1 ∨ θ2,D1 ∨ D2⟩

(10)
∃

⊢ ΓL, φ[t/x], ∃xφ; ΓR; G : ⟨θ,D⟩
⊢ ΓL,∃xφ; ΓR; G : ⟨θ′,D′⟩,

where the values of θ′ and D′ depend on occurrences of t:

• If t ∈ FV (ΓL, ∃xφ) ∪ l⃗, then θ′ := θ and D′ := D.

• Else it holds that t /∈ FV (ΓL,∃xφ) ∪ l⃗. Then θ′ := ∃t θ and D′ := ∃RHStD.

(11)
∃

⊢ ΓL; ΓR, φ[t/x],∃xφ; G : ⟨θ,D⟩
⊢ ΓL; ΓR, ∃xφ; G : ⟨θ′,D′⟩,

where the values of θ′ and D′ depend on occurrences of t:
• If t ∈ FV (ΓR,∃xφ) ∪ r⃗, then θ′ := θ and D′ := D.
• Else it holds that t /∈ FV (ΓR,∃xφ) ∪ r⃗. Then θ′ := ∀t θ and D′ := ∃RHStD.

7:76 M. Benedikt, C. Pradic, and C. Wernhard Vol. 20:3

(12)
∀

⊢ ΓL, φ[y/x]; ΓR; G : ⟨θ,D⟩
y /∈ FV (ΓL,∀xφ,ΓR,G)⊢ ΓL,∀xφ; ΓR; G : ⟨θ,D⟩

(13)
∀

⊢ ΓL; ΓR, φ[y/x]; G : ⟨θ,D⟩
y /∈ FV (ΓL,ΓR,∀xφ,G)⊢ ΓL; ΓR,∀xφ; G : ⟨θ,D⟩

(14)
Ref

⊢ t ̸= t,ΓL; ΓR; G : ⟨θ,D⟩
t ∈ FV (ΓL) ∪ l⃗⊢ ΓL; ΓR; G : ⟨θ,D⟩

(15)
Ref

⊢ ΓL; t ̸= t,ΓR; G : ⟨θ,D⟩
t /∈ FV (ΓL) ∪ l⃗⊢ ΓL; ΓR; G : ⟨θ,D⟩

(16)
Repl

⊢ t ̸= u, φ[u/x], φ[t/x],ΓL; ΓR; G : ⟨θ,D⟩
φ a negative literal

⊢ t ̸= u, φ[t/x],ΓL; ΓR; G : ⟨θ,D⟩

(17)
Repl

⊢ t ̸= u,ΓL; φ[u/x], φ[t/x],ΓR; G : ⟨θ,D⟩
φ a negative literal

⊢ t ̸= u,ΓL; φ[t/x],ΓR; G : ⟨θ′,D′⟩,
where the values of θ′ and D′ depend on occurrences of t and u:

• If t /∈ FV (φ[t/x],ΓR) ∪ r⃗, then θ′ := θ and D′ := D. In this subcase the precondition
t /∈ FV (φ[t/x]) implies that x /∈ FV (φ) and thus φ[u/x] = φ[t/x].

• If t, u ∈ FV (φ[t/x],ΓR) ∪ r⃗, then θ′ := θ ∨ t ̸= u and D′ := D.
• Else it holds that t ∈ FV (φ[t/x],ΓR)∪ r⃗ and u /∈ FV (φ[t/x],ΓR)∪ r⃗. Then θ′ := θ[t/u]
and D′ := D[t/u]RHS. For this subcase, to derive property I1. it is used that the
precondition u /∈ φ[t/x] implies that φ[u/x][t/u] = φ[t/x].

(18)
Repl

⊢ ΓL; t ̸= u, φ[u/x], φ[t/x],ΓR; G : ⟨θ,D⟩
φ a negative literal

⊢ ΓL; t ̸= u, φ[t/x],ΓR; G : ⟨θ,D⟩

(19)
Repl

⊢ φ[u/x], φ[t/x],ΓL; t ̸= u; ΓR; G : ⟨θ,D⟩
φ a negative literal

⊢ φ[t/x],ΓL; t ̸= u,ΓR; G : ⟨θ′,D′⟩,
where the values of θ′ and D′ depend on occurrences of t and u:

• If t /∈ FV (φ[t/x],ΓL) ∪ l⃗, then θ′ := θ and D′ := D. In this subcase the precondition
t /∈ FV (φ[t/x]) implies that x /∈ FV (φ) and thus φ[u/x] = φ[t/x].

• If t, u ∈ FV (φ[t/x],ΓL) ∪ l⃗, then θ′ := θ ∧ t = u and D′ := D.

• Else it holds that t ∈ FV (φ[t/x],ΓL)∪ l⃗ and u /∈ FV (φ[t/x],ΓL)∪ l⃗. Then θ′ := θ[t/u]
and D′ := D[t/u]RHS. To derive property I2. for this subcase, that is, |= ¬θ[t/u] ∨
φ[t/x],ΓL ∨D[t/u]RHS, it is required that u /∈ FV (D[t/u]RHS), which follows from the

precondition u /∈ l⃗ of the subcase.

This completes the proof of Theorem K.1.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Related work
	3. Preliminaries
	3.1. Nested relations
	3.2. Δ₀ formulas
	3.3. Nested Relational Calculus
	3.4. Connections between NRC queries using Δ₀ formulas

	4. Synthesizing via model theory: the expressive equivalence of NRC, interpretations, and implicit definitions
	4.1. Statement of the first result: equivalence between implicit and explicit
	4.2. Interpretations and nested relations
	4.3. Reduction to a characterization theorem in multi-sorted logic
	4.4. Proof of the multi-sorted logic result
	4.5. Putting it all together to complete the proof of Theorem 4.2

	5. The effective result: efficiently generating NRC expressions from proofs
	5.1. Moving effectively from implicit to explicit: statement of the main result
	5.2. Tools for the effective Beth theorem
	5.3. Proof of the main result

	6. Discussion and future work
	References
	Appendix A. Comparison to the situation with finite instances
	Appendix B. Proof of Proposition 3.5: obtaining NRC expressions that verify Δ₀ formulas
	Appendix C. First part of Proposition 4.10: Reduction to monadic schemas for NRC
	Appendix D. Second part of Proposition 4.10: Monadic reduction for interpretations
	Appendix E. Proof of Theorem 4.8: converting between NRC expressions and interpretations
	Appendix F. Completeness of proof systems
	Appendix G. Completeness – translating to EL-normalized form
	G.1. Permutability justified by generic permutation schemas
	G.2. Permutability down over pairing and projection
	G.3. Conversion to tuple-terms
	G.4. Complexity considerations

	Appendix H. Δ₀ interpolation: proof sketch of Theorem 5.4
	Appendix I. Proofs of polytime admissibility
	I.1. Standard rules
	I.2. Admissibility of generalized congruence
	I.3. Proof of Lemma 5.7
	I.4. Proof of Lemma 5.8

	Appendix J. Proof of the main theorem for non-set types
	Appendix K. Variant of Parameter Collection Theorem, Theorem 5.9, for parameterized definability in first-order logic

