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Abstract. The coalgebraic µ-calculus provides a generic semantic framework for fixpoint
logics over systems whose branching type goes beyond the standard relational setup, e.g.
probabilistic, weighted, or game-based. Previous work on the coalgebraic µ-calculus includes
an exponential-time upper bound on satisfiability checking, which however relies on the
availability of tableau rules for the next-step modalities that are sufficiently well-behaved in
a formally defined sense; in particular, rule matches need to be representable by polynomial-
sized codes, and the sequent duals of the rules need to absorb cut. While such rule sets
have been identified for some important cases, they are not known to exist in all cases
of interest, in particular ones involving either integer weights as in the graded µ-calculus,
or real-valued weights in combination with non-linear arithmetic. In the present work,
we prove the same upper complexity bound under more general assumptions, specifically
regarding the complexity of the (much simpler) satisfiability problem for the underlying
one-step logic, roughly described as the nesting-free next-step fragment of the logic. The
bound is realized by a generic algorithm that supports on-the-fly satisfiability checking.
Notably, our approach directly accommodates unguarded formulae, and thus avoids use
of the guardedness transformation. Example applications include new exponential-time
upper bounds for satisfiability checking in an extension of the graded µ-calculus with
polynomial inequalities (including positive Presburger arithmetic), as well as an extension
of the (two-valued) probabilistic µ-calculus with polynomial inequalities.

1. Introduction

Modal fixpoint logics are a well-established tool in the temporal specification, verification,
and analysis of concurrent systems. One of the most expressive logics of this type is the
modal µ-calculus [Koz83, BS07, BW18], which features explicit least and greatest fixpoint
operators; roughly speaking, these serve to specify liveness properties (least fixpoints) and
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safety properties (greatest fixpoints), respectively. Like most modal logics, the modal µ-
calculus is traditionally interpreted over relational models such as Kripke frames or labelled
transition systems. The growing interest in more expressive models where transitions are
governed, e.g., by probabilities, weights, or games has sparked a commensurate growth
of temporal logics and fixpoint logics interpreted over such systems; prominent examples
include probabilistic µ-calculi [CIN05, HK97, CKP11a, LSWZ15], the alternating-time µ-
calculus [AHK02], and the monotone µ-calculus, which contains Parikh’s game logic [Par85].
The graded µ-calculus [KSV02] features next-step modalities that count successors; it is stan-
dardly interpreted over Kripke frames but, as pointed out by D’Agostino and Visser [DV02],
graded modalities are more naturally interpreted over so-called multigraphs, where edges
carry integer weights, and in fact this modification leads to better bounds on minimum model
size for satisfiable formulae.

Coalgebraic logic [Pat03] has emerged as a unifying framework for modal logics interpreted
over such more general models. It is based on casting the transition type of the systems
at hand as a set functor, and the systems in question as coalgebras for this type functor,
following the paradigm of universal coalgebra [Rut00]; additionally, modalities are interpreted
as so-called predicate liftings [Pat03, Sch08]. The coalgebraic µ-calculus [CKP11a] caters
for fixpoint logics within this framework, and essentially covers all mentioned (two-valued)
examples as instances. It has been shown that satisfiability checking in a given instance of
the coalgebraic µ-calculus is in ExpTime, provided that one exhibits a set of tableau rules
for the modalities, so-called one-step rules, that is one-step tableau complete (a condition
that, in the dual setting of sequent calculi, translates into the requirement that the rule
absorb cut [SP09, PS10]) and moreover tractable in a suitable sense (an assumption made
also in our own previous work on the flat [HS15] and alternation-free [HSE16] fragments
of the coalgebraic µ-calculus). Such rules are known for many important cases, notably
including alternating-time logics, the probabilistic µ-calculus even when extended with linear
inequalities, and the monotone µ-calculus [SP09, KP10, CKP11a]. There are, however,
important cases where such rule sets are currently missing, and where there is in fact little
perspective for finding suitable rules. Prominent cases of this kind are the graded µ-calculus
and more expressive logics over integer weights featuring, e.g., Presburger arithmetic1. Further
cases arise when logics over systems with non-negative real weights, such as probabilistic
systems, are taken beyond linear arithmetic to include polynomial inequalities.

The object of the current paper is to fill this gap by proving a generic ExpTime upper
bound for coalgebraic µ-calculi even in the absence of tractable sets of modal tableau rules.
The method we use instead is to analyse the so-called one-step satisfiability problem of
the logic on a semantic level – this problem is essentially the satisfiability problem of a
very small fragment of the logic, the one-step logic, which excludes not only fixpoints, but
also nested next-step modalities, with a correspondingly simplified semantics that no longer
involves actual transitions. E.g. the one-step logic of the standard relational µ-calculus is
interpreted over models essentially consisting of a set with a distinguished subset, which
abstracts the successors of a single state (which is not itself part of the model). We have
applied this principle to satisfiability checking in coalgebraic (next-step) modal logics [SP08],
coalgebraic hybrid logics [MPS09], and reasoning with global assumptions in coalgebraic
modal logics [KPS15, KPS22]. It also appears implicitly in work on automata for the

1One-step tableau-complete sets of rules for the graded µ-calculus and more generally for the Pres-
burger µ-calculus have been claimed in earlier work [SP09, KP10] but have since turned out to be in fact
incomplete [KPS22, GHH+23]; see also Remark 6.7.
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coalgebraic µ-calculus [FLV10], which however establishes only a doubly exponential upper
bound in the case without tractable modal tableau rules.

Our main result states roughly that if the satisfiability problem of the one-step logic is
in ExpTime under a particular stringent measure of input size, then satisfiability in the
corresponding instance of the coalgebraic µ-calculus is in ExpTime. Since the criteria on
rule sets featuring in previous work on the coalgebraic µ-calculus imply the ExpTime bound
on satisfiability checking in the one-step logic, this result subsumes previous complexity
estimates for the coalgebraic µ-calculus [CKP+11b]. Our leading example applications
are on the one hand the graded µ-calculus and its extension with (monotone) polynomial
inequalities (including Presburger modalities, i.e. monotone linear inequalities), and on the
other hand the extension of the (two-valued) probabilistic µ-calculus [CKP11a, LSWZ15]
with (monotone) polynomial inequalities. While the graded µ-calculus as such is known
to be in ExpTime [KSV02], the other mentioned instances of our result are, to our best
knowledge, new. At the same time, our proofs are fairly simple, even compared to specific
ones, e.g. for the graded µ-calculus.

Technically, we base our results on an automata- and game-theoretic treatment by
means of standard parity automata and parity (satisfiability) games. Our satisfiability
games are quite different from satisfiability games formulated previously for the very similar
Λ-automata [FLV10]. Both types of game are of overall doubly exponential size; however,
we show that our game can nevertheless be solved in singly exponential time even in the
absence of a tractable set of modal tableau rules. Our algorithm witnessing the singly
exponential time bound is able to decide the satisfiability of nodes on-the-fly, that is, possibly
before the tableau is fully expanded, in the spirit of global caching algorithms for description
logics [GW09, GN13]. It thus offers a perspective for practically feasible reasoning. Our
construction implies a known singly-exponential bound on minimum model size for satisfiable
formulae in coalgebraic µ-calculi [CKP11a, FLV10], calculated only in terms of the closure size
of the formula and its alternation depth. Moreover, we identify a criterion for a polynomial
bound on branching in models, which holds in all our examples.

This paper extends a previous conference publication [HS19]. Besides providing full
proofs and additional background material, we also make do without the problematic
guardedness transformation (cf. [BFL15, KMV20]) and directly establish our results for
the unguarded coalgebraic µ-calculus. On a technical level, we rebase large parts of the
development on newly introduced notions of model checking game and satisfiability game
for the unguarded coalgebraic µ-calculus, obtaining streamlined proofs. A restriction of the
algorithm to guarded formulae has been implemented within the Coalgebraic Ontology Logic
Solver (COOL 2) [GHH+23], which in particular provides the first implemented reasoner for
the graded µ-calculus.

Overview of the material. In Section 2, we recall the basics of coalgebra, coalgebraic
logic, and the coalgebraic µ-calculus, including central syntactic notions such as closure
and alternation depth. We discuss the automata-theoretic approach and model checking
games in Section 3. Specifically, we introduce the tracking automaton, a nondeterministic
parity automaton that essentially detects bad sequences of fixpoint unfoldings, and its
co-determinization. The nondeterministic tracking automaton implicitly governs the model
checking game, while the co-determinized tracking automaton forms the basis of our notion
of tableaux, introduced in Section 4. Tableaux are certain partial subautomata of the co-
determinized tracking automaton, characterized on the one hand by being totally accepting in
the sense that every infinite run is accepting, and on the other hand by one-step satisfiability
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requirements on modal constraints. Tableaux allow for the construction of a model of the
target formula: We show that on every tableau, one has a so-called coherent coalgebra
structure, in what in coalgebraic logic is usually termed the existence lemma (Lemma 4.11).
The associated truth lemma (Lemma 4.12) uses the model checking game to show that the
target formula is actually satisfied in such a coherent coalgebra, precisely exploiting the fact
that the co-determinized tracking automaton complements the tracking automaton.

The satisfiability game, introduced in Section 5, then essentially serves to determine
whether there exists a tableau for the target formula. Its correctness, in the sense of actually
capturing satisfiability of the target formula, is split into two implications: On the one hand,
we show that a tableau can indeed be extracted from a winning strategy of the existential
player (Lemma 5.3), and on the other hand we prove a soundness lemma (Lemma 5.4) stating
that a winning strategy for the existential player in the satisfiability game can be extracted
from a winning strategy in the model checking game on a given model of the target formula.

It remains to obtain an exponential-time satisfiability checking algorithm from the
satisfiability game, which as indicated above has doubly exponential size. We show in Section 6
that winning regions in the satisfiability game can be characterized as a nested fixpoint
that lives on the singly-exponential sized subset of those game positions that correspond to
states of the co-determinized tracking automaton (Lemma 6.3). Our satisfiability checking
algorithm, also presented in Section 6, essentially computes this fixpoint, or more precisely
decides containment of game positions, in particular the root position, in the fixpoint on-the-
fly. As indicated above, efficiency of the algorithm relies on sufficiently low complexity of the
one-step satisfiability problem. We show that all our example logics satisfy this criterion,
and are hence decidable in exponential time

Related Work. Our work builds on existing approaches to the algorithmic treatment of the
relational µ-calculus, most centrally on the game-theoretic approach pioneered by [NW96].
Our correctness proof for the model checking game takes orientation from Venema [Ven06]
in that it makes do without (ordinal) timeouts, i.e. without (transfinite) Kleene iteration,
for least fixpoints. As indicated above, our approach is distinguished by working directly
with unguarded formulae. Friedman and Lange [FL13] have previously provided a tableau
method dealing with unguarded formulae in the relational µ-calculus; our approach differs
technically from theirs, with details discussed in Remark 3.8.

We have already mentioned previous work on the algorithmics of the coalgebraic µ-
calculus [CKP11a, FLV10] (other recent work on the coalgebraic µ-calculus concerns model
theory, notably completeness [SV18, ESV19] and expressive completeness [ESV17]). As noted
above, the main difference with work on tableau-based algorithms [CKP11a] is that we make
do without a tractable complete set of tableau rules and cover unguarded formulae, a point
that was previously explicitly left open [CKP11a, Section 1]. While the overall technical
layout of our approach is similar, e.g. in the use of tracking automata as well as model checking
and satisfiability games, the added generality in our work implies substantial differences in
the actual implementation of these tools. These concern, for instance, the alphabet used by
the tracking automata and the treatment of propositional operators. Fontaine et al. [FLV10]
present an approach, interestingly not assuming guardedness, where a coalgebraic µ-calculus
formula is first transformed into a so-called Λ-automaton, whose emptiness can then be
checked by means of a satisfiability game, which in fact is a regular game but not a parity
game. This game has doubly exponential size and in general yields only a doubly exponential
complexity bound. We also use a satisfiability game in our approach, which works directly on
the formula syntax; altogether, the design of our game appears to differ rather markedly from
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that used by Fontaine et al. First off, as mentioned above, our game has a parity winning
condition. It does also have doubly exponential size but can nevertheless be solved in singly
exponential time using a fixpoint calculation on a singly-exponential-sized subset of the game
positions. It seems unlikely that similar ideas will work for the game used by Fontaine et al.,
as out of the two types of positions present in this game, one is of doubly exponential size
and the other of only polynomial size; more details are found in Remark 6.8.

2. The Coalgebraic µ-Calculus

We recall basic definitions in coalgebra [Rut00], coalgebraic logic [Pat03, Sch08], and the
coalgebraic µ-calculus [CKP11a]. While we do repeat definitions of some categorical terms,
we assume some familiarity with basic category theory (e.g. [AHS90]).

Coalgebra. The semantics of our logics will be based on transition systems in a general sense,
which we abstract as coalgebras for a type functor. The most basic example are relational
transition systems, or Kripke frames, which are just pairs (C,R) consisting of a set C of states
and a binary transition relation R ⊆ C × C. We may equivalently view such a structure as
a map of type ξ : C → PC (where P denotes the powerset functor and we omit brackets
around functor arguments following standard convention, while we continue to use brackets
in uses of powerset that are not related to functoriality), via a bijective correspondence that
maps R ⊆ C × C to the map ξR : C → PC given by ξR(c) = {d | (c, d) ∈ R} for c ∈ C; that
is, ξR assigns to each state c a collection of some sort, in this case a set, of successor states.
The essence of universal coalgebra [Rut00] is to base a general theory of state-based systems
on encapsulating this notion of collections of successors in a functor, for our purposes on
the category Set of sets and maps. We recall that such a functor F : Set → Set assigns
to each set U a set FU , and to each map f : U → V a map Ff : FU → FV , preserving
identities and composition. As per the intuition given above, FU should be understood as
consisting of some form of collections of elements of U . An F -coalgebra (C, ξ) then consists
of a set C of states and a transition map ξ : C → FC, understood as assigning to each
state c a collection ξ(c) ∈ FC of successors. As indicated above, a basic example is F = P
(with Pf(Y ) = f [Y ] for f : U → Y ), in which case F -coalgebras are relational transition
systems. To see just one further example now, the discrete distribution functor D is given on
sets U by DU being the set of all discrete probability distributions on U . We represent such
distributions by their probability mass functions, i.e. functions d : U → (Q ∩ [0, 1]) such that∑

u∈U d(u) = 1, understood as assigning to each element of U its probability. (Note that the
support {u ∈ U | d(u) > 0} of d is then necessarily at most countable.) By abuse of notation,
we also write d for the induced discrete probability measure on U , i.e. d(Y ) =

∑
y∈Y d(y) for

Y ∈ P(U). The action of D on maps f : U → V is then given by Df(d)(Z) = d(f−1[Z]) for
d ∈ DU and Z ∈ P(V ), i.e. Df takes image measures. A D-coalgebra ξ : C → DC assigns
to each state x ∈ C a distribution ξ(x) over successor states, so D-coalgebras are Markov
chains.

Coalgebraic logic. The fundamental abstraction that underlies coalgebraic logic is to
encapsulate the semantics of next-step modalities in terms of predicate liftings. As a basic
example, consider the standard diamond modality ♢, whose semantics over a transition
system (C,R) is given by

c |= ♢ϕ iff ∃d. (c, d) ∈ R ∧ d |= ϕ
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(where ϕ is a formula in some ambient syntax whose semantics is assumed to be already given
by induction). We can rewrite this definition along the correspondence between transition
systems and P-coalgebras ξ : C → PC described above, obtaining

c |= ♢ϕ iff ξ(c) ∩ [[ϕ]] ̸= ∅
iff ξ(c) ∈ {Y ∈ PC | Y ∩ [[ϕ]] ̸= ∅}

where [[ϕ]] = {d ∈ C | d |= ϕ} denotes the extension of ϕ in (C, ξ). We can see the set
{Y ∈ PC | Y ∩ [[ϕ]] ̸= ∅} as arising from the application of a set operation [[♢]] to the set [[ϕ]],
thought of as a predicate on C: For a predicate P on C, we put

[[♢]](P ) = {Y ∈ PC | Y ∩ P ̸= ∅}

and then have
c |= ♢ϕ iff ξ(c) ∈ [[♢]]([[ϕ]]).

Notice that the operation [[♢]] turns predicates on C into predicates on PC, so we speak of a
predicate lifting.

Generally, the notion of predicate lifting is formally defined as follows. The contravariant
powerset functor Q : Setop → Set is given by QU = PU for sets U , and by Qf : QV → QU ,
Qf(Z) = f−1[Z], for f : U → V . We think of QU as consisting of predicates on U . Then,
an n-ary predicate lifting for F is a natural transformation

λ : Qn → Q ◦ F op

between functors Setop → Set. Here, we write Qn for the functor given by QnU = (QU)n.
Also, recall that F op is the functor Setop → Setop that acts like F on both sets and maps.
Unravelling this definition, we see that a predicate lifting λ is a family of maps

λU : (QU)n → Q(FU),

indexed over all sets U , subject to the naturality condition requiring that the diagram

(QV )n Q(FV )

(QU)n Q(FU)

λV

Q(f)n Q(Ff)

λU

commutes for all f : U → V . Explicitly, this amounts to the equality

λU (f
−1[Z1], . . . , f

−1[Zn]) = (Ff)−1λV (Z1, . . . , Zn)

for predicates Z1, . . . , Zn ∈ Q(V ). It is easily checked that this condition does hold for the
unary predicate lifting λ = [[♢]] as defined above. As examples of predicate liftings for the
above-mentioned discrete distribution functor D, consider the unary predicate liftings λb,
indexed over b ∈ Q ∩ [0, 1], given by

λbU (Y ) = {d ∈ DU | d(Y ) > b},

which induce next-step modalities ‘with probability more than b’ (see also Example 2.1.3).
Again, the naturality condition is readily checked. Further instances are discussed in
Example 2.1.



Vol. 20:3 COALGEBRAIC SATISFIABILITY CHECKING FOR ARITHMETIC µ-CALCULI 9:7

Fixpoints. We recall basic results on fixpoints, and fix some notation. Recall that by
the Knaster-Tarski fixpoint theorem, every monotone function f : X → X on a complete
lattice X (such as a powerset lattice X = P(Y )) has a least fixpoint µf and a greatest
fixpoint νf , and indeed µf is the least prefixpoint and, dually, νf is the greatest postfixpoint
of f . Here, x ∈ X is a prefixpoint (postfixpoint) of f if f(x) ≤ x (x ≤ f(x)). We use µ
and ν also as binders in expressions µX.E or νX.E where E is an expression, in an informal
sense, possibly depending on the parameter X, thus denoting µf and νf , respectively, for
the function f that maps X to E. By the Kleene fixpoint theorem, if X is finite, then we
can compute µf as the point fn(⊥) at which the ascending chain ⊥ ≤ f(⊥) ≤ f2(⊥) . . .
becomes stationary; dually, we compute νf as the point fn(⊤) at which the descending chain
⊤ ≥ f(⊤) ≥ f2(⊤) . . . becomes stationary. More generally, this method can be applied to
unrestricted X by extending the mentioned chains to ordinal indices, taking suprema or
infima, respectively, in the limit steps [CC79].

The coalgebraic µ-calculus. Next-step modalities interpreted as predicate liftings can be
embedded into ambient logical frameworks of various levels of expressiveness, such as plain
modal next-step logics [SP08, SP09] or hybrid next-step logics [MPS09]. The coalgebraic
µ-calculus [CKP11a] combines next-step modalities with a Boolean propositional base and
fixpoint operators, and thus serves as a generic framework for temporal logics.

The syntax of the coalgebraic µ-calculus is parametric in a modal similarity type Λ,
that is, a set of modal operators with assigned finite arities, possibly including propositional
atoms as nullary modalities. We fix a modal similarity type Λ for the rest of the paper. We
assume that Λ is closed under duals, i.e., that for each modal operator ♡ ∈ Λ, there is a dual
♡ ∈ Λ (of the same arity) such that ♡ = ♡ for all ♡ ∈ Λ. Let V be a countably infinite set
of fixpoint variables X,Y, . . . . Formulae ϕ, ψ, . . . of the coalgebraic µ-calculus (over Λ) are
given by the grammar

ψ, ϕ ::= ⊥ | ⊤ | ψ ∧ ϕ | ψ ∨ ϕ | ♡(ϕ1, . . . , ϕn) | X | ¬X | µX. ϕ | νX. ϕ
where ♡ ∈ Λ, X ∈ V, and n is the arity of ♡. We require that negated variables ¬X do
not occur in the scope of µX or νX. As usual, µ and ν take least and greatest fixpoints,
respectively. We write ϕ[ψ/X] for the formula obtained by substituting ψ for X in ϕ. Full
negation is not included but can be defined as usual (in particular, ¬♡ϕ = ♡¬ϕ, and moreover
¬µX. ϕ = νX.¬ϕ[¬X/X] and dually; one easily checks that the restriction on occurrences
of negated variables is satisfied in the resulting formula). Throughout, we use η ∈ {µ, ν}
as a placeholder for fixpoint operators; we briefly refer to formulae of the form ηX. ϕ as
fixpoints or fixpoint literals. We follow the usual convention that the scope of a fixpoint
extends as far to the right as possible. Fixpoint operators bind their fixpoint variables, so
that we have standard notions of bound and free fixpoint variables; we write FV(ϕ) and
BV(ϕ) for the sets of free and bound variables, respectively, that occur in a formula ϕ. A
formula ϕ is closed if it contains no free fixpoint variables, i.e. FV(ϕ) = ∅. (Note in particular
that closed formulae do not contain negated fixpoint variables, and hence no negation at
all.) We assume w.l.o.g. that fixpoints are irredundant, i.e. use their fixpoint variable at
least once. In guarded formulae, all occurrences of fixpoint variables are separated by at
least one modal operator from their binding fixpoint operator. Guardedness is a wide-spread
assumption although the actual blowup incurred by the transformation of unguarded into
guarded formulae depends rather subtly on the notion of formula size [BFL15, KMV20].
We do not assume guardedness in this work, see also Remark 3.8. For ♡ ∈ Λ, we denote
by size(♡) the length of a suitable representation of ♡; for natural or rational numbers
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indexing ♡ (cf. Example 2.1), we assume binary representation. The length |ψ| of a formula
is its length over the alphabet {⊥,⊤,∧,∨} ∪ Λ ∪V ∪ {ηX. | η ∈ {µ, ν}, X ∈ V}, while the
size size(ψ) of ψ is defined by counting size(♡) for each ♡ ∈ Λ (and 1 for all other operators).

The semantics of the coalgebraic µ-calculus, on the other hand, is parametrized by
the choice of a functor F : Set → Set determining the branching type of systems, as well as
predicate liftings interpreting the modalities, as indicated in the above summary of coalgebraic
logic. That is, we interpret each modal operator ♡ ∈ Λ as an n-ary predicate lifting

[[♡]] : Qn → Q ◦ F op

for F , where n is the arity of ♡, extending notation already used in our lead-in example on
the semantics of the diamond modality ♢. To ensure existence of fixpoints, we require that
all [[♡]] are monotone, i.e. whenever Ai ⊆ Bi ⊆ U for all i = 1, . . . , n, where n is the arity
of ♡, then [[♡]]U (A1, . . . , An) ⊆ [[♡]]U (B1. . . . , Bn).

For sets U ⊆ V , we write U = V \U for the complement of U in V when V is understood
from the context. We require that the assignment of predicate liftings to modalities respects
duality, i.e.

[[♡]]U (A1, . . . , An) = [[♡]]U (A1, . . . , An)

for n-ary ♡ ∈ Λ and A1, . . . , An ⊆ U .
We interpret formulae over F -coalgebras ξ : C → FC. A valuation is a partial function

i : V ⇀ P(C) that assigns sets i(X) of states to fixpoint variables X (we generally write
⇀ to indicate partial functions). Given A ⊆ C and X ∈ V, we write i[X 7→ A] for the
valuation given by (i[X 7→ A])(X) = A and (i[X 7→ A])(Y ) = i(Y ) for Y ̸= X. We
write ϵ for the empty valuation (i.e. ϵ is undefined on all variables). For a list X1, . . . , Xn

of distinct variables, we write i[X1 7→ A1, . . . , Xn 7→ An] for i[X1 7→ A1] . . . [Xn 7→ An] (i.e.
i[X1 7→ A1, . . . , Xn 7→ An] maps Xj to Aj for j = 1, . . . , n and otherwise acts like i), and
[X1 7→ A1, . . . , Xn 7→ An] for ϵ[X1 7→ A1, . . . , Xn 7→ An]. The extension [[ϕ]]i ⊆ C of a
formula ϕ in (C, ξ), under a valuation i such that i(X) is defined for all X ∈ FV(ϕ), is given
by the recursive clauses

[[⊥]]i = ∅
[[⊤]]i = C

[[X]]i = i(X)

[[¬X]]i = C \ i(X)

[[ϕ ∧ ψ]]i = [[ϕ]]i ∩ [[ψ]]i

[[ϕ ∨ ψ]]i = [[ϕ]]i ∪ [[ϕ]]i

[[♡(ϕ1, . . . , ϕn)]]i = ξ−1[[[♡]]C([[ϕ1]]i. . . . , [[ϕn]]i)]

[[µX. ϕ]]i = µA. [[ϕ]]i[X 7→A]

[[νX. ϕ]]i = νA. [[ϕ]]i[X 7→A]

(using notation introduced in the fixpoint paragraph above). Thus we have x ∈ [[♡(ψ1, . . . ,
ψn)]]i if and only if ξ(x) ∈ [[♡]]C([[ψ1]]i, . . . , [[ψn]]i). By monotonicity of predicate liftings and
the restrictions on occurrences of negated variables, one shows inductively that the functions
occurring in the clauses for µX. ϕ and νX. ϕ are monotone, so the corresponding extremal
fixpoints indeed exist according to the Knaster-Tarski fixpoint theorem. By an evident
substitution lemma, we obtain that the extension is invariant under unfolding of fixpoints,
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i.e.
[[ηX.ψ]]i = [[ψ[ηX.ψ/X]]]i.

For closed formulae ψ, the valuation i is irrelevant, so we write [[ψ]] instead of [[ψ]]i. A state
x ∈ C satisfies a closed formula ψ (denoted x |= ψ) if x ∈ [[ψ]]. A closed formula χ is
satisfiable if there is a coalgebra (C, ξ) and a state x ∈ C such that x |= χ.

For readability, we restrict the further technical development to unary modalities, noting
that all proofs generalize to higher arities by just writing more indices; in fact, we will
liberally use higher arities in examples. For the remainder of the paper, we fix a functor F
and predicate liftings [[♡]] interpreting the modalities ♡ ∈ Λ.

Example 2.1 (Coalgebraic µ-calculi). We proceed to discuss instances of the coalgebraic
µ-calculus, focusing mainly on cases where no tractable set of modal tableau rules is known
(details on this point are in Remark 6.7). Examples where such rule sets are available,
including the alternating-time µ-calculus, have been provided by Cîrstea et al. [CKP11a].
We do discuss two examples where tractable sets of modal tableau rules are known, viz, the
relational µ-calculus and the monotone µ-calculus. We include the former to show how our
present coalgebraic notions match the most familiar example; and the latter to illustrate the
importance of covering unguarded formulae by showing that these arise in the embedding of
game logic [PP03].

(1) The relational modal µ-calculus [Koz83] (which contains CTL as a fragment), has
Λ = {♢,□} ∪ P ∪ {¬a | a ∈ P} where P is a set of propositional atoms, seen as nullary
modalities, and ♢,□ are unary modalities. The modalities ♢ and □ are mutually dual (♢ = □,
□ = ♢), and the dual of a ∈ P is ¬a. The semantics is defined over Kripke models, which
are coalgebras for the functor F given on sets U by FU = (PU)×P(P) – an F -coalgebra
assigns to each state a set of successors and a set of atoms satisfied in the state. The relevant
predicate liftings are

[[♢]]U (A) = {(B,Q) ∈ FU | A ∩B ̸= ∅}
[[□]]U (A) = {(B,Q) ∈ FU | B ⊆ A}

[[a]]U = {(B,Q) ∈ FU | a ∈ Q} (a ∈ P)

[[¬a]]U = {(B,Q) ∈ FU | a /∈ Q}
(of course, the predicate liftings for a ∈ P and ¬a are nullary, i.e. take no argument predicates).
Standard example formulae include the CTL-formula AF a = µX. (a ∨ □X), which states
that on all paths, a eventually holds, and the fairness formula νX. µY. ((a ∧ ♢X) ∨ ♢Y ),
which asserts the existence of a path on which a holds infinitely often.

(2) The monotone µ-calculus [Pau01] has a set P of propositional atoms, seen as nullary
modalities in the same way as in our treatment of the relational µ-calculus, and modalities
⟨g⟩ with duals [g], indexed over atomic games g from a fixed set A. It is interpreted over
monotone neighbourhood models, which are coalgebras for MA × P(P). Here, (−)A denotes
exponentiation with A (generally, for sets U and V , V U is the set of maps U → V ), and M
is the monotone neighbourhood functor, defined as follows. We first define the neighbourhood
functor N as the composite Q ◦ Qop of the contravariant powerset functor Q with itself;
explicitly, NU = Q(QU) is the double powerset of U , and for f : U → V and N ∈ NU ,
N f(N) = {Z ⊆ V | f−1[Z] ∈ N}. Call N ∈ NU upclosed if W ∈ N whenever V ∈ N and
V ⊆W . Then, M is the subfunctor of N given by MU = {N ∈ NU | N upclosed}. Thus,
a monotone neighbourhood model (C, ξ) consists of a set C of states and a transition map ξ
assigning to each state x ∈ C a set of propositional atoms that hold in x, and for each g ∈ A
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an upwards closed set of g-neighbourhoods. The semantics of propositional atoms is given
like in the relational µ-calculus. The interpretation of the modalities as predicate liftings is
given by

[[⟨g⟩]]U (A) = {(N,Q) ∈ (MU)A × P(P) | A ∈ N(g)}
[[[g]]]U (A) = {(N,Q) ∈ (MU)A × P(P) | ∀B ∈ N(g). B ∩A ̸= ∅}.

As indicated by the nomenclature, one way to understand the monotone µ-calculus is as a
logic of two-player games, where ⟨g⟩ϕ says that the first player (‘Angel’) can enforce ϕ after
playing game g. Game logic [Par83] features modalities ⟨γ⟩, [γ] for (non-atomic) games γ;
here, games γ, δ are defined by the grammar

γ, δ ::= g | γ ∪ δ | γ; δ | γd | γ∗ (g ∈ A)

(where for simplification we omit the test construct ϕ?, for game logic formulae ϕ). Here,
γ ∪ δ is a game in which Angel decides whether to play γ or δ; γ; δ is the game where γ
and δ are played in sequence; γ∗ is a game in which γ is played repeatedly, and Angel decides
before each round (including the first) whether γ is played again; and γd is like γ but with
the roles of the players reversed. Thus, γ ∩ δ := (γd ∪ δd)d is a game where the second
player (‘Demon’) decides whether γ or δ is played, and γ× := ((γd)∗)d is a game where γ is
played repeatedly, with Demon deciding before each round whether γ is played another time.
This logic can be embedded into the monotone µ-calculus, with polynomial blowup when
formulae are measured in terms of subformula or closure size [Pau01], as we will do here. We
slightly simplify the original translation, which aims at using only two fixpoint variables; the
translation t is then defined by mutual recursion with operators τγ that translate the effect
of applying ⟨γ⟩ to an argument formula. The translation t is given by commutation with all
propositional operators and by

t(⟨γ⟩ϕ) = τγ(t(ϕ)).

We refrain from listing the clauses for τϕ in full; the most salient clauses are

τg(ϕ) = ⟨g⟩ϕ τγd(ϕ) = ¬τγ(¬ϕ) τγ∗(ϕ) = µX. (ϕ ∨ τγ(X))

where X is a fresh fixpoint variable. For instance, we have

t(⟨(g∗)×⟩a) = νX. (a ∧ µY. (X ∨ ⟨g⟩Y ));

that is, the translation of game logic formulae may produce unguarded formulae in the
monotone µ-calculus.

(3) The two-valued probabilistic µ-calculus [CKP11a, LSWZ15, CK16] (not to be con-
fused with the real-valued probabilistic µ-calculus [HK97, MM07]) is modelled using the
distribution functor D as discussed above; recall in particular that D-coalgebras are Markov
chains. To avoid triviality (see Remark 2.3), we include propositional atoms, i.e. we work with
coalgebras for the functor F = D×P(P) for a set P of propositional atoms like in the previous
items. We use the modal similarity type Λ = {⟨b⟩, [b] | b ∈ Q ∩ [0, 1]} ∪ P ∪ {¬a | a ∈ P},
with ⟨b⟩ and [b] mutually dual, and again with a ∈ P and ¬a mutually dual; we interpret
these modalities by the predicate liftings

[[⟨b⟩]]U (A) = {(d,Q) ∈ FU | d(A) > b}
[[[b]]]U (A) = {(d,Q) ∈ FU | d(U \A) ≤ b}

[[a]]U = {(d,Q) ∈ FU | a ∈ Q}
[[¬a]]U = {(d,Q) ∈ FU | a /∈ Q}
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for sets U and A ⊆ U (so [[⟨b⟩]] applies the above-mentioned predicate liftings λb to the
D-component of F ); that is, a state satisfies ⟨b⟩ϕ if the probability of reaching a state
satisfying ϕ in the next step is more than b, and a state satisfies [b]ϕ if the probability of
reaching a state not satisfying ϕ in the next step is at most b. For example, the formula

ϕ = νX. safe ∧ ⟨0.95⟩X

expresses that current state is safe and will reach a state in which ϕ holds again with
probability more than 0.95 (a property that may be more realistically expected to hold in
practice than formulae demanding that safety holds forever with a given probability).

(4) Similarly, we interpret the graded µ-calculus [KSV02] over multigraphs [DV02], in
which states are connected by directed edges that are annotated with non-negative integer
multiplicities. Multigraphs correspond to coalgebras for the multiset functor B, defined on
sets U by

B(U) = {β : U → N ∪ {∞}}.
We view d ∈ B(U) as an integer-valued measure on U , and for V ⊆ U employ the same
notation d(V ) =

∑
x∈V d(x) as in the case of probability distributions. In this notation, we

can, again, define Bf , for f : U → V , as taking image measures, i.e. Bf(d)(W ) = d(f−1[W ])
for W ⊆ V . A B-coalgebra ξ : C → BC assigns a multiset ξ(x) to each state x ∈ C, which
we may read as indicating that given states x, y ∈ C, there is an edge from x to y with
multiplicity ξ(x)(y). We use the modal similarity type Λ = {⟨m⟩, [m] | m ∈ N ∪ {∞}},
with ⟨m⟩ and [m] mutually dual, and define the predicate liftings

[[⟨m⟩]]U (A) = {β ∈ BU | β(A) > m}
[[[m]]]U (A) = {β ∈ BU | β(U \A) ≤ m}

for sets U and A ⊆ U . For instance, somewhat informally speaking, a state satisfies
νX. (ψ ∧ ⟨1⟩X) if it is the root of an embedded infinite binary tree in which all states
satisfy ψ (more formally, this holds in the tree unfolding of the coalgebra).

(5) The probabilistic µ-calculus with polynomial inequalities [KPS15] extends the proba-
bilistic µ-calculus (item 3) by introducing, in addition to propositional atoms as in item 3,
mutually dual polynomial modalities ⟨p⟩, [p] for n ∈ N, p ∈ Q[X1, . . . , Xn] (the set of polyno-
mials in variables X1, . . . , Xn with rational coefficients) such that p is monotone on [0, 1] in
all variables (in particular this holds when all coefficients of non-constant monomials in p
are non-negative, but also, e.g., X1 − 1

2X
2
1 − 1

4 is monotone on [0, 1]). These modalities are
interpreted by predicate liftings defined by

[[⟨p⟩]]U (A1, . . . , An) = {(d,Q) ∈ FU | p(d(A1), . . . , d(An)) > 0}
[[[p]]]U (A1, . . . , An) = {(d,Q) ∈ FU | p(d(A1), . . . , d(An)) ≤ 0}

for sets U and A1, . . . , An ⊆ U . Of course, the polynomial modalities subsume the modalities
mentioned in item 3, explicitly via ⟨b⟩ = ⟨X1 − b⟩ and [b] = [X1 − b]. The monotonicity
restriction on polynomials ensures that polynomial modalities are monotone, which in turn
is needed to guarantee existence of least and greatest fixpoints. Polynomial inequalities
over probabilities have received some previous interest in probabilistic logics (e.g. [FHM90,
GJLS17]), in particular as they can express constraints on independent events (and hence
play a role analogous to independent products as used in the real-valued probabilistic
µ-calculus [Mio11]). E.g. the formula

νY. ⟨X1X2 − 0.9⟩(ready ∧ Y, idle ∧ Y )
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says roughly that two independently sampled successors of the current state will satisfy ready
and idle, respectively, and then satisfy the same property again, with probability more
than 0.9.

We note that polynomial inequalities clearly increase the expressiveness of the logic strictly,
not only in comparison to the logic with operators ⟨b⟩, [b] as in item 3 but also w.r.t. the
logic with only linear inequalities: The restrictions on probability distributions imposed by
linear inequalities on probabilities are rational polytopes, so already ⟨X2

1 +X2
2 − 1⟩(a, c) is

not expressible using only linear inequalities.
(6) Similarly, the graded µ-calculus with polynomial inequalities extends the graded

µ-calculus with more expressive modalities ⟨p⟩, [p], again mutually dual, where in this case
n ∈ N, p ∈ Z[X1, . . . , Xn] (that is, p ranges over multivariate polynomials with integer
coefficients). Again, we restrict polynomials to be monotone in all variables; we do in this
case in fact require that all coefficients of non-constant monomials are non-negative. To
avoid triviality, we correspondingly require the coefficient b0 of the constant monomial to be
non-positive; we refer to the number −b0 as the index of the modality. These modalities are
interpreted by the predicate liftings

[[⟨p⟩]]U (A1, . . . , An) = {β ∈ BU | p(β(A1), . . . , β(An)) > 0)}
[[[p]]]U (A1, . . . , An) = {β ∈ BU | p(β(A1), . . . , β(An)) ≤ 0)}.

This logic subsumes the Presburger µ-calculus, that is, the extension of the graded µ-calculus
with linear inequalities (with non-negative coefficients), which may be seen as the fixpoint
variant of Presburger modal logic [DL06]. E.g. the formula

µY. (a ∨ ⟨3X1 +X2
2 − 10⟩(c ∧ Y, a ∧ Y ))

says that (in the tree unfolding of the coalgebra) the current state is the root of a finite tree
all whose leaves satisfy a, and each of whose inner nodes has n1 children satisfying c and n2
children satisfying a where 3n1 + n22 − 10 > 0. The index of the modality ⟨3X1 +X2

2 − 10⟩
is 10.

Unlike in the probabilistic case (item 5), polynomial inequalities do not increase the
expressiveness of the graded µ-calculus (item 4): Given a polynomial p ∈ Z[X1, . . . , Xn],
one can just replace ⟨p⟩(ϕ1, . . . , ϕn) with the disjunction of all formulae

∧n
i=1⟨mi − 1⟩ϕi over

all solutions (m1, . . . ,mn) of p(X1, . . . , Xn) > 0 that are minimal w.r.t. the componentwise
ordering of Nn. As these minimal solutions form an antichain in Nn, there are only finitely
many of them [Lav76], so the disjunction is indeed finite. However, the blowup of this
translation is exponential in the binary size of the coefficient of the constant monomial and
in n: For instance, even the linear inequality X1 + · · ·+Xn − nb > 0 has, by a somewhat
generous estimate, at least (b+1)n−1 minimal solutions (one for each assignment of numbers
between 0 and b to the variables X1, . . . , Xn−1; more precisely, the number of minimal
solutions is the number

(
n+nb
n−1

)
=

(
n+nb
nb+1

)
of weak compositions of nb+ 1 into n parts), which

is exponential both in n and in the binary size of b (in which the polynomial itself has linear
size when n is fixed). Therefore, this translation does not allow inheriting an exponential-time
upper complexity bound on satisfiability checking from the graded µ-calculus.

(7) Coalgebraic logics in general combine along functor composition, and essentially all
their properties including their algorithmic treatment propagate; the arising composite logics
are essentially typed sublogics of the fusion, to which we refer as multi-sorted coalgebraic
logics [SP11]. For instance, Markov decision processes or simple Segala systems may (in
the simplest version) be seen as coalgebras for the composite functor P ◦ D. A logic for
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such systems has nondeterministic modalities ♢,□ as well as probabilistic modalities such
as ⟨p⟩, [p] (items 1 and 5). The logic distinguishes two sorts of nondeterministic and
probabilistic formulae, respectively, with ♢,□ taking probabilistic formulae as arguments
and producing nondeterministic formulae, and with ⟨p⟩, [p] working the other way around
(so that, e.g., ⟨X2 − 0.5⟩♢⊤ is a probabilistic formula while ♢⊤ ∧ ⟨X2 − 0.5⟩♢⊤ is not a
formula). Two further particularly pervasive and basic functors are (−)A, which represents
indexing of transitions (and modalities) over a fixed set A of actions or labels (like in item 2
above for A = A), and (−)×P(P), which represents state-dependent valuations for a set P
of propositional atoms as featured already in several items above. Our results will therefore
cover modular combinations of these features with the logics discussed above, e.g. logics for
labelled Markov chains or Markov decision processes. We refrain from repeating the somewhat
verbose full description of the framework of multi-sorted coalgebraic logic. Instead, we will
consider only the fusion of logics in the following – since, as indicated above, multi-sorted
logics embed into the fusion [SP11], this suffices for purposes of algorithmic satisfiability
checking. We discuss the fusion of coalgebraic logics in Remarks 2.5 and 6.9.
We remark that the modalities in items 5 and 6 are less general than in the corresponding next-
step logics [FHM90, GJLS17, DL06, KPS15] in that the polynomials involved are restricted
to be monotone; e.g. they do not support statements of the type ‘ϕ is more probable than ψ’.
This is owed to their use in fixpoints, which requires modalities to be monotone as indicated
above.

Coalgebraic logics relate closely to a generic notion of behavioural equivalence, which
generalizes bisimilarity of transition systems. A morphism h : (C, ξ) → (D, ζ) of F -coalgebras
is a map h : C → D such that the square

C D

FC FD

h

ξ ζ

Fh

commutes. For instance, a morphism h : (C, ξ) → (D, ζ) of P-coalgebras, i.e. of transition
systems or Kripke frames, is precisely what is known as a bounded morphism or a p-
morphism (e.g. [BdRV01]), that is, (i) whenever c′ ∈ ξ(c) for c, c′ ∈ C, then h(c′) ∈ ζ(h(c)),
and (ii) whenever d′ ∈ ζ(d) for d, d′ ∈ D, then there exists c′ ∈ ξ(c) such that h(c′) = d′.
States x ∈ C, y ∈ D in coalgebras (C, ξ), (D, ζ) are behaviourally equivalent if there exist a
coalgebra (E, θ) and morphisms g : (C, ξ) → (E, θ), h : (D, ζ) → (E, θ) such that g(x) = h(y).
This notion instantiates to standard equivalences in our running examples; e.g. as indicated
above, states in (labelled) transition systems are behaviourally equivalent iff they are bisimilar
in the usual sense [AM89], and states in labelled Markov chains are behaviourally equivalent
iff they are probabilistically bisimilar [RdV99], [BSdV04].

In view of the definition of behavioural equivalence via morphisms of coalgebras, we can
phrase invariance of the coalgebraic µ-calculus under behavioural equivalence, generalizing
the well-known bisimulation invariance of the relational µ-calculus, as invariance under
coalgebra morphisms. Formally, this takes the following shape:

Lemma 2.2 (Invariance under behavioural equivalence). Let h : (C, ξ) → (D, ζ) be a
morphism of coalgebras, let ϕ by a coalgebraic µ-calculus formula, and let i : V ⇀ P(D) be a
valuation. Then

[[ϕ]]h−1i = h−1[[ϕ]]i
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where h−1i denotes the valuation given by h−1i(X) = h−1[i(X)].

Since as mentioned above, fixpoints can be approximated by ordinal-indexed iteration, this
follows from the fact that (fixpoint-free) coalgebraic modal logic with infinite conjunctions and
disjunctions is invariant under behavioural equivalence [Pat04, Sch08]. Similar statements
have been shown for a version of the coalgebraic µ-calculus featuring the coalgebraic cover
modality instead of predicate-lifting-based modalities [Ven04] and for the single-variable
fragment of the coalgebraic µ-calculus in the present sense [SV18], using essentially the same
argument.

Remark 2.3. As indicated in Example 2.1.3, Markov chains are coalgebras for the discrete
distribution functor D. The reason why we immediately extended Markov chains with
propositional atoms is that in plain Markov chains, all states are behaviourally equivalent
and therefore satisfy the same formulae of any coalgebraic µ-calculus interpreted over Markov
chains: Since for any singleton set 1, D1 is again a singleton, we have a unique D-coalgebra
structure on 1, and every D-coalgebra has a (unique) morphism into this coalgebra. This
collapse under behavioural equivalence is avoided by adding propositional atoms.

Remark 2.4 (Multigraph semantics of the graded µ-calculus). One important consequence
of the invariance of the coalgebraic µ-calculus under coalgebra morphisms according to
Lemma 2.2 is that the multigraph semantics of the graded µ-calculus as per Example 2.1.4
(and its extension with polynomial inequalities introduced in Example 2.1.6) is equivalent
to the more standard Kripke semantics, i.e. the semantics over P-coalgebras [KSV02]. We
can obtain the latter from the definitions in Example 2.1.4 by converting Kripke frames
into multigraphs in the expected way, i.e. by regarding transitions in the given Kripke
frame as transitions with multiplicity 1 in a multigraph. The conversion shows trivially
that every formula that is satisfiable over (finite) Kripke frames is also satisfiable over
(finite) multigraphs. The converse is shown by converting a given multigraph into a Kripke
model that has copies of states and transitions according to the multiplicity of transitions in
the multigraph. The arising Kripke frame, converted back into a multigraph as described
previously, has a coalgebra morphism into the original multigraph, implying by Lemma 2.2
that the copies satisfy the same formulae as the original multigraph states. Details are given
in [SV18, Lemma 2.4].

Remark 2.5 (Fusion). The standard term fusion refers to a form of combination of logics,
in particular modal logics, where the ingredients of both logics are combined disjointly and
essentially without semantic interaction, but may then be intermingled in composite formulae.
In the framework of coalgebraic logic, this means that the fusion of coalgebraic logics with
modal similarity types Λi interpreted over functors Fi, i = 1, 2, is formed by taking the
disjoint union Λ of Λ1 and Λ2 (assuming w.l.o.g. that Λ1 and Λ2 are disjoint to begin
with) as the modal similarity type, and by interpreting modalities over the product functor
F = F1 × F2 (with the product of functors computed componentwise, e.g. FU = F1U × F2U

for sets U). The predicate lifting [[♡]]F interpreting ♡ ∈ Λi over F , for i = 1, 2, is given by

[[♡]]FU (A) = {(t1, t2) ∈ F1U × F2U | ti ∈ [[♡]]FiU (A)}

where [[♡]]Fi is the predicate lifting for Fi interpreting ♡ in the respective component logic.
For example, the fusion of the standard relational modal µ-calculus (Example 2.1.1) and the
probabilistic µ-calculus with polynomial inequalities (Example 2.1.5) allows for unrestricted
use of non-deterministic modalities ♢,□ and probabilistic modalities ⟨p⟩, [p] in formulae such
as ♢⊤ ∧ ⟨X2 − 0.5⟩♢⊤, instead of only the alternating discipline imposed by the two-sorted
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logic for Markov decision processes described in Example 2.1.7; such formulae are interpreted
over coalgebras for the functor P ×D, in which every state has both nondeterministic and
probabilistic successors.

Closure and Alternation Depth. A key measure of the complexity of a formula is its
alternation depth, which roughly speaking describes the maximal number of alternations
between µ and ν in chains of dependently nested fixpoints. The treatment of this issue is
simplified if one excludes reuse of fixpoint variables:

Definition 2.6 (Clean formulae). A closed formula ϕ is clean if each fixpoint variable
appears in at most one fixpoint operator in ϕ.

We fix a clean closed target formula χ for the remainder of the paper, and define the following
syntactic notions relative to this target formula. Given X ∈ BV(χ), we write θ(X) for the
unique subformula of χ of the shape ηX.ψ. We say that a fixpoint variable X is an η-variable,
for η ∈ {µ, ν}, if θ(X) has the form ηX.ψ. As indicated, the formal definition of alternation
depth simplifies within clean formulae (e.g., [Wil01, KMV20, KMV22]):

Definition 2.7 (Alternation depth). For X,Y ∈ BV(χ), we write Y ≺dep X if X ∈ FV(θ(Y ))
(which implies that θ(Y ) is a subformula of θ(X)). A dependency chain in χ is a chain of
the form

Xn ≺dep Xn−1 ≺dep . . . ≺dep X0 (n ≥ 0);

the alternation number of the chain is k+1 where k is the number of indices i ∈ {0, . . . , n−1}
such that Xi is a µ-variable iff Xi+1 is a ν-variable (i.e. the chain toggles between µ- and
ν-variables at i). The alternation depth ad(X) of a variable X ∈ BV(χ) is the maximal
alternation number of dependency chains as above ending in X0 = X, and the alternation
depth of χ is ad(χ) := max{ad(X) | X ∈ BV(χ)}.

(In particular, the alternation depth of χ is 0 if χ does not contain any fixpoints, and 1 if χ is
alternation-free, i.e. no ν-variable occurs freely in θ(X) for a µ-variable X, and vice versa.)

Example 2.8 (Alternation depth). The formula νX. (µY. a ∨ ♢Y ) ∧□X (in the relational
modal µ-calculus) has alternation depth 1, i.e. is alternation-free. The formula νX.□(µY. X∨
♢Y ) has alternation depth 2, as witnessed by the alternating chain Y ≺dep X.

In the automata-theoretic approach to checking for infinite deferrals, automata states will be
taken from the Fischer-Ladner closure of χ in the usual sense [Koz83], in which subformulae
of χ are expanded into closed formulae by means of fixpoint unfolding:

Definition 2.9 (Fischer-Ladner closure). The Fischer-Ladner closure F of χ is the least set
of formulae containing χ such that

ϕ ∧ ψ ∈ F =⇒ ϕ, ψ ∈ F

ϕ ∨ ψ ∈ F =⇒ ϕ, ψ ∈ F

♡ϕ ∈ F =⇒ ϕ ∈ F

ηX. ϕ ∈ F =⇒ ϕ[ηX. ϕ/X] ∈ F.

(One should note that although χ is clean, the elements of F will in general fail to be clean,
as fixpoint unfolding of ηX. ϕ as per the last clause may create multiple copies of ηX. ϕ.)

Furthermore, we let sub(χ) denote the set of subformulae of χ; unlike formulae in F,
formulae in sub(χ) may contain free fixpoint variables. The innermost free fixpoint variable
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in a subformula of χ is the one whose binder lies furthest to the right in χ. Each ϕ ∈ sub(χ)
induces a formula θ∗(ϕ) ∈ F, which is obtained by repeatedly transforming ϕ, in each
step substituting the innermost fixpoint variable X occurring in the present formula with
θ(X) [Koz83]. This map witnesses finiteness of the closure (Lemma 2.10) and moreover will
serve as a connection between two variants of the model checking game respectively based
on subformulae and on the closure (Lemma 3.14). For instance, for χ = µX. νY. (Y ∨ ♡X),
we have Y ∨ ♡X ∈ sub(χ), θ(X) = χ and θ(Y ) = νY. (Y ∨ ♡X), and thus

θ∗(Y ∨ ♡X) = θ∗(θ(Y ) ∨ ♡X)

= θ∗((νY. (Y ∨ ♡X)) ∨ ♡X)

= (νY. (Y ∨ ♡θ(X))) ∨ ♡θ(X)

= (νY. (Y ∨ ♡χ)) ∨ ♡χ.

Lemma 2.10 [Koz83]. The function θ∗ : sub(χ) → F is surjective; in particular, the cardi-
nality of F is at most the number of subformulae of χ.

Remark 2.11 (Closure vs. subformulae). The main reason we base our constructions on the
closure F is that this provides the most succinct size measure for µ-calculus formulae [BFL15],
thus strengthening our complexity results. Subformulae are needed occasionally for technical
purposes; in particular, they support proofs by structural induction.

3. Tracking Automata and Model Checking Games

Generally, the main problem both in satisfiability checking for temporal logics and the
associated model constructions on the one hand, and in model checking on the other hand, is
to ensure that the unfolding of least fixpoints does not lead to infinite deferrals, i.e. that least
fixpoints are indeed eventually satisfied. We encode this condition using parity automata
(e.g. [GTW02]) that track the evolution of formulae in such procedures.

Recall that a (nondeterministic) parity automaton is a tuple

A = (V,Σ,∆, qinit, α)

where V is a set of nodes; Σ is a finite set, the alphabet ; ∆ ⊆ V × Σ× V is the transition
relation; qinit ∈ V is the initial node; and α : V → N is the priority function, which assigns
priorities α(v) ∈ N to states v ∈ V . Given a ternary relation R ⊆ A×B×A and a ∈ A, b ∈ B,
B′ ⊆ B, we generally write R(a, b) = {a′ ∈ A | (a, b, a′) ∈ R}, R(a,B′) =

⋃
b∈B′ R(a, b) and

R(a) = R(a,B). If ∆ is a (partial) functional relation, then A is said to be deterministic,
and we denote the corresponding partial function by δ : V × Σ⇀ V . We often treat infinite
sequences s = x1, x2, . . . over a base set X as maps s : N → X. We generally write

Inf(s) = {x ∈ X | |s−1[{x}]| = ∞}

for the set of elements that occur infinitely often in s. The automaton A accepts an infinite
word, i.e. an infinite sequence w = σ0, σ1, . . . ∈ Σω over Σ, if there is a w-path through A on
which the highest priority that is passed infinitely often is even; formally, the language that
is accepted by A is defined by

L(A) = {w ∈ Σω | ∃ρ ∈ run(A, w). max(Inf(α ◦ ρ)) is even},
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where run(A, w) denotes the set of runs of A on w, i.e. infinite sequences q0, q1, q2, . . . ∈ V ω

(starting in the initial state q0 = qinit) such that qi+1 ∈ ∆(qi, wi) for all i ≥ 0.
Recall moreover that we are working with a fixed clean closed target formula χ. We put

n0 = |χ|, n1 = size(χ), k = ad(ϕ).

The states of the tracking automaton for χ will be the elements of the Fischer-Ladner
closure F of χ (cf. Section 2); in particular, |F| ≤ n0.

Definition 3.1 (Modal literals). Given a set Z, we write Λ(Z) = {♡z | ♡ ∈ Λ, z ∈ Z}, and
refer to elements of Λ(Z) as modal literals (over Z).

In particular, F ∩ Λ(F) is the set of modal literals in F. We put

selections = P(F ∩ Λ(F)),

and indeed refer to elements of this set as selections, with a view to using selections as letters
for modal steps in our automata construction. Furthermore, we let F∨ = {ψ∨χ | ψ∨χ ∈ F}
denote the set of disjunctive formulae contained in F, and put

choices = {τ : F∨ → F | ∀(ψ ∨ χ) ∈ F∨. τ(ψ ∨ χ) ∈ {ψ, χ}};
that is, choices consists of choice functions that pick disjuncts from disjunctions. These
choice functions will be used as letters for propositional steps in the tracking automaton. We
note |selections|, |choices| ≤ 2n0 .

Definition 3.2 (Tracking automaton). The tracking automaton for χ is the nondeterministic
parity automaton Aχ = (F,Σ,∆, qinit, α) where qinit = χ, Σ = choices ∪ selections, and for
ψ ∈ F, τ ∈ choices and κ ∈ selections,

∆(ψ, τ) =



{τ(ψ)} if ψ ∈ F∨

{ψ0, ψ1} if ψ = ψ0 ∧ ψ1

{ψ1[ψ/X]} if ψ = ηX.ψ1

{ψ} if ψ = ♡ψ0 for some ♡ ∈ Λ

∅ if ψ ∈ {⊤,⊥}

∆(ψ, κ) =

{
{ψ0} if ψ = ♡ψ0 ∈ κ for some ♡ ∈ Λ

∅ otherwise

The priority function α is derived from the alternation depths of variables, counting only
unfoldings of fixpoints (i.e. all other formulae have priority 1) and ensuring that least fixpoints
receive even priority and greatest fixpoints receive odd priority. That is, we put

α(µX.ϕ) = 2⌊(ad(X)− 1)/2⌋+ 2

α(νX.ϕ) = 2⌊ad(X)/2⌋+ 1

α(ψ) = 1 if ψ is not a fixpoint literal.

(For instance, a formula of the form χ1 = νX. µY.νZ. ϕ(X,Y, Z) has ad(X) = 3 and
α(χ1) = 3, while its unfolding χ′

1 = µY.νZ. ϕ(χ1, Y, Z) has ad(Y ) = 2 and α(χ′
1) = 2.

Contrastingly, a formula of the form χ2 = µX. νY.µZ. ϕ(X,Y, Z) has ad(X) = 3 and
α(χ2) = 4, while its unfolding χ′

2 = νY.µZ. ϕ(χ2, Y, Z) has ad(Y ) = 2 and α(χ′
2) = 3.)

Propositional tracking along a choice function τ ∈ choices thus follows the choice of τ
for disjunctions. Conjunctions are tracked nondeterministically to one of their conjuncts;
fixpoint literals ψ = ηX.ψ1 are tracked to their unfolding ψ1[ψ/X]; modal literals are left
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unchanged by propositional tracking; and truth constants ⊤,⊥ are not further tracked at
all. In modal tracking along a selection κ, a modal literal ψ = ♡ψ0 is tracked (to ψ0) only if
♡ψ0 ∈ κ, i.e. if κ selects ♡ψ0 to be tracked.

The priority function α of Aχ is designed to ensure that a run ρ – that is, a sequence of
formulae – is accepting iff a least fixpoint formula ψ is unfolded infinitely often on ρ without
being dominated by any outer fixpoint formula ϕ, i.e. one with ad(ϕ) > ad(ψ). Here, we use
the term dominated to indicate both the greater alternation depth of ϕ and the fact that ϕ
is also unfolded infinitely often. As indicated above, the model checking game will relate
closely to non-deterministic tracking, and the proof of its correctness (Theorem 3.15) will
clarify that alternation depth indeed provides an adequate mechanism to detect which of
two fixpoints is the inner one. For purposes of the nondeterministic tracking automaton, the
alphabet Σ is in fact overlarge, and could be reduced to just individual choices picking a
disjunct from a single disjunction; the importance of Σ arises in the (co-)determinization
of Aχ, where it ensures that enough branching is retained.

Example 3.3 (Tracking automaton). For an example of the tracking automaton construction,
recall from Example 2.1.2 the monotone µ-calculus formula χ = νX. (a ∧ µY. (X ∨ ⟨g⟩Y ))
obtained from the game logic formula ⟨(g∗)×⟩a. As Fischer-Ladner closure of χ, we have

F = {χ, a ∧ ϕ, a, ϕ, χ ∨ ⟨g⟩ϕ, ⟨g⟩ϕ}
with ϕ abbreviating the formula µY. (χ ∨ ⟨g⟩Y ). Furthermore, we have ad(X) = 2 and
ad(Y ) = 1. For this small example we have F∨ = {χ ∨ ⟨g⟩ϕ}, so that choices consists
of just the two functions τl and τr, defined by τl(χ ∨ ⟨g⟩ϕ) = χ and τr(χ ∨ ⟨g⟩ϕ) = ⟨g⟩ϕ,
respectively. Omitting the treatment of propositional atoms as modal operators, we have
F∩Λ(F) = {⟨g⟩ϕ} so that selections = {∅, {⟨g⟩ϕ}}. Then we obtain the tracking automaton
Aχ depicted below, where τ stands for any letter from choices and κ⟨g⟩ϕ denotes the letter
{⟨g⟩ϕ} ∈ selections.

χ

start

3 a ∧ ϕ

1

ϕ

2

χ ∨ ⟨g⟩ϕ1 ⟨g⟩ϕ

1

a

1

τ

τ

τ

τ

τl

τr

κ⟨g⟩ϕ
τ

Thus Aχ accepts infinite words over choices ∪ selections that branch to the left on the
disjunction χ∨ ⟨g⟩ϕ only finitely often, and on which the automaton can infinitely often read
the letter {⟨g⟩ϕ} in the node ⟨g⟩ϕ (and avoid reading letters from selections at any other
node). Such words have a run in which the maximal priority that is visited infinitely often is
2; as intended, such words encode situations where the least fixpoint ϕ is unfolded infinitely
often while the outer greatest fixpoint χ is unfolded only finitely often. We point out that
the fixpoint variable X is unguarded in χ; this induces the left cycle in Aχ, on which no
letter from selections is ever read.

Remark 3.4. The above definition of tracking automata deviates from the one we used in
earlier work [HS19] in two respects: We now attach priorities to the states of the automaton
rather than to its transitions; and we have changed the propositional part of the alphabet
in such a way that every top-level propositional or fixpoint operator is processed when a
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propositional letter is read (while we previously had a separate letter for every conjunction,
disjunction, and fixpoint literal in F). Both choices serve mainly to ease and clarify the
presentation.

The non-deterministic parity automaton Aχ introduced above has size at most n0 and
priorities at most 1 to k + 1. In order to use L(Aχ) as an objective in our upcoming
satisfiability games, we require a deterministic automaton accepting this language. To this
end, we use a standard construction (e.g. [KKV01]) to transform Aχ into an equivalent Büchi
automaton of size n0k′ (which has additional states (ϕ, i) where ϕ ∈ F and 1 ≤ i ≤ k + 1 is
even) where

k′ = ⌊(k + 1)/2⌋+ 1 ∈ O(k). (3.1)
Then we determinize the Büchi automaton using, e.g., the Safra/Piterman-construction [Saf88,
Pit07] and obtain an equivalent deterministic parity automaton with 2n0k

′ priorities and
size O(((n0k

′)!)2). Alternatively, direct determinization from parity automata to parity
automata [SV14] can be used. Finally we complement the obtained automaton by decreasing
every priority by 1, obtaining a deterministic parity automaton

Bχ = (Dχ,Σ, δ, qinit,Ω) (3.2)

with priorities 0 to 2n0k
′ − 1 and of size O(((n0k

′)!)2) such that L(Bχ) = L(Aχ), i.e. Bχ is
a deterministic parity automaton that accepts the words that encode sequences of fixpoint
unfoldings without infinite deferral of least fixpoints.

We refer to Bχ as the co-determinized tracking automaton. The states of Bχ are like
macrostates in the standard powerset construction for finite-word automata, but instead
of being mere sets of states, they organize the states of the original automaton into a tree
structure. Due to the preceding conversion of Aχ into a Büchi automaton, the tree nodes are
labelled with sets of pairs consisting of a formula in F and a priority. We define a labelling
function

lA : Dχ → P(F)

that maps each state q of Bχ (e.g. a Safra tree) to the set of formulae that occur in q. That
is, the labelling function forgets the structuring of the set of formulae in macrostates (in
fact, for compact Safra trees [Pit07], lA(q) can be obtained from the label of the root of q
by forgetting the priorities). We do not need to know anything about how determinization
works, except the following fact: in all (history-)determinization procedures that we refer
to in this work, labels in the above sense evolve under transitions like macrostates in the
standard powerset construction, i.e. we have

lA(δ(q, σ)) =
⋃

{∆(ψ, σ) | ψ ∈ lA(q)} for q ∈ Dχ, σ ∈ Σ, ψ ∈ F. (3.3)

In particular,

lA(δ(q, κ)) = {ψ | ♡ψ ∈ κ ∩ lA(q)} for q ∈ Dχ, κ ∈ selections. (3.4)

Note also that when Bχ reads a choice function in node q, then all top-level propositional
operators and fixpoints in lA(q) are processed in parallel, i.e. one disjunct is picked from
each disjunction, every conjunction is decomposed into its conjuncts, and every fixpoint is
unfolded.

Example 3.5 (Co-determinized tracking automaton). To give a flavour of the co-determini-
zed tracking automaton, we go back to the non-deterministic automaton Aχ for the monotone
µ-calculus formula χ = νX. (a ∧ µY. (X ∨ ⟨g⟩Y )) as detailed in Example 3.3. Applying the
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above-mentioned method of co-determinization via an intermediate Büchi automaton and
Safra/Piterman trees yields an automaton that is too large for presentation here. Instead we
use as Bχ the equivalent but minimized automaton given below. For readability, the diagram
omits an accepting sink state to which all but two modal transitions lead; the only modal tran-
sitions that do not lead to this sink state are the two κ⟨g⟩ϕ-transitions that are explicitly shown.

χstart

2

a ∧ ϕ

0

a, ϕ 1

a, χ ∨ ⟨g⟩ϕ

0

a, ⟨g⟩ϕ 0

ϕ 1

χ ∨ ⟨g⟩ϕ

0

⟨g⟩ϕ 0

a, χ2

a, a ∧ ϕ0

τ

τ

τ

τl

τ

τ

τr

κ⟨g⟩ϕ

τ

τ

τ

τr

κ⟨g⟩ϕ

τl

Nodes in this automaton are labelled with sets of formulae as shown, according to the
labelling function lA : Dχ → P(F) (however, we emphasize that a node need not be uniquely
determined by its label, even though this happens to be the case in the example). For
instance, let q denote the node in the lower left corner of the automaton; then lA(q) = {a, χ}.
Acceptance is dual to the tracking automaton Aχ. That is, an infinite word w is accepted
by Bχ if either a) w picks the left disjunct from χ ∨ ⟨g⟩ϕ infinitely often, ensuring that the
left part of the automaton, and thereby also a node with priority 2, is visited infinitely often;
or b) w contains only finitely many letters from selections (so the automaton eventually loops
forever at the bottom right node); or c) w contains a letter from selections at a position such
that Bχ is, after reading the word up to this position, in a node that does not contain ⟨g⟩ϕ
in its label (so the run ends up in the accepting sink state).

Remark 3.6. It has been noted that for the relational µ-calculus, tracking automata for
aconjunctive formulae are limit-deterministic parity automata [HSD18]. These considerably
simpler automata can be determinized to deterministic parity automata of size O((n0k

′)!)
and with 2n0k

′ priorities [EKRS17, HSD18] (with k′ as per (3.1)), an observation that can
also be used for the tracking automata in this work. For aconjunctive formulae, one thus has
a correspondingly improved bound on the runtime of our satisfiability checking algorithm
than stated for the general case in Lemma 6.4 below.

It has also been shown that tracking automata for guarded and alternation-free formulae
can be seen as co-Büchi automata [FLL13] so that the simpler determinization procedure for
co-Büchi automata [MH84] can be used for such formulae, and the resulting satisfiability
games have a Büchi objective rather than the more involved parity objective required in
the general case. However, in our setting the tracking automata have to correctly deal with
unguarded fixpoint variables and hence assign priorities greater than 1 exclusively to fixpoint
formulae (for instance priority 2 is assigned to formulae of the shape µX.(ψ ∨ ♢X) but
priority 1 is assigned to formulae of the shape ψ ∨ ♢(µX.(ψ ∨ ♢X)) even though the latter
formula arises by unfolding the fixpoint in the former formula) so that our tracking automata
are not immediately co-Büchi automata when the target formula is alternation-free. Having
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said that, it indeed is possible to use co-Büchi automata for unguarded alternation-free
formulae, namely by separating local and global tracking and using two different automata,
one being a reachability automaton used for detecting infinite local unfolding of unguarded
least fixpoint formulae and the other being a co-Büchi automaton used for detecting infinite
deferral of guarded least fixpoints; this method has been described in [EJ99]. We refrain from
introducing this more involved setup here, so for the moment, our results do not immediately
allow the use of co-Büchi methods for unguarded alternation-free formulae.

Remark 3.7. History-deterministic automata [HP06] allow a limited amount of non-
determinism but still can easily be complemented and combined with a game arena to
obtain a game (and hence have been introduced under the name good-for-games automata).
They allow nondeterministic transitions under the condition that all nondeterministic choices
in an accepting run can be resolved by looking only at the history of the run so far. Intuitively,
the non-determinism in history-deterministic automata cannot make guesses about the future
of runs. It follows from the results of Henzinger and Piterman [HP06] that instead of full
determinization of Aχ, it suffices to turn Aχ into an equivalent history-deterministic automa-
ton, which then can be complemented and used instead of Bχ in the subsequent development.
For general formulae, Aχ is a parity automaton and can be history-determinized by first
transforming to a Büchi automaton and then using the method for history-determinization
of Büchi automata described in [HP06]. This method is conceptually simpler than full deter-
minization of Büchi automata by the Safra-Piterman construction and avoids constructing
Safra-trees, even though it does not reduce the number of states in the obtained automaton
in comparison to full determinization.

Remark 3.8 (Tracking automata for unguarded formulae). A tableau-based method for
deciding satisfiability of unguarded formulae of the relational µ-calculus has been introduced
by Friedmann and Lange [FL13]. The method augments states in the tracking automaton
with an additional bit indicating activity of formulae (meaning that the respective formula has
been manipulated by the last transition of the tracking automaton), doubling the size of the
tracking automaton. The acceptance condition of the tracking automaton then is modified
in order to accept only such branches that contain some trace that is both infinitely often
active and on which some least fixpoint is unfolded infinitely often without being dominated.
As the propositional tableau rules in [FL13] manipulate one propositional formula at a time,
one also needs to introduce an additional tableau rule in order to ensure fairness of unfolding
of unguarded fixpoint formulae.

In the current work we define propositional transitions of the tracking automaton Aχ in
such a way that all propositional formulae are processed whenever a single propositional letter
τ ∈ choices is read. Hence fairness of fixpoint unfolding is inherent to our method. Moreover,
the only inactive transitions (i.e. transitions that do not manipulate the tracked formula)
in Aχ are transitions of the shape (♡ψ, τ,♡ψ) for some modal literal ♡ψ and τ ∈ selections.
Since α(♡ψ) = 1, all accepting runs of Aχ are active by construction. Thus our method
readily handles unguarded formulae without requiring an activity bit.

Model Checking Games. It will be technically convenient to use a game characterization
of µ-calculus semantics. Recall that parity games are infinite-duration two-player games,
played by the existential and the universal player (also referred to as players ∃ and ∀). A
parity game is given by a tuple

G = (V∀, V∃, E, v0,Ω)
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where V = V∀∪V∃ is a set of positions, partitioned disjointly into the set V∃ of positions owned
by the existential player and the set V∀ = V \ V∃ of positions owned by the universal player;
E ⊆ V ×V is the set of moves ; v0 is an initial position and Ω : V → N is the priority function,
which assigns priorities Ω(v) ∈ N to states v ∈ V . We write E(v) = {v′ ∈ V | (v, v′) ∈ E} for
v ∈ V . A path through (V,E) is a finite or infinite sequence v0, v1, . . . such that vi ∈ E(vi−1)
for all i > 0. A play is a maximal path π = v0, v1, . . . through (V,E), i.e. π is either infinite
or ends in a position v such that E(v) = ∅. A play π is winning for the existential player if
it is finite and ends with the universal player being stuck, or if it is infinite and the highest
priority that is visited infinitely often on π is even; otherwise, π is winning for the universal
player. Formally, π is winning for the existential player if either π = v0, v1, . . . , vn is finite
and vn ∈ V∀, or π is infinite and max(Inf(Ω ◦ π)) is even. A (history-dependent) strategy for
the existential player is a partial function s : V ∗V∃ ⇀ V such that (vn, s(v0, v1, . . . , vn)) ∈ E
for all partial plays v0, v1, . . . , vn ∈ V ∗V∃ such that E(vn) ̸= ∅; for positions vn ∈ V∃ such
that E(vn) = ∅, s is undefined on all inputs v0, v1, . . . , vn ∈ V ∗V∃. A play π = v0, v1, . . . is
compatible with (or follows) a strategy s for the existential player if vn+1 = s(v0, . . . , vn)
for all i such that vn ∈ V∃ and vn is not the last position in π. A strategy s is history-free
if s(v0, . . . , vn−1, vn) depends only on vn; then s is a partial function from V∃ to V . The
existential player wins a position v ∈ V if there is a strategy s such that every play that starts
at v and is compatible with s is won by the existential player; similar notions of (winning)
strategies for the universal player are defined dually. The game G is won by the player that
wins v0.

Lemma 3.9 (History-free determinacy [Mar75, EJ91]). Parity games are history-free deter-
mined, that is, every position is won by (exactly) one of the two players, and then there is a
history-free strategy that wins the position for the respective player.

Given a parity game G with set V of positions and a set W ⊆ V , we let win∃W and win∀W
denote the set of positions for which the respective player has a winning strategy in G such
that every play that is compatible with the strategy remains within W . Positions v ∈ W
such that v /∈ win∃W ∪ win∀W are undetermined (w.r.t. W ); for such v, neither player has a
strategy that wins v while staying in W . As parity games are determined, we always have
V = win∃V ∪ win∀V . We write win∃ for win∃V and win∀ for win∀V .

Winning regions in parity games are clearly invariant under bisimulation (e.g. [DG08,
CKW18]). We need only invariance under functional bisimulations. Explicitly, given parity
games G = (V∀, V∃, E,Ω), G′ = (V ′

∀, V
′
∃, E

′,Ω) (we elide initial positions), a bounded morphism
f : G → G′ is a map f : V → V ′ whose graph is a bisimulation (see also the definition for
Kripke frames in Section 2); that is: f preserves position ownership and priorities, and
(i) whenever (v, v′) ∈ E, then (f(v), f(v′)) ∈ E′; and (ii) whenever (f(v), u′) ∈ E′, then there
exists (v, v′) ∈ E such that f(v′) = u′. The mentioned invariance then takes the following
shape:

Lemma 3.10 (Invariance of parity games under bounded morphisms). Let G = (V∀, V∃, E,Ω),
G′ = (V ′

∀, V
′
∃, E

′,Ω) be parity games, let v ∈ V , and let f : G → G′ be a bounded morphism.
Then ∃ wins position v in G iff ∃ wins f(v) in G′.

We next provide a parity game characterization of formula satisfaction. This characteri-
zation highlights the close relationship between satisfaction of fixpoints and (non-)acceptance
of runs in the tracking automaton Aχ (a nondeterministic parity automaton). Since the
satisfiability game that we introduce in Section 6 will be based on the co-determinized track-
ing automaton Bχ, this relationship will be key in the correctness proof of the satisfiability
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game, specifically in the proof of the truth lemma (Lemma 4.12) and in the soundness proof
(Lemma 5.4).

Definition 3.11 (Model checking games). Given a coalgebra (C, ξ), the model checking game
Gχ,(C,ξ) = (V∃, V∀, E,Ω) for χ over (C, ξ) is a parity game with sets of positions V = V∃ ∪ V∀
defined by

V∃ = C × F∃ V∀ = (C × F∀) ∪ (P(C)× F).

Here, F∃ consists of those formulae in F that are disjunctions, modal literals, fixpoint literals,
or ⊥, while F∀ = F \ F∃ consists of those formulae in F that are conjunctions or ⊤. The
moves and priorities in the game are given by the following table (the ownership of positions
is already defined, and mentioned in the table only for readability)

position owner set of allowed moves priority
(x, ψ) ∃/∀ {(x, ϕ) ∈ {x} ×∆(ψ, τ) | τ ∈ choices} α(ψ)− 1
(x,♡ψ) ∃ {(D,ψ) ∈ P(C)×∆(♡ψ, κ) | κ ∈ selections, ξ(x) ∈ [[♡]]D} 0
(D,ψ) ∀ {(x, ψ) | x ∈ D} 0

In the above table, the moves available to the players have been formulated in such a way that
the mentioned relationship to the tracking automaton Aχ = (F,Σ,∆, qinit, α) becomes clear.
In more detail, given an infinite play π in Gχ,(C,ξ), the sequence of formulae ψ encountered
on positions of the form (x, ψ) is a run ρ of Aχ on a word w ∈ Σω extracted from π in an
obvious manner (specifically, a move from (x, ψ) to (x, ϕ) where ϕ ∈ ∆(ψ, τ) adds τ to w,
and a move from (x,♡ψ) to (D,ψ) adds some κ ∈ selections such that ♡ψ ∈ κ to w). Even
though w is not uniquely determined by π, we nevertheless refer to w as the word induced
by π. Then, π is won by ∃ iff ρ is non-accepting.

The moves from states of the form (x, ψ) are more explicitly described as follows,
depending on the shape of ψ. The existential player can move from (x, ψ1 ∨ ψ2) to (x, ψi)
for any i ∈ {1, 2}; each such move is witnessed by any τ ∈ choices such that τ(ψ1 ∨ ψ2) = ψi.
The universal player can move from (x, ψ1 ∧ ψ2) to (x, ψi) for any i ∈ {1, 2}. For fixpoint
literals ψ = ηX. ϕ, the existential player moves from (x, ψ) to (x, ϕ[ψ/X]); ownership of the
position is purely formal in this case. For ♡ψ ∈ F, the existential player can move from
(x,♡ψ) to (D,ψ) for any set D ⊆ C such that ξ(x) ∈ [[♡]]D; each such move is witnessed by
any κ ∈ selections such that ♡ψ ∈ κ, hence ∆(♡ψ, κ) = {ψ}. The universal player in turn
can challenge satisfaction of ψ at any state x ∈ D contained in the set D provided by the
existential player by moving from (D,ψ) to (x, ψ). The definition of Ω implies that the only
positions with non-zero priority are those of the form (x, ηX. ψ), with Ω(x, ηX.ψ) being
even if η = ν, and odd if η = µ.

For technical purposes, we introduce a variant of the model checking game, the subformula
model checking game Gsub

χ,(C,ξ) (the technical advantage of subformulae is that they allow for
proofs by structural induction, a principle that we will employ in the correctness proof).
The positions of Gsub

χ,(C,ξ) have the same shape as those of Gχ,(C,ξ) except that subformulae
occur in positions of Gsub

χ,(C,ξ) wherever elements of F occur in positions of Gχ,(C,ξ). The
ownership, priorities, and outgoing moves of positions are defined in Gsub

χ,(C,ξ) in the same
way as in Gχ,(C,ξ); in particular, for positions of the form (x, ψ), these data are defined by
case distinction on the outermost connective of ψ like in Gχ,(C,ξ), except for the following
provisos: Given a variable X such that θ(X) = ηX.ψ, positions of the shape (x, ηX. ψ) or
(x,X) receive priority Ω(x, θ∗(X)) = α(θ∗(X))− 1 and belong to ∃, who has only one move,
to (x, ψ).
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Remark 3.12 (Higher-arity modalities). This is the one place in the technical development
where a comment is in order on how precisely the treatment of higher-arity modalities
works: A modal tracker (ψ, i) consists of a formula ψ = ♡(ψ1, . . . , ψn) ∈ F, where ♡ ∈ Λ
is an n-ary modality, and an index i ∈ {1, . . . , n} indicating which argument position will
be tracked; selections are then sets κ of modal trackers. The transition relation ∆ of the
tracking automaton Aχ is given on such ψ, κ by ∆(ψ, κ) = {ψi | (ψ, i) ∈ κ}, i.e. the selection
of arguments to be tracked introduces additional nondeterminism. In the model checking
game Gχ,(C,ξ), ∃ can move from (x, ψ) to any position of the form ((D1, ψ1), . . . , (Dn, ψn))
(again of priority 0) such that D1, . . . , Dn ⊆ C and ξ(x) ∈ [[♡]]X(D1, . . . , Dn); that is, ∃ must
provide a set of states for each argument of ♡ in ψ. From ((D1, ψ1), . . . , (Dn, ψn)), ∀ can
then move to (y, ψi) if y ∈ Di. In the correspondence between plays in Gχ,(C,ξ) and runs
of Aχ, the two subsequent moves from (x, ψ) to (y, ψi) then contribute a letter κ such that
(ψ, i) ∈ κ to the induced word w.

Example 3.13 (Model checking game). We revisit the formula χ = νX. (a∧µY. (X ∨⟨g⟩Y ))
from Example 3.3 (the translation of the game logic formula ⟨(g∗)×⟩a), aiming to check its
satisfaction over the neighbourhood model (C, ξ) shown below (with g assumed to be the
only atomic game). States are depicted by circles, and neighbourhoods (that is, sets of states)
are depicted by rectangles.

xa {x, y}

y{y}

g

gg

For instance, at x, Angel can force the game g into y (corresponding to {y} being a
g-neighbourhood at x), while Angel cannot influence what happens at y (whose only g-
neighbourhood is the whole set {x, y}). Intuitively, the formula χ is satisfied at x since Angel
can completely avoid playing g by stopping g∗ immediately and satisfy a at x whenever,
in (g∗)×, Demon decides to play g∗ one more time. On the other hand, the formula is not
satisfied at y since that state does not satisfy a and Angel cannot force the game out of y.
The corresponding model checking game Gχ,(C,ξ) is as follows, with rounded nodes belonging
to ∃ and rectangles belonging to ∀; again, ϕ abbreviates the formula µY. (χ ∨ ⟨g⟩Y ).

x, χ

2

x, a ∧ ϕ

0

x, ϕ1

x, a

0

()0 x, χ ∨ ⟨g⟩ϕ

0

x, ⟨g⟩ϕ

0

{x, y}, ϕ

0

{y}, ϕ

0

y, a ∧ ϕ

0

y, a

0

y, χ

2

y, ϕ

1

y, χ ∨ ⟨g⟩ϕ

0

y, ⟨g⟩ϕ

0

The game essentially consists of two copies of the automaton Aχ from Example 3.3; priorities
in the game are also inherited from Aχ. The two copies of the automaton are linked by
the positions ({y}, ϕ) and ({x, y}, ϕ) that encode the evaluation of the modality ⟨g⟩ϕ. By
definition of the model, we have ξ(x)(g) = {{x, y}, {y}} and ξ(y)(g) = {{x, y}}. Recalling
the predicate lifting [[⟨g⟩]] for the monotone diamond from Example 2.1.2, we thus have
ξ(x) ∈ [[⟨g⟩]](D) for both D = {x, y} and D = {y} but ξ(y) ∈ [[⟨g⟩]](D) only for D = {x, y};
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the moves to the central positions ({x, y}, ϕ) and ({y}, ϕ) are induced accordingly. The model
checking game treats the propositional atom a as a nullary modality as per Remark 3.12:
From positions of shape (z, a), player ∃ can move to () (a 0-tuple of set/formula pairs),
provided that a is satisfied at z. If this holds, then ∃ wins because ∀ has no moves at ();
otherwise, ∃ loses, being stuck at (z, a). In the example, ∃ correspondingly wins (x, a) but
loses (y, a).

Player ∃ wins the left-most five positions in this game by the strategy that always moves
from position (x, χ ∨ ⟨g⟩ϕ) to position (x, χ); this enforces that plays of the game that start
in one of these positions either get stuck in the position (∅, a) (which belongs to player ∀
but has no outgoing transitions and hence is won by player ∃), or forever follow the cycle
through position (x, χ) and thereby visit priority 2 infinitely often. By the correctness of
model checking games, this shows that x satisfies all formulae from F except ⟨g⟩ϕ. All
other positions in the game are won by player ∀ using the strategy that always moves from
({x, y}, ϕ) to (y, ϕ) and from (y, a ∧ ϕ) to (y, a); with this strategy, player ∀ can enforce that
plays either get stuck in position (y, a) (lost by player ∃) or eventually take the bottom-right
cycle forever, seeing priority 1 infinitely often. This shows that none of the formulae from F
are satisfied at y.

We note that the two versions of the model checking games are bisimilar, and hence equivalent
(Lemma 3.10):

Lemma 3.14. The assignment f(x, ψ) = (x, θ∗(ψ)), f(D,ψ) = (D, θ∗(ψ)) defines a bounded
morphism f : Gsub

χ,(C,ξ) → Gχ,(C,ξ).

Proof. It is clear that f preserves priorities and position ownership. We check the conditions
on moves, restricting attention to the only cases where the games differ appreciably, viz.,
fixpoint literals and fixpoint variables. At such positions, however, the outgoing moves are
uniquely determined in both games, so we just have to show that f preserves these moves.

So let X be a fixpoint variable, with θ(X) = ηX.ψ. The unique move from both (x,X)
and (x, ηX.ψ) in Gsub

χ,(C,ξ) leads to (x, ψ). Since θ∗(X) = θ∗(ηX.ψ), (x,X) and (x, ηX. ψ) are
mapped to the same position under f , and this position has the form (x, ηX.ψ′) where ψ′ is
obtained from ψ by successively substituting free fixpoint variables Y with θ(Y ) innermost
first, but skipping the actual innermost variable X in ψ; so θ∗(ψ) = θ∗(ψ[ηX.ψ/X]) =
ψ′[ηX.ψ′/X]). From (x, ηX.ψ′), ∃’s unique move in Gχ,(C,ξ) thus leads to (x, ψ′[ηX.ψ′/X]) =
(x, θ∗(ψ)) = f(x, ψ), as required.

The model checking game Gχ,(C,ξ) is very similar to the one considered by Cîrstea et
al. [CKP+11b], one notable difference being that we do not assume guardedness. On the other
hand, the subformula model checking game Gsub

χ,(C,ξ) resembles a game that was considered by
Venema [Ven06] but which, again, assumes guardedness and moreover works with a version
of the coalgebraic µ-calculus based on the coalgebraic cover modality [Mos99] instead of
on predicate liftings. Indeed, the proof of correctness given by Cîrstea et al. is largely by
reference to Venema’s proof, an argument that is formally justified by our Lemma 3.14. Due
to the mentioned guardedness issue, we opt to present a full correctness proof of our game,
which largely follows the one given by Venema in that it makes do without (ordinal) timeouts
as frequently used in the literature on the relational µ-calculus [SE89, NW96, BW18].

Theorem 3.15 (Correctness of the model checking game). Given a coalgebra (C, ξ), a state
x ∈ C and a formula ψ ∈ F, we have x |= ψ if and only if the existential player wins the
position (x, ψ) in Gχ,(C,ξ).
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Proof. We note first that the positions reachable from (x, ψ) in Gχ,(C,ξ) are the same as
in Gψ,(C,ξ), so we can assume w.l.o.g. that ψ is the target formula, that is, ψ = χ. By
Lemmas 3.10 and 3.14, we can then replace Gχ,(C,ξ) with Gsub

χ,(C,ξ), since θ∗(χ) = χ. We
will use structural induction on χ, and hence need to drop, only for purposes of this proof,
the assumption that χ is closed. Of course, the game is then played over a pair ((C, ξ), i)
where i : V ⇀ P(C) is a valuation of the fixpoint variables such that i(X) is defined for all
X ∈ FV(χ); we correspondingly write Gsub

χ,i for the generalized game, eliding mention of (C, ξ)
which remains unchanged throughout. We thus have new positions of the shape (x,X) or
(x,¬X), which receive priority 0 and no outgoing moves. The ownership of these positions is
defined by letting (x,X) be owned by ∃ if x /∈ i(X) and by ∀ otherwise, and correspondingly
letting (x,¬X) be owned by ∃ if x ∈ i(X) and by ∀ otherwise. Other than this, the game
remains unchanged.

Next, for purposes of economizing one direction of the proof, we modify Gsub
χ,i to ensure

symmetry between the players; we write Gsub,sym
χ,i for this symmetrized game. First, we reassign

positions of the form (x, νX. ψ) or (x,X), with X a ν-variable, to the universal player –
since these positions have precisely one outgoing move, this change is clearly immaterial to
how the game is played. Second, out of every pair ♡,♡ of dual modalities, we arbitrarily
assign one to ∃ and the other to ∀, and we write ♡ for modalities assigned to ∃, and ♡ for
modalities assigned to ∀. Moreover, we rename the previous positions of the form (D,ψ)
into (D,ψ, ∀), and introduce additional positions (D,ψ, ∃). Positions of the form (x,♡ψ)
still belong to ∃, with moves like before, into the renamed positions of the form (D,ψ, ∀),
which still belong to ∀. On the other hand, positions of the form (x,♡ψ) now belong to ∀,
and ∀ can move to (D,ψ, ∃) if ξ(x) /∈ [[♡]]C(D), where D denotes the complement of D in C.
The new positions (D,ψ, ∃) belong to ∃, who can move to (y, ψ) such that y ∈ D. The new
sequences of moves (x,♡ψ) ∀−→ (D,ψ, ∃) ∃−→ (y, ψ) are, for purposes of ∃ winning the game,
equivalent to the previous sequences (x,♡ψ) ∃−→ (D,ψ)

∀−→ (y, ψ): In either case, ∃ can force
the game into a set U of positions of the form (y, ψ), necessarily of the form U = D × {ψ},
iff ξ(x) ∈ [[♡]]C(D). To see this for the new moves (x,♡ψ) ∀−→ (D,ψ, ∃) ∃−→ (y, ψ), we reason
as follows: ∃ can force the game into D × {ψ} iff ∀ cannot move to (D′, ψ, ∃) for any subset
D′ ⊆ D iff ξ(x) ∈ [[♡]]C(D

′) for all D′ ⊆ D iff ξ(x) ∈ [[♡]]C(D), where the last step uses
monotonicity of ♡. Thus, Gsub

χ,i and Gsub,sym
χ,i are equivalent in the sense that positions of the

form (x, ψ) are won by the same player in either game.
By now, we have reduced the claim of the lemma to showing that in Gsub,sym

χ,i ,

(1) if x |= χ, then ∃ wins (x, χ); and
(2) if x ̸|= χ, then ∀ wins (x, χ).

The symmetry of Gsub,sym
χ,i allows us to conclude (2) from (1), as follows: If x ̸|= χ, then

x |= ¬χ (with ¬χ defined by taking negation normal forms as indicated in Section 2).
By (1), ∃ wins the position (x,¬χ) in the model checking game for ¬χ. This game is now
dual to the model checking game for χ in the sense that one is obtained from the other by
swapping the positions of the players and dualizing the priorities (i.e. swapping priorities 2n
and 2n− 1); of course, positions (x,¬ψ) in the game for ¬χ correspond to positions (x, ψ)
in the game for χ. We thus immediately obtain that ∀ wins (x, χ).

It remains to prove (1). We switch back to using the simpler game Gsub
χ,i . As indicated

above, we proceed by induction on χ; we treat i as universally quantified in the inductive
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claim. The cases for free fixpoint variables and Boolean operators (∧, ∨, ⊤, ⊥) are trivial;
we illustrate this on the case where χ = χ1 ∧ χ2: If x ∈ [[χ1 ∧ χ2]]i, then x ∈ [[χ1]]i and
x ∈ [[χ2]]i. By induction, ∃ wins (x, χj) in Gsub

χj ,i
for j = 1, 2. In Gsub

χ1∧χ2,i
, ∀ can move from

(x, χ) to either (x, χ1) or (x, χ2), so ∃ wins by playing like in Gsub
χ1,,i

or Gsub
χ2,i

, respectively.
The remaining cases are as follows.
• χ = ♡χ1: By induction, ∃ wins by playing (D,χ1) where D = [[χ1]]i.
• χ = µX.χ1: It suffices to show that the set

W1 := {x ∈ C | ∃ wins (x, χ) in Gsub
χ,i } = {x ∈ C | ∃ wins (x, χ1) in Gsub

χ,i }

(where the second equality is immediate from the game rules) is a prefixpoint of the
function defining [[χ]]i = [[µX.χ1]]i as a least prefixpoint, i.e. that

[[χ1]]i′ ⊆W1 where i′ = i[X 7→W1]. (3.5)

So let x ∈ [[χ1]]i′ . By induction, ∃ has a strategy s′ in Gsub
χ1,i′

that wins (x, χ1). We have to
show that ∃ wins (x, χ1) in Gsub

χ,i , which differs from Gsub
χ1,i′

only in that it treats the fixpoint
variable X as bound. The winning strategy works as follows:
– From (x, χ1), play according to s′ until a position of the form (y,X) is encountered (if

ever). This is possible because up to that point, there is no difference between Gsub
χ,i

and Gsub
χ1,i′

. If no position (y,X) is ever reached, then the play effectively takes place
in Gsub

χ1,i′
, and as such follows s′. It is thus won by ∃, since s′ is winning.

– If a position of the form (y,X) is reached, then y ∈ i′(X) = W1, since s′ is winning
in Gsub

χ1,i′
. The next position reached is (y, χ1), so ∃ wins in Gsub

χ1,i
because y ∈W1.

• χ = νX. χ1: Let x ∈ [[χ]]i. We construct a strategy s that wins (x, χ) in Gsub
χ,i as follows.

From (x, χ), the game proceeds to (x, χ1). By fixpoint unfolding, we have

[[χ]]i = [[χ1]]i′ where i′ = i[x 7→ [[χ]]i]. (3.6)

By induction, ∃ thus has a strategy s′ that wins (x, χ1) in Gsub
χ1,i′

. We let s follow s′ in Gsub
χ,i

until a position of the form (y,X) is reached (exploiting like in the previous case that up
to that point, the games Gsub

χ1,i′
and Gsub

χ,i do not differ). Since s′ is winning in Gsub
χ1,i′

, we
then have y ∈ i′(X) = [[χ]]i = [[χ1]]i′ , so we can continue in the same manner after the
game Gsub

χ,i automatically proceeds to (y, χ1). To see that s is winning, we distinguish cases
on a play π that follows s:
– If from some point on, π no longer reaches positions of the form (y,X), then π has a

suffix that is a winning play for ∃ from a position of the form (y, χ1) in Gsub
χ1,i′

, so ∃
wins π.

– Otherwise, π infinitely often visits positions of the form (y,X). Thus, X is unfolded
infinitely often. Intuitively speaking, since X is a ν-variable and νX.χ1 is the outermost
fixpoint in the target formula (being the target formula itself), ∃ should therefore win
the play according to the intention of the game, as long as the mechanism that replaces
the direct comparison of inner vs. outer fixpoints (as used in the winning condition
of the game considered by Venema [Ven06]) with the comparison of alternation depth
works. Formally, we proceed as follows. We have to show that ad(Z) < ad(X) for
every µ-variable Z that is unfolded on π between two unfoldings of X (this implies
α(θ∗(Z)) < α(θ∗(X)), so positions where Z is unfolded have lower priority than positions
where X is unfolded). Let Yn, . . . , Y1, Y0 = X be the sequence of variables unfolded
between two unfoldings of X, including the second (but not the first) unfolding of X
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itself. We show by induction on j ∈ {0, . . . , n} that for every j, there is a dependency
chain, possibly of length 0, from Yj to X (implying that ad(X) ≥ ad(Yj), and that
ad(X) > ad(Yj) if Yj is a µ-variable). The induction base j = 0 is trivial. In the
induction step for j > 0, we can assume that Yj ≠ Yk for j > k, since otherwise we are
done by induction. The unfolding step from Yj leads to a position of the form (y, ψ)
where θ(Yj) = ηX.ψ. Since a position (z, Yj−1) is reached from (y, ψ) without interceding
unfolding steps, Yj−1 is a subformula of ψ. If Yj−1 ∈ FV(ψ), then Yj−1 ∈ FV(θ(Yj)) since
Yj−1 ̸= Yj ; that is, Yj ≺dep Yj−1, and we are done by induction. Otherwise, θ(Yj−1) is a
subformula of ψ. By induction, there is a dependency chain Yj−1 ≺dep Z ≺dep . . . ≺dep X;
in particular, Z ∈ FV(θ(Yj−1)). If Z = Yj , then we are done. Otherwise, Z ∈ FV(θ(Yj)),
i.e. Yj ≺dep Z, and we are done.

Remark 3.16 (Fixpoint games). By instantiation of the model checking game to a gener-
alization of the monotone µ-calculus (Example 2.1.2), we obtain a general form of fixpoint
games for monotone functions on powerset lattices, which in turn are an instance of fixpoint
games over continuous lattices [BKMP19]. Details are as follows.

We need only the case without propositional atoms, whose mention we therefore elide in
the following, and with only one atomic program that we keep implicit. On the other hand,
we generalize to higher-arity neighbourhood frames and modalities: For n ≥ 0, we define the
n-ary monotone neighbourhood functor Mn (e.g. [SP10, MV15]) as taking a set X to the set
of subsets of (QX)n that are upwards closed under componentwise subset inclusion. We use
an n-ary modality ♢, which we interpret over Mn by the predicate lifting given by

[[♢]]X(A1, . . . , An) = {α ∈ MnX | (A1, . . . , An) ∈ α}.

By transposition of arguments, a coalgebra C → MnC ⊆ Q((QC)n) can alternatively be
seen as a map g : (QC)n → QC that is monotone w.r.t. (componentwise) subset inclusion.
Recall here that Q is the contravariant powerset functor; as we do not actually need the
action on maps in the following, we will just write P(C) in place of QC. The semantics
of a formula ♢(ϕ1, . . . , ϕn) in C under a valuation i is then equivalently given by [[♢ϕ]]i =
g([[ϕ1]]i, . . . , [[ϕ1]]i). That is, we can just see the monotone µ-calculus as an expression language
for nested fixpoints over (higher-arity) monotone functions on P(C). In the corresponding
instance of the model checking game on C, ∃ can move from a position (x,♢(ψ1, . . . , ψn)) to
any tuple ((D1, ψ1), . . . , (Dn, ψn)) such that x ∈ g(D1, . . . , Dn). We use these games in the
fixpoint characterization of the satisfiability game (Lemma 6.3).

4. One-Step Satisfiability and Tableaux

In this section, we identify an embodiment of a model for χ in the shape of a subautomaton
of the co-determinized tracking automaton Bχ that satisfies certain additional properties; we
will use this concept as a stepping stone in the reduction of satisfiability checking to game
solving, and, as usual, call such a witness for formula satisfaction a tableau. Specifically,
such a subautomaton consists of those automaton nodes q for which there are states in the
model that jointly satisfy all formulae from l(q), and the automaton transitions in a tableau
are required to witness satisfaction of those formulae; we formalize the structural property
required for the satisfaction of modalities using the concept of one-step satisfiability. Then
we show that every tableau carries a coalgebra structure that is coherent with its transitional
structure and its labels; such coalgebras then satisfy a truth lemma implying satisfaction of
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the target formula. The proof of the truth lemma relies on the model checking game, and
exploits that the latter relates closely to the nondeterministic tracking automaton Aχ.

We begin with considerations on the above-mentioned problem of one-step satisfiability
checking, a functor-specific problem that in many instances can be solved in time singly
exponential in size(χ).

Definition 4.1 (One-step satisfiability problem [Sch07, SP08, MPS09]). Let V be a finite
set of propositional variables. A one-step pair (γ,Θ) (over V ) consists of a set Θ ⊆ P(V )
(understood as a disjunctive normal form over V , cf. Remark 4.2) and a set γ ⊆ Λ(V ),
understood conjunctively, where we require that γ mentions every element of V precisely
once. Correspondingly, we interpret a ∈ V and γ over Θ by

[[a]]Θ0 = {u ∈ Θ | a ∈ u} ⊆ Θ

[[γ]]Θ1 =
⋂

♡a∈γ [[♡]]Θ[[a]]
Θ
0 ⊆ FΘ.

We say that (γ,Θ) is satisfiable (over the functor F ) if [[γ]]Θ1 ̸= ∅. The strict one-step
satisfiability problem is to decide whether a given one-step pair (γ,Θ) is satisfiable; here, the
qualification ‘strict’ refers to the measure of input size of the problem, which we take to be

size(γ) :=
∑
♡a∈γ

(1 + size(♡))

(in particular, |Θ|, which may be exponential in size(γ), does not count towards the input
size).

Remark 4.2 (One-step logic). We keep the definition of the actual one-step logic as
mentioned in the introduction somewhat implicit in the above definition of the one-step
satisfiability problem. In a more explicitly syntactic view, one will regard V as a set of
propositional variables. One then sees that a one-step pair (γ,Θ) as above contains two
layers: a purely propositional layer embodied in Θ, which postulates which propositional
formulae over V are satisfiable (that is, we see Θ ⊆ P(V ) as a disjunctive normal form∨
u∈Θ(

∧
a∈u a ∧

∧
a∈V \u ¬a)); and a modal layer with nesting depth of modalities uniformly

equal to 1, embodied in the set γ of modal literals, which specifies a constraint
∧

♡a∈γ ♡a
on an element of FΘ. Under this perspective (and otherwise), it is trivial to note that
satisfiability of a one-step pair (γ,Θ) is preserved under enlarging Θ, as this corresponds to
weakening the propositional formula represented by Θ.

Example 4.3 (One-step satifiability). We consider the one-step satisfiability problem for the
logics from Example 2.1, omitting details on the (trivial) treatment of propositional atoms.

(1) For the relational modal µ-calculus (Example 2.1.1.), where Λ = {♢,□}, the one-step
satisfiability problem is to decide, for a given one-step pair (γ,Θ) over V , whether there is
A ∈ [[γ]]Θ1 , that is, a subset A ∈ PΘ such that for each ♢a ∈ γ, there is u ∈ A such that
a ∈ u, and for each □b ∈ γ and each u ∈ A, b ∈ u. Equivalently, one needs to check that
for each ♢a ∈ γ there is u ∈ Θ such that a ∈ u and moreover b ∈ u for all □b ∈ γ. To avoid
quadratic complexity in size(γ), implement this check in two passes: In the first pass, go
through all □b ∈ γ and remove from Θ all u such that b /∈ u; in the second pass, go through
all ♢a ∈ γ and check that there remains some u in Θ such that a ∈ u. Both passes can be
done in time O(size(γ) · |V | · |Θ|) = O(size(γ) · |V | · 2|V |), showing that in this case the strict
one-step satisfiability problem is in ExpTime. We note that this is all the work that will be
required to instantiate our generic complexity bound (Theorem 6.5 below) to the relational
µ-calculus, obtaining the known upper bound ExpTime for satisfiability checking [EJ99].
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(2) For the monotone modal µ-calculus (Example 2.1.2.) with set A of atomic games, we
have Λ = {⟨g⟩, [g] | g ∈ A}, again eliding propositional atoms for the sake of readability. It is
an immediate property of the semantics of monotone modalities that in order to check that
[[γ]]Θ1 ̸= ∅ for a given one-step pair (γ,Θ) over V , it suffices to check that whenever ⟨g⟩a, [g]b ∈
γ, then there is u ∈ Θ such that a, b ∈ u [Var89, Proposition 3.8]. (Indeed, this criterion
corresponds to the usual monotonicity rule – cf. [SP09, CKP11a] – under the correspondence
between modal tableau rules and one-step satisfiability checking discussed in Remark 6.7
below.) This can clearly be done in time O(size(γ)2 · |V | · |Θ|) = O(size(γ)2 · |V | · 2|V |),
showing that the strict one-step satisfiability problem for the monotone case is in ExpTime.
We note that again this is all the work that is required to instantiate our generic complexity
bound and obtain the known upper ExpTime bounds on satisfiability checking for game
logic [PP03] and the monotone µ-calculus [CKP11a]; in fact, it appears that for the latter
case, the result for the full unguarded logic is formally new (however, we note that it could
alternatively be obtained by encoding the monotone µ-calculus into the relational µ-calculus
in the same way as for game logic [Par83, PP03]).

(3) For the graded µ-calculus (Example 2.1.4.), the one-step satisfiability problem
is to decide, for a one-step pair (γ,Θ), whether there is a multiset β ∈ BΘ such that∑

u∈Θ|a∈u β(u) > m for each ⟨m⟩a ∈ γ and
∑

u∈Θ|a/∈u β(u) ≤ m for each [m]a ∈ γ. The
easiest way to see that the strict one-step satisfiability problem is in ExpTime is via a non-
deterministic polynomial-space algorithm that goes through all u ∈ Θ, guessing multiplicities
β(u) ∈ {0, . . . ,m + 1} where m is the greatest index of any diamond modality ⟨m⟩ that
occurs in γ. This multiplicity is used to update |V | counters that keep track of the total
measure β([[a]]Θ0 ) for a ∈ V ; after updating the counters, the multiplicity is discarded, so
that only polynomial space is used (for the counters). Once all multiplicities have been
guessed, the algorithm verifies that β ∈ [[γ]]Θ1 , using only the final counter values [KSV02,
Lemma 1]. Essentially the same method works also for the graded µ-calculus with polynomial
inequalities (Example 2.1.6) (and similar ideas have been used in work on Presburger modal
logic [DL06]): In this setting, it still suffices to guess multiplicities up to b+ 1 where b is the
largest index of any diamond modality ⟨p⟩ occurring in γ (indeed, if anything the bounds
become smaller; e.g. for ⟨X2

1 +X2
2 − b⟩, it suffices to explore multiplicities up to ⌈

√
b⌉+ 1).

Note that this argument does rely on the assumption that all coefficients of non-constant
monomials are non-negative.

(4) For the probabilistic µ-calculus with polynomial inequalities (Example 2.1.5), we
first observe, following [GJLS17, KPS22], that a small model property holds for the one-
step logic: If a one-step pair (γ,Θ) over V is satisfiable, then [[γ]]Θ1 contains an element
(d,Q) ∈ DΘ × P(P) such that d(u) > 0 for only |V |-many u ∈ Θ. This is seen as follows:
Suppose that (d0, Q) ∈ [[γ]]Θ1 . Then for any d ∈ DΘ, to have (d,Q) ∈ [[γ]]Θ1 it suffices that
d([[a]]Θ0 ) = d0([[a]]

Θ
0 ) for each a ∈ V . Since d([[a]]Θ0 ) =

∑
u∈[[a]]Θ0

d(u), this means that the
numbers yu = d(u), for u ∈ Θ, form a non-negative solution to the system of linear equations∑

u∈[[a]]Θ0

yu = d0([[a]]
u
0) for a ∈ V .

Since this system has a solution induced by d0 itself, we obtain by the Carathéodory theorem
(e.g. [Sch86]) that there is a solution with at most |V | non-zero components. This allows
us to solve the strict one-step satisfiability problem in non-deterministic polynomial space,
and hence in exponential time, as follows: Guess |V | elements u ∈ Θ that receive positive
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weight d(u) in a solution d, and then check for satisfiability of the constraint on these |V | real
numbers that is embodied in γ. This constraint is a polynomially-sized system of polynomial
inequalities, whose satisfiability can, by results of Canny [Can88], be checked in polynomial
space.

Remark 4.4 (One-step polysize model property). We say that the logic has the one-step
polysize model property (OSPMP) if there is a polynomial p such that whenever a one-step pair
(γ,Θ) over V is satisfiable, then [[γ]]Θ1 has an element of the form Fi(t) where i : Θ0 → Θ is the
inclusion of a subset Θ0 ⊆ Θ such that |Θ0| ≤ p(|V |) [KPS22]. For instance, the arguments in
Examples 4.3.1 and 4.3.4 show that the relational µ-calculus and the probabilistic µ-calculus
(even with polynomial inequalities) both have the OSPMP. Similar arguments as for the
probabilistic case show that the graded µ-calculus (even with polynomial inequalities) also
has the OSPMP, using the integer Carathéodory theorem [ES06]; cf. [KPS22] for details. Our
model construction below will establish that the OSPMP implies a polynomially branching
model property (Remark 5.7).

Next, we present our notion of tableaux, which are partial subautomata of the co-
determinized tracking automaton Bχ = (Dχ,Σ, δ, qinit,Ω). We first fix some notation: To
Ξ ⊆ selections and a node q ∈ Dχ, we associate a one-step pair (γq,Θ

Ξ
q ) over a set Vq of

propositional variables, given by

Vq = {a♡ψ | ♡ψ ∈ lA(q)}
γq = {♡a♡ψ | ♡ψ ∈ lA(q)} (4.1)

uκq = {a♡ψ | ♡ψ ∈ κ ∩ lA(q)} for κ ∈ selections

ΘΞ
q = {uκq | κ ∈ Ξ}

Thus, γq abstracts modalized formulae ♡ψ found in the label of q into ♡a♡ψ, and ΘΞ
q contains,

for each κ ∈ Ξ, the set uκq of variables a♡ψ such that ♡ψ ∈ lA(q) and ψ ∈ ∆(♡ψ, κ), so
that the non-deterministic tracking automaton Aχ tracks ♡ψ to ψ under κ. In the reading
of ΘΞ

q suggested in Remark 4.2, ΘΞ
q is understood as the disjunction of the uκq over all κ ∈ Ξ,

with uκq read as the conjunctive clause
∧

♡ψ∈κ∩lA(q) a♡ψ∧
∧

♡ψ∈lA(q)\κ ¬a♡ψ. We can similarly
understand Ξ as a disjunctive normal form over atoms of the form ♡ψ ∈ lA(q), and ΘΞ

q arises
from Ξ by simply renaming these atoms into a♡ψ. Notice also that the interpretation of

a♡ψ ∈ Vq over ΘΞ
q as per Definition 4.1 is [[a]]

ΘΞ
q

0 = {uκq | κ ∈ Ξ,♡ψ ∈ κ}, a set which depends
monotonically on Ξ. There is thus a balance to strike in selecting the set Ξ, which needs to
be large enough to ensure satisfiability of the one-step pair (γq,Θ

Ξ
q ), but on the other hand

enlarging Ξ implies having to track more formulae.
Furthermore, given ♡ψ ∈ F and Ξ ⊆ selections, we write

Ξ/♡ψ = {κ ∈ Ξ | ♡ψ ∈ κ}. (4.2)

Definition 4.5 (Pre-tableaux and tableaux). A pre-tableau (W,Σ, δ′, qinit,Ω
′), or just (W, δ′),

for χ consists of a set W ⊆ Dχ of nodes, a partial transition map δ′ : W × Σ⇀W , and a
priority map Ω′ : W → N such that the following conditions hold:
(1) (W,Σ, δ′, qinit,Ω

′) is a partial subautomaton of Bχ. That is, the initial node qinit of Bχ is
in W ; δ′(q, σ) = δ(q, σ) whenever δ′(q, σ) is defined for q ∈W,σ ∈ Σ; and Ω′(q) = Ω(q)
for all q ∈W . (Note that δ′(q, σ) may be undefined even when δ(q, σ) ∈W .)

(2) For all q ∈W , we have ⊥ /∈ lA(q), and there is a unique τ ∈ choices such that δ′(q, τ) is
defined (it then equals δ(q, τ) by (1)).
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(3) For all q ∈W , the one-step pair (γq,Θ
Ξ(q)
q ) (notation as per (4.1)) is one-step satisfiable,

where
Ξ(q) = {κ ∈ selections | κ ⊆ lA(q) and δ′(q, κ) is defined} (4.3)

(i.e. the modal label of q is one-step satisfiable over the labels of the modal δ′-successors
of q).

We refer to transitions in (W, δ′) under letters in choices as local transitions, and under letters
in selections as modal transitions. By (2), there is, from every q ∈W , a unique local run, i.e.
one consisting of only local transitions, which we denote by ρ(q). A tableau is a pre-tableau
in which every (infinite) run starting at q0 = qinit is accepting.

Thus, a pre-tableau (W, δ′) is obtained from Bχ by keeping just a single outgoing local
transition at each node, and by removing some of the modal transitions in such a way that
the remaining modal transitions still suffice for satisfaction of the modal literals in the label.
In order for (W, δ′) to be a tableau, we additionally require that all runs of this automaton
are accepting (however, there may be infinite words over Σ on which (W, δ′) does not have a
run, and which are thus not accepted). Since the definition of uκq as per (4.1) only deems
a modal argument ψ to be satisfied in a κ-successor of q if ψ is tracked under κ, there is a
balance to be struck in choosing the modal transitions to keep – as indicated, these need
to suffice to satisfy all modal literals in the label, but every modal transition that is kept
induces more tracking that may expose infinite deferral.

Example 4.6 (Tableaux). Recall the co-determinized tracking automaton Bχ for the mono-
tone µ-calculus formula χ = νX. (a ∧ µY. (X ∨ ⟨g⟩Y )) from Example 3.5. To avoid triviality,
we slightly tweak the semantics to work with serial monotone neighbourhood frames, i.e.
coalgebras for the functor MA

s ×P(P) where Ms is the serial monotone neighbourhood func-
tor Ms given by Ms(X) = {N ∈ MX | ∅ /∈ N ̸= ∅}. (In a serial monotone neighbourhood
frame, we thus cannot satisfy a formula ♢gϕ at a state c by just making the empty set a
neighbourhood of c.) Below we show a partial automaton (obtained from Bχ by removing
various transitions and nodes) that is a tableau for χ; for better comparison with the original
automaton Bχ, we use dotted transitions and nodes to depict the parts of Bχ that have been
removed (and are not considered to belong to the tableau). Recall that κ⟨g⟩ϕ = {⟨g⟩ϕ}.

χstart

2

a ∧ ϕ

0

a, ϕ 1

a, χ ∨ ⟨g⟩ϕ

0

a, ⟨g⟩ϕ 0

ϕ 1

χ ∨ ⟨g⟩ϕ

0

⟨g⟩ϕ 0

a, χ2

a, a ∧ ϕ0

τl

τr

τl

τr

κ⟨g⟩ϕ

τr

τl

τl
τ

τl

τ

τ

τr

κ⟨g⟩ϕ

One easily verifies that this structure is indeed a tableau: First, it is clearly a subautomaton
of Bχ. Moreover, every (reachable) node has exactly one outgoing local transition, and
no node contains ⊥ in its label. Again we skip the treatment of propositional atoms as
modalities, and concentrate instead on one-step satisfiability in the bottom-right node, which
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for purposes of the subsequent discussion we denote as q. In q, the notation introduced in (4.1)
and (4.3) instantiates as follows. We have Vq = {a⟨g⟩ϕ}, γq = {⟨g⟩a⟨g⟩ϕ}, Ξ(q) = {κ⟨g⟩ϕ},
and Θ

Ξ(q)
q = {uκ⟨g⟩ϕq } = {{a⟨g⟩ϕ}}. One-step satisfiability of the one-step pair (γq,Θ

Ξ(q)
q ) =

({⟨g⟩a⟨g⟩ϕ}, {{a⟨g⟩ϕ}}) is obvious. Finally, every infinite run of this subautomaton either
loops at the bottom-right node forever, or visits the initial node infinitely often; in either
case, the maximal priority that is visited infinitely often is even, so the run is accepting.

We will see that there is a tableau for χ if and only if χ is satisfiable. We go on to
show one direction of this statement (‘only if’) now; the other direction is a consequence of
the results of Section 5 below. That is, we will construct a coalgebraic model of the target
formula χ on a tableau for χ. As indicated above, the key property of such a coalgebra is
coherence w.r.t. the tableau. We will build the coalgebraic model using only so-called state
nodes of the tableau, defined next.

Definition 4.7 (Local runs, pre-tableau states). Let (W, δ′) be a pre-tableau. A node q ∈W
is a state node if the local run ρ(q) that starts at q is a cycle. We denote the set of state
nodes of (W, δ′) by states(W, δ′) ⊆W . For q ∈W , we let ⌈q⌉ denote the first state node (for
definiteness) on ρ(q) (possibly ⌈q⌉ = q), and extend this notation to sets of nodes, putting
⌈V ⌉ = {⌈q⌉ | q ∈ V } ⊆ states(W, δ′) for V ⊆W .

Example 4.8 (Local runs, pre-tableau states). The tableau from Example 4.6 provides just
a single way to construct local runs (namely, by eventually staying forever in the bottom
right node) and, consequently, contains just a single state node. Exploiting the fact that
labels happen to be unique in the example, we refer to states by their labels. Then we have
⌈W ⌉ = states(W, δ′) = {{a, ⟨g⟩ϕ}}. We can however, modify the tableau in this example and
obtain an alternative tableau by taking the left (τl-)transition at {a, χ∨ ⟨g⟩ϕ}, instead of the
right (τr-)transition. In this alternative tableau, we then have state nodes {a, ϕ}, {a, χ∨⟨g⟩ϕ},
{a, χ} and {a, a ∧ ϕ}, all of which are part of the local run that loops through the bottom
left cycle of the automaton. Then we have, e.g., ⌈{a ∧ ϕ}⌉ = {a, ϕ} but ⌈{a, χ}⌉ = {a, χ}.

Remark 4.9 (Local runs, pre-tableau states). Observe that the labels of nodes along the
local run ρ(q) become semantically stronger through the choice of disjuncts in disjunctions.
In particular, the set of modal literals contained in the label grows monotonically along
ρ(q). At the same time, formulae may be syntactically lost from the label along steps of the
local run; e.g. a disjunction may be replaced with a disjunct, a conjunction with both its
conjuncts, and fixpoint literals may be unfolded. All (state) nodes on the local run of a state
node are thus semantically equivalent, and contain the same modal literals, but otherwise
may differ syntactically. We use the mechanism of local runs to avoid introducing a notion
of non-modal entailment that combines propositional entailment and fixpoint unfolding.

Definition 4.10 (Coherence). Let (W, δ′) be a pre-tableau. A coalgebra structure ξ on
states(W, δ′) is coherent (over (W, δ′)) if for all q ∈ states(W, δ′) and all ♡ψ ∈ F,

♡ψ ∈ lA(q) implies ξ(q) ∈ [[♡]]⌈δ′(q, selections/♡ψ)⌉.

Note that ψ ∈ lA(δ′(q, κ)) for every κ ∈ selections/♡ψ, so ψ is semantically entailed by
lA(⌈δ′(q, κ)⌉). The converse, however, does not hold, i.e. even if lA(q′) entails ψ, it need not
be the case that q′ is on the local run of some node in δ′(q, selections/♡ψ). Requiring that
ξ(q) ∈ [[♡]](⌈δ′(q, selections/♡ψ)⌉) in the above definition thus means that we insist that ♡ψ
is satisfied considering only those successors of q to which ψ is tracked.

Due to property (3) of pre-tableaux, coherent coalgebra structures always exist:
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Lemma 4.11 (Existence lemma). Let (W, δ′) be a pre-tableau. Then there is a coherent
coalgebra structure on states(W, δ′).

Proof. Let q ∈ states(W, δ′) be a state node. Since (W, δ′) is a pre-tableau, we can pick

t ∈ [[γq]]
Θ

Ξ(q)
q

1 ,

in notation as per (4.1) and (4.3); in particular, Θ
Ξ(q)
q = {uκq | κ ⊆ lA(q) and δ′(q, κ)

is defined} where uκq = {a♡ψ | ♡ψ ∈ κ}; so Θ
Ξ(q)
q abstracts the labels of the successors of q in

the pretableau (W, δ′). Let h : ΘΞ(q)
q → Ξ(q) be a section of the surjective map Ξ(q) → Θ

Ξ(q)
q ,

κ 7→ uκq (so u = u
h(u)
q for u ∈ Θ

Ξ(q)
q ), and put ξ(q) = (Fg)(t) where g : ΘΞ(q)

q → states(W, δ′)

is defined by g(u) = ⌈δ′(q, h(u))⌉. We show that thus defined, ξ is coherent: Let ♡ψ ∈ lA(q).

Then ♡a♡ψ ∈ γq, so t ∈ [[♡]][[a♡ψ]]
Θ

Ξ(q)
q

0 . By naturality and monotonicity of [[♡]], ξ(q) ∈
[[♡]]⌈δ′(q, selections/♡ψ)⌉ follows once we show that

[[a♡ψ]]
Θ

Ξ(q)
q

0 ⊆ g−1[⌈δ′(q, selections/♡ψ)⌉].

So let u ∈ [[a♡ψ]]
Θ

Ξ(q)
q

0 , that is, a♡ψ ∈ u. By (4.3) and (4.1), δ′(q, h(u)) is defined and
♡ψ ∈ h(u), so δ′(q, h(u)) ∈ δ′(q, selections/♡ψ) and hence g(u) ∈ ⌈δ′(q, selections/♡ψ)⌉ as
required.

We finally show that a coherent coalgebra structure is indeed a model of χ:

Lemma 4.12 (Truth lemma). Let (W, δ′) be a tableau, and let ξ be a coherent coalgebra
structure on V := states(W, δ′). Then ⌈qinit⌉ ∈ [[χ]] in (V, ξ).

Proof. By Theorem 3.15, it suffices to show that ∃ wins the position (⌈qinit⌉, χ) in the model
checking game Gχ,(V,ξ). We define a history-dependent ∃-strategy s in Gχ,(V,ξ), maintaining
the invariant that if (qn, ψn) is the n-th position of the shape (q′, ψ′) visited in the play, then

there is un ∈ W such that ψn ∈ lA(un) and qn lies on the local run ρ(un),
and for n > 0 there is a word wn such that un = δ′(un−1, wn) and ψn ∈
∆(ψn−1, wn). Moreover,
• If ψn−1 has the form ψn−1 = ♡ϕ, then wn−1 has the form wn−1 =
τ1, . . . , τm, κ where m ≥ 0, τ1, . . . , τm ∈ choices and κ ∈ selections/♡ϕ.
(Notice that this description of wn−1 already implies ∆(ψn−1, wn−1) =
∆(♡ϕ,wn−1) = {ϕ} = {ψn}.)

• Otherwise, wn−1 has the form wn = τ where τ ∈ choices.

The history-dependence of s is caused by keeping the tableau node un in memory. The
invariant holds initially, i.e. at (q0, ψ0) = (⌈qinit⌉, χ), for u0 = qinit. We show next that ∃ can
enforce the invariant at (qn+1, ψn+1) if it holds at (qn, ψn). Since (W, δ′) is a pre-tableau, we
have a unique τ ∈ choices such that δ′(ui, τ) is defined. We distinguish cases on ψn:

(1) ψn = ⊥: By the invariant and the definition of pre-tableaux, this case does not occur.
(2) ψn = ⊤: ∃ wins immediately.
(3) ψn = ϕ1 ∧ ϕ2: Then (qn, ψn) belongs to ∀, who moves to (qn+1, ψn+1) where qn+1 = qn

and ψn+1 ∈ {ϕ1, ϕ2}. The invariant is preserved by taking un+1 = δ′(ui, τ).



Vol. 20:3 COALGEBRAIC SATISFIABILITY CHECKING FOR ARITHMETIC µ-CALCULI 9:35

(4) ψn = ϕ1 ∨ ϕ2: We define s by letting ∃ move to (qn+1, ψn+1) = (qn, τ(ψn)). Again, the
invariant is preserved by taking un+1 = δ′(ui, τ).

(5) ψn = ηx.ϕ: We define s by letting ∃ play the only available move, to (qn+1, ψn+1) =
(qn, ϕ[ηx.ϕ/x]); again, the invariant is preserved by taking un+1 = δ′(ui, τ).

(6) ψn = ♡ϕ: It follows from the invariant that ♡ϕ ∈ lA(qn), since ♡ϕ is never pro-
cessed along ρ(un). Since ξ is coherent, we thus have ξ(qn) ∈ [[♡]](D) for D =
⌈δ′(qn, selections/♡ϕ)⌉, so we can define s by letting ∃ move to (D,ϕ). If D = ∅,
then ∃ wins immediately. Otherwise, ∀ moves to some position (qn+1, ϕ) (so ψn+1 = ϕ)
such that qn+1 ∈ D, i.e. there is κ ∈ selections/♡ϕ such that qn+1 = ⌈δ(qn, κ)⌉. Since by
the invariant, qn lies on the local path ρ(un), we have δ(qn, κ) = δ(un, wn) for wn ∈ Σ∗

of the required form wn = τ1, . . . , τm, κ where τ1, . . . , τm ∈ choices, so the invariant is
preserved by taking un+1 = δ(qn, κ). In particular, ψn+1 = ϕ is in lA(un+1) and in
∆(ψn, wn) because ♡ϕ ∈ κ, and qn+1 is on the local path ρ(un+1).

We have to show that s is a winning strategy; since, as we have noted, the game never reaches
a position of the form (q,⊥), ∃ wins all finite plays, so it remains only to show that ∃ wins
every infinite play π that follows s. By the invariant, π induces a word w = w0w1 . . . ∈ Σω,
a run π̄ = u0, u1, . . . (with u0 = qinit) of the tableau (W, δ′) on w, and a run ρ of the
non-deterministic tracking automaton Aχ on w. Since (W, δ′) is a tableau and w has an
infinite run, w is accepted by (W, δ′) and hence also by Bχ. Thus, w is rejected by Aχ; in
particular, ρ is a non-accepting run of Aχ. Now ρ differs from the sequence of formulae
occurring in π only by possible finite repetition of formulae of the form ψn = ♡ϕ, caused
by Aχ looping on the choice functions occurring in wn. As the winning objective in Gχ,(V,ξ)
is dual to acceptance in Aχ, which is unaffected by finite repetition of letters (‘stuttering’), ∃
thus wins the play π.

5. Satisfiability Games

We now introduce a generic game characterization of satisfiability in the coalgebraic µ-calculus
(Definition 5.1), rooted in classical algorithmic treatments of the relational µ-calculus as
well as in previous work on the coalgebraic µ-calculus [FLV10, CKP11a] (see Section 1 and
Remark 6.8 for a detailed discussion). In the game, the existential player effectively attempts
to establish existence of a tableau (Section 4) for the target formula χ. Like tableaux, the
game thus involves the notion of one-step satisfiability (Definition 4.1). (We note that a
similar condition appears in a previous notion of satisfiability game for the coalgebraic
µ-calculus [FLV10], which however is otherwise markedly different from ours, cf. Remark 6.8.
The notion of tableau game used in the algorithm based on complete sets of modal tableau
rules [CKP11a] has a more similar shape to ours but appears slightly larger in that automata
nodes that go into the model construction are additionally annotated with tableau sequents.)
We prove correctness of the game by showing on the one hand that a tableau may indeed be
extracted from a winning strategy of the existential player (completeness), and on the other
hand that a winning strategy of the existential player can be extracted from a given model
of the target formula χ (soundness), and indeed may be obtained from a winning strategy of
the existential player in the corresponding model checking game.
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We first present the definition of the satisfiability game, which like the model check-
ing game (Section 3) takes the shape of a standard parity game. Recall that Bχ =
(Dχ,Σ, δ, qinit,Ω) is the co-determinized tracking automaton for the target formula χ, and
comes with the labelling function lA : Dχ → P(F).

Definition 5.1 (Satisfiability game). The satisfiability game Gχ = (V∀, V∃, E, v0,Ω
′) for χ is

a parity game with sets

V∃ = Dχ × {0, 1} V∀ = Dχ ∪ (Dχ × P(selections))

of positions and v0 = qinit. The moves and the priorities in Gχ are defined by the following
table, where q ∈ Dχ and Ξ ∈ P(selections), and we write

selections(q) = {κ ∈ selections | κ ⊆ lA(q)}.

position owner set of allowed moves priority
q ∀ {(q, 0), (q, 1)} Ω(q)

(q, 0) ∃ {δ(q, τ) ∈ Dχ | τ ∈ choices,⊥ /∈ lA(q)} 0
(q, 1) ∃ {(q,Ξ) | Ξ ∈ P(selections(q)), (γq,Θ

Ξ
q ) is satisfiable} 0

(q,Ξ) ∀ {δ(q, κ) | κ ∈ Ξ} 0

Recall here that the components of the one-step pair (γq,Θ
Ξ
q ) are

γq = {♡a♡ψ | ♡ψ ∈ lA(q)} and

ΘΞ
q = {uκq = {a♡ψ | ♡ψ ∈ lA(q) ∩ κ} | κ ∈ Ξ}.

Thus, Gχ is a parity game with 2n0k
′ priorities (inherited from Bχ, cf. Section 3) and

|Dχ|(3+22
n0 ) positions. As indicated above, the game is aimed at determining whether there

exists a tableau for χ, and thus closely follows Definition 4.5. Specifically, when the play
reaches a node q ∈ Dχ, this indicates that the node needs to be included in the tableau, so ∀
may challenge either the propositional clause (2) or the modal clause (3) of the definition
of pre-tableaux by moving to (q, 0) or to (q, 1), respectively. The admissibility conditions
for the respective subsequent ∃-moves match the conditions given in the relevant clauses of
Definition 4.5; in particular, ∃ loses (q, 0) if ⊥ ∈ lA(q). The winning condition of Gχ ensures
the tableau property from Definition 4.5; that is, ∃ wins a play π iff the sequence of positions
of the form q ∈ Dχ encountered on π is an accepting run of Bχ. We formally establish in
Lemma 5.3 that ∃ winning the game really does guarantee existence of a tableau for χ.

Example 5.2 (Satisfiability game). Recall the co-determinized tracking automaton Bχ for
the monotone µ-calculus formula χ = νX. (a ∧ µY. (X ∨ ⟨g⟩Y )) from Example 3.5 (with ϕ
abbreviating µY. (X ∨ ⟨g⟩Y )). Like already in Example 4.6, we restrict the semantics to
serial monotone neighbourhood frames. Below we show the satisfiability game Gχ for χ,
constructed over Bχ. Again, rounded boxes indicate ∃-positions.
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χstart

2

χ, 0

0

a ∧ ϕ
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a, ϕ, 0 0

a, χ ∨ ⟨g⟩ϕ 0

a, χ ∨ ⟨g⟩ϕ, 0

0

a, ⟨g⟩ϕ

0

a, ⟨g⟩ϕ, 0 0

a, ⟨g⟩ϕ, 1

0

a, ⟨g⟩ϕ, {{⟨g⟩ϕ}} 0

ϕ 1

ϕ, 0 0

χ ∨ ⟨g⟩ϕ 0

χ ∨ ⟨g⟩ϕ, 0

0

⟨g⟩ϕ

0

⟨g⟩ϕ, 0 0

⟨g⟩ϕ, 1 0

⟨g⟩ϕ, {{⟨g⟩ϕ}} 0

a, χ2

a, χ, 00

a, a ∧ ϕ0

a, a ∧ ϕ, 00

(In the figure, we have omitted positions of the form (q, 1) where lA(q) does not contain any
modal literal, such as (χ, 1) in the present example, which ∃ wins immediately by moving to
(q, ∅).) The bold arrows indicate an ∃-strategy s that wins the initial position χ in the game.
As indicated above, such strategies induce tableaux; in this case, s induces (essentially) the
tableau considered in Example 4.6 above.

As indicated above, we prove completeness of the game by showing that winning strategies
for the existential player in the satisfiability game induce tableaux:

Lemma 5.3. If the existential player wins the satisfiability game Gχ, then there is a tableau
for χ.

Proof. Let s : V∃ → V be a history-free ∃-strategy that wins qinit in Gχ, and let W be the
set of positions of the form q ∈ Dχ that are reachable in plays that follow s. We then
define δ′ : W × Σ⇀W as follows. Let q ∈W . By the definition of the satisfiability game,
there is τ ∈ choices such that s(q, 0) = δ(q, τ) ∈ W (in particular, ⊥ /∈ lA(q)); we put
δ′(q, τ) = δ(q, τ), and let δ′(q, τ ′) be undefined for all other τ ′ ∈ choices. Similarly, s(q, 1) has
the form s(q, 1) = (q,Ξ) where Ξ ∈ P(selections(q)), and we put δ′(q, κ) = δ(q, κ) if κ ∈ Ξ,
and let δ′(q, κ) be undefined otherwise, noting that δ(q, κ) ∈ W for κ ∈ Ξ because ∀ can
move to δ(q, κ) from (q,Ξ) = s(q, 1). Then (W, δ′) is a pre-tableau by construction. To show
that (W, δ′) is a tableau, let qinit = q0, q1, . . . be a run of (W, δ′) on a word w = σ0, σ1. . . . By
construction of (W, δ′), this run induces a play π in Gχ that follows s (explicitly, if σi ∈ choices,
then the play has one intermediate position (qi, 0) between qi and qi+1 = s(qi, 0), and if
σi ∈ selections, then the play has two intermediate positions (qi, 1) and s(qi, 1) between qi
and qi+1). Since s is a winning strategy, π is won by ∃, which by the comments after
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Definition 5.1 means that q0, q1, . . . is an accepting run of Bχ, showing that (W, δ′) is a
tableau.

It remains to prove soundness. As indicated above, we proceed by transforming a winning
strategy in the model checking game into one in the satisfiability game, exploiting that the
former is based on non-acceptance in the tracking automaton Aχ and the latter on acceptance
in the co-determinized tracking automaton Bχ.

Lemma 5.4 (Soundness). Let χ be satisfiable. Then the existential player wins Gχ.

Proof. Fix a coalgebra (C, ξ) and a state x0 ∈ C such that x0 |= χ. By Theorem 3.15, ∃
has a history-free strategy s′ that wins (x0, χ) in Gχ,(C,ξ). We construct a history-dependent
winning strategy s for ∃ in the satisfiability game Gχ that maintains the invariant that in
positions (q, b) ∈ V∃ = Dχ × {0, 1}, there is x ∈ C such that

for all ψ ∈ lA(q), s′ wins (x, ψ) in Gχ,(C,ξ);

we call such an x a realizer of q. More precisely, we keep the realizer in memory, and in
each step, we construct the new realizer from the previous one; this is why the strategy we
construct is not history-free. We write s((q, b), x) for the move recommended by s when in a
position (q, b) ∈ V∃ with realizer x.

We can pick x0 as the realizer of qinit, ensuring that the invariant holds initially since
lA(qinit) = {χ} and s′ wins (x0, χ). To see that the existential player can maintain the
invariant, let (q, b) ∈ V∃ = Dχ × {0, 1} and let x ∈ C be a realizer of q. We distinguish cases
on b.

Case b = 0: We define τ ∈ choices as follows. For each disjunction ψ = ψ1∨ψ2 ∈ lA(q), s′
wins (x, ψ) by the invariant, and we have s′(x, ψ) = (x, ψi) for some i ∈ {1, 2}; of course, s′
then wins (x, ψi). We put τ(ψ) = ψi. For disjunctions ψ ∈ F not contained in lA(q), define
τ(ψ) arbitrarily. We put s((q, 0), x) = δ(q, τ): since the invariant implies in particular that
⊥ /∈ lA(q)), this is a valid move.

To establish the invariant at the new position δ(q, τ), we pick the original realizer x of q
as the new realizer of δ(q, τ). We have to show that for all ψ ∈ lA(δ(q, τ)), s′ wins (x, ψ) in
in Gχ,(C,ξ). By the definition of the tracking automaton (Definition 3.2), such a ψ arises in
one of the following ways:
• ψ is a disjunct of disjunction in lA(q). It was shown above that s′ wins (x, ψ) in this case.
• ψ is a conjunct (w.l.o.g., the left one) of a formula ψ∧ϕ ∈ lA(q). Then the universal player

can move from (x, ψ ∧ ϕ) to (x, ψ) in Gχ,(C,ξ). Since s′ wins (x, ψ ∧ ϕ) by the invariant, s′

also wins (x, ψ).
• ψ = ψ1[ηX.ψ1/X] for some ηX.ψ1 ∈ lA(q). By the invariant, s′ wins (x, ηX. ψ1) in
Gχ,(C,ξ), so s′ also wins the unique next position (x, ψ).

• ψ = ♡ψ1 ∈ lA(q), Then s′ wins (x, ψ) by the invariant.
Case b = 1: For each ♡ψ ∈ lA(q), s′ wins (x,♡ψ) in Gχ,(C,ξ) by the invariant. Then

s′(x,♡ψ) has the form

s′(x,♡ψ) = (D♡ψ, ψ) where ξ(x) ∈ [[♡]]C(D♡ψ). (5.1)

Put
Ξ = {κ ∈ selections | κ ⊆ lA(q) and

⋂
♡ψ∈κD♡ψ ̸= ∅}.

For κ ∈ Ξ, fix an element yκ ∈
⋂

♡ψ∈κD♡ψ. We put s((q, 1), x) = (q,Ξ). The ensuing
moves of the universal player then reach a position in V∃ of the form (δ(q, κ), b′) where
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κ ∈ Ξ. We pick yκ as the realizer of δ(q, κ). To show that this ensures the invariant, let
ψ ∈ lA(δ(q, κ)), that is, ♡ψ ∈ κ for some ♡ ∈ Λ; we have to show that s′ wins (yκ, ψ). But
this follows from the fact that s′ is a winning strategy and the universal player can move
from s′(x,♡ψ) = (D♡ψ, ψ) to (yκ, ψ), since yκ ∈ D♡ψ.

It remains to show that ((q, 1), (q,Ξ)) is a valid move in Gχ. Recalling that

Vq = {a♡ψ | ♡ψ ∈ lA(q)}
γq = {♡a♡ψ | ♡ψ ∈ lA(q)}
uκq = {a♡ψ | ♡ψ ∈ κ ∩ lA(q)}
ΘΞ
q = {uκq | κ ∈ Ξ},

we have to show that, as discussed after (4.1), Ξ is large enough to ensure that

[[γq]]
H
1 ̸= ∅ (5.2)

where H = ΘΞ
q ; recall here that by definition, [[γq]]H1 =

⋂
♡a♡ψ∈γq [[♡]]H [[a♡ψ]]

H
0 . We define a

labelling l : C → H by
l(y) = {a♡ψ ∈ Vq | y ∈ D♡ψ}. (5.3)

Here, we have to show that for y ∈ C, we indeed have l(y) ∈ H, i.e. we have to find κ ∈ Ξ
such that l(y) = uκq . This will hold by definition for κ := {♡ψ | a♡ψ ∈ l(y)}, once we show
that κ ∈ Ξ. The latter means that D :=

⋂
a♡ψ∈l(y)D♡ψ ̸= ∅; but y ∈ D by definition of l(y).

We now establish (5.2) by showing that

Fl(ξ(x)) ∈ [[γq]]
H
1 .

So let ♡a♡ψ ∈ γq, that is, ♡ψ ∈ lA(q); we have to show Fl(ξ(x)) ∈ [[♡]]H [[a♡ψ]]
H
0 , which by

naturality is equivalent to ξ(x) ∈ [[♡]]C(l
−1[[[a♡ψ]]

H
0 ]) = [[♡]]C(D♡ψ); but this holds by (5.1).

This concludes the proof that s is a strategy, that is, yields legal moves in Gχ. It
remains to show that s is winning. In showing that ∃ can maintain the invariant, we have
in particular shown that ∃ never gets stuck, and hence wins all finite plays. So let π be an
infinite play that starts at v0 and follows s; we have to show that ∃ wins π. As noted after
Definition 5.1, π gives rise to a run r of Bχ on a word w ∈ Σω. In more detail, the play π
consists of concatenated subplays πi, either of the shape qi, (qi, 0), qi+1 where qi+1 = δ(qi, σi)
for some σi ∈ choices, or of the shape qi, (qi, 1), (qi,Ξ), qi+1 where qi+1 = δ(qi, σi) for some
σi ∈ Ξ. In this notation, r = q0, q1, . . ., where q0 = qinit, is the run of Bχ on w = σ0, σ1, . . . .
Again as noted after Definition 5.1, the winning objective of the existential player in Gχ is
w ∈ L(Bχ). Since Bχ complements Aχ, we show equivalently that every run ρ = ψ0, ψ1, . . .
of Aχ on the word w, where ψ0 = χ, is non-accepting. From ρ, we obtain a play π′ of the
model checking game Gχ,(C,ξ) that starts at (x0, χ) and follows s′, hence is won by ∃, and
moreover induces w in the sense discussed after Definition 3.11. Specifically, the positions of
the form (x, ψ) visited by π′ are precisely (x0, ψ0), (x1, ψ1), . . . where xi is the realizer of qi
according to the invariant; interceding moves to positions of the form (D,ψ) with D ⊆ C
are determined by s′. Since as noted after Definition 3.11, the winning objective of ∃ in the
model checking game is non-acceptance of the associated run of Aχ, this implies that ρ is
non-accepting.

The results so far are tied up as follows:

Theorem 5.5 (Soundness and completeness). The following are equivalent:
(1) The existential player wins the position qinit in Gχ.
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(2) There is a tableau for χ.
(3) The formula χ is satisfiable.

Proof. The implication (1) =⇒ (2) is Lemma 5.3. We have shown the implication (3) =⇒ (1)
in Lemma 5.4. We prove (2) =⇒ (3): Let (W, δ′) be a tableau for χ. By the existence lemma
(Lemma 4.11), there is a coherent coalgebra built over (W, δ′), which by the truth lemma
(Lemma 4.12) is a model for χ.

Our model construction in the proof of Lemma 4.11 moreover yields the same bound on
minimum model size as in earlier work on the coalgebraic µ-calculus [CKP11a, FLV10]:

Corollary 5.6 (Small-model property). Let χ be a satisfiable coalgebraic µ-calculus formula,
with parameters n0, k and k′ = ⌊(k + 1)/2⌋+ 1 as in the running notation. Then χ has a
model of size O(((nk′)!)2) ∈ 2O(nk logn).

Remark 5.7 (Polynomially branching models). In addition to having an exponentially
bounded number of states (Corollary 5.6), the models (V, ξ) constructed in the above
completeness proof are also polynomially branching, provided that the logic has the one-step
polysize model property, which holds in all our running examples (Remark 4.4). By this we
mean that there is a polynomial p such that for every q ∈ V , there is a subset V0 ⊆ V such
that |V0| ≤ p(n) and ξ(q) has the form ξ(q) = Fi(t) where i : V0 → V is the subset inclusion.
This property is immediate from the construction of coherent coalgebras in the proof of the
existence lemma (Lemma 4.11), in which ξ(q) is obtained from a model of a one-step pair
over F. With the exception of the standard µ-calculus, this bound appears to be new in all
our example logics. Of course, for graded and Presburger µ-calculi, polynomial branching
holds only in their coalgebraic semantics, i.e. over multigraph models but not over Kripke
models.

6. Lazy Game Solving for the Coalgebraic µ-Calculus

We proceed to show that the satisfiability game introduced in the previous section can
be solved in singly exponential time (under mild assumptions on the complexity of the
underlying one-step satisfiability problem). To this end, we introduce a satisfiability checking
algorithm that solves the game on-the-fly (that is, in a lazy fashion), and analyse the
runtime of the algorithm. As mentioned above, the obstacle to be overcome here is that
the game is doubly exponentially large, specifically has singly exponentially many positions
owned by the existential player but doubly exponentially many owned by the universal
player. We deal with this issue by a characterization of the existential player’s winning
region as a nested fixpoint that lives on an exponential-sized subset of the game positions
(those corresponding directly to states in the co-determinized tracking automaton Bχ), with
interceding moves absorbed into the definition of the function whose fixpoint is computed
(Lemma 6.3). The satisfiability checking algorithm may then be understood as computing
this fixpoint, respectively determining whether the root position of the game belongs to the
fixpoint.

We recall that qinit ∈ Dχ is the initial node of the co-determinized tracking automaton Bχ.
The algorithm expands Bχ step by step starting from qinit; the expansion step adds nodes
according to all possible choice functions and all selections of modalities in an unexpanded
node q. The order of expansion can be chosen freely, e.g. by heuristic methods. Optional
intermediate game solving steps can be used judiciously to realize on-the-fly solving.
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Algorithm (Satisfiability checking). To decide satisfiability of the input formula χ, ini-
tialize the sets of unexpanded and expanded nodes, U = {qinit} and Q = ∅, respectively.
(1) Expansion: Choose some unexpanded node q ∈ U , remove q from U , and add q to Q.

Add all nodes in the sets {δ(q, τ) ∈ Dχ | τ ∈ choices} \ Q and {δ(q, κ) ∈ Dχ | κ ∈
selections, κ ⊆ lA(q)} \Q to U .

(2) Optional solving: Compute win∃Q and/or win∀Q. If qinit ∈ win∃Q, then return ‘satisfiable‘, if
qinit ∈ win∀Q, then return ‘unsatisfiable‘.

(3) If U ̸= ∅, then continue with Step 1.
(4) Final game solving: Compute win∃. If qinit ∈ win∃, then return ‘satisfiable‘, otherwise

return ‘unsatisfiable‘.
Before analysing the run time behaviour of the algorithm, we first show how to compute the
sets win∃Q and win∀Q in singly exponential time. Put

N = 2n0k
′

with k′ as per (3.1), the number of priorities in Bχ (cf. Section 3). We define N -ary set
functions fQ and gQ that compute one-step (tn)satisfiability w.r.t. their argument sets. These
functions essentially encode short sequences of moves in Gχ leading from one node in Dχ to
the next.

Definition 6.1 (Small-step game solving functions). For sets Q ⊆ Dχ and X1, . . . , XN ⊆ Q,
we put

fQ(X1, . . . , XN ) ={q ∈ Q | (γq,Θ
Ξ(XΩ(q))
q ) is satisfiable,⊥ /∈ lA(q) and

∃τ ∈ choices. δ(q, τ) ∈ XΩ(q)}

gQ(X1, . . . , XN ) ={q ∈ Q | (γq,Θ
Ξ(XΩ(q))
q ) is not satisfiable,⊥ ∈ lA(q) or

∀τ ∈ choices. δ(q, τ) ∈ XΩ(q)},

where Ξ(X) = {κ ∈ selections | κ ⊆ lA(q) and δ(q, κ) ∈ X} and X = Dχ \X for X ⊆ Dχ.

Note how fQ propagates winning positions for ∃ in Gχ, checking whether ∃ has a response to
both immediate next ∀-moves from q ∈ Dχ (to (q, 0) or (q, 1)), while gQ propagates winning
positions for ∀, checking that ∀ wins by moving to either (q, 0) or (q, 1).

The time required for small-step game solving steps thus depends on the time complexity
of the one-step satisfiability problem. In Lemma 6.4, we correspondingly give an estimate of
the overall time complexity of the satisfiability checking algorithm under the assumption
that the strict one-step satisfiability problem is in ExpTime.

Next we characterize the winning regions win∃Q and win∀Q by fixpoint expressions over
P(Dχ), using the small-step game solving functions fQ and gQ, respectively.

Definition 6.2 (Fixpoint descriptions of winning regions). Given a set Q ⊆ Dχ, we put

EQ = ηNXN . . . . η1X1.fQ(X) AQ = ηNXN . . . η1X1.gQ(X),

where X = X1, . . . , XN is a vector of variables Xi ranging over subsets of Q, where ηi = µ
for odd i, ηi = ν for even i, and where ν = µ and µ = ν.

We will show that this fixpoint characterization is indeed correct, that is, that

EQ = win∃Q and AQ = win∀Q
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for Q ⊆ Dχ. As the sets EQ and AQ grow monotonically with Q, and since clearly ADχ is
the complement of EDχ , it suffices to prove that the winning region win∃ in Gχ coincides
with the set E := EDχ .

Lemma 6.3. For all q ∈ Dχ, we have q ∈ E if and only if the existential player wins the
position q in the satisfiability game Gχ.

Proof. The fixpoint
E = ηNXN . . . . η1X1.fDχ(X1, . . . , XN )

on Dχ may, as discussed in Remark 3.16, be seen as described by a formula ηNXN . . . . η1X1.
♢(X1, . . . , XN ) in a generalized form of the monotone µ-calculus, and thus is characterized
by the corresponding instance of the subformula model checking game. The simple structure
of the fixpoint allows for further simplification of the game. First, all positions of the form
(q, ψ) where ψ is not a fixpoint literal or a fixpoint variable (so the next move might not
be uniquely determined) have ψ = ♢(X1, . . . , XN ); in particular, all such positions belong
to ∃. Second, positions (q′, Xl) reached from such a position after ∃’s move and a subsequent
∀-move automatically proceed to (q′,♢(X1, . . . , XN )), with l being the maximal priority
visited on the way. We thus eliminate the intermediate positions, and rename positions
(q,♢(X1, . . . , XN )) into just q; similarly, we omit formula annotations on subsets of Dχ

played by ∃ in modal moves. We write GE for the simplified form of the game, which is
summarized by the following table:

position owner set of allowed moves priority
q ∃ {(A1, . . . , AN ) ∈ P(Dχ)

N | q ∈ fDχ(A1, . . . , AN )} 0
(A1, . . . , AN ) ∀ {(q,Xl) | l ∈ {1, . . . , N}, q ∈ Al} 0

(q,Xl) ∃ {q} l

By correctness of the model checking game (Theorem 3.15), the claim is thus reduced
to showing that ∃ wins q in GE iff ∃ wins q in Gχ. We say that ∃ can force a set U ⊆
{0, . . . , N} ×Dχ in position q in one of the games if ∃ has a strategy ensuring that ∃ does
not lose by getting stuck and that the pair (j, q′) consisting of the next position q′ ∈ Dχ

reached in the play (if any; ∀ might still get stuck) and the maximal priority j encountered
on the way to q′, including the priority of q but excluding the priority of q′, lies in U . Since
every infinite play in GE or Gχ infinitely often visits positions in Dχ, it suffices to show that
at every q ∈ Dχ, ∃ can force the same sets U in either of the games.

For one direction, suppose that ∃ can force U ⊆ {0, . . . , N}×Dχ at q in GE by moving to
(A1, . . . , AN ); in particular, q ∈ fDχ(A1, . . . , AN ). In Gχ, ∃ then enforces U at q as follows.
• First, suppose that ∀ moves from q to (q, 0). Since q ∈ fDχ(A1, . . . , AN ), we have
⊥ /∈ lA(q), and there is τ ∈ choices such that δ(q, τ) ∈ AΩ(q). Thus, ∃ can move from (q, 0)
to δ(q, τ) in Gχ, the highest priority encountered on the way from q to δ(q, τ) being Ω(q).
The pair (Ω(q), δ(q, τ)) is in U as required, since in GE, ∀ can move from (A1, . . . , AN )
to (δ(q, τ), XΩ(q)), which has priority Ω(q), and the game then automatically proceeds
to δ(q, τ).

• Second, suppose that ∀ moves to (q, 1). Since q ∈ fDχ(A1, . . . , AN ), we have that the

one-step pair (γq,Θ
Ξ(AΩ(q))
q ) is satisfiable, recalling that Ξ(AΩ(q)) = {κ ∈ selections | κ ⊆

lA(q) and δ(q, κ) ∈ AΩ(q)}; so ∃ can move to (q,Ξ(AΩ(q))). After the next move by ∀, we
thus end up in δ(q, κ) for some κ ∈ Ξ(AΩ(q)), with the highest priority encountered on the
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way being Ω(q). Since κ ∈ Ξ(AΩ(q)), we have δ(q, κ) ∈ AΩ(q), so by the same analysis as
in the previous case, the pair (Ω(q), δ(q, κ)) is in U as required.

For the converse direction, suppose that ∃ can force U ⊆ {0, . . . , N} ×Dχ at q in Gχ
by moving to δ(q, τ) in case ∀ moves to (q, 0) and to (q,Ξ) in case ∀ moves to (q, 1), where
τ ∈ choices and Ξ ∈ P(selections(q)). In particular, we then have ⊥ /∈ lA(q) and the
one-step pair (γq,Θ

Ξ
q ) is satisfiable. We claim that in GE, ∃ then forces U by moving to

(∅, . . . , ∅, AΩ(q), ∅, . . . , ∅) (with AΩ(q) in position Ω(q)) where

AΩ(q) = {δ(q, τ)} ∪ δ(q,Ξ).

We note that this is a legal move, as q ∈ fDχ(∅, . . . , ∅, AΩ(q), ∅, . . . , ∅) by construction of AΩ(q)

(and Remark 4.2). In GE, ∀ then necessarily moves to a position (q′, XΩ(q)) where q′ ∈ AΩ(q),
and the game then automatically proceeds to q′, with the maximal priority encountered on
the way being Ω(q). We distinguish cases on q′:
• If q′ = δ(q, τ), then (Ω(q), q′) ∈ U as required, since δ(q, τ) is ∃’s reply to (q, 0) forcing U

in Gχ.
• Otherwise, q′ = δ(q, κ) for some κ ∈ Ξ. Since (q,Ξ) is ∃’s reply to (q, 0) forcing U in Gχ,

and ∀ can move from (q,Ξ) to δ(q, κ) in Gχ, we again have (Ω(q), q′) ∈ U as required.

Having shown how the sets win∃Q and win∀Q can be computed by evaluating fixpoint
expressions over P(Dχ), we next analyse the run time behaviour of the introduced algorithm.

Lemma 6.4 (Time analysis). If the strict one-step satisfiability problem is decidable in
time t(n), then the above satisfiability checking algorithm runs in time O(((2n0k

′)!)2c · t(n))
for some constant c if no optional game solving steps are performed, with n, k′ being the
parameters of the target formula as per Section 3.

(The run time with optional game solving steps is still singly exponential; in view of the
fact that exponential run time of some fixed strategy on intermediate game solving suffices
to obtain the ExpTime bound on satisfiability checking, we restrict to the case without
optional game solving for the sake of simplicity.)

Proof. The loop of the algorithm expands the co-determinized tracking automaton node by
node and hence is executed at most |Dχ| ∈ O(((n0k

′)!)2) times. A single expansion step can
be implemented in time O(2n0) since in both propositional and modal expansion steps, at
most 2n0 new nodes are added, corresponding to the maximal possible number of choice
functions and matching selections, respectively. By Lemma 6.3, the final solving step can be
performed by computing a fixpoint of nesting depth N of the function f over P(Dχ)

N . A
single computation of f(X) for a tuple X ∈ P(Dχ)

N can be implemented in time O(|Dχ| ·
(t(n)+ 2n0)) = O(((n0k

′)!)2 · (t(n0)+ 2n0)) by going through all elements q of Dχ, calling the
one-step satisfiability checker on lA(q)∩Λ(F), and verifying the existence of a suitable choice
letter. Since we have N = O(log |Dχ|), it follows from recent work on the computation of
nested fixpoints [HS21] that these fixpoints can be computed in time O((n0k

′)!2c ·t(n0)), where
c = 5. (Classical methods for computing nested fixpoints [LBC+94, Sei96] are exponential
in the nesting depth, which however still leads to a singly exponential overall time bound,
computed explicitly in the conference version of the paper [HS19].) Thus the complexity
of the whole algorithm is dominated by the complexity of the final game solving step, and
adheres to the claimed asymptotic bound.
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Relying on the correctness of satisfiability games as shown in Section 5 above, we obtain the
following results.

Theorem 6.5 (Exponential-time upper bound). If the strict one-step satisfiability problem
of a coalgebraic logic is in ExpTime, then the satisfiability problem of the corresponding
coalgebraic µ-calculus is in ExpTime.

Since as discussed in Remark 6.7 below, the existence of a tractable set of tableau rules
implies the required time bound on one-step satisfiability, the above result subsumes earlier
bounds obtained by tableau-based approaches in [CKP11a, HSE16, HSD18]; however, it
covers additional example logics for which no suitable tableau rules are known. In particular,
by Example 4.3, we have:

Proposition 6.6. The satisfiability problems of the following logics are in ExpTime:
(1) the standard µ-calculus,
(2) the monotone µ-calculus (including its fragment game logic),
(3) the graded µ-calculus,
(4) the (two-valued) probabilistic µ-calculus,
(5) the graded µ-calculus with polynomial inequalities,
(6) the (two-valued) probabilistic µ-calculus with polynomial inequalities.

Remark 6.7 (Modal tableau rules). As indicated in the introduction, previous generic
algorithms for the coalgebraic µ-calculus [CKP+11b] employ tractable sets of modal tableau
rules [SP09] in place of one-step satisfiability checking. This method roughly works as follows.
A (monotone) modal tableau rule over a finite set W of propositional variables (local to the
rule) has the form ϕ/ψ where ψ is a propositional formula over W , given in disjunctive normal
form as a subset of P(W ), and ϕ is a finite subset of Λ(W ), representing a finite conjunction,
that mentions every variable in W exactly once. Given a set V , a rule match to a finite
subset γ of Λ(V ) is a pair (ϕ/ψ, ι) consisting of a rule ϕ/ψ and a substitution ι : W → V
that acts injectively on ϕ (i.e. for ♡a,♡b ∈ ϕ, ι(a) = ι(b) implies a = b) such that ϕι ⊆ γ,
where we write application of the substitution ι in postfix notation. In the notation of
the present paper, a set R of modal tableau rules is one-step tableau sound and complete
if the following condition holds for each one-step pair (γ,Θ) over V : The pair (γ,Θ) is
satisfiable iff ψι ∩ Θ ̸= ∅ for each rule match (ϕ/ψ, ι) as above to γ; note that applying
the substitution ι : W → V to ψ ⊆ P(W ) yields a propositional formula ψι over V that is
represented as a subset of P(V ).

A rule set R is exponentially tractable if rule matches can be encoded as strings in such
a way that every rule match to a given finite set γ ⊆ Λ(V ) has a code of polynomial size
in size(γ), and moreover (i) it can be decided in exponential time whether a given code
actually encodes a rule match to γ and (ii) the conclusion ψι of a rule match (ϕ/ψ, ι) can be
computed from its code in exponential time. Using an exponentially tractable rule set, we
can decide the strict one-step satisfiability problem in exponential time: Given a one-step
pair (γ,Θ), go through all codes of possible rule matches, filtering for actual matches (ϕ/ψ, ι),
and check for each such match that ψι ∩Θ ̸= ∅. Thus, the present approach applies more
generally than the approach via modal tableau rules. See also [KPS22] for a more detailed
discussion of the relationship.

Tractable sets of tableau rules for the graded µ-calculus and the Presburger µ-calculus
have been claimed in previous work [SP09, KP10]. However, these rule sets have since turned
out to be incomplete. Indeed the rule sets are very similar to rule sets for real-valued systems,
and remain sound over an evident real-valued relaxation of the semantics, an observation
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from which concrete examples showing incompleteness are obtained rather immediately both
for the Presburger [KPS22, Remark 3.8] and for the graded case [GHH+23, Appendix of
extended version].

Remark 6.8 (Λ-automata). As indicated in Section 1, the satisfiability game considered
by Fontaine et al. [FLV10] actually checks emptiness of so-called Λ-automata, into which
formulae of the coalgebraic µ-calculus can be translated with only polynomial blow-up.
Non-emptiness of a Λ-automaton A with set A of states is checked using a game Sat(A) that
has pairs of automata states from A as ∃-positions, and sets of binary relations on A as
∀-positions. The winning condition of Sat(A) is regular but not parity, so winning strategies
in Sat(A) need to depend on memory states m ∈M from an exponential-sized set M . The
model construction then has states being pairs (v,m) consisting of an ∃-position v and a
memory state m ∈M (while our model construction uses states from the co-determinized
tracking automaton). As we indicate in the introduction, it does not seem likely that our
approach to solving a doubly-exponential-sized satisfiability game in singly exponential time
will in general transfer to Sat(A) (for the case where a tractable set of tableau rules is known,
Sat(A) has been reformulated to be solvable in exponential time [FLV10, Section 5]), as none
of the two types of positions in Sat(A) has the right size (there are doubly exponentially
many ∀-positions and polynomially many ∃-positions). Also, our fixpoint description relies
on the fact that our game has a parity winning condition, and it is not clear how it would
transfer to a regular game.

Remark 6.9 (One-step satisfiability and fusion). The criterion of Theorem 6.5 is stable
under fusion of logics; that is: Suppose that the strict one-step satisfiability problems for
logics with disjoint modal similarity types Λi interpreted over functors Fi, for i = 1, 2, are
both in ExpTime. Then the strict one step satisfiability problem of the fusion (Remark 2.5),
with modal similarity type Λ = Λ1 ∪ Λ2 interpreted over F = F1 × F2, is in ExpTime as
well. To see this, just note that a one-step pair (γ,Θ) over V in the fusion is satisfiable
over F = F1×F2 iff for i = 1, 2. the one-step pair (γ ∩Λi(V ),Θ) over V is satisfiable over Fi.

Thus, we obtain by Theorem 6.5 that the satisfiability problem of any combination of
the logics mentioned in Proposition 6.6 is in ExpTime; for instance, this holds for the logic
of Markov decision processes described in Example 2.1.7.

7. Conclusion

We have shown that the satisfiability problem of the coalgebraic µ-calculus is in ExpTime,
subject to establishing a suitable time bound on the much simpler one-step satisfiability
problem. Our method does not require guardedness of fixpoint variables. Prominent examples
include the graded µ-calculus, the monotone µ-calculus and its fragment game logic, the
(two-valued) probabilistic µ-calculus, and extensions of the probabilistic and the graded
µ-calculus, respectively, with (monotone) polynomial inequalities; the ExpTime bound
appears to be new for the last two logics. We have also presented a generic satisfiability
algorithm that realizes the time bound and supports on-the-fly solving in the spirit of global
caching algorithms. Moreover, we have obtained a polynomial bound on minimum branching
width in models for all example logics mentioned above.
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