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Abstract. Game comonads, introduced by Abramsky, Dawar and Wang and developed by
Abramsky and Shah, give an interesting categorical semantics to some Spoiler-Duplicator
games that are common in finite model theory. In particular they expose connections
between one-sided and two-sided games, and parameters such as treewidth and treedepth
and corresponding notions of decomposition. In the present paper, we expand the realm
of game comonads to logics with generalised quantifiers. In particular, we introduce a
comonad graded by two parameters n ≤ k such that isomorphisms in the resulting Kleisli
category are exactly Duplicator winning strategies in Hella’s n-bijection game with k
pebbles. We define a one-sided version of this game which allows us to provide a categorical
semantics for a number of logics with generalised quantifiers. We also give a novel notion
of tree decomposition that emerges from the construction.

Introduction

Model-comparison games, such as Ehrenfeucht-Fräıssé games and pebble games play a central
role in finite model theory. Recent work by Abramsky et al. [ADW17, AS18] provides a
category-theoretic view of such games which yields new insights. In particular, the pebbling
comonad Pk introduced in [ADW17] reveals an interesting relationship between one-sided
and two-sided pebble games. The morphisms in the Kleisli category associated with Pk

correspond exactly to winning strategies in the existential positive k-pebble game. This
game was introduced by Kolaitis and Vardi [KV92] to study the expressive power of Datalog.
A winning strategy for Duplicator in the game played on structures A and B implies that
all formulas of existential positive k-variable logic true in A are also true in B. The game
has found widespread application in the study of database query languages as well as
constraint satisfaction problems. Indeed, the widely used k-local consistency algorithms
for solving constraint satisfaction can be understood as computing the approximation
to homomorphism given by such strategies [KV00]. At the same time, isomorphisms in
the Kleisli category associated with Pk correspond to winning strategies in the k-pebble
bijection game. This game is a variant of the bijection game introduced by Hella [Hel96]
and characterises equivalence in the k-variable logic with counting. This gives a family of
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equivalence relations (parameterised by k) which has been widely studied as approximations
of graph isomorphism. It is often called the Weisfeiler-Leman family of equivalences and
has a number of characterisations in logic, algebra and combinatorics (see the discussion
in [Gro17]).

The bijection game originally introduced by Hella is actually the initial level of a
hierarchy of games that he defined to characterise equivalence in logics with generalised
(i.e. Lindström) quantifiers. For each n, k ∈ N we have a k-pebble n-bijection game that
characterises equivalence with respect to an infinitary k-variable logic with quantifiers of
arity at most n. In the present paper, we introduce a graded comonad associated with
this game which we call the n, k-Hella comonad, or Hn,k. This comonad is obtained as a
quotient of the comonad Pk and we are able to show that isomorphisms in the associated
Kleisli category correspond to winning strategies for Duplicator in the k-pebble n-bijection
game. The morphisms then correspond to a new one-way game we define, which we call
the k-pebble n-function game. We are able to show that this relates to a natural logic: a
k-variable positive infinitary logic with n-ary homomorphism-closed quantifiers.

This leads us to a systematic eight-way classification of model-comparison games based
on what kinds of functions Duplicator is permitted (arbitrary functions, injections, surjections
or bijections) and what the partial maps in game positions are required to preserve: just
atomic information or also negated atoms. We show that each of these variations correspond
to preservation of formulas in a natural fragment of bounded-variable infinitary logic with
n-ary Lindström quantifiers. Moreover, winning strategies in these games also correspond to
natural restrictions of the morphisms in the Kleisli category of Hn,k that are well-motivated
from the category-theoretic point of view.

Another key insight provided by the work of Abramsky et al. is that coalgebras in
the pebbling comonad Pk correspond exactly to tree decompositions of width k. Similarly,
the coalgebras in the Ehrenfeucht-Fräıssé comonad introduced by Abramsky and Shah
characterise the treedepth of structures. This motivates us to look at coalgebras in Hn,k and
we show that they yield a new and natural notion of generalised tree decomposition.

In what follows, after a review of the necessary background in Section 1, we introduce
the various games and logics in Section 2 and establish the relationships between them.
Section 3 contains the definition of the Hella comonad and shows that interesting classes
of morphisms in the associated Kleisli category correspond to winning strategies in the
games. The coalgebras of this comonad are investigated in Section 4, and the associated
tree-decompositions of structures defined.

1. Background

In this section we introduce notation that we use throughout the paper and give a brief
overview of background we assume. For a positive integer n, we write [n] for the set
{1, . . . , n}.

A tree T is a set with a partial order ≤ such that for all t ∈ T , the set {x | x ≤ t} is
linearly ordered by ≤ and such that there is an element r ∈ T called the root such that r ≤ t
for all t ∈ T . If t < t′ in T and there is no x with t < x < t′, we call t′ a child of t and t the
parent of t′.

For X a set, we write X∗ for the set of lists over elements of X and X+ for the set of
non-empty lists. We write the list with elements x1, . . . xm in that order as [x1, . . . xm]. For
two lists s1, s2 ∈ X∗ we write s1 · s2 for the list formed by concatenating s1 and s2. For
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x ∈ X and s ∈ X∗ we write x; s for the list with first element x followed by the elements of
s in order and s;x for the elements of the list s in order followed by final element x. We
occasionally underline the fact that s1 · s2, x; s, and s;x are lists by writing them enclosed
in square brackets, as [s1 · s2], [x; s], and [s;x].

1.1. Logics. We work with finite relational signatures and assume a fixed signature σ.
Unless stated otherwise, the structures we consider are finite σ-structures. We write A,B, C
etc. to denote such structures, and the corresponding roman letters A,B,C etc. to denote
their universes.

We assume a standard syntax and semantics for first-order logic (as in [Lib04]), which
we denote FO. We write L∞ for the infinitary logic that is obtained from FO by allowing
conjunctions and disjunctions over arbitrary sets of formulas. We write ∃+L∞ and ∃+FO for
the restriction of L∞ and FO to existential positive formulas, i.e. those without negations or
universal quantifiers. We use natural number superscripts to denote restrictions of the logic
to a fixed number of variables. So, in particular FOk,Lk

∞ and ∃+Lk
∞ denote the k-variable

fragments of FO, L∞ and ∃+L∞ respectively. Similarly, we use subscripts on the names
of the logic to denote the fragments limited to a fixed nesting depth of quantifiers. Thus,
FOr,L∞,r and ∃+L∞,r denote the fragments of FO, L∞ and ∃+L∞ with quantifier depth at
most r. We write C to denote the extension of L∞ where we are allowed quantifiers ∃≥i for
each natural number i. The quantifier is to be read as “there exists at least i elements. . . ”.
We are mainly interested in the k-variable fragments of this logic Ck.

A formula ϕ(x1, . . . , xn) with free variables among x1, . . . , xn in any of these logics
defines an n-ary query, that is a map from structures A to n-ary relations on the structure.
A sentence defines a Boolean query, i.e. a class of structures. All queries are always closed
under isomorphisms.

1.2. Generalised quantifiers. We use the term generalised quantifier in the sense of
Lindström [Lin66]. These have been extensively studied in finite model theory (see [Hel96,
DH95, Daw95]). In what follows, we give a brief account of the basic variant that is of interest
to us here. For more on Lindström quantifiers, consult [EF99, Chap. 12]. In particular,
there are further generalisations of this notion, involving relativisation, vectorisation and
taking quotients in the interpretation. We do not consider these, as we are interested in
capturing the hierarchy of quantifiers by their arity, as in [Hel96].

Let σ, τ be signatures with τ = {R1, . . . , Rm}, and ri the arity of Ri. An interpretation
I of τ in σ with parameters z is a tuple of σ formulas

(ϕR1(x1, . . . , xr1 , z1), . . . , ϕRm(x1, . . . , xrm , zm))

where the xi are distinct variables, z is a tuple of variables pairwise distinct from the
x-variables and the zj are (not necessarily distinct) subtuples of z.1

An interpretation of τ in σ with parameters z defines a mapping that takes a σ-structure
A, along with an interpretation a of the parameters z in A to a τ -structure B as follows.
The universe of B is B = A, the same universe as A, and the relations Ri ∈ τ are interpreted
in B by RB

i = {(b1, . . . , bri) ∈ Bri | A |= ϕRi(b1, . . . , bri ,ai)} where ai is the interpretation
of the subtuple zi given by a.

1The requirement that the variables in z are distinct from all xi is as in [KV95] but does not appear in the
definition of generalised quantifiers in [Hel96] or [EF99]. We explain the difference this makes in Remark 1.1.



8:4 A. Ó Conghaile and A. Dawar Vol. 20:3

Let L be one of the logics in the previous section and K a class of τ -structures with
τ = {R1, . . . , Rm}. The extension L(QK) of L by the generalised quantifier (also known as
the Lindström quantifier) for the class K is obtained by extending the syntax of L by the
following formula formation rule:

Let I = ϕR1 , . . . , ϕRm be formulas in L(QK) that form an interpretation of τ
in σ with parameters z. Then ψ(z) = QKxI(z) is a formula in L(QK) over
the signature σ, with the variables in x bound. The semantics of the formula
is given by (A,a) |= QKxI(z), if, and only if, B := I(A,a) is defined and B
is in K.

Thus, adding the generalised quantifier QK to the logic L is the most direct way to
make the class K definable in L. Formally, if L is a regular logic in the sense of [Ebb85],
then its extension by QK is the minimal regular logic that can also define K.

The classical first-order quantifiers, ∃ and ∀, can be derived as generalised quantifiers in
the following way. Let ϕ(x, z) be a formula in L. This determines an interpretation into
τ1 the signature with a single unary relation U . The classes K∃ = {A | UA ̸= ∅} and
K∀ = {A | UA = A} are isomorphism-closed classes of τ1 structures. Now, the generalised
quantifiers QK∃ and QK∀ have the same formula formation rules as ∃ and ∀ and the formulas
QK∃xϕ(x, z) and QK∀xϕ(x, z) have the same semantics as ∃xϕ(x, z) and ∀xϕ(x, z).

Remark 1.1. As noted above (see footnote 1), our definition of the syntax of logics with
generalised quantifiers is somewhat non-standard. We follow Kolaitis and Väänänen [KV95]
in requiring that the parameters z to an interpretation I(z) = (ϕR1(x1, z), . . . , ϕRm(xmz))
are distinct from the variables in each xi. The standard definition (as in [Hel96] and [EF99])
does not require this restriction and so, in a formula QKx1 . . .xmI(x, z), a variable that
appears in x1 but not in x2 may nonetheless occur free in ϕ2 and so be among the parameters
z. In the absence of any restrictions on the number of variables, this distinction makes no
difference to the expressive power of the logic. However, it does make a difference to how
many variables are required in a formula.

To appreciate the difference, it is worth recalling two equivalent ways in which one can
define the fragments FOk and Lk

∞ of first-order logic and infinitary logic respectively. One
can define them syntactically as the restriction of the logics FO and L∞ to formulas using just
the variables x1, . . . , xk or more permissively as those formulas in which each subformula has
at most k free variables. It is clear that any formula under the more permissive definition can
be transformed, by renaming variables appropriately, to an equivalent one in the restricted
syntactic form. Such a translation is not possible in the presence of generalised quantifiers
which may bind variables in more than one subformula simultaneously. To be precise, a
formula of L(QK) as we have defined it, and in which no subformula has more than k free
variables can be translated to a formula using only the variables x1, . . . , xk only if we use
the syntax that permits the quantifier to bind a variable in one subformula while leaving it
free in another, i.e. the standard syntax.

Our approach is to adopt the syntactic restriction of Kolaitis and Väänänen, as we have
done above, but to define the k-variable fragment as consisting of those formulas in which
no subformula has more than k free variables, rather than the more restrictive one where no
more than k variables appear. The formal definition follows.

We write Lk
∞(QK) for the collection of formulas ϕ of infinitary logic, extended with the

quantifier QK such that no subformula of ϕ contains more than k free variables. When we
need to refer to the fragment of Lk

∞(QK) consisting of those formulas with no more than k
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variables, we will call this “KV Lk
∞(QK)” and we may refer to Lk

∞(QK) as “Hella Lk
∞(QK)”

to distinguish it.
We define the arity of the quantifier QK to be max{ri | i ∈ [m]}, i.e. the maximum

arity of any relation in τ . Note that this is the number of variables bound by the quantifier.
We write Lk

∞(Qn) for the (Hella) extension of Lk
∞ with all quantifiers of arity n. This is

only of interest when n ≤ k. Kolaitis and Väänänen [KV95] showed that KV Lk
∞(Q1) is

equivalent to Ck. However, allowing quantifiers of higher arity gives logics of considerably
more expressive power. In particular, if σ is a signature with all relations of arity at most n,
then any property of σ-structures is expressible in Ln

∞(Qn). Thus, all properties of graphs,
for instance, are expressible in L2

∞(Q2).

1.3. Games. For a pair of structures A and B and a logic L, we write A ⇛L B to denote
that every sentence of L that is true in A is also true in B. When the logic is closed under
negation, as is the case with FO and L∞, for instance, A ⇛L B implies B ⇛L A. In this
case, we have an equivalence relation between structures and we write A ≡L B. When A and
B are finite structures, A ⇛FO B implies A ⇛L∞ B, and the same holds for the k-variable
fragments of these logics (see [DLW95]).

The relations ⇛L are often characterised in terms of games which we generically call
Spoiler-Duplicator games. They are played between two players called Spoiler and Duplicator
on a board consisting of the two structures A and B, where the players take turns to place
pebbles on elements of the structures. For instance, the existential-positive k-pebble game
introduced by Kolaitis and Vardi [KV92] which we denote ∃Pebk characterises the relation
⇛∃+Lk

∞
. In this game, Spoiler and Duplicator each has a collection of k pebbles indexed

1, . . . , k. In each round Spoiler places one of its pebbles on an element of A and Duplicator
responds by placing its corresponding pebble (i.e. the one of the same index) on an element
of B. If the partial map taking the element of A on which Spoiler’s pebble i sits to the
element of B on which Duplicator’s pebble i is, fails to be a partial homomorphism, then
Spoiler has won the game. Duplicator wins by playing forever without losing. We get a
game characterising ≡Lk

∞
if (i) Spoiler is allowed to choose, at each move, on which of

the two structures it places a pebble and Duplicator is required to respond in the other
structure; and (ii) Duplicator is required to ensure that the pebbled positions form a partial
isomorphism.

The equivalence ≡Ck is characterised by the following bijection game which is often
attributed to Hella [Hel96] but this version actually follows Immerman in Definition 12.22
of [Imm98]. We write Bijk(A,B) for this bijection game played on A and B. Again, there is
a set of k pebbles associated with each of the structures A and B, indexed by the set [k].
At each move, Spoiler chooses an index i ∈ [k] and Duplicator is required to respond with
a bijection f : A → B. Spoiler then chooses an element a ∈ A and pebbles indexed i are
placed on a and f(a). If the partial map defined by the pebbled positions is not a partial
isomorphism, then Spoiler has won. Duplicator wins by playing forever without losing.

The bijection game described above has been widely studied and used to establish that
many interesting properties are not invariant under the relation ≡Ck for any k. This is of
great interest as these equivalence relations have many natural and independently arising
characterisations in algebra, combinatorics, logic and optimisation. However, in Hella’s
original work, bijection games appear as a special case of the n-bijective k-pebble game,
which we denote Bijkn(A,B) when played on structures A and B. This characterises the
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equivalence relation ≡Lk
∞(Qn). Once again, we have a set of k pebbles associated with each

of the structures A and B and indexed by [k]. At each move, Duplicator is required to give
a bijection f : A → B and Spoiler chooses a set of up to n pebble indices p1, . . . , pn ∈ [k]
and moves the corresponding indices to elements a1, . . . , an ∈ A and f(a1), . . . , f(an) in
B. If the partial map defined by the pebbled positions is not a partial isomorphism, then
Spoiler has won. Duplicator wins by playing forever without losing. Note, in particular, that
for Duplicator to have a winning strategy it is necessary that the reducts of A and B to
relations of arity at most n are isomorphic. For example, on graphs Spoiler wins any game
on non-isomorphic graphs with n, k ≥ 2.

Remark 1.2. It is important to note that Bijkn and Bijk differ in the order in which Spoiler

picks up the pebbles to be moved and Duplicator provides their bijection. Hence, Bijk1 and
Bijk are in fact different games, though this difference is often overlooked in the literature.

Similarly, we could define a version of the bijection game where Spoiler first picks up n
pebbles and then Duplicator provides a bijection. This would correspond to equivalence in
the logic KV Lk

∞(Qn).

1.4. Comonads. We assume that the reader is familiar with basic definitions from category
theory, in particular the notions of category, functor and natural transformation. An
introduction may be found in [AT10]. For a finite signature σ, we are interested in the
category R(σ) of relational structures over σ. The objects of the category are such structures
and the maps are homomorphisms between structures.

A comonad T on a category C is a triple (T, ϵ, δ) where T is an endofunctor of C, and ϵ
and δ are natural transformations, giving for each object A ∈ C, morphisms ϵA : TA - A
and δA : TA - TTA so that the following diagrams commute.

TA
δA- TTA

TTA

δA

?

δTA
- TTTA

TδA

?

TA
δA- TTA

TTA

δA

?

ϵT
- TA

TϵA

?

==============

We call ϵ the counit and δ the comultiplication of the comonad (T, ϵ, δ).
Associated with any comonad (T, ϵ, δ) is a Kleisli category we denote K(T). The objects

are the objects of the underlying category C and the maps A
K(T)

- B are morphisms

TA - B in C. Composition is given by the comultiplication:

TA
δA- TTA

Tf
- TB

g
- C.

The identity morphisms are given by the counit: ϵA : TA - A.
A coalgebra for the comonad is a map α : A → TA such that the following diagrams

commute.
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A
α

- TA

TA

α

?

Tα
- TTA

δA

?

A
α

- TA

A

ϵA

?

id
A

-

Abramsky et al. [ADW17] describe the construction of a comonad Pk, graded by k, on
the category R(σ) which exposes an interesting relationship between the games ∃Pebk(A,B)
and Bijk(A,B). Specifically, it shows that Duplicator winning strategies in the latter are
exactly the isomorphisms in a category in which the morphisms are winning strategies in
the former.

For any A, PkA is an infinite structure (even when A is finite) with universe (A× [k])+.
The counit ϵA takes a sequence [(a1, p1), . . . , (am, pm)] to am, i.e. the first component of the
last element of the sequence. The comultiplication δA takes a sequence [(a1, p1), . . . , (am, pm)]
to the sequence [(s1, p1), . . . , (sm, pm)] where si = [(a1, p1), . . . , (ai, pi)]. The relations are
defined so that (s1, . . . , sr) ∈ RPkA if, and only if, the si are all comparable in the prefix
order of sequences (and hence form a chain), RA(ϵA(s1), . . . , ϵA(sr)) and whenever si is a
prefix of sj and ends with the pair (a, p), there is no prefix of sj properly extending si which
ends with (a′, p) for any a′ ∈ A.

It is convenient to consider structures over a signature σ ∪ {I} where I is a new binary
relation symbol. An I-structure is a structure over this signature which interprets I as the
identity relation. Note that even when A is an I-structure, PkA is not one. The key results
from [ADW17] relating the comonad with pebble games can now be stated as establishing
a precise translation between (i) morphisms A

K(Pk)
- B for I-structures A and B; and (ii)

winning strategies for Duplicator in ∃Pebk(A,B); and similarly a precise translation between
(i) isomorphisms in K(Pk) between A and B for I-structures A and B; and (ii) winning
strategies for Duplicator in Bijk(A,B).

A key result from the construction of the comonad Pk is the relationship between the
coalgebras of this comonad and tree decompositions. In particular, a structure A has a
coalgebra α : A → PkA if, and only if, the treewidth of A is at most k− 1. This relationship
between coalgebras and tree decompositions is established through a definition of a tree
traversal which we review in Section 4 below.

2. Games and Logic with Generalised Quantifiers

The n-bijective k-pebble game Bijkn as introduced by Hella is a model-comparison game
which captures equivalence of structures over the logic Lk

∞(Qn), i.e. k-variable infinitary
logic where the allowed quantifiers are all generalised quantifiers with arity ≤ n. This
game generalises a variant of the bijection game Bijk which captures equivalence over Ck,
k-variable infinitary logic with counting quantifiers (which is equivalent to a fragment of
Lk
∞(Q1) as shown by Kolaitis and Väänänen [KV95]). In this section, we introduce a family

of games which relax the rules of Bijkn and show their correspondence to different fragments

of Lk
∞(Qn). In particular, we introduce a “one-way” version of Bijkn which is crucial to our

construction of a modified version of the Pk comonad for these games.
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2.1. Relaxing Bijkn. Recall that each round of Bijkn(A,B) involves Duplicator selecting a
bijection f : A→ B and ends with a test of whether for the pebbled positions (ai, bi)i∈[k] it
is the case that for any {i1, . . . ir} ⊂ [k]

(ai1 , . . . air) ∈ RA ⇐⇒ (bi1 , . . . bir) ∈ RB

where Duplicator loses if the test is failed. For the rest of the round, Spoiler rearranges up
to n pebbles on A with the corresponding pebbles on B moved according to f .

So, to create from Bijkn a “one-way” game from A to B we need to relax the condition
that f be a bijection and the ⇐⇒ in the final test. The following definition captures the
most basic such relaxation:

Definition 2.1. For two relational structures A, B, the positive k-pebble n-function game,
+Funk

n(A,B) is played by Spoiler and Duplicator. Prior to the jth round the position
consists of partial maps πaj−1 : [k]⇀ A and πbj−1 : [k]⇀ B. In Round j

• Duplicator provides a function hj : A→ B such that for each i ∈ [k], hj(π
a
j−1(i)) = πbj−1(i).

• Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m elements
x1, . . . xm ∈ A.

• The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and

πaj (i) = πaj−1(i) and π
b
j(i) = πbj−1(i) for i ̸∈ {p1, . . . , pm}.

• If there is some R ∈ σ and (i1, . . . ir) ∈ [k]r with (πaj (i1), . . . , π
a
j (ir)) ∈ RA

but (πbj(i1), . . . , π
b
j(ir)) ̸∈ RB, then Spoiler has won the game.

Duplicator wins by preventing Spoiler from winning.

As this game is to serve as the appropriate one-way game for Bijkn, it is worth asking
how this this game relates to ∃Pebk (the one-way game for Bijk) which makes no mention
of functions in its definition. The answer comes in recalling Abramsky et al.’s presentation
of a (deterministic) strategy for Duplicator in ∃Pebk(A,B) as a collection of branch maps
ϕs,i : A→ B for each s ∈ (A× [k])∗, a history of Spoiler moves and i ∈ [k] a pebble index.
These branch maps tell us how Duplicator would respond to Spoiler moving pebble i to
any element in A given the moves s that Spoiler has played in preceding rounds and can be
thought of as a function which Duplicator provides to Spoiler after Spoiler has indicated
which pebble he will move. In the game in Definition 2.1, Duplicator provides this function
before Spoiler indicates which pebbles are to be moved.

In addition to this game, we now define some other relaxations of Bijkn which are
important. In particular we define the following positive games by retaining that the pebbled
position need only preserve positive atoms at the end of each round but varying the condition
on f .

Definition 2.2. For two relational structures A, B, the positive k-pebble n-injection
(resp. surjection, bijection) game, +Injkn(A,B) (resp. +Surjkn(A,B), +Bijkn(A,B)) is played
by Spoiler and Duplicator. Prior to the jth round the position consists of partial maps
πaj−1 : [k]⇀ A and πbj−1 : [k]⇀ B. In Round j

• Duplicator provides an injection (resp. a surjection, bijection) hj : A→ B such that for

each i ∈ [k], hj(π
a
j−1(i)) = πbj−1(i).

• Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m elements
x1, . . . xm ∈ A.
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• The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and

πaj (i) = πaj−1(i) and π
b
j(i) = πbj−1(i) for i ̸∈ {p1, . . . , pm}.

• Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r

with (πaj (i1), . . . , π
a
j (ir)) ∈ RA but (πbj(i1), . . . , π

b
j(ir)) ̸∈ RB.

Duplicator wins by preventing Spoiler from winning.

Strengthening the test condition in each round so that Spoiler wins if there is some R ∈ σ
and (i1, . . . ir) ∈ [k]r with (πaj (i1), . . . , π

a
j (ir)) ∈ RA if, and only if, (πbj(i1), . . . , π

b
j(ir)) ̸∈ RB,

we get the definitions for the games Funk
n, Inj

k
n, Surj

k
n and Bijkn where the latter is precisely

the n-bijective k-pebble game of Hella. We recap the poset of the games we’ve just defined
ordered by strengthening of the rules/restrictions on Duplicator in the Hasse diagram in
Figure 1. Here a game G is above G′ if a Duplicator winning strategy in G is also one in G′.

Bijkn

Injkn +Bijkn Surjkn

+Injkn Funk
n +Surjkn

+Funk
n

Figure 1. Hasse Diagram of Games

2.2. Logics with generalised quantifiers. In Section 1, we introduce for each n, k ∈ N
the logics, Lk

∞(Qn) as the infinitary logic extended with all generalised quantifiers of arity n.
In this section we explore fragments of Lk

∞(Qn) defined by restricted classes of generalised
quantifiers, which we introduce next.

Definition 2.3. A class of σ-structures K is homomorphism-closed if for all homomorphisms
f : A → B

A ∈ K =⇒ B ∈ K.

Similarly, we say K is injection-closed (resp. surjection-closed, bijection-closed) if for all
injective homomorphisms (resp. surjective, bijective homomorphisms) f : A → B

A ∈ K =⇒ B ∈ K.

We write Qh
n for the class of all generalised quantifiers QK of arity n where K is

homomorphism-closed. Similarly, we write Qi
n, Qs

n and Qb
n for the collections of n-ary

quantifiers based on injection-closed, surjection-closed and bijection-closed classes.

In order to define logics which incorporate these restricted classes of quantifiers, we first
define a base logic without quantifiers or negation.
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Definition 2.4. Fix a signature σ.
We denote by +Lk[σ], the class of positive infinitary k-variable quantifier-free formulas

over σ. That means the k variable fragment of the class of formulas

+L[σ] ::= R(x1, . . . xm) |
∧
I
ϕ |

∨
J
ψ

for any R ∈ σ. We use Lk[σ] to denote a similar class of formulas but with negation
permitted on atoms.

This basic set of formulas can be extended into a logic by adding some set of quantifiers
as described here:

Definition 2.5. For Q some collection of generalised quantifiers, we denote by +Lk(Q) the
smallest extension of +Lk closed under the construction

Qx1, . . . xn. (ψT (xT ,yT ))T∈τ

for any Q ∈ Q. Lk(Q) is the same logic but with negation on atoms. Note that ∃+Lk
∞ ≡

+Lk(∃) and, as we can always push negation down to the level of atoms in Lk
∞, Lk

∞ ≡ Lk(∃,∀).

With this definition we are ready to introduce our logics. These are Lk(Qh
n), Lk(Qi

n),
Lk(Qs

n) and Lk(Qb
n) and their positive counterparts +Lk(Qh

n), +Lk(Qi
n), +Lk(Qs

n) and
+Lk(Qb

n). The obvious inclusion relationships between these logics are given by the Hasse
diagram in Figure 2. As we shall see, these logics are governed exactly by the games pictured
in Figure 1.

Lk(Qb
n)

Lk(Qi
n) +Lk(Qb

n) Lk(Qs
n)

+Lk(Qi
n) Lk(Qh

n) +Lk(Qs
n)

+Lk(Qh
n)

Figure 2. Hasse Diagram of Logics

Before we prove the correspondence with the aforementioned games, we highlight two
important facts about this family of logics. Firstly, we show that Lk(Qb

n) is equivalent to
Hella’s original infinitary logic with n-ary generalised quantifiers and, secondly, we show
how these families of generalised quantifiers relate the sizes of structures.
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2.2.1. Lk(Qb
n) and Lk

∞(Qn) are equivalent. Theorem 2.17 proves, among other things, that

Duplicator has a winning strategy in the game Bijkn(A,B) if, and only if, A ≡Lk(Qb
n)

B.
However, Hella [Hel89] originally characterised such pairs of structures by equivalence in the
seemingly more powerful logic Lk

∞(Qn). Here, we show from first principles that these two
logics are indeed equivalent.

We say that two logics L0 and L1 are equivalent if for every signature σ and every
formula ϕ(y) ∈ Li[σ] there exists an equivalent formula ϕ(y) ∈ L1−i[σ] such that for any
σ-structure A and any tuple of elements a with the same length as y, A,a |= ϕ(y) if and
only if A,a |= ϕ(y). For two such equivalent logics we will write L0 ≡ L1.

To show that Lk(Qb
n) ≡ Lk

∞(Qn) for any n and k we need to overcome two differences
between these logics. Firstly, the class Qb

n of bijective-homomorphism-closed n-ary quantifiers
is a proper subclass of Qn of all isomorphism-closed n-ary quantifiers. The following
observation provides a way of replacing general isomorphism-closed classes with bijective-
homomorphism-closed ones by modifying the signature.

Observation 2.6. For K an isomorphism-closed class of τ -structures, if τ ′ = τ ∪{R | R ∈ τ}
then

K ′ = {A ∈ R(τ ′) | ⟨A, (RA)R∈τ ⟩ ∈ K and ∀R ∈ τ, R
A
= Aarity(R) \RA}

is a bijective-homomorphism closed class of τ ′ structures.

An important consequence of this is that any such K, the formula

ϕ(y) = QKx1, . . . xn . (ψR(xR,yR))R∈τ

is equivalent to the formula

ϕ′(y) = QK′x1, . . . xn . (ψ
′
R(xR,yR))R∈τ ′ ,

where for any R ∈ τ ψ′
R = ψR and ψ′

R
= ¬ψR.

The second difference between these two logics is the role of negation. As defined in this
section, Lk(Qb

n) only allows negation on atoms, whereas Lk
∞(Qn) allows negation throughout

formulas. The following observation is important for dealing with this difference.

Observation 2.7. A class of τ -structures K is isomorphism-closed if, and only if, its
complement Kc is.

This implies that the formula ϕ(y) = ¬QKx1, . . . xn . (ψR(xR,yR))R∈τ is equivalent to
ϕ′(y) = QKcx1, . . . xn . (ψR(xR,yR))R∈τ .

We are now ready to prove the desired equivalence of logics.

Lemma 2.8. For all n, k ∈ N, Lk(Qb
n) ≡ Lk

∞(Qn).

Proof. Clearly Lk(Qb
n) is contained in Lk

∞(Qn), so we focus on translating a formula ϕ(y) ∈
Lk
∞(Qn) to an equivalent ϕ̃(y) in Lk(Qb

n). This can be done by induction on the quantifier
depth of ϕ. For quantifier depth 0, there are no quantifiers to be replaced and any negation
is either on atoms or can be assumed to be on atoms by appropriately distributing over
conjunction or disjunction.

Now we assume ϕ has quantifier depth q. Without loss of generality, we can assume
that ϕ is of the form QKx1, . . . xn . (ψR(xR,yR))R∈τ for some isomorphism-closed class K
of τ -structures. Indeed, if ϕ contains a leading negation we can use Observation 2.7 to
remove the negation by replacing K with Kc. Note that the formulas ψR and ¬ψR have
quantifier depth strictly less than q and so by induction they have equivalents ψ̃R and ˜¬ψR
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in Lk(Qb
n). Now, using the consequence of Observation 2.6 mentioned above, we can define

ϕ̃ as QK′x1, . . . xn . (ψ̃′
R(xR,yR))R∈τ ′

2.2.2. Generalised quantifiers and size. For any relational signature σ let R(σ)=M denote
the collection of σ-structures whose universe has exactly M elements. Let R(σ)≥M =⋃

m≥M R(σ)=m and similarly R(σ)≤M =
⋃

m≤M R(σ)=m. It is obvious that R(σ)=M is

bijection-closed, R(σ)≥M is injection-closed and R(σ)≤M is surjection-closed. When σ = ∅
is the empty signature this gives us classes of sets K=M , K≥M and K≤M which are closed
under bijections, injections and surjections respectively. As any signature σ admits an empty
interpretation into the empty signature which sends any σ-structure to its underlying set,
we can create sentences Bm, Im, and Sm by binding the nullary quantifier QK , for K =
K=M , K≥M and K≤M respectively, to this empty interpretation. As noted in the following
observation these sentences are important for comparing the sizes of structures, in any
signature.

Observation 2.9. For all n, k,m ∈ N there are sentences Bm, Im, and Sm in +Lk(Qb
n),

+Lk(Qi
n), and +Lk(Qs

n) respectively, such that

A |= Bm ⇐⇒ |A| = m

A |= Im ⇐⇒ |A| ≥ m

A |= Sm ⇐⇒ |A| ≤ m

As a direct result of this we have that

A ⇛+Lk(Qb
n)

B =⇒ |A| = |B|
A ⇛+Lk(Qi

n)
B =⇒ |A| ≤ |B|

A ⇛+Lk(Qs
n)

B =⇒ |A| ≥ |B|.

2.3. Games and logics correspond. So far we have introduced a series of games and logics
which are all variations on Hella’s n-bijection k-pebble game, Bijkn, and the corresponding
logic Lk

∞(Qn). Here we show that these games and logics match up in the way that one
would expect from looking at the respective refinement posets in Figures 1 and 2.

In order to present the proof of this in a uniform fashion, we label the corners of these
cubes by three parameters xi, xs, xn ∈ {0, 1} as indicated in Figure 3. These parameters
signal the presence or absence of certain rules in the corresponding games. In particular,
xi and xs indicate if the function provided by Duplicator in each round is required to be
injective or surjective respectively and xn indicates if Spoiler wins when negated atoms are
not preserved by the partial map defined at the end of a round.

Now we define the aliases of each of the games which modify Funk
n as follows, with the

games defined lining up with the games defined in Section 2.1.

Definition 2.10. For two σ-structures A and B, the game (xi, xs, xn)-Fun
k
n(A,B) is played

by Spoiler and Duplicator in the same fashion as the game Funk
n(A,B) with the following

additional rules:

(1) When Duplicator provides a function f : A → B at the beginning of a round, f is
required to be
• injective if xi = 1 and
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(1, 1, 1)

(1, 0, 1)(1, 1, 0)(0, 1, 1)

(1, 0, 0)(0, 0, 1)(0, 1, 0)

(0, 0, 0)

Figure 3. Cube of parameters

• surjective if xs = 1.
(2) If xn = 1, Spoiler wins at move j if the partial map taking πaj (i) to π

b
j(i) fails to preserve

negated atoms as well as atoms.

Similarly, we define parameterised aliases for the logics introduced in Section 2.2. To
lighten our notational burden, we use Hn,k to denote the logic +Lk(Qh

n) throughout this
section.

Definition 2.11. We define Hn,k
x to be the logic Hn,k extended by

(1) all n-ary generalised quantifiers closed by all homomorphisms which are:
• injective, if xi = 1; and
• surjective, if xs = 1

(2) if xn = 1, negation on atoms.

For example, Hn,k
001 extends Hn,k with negation on atoms but contains no additional

quantifiers as all n-ary quantifiers closed under homomorphisms are already in Hn,k. On the

other hand, Hn,k
110 does not allow negation on atoms but allows all quantifiers that are closed

under bijective homomorphisms.

Now to prove the desired correspondence between x-Funk
n and Hn,k

x , we adapt a proof
from Hella [Hel96] to work for this parameterised set of games.

For this we need the language of forth systems which are used as an explicit representation
of a Duplicator winning strategy2. We provide the appropriate generalised definition here:

Definition 2.12. Let Partkxn
(A,B) be the set of all partial functions A ⇀ B which preserve

atoms (i.e. are partial homomorphisms) and, if xn = 1 additionally preserve negated atoms.
A set S ⊂ Partkxn

(A,B) is a forth system for the game (xi, xs, xn)-Fun
k
n(A,B) if it

satisfies the following properties:

• Downwards closure: If f ∈ S then g ∈ S for any g ⊂ f
• (xi, xs)-forth property For any f in S s.t. |f | ≤ k, there exists a function ϕf : A→ B,
which is injective if xi = 1 and surjective if xs = 1 s.t. for every C ⊂ dom(f), D ⊂ A with
|D| ≤ n and |C ∪D| ≤ k we have (f ⇂ C) ∪ (ϕf ⇂ D) ∈ S.

2These are called “k-variable n-bijective back-and-forth sets” in Hella’s paper, where the “back” condition
is implicit in the use of bijections. We drop that in the present generalisation.
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Note that in the “forth” condition, there is a single function ϕf that yields the property
for any choice of set C. This captures the condition in the game where Duplicator has
to play this function before Spoiler chooses which pebbles to move (cf. Remark 1.2). As
this definition is essentially an unravelling of a Duplicator winning strategy for the game
(xi, xs, xn)-Fun

k
n(A,B) we get the following.

Lemma 2.13. There is a forth system S containing the empty partial homomorphism ∅ if,
and only if, Duplicator has a winning strategy for the game (xi, xs, xn)-Fun

k
n(A,B)

Proof. For the forward direction we note that if the pebbled position at the beginning of
some round of (xi, xs, xn)-Fun

k
n(A,B) describes a partial homomorphism f ∈ S then the

forth condition on S guarantees that if Duplicator plays ϕf : A→ B in this round then the

pebbled position at the end of the round will be f ′ ∈ S. As S ⊂ Partkxn
(A,B) we know that

such a move will not result in Duplicator losing the game. So if ∅ ∈ S, Duplicator can use S
to play indefinitely without losing.
For the other direction, we note that the set of possible positions when playing the game
(xi, xs, xn)-Fun

k
n(A,B) according to some winning Duplicator strategy Φ will form a forth

system SΦ.

Following Hella, we define the canonical forth system for a game as follows:

Definition 2.14. The canonical forth system for (xi, xs, xn)-Fun
k
n(A,B) is denoted I

n,k
x (A,B)

and is given by the intersection
⋂

m I
n,k,m
x (A,B), whose conjuncts are defined inductively as

follows:

(1) In,k,0x (A,B) := Partkxn
(A,B).

(2) In,k,m+1
x (A,B) is the set of ρ ∈ In,k,mx (A,B) such that ρ satisfies the (xi, xs)-forth

condition with respect to the set In,k,mx (A,B)

It is not difficult to see that for any forth system S for x-Funk
n(A,B) we have

S ⊂ In,kx (A,B). This means that there is a winning strategy for Duplicator in the game

x-Funk
n(A,B) if, and only if, In,kx (A,B) is not empty.

To complete the vocabulary needed to emulate Hella’s proof in this setting we introduce
the following generalisations of Hella’s definitions.

Definition 2.15. For any ρ ∈ Partkxn
(A,B) and ϕ(y) a formula in some logic, we say that

ρ preserves the validity of ϕ(y) if for any a ⊂ dom(ρ) of the same length as y we have that

A,a |= ϕ(y) =⇒ B, ρ(a) |= ϕ(y). Denote by Jn,k
x (A,B) the set of all ρ ∈ Partkxn

(A,B)
which preserve the validity of all Hn,k

x formulas. Let ∃+FOn,k
x denote the fragment of

Hn,k
x with only finitary conjunctions and disjunctions. Denote by Kn,k

x (A,B) the set of all
ρ ∈ Partkxn

(A,B) which preserve the validity of all ∃+FOn,k
x formulas.

Now, we directly modify Hella’s argument to prove the following:

Lemma 2.16. For A,B finite relational structures,

In,kx (A,B) = Jn,k
x (A,B) = Kn,k

x (A,B)

Proof. We prove the result by showing that

In,kx (A,B) ⊂ Jn,k
x (A,B) ⊂ Kn,k

x (A,B) ⊂ In,kx (A,B)

The inclusion Jn,k
x (A,B) ⊂ Kn,k

x (A,B) is obvious so we focus on proving
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(1) In,kx (A,B) ⊂ Jn,k
x (A,B); and

(2) Kn,k
x (A,B) ⊂ In,kx (A,B)

Proof of 1. Given ρ ∈ In,kx (A,B) we prove by structural induction on ϕ ∈ Hn,k
x that p

preserves ϕ. Clearly as ρ is a partial homomorphism, it preserves atoms and, if xn = 1,
negated atoms. The inductive cases for ∨ and ∧ are easy so we focus on the cases where

ϕ(z) = Qy(ψ1(y1, z1), . . . ψm(ym, zm))

Now ρ ∈ In,kx (A,B) implies the existence of a map f : A → B such that for all C ⊂
dom(ρ), D ⊂ A with |D| ≤ n we have (ρ ⇂ C) ∪ (f ⇂ D) ∈ In,kx (A,B), so using the induction
hypothesis we have that for all i, and tuples ai from D and bi from C,

A,ai,bi |= ψi(yi, zi) =⇒ B, fai, ρbi |= ψi(yi, zi)

This means that f is a homomorphism

f : ⟨A,ψ1(·,b1), . . . ψm(·,bm)⟩ → ⟨B,ψ1(·, ρb1), . . . ψm(·, ρbm)⟩

Furthermore, in the cases where (xi, xs) = (1, 0), (0, 1) or (1, 1) this homomorphism is
injective, surjective and bijective respectively and the quantifier Q in general represents a
query K which is closed by injective-homomorphism, surjective-homomorphism or bijective-
homomorphism so in all of these cases

⟨A,ψ1(·,b1), . . . ψm(·,bm)⟩ ∈ K =⇒ ⟨B,ψ1(·, ρb1), . . . ψm(·, ρbm)⟩ ∈ K

and so A,b |= ϕ(z) =⇒ B, ρb |= ϕ(z) and we are done with Part 1 of the proof.

Proof of 2. Suppose that we have p ∈ Kn,k
x (A,B). We have that p ∈ In,k,0x (A,B) by

definition, so we prove by induction that p ∈ In,k,mx (A,B), for all m. Indeed, suppose this is

true form′ < m but that p ̸∈ In,k,mx (A,B). Then it must be the case that for every f : A→ B
(injective if xi = 1, surjective if xs = 1) there is some choice of tuples bf from dom(p) and

af from A with |af | ≤ n and |af ∪ bf | ≤ k such that f ⇂ af ) ∪ (p ⇂ bf ) ̸∈ In,k,m−1
x (A,B).

By induction, this means that (f ⇂ af ) ∪ (p ⇂ bf ) ̸∈ Kn,k
x (A,B) and so there is a formula

ψf (y, z) such that A,af ,bf |= ψf (y, z) but B, paf , fbf ̸|= ψf (y, z).
Let Fx denote the set of functions f : A→ B which are injective if xi = 1 and surjective

if xs = 1. Recall from Observation 2.9, the existence of p implies that Fx is non-empty. Now
we define two structures Ap = ⟨A, (ψf (·,bf ))Fx⟩ and Bp = ⟨B, (ψf (·, pbf ))Fx⟩. We have by
construction that no f ∈ Fx is a homomorphism from Ap → Bp, meaning that we can define
a query E with Ap ∈ E and Bp /∈ E which is closed under:

• all homomorphisms, if (xi, xs) = (0, 0)
• all injective homomorphisms, if (xi, xs) = (1, 0)
• all surjective homomorphisms, if (xi, xs) = (0, 1)
• all bijective homomorphisms, if (xi, xs) = (1, 1)

So in all cases, the quantifier QE is allowed in Hn,k
x .

Since each formula ψf is in ∃+FOn,k
x , it has at most k free variables in all. By renaming

these variables, we can ensure that the variables yf are all from among a fixed tuple of n
variables y which are distinct from all variables in all zf . Then

ϕ(y) = QEy.(ψf (yf , zf ))f∈Fx
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is a formula of ∃+FOn,k
x , since each sub-formula still has at most k free variables (recall

Remark 1.1). This formula is true on (Ap,b) but false on (Bp, pb). However, this contradicts

that p ∈ Kn,k
x (A,B) and so preserves the truth of all such formulas.

We conclude this section by showing the desired correspondence for the whole family of
games and logics we have introduced.

Theorem 2.17. For x ∈ {0, 1}3 and all n, k ∈ N the following are equivalent:

• Duplicator has a winning strategy for x-Funk
n(A,B)

• A ⇛Hn,k
x

B
• A ⇛∃+FOn,k

x
B

Proof. First note that by the definition of the canonical forth system, Duplicator wins

x-Funk
n(A,B) if, and only if, ∅ ∈ In,kx (A,B).

Furthermore, Jn,k
x (A,B) and Kn,k

x (A,B) are defined as the sets of partial maps ρ which

preserve any Hn,k
x or ∃+FOn,k

x formulas respectively which hold on the domain of ρ. So

∅ ∈ Jn,k
x (A,B) or Kn,k

x (A,B) if, and only if, all sentences in these logics which are true A
are also true in B, i.e. A ⇛Hn,k

x
B or A ⇛∃+FOn,k

x
B. Applying the result of Lemma 2.16

proves the equivalence of these three.

3. The Hella Comonad and its Kleisli Category

In this section, we show how to construct a game comonad Hn,k which captures the strategies

of +Funk
n in the same way that Pk captures the strategies of ∃Pebk. We do this using a

new technique for constructing new game comonads from old based on strategy translation.
We then show that different types of morphism in the Kleisli category of this new comonad
correspond to Duplicator strategies for the games introduced in Section 2.

3.1. Translating between games. The pebbling comonad is obtained by defining a
structure PkA for each A whose universe consists of (non-empty) lists in (A× [k])∗ which we
think of as sequences of moves by Spoiler in a game ∃Pebk(A,B), with B unspecified. With
this in mind, we call a sequence in (A× [k])∗ a k-history (allowing the empty sequence). In
contrast, a move in the +Funk

n(A,B) involves Spoiler moving up to n pebbles and therefore
a history of Spoiler moves is a sequence in ((A × [k])≤n)∗. We call such a sequence an
n, k-history. With this set-up, (deterministic) strategies are given by functions

((A× [k])∗ × [k]) → (A→ B)

for ∃Pebk(A,B) and
((A× [k])≤n)∗ → (A→ B)

for +Funk
n(A,B).

A winning strategy for Duplicator in +Funk
n(A,B) can always be translated into one in

∃Pebk(A,B). We aim now to establish conditions for when a translation can be made in
the reverse direction. For this, it is useful to establish some machinery.

There is a natural flattening operation that takes n, k-histories to k-histories. We
denote the operation by F , so F ([s1, s2, . . . , sm]) = s1 · s2 · · · sm, where s1, . . . , sm ∈ (A ×
[k])≤n. Of course, the function F is not injective and has no inverse. It is worth, however,
considering functions G from k-histories to n, k-histories that are inverse to F in the sense
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that F (G(t)) = t. One obvious such function takes a k-history s1, . . . , sm to the n, k-history
[[s1], . . . , [sm]], i.e. the sequence of one-element sequences. This is, in some sense, minimal
in that it imposes the minimal amount of structure on G(t). We are interested in a maximal
such function. For this, recall that the sequences in (A× [k])≤n that form the elements of
an n, k-history have length at most n and do not have a repeated index from [k]. We aim to
break a k-history t into maximal such blocks. This leads us to the following definition.

Definition 3.1. A list s ∈ (A× [k])∗ is called basic if it contains fewer than or equal to n
pairs and the pebble indices are all distinct.

The n-structure function Sn : (A × [k])∗ → ((A × [k])≤n)∗ is defined recursively as
follows:

• Sn(s) = [s] if s is basic
• otherwise, Sn(s) = [a];Sn(t) where s = a · t such that a is the largest basic prefix of s.

It is immediate from the definition that F (Sn(t)) = t. It is useful to characterise the
range of the function Sn, which we do through the following definition.

Definition 3.2. An n, k-history t is structured if whenever s and s′ are successive elements
of t, then either s has length exactly n or s′ begins with a pair (a, p) such that p occurs in s.

It is immediate from the definitions that Sn(s) is structured for all k-histories s and
that an n, k-history is structured if, and only if, Sn(F (s)) = s.

We are now ready to characterise those Duplicator winning strategies for ∃Pebk that

can be lifted to +Funk
n. First, we define a function that lifts a position in ∃Pebk that

Duplicator must respond to, i.e. a pair (s, p) where s is a k-history and p a pebble index, to
a position in +Funk

n, i.e. an n, k-history.

Definition 3.3. Suppose s is a k-history and s′ is the last basic list in Sn(s), so Sn(s) = t; [s′].
Let p ∈ [k] be a pebble index.

Define the n-structuring αn(s, p) of (s, p) by

αn(s, p) =

{
t; [s′] if |s′| = n or p occurs in s′

t otherwise.

Definition 3.4. Say that a Duplicator strategy Ψ : ((A× [k])∗ × [k]) → (A→ B) in ∃Pebk

is n-consistent if for all k-histories s and s′ and all pebble indices p and p′:

αn(s, p) = αn(s
′, p′) ⇒ Ψ(s, p) = Ψ(s′, p′).

Intuitively, an n-consistent Duplicator strategy in the game ∃Pebk(A,B) is one where
Duplicator plays the same function in all moves that could be part of the same Spoiler move
in the game +Funk

n(A,B). We are then ready to prove the main result of this subsection.

Lemma 3.5. Duplicator has an n-consistent winning strategy in ∃Pebk(A,B) if, and only

if, it has a winning strategy in +Funk
n(A,B).

Proof. The reverse direction is easy. Suppose first that Ψ : ((A× [k])≤n)∗ → (A→ B) is a
Duplicator winning strategy in +Funk

n(A,B). Define the strategy Ψ′ in ∃Pebk(A,B) such
that for a k-history s and a pebble index p ∈ [k], Ψ′(s, p) = Ψ(αn(s, p)). This is easily seen
to be n-consistent and winning.

For the other direction we deal with the case of n = 1 separately.
For n = 1, all 1, k-histories are structured. Indeed, for any k-history s and any pebble

index p, α1(s, p) = G(s). This means that for any p and p′ α1(s, p) = α1(s, p
′) and the
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1-consistent winning strategies are precisely those such that for any k-history s, pebble
indices p and p′ and elements a, b if a = b then f([s; (a, p)]) = f([s; (b, p′)]). This is the same

as saying that the branch maps ϕfs,p and ϕfs,p′ are equal for every history s and every pair of

pebble indices p and p′. We denote the common branch map at s by ϕfs . This then gives a
strategy in the game +Funk

1(A,B) where after every 1, k-history t, Duplicator provides the

function ϕfF (t).

For n ≥ 2, suppose Ψ is an n-consistent winning strategy for Duplicator in ∃Pebk(A,B).
We construct from this a winning strategy Ψ′ for Duplicator in +Funk

n(A,B). If t is
a structured n, k-history and p is the last pebble index occurring in it, we can just take
Ψ′(t) = Ψ(F (t), p). To extend this to unstructured n, k-histories, we first define the structured
companion of an n, k-history.

Suppose t is an n, k-history that is not structured and let s, s′ ∈ (A× [k])≤n be a pair of
consecutive sequences witnessing this. We call such a pair a bad pair. Let (a, p) be the last
pair occurring in s and (a′, p′) the first pair occurring in s′. Let t′ be the prefix of t ending
with s and let κ be the last element of A such that (κ, p′) appears in F (t) if there is any.
We now obtain a new n, k-history from t by replacing the pair s, s′ by s, link, s′ where

link =

{
[(a, p), (κ, p′)] if defined

[(a, p), (a, p′)] otherwise.

It is clear that in this n, k-history, neither of the pairs s, link or link, s′ is bad, so it has one
fewer bad pair than t. Also, this move is chosen so that responding to the moves F (link)
according to Ψ does not change the partial function defined by the pebbled position after
responding to the moves F (s). Repeating the process, we obtain a structured n, k-history
which we call t̃, the structured companion of t.

We can now formally define the Duplicator strategy by saying for any n, k-history t,
Ψ′(t) = Ψ(F (t̃), p) where t̃ is the structured companion of t and p is the last pebble index
occurring in t. To see why Ψ′ is a winning strategy, we note that as responding with Ψ to the
link moves does not alter the partial function defined by the pebbled position, the function
defined after responding to t̃ according to Ψ is the same as that defined after responding to
t according to Ψ′. So if there is a winning n, k-history t for Spoiler against Ψ′ then F (t̃) is a
winning k-history for Spoiler against Ψ, a contradiction.

3.2. Lifting the comonad Pk to Hn,k. Central to Abramsky et al.’s construction of the
pebbling comonad is the observation that for I-structures (defined in Section 1), maps in
the Kleisli category K(Pk) correspond to Duplicator winning strategies in ∃Pebk(A,B).

Lemma 3.6 ([ADW17]). For A and B I-structures over the signature σ, there is a homo-
morphism PkA → B if, and only if, there is a (deterministic) winning strategy for Duplicator
in the game ∃Pebk(A,B)

The relation to strategies is clear in the context of elements s ∈ PkA representing
histories of Spoiler moves up to and including the current move in the ∃Pebk(A,B). The
relational structure given to this set by Abramsky, Dawar and Wang ensures that pebbled
positions preserve relations in σ, while the caveat here about I-structures is a technicality
to ensure that the pebbled positions when “playing” according to a map f all define partial
homomorphisms, in particular they give well defined partial maps from A to B.
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As we saw in Lemma 3.5 a Duplicator winning strategy in +Funk
n(A,B) is given by an

n-consistent strategy in ∃Pebk(A,B). The n-consistency condition can be seen as saying
that the corresponding map f : PkA → B must, on certain “equivalent” elements of PkA
give the same value. We can formally define the equivalence relation as follows.

Definition 3.7. For n ∈ N and A a relational structure. Define ≈n on the universe of PkA
as follows:

[s; (a, i)] ≈n [t; (b, j)] ⇐⇒ a = b and αn((s, i)) = αn((t, j))

In general, for any structured n, k-history t, we write [t|a] to denote the ≈n-equivalence
class of an element [s; (a, i)] ∈ PkA with αn(s, i) = t.

This allows us to define the main construction of this section as a quotient of the relational
structure PkA. Note that the relation ≈n is not a congruence of this structure, so there is
not a canonical quotient. Indeed, given an arbitrary equivalence relation ∼ over a relational
structure M, there are two standard ways to define relations in a quotient M/∼. We could

say that a tuple (c1, . . . cr) of equivalence classes is in a relation RM/∼ if, and only if, every
choice of representatives is in RM or if some choice of representatives is in RM. The latter
definition has the advantage that the quotient map from M to M/∼ is a homomorphism
and it is this definition that we assume for the rest of the paper. From this definition we
also see that for any homomorphism f : A → B the map Pkf/ ≈n: PkA/ ≈n→ PkB/ ≈n

which sends [[s; (a, i)]] = [αn(s, i)|a] to [αn(Pkf(s), i)|f(a)] is a well-defined homomorphism.

Definition 3.8. For n, k ∈ N, k ≥ n and σ a relational signature, we define the functor
Hn,k : R(σ) → R(σ) by:

• On objects Hn,kA := PkA/≈n.
• On morphisms Hn,kf := Pkf/≈n.

Writing qn : PkA → Hn,kA for the quotient map enables us to establish the following
useful property.

Observation 3.9.

f : Hn,kA → B is a homomorphism ⇐⇒ f ◦ qn : PkA → B is a homomorphism

Combining this with Lemma 3.5, we have the appropriate generalisation of Lemma 3.6.

Lemma 3.10. For I-structures A and B, there is a homomorphism f : Hn,kA → B if, and

only if, there is a winning strategy for Duplicator in the game +Funk
n

Proof. From right to left, by Lemma 3.5 we have an n-consistent winning strategy Ψ
for Duplicator in ∃Pebk(A,B). The n-consistency condition implies that the Duplicator
response to a Spoiler play [s; (a, i)] ∈ (A× [k])∗ is determined by αn((s, i)) and a only. So
the corresponding homomorphism fΨ : PkA→ B respects ≈n and fΨ ◦ qn is a well-defined
homomorphism f : Hn,kA→ B .

For the other direction, note that f ◦ qn defines a Duplicator winning strategy for
∃Pebk(A,B) which is n-consistent. Thus, by Lemma 3.5, there is a winning strategy for

Duplicator in +Funk
n(A,B).

Furthermore, we can see that the quotient map qn defined above is indeed a natural
transformation between the functors Pk and Hn,k.

Lemma 3.11. qn : Pk ⇒ Hn,k is a natural transformation.
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Proof. Let A and B be relational structures over the same signature and f : A → B be a
homomorphism. To show that qn is natural we need to establish the equality qn ◦ Pkf =
Hn,kf ◦ qn. Fix an element [s; (a, i)] ∈ PkA. On the right hand side of we have that
qn([s; (a, i)]) = [αn(s, i)|a] and so Hn,kf ◦ qn = [αn(Pkf(s), i)|f(a)]. On the left hand
side, Pkf([s; (a, i)]) = [Pkf(s); (f(a), i)] and so qn ◦ Pkf([s; (a, i)]) = [αn(Pkf(s), i)|f(a)] as
required.

This allows us to prove the following important lemma.

Lemma 3.12. The counit ϵ and comultiplication δ for Pk lift to well-defined natural
transformations for Hn,k.

Proof. Suppose [s; (a, i)] ≈n [t; (b, j)] ∈ PkA. Then by the definition of ≈n, we have a = b

and so ϵA([s; (a, i)]) = a = b = ϵA([t; (b, j)]) so we can define ϵn,kA : Hn,kA → A such that

ϵA = ϵn,kA ◦qn. So by Observation 3.9 this is a homomorphism for every A and by Lemma 3.11
it is natural.
The argument is slightly more complicated for δ. Firstly introduce δ′ : ((A × [k])≤n)∗ →
((PkA× [k])≤n)∗ defined such that the length of the ith list in δ′(s) is the same as the length
of the ith list in s and F (δ′(s)) = δ(F (s)). Informally, this means replacing every a ∈ A
appearing in s with the prefix of F (s) which runs up to (and includes) that appearance of a.
Now it is not hard to see that for any s ∈ PkA

αn(δ(s), i) = δ′(αn(s, i))

Now, as δ is a map from PkA to PkPkA, to show that it “lifts” to being a comultiplication
for Hn,k we must show that the function

PkA
δ−→ PkPkA

Pkqn−−−→ PkHn,kA
qn−→ Hn,kHn,kA

is well-defined with respect to ≈n. So, for any [s; (a, i)] ≈n [t; (b, j)], we prove that Pkqn ◦
δ([s; (a, i)]) ≈n Pkqn◦δ([t; (b, j)]), as elements of PkHn,kA. Firstly, by definition δ([s; (a, i)]) =
[δ(s); ([s; (a, i)], i)] and so Pkqn ◦ δ([s; (a, i)]) = [Pkqn(δ(s)); (qn([s; (a, i)]), i)]. We can write
similar expressions for [t; (b, j)].
As we have that αn(s, i) = αn(t, j) we use the above fact about δ′ to get that αn(δ(s), i) =
αn(δ(t), i). As Pkqn only changes the elements of a list leaving the pebble indices unchanged
and αn is based only on the pebble indices of a list, we can deduce that αn(Pkqn(δ(s)), i) =
αn(Pkqn(δ(t)), i). So, by the definition of ≈n, Pkqn ◦ δ([s; (a, i)]) ≈n Pkqn ◦ δ([t; (a, i)]) if
qn([s; (a, i)]) = qn([t; (b, j)]), which is precisely the statement that [s; (a, i)] ≈n [t; (b, j)].
Naturality for δ follows from the naturality of qn and the naturality of the comultiplication
of Pk.

We call these lifted natural transformations ϵn,k : Hn,k → 1 and δn,k : Hn,k → Hn,kHn,k.
As qn ◦Pkqn = Hn,kqn ◦ qn, we have that for any t ∈ (Pk)

mA the notion of “the” equivalence
class of t, qn(t) ∈ (Hn,k)

mA is well-defined. So for any term T built from composing ϵ, δ and

Pk we have that the term T̃ , obtained by replacing ϵ by ϵn,k, δ with δn,k and Pk with Hn,k

satisfies qn(T (t)) = T̃ (qn(t)) by the above proof. Now as the counit and coassociativity
laws are equations in ϵ and δ which remain true on taking the quotient we have the following
result.

Theorem 3.13. (Hn,k, ϵ
n,k, δn,k) is a comonad on R(σ)
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3.3. Classifying the morphisms of K(Hn,k). In Abramsky et al.’s treatment of the Kleisli
category of Pk [ADW17] they classify the morphisms according to whether their branch
maps are injective, surjective or bijective. We extend this definition to the comonad Hn,k.
This gives us a way of classifying the morphisms to match the classification of strategies
given in Section 2.

Definition 3.14. For f : Hn,kA → B a Kleisli morphism of Hn,k, the branch maps of
f are defined as the following collection of functions A → B, indexed by the structured
n, k-histories t ∈ ((A× [k])≤n)∗:

ϕft (x) = f([t|x]).
We say that such an f is branch-bijective (resp. branch-injective, -surjective) if for every t

ϕft is bijective (resp. injective, surjective)

We denote these maps by A →b
n,k (resp. B A →i

k B and A →s
k B)

Informally, the branch map ϕgs is the response given by Duplicator in the +Funk
n(A,B)

when playing according to the strategy represented by g after Spoiler has made the series of
plays in s. This gives us another way of classifying the Duplicator winning strategies for the
games from Section 2.

Lemma 3.15. There is a winning strategy for Duplicator in the game +Bijkn(A,B) (resp.
+Injkn(A,B), +Surjkn(A,B)) if and only if A →b

n,k B (resp. A →i
n,k B, A →s

n,k B).

Proof. Immediate from the definitions.

Expanding this connection between Kleisli maps and strategies, we define the following:

Definition 3.16. We say a a Kleisli map f : Hn,kA → B is strongly branch-bijective

(resp. strongly branch-injective, -surjective) if the strategy for the game +Bijkn(A,B)
(resp. +Injkn(A,B),+Surjkn(A,B)) is also a winning strategy for the game Bijkn(A,B) (resp.
Injkn(A,B),Surjkn(A,B)) and we denote these maps by A _b

n,k B (resp. A _i
k B and

A _s
k B)

Now we generalise a result of Abramsky, Dawar and Wang to the Kleisli category
K(Hn,k).

Lemma 3.17. For A,B finite relational structures,

A ⇄i
n,k B ⇐⇒ A ⇄s

n,k B ⇐⇒ A _b
n,k B ⇐⇒ A ∼=K(Hn,k) B

Proof. As A and B are finite, the existence of an injection A → B implies that |A| ≤ |B|.
So, A ⇄i

n,k B implies that |A| = |B| and thus any injective map between the two is also
surjective and vice versa. This means the first equivalence is trivial and further both of
these imply A ⇄b

n,k B
For the second equivalence, we first introduce some notation. Let Pm

A be the finite substruc-
ture of Hn,kA induced on the elements {[s|a] | s ∈ ((A × [k])≤n)≤m}. Note that for any

f : A →b
n,k B, the Kleisli completion f∗ restricts to a bijective homomorphism Pm

A → Pm
B for

each m. So if f : Hn,kA → B and g : Hn,kB → A are branch-bijective, we have for each m a
pair of bijective homomorphisms Pm

A ⇄ Pm
B . As these are finite structures we can deduce

that these are indeed isomorphisms and so f is a strategy for Bijkn(A,B).
For the final equivalence, if f witnesses A _b

n,k B then we have, by induction, that f∗
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is an isomorphism from Pm
A to Pm

B for each m. So f∗ : Hn,kA → Hn,kB is an isomor-
phism witnessing A ∼=K(Hn,k) B. For the converse we suppose that there is an isomorphism
h∗ : Hn,kA → Hn,kA. Then the Kleisli map h = ϵB ◦ h∗ is a strongly branch-bijective
strategy.

This lemma allows us to conclude that the isomorphisms in the category K(Hn,k)
correspond with equivalence of structures up to k variable infinitary logic extended by
all generalised quantifiers of arity at most n and thus with winning strategies for Hella’s
n-bijective k-pebble game.

Theorem 3.18. For two I-structures A and B the following are equivalent:

• A ∼=K(Hn,k) B
• Duplicator has a winning strategy for Bijkn(A,B)
• A ≡Lk(Qn) B

Proof. Immediate from Lemma 3.17 and Hella [Hel89].

A similar result can also be obtained relating branch-injective and branch-surjective
maps to monomorphisms and epimorphisms respectively. However, the category in question
is not the full category K(Hn,k) where Hn,k is seen as a comonad on R(σ+) but rather the
restriction of this category where the objects only the I-structures. Abramsky and Shah
show that this category can be obtained from the relevant game comonad as the Kleisli
category of a relative comonad [AS18].

4. Coalgebras and Decompositions

Abramsky et al. [ADW17] show that the coalgebras of the comonad Pk have a surprising
correspondence with objects of great interest to finite model theorists. That is, any coalgebra
α : A → PkA gives a tree decomposition of A of width at most k − 1 and any such tree
decomposition can be turned into a coalgebra. This result works because PkA has a treelike
structure where any pebble history, or branch, s ∈ PkA only witnesses the relations from the
≤ k elements of A which make up the pebbled position on s. So a homomorphism A → PkA
witnesses a sort of treelike k-locality of the relational structure A and the Pk-coalgebra laws
are precisely enough to ensure this can be presented as a tree decomposition (of width < k).

In lifting this comonad to Hn,k, we have given away some of the restrictive k-local
nature of Pk which makes this argument work. The structure Hn,kA witnesses many more
of A’s relations than PkA. Take, for example, the substructure induced on the elements
{[ϵ|x] | x ∈ A}, where ϵ is the empty history. This witnesses all relations in A which
have arity ≤ n. So, in particular, if A contains no relations of arity greater than n, this
substructure is just a copy of A and the obvious embedding A→ Hn,kA can be easily seen
to be a Hn,k-coalgebra. From this, we can see that if Hn,k-coalgebras capture some notion
of n-generalised tree decomposition, this should clearly be more permissive than the notion
of tree decomposition, allowing a controlled amount of non-locality (parameterised by n)
and collapsing completely for σ-structures with n ≥ arity(σ). In this section we define the
appropriate generalisation of tree decomposition and show its relation with Hn,k-coalgebras.
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4.1. Generalising tree decomposition. Recall the definition of a tree decomposition of a
σ-structure, for example from Definition 4.1.1 of [Gro17].

Definition 4.1. A tree decomposition of a σ-structure A is a pair (T,B) with T a tree and
B : T → 2A such that:

(1) For every a ∈ A the set {t | a ∈ B(t)} induces a subtree of T ; and
(2) for all relational symbols R ∈ T and related tuples a ∈ RA, there exists a node t ∈ T

such that a ⊂ B(t).

To arrive at a generalisation of tree decomposition which allows for the non-locality
discussed above, we first introduce the following extension of ordinary tree decompositions.

Definition 4.2. An extended tree decomposition of a σ-structure A is a triple (T, β, γ) with
β, γ : T → 2A such that:

(1) (T,B) is a tree-decomposition of A where B : T → 2A is defined by B(t) := β(t) ∪ γ(t);
and

(2) if a ∈ γ(t) and a ∈ B(t′) then t ≤ t′.

In an extended tree decomposition, the bags B of the underlying tree decomposition are
split into a fixed bag β and a floating bag γ. The second condition above ensures that γ(t)
contains only elements a ∈ A for which t is their first3 appearance in (T,B). Width and
arity are two important properties of extended tree decompositions.

Definition 4.3. Let D = (T, β, γ) be an extended tree decomposition.
The width, w(D), of D is maxt∈T |β(t)|.
The arity, ar(D), of D is the least n ≤ w(D) such that:

(1) if t < t′ then |β(t′) ∩ γ(t)| ≤ n; and
(2) for every tuple (a1, . . . , am) in every relation R of A, there is a t ∈ T such that

{a1, . . . , am} ⊆ B(t) and |{a1, . . . , am} ∩ γ(t)| ≤ n.

We note that the definition of width here differs from the width of the underlying
tree decomposition (T,B). However as we see in Lemma 4.8 having an ordinary tree
decomposition of width k is equivalent to having an extended tree decomposition of width k
and arity 1.

We are particularly interested in extended tree decompositions that are further well-
structured, in a sense that is related to the definition of structured n, k-histories in Section 3.

Definition 4.4. An extended tree decomposition with width k and arity n is structured if
for every a ∈ A there exists t ∈ T s.t. a ∈ γ(t), for every node t, γ(t) ̸= ∅, for any child t′ of
t β(t′) ∩ γ(t) ̸= ∅ and for any t′′ a child of t′ we have that either:

• |β(t′) ∩ γ(t)| = n; or
• |β(t′)| < k; or
• γ(t) ∩ β(t′) \ β(t′′) ̸= ∅

3minimum in the tree order
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4.2. Drawing extended tree decompositions and examples. We draw extended tree
decompositions as trees where the nodes have two labels, an upper label indicating the fixed
bag at that node and the lower label denoting the floating bag. In this subsection, we give
some simple examples of these decompositions.

Example 4.5. Any structure A which has no relations of arity greater than n admits a
trivial arity n, width 0 extended tree decomposition with a single node. This is drawn as:

∅
A

From this example we see that, in particular, any graph G has a trivial extended tree
decomposition of arity 2. The next two examples show that for graphs, extended tree
decompositions of arity 1 look similar to ordinary tree decompositions.

Example 4.6. Consider the following tree T as a graph.

t0

t1 t2 t3

t4 t5 t6

As with ordinary tree decompositions a tree can be given a decomposition of width 1 by
creating a bag for each edge. The corresponding extended tree decomposition of width 1
and arity 1 for T is the following:

t0

t2

t0

t1

t0

t3

t1

t4

t1

t5

t3

t6

Unlike with ordinary tree decompositions, the floating bags in extended tree decompositions
can be used to give more succinct decompositions (without changing the width). For example,
the following is an extended decomposition of T again with width 1 and arity 1.

{t0}
{t1, t2, t3}

{t1}
{t4, t5}

{t3}
{t6}
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As we see in Lemma 4.8, the correspondence between ordinary tree decompositions and
extended tree decompositions of arity 1 extends beyond trees to all relational structures.
However, for signatures of arity higher than 2 increasing the arity of an extended tree
decomposition can result in non-trivial decompositions of lower width as is shown by the
following example.

Example 4.7. Consider a hypergraph T ′ constructed from T above by adding ternary
edges {t0, t1, t2}, {t0, t1, t3}, {t0, t2, t3} and {t1, t4, t5}. Such a structure contains a 4-clique
{t0, t1, t2, t3} in its Gaifman graph (see Libkin [Lib04] Definition 4.1) and so cannot have an
ordinary tree decomposition of width less than 3. However, the following is an extended tree
decomposition of width 1 and arity 2 for T ′:

{t0}
{t1, t2, t3, t6}

{t1}
{t4, t5}

4.3. Preliminary results on extended tree decompositions. Before proving the main
result of this section we present two results which establish some basic facts about this new
type of decomposition. The first establishes the equivalence of width k, arity 1 extended tree
decompositions with ordinary tree decompositions of width k. This is interesting as we recall
from [ADW17] that tree decompositions of width k correspond to coalgebras of Pk+1 whereas
we will see in Theorem 4.10 that coalgebras of H1,k give extended tree decompositions of
arity 1 and width k. In this light, this result can be seen as demonstrating the extra strength
of H1,k over Pk.

Lemma 4.8. A relational structure A has a tree decomposition of width k if, and only if, it
has an extended tree decomposition of width k and arity 1

Proof. ( =⇒ ) Without loss of generality we can assume that (T, β) is a tree decomposition
such that for all t ∈ T |β(t)| = k + 1 and if t′ is a child of t in T then |β(t) ∩ β(t′)| = k.
We now show how to transform such a tree decomposition into an extended decomposition
(T ′, β′, γ) of width k and arity 1.

Define the equivalence relation ≈ on T as

t′ ≈ t′′ ⇐⇒ t′ and t′′ have the same parent t in T and β(t) ∩ β(t′) = β(t) ∩ β(t′′)
Now we can define the extended decomposition as follows:

• T ′ = T/≈
• β′([t]) = β(t) ∩ β(t0) where t0 is the common parent of the elements of [t]
• γ([t]) =

⋃
t′∈[t] β(t

′) \ β(t0)
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For non-root nodes t in T both β′ and γ are well-defined by the definition of ≈. For the
singleton equivalence class [r] containing the root of T we choose any cr ∈ β(r) and define
β′([r]) = β(r) \ {cr} and γ([r]) = {cr}.

Letting B([t]) = β′([t]) ∪ γ([t]) we have that B([t]) ⊃ β(t) and so (T ′, B) is a tree
decomposition. Furthermore, γ([t]) ∩ β(t0) = ∅ by definition, so for any [t′] < [t] we have
B([t′]) ∩ γ([t]) = ∅ by the condition that β−1(x) is a connected subtree of T for any x ∈ T .
So (T ′, β′, γ) is an extended tree decomposition.

It is easy to see that the maximum size of β′(t) is equal to k by design. So the width of
(T ′, β′, γ) is k. If a is a tuple in a relation of A we know that there is a node t ∈ T such
that a ⊂ β(t). By definition, β(t) ⊂ B′(t) with |β(t) ∩ γ([t])| ≤ 1. So the arity of (T ′, β′, γ)
is 1, as required.

( ⇐= ) To go backwards we take a width k, arity 1 extended tree decomposition (T, β, γ)

and we construct a tree decomposition (T̃ , β̃) by replacing each node t ∈ T with the following
spider Ht:

β(t)

γ(t)
7−→

β(t)

β(t) ∪ {γ1} β(t) ∪ {γrt}. . .

where the children of the leaf of Ht labelled by β(t)∪{γi} are the roots of the spiders Ht′ such
that t′ is a child of t in T and β(t′) ∩ γ(t) = {γi}. To see that this is a tree decomposition

note firstly that T̃ is clearly a tree under this construction. Next, it is easy to see that for
any a ∈ β(t) ∪ γ(t), a either appears in every bag of Ht or just in a single leaf. This means

that the bags containing a in T̃ still form a connected subtree. Lastly, we need to show that
each related tuple a in A is contained in some bag of T̃ . This is guaranteed by the condition
that (T, β, γ) has arity 1, which means any time a ⊂ β(t) ∪ γ(t) there exists γi ∈ γ(t) such
that a ⊂ β(t) ∪ γ(t) ∪ {γi}.

Having established the connection between extended tree decompositions and ordinary
tree decompositions we now relate extended tree decompositions to our construction in
Section 3 with the next easy but important result. It is noteworthy here that the extended
tree decompositions admitted by the structures from Section 3 are structured. This is
important later in this section.

Lemma 4.9. For any finite A, there is a structured extended tree decomposition of Hn,kA
of width k and arity n.

Proof. Recall that the underlying set of Hn,kA consists of representatives [s|a] of equivalence
classes in PkA/ ≈n where s ∈ ((A × [k])≤n)∗ is a structured n, k-history and a ∈ A. We
construct an extended tree decomposition where each node is an n, k-history s appearing in
one of these representatives. The tree ordering is simply given by the prefix relation. The
fixed bag at s, β(s), contains up to k elements which represent the at most k elements which
are pebbled after s is played. To describe these explicitly, let s ∈ PkA be the flattening of
the list s and for each i ∈ [k] appearing as a pebble index in s and let si be the maximal
prefix of s which ends in (a, i) for some a ∈ A. Then β(s) contains the ≈n-equivalence
classes of each of the si. As there can be at most k elements in this set, our extended tree
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decomposition has width k. The floating bag is given, more simply as γ(s) = {[s|a] | a ∈ A}.
From this description it is easy to see that for any [s|a] ∈ Hn,kA, if [s|a] appears in β(s′)
then s is a prefix of s′ and for any s′′ with s ⊏ s′′ ⊏ s′ we have [s|a] ∈ β(s′′). This confirms
that B−1([s|a]) is a connected subtree of T and that γ−1([s|a]) is a singleton containing the
root of that subtree.

To show that (T, β, γ) defines an extended tree decomposition of Hn,kA it now suffices to

show that any related tuple g = ([s1|a1], . . . [sl|al]) ∈ RHn,kA appears in some bag. Because
of the way relations are defined in Hn,k we can find (t1, . . . tl) ∈ RPkA s.t. q(ti) = [si|ai].
By the definition of relations in PkA we know that the ti are totally ordered by the prefix
relation. This means that the si is similarly totally ordered with largest element s. The
related tuple is contained in β(s) ∪ γ(s). Furthermore, g ∩ γ(s) contains the ti for which
q(ti) = [s|ai]. As these are linearly ordered by the prefix relation it would be impossible for
there to be more than n distinct such lists. This means that (T, β, γ) is indeed an extended
tree decomposition of width k and arity n.

To see that (T, β, γ) is structured we rely on the fact that the sequences s ∈ ((A×[k])≤n)∗

appearing in T are themselves structured in the sense of Definition 3.2. The proof is as
follows. Suppose there is a node s ∈ T with a child s;x ∈ T where x ∈ (A × [k])≤n and
suppose that |β(s;x) ∩ γ(s)| < n and β(s;x) = k. We now need to show that for any
node s;x; y ∈ T γ(s) ∩ β(s;x) \ β(s;x; y) ̸= ∅. Unpacking the definitions we have that
γ(s) ∩ β(s;x) contains elements [s|a] where (a, i) appears in x for some i. As we also know
that |β(s;x)| = k, which means in particular that x does not contain two pairs (a, i) (a, j)
for i ̸= j because if it did the contributions from pebbles i and j to β(s;x) would both
be [s|a]. These two facts together mean that the length of x must be strictly less than
n. Thus as s;x; y is a structured n, k-history we must have that the first element of y is
(by, iy) where such the index iy appears in some pair (bx, iy) in x. It is not hard to see that
[s|bx] ∈ γ(s) ∩ β(s;x) \ β(s;x; y), completing our proof.

We now prove the main claim of this section: the Hn,k-coalgebras are in correspondence
with structured extended tree decompositions of width k and arity n.

4.4. Correspondence with Hn,k coalgebras. In this final subsection we establish the
connection between width k, arity n extended decompositions of a A which are structured
with coalgebras α : A → Hn,kA. Formally stated, we prove the following theorem:

Theorem 4.10. For A a finite relational structure the following are equivalent:

(1) there is a Hn,k-coalgebra α : A → Hn,kA
(2) there is a structured extended tree decomposition of A with width at most k and arity at

most n

Proof. (1 =⇒ 2) Let α be a coalgebra and, as ϵ ◦α = idA, let α(a) = [sa|a]. Recall that by
Lemma 4.9 there is a structured extended tree decomposition (T, β, γ) of Hn,kA with arity n
and width k where the nodes of T are labelled by structured n, k-histories s ∈ ((A× [k])≤n)∗.
We use this decomposition to define a decomposition (Tα, βα, γα) on A as follows:

• Tα is the tree T restricted to the set {sa | a ∈ A}.
• βα(s) := {a ∈ A | α(a) ∈ β(s)}.
• γα(s) := {a ∈ A | α(a) ∈ γ(s)}.
We now show, firstly, that this is an extended tree decomposition, secondly that it has width
k and arity n and finally that it is structured.
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(Tα, βα, γα) is an extended tree decomposition. First of all this requires that Tα be
a tree. For any s ∈ Tα we have some a ∈ A with α(a) = [s|a]. Suppose that s =
[l1|l2| . . . |lm]. It is sufficient to show that si ∈ Tα for any prefix si = [l1| . . . |li] of s
(including the empty sequence). This fact can be deduced from the comultiplication law
that for all a Hn,kα(α(a)) = δA(α(a)). The left-hand side of this equation is Hn,kα(α(a)) =

[s|α(a)] where s = [l1|l2| . . . |lm] and the right-hand side is δA(α(a)) = [s̃|α(a)] where
s̃ = [l̃1|l̃2| . . . | ˜lm]. Taking any li = [(b1, p1), . . . (bmi , pmi)] it is not hard to see that li =

[([α(b1)|b1], p1) . . . ([α(bmi)|bmi ], pmi)] and l̃i = [([si−1|b1], p1), . . . ([si−1|bmi ], pmi)]. From this
we can conclude that for any b appearing in li for any 1 ≤ i ≤ m we have that α(b) = [si−1|b]
where s0 is the empty sequence. This proves that all prefixes of s appear in Tα. Now we
show that with Bα := βα ∪ γα (Tα, Bα) defines a tree decomposition of A. Indeed B−1

α (a) is
a subtree because it is really the intersection of two subtrees of the original T . Furthermore,
for any a ∈ RA, we have that α(a) ∈ RHn,kA. As (T, β, γ) is a tree decomposition, there is
an s ∈ T with α(a) ⊂ β(s) ∪ γ(s). You can assume α(a) ∩ γ(s) ̸= ∅ by taking the longest
prefix of s which satisfies this4. This means that s ∈ Tα and a ⊂ βα(s) ∪ γα(s). This shows
that (Tα, βαγα) defines an extended tree decomposition.

(Tα, βαγα) has width k and arity n. As α is injective by the coalgebra law ϵ ◦ α = idA,
we know that for any s ∈ Tα |βα(s)| ≤ |β(s)| and |βα(s)| ≤ |β(s)| by definition. As (T, β, γ)
has width k this means that |βα(s)| ≤ k for all s ∈ Tα and so (Tα, βα, γα) has width k. For
arity, we have that for any related tuple a in A the tuple α(a) is related in Hn,kA. (T, β, γ)
having arity n means that for any s ∈ T |α(a) ∩ γ(s)| ≤ n. So again by the injectivity of α
|a ∩ γα(s)| ≤ n and so (Tα, βα, γα) has arity n.

(Tα, βα, γα) is structured. Finally the extended tree decomposition is structured because
(T, β, γ) is structured and the coalgebra laws guarantee that |βα(s)| = |β(s)| and |βα(s′) ∩
γα(s)| = |β(s′) ∩ γ(s)| for any s ∈ Tα with child node s′. This first equation is deduced by
noting that injectivity guarantees |βα(s)| ≤ |β(s)|. The reverse inequality comes from the
fact that any t ∈ β(s) is the ≈n equivalence class of some prefix of s. As we saw before, the
comultiplication law guarantees that such classes are realised as α(b) for an appropriate b so
we have |βα(s)| = |β(s)|. The second equation follows from the same reasoning. Together
these ensure that the conditions for being structured which are satisfied in (T, β, γ) are also
satisfied in (Tα, βα, γα).

(2 =⇒ 1) Defining a Hn,k coalgebra from a structured extended tree decomposition
(T, β, γ) of width k and arity n requires some careful bookkeeping which is presented explicitly
here. Throughout we rely on the fact that our tree T comes with an order ≤ and so has
a root which we call r. By the conditions of being structured, we have for each a ∈ A a
≤-minimal node ca ∈ A where a appears in B(ca) and we have that a ∈ γ(ca). This means
in particular that at the root β(r) = ∅.

The general strategy in defining the coalgebra αT is to assign to each node c ∈ T a
structured n, k-history sc ∈ ((A × [k])≤n)∗ which records the elements of A which have
appeared in (T, β, γ) on the path from r to c. We then show that αT (a) = [sca |a] defines a
Hn,k-coalgebra for A.

4This works by noting that for s′ a parent of s in T , β(s) \ β(s′) ⊂ γ(s)
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Defining sc. Starting at the root we define sr to be the empty list. At each new node in
c ∈ T with parent c′ we define lc ∈ (A× [k])≤n to record the elements of A which appear in
γ(c′) and persist in β(c). As the arity of (T, β, γ) is n we know that |γ(c′) ∩ β(c)| ≤ n. We
then form sc by appending lc to sc′ . This inductively defines sc on all the nodes of T .

Defining lc in such a way as to ensure sc is a structured n, k-history requires some care
with assigning pebble indices from [k] to the elements in γ(c′) ∩ β(c). To help keep track of
these indices we also define a function ιc : β(c) → [k]. We say that a live prefix of sc is a
prefix s′ of the flattened list F (sc) ∈ (A× [k])∗ with final element (b, i) such that no larger
prefix of F (sc) ends with (b′, i) for any b′ ∈ A. We say that b is live in sc if it appears at
the end of some live prefix s′. The end goal is that sc will be an n, k-history where the live
elements are exactly those in β(c) and that for each such element b there is a live prefix of
sc ending in the pair (b, ιc(b)).

At each c we partition β(c) as Nc∪Rc where Nc := γ(c′)∩β(c) is the set of new elements
in βc and Rc := β(c)∩ β(c′) is the set of elements retained from the parent node. Firstly, we
define ιc to be equal to ιc′ on Rc. As the width of (T, β, γ) is k we know that |β(c)| ≤ k and
so the number of free indices |[k] \ ιc(Rc)| is at least as big as the number of new elements
|Nc| so we can assign to each element b of Nc a distinct index ιc(b) from [k] \ ιc(Rc). In
many cases this is enough and we can pick any ordering b1, . . . bm of the elements in Nc and
set lc to be the list [(b1, ιc(b1)), . . . (bm, ιc(bm))].

We now need to define some modifications to this to ensure that sc is structured. Recall
that an n, k-history s is structured if and only if for every pair of successive blocks l′

appearing immediately before l in s we have that either |l| = n or the first pebble index in l
must have appeared in l′. To ensure this holds true for each sc, we need to take extra care
defining lc in cases where |lc′ | or |Nc| are less than n.

If |lc′ | < n then we must choose ιc(b1) to be an index which appeared in lc′ . To see that
we can do this recall that (T, β, γ) is structured and so for each non-root node c′ with child
c we have (using our new language from this proof) that at least one of the following is true

(1) |Nc′ | = n,
(2) |β(c′)| < k; or
(3) Rc \Nc′ ̸= ∅.
In the first case, we have |lc′ | = n so no action needs to be taken. In the second case, where
|Nc′ | < n and |β(c′)| < k then there is a spare index i ∈ [k] \ ιc′(β(c′)) and we define lc′ to
be [(b′1, ιc′(b

′
1)), . . . (b

′
m, ιc′(b

′
m′), (b′m′ , i)] and we define ιc(b1) := i. In the third case, there

may not be a spare index i but instead there is some element b ∈ Nc′ \ Rc meaning that
some element which appears in lc′ does not need to be live after lc. In this case we simply
define ιc(b1) := ιc′(b). Collectively, these modifications ensure that sc is structured and so
the definition αT (a) := [sca |a] is well-defined. It remains to show that αT is a coalgebra.

αT is a coalgebra. To show that αT is a homomorphism, take any related tuple a ∈ RA.
As (T, β, γ) is an extended tree decomposition there is some c such that a ⊂ β(c) ∪ γ(c).
Now as the arity of the decomposition is n there are at most n elements a ∈ a with a ∈ γ(c)
and so α(a) = [sc|a]. For all the other elements a′ ∈ a there must be some earlier c0 with
a′ ∈ γ(c0) and a unique path c0 < c1 < · · · < cq = c linking c0 and c in T . We must have
a′ ∈ β(c1) and a

′ ∈ Rci for all 1 ≤ i ≤ q so by the definition of sc above we know that the
index ιc1(a

′) used to pebble a′ in lc1 has not been reallocated by the end of sc. From this it
is easy to see that the tuple α(a) (with function application defined component-wise on the
tuple) is related in Hn,kA. Finally, we verify that α satisfies the coalgebra laws. The counit
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law, ϵ ◦ α = idA is satisfied by definition. For comultiplication, it suffices to check that for
any a, b ∈ A, if b appears in sca = [lc1 | . . . |lcq ] then it appears in exactly one of the lci and
α(b) = [[lc1 | . . . |lci−1 ]|b]. This can be seen to hold from the construction above, concluding
our proof.

5. Concluding Remarks

The work of Abramsky et al., giving comonadic accounts of pebble games and their rela-
tionship to logic has opened up a number of avenues of research. It raises the possibility
of studying logical resources through a categorical lens and introduces the notion of core-
sources. This view has been applied to pebble games [ADW17], Ehrenfeucht-Fräıssé games,
bisimulation games [AS18] and also to quantum resources [ABdSZ17, ABKM19]. In this
paper we have extended this approach to logics with generalised quantifiers.

The construction of the comonad Hn,k introduces interesting new techniques to this
project. The pebbling comonad Pk is graded by the value of k which we think of as a
coresource increasing which constrains the morphisms. The new parameter n provides
a second coresource, increasing which further constrains the moves of Duplicator. It is
interesting that the resulting comonad can be obtained as a quotient of Pk and the strategy
lifting argument developed in Section 3 could prove useful in other contexts. The morphisms
in the Kleisli category correspond to winning strategies in a new game we introduce which
characterises a natural logic: the positive logic of homomorphism-closed quantifiers. The
isomorphisms correspond to an already established game: Hella’s n-bijective game with k
pebbles. This relationship allows for a systematic exploration of variations characterising a
number of natural fragments of the logic with n-ary quantifiers. One natural fragment that
is not yet within this framework and worth investigating is the logic of embedding-closed
quantifiers of Haigora and Luosto [HL14].

This work opens up a number of perspectives. Logics with generalised quantifiers have
been widely studied in finite model theory. They are less of interest in themselves and more
as tools for proving inexpressibility in specific extensions of first-order or fixed-point logic.
For instance, the logics with rank operators [DGHL09, GP19] of great interest in descriptive
complexity have been analysed as fragments of a more general logic with linear-algebraic
quantifiers [DGP19]. It would be interesting to explore whether the comonad Hn,k could be
combined with a vector space construction to obtain a categorical account of this logic.

More generally, the methods illustrated by our work could provide a way to deconstruct
pebble games into their component parts and find ways of constructing entirely new forms of
games and corresponding logics. The games we consider and classify are based on Duplicator
playing different kinds of functions (i.e. morphisms on finite sets) and maintaining different
kinds of homomorphisms (i.e. morphisms in the category of σ-structures). Could we build
reasonable pebble games and logics on other categories? In particular, can we bring the
algebraic pebble games of [DH17] into this framework?
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